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Abstract

A major problem that results from the massive use of social media networks is the

possible spread of incorrect information. However, very few studies have investigated

the impact of incorrect information on individual and collective decisions. We performed

experiments in which participants had to estimate a series of quantities before and

after receiving social information. Unbeknownst to them, we controlled the degree of

inaccuracy of the social information through “virtual influencers”, who provided some

incorrect information. We find that a large proportion of individuals only partially

follow the social information, thus resisting incorrect information. Moreover, we find

that incorrect social information can help a group perform better when it overestimates

the true value, by partly compensating a human underestimation bias. Overall, our

results suggest that incorrect information does not necessarily impair the collective

wisdom of groups, and can even be used to dampen the negative effects of known

cognitive biases.

∗Corresponding author – jayles@mpib-berlin.mpg.de
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The digital revolution has changed the way people access and share information. In

particular, the past few decades have seen an exponential increase of media sources and

amount of available information [1]. Moreover, a growing distrust in traditional media has

given an increasing share of news consumption to social networks and other pathways to

relay information. This facilitated and more diverse access to information may arguably

enhance people’s ability to make informed decisions, but at the same time such an information

overload dramatically increases the difficulty to verify information, understand an issue,

or make efficient decisions [2, 3]. In certain cases, it has also disrupted the relationship

between citizens and the truth [4, 5], leading to polarized communities unable to listen to

each other [6]. Recently, the effects of large scale diffusion of incorrect information and fake

news on the behavior of crowds have gained increasing interest, because of their major social

and political impact [7]. The propagation of false information is also reinforced by the use of

social bots simulating the behavior of Internet users [8]. In particular, there has been recent

evidence that fake news can propagate faster and affect people deeper than true information

on Twitter, especially when they carry political content [9]. In this context, there is a strong

need to understand how the diffusion of incorrect information among group members affects

individual and collective decisions.

To address this issue, we use the experimental framework of estimation tasks, which is

highly suitable for quantitative studies on social influenceability [10, 11, 12, 13, 14, 15, 16].

We performed experiments in which subjects had to estimate a series of quantities with

varying levels of demonstrability, before and after having received social information. The

demonstrability of a quantity can be interpreted as the amount of prior information a group

has about it. To put it in simple terms, it represents the “difficulty” to determining the actual

value of a quantity, a notion which will be made explicit and quantitative hereafter. Knowing

the individuals’ estimates before and after receiving the social information, as well as the value

of the social information, we can deduce their sensitivity to social influence. Moreover, by

introducing “virtual influencers” providing either the true value or some incorrect information

2



– without the subjects being aware of it – we control the quality of the information provided

to the subjects, and quantify its resulting impact on individual and collective accuracy.

To compare estimates of different quantities, it is usually necessary to normalize them.

A natural and commonly used normalization consists in dividing estimates by the true

value of the quantity of interest [17, 18]. Here, we show that this normalization is in-

sufficient for comparing quantities of a very different nature, and that the dispersion of

estimates must be included in the normalization process, which has hitherto largely been

neglected [11, 12, 16, 17, 18, 19]. We provide an adequate normalization procedure, and dis-

cuss its implications in terms of distributions of estimates. Moreover, we demonstrate that

providing a moderate amount of incorrect information to individuals can counterbalance a

human tendency to underestimate quantities [20, 21, 22, 23], and thereby improve estimation

accuracy. We also find that when social information contradicts the underestimation bias,

a strategy which consists in compromising between one’s opinion and the group’s opinion

increases the performance of groups, even when the social information is substantially inac-

curate. However, compromising with inaccurate social information that does not contradict

the bias may amplify its deleterious effects, and hamper collective performances.

Finally, we use a modified version of an agent-based model developed in [18] to better

understand the present results, and to analyze the collective response of human groups to

information of which levels of inaccuracy go beyond the values tested in our experiments. The

model quantitatively reproduces the experimental results, and confirms the counter-intuitive

observation that incorrect information can improve a group’s performance, in particular when

the group underestimates the true value and when the information compensates this bias.

Experimental design

180 subjects participated in our experiment. 20 sessions were organized, in each of which 9

subjects were asked to estimate 32 quantities. Each quantity was estimated twice: subjects
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first provided their personal/prior estimate Ep. Next, they received as social information the

geometric mean G of the τ previous estimate(s) in the sequence (τ = 1 or 3), and were then

asked to provide a second/final estimate Es. The value of τ was unknown to the subjects and

so was the exact nature of the mean provided. Moreover, this second estimate Es was used

to update the social information for the corresponding subject in the next session. Hence,

our experiment produced 9× 32× 20 = 5760 personal and second estimates, adding up to a

total of 11520 estimates.

We controlled the quality of the social information provided to the subjects, without them

being aware of it. To that end, we inserted in the sequence of 20 final estimates given by

the subjects – unbeknownst to them – n = 0, 5, or 15 artificial estimates. These additional

estimates correspond to a fraction ρ = n
20+n

= 0 %, 20 %, or 43 % of “virtual influencers”.

Each sequence thus consisted of N = 20 + n = 20, 25, or 35 estimates overall, among which

20 were estimates given by 20 actual participants, one per session. The influencers’ estimates

were introduced at random locations in the sequences. The value TI of the influencers’

estimates provided to the participants was controlled through a parameter α, which represents

a distance to the true value quantifying the (in)correctness of the influencers’ estimates

(α = −2, −1, −0.5, 0.5, 1, 1.5, 2, 3). α was normalized so as to make it independent of

the questions and its computation will be described in the Results section. In each session

and for each question, a subject was thus assigned a value of ρ, τ and α, and his/her second

estimate was a single step in a sequence of 20, 25, or 35 estimates (Supplementary Figure S1

provides a graphic representation of the protocol). Note that the estimates of the virtual

influencers are also used to update the social information which is then provided to the next

subjects in the sequence.

The quantities to estimate were grouped into four categories: visual perception (number

or length of objects in an image), population of large cities in the world, daily life facts, and

extreme (astronomical or biological/geological) events. As we will see, the separation into

these loosely defined categories is reflected in the collected data. Three additional questions
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were asked, which cannot be assigned to any of these categories (see the list of questions

in Supplementary Information). All experimental details are given in the Materials and

Methods section.

Results

Comparing quantities of very different nature

Because humans perceive numbers roughly as their order of magnitude [24, 25], the logarithm

of estimates is the natural quantity to consider in estimation tasks, especially for large quan-

tities, rather than the actual estimates themselves. Distributions of estimates have indeed

often been found highly right-skewed, while the distribution of their common logarithm is

generally much more symmetric [11, 13, 17]. An important issue in estimation tasks is to find

a proper way to normalize and aggregate estimates arising from questions with very different

quantitative answers. Within studies, how can one aggregate estimates of quantities that

differ by several orders of magnitude? Between studies, how can we compare findings coming

from different sets of quantities?

In line with other works [26, 27], we find that the median log-estimate scales linearly with

the logarithm log(T ) of the true value (Figure 1a), which leads to the natural normalization:

Xp = log
(
Ep

T

)
. Xp represents the deviation of an estimate from the true value in orders of

magnitude, and is often used as the quantity of interest in estimation tasks [11, 12, 17, 18].

However, this normalization does not take into account the dispersion of the log-estimates

〈| log(Ep)−Median(log(Ep))|〉 (where 〈x〉 refers to the mean of x) which can vary considerably

for different questions (Figure 1b). In the following, we simply refer to X as the “estimates”,

dropping the “log-” prefix.

Figure 2a presents the median mp and Figure 2b the dispersion σp = 〈|Xp − mp|〉 of

the personal estimates Xp, for all questions asked in this experiment (sorted by category

of questions). One can notice the extreme variation of both quantities depending on the
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Figure 1: (a) Median and (b) mean dispersion 〈| log(Ep) −Median(log(Ep))|〉 of the logarithms of
estimates Ep, for the 32 questions asked in the experiment. Median(log(Ep)) scales linearly with
the log of the true value T . The red dashed line is the linear regression, which slope is lower than
1 (blue dotted line), revealing the human tendency to underestimate quantities.

question, suggesting that including mp and σp in the normalization process is crucial to

compare quantities of a different nature. Figure 2b shows that the category of a question

is clearly identifiable by the dispersion of estimates σp (but not by the median mp, see

Figure 2a). The natural classification that we have chosen a priori is thus reflected in the

experimental data. Moreover, we see that the less demonstrable a question is, the higher the

dispersion of estimates. This is further supported by the three unclassified questions (30 to

32): one could have predicted that they had a low demonstrability (i.e., that people have

little prior information about them), and that they would therefore be closer to the “extreme

events” category than to the other categories, as observed.

Full normalization of estimates

In a previous study, we found and justified that the estimates Xp for low demonstrability

questions have a probability distribution function (PDF) close to the Cauchy distribution [18].
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Figure 2: (a) Median mp and (b) dispersion σp = 〈|Xp − mp|〉 of estimates Xp = log(
Ep

T ), for
the 32 questions asked in the experiment, whose ID are ranked according to their σp which also
reflects their demonstrability. The 4 categories of questions (from left to right: visual perception,
population of large cities in the world, daily life facts, extreme events), plus the three additional
questions, are separated by dashed lines. The categories are well distinct in panel (b), indicating
that σp is characteristic of the type of quantity to estimate, and more precisely of a question’s
demonstrability. In panel (a), the correlation with demonstrability is much less clear, although mp

tends to grow on average when the demonstrability decreases (i.e., when the question ID and σp
increase). The blue and red dashed lines in (a) are respectively the average value of mp, and the

quantity −
√
〈m2

p〉, in each category.

This property can be explained by a simple probabilistic argument: if two people provide

estimates X1 and X2 of a quantity about which they have no information at all, then the

average X1+X2

2
of both estimates cannot be a statistically better estimation of the correct

answer T . Hence, this average has necessarily the same probability distribution as X1 and

X2, and the only distribution that satisfies such a property is the Cauchy distribution (see also

Material and Methods). Our model based on Cauchy distributions convincingly reproduced

the experimental data, and in particular fitted well with the experimental distribution of

estimates Xp [18].

However, as we pointed out above, mp and σp have to be considered to compare esti-

mates for questions with answers spanning several orders of magnitude. Hence, for each
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question characterized by its intrinsic median mp and width σp, we normalize the estimate as

Zp = Xp−mp

σp
. Figure 3 shows that the normalized estimates Zp follow the standard Laplace

distribution (i.e., with center 0 and width 1), f(Z) = exp(−|Z|)/2, implying that the Xp

are also Laplace distributed for individual questions. It is only when different questions with

arbitrary widths σp are aggregated without our normalization that an overall Cauchy-like

distribution for the Xp emerges. Similarly, note that after social influence (red dots), the

Zs = Xs−ms

σs
, with ms = Median(Xs) and σs = 〈|Xs −ms|〉 also follow the standard Laplace

distribution, implying that the Xs also follow a Laplace distribution for each question. We

will therefore slightly modify the model developed previously [18], to replace Cauchy distri-

butions by Laplace distributions (see Model section).
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Figure 3: Distribution of fully normalized estimates Z = X−m
σ , before (blue) and after (red) social

influence. m and σ are respectively the median of the estimates X = log(ET ) and their dispersion, for
each corresponding question. E are the actual estimates and T the true value for each corresponding
quantity. The black lines are the standard (center 0 and width 1) Laplace distribution (full line),
the Cauchy distribution (dashed line) and the Gaussian distribution (dotted line) of same width.
The Laplace distribution fits the experimental data the best. Red lines (overlapping blue lines) are
model simulations.

By measuring mp and σp and using them in the normalization process, we fix the quantity

〈|Zp|〉 = 1, and therefore have some information about the distribution, instead of none for
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the Cauchy distributions argument presented above. As shown in the Material and Methods

by exploiting the principle of maximum entropy, the most likely distribution satisfying such

a constraint is the Laplace distribution.

This constraint on the dispersion of estimates can be understood as an intrinsic property of

the system {group of individuals, question}: the dispersion is characteristic of a given group

of individuals estimating a given quantity, and gives the typical range of answers that would

seem reasonable to most people in the group for that question. The lower the demonstrability

of a question (i.e., the lower the amount of prior information held by individuals in a group

about that question), the larger this range. This is intuitive when considering the following

example: an estimate three orders of magnitude from the true value would seem absurd if

one considers the age of death of a celebrity, while it would seem perfectly plausible if one

considers the number of stars in the universe. While the normalization by mp is somewhat

trivial (it simply shifts the center of the distribution of X to 0 for every question), the

normalization by σp is crucial in order to be able to properly compare and aggregate estimates

from different questions (and possibly, from different studies). We wish to insist on the fact

that this prescription is not a mere methodological detail and that it should be adopted by

future works in the field.

In Figure S2, we show the distribution of Z for the four categories of questions. One can

notice that for very large quantities (Figures S2c and d), the left side of the distribution col-

lapses faster than the right side, suggesting that people have an intuition that such quantities

must be large, even though they know little about them, such that very small estimates are

less frequent. Such asymmetric Laplace distributions can also be derived from the principle

of maximum entropy, by adding a constraint that penalizes small or large estimates (see

Materials and Methods).
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Model

In [18], we have introduced an agent-based model to better understand the effects of in-

dividual sensitivity to social influence, and of the quantity of information delivered to the

individuals, on collective performance and accuracy observed at the group level in estimation

tasks. Estimates Xp are drawn from Laplace distributions, the center and width of which are

respectively the median mp and dispersion σp = 〈|Xp − mp|〉 of the experimental personal

estimates Xp for each question. Figure 4a presents the distribution of estimates X for all

questions combined, before (blue) and after social influence (red), as well as the corresponding

distributions generated by our model, when the Xp are generated from Cauchy distributions

(as in our previous research [18], dashed lines) and Laplace distributions (full lines).

Figure 4: (a) Probability density function (PDF) of individual estimates, before (Xp, blue) and
after social influence (Xs, red). Dots show experimental data, dashed lines are model simulations
based on Cauchy distributions and full lines model simulations based on Laplace distributions. Note
the sharp decay on the left side of the distribution, well reproduced by the model. The questions
asked in our experiment imposed answers higher than one, which translates into X > − log(T ).
(b) PDF of the sensitivity to social influence S. The fractions of the five behavioral categories are
shown, from left to right: contradicters (“Cont”, S < 0), keepers (“Ke”, S = 0), compromisers
(“Comp”, 0 < S < 1), adopters (“Ad”, S = 1) and overreacters (“Over”, S > 1). Experimental
data are shown in black, and model simulations in red. (c) Average sensitivity to social influence
S against the distance D = M −Xp between the social information M and the personal estimate
Xp. Because the average is sensitive to extreme values, we excluded the values such that |S| > 100,
which represent less than 1% of the data. Black dots correspond to the experimental data, and red
empty circles to the model simulations. The dashed line shows the fraction of data for each dot.
Beyond three orders of magnitude (|D| > 3) are only about 7.6 % of the data, such that we neglect,
in the model, the asymmetric weighting of social information observed in this range of values.

The Laplace distribution is able to capture the estimates far from the truth (Xp,s >
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5) better than the Cauchy distribution. It is important to mention that in our previous

study [18], the range of possible answers were limited to plus or minus 3, 5, or 7 orders of

magnitude from the true value, depending on the question. By not allowing extreme answers,

we probably increased artificially the probability of estimates in the interval [5,7], making

the distribution even closer to a Cauchy distribution.

After providing its personal (log-)estimate Xp, each agent receives as social information

the arithmetic mean M of the τ previous final estimates in the sequence, among which

some information V (provided by the virtual influencers) is introduced with probability ρ.

Note that the actual participants where provided the geometrical mean G of the τ previous

estimates. In terms of log-estimates, the social information M = log(G) indeed transforms

into the standard arithmetic mean. The agent then provides a second estimate Xs, defined

as the weighted average of its personal estimate Xp and the social information M : Xs =

(1−S)Xp+SM , where S is the weight given to the social information, that we call sensitivity

to social influence. S can thus be expressed as S = Xs−Xp

M−Xp
. In Figure 4b, we show the

distribution of S from which five natural behavioral categories can be identified: subjects keep

their opinion (“keepers”, S = 0), compromise with the social information (“compromisers”,

0 < S < 1), adopt the social information (“adopters”, S = 1), contradict it (“contradicters”,

S < 0) or overreact to it (“overreacters”, S > 1). In the model, after receiving the social

information, an agent keeps its personal estimate (S = 0) with probability P0, adopts the

social information (S = 1) with probability P1, or draws an S in a Gaussian distribution of

center mg and width σg with probability Pg = 1− P0 − P1.

Figure 4c shows that the average sensitivity to social influence S increases linearly with

the distanceD = M−Xp between the average social informationM and the personal estimate

Xp. This is implemented in the model by making the probability Pg increase linearly with

D, according to the equation: 〈S〉 = P1 + Pgmg = a + b |D|, where the intercept a and

the slope b characterize the linear cusp observed in Figure 4c. More details can be found in

the Materials and Methods section. Notice the subjects’ tendency to give more weight to
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social information that is much lower than their personal estimate (D < −3), than to social

information that is much higher (D > 3). Since this concerns only about 7.6 % of the data,

we neglect this effect in the model.

The model, originally developed in [18], predicted that by providing subjects with in-

formation that overestimates the truth, it was possible to improve individual and collective

accuracy more than by providing them with the truth itself, by partly compensating the

underestimation bias. We provide empirical evidence for this prediction in the next section.

Note that the distribution of X narrows after social influence (red dots and lines in

Figure 4a), implying that estimates have overall gotten closer to the truth, all conditions

mixed. This may seem counter-intuitive, since in most conditions, incorrect information was

provided into the sequence of estimates. To understand this result, we next investigate the

impact of incorrect information on estimation accuracy for each condition separately.

Impact of incorrect information on estimation accuracy

As explained above, we controlled the quality of the social information received by the in-

dividuals, by introducing n = 0, 5, or 15 virtual influencers providing artificial estimates of

value TI randomly inserted in the sequences of 20 estimates provided by the participants,

and hence affecting the social information delivered to them. Since we are looking for an

information parameter that is independent of the questions, we define, consistently with the

previous discussion on the normalization procedure, the normalized (log) deviation from the

truth α =
log

(
TI
T

)

σpexp
= V

σpexp
as an indicator of information quality, where σpexp is an expected

value of the dispersion of personal estimates Xp (the values of the σpexp are given in Sup-

plementary Table S1), and V the (log) deviation from the truth of the virtual influencers

estimates TI. We obviously did not know the dispersion of estimates before running the

experiment. Yet, since the questions were similar to others used in a previous study [18], we

could formulate reasonable expectations. Indeed, Supplementary Figure S3 shows that σpexp

scale more or less linearly with the actual dispersion of estimates σp, although it tends to
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underestimate it.

α represents the deviation of TI from the truth T in the (expected) natural scale of

each question, which is the dispersion σpexp of individual errors for that question (Xp are

deviations from the truth or errors). The value TI introduced in the sequence of estimates is

hence TI = T.10ασpexp , and equals the true value T when α = 0. Subsequently, to study the

impact of information quality on the group performance, we introduce the variable Y = X
σp

,

where σp is the dispersion of Xp for a given question, and define:

• individual accuracy as the median of the absolute values of the Y of all individuals

i, averaged over all questions q: 〈Mediani(|Yi,q|)〉q, and

• collective accuracy as the absolute value of the median of the Y of all individuals i,

averaged over all questions q: 〈|Mediani(Yi,q)|〉q.

The individual accuracy measures how close individual estimates are to the truth (i.e., close

to 0 in terms of log variables X) on average, while the collective accuracy measures how

close the median estimate is to the truth. Figure 5 shows that both measures improve after

social influence (i.e., red dots are closer to 0 than blue dots), over almost the whole range of

the considered values of α, suggesting that incorrect information can, counterintuitively, be

beneficial to the performance of groups. Our results also suggest that individual accuracy

slightly improves after social influence when ρ = 0 % (i.e., no virtual influencers), but not

collective accuracy, confirming previous findings [18].

Moreover, the optimum value αopt of α at which collective or individual accuracy im-

proves the most is strictly positive, confirming the model prediction that such improvement

is maximized not by providing perfectly accurate information to individuals, but informa-

tion that overestimates the true value. Such incorrect information partly compensates the

underestimation bias, thus bringing second estimates closer to the truth.

Collective accuracy before social influence (blue dots and lines) represents the absolute

value of the collective bias of the group, averaged over all questions, i.e., the distance between
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Figure 5: Collective (a and b) and individual (c and d) accuracy, as a function of the quantifier
of information quality α, before (blue) and after (red) social influence, for ρ = 20 % (a and c) and
ρ = 43 % (b and d) of influencers in the sequence of estimates. Dots are experimental data from the
experiment presented here, while squares at α = 0 are experimental data from a previous study, in
which the same percentage of virtual influencers provided some perfectly accurate information [18].
Full lines are model simulations. Surprisingly, incorrect information can be beneficial to collec-
tive and individual accuracy, which optima are reached for positive values of α, i.e., for incorrect
information that overestimates the truth. The computation of the error bars is explained in the
Materials and Methods.

the median estimate and the truth. If the value of the collective bias is α0 ≈ −0.72, one may

naively expect that αopt = −α0 in order to compensate the collective bias and thus optimize

collective accuracy. But, since not all subjects follow the social information fully, one should

rather expect αopt > −α0, as supported by the data and model.

The fraction ρ of virtual influencers has no significant effect on collective accuracy in

the data in Figure 5. However, the simulations of the model predict that collective accuracy

degrades after social influence either when α < αmin ≈ −1.2 (for both ρ = 20 % and ρ = 43 %)

or when α > αmax ≈ 13.4 for ρ = 20 % and αmax ≈ 7.2 for ρ = 43 %, which corresponds

respectively to 〈σpexpq〉q × αmax ≈ 0.46 × 13.4 ≈ 6.2 and 〈σpexpq〉q × αmax ≈ 0.46 × 7.2 ≈ 3.3

orders of magnitude beyond the true value (see Figure S4). The impact of α is therefore not

symmetric with respect to its optimum αopt: incorrect information that largely overestimates

the truth can still be beneficial to collective accuracy, while incorrect information that only

moderately underestimate the true value is enough to damage collective accuracy. The same

analysis remains true for individual accuracy, only with different values of αopt, αmin, αmax,

and α0.
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Incorrect information and sensitivity to social influence

It has been shown that estimation accuracy strongly depends on the sensitivity to social

influence of individuals in groups [18]. Analyzing the above results in the light of the five

behavioral categories of sensitivity to social influence (Figure 4b) helps us to understand the

mechanisms underlying them. They cannot be explained by contradicters (S < 0), adopters

(S = 1) or overreacters (S > 1), who only represent a small percentage of the population.

Figure 6 shows collective and individual accuracy as a function of α, for the keepers (Fig-

ure 6a) and compromisers (Figure 6b), which each represents a substantial fraction of the

population (∼ 91%). Note that the effects are clearer when this separation into behavioral

categories is made.

Figure 6: Collective (a, b, c, d) and individual accuracy (e, f, g, h) as a function of the quantifier
of information quality α, before (blue) and after (red) social influence, for ρ = 20 % (a, c, e, g)
and ρ = 43 % (b, d, f, h) of influencers in the sequence of estimates. Keepers (S = 0) are shown
in (a, b, e, f) and compromisers (0 < S < 1) in (c, d, g, h). Dots are experimental data from the
experiment presented here, while squares at α = 0 are experimental data from a previous study, in
which the same percentage of influencers provided some perfectly accurate information [18]. Full
lines are model simulations. By disregarding social information, keepers are unable to improve in
individual and collective accuracy after social influence. Compromisers however, by partly following
social information, improve in individual and collective accuracy after social influence, even when
influencers provide some incorrect information.
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Since keepers disregard social information, we observe no improvement in individual or

collective accuracy after social influence (Figure 6a, b, e, and f). However, compromisers

(Figure 6c, d, g, and h), who partly follow the social information, significantly improve their

performance over the whole range of incorrect information tested here (except for α = −2 and

ρ = 43% of virtual influencers). Indeed, because subjects in general, and compromisers in

particular, tend to substantially underestimate quantities, they can improve their estimates

by following incorrect social information that is closer to the true value than their own per-

sonal estimate. Moreover, partially following the social information that overestimates the

truth allows their second estimates to reach more accurate values, even when the overestima-

tion is quite pronounced. Contrariwise, individual accuracy degrades quickly when subjects

are given incorrect social information which reinforces their natural cognitive bias by un-

derestimating the true value. Compromising thus allows group members to resist incorrect

information, as long as this information goes against their cognitive bias. Similar conclusions

can be drawn for collective accuracy, but the patterns are slightly less pronounced.

Figure 7 shows the equivalent graphs for the “isolated” subjects of our experiment (see

Materials and Methods). Isolated subjects received as social information for each question,

an estimate TI generated from a random value of α uniformly distributed in the interval

[−3, 3].

Figure 7: Collective (a, b) and individual (c, d) accuracy against the quantifier of information
quality α, before (blue) and after (red) social influence, in the separated experiment with the
isolated subjects. (a and c) keepers (S = 0); (b and d) Compromisers (0 < S < 1). Dots are
experimental data, and full lines are model simulations.

Figure 7 confirms the above conclusions, but displays sharper patterns, due to a dis-
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cretization effect: social information in the main experiment was generated from a discrete

set of values of α, whereas for isolated subjects, it was drawn from a continuous distribution.

Before social influence (blue), we find that keepers are slightly more accurate than com-

promisers (average collective accuracy: 0.98 versus 1.07; average individual accuracy: 1.08

versus 1.28). This was already observed in [18], and justified by the fact that a higher ten-

dency to disregard social information is usually associated with a higher average confidence of

the subjects in their own estimates, which often comes with a higher prior knowledge about

the quantity to estimate.

Note the slight U-shaped curve for keepers in Figure 7a and c. This effect is a direct

consequence of people’s tendency to stick to their personal estimate more when the social

information is closer to it (Figure 4c): when participants receive inaccurate information and

retain their opinion, it is often because they were close to it and therefore relatively inaccurate

too. Conversely, when participants receive accurate information and keep their opinion, it

is often because they were close to it and therefore quite accurate too. Both effects can be

observed in Figure 6, but are less pronounced there.

Influence of the fraction of virtual influencers on individual behavior

We have seen that compromisers, by partially following social information, were able to

improve their accuracy over a wide range of incorrect social information. Figure 8 shows

the fraction of keepers and compromisers as a function of α, when ρ = 20% (Figure 8a) and

ρ = 43% (Figure 8b) of virtual influencers are introduced in the sequence of estimates.

When ρ = 20%, both fractions of compromisers and keepers remain more or less inde-

pendent of α (Figure 8a). However, when the proportion of virtual influencers providing

incorrect information is doubled (ρ = 43%, Figure 8b), the fraction of compromisers grad-

ually increases (from 0.5 to 0.68, orange line) with α (from −2 to 3), at the expense of the

fraction of keepers which decreases (from 0.38 to 0.25, brown line). For this to happen, this

increasing transition from keeping to compromising behavior as α increases thus necessitates
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Figure 8: Proportion of compromisers (orange) and keepers (brown) as a function of the quantifier
of social information quality α, for ρ = 20 % (a) and ρ = 43 % (b) of influencers in the sequence of
estimates. Dots are experimental data from the experiment presented here, while squares at α = 0
are experimental data from a previous study, in which the same percentage of virtual influencers
provided some perfectly accurate information [18]. When ρ = 43%, the fraction of compromisers
increases with α at the expense of the fraction of keepers, which decreases with α.

a significant proportion of subjects to be provided with incorrect social information. More-

over, this result also suggests that subjects not only adapt their behavior to the degree of

incorrectness of the social information they receive, but also tend to compromise more with

some social information that overestimates the truth, than with some social information that

underestimates it. The model predicts this increased behavioral transfer with α, even when

ρ = 20%. This is a direct consequence of the cusp relationship between the sensitivity to

social influence S and the distance to the social information D (Figure 4c): people tend to

compromise with the social information more as it gets farther from their personal estimates

(and from the truth) on average. However, this effect is significantly stronger in the data,

suggesting that other mechanisms exist, that are not implemented in the model.

Supplementary Figure S5 demonstrates that this increasing fraction of compromisers with

α when ρ = 43% leads to an increased improvement in individual and collective accuracy
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after social influence (but not when ρ = 20%).

Discussion

Understanding the effects of incorrect information on individual and collective decisions is

crucial in modern digital societies, where social networks and other vectors of information

transmission allow a fast and deep flow of information, the accuracy of which is increasingly

hard to verify [28]. Here, we rigorously controlled the quality of the information delivered to

subjects in estimation tasks, by means of “virtual influencers”, i.e., virtual agents inserted

into the sequence of estimations – unbeknownst to the subjects – and providing a value

whose level of inaccuracy was controlled. We were thus able to precisely quantify the impact

of information quality on individual and collective accuracy in those tasks.

We demonstrated that a proper normalization of estimates must take into account their

dispersion, which gives the natural range of “reasonable” estimates of a given quantity for a

given group. This normalization process led to the conclusion that estimates follow a Laplace

distribution when subjects have little prior information about a quantity to estimate. Early

research showed that in many data sets, estimates X (i.e., deviations from the truth) were

often close either to Gaussian distributed or to Laplace distributed [29, 30]. Later work

have encompassed Laplace and Gaussian distributions into a broader family of exponential

distributions, the Generalized Normal Distribution (GND) family [31, 32], of PDF:

f(X,m, σ, n) =
1

2σ Γ(1 + 1/n)
exp

{
−
∣∣∣∣
X −m
σ

∣∣∣∣
n}

, (1)

where m is the center of the distribution (often called location parameter), σ is the width

of the distribution (often called scale parameter) and n is the tailedness (often called shape

parameter), which controls the thickness of the tails. The fatter the tails of a distribution,

the higher the probability to find outliers (i.e., estimates that are very far from the distri-

19



bution center). More recent work has studied various data sets of estimates and forecasts

in the light of Generalized Normal Distributions, and showed that the tailedness of distribu-

tions ranged from n = 1 (Laplace distribution) to n = 1.6, n being equal to 2 for Gaussian

distributions [33]. They concluded that most distributions of estimates for usual quantities

are actually closer to Laplace distributions than to Gaussian distributions. This discussion

can be related to the amount of prior information held by a group about a certain quantity.

We found that when a quantity is “hard” to estimate (i.e., low demonstrability, correspond-

ing to a low amount of prior information about the quantity in the group), the expected

distribution of estimates is very close to a Laplace distribution. When a quantity is “easy”

to estimate (i.e., high demonstrability, corresponding to a high amount of prior information

about the quantity in the group), few outliers are expected, such that the distribution of es-

timates could be expected to be closer to a Gaussian distribution. However, our results show

that regardless of the questions demonstrability, distributions of estimates are significantly

closer to Laplace distributions than to Gaussian distributions when properly normalized, in

agreement with [33]. In any case, we consider that future studies involving estimation tasks

should apply the normalization procedure presented here when comparing and aggregating

the estimates of different quantities, for which the width σp should be used to quantify their

demonstrability.

We then studied the impact of incorrect information on individual and collective accuracy,

and found that providing incorrect information that overestimates the true value can help

a group perform better than providing the correct value itself, by partly compensating for

the human underestimation bias. Moreover, collective and individual accuracy can improve

after social influence over a surprisingly wide range of incorrect information. This counter-

intuitive result is a consequence of a large proportion of individuals compromising with the

social information, i.e., partially following it. By doing so, subjects are able to benefit not

only from relatively accurate social information, but also from incorrect information that

goes against their cognitive bias. Indeed, because of the human tendency to underestimate
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quantities, partially following an overestimation of the truth – even a large one – can bring

second estimates closer to the truth, thus improving accuracy. However, incorrect social

information can also harm accuracy if it amplifies the bias. This may be related to some

deleterious effects of social information observed at times, for instance, how the spread of

misinformation can deeply affect the behavior of crowds as well as public opinion [34, 35, 36].

In a former study [18], we showed that adopting the social information was the best

strategy in order to improve accuracy, if virtual influencers provide perfectly accurate infor-

mation in the sequence of estimates. However, while adopting can lead to higher performance

than compromising in this particular case, our results show that compromising offers more

resilience when the information provided is potentially less accurate.

We also found that subjects were sensitive to the degree of incorrectness of the social

information they received. They adapted their behavior to the social information, by com-

promising more with the social information as it overestimated the truth more, and compro-

mising less as it underestimated the truth more. This asymmetric strategy is surprisingly

well adapted to counter the human underestimation bias. Indeed, as explained above, fol-

lowing (even partly) social information that underestimates the truth may increase the bias,

while following social information that overestimates the truth may decrease it. Following

less in the former case, and more in the latter is thus bound to increase the performance of

groups. Former studies have already observed this subjects’ tendency to rely more on social

information that is higher than their personal estimate, than on social information that is

lower, and showed that it had valuable consequences for collective performance in estimation

tasks [26, 27]. In [27], it is suggested that people can more easily assess the validity of small

numbers compared to large numbers, because they have no direct experience with events

related to those large numbers [37], and as a consequence reject more often small numbers

provided by the social information.

We then used a modified version of a model of collective estimation developed in [18]. The

predictions of the model are in good agreement with the experimental data, and confirm that
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to optimize collective accuracy, social information must do more than compensate the initial

collective bias, as most individuals only partly follow social information. In addition, the

impact of the quality of information is not symmetric with respect to its optimum: collective

accuracy can be improved by delivering incorrect information which overestimates the true

value by up to several orders of magnitude, whereas it decays fast if the information delivered

only slightly underestimates it. In other words, social information reinforcing the bias of the

group has a strong negative impact on its accuracy.

Overall, we found that incorrect social information does not necessarily impair the collec-

tive wisdom of groups, and can even be used to counter some deleterious effects of cognitive

biases. Individuals demonstrated an ability to discriminate the validity of social information,

depending on its distance from their personal estimates, and thus to benefit from accurate

social information, while at the same time resisting inaccurate social information. These

results suggest that people may be more resilient to malicious information than is often

thought, and at the same time that the negative effects of identified biases can be dampened

by exchanging relevant social information, thus improving collective decisions.

22



References

[1] Castells, M. The Rise of the Network Society. (Oxford: Wiley-Blackwell, 2009).

[2] Schick, A. G. & Gordon, L. A. Information overload: a temporal approach. Accounting,

Organization and Society 15, 199–220 (1990).

[3] Klingberg, T. The Overflowing Brain: Information Overload and the Limits of Working

Memory (Oxford University Press, 2009).

[4] Viner, K. How technology disrupted the truth. Guardian (London), July 12. Accessed

December 26, 2016. https://www.theguardian.com/media/2016/jul/12/how-technology-

disrupted-the-truth. (2016).

[5] Lewandowsky, S., Ecker, U. K. & Cook, J. Beyond misinformation: Understanding and

coping with the “post-truth” era. Journal of Applied Research in Memory and Cognition

6, 353–369 (2017).

[6] Bessi, A., Coletto, M., Davidescu, G. A., Scala, A., Caldarelli, G. & Quattrociocchi, W.

Science vs conspiracy: collective narratives in the age of misinformation. PLoS ONE

10(2), e0118093 (2015).

[7] Vicario, M. D. et al. The spreading of misinformation online. Proceedings of the National

Academy of Sciences of the United States of America 113, 554–559 (2016).
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Materials and methods

Ethics statement

The aims and procedures of the experiments conformed to the Toulouse School of Economics

Ethical Rules. All subjects provided written consent for their participation.

Experimental design

180 subjects – mostly students from the University of Toulouse – participated in our exper-

iments. 20 sessions were organized, in each of which 9 subjects had to answer 32 questions

for which they had first to give a prior/personal estimate and then a second/final estimate,

the latter after being confronted to social information. Each final estimate in each session

constituted a step in a sequence of 20 estimates. Hence, our main experiment (see the ex-

periment with “isolated subjects” hereafter) produced a total of 9 subjects × 32 questions ×

20 sessions = 5760 final estimates and the same number of prior estimates. For each ques-

tion, subjects first provided their prior/personal estimate Ep. Next, they received as social

information the geometric mean G of the τ previous estimate(s) in the sequence (τ = 1, 3),
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and were then asked to provide a second/final estimate Es (see illustration in Supplementary

Figure S1). Subjects were oblivious to the actual value of τ , only being told that the social

information was the average of the final answers of some previous participants. The time

allowed to provide an answer was limited to 40 s per estimate, after which a blinking text

urging the subjects to answer quickly would appear on their computer screen.

The specificity of our experiment lies in the design of a system aimed to control the

quantity and quality of the social information provided to the subjects, without them being

aware of it. To that end we inserted, at random locations in the sequence of estimates (and

unbeknownst to the subjects), n = 0, 5, or 15 artificial estimates, corresponding to a fraction

ρ = n/(20 + n) = 0 %, 20 %, or 43 % of virtual influencers. Each sequence thus consisted of

a total of N = 20 + n = 20, 25, or 35 estimates and the estimates of the virtual influencers

were also used to compute the updated social information for the following participants in

each sequence. We controlled the value TI of the artificial estimates, through a parameter

α (α = -2, -1, -0.5, 0.5, 1, 1.5, 2, 3) defined such that TI = T.10ασpexp , where T is the true

value of a quantity to estimate, and σpexp an expected value of the dispersion of estimates

σp to be obtained. The closer TI to T (i.e., the closer α to 0), the higher the information

quality. In particular, when α = 0, artificial estimates are equal to the true value (TI = T ). A

proper justification of the choice of α as the quantifier of information quality, and a detailed

explanation of its physical interpretation, are provided in the main text. The range of values

of α used in the experiment was chosen by exploiting preliminary simulations of the model

developed in [18], that we describe in detail below.

Each participant in each session was associated a value of ρ (ρ = 0% for subject 1,

ρ = 20 % for subjects 2 to 5 and ρ = 43 % for subjects 6 to 9). For subjects 2 to 9 (ρ 6= 0%;

no α for ρ = 0%), one particular value of α was associated to each question. We distributed

the values of α such that at the end of each session (20 sessions), each combination of a

fraction ρ of influencers (ρ 6= 0) and information quality α was repeated 16 times, such

that the experimental points in Figures 5, 6 and 8 are all constructed from 16 × 20 = 320
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values. For ρ = 0 %, there were 32 sequences per session (640 values). Although our previous

study did not show evidence for a significant effect of τ on the dynamics [18], we decided

to perform an additional check. A value of τ (1 or 3) was thus associated to each question,

independent of the values of ρ and α. Preliminary results confirmed that the effect of τ can

be neglected, and we thus combined the data from both values of τ in all graphs presented in

this paper. Supplementary Table S1 summarizes the conditions (ρ, α, τ) for each subject and

each question in a session. In all sessions, these conditions were repeated and the order of the

questions was randomized. In the first session (i.e., the first step of all sequences), subjects

received as social information (initial condition) the value TI provided by the influencers. In

the particular case ρ = 0 % (no influencers), the initial social information provided was the

true answer to the question T . Anyway, note that our previous study showed that the choice

of the initial condition had little impact on the subsequent dynamics [18]. At the end of each

session, subjects were rewarded according to their overall performance/accuracy: 20e for the

two first ones, 15e for the next four ones and 10e for the three last ones.

As a safeguard against subjects not showing up, 3 additional subjects were recruited in

each session. Hence, when more than nine subjects were present in a session, the additional

subjects (“isolated subjects”; 51 in total) were given a special treatment, unbeknownst to

them: they were not part of a sequence or associated to any specific condition (ρ, α, τ),

and received instead, as social information, a value TI = T.10ασpexp generated from a random

value of α uniformly distributed in the interval [−3, 3]. These “isolated subjects” were paid

10e, independently of their performance.

Cauchy and Laplace distributions

In the context of estimation tasks, the Cauchy and Laplace distributions emerge naturally.
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Cauchy distribution

The Cauchy distribution centered at m (the median) and of width σ is given by

f(X,m, σ) =
1

π

σ

(X −m)2 + σ2
. (2)

The Cauchy distribution has fat tails and an infinite variance. One of the notable and unique

properties of the Cauchy distribution is that, if X1, ..., XN are independently drawn from the

same Cauchy distribution, then the average X̄n =
∑n

i Xi/N (or any weighted average of

the Xi) has exactly the same Cauchy distribution as the Xi, i.e., with the same center and

width. In particular, the distribution of the average X̄n does not have a smaller width than

the distribution of the Xi, as one would obtain if the Xi were drawn from a distribution

with a finite variance. For instance, if the Xi are drawn in the same Gaussian distribution

with standard deviation σ, the average X̄n is also Gaussian distributed, but with a reduced

standard deviation σn = σ/
√
N , a basic property leading to the law of large numbers.

In the context of estimation tasks, if N subjects having absolutely no clue about the

actual answer to a question draw their personal estimates X1, ..., XN from some random

distribution, one cannot expect the average of the estimates X̄n to provide more information

than the individual estimates, and X̄n should then have the same distribution as the Xi. The

unique probability distribution satisfying this property is the Cauchy distribution.

Laplace distribution

Now, let us assume that the distribution for a random variable X is known to be symmetric

and centered in m with a known width given by σ =
∫∞
−∞ |X−m|f(X) dX. What is the most

likely distribution satisfying this property? To answer this question, one has to maximize

the entropy S(f) = −
∫∞
−∞ f(X) log[f(X)] dX, subject to the above constraint for σ along

with the normalization constraint
∫∞
−∞ f(X) dX = 1. This optimization problem (maximum

entropy principle) with constraints is solved by introducing two Lagrange multipliers α and
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β, and maximizing with respect to f(X) the functional F (f) given by

F (f) = −
∫ ∞

−∞
f(X) log[f(X)] dX + α

∫ ∞

−∞
f(X) dX + β

∫ ∞

−∞
|X −m|f(X) dX. (3)

Expressing that the functional derivative of F (f) with respect to f(X) vanishes (maximum

of F (f)), one obtains

− log[f(X)]− 1 + α + β|X −m| = 0, (4)

leading to f(X) = exp(1− α− β|X −m|). Finally, α and β are computed by expressing the

normalization and width constraints leading to the symmetric Laplace distribution

f(X,m, σ) =
e−
|X−m|
σ

2σ
. (5)

The normalized variable Z = X−m
σ

has the standard Laplace distribution (i.e., with center 0

and width 1), f(Z) = exp(−|Z|)/2.

Note that if the assumption of a symmetric distribution is relaxed and that one wants

for instance to penalize large or small values of X (in the context of human estimations,

this is related to the bias against large answers), one can add a term γ
∫∞
−∞Xf(X) dX

in F (f), adding an independent constraint on the mean of X. The same calculation as

above leads to an asymmetric Laplace distribution with different exponential tails below and

above the maximum of the distribution, reminiscent of what is observed experimentally in

Supplementary Figure S2c and S2d for estimates about questions with very large answers.

In physics, when the variable X is the energy of the considered system, the only constraint

in addition to the normalization is the knowledge of its average energy E =
∫∞
−∞Xf(X) dX.

Repeating the same optimization procedure as above (F (f) in Eq. (3) is then proportional to

the opposite of the free energy, to be maximized), one finds that the most likely distribution

for the energy of the system is the famous Boltzmann distribution

f(X) =
e−βX

Z , (6)
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where Z is a normalization constant, and the Lagrange multiplier β can be ultimately shown

to be proportional to the inverse of the temperature T , β = (kBT )−1, where kB is the

Boltzmann constant.

Model

Main experiment

Our model simulates a sequence of N = 20 + n successive estimates performed by 20 agents

and n virtual influencers for a given question. The model directly implements the log devia-

tions from the truth X = log
(
E
T

)
. A typical run of the model consists of the following steps,

for an agent estimating a given quantity in a given condition (ρ, α, τ):

1. An agent’s personal estimate Xp is drawn from the Laplace distribution f(Xp,mp, σp),

where mp and σp are respectively the median and average absolute deviation from the

median of the experimental distribution of estimates for each question. We impose that

estimates Ep are greater than 1, i.e., Xp > − log(T ). This condition explains the fast

decay on the left side of the distribution in Figure 4a;

2. With probability ρ = n
n+20

, a virtual influencer plays and provides the value V = ασpexp

(the values of σpexp for each question are given in Supplementary Table S1). With

probability (1 − ρ), the agent receives as social information the average M of the τ

previous estimates (possibly including estimates from virtual influencers). M0 = V is

used as initial condition for the first agent;

3. The agent’s sensitivity to social influence S is drawn from a Gaussian distribution of

mean mg = 0.58 and standard deviation σg = 0.3 with probability Pg, or takes the value

S = 0 or S = 1 with probability P0 and P1 = 1 − P0 − Pg, respectively (Figure 4b).

Pg and P0 have a linear cusp relationship with the distance D = M −Xp between the

social information M and the personal estimate Xp (Figure 4c), while P1 = 0.012 is

kept independent of D.
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For a given distance D, the average sensitivity to social influence is 〈S〉 = P0×0+P1×

1 + Pg ×mg = a + b |D|, where the intercept a = 0.34 and the slope b = 0.09 are the

coefficients of the linear cusp relationship extracted from Figure 4c. Pg is hence given

by Pg = (a+ b |D| − P1)/mg. A plateau is added at |D| > 3 by setting an upper limit

Pgmax = 0.85 on Pg.

4. The agent’s final estimate Xs is the weighted average of the personal estimate and the

social information: Xs = (1 − S)Xp + SM . The condition Xs > − log(T ) is also

imposed on the Xs.

5. One starts again from step 1 for the next agent.

Apart from α over which we loop in order to make it pseudo-continuous and to explore

values beyond those tested in the experiment, our model closely follows the experimental

structure: one subject is associated to ρ = 0%, four subjects to ρ = 20% (5/25) and four

subjects to ρ ≈ 43% (15/25). Moreover, each question is associated with the corresponding

value τ used experimentally (see Supplementary Table S1). One simulation of the model thus

mimics an experimental run, and results are calculated for each simulation, then averaged

over 10000 simulations.

Isolated subjects

In a parallel experiment, “isolated” subjects received as social information an estimate gen-

erated from a random value of α, uniformly distributed between −3 and 3. The model for

isolated subjects is very similar to the one presented above, and also sticks closely to the ex-

perimental structure: instead of receiving the average of τ previous estimates, agents receive

a value of α randomly generated from a uniform distribution. There is no loop over α here,

and the variables ρ and τ do not exist in this separate experiment. All the rest is the same

as in the model of the main experiment. 10000 simulations were run with 200 agents in each.
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Computation of the error bars

The error bars indicate the variability of our results depending on the NQ = 32 questions

presented to the subjects. We call x0 the actual measurement of a quantity appearing in the

figures by considering all NQ questions asked. Then, we generate the results of Nexp = 1000

new effective experiments. For each effective experiment indexed by j = 1, ..., Nexp, we

randomly draw N ′Q = NQ questions among the NQ questions asked (so that some questions

can appear several times, and others may not appear) and recompute the quantity of interest

which now takes the value xj. The upper error bar b+ for x0 is defined so that C = 68, 3 %

(by analogy with the usual standard deviation for a normal distribution) of the xj greater

than x0 are between x0 and x0 + b+. Similarly, the lower error bar b− is defined so that

C = 68, 3 % of the xj lower than x0 are between x0 − b− and x0. The introduction of these

upper and lower confidence intervals is adapted in cases where the distribution of the xj is

unknown and potentially not symmetric.
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4Toulouse School of Economics, INRA, Université de Toulouse (Capitole), 31000 Toulouse, France

5Institute for Advanced Study in Toulouse, 31015 Toulouse, France

6Department of Social Psychology, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo

113-0033

∗Corresponding author – jayles@mpib-berlin.mpg.de

1

ar
X

iv
:2

00
3.

06
16

0v
1 

 [
ph

ys
ic

s.
so

c-
ph

] 
 1

3 
M

ar
 2

02
0



1 List of Questions

We list below the 32 questions used in the experiment and the corresponding correct answers

T . In the original experiment, the questions were asked in French. Questions 1 to 29 were

classified into 4 clear-cut categories, and questions 30 to 32 do not clearly belong to either of

these categories.

1. Visual perception (number or length of objects in an image):

1. Marbles 1: How many marbles are in this jar? T = 100

2. Matches 1: How many matches can you see? T = 240
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3. Matches 2: How many matches can you see? T = 480

4. Marbles 2: How many marbles are in this jar? T = 450

5. Matches 3: How many matches can you see? T = 720
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6. Rope 1: In your opinion, how long is this rope (in cm)? T = 200

7. Rope 2: In your opinion, how long is this rope (in cm)? T = 700

2. Population of large cities in the world:

8. What is the population of New York City and its agglomeration? T = 21, 000, 000

9. What is the population of Madrid and its agglomeration? T = 6, 500, 000

10. What is the population of Amsterdam and its agglomeration? T = 1, 600, 000

11. What is the population of Tokyo and its agglomeration? T = 38, 000, 000

12. What is the population of Melbourne and its agglomeration? T = 4, 500, 000

13. What is the population of Seoul and its agglomeration? T = 26, 000, 000

14. What is the population of Shanghai and its agglomeration? T = 25, 000, 000

3. Daily life facts:

15. How many kilometers does a professional cyclist typically bike a year? T = 40, 000
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16. What is the mean annual gross salary of a professional league 1 soccer player in France

(in euros)? T = 600, 000

17. How many cell phones are sold in France every year? T = 22, 000, 000

18. How many cars are stolen in France every year? T = 110, 000

19. How many ebooks were sold in France in 2014? T = 10, 700, 000

20. How many books does the American Library of Congress hold? T = 23, 000, 000

21. How many people die from cancer in the world every year? T = 15, 000, 000

4. Extreme (astronomical or biological/geological) events:

22. What is the radius of the Sun (in km)? T = 696, 000

23. What is the distance between the Earth and the Moon (in km)? T = 385, 000

24. What is the mean distance between planet Mercury and the Sun (in km)? T =

57, 800, 000

25. What is the total mass of oceans on Earth (in thousand billion tons)? T = 1, 400, 000

26. How many cells are there in the human body (in billion cells)? T = 100, 000

27. How many galaxies does the visible universe hold (in million galaxies)? T = 100, 000

28. How many stars does the Milky way hold (in million stars)? T = 235, 000

29. How many billions kilometers is worth a light-year? T = 9, 461

5. Other:

30. What is the mass of the Cheops pyramid (in tons)? T = 5, 000, 000

31. What is the total length of the metal threads used in the Golden Gate Bridge’s braided

cables (in km)? T = 129, 000

5



32. How much did Burj Khalifa Tower, in Dubai, cost to build (in thousand dollars)?

T = 1, 500, 000

2 Supplementary Figures

Figure S1: Sequence of estimates for a given question: one after the other, each individual ik (k =
1, ..., 20) first gives his/her personal estimate Ep (in blue). Then, after receiving social information
(the geometric mean of the τ previous estimates), he/she gives his/her second estimate (in red).
n = 0, 5, or 15 virtual influencers (black dots), corresponding to a fraction ρ = n

n+20 = 0, 20,
or 43% respectively, are added at random locations in the sequence, without the subjects being
aware of it. The value TI provided by the virtual influencers is chosen as initial condition (violet
circle). The figure shows an example with 5 virtual influencers, corresponding to a fraction ρ = 20%
(highlighted in red on top of the panel). In this example, τ = 1, such that subjects receive as social
information the estimate of the subject or virtual influencer that comes right before them in the
sequence. For instance, subject I2 receives TI as social information from the first virtual influencer
(E2 = TI), and subject I19 receives E22 as social information from subject I18.
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Figure S2: Distribution of fully normalized estimates Z = X−m
σ , before (blue) and after (red) social

influence, for the four categories defined: (a) visual perception, (b) population of large cities in the
world, (c) daily life events and (d) extreme (astronomical or biological/geological) events.
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Figure S3: Dispersion σp = 〈|Xp −mp|〉 of estimates Xp = log(
Ep

T ), for the 32 questions asked in
the experiment, against the expected values of the dispersion σpexp used to define the information
TI provided by the influencers. The red dashed line is a linear regression of slope about 1.8, while
the blue dotted line has a slope of 1. The red line being above the blue line means that our expected
values underestimated the actual dispersion of estimates.
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Figure S4: Model simulations of collective (a and b) and individual (c and d) accuracy, as a function
of the quantifier of information quality α, before (blue) and after (red) social influence, for ρ = 20 %
(a and c) and ρ = 43 % (b and d) of virtual influencers in the sequence of estimates. Collective and
individual accuracy can improve when virtual influencers provide information that overestimate
the truth by far, especially when ρ = 20 %, but decrease sharply when virtual influencers provide
information that underestimate the truth: reinforcing the group bias has a strong negative impact
on its accuracy.

Figure S5: Collective (a and b) and individual (c and d) accuracy, as a function of the proportion
of compromisers, before (blue) and after (red) social influence, for ρ = 20 % (a and c) and ρ = 43 %
(b and d) of influencers in the sequence of estimates. Each dot corresponds to a value of α. When
ρ = 43 %, the individual and collective accuracies significantly improve (i.e., gets closer to 0) after
social influence (red) with an increasing proportion of compromisers, but not when ρ = 20 %.
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3 Supplementary Table

ρ = 20 % ρ = 43 %
Question τ σpexp Subj. 2 Subj. 3 Subj. 4 Subj. 5 Subj. 6 Subj. 7 Subj. 8 Subj. 9

1 1 0.114 0.5 -0.5 1 -1 0.5 -0.5 1 -1
2 1 0.114 2 -2 3 1.5 2 -2 3 1.5
3 3 0.114 3 1.5 2 -2 3 1.5 2 -2
4 3 0.114 1 -1 0.5 -0.5 1 -1 0.5 -0.5
5 1 0.146 2 -2 3 1.5 2 -2 3 1.5
6 1 0.204 0.5 -0.5 2 -2 0.5 -0.5 2 -2
7 3 0.255 1 -1 3 1.5 1 -1 3 1.5
8 3 0.176 3 1.5 2 -2 3 1.5 2 -2
9 1 0.204 0.5 -0.5 2 -2 0.5 -0.5 2 -2
10 1 0.204 0.5 -0.5 1 -1 0.5 -0.5 1 -1
11 1 0.176 0.5 -0.5 1 -1 0.5 -0.5 1 -1
12 3 0.204 1 -1 3 1.5 1 -1 3 1.5
13 1 0.176 2 -2 3 1.5 2 -2 3 1.5
14 3 0.204 1 -1 0.5 -0.5 1 -1 0.5 -0.5
15 1 0.342 2 -2 0.5 -0.5 2 -2 0.5 -0.5
16 3 0.230 1 -1 0.5 -0.5 1 -1 0.5 -0.5
17 3 0.398 1 -1 2 -2 1 -1 2 -2
18 3 0.398 3 1.5 1 -1 3 1.5 1 -1
19 1 0.398 2 -2 1 -1 2 -2 1 -1
20 3 0.519 3 1.5 0.5 -0.5 3 1.5 0.5 -0.5
21 1 0.398 0.5 -0.5 3 1.5 0.5 -0.5 3 1.5
22 1 0.447 2 -2 1 -1 2 -2 1 -1
23 3 0.462 3 1.5 0.5 -0.5 3 1.5 0.5 -0.5
24 1 0.908 0.5 -0.5 2 -2 0.5 -0.5 2 -2
25 3 1.324 3 1.5 2 -2 3 1.5 2 -2
26 3 1.258 3 1.5 1 -1 3 1.5 1 -1
27 1 1.324 2 -2 0.5 -0.5 2 -2 0.5 -0.5
28 1 1.004 0.5 -0.5 3 1.5 0.5 -0.5 3 1.5
29 3 0.851 1 -1 2 -2 1 -1 2 -2
30 1 0.771 2 -2 1 -1 2 -2 1 -1
31 3 0.908 1 -1 3 1.5 1 -1 3 1.5
32 3 0.324 3 1.5 0.5 -0.5 3 1.5 0.5 -0.5

Table S1: Parameter values in a given session: each subject in a session is associated a specific value
of ρ for all questions, but the values of τ and α vary across questions. The “Subjects” columns
(Subj. i, i = 2 ... 9) give the values of α for each question.
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