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de yoga, la construction de toilettes sèches ou un cours sur le “peak oil” ou encore sur les origines de
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Bolte, également coauteur, dont nos discussions s’étendent bien au-delà des mathématiques.
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Résumé

Des méthodes d’énergie adaptées permettent d’obtenir la localisation spatiale, l’extinction en temps

fini et la propriété de temps d’attente de solutions d’équations aux dérivées partielles. Ces trois types

de propriétés sont ainsi regroupés car les méthodes mathématiques pour y parvenir sont très proches.

Les travaux présentés dans une grande partie de cette habilitation à diriger des recherches concernent

les deux premières propriétés que l’on applique à des équations de Schrödinger (stationnaires et

d’évolution) avec un terme d’amortissement. Tout d’abord, des théorèmes d’existence et/ou d’unicité

sont démontrés. Puis, une étude qualitative des solutions est effectuée : phénomène de localisation,

pour l’équation stationnaire et extinction en temps fini, pour l’équation d’évolution.

Une partie plus mince concerne la stabilisation en temps infinie de solutions des équations des ondes et

des poutres à l’aide, également, d’un terme d’amortissement. Ce dernier permet d’obtenir l’extinction

en temps infinie des solutions. On commence par établir une inégalité généralisée de Hölder. Puis, à

l’aide de celle-ci, on donne la vitesse de convergence de l’énergie associée à chaque solution.

Une autre partie traite de l’étude d’un système gradient du second ordre. Ici encore, un terme d’amor-

tissement est présent impliquant, sous des hypothèses adéquats, l’extinction en temps infinie des solu-

tions. En déformant l’énergie totale du système et en utilisant l’inégalité de Kurdyka- Lojasiewicz, on

montre que ce système gradient amorti du second ordre et les systèmes quasi-gradients sont de même

nature. Par ailleurs, on donne les vitesses de convergence des solutions.

Dans une dernière partie, on s’intéresse à l’équation de Schrödinger dont la non-linéarité est critique

pour la masse. On montre à l’aide d’une inégalité améliorée de Strichartz que, près du temps d’explo-

sion, la masse de la solution se concentre dans une boule de rayon nulle.

Mots-clés : équation amortie, système dynamique dissipatif, système gradient, méthode d’énergie, so-

lution à support compact, extinction en temps fini/infini, comportement asymptotique, stabilisation,

existence globale, unicité, solution auto-semblable, explosion en temps fini, inégalité généralisée de

Hölder, inégalité de Kurdyka- Lojasiewicz, inégalité améliorée de Strichartz.

Key words : damped equation, dissipative dynamical systems, gradient systems, inertial systems,

compactly supported solution, finite time extinction, asymptotic behavior, stabilization, global exis-

tence, uniqueness, self-similar solution, finite time blow-up, generalized Hölder’s inequality, Kurdyka-

 Lojasiewicz inequality, generalized Strichartz’s estimate
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Introduction

Chapitres 1–6 : Études spatiale et asymptotique pour des équa-
tions de Schrödinger non-linéaires amorties ([24, 25, 26, 27, 28,
29, 20]

Dans ces chapitres, on s’intéresse à des équations de Schrödinger avec un terme d’amortissement :
i
∂u

∂t
+ ∆u+ a|u|−(1−m)u = f(t, x), dans R× Ω,

u|Γ = 0, dans R× Γ,

u(0) = u0, dans Ω,

(1)

pour l’équation d’évolution, et{
−i∆u+ a|u|−(1−m)u+ bu = F, dans Ω,

u|Γ = 0, sur Γ,
(2)

pour l’équation stationnaire. Ici, (a, b) ∈ C2, 0 < m < 1, Ω ⊆ RN est un ouvert et les termes sources

f et F , et la donnée initiale u0 sont choisis dans un espace adéquat. Le but est de savoir s’il existe

des solutions à support compact ou bien qui s’annulent en temps fini.

Chapitre 1 : Estimation et localisation du support pour l’équation
stationnaire

Ce chapitre concerne l’équation (2). Des hypothèses sont faites pour obtenir l’existence et l’unicité de

solution. On peut les formuler de la manière géométrique suivante.

Hypothèse d’Existence 1. Soit (a, b) ∈ C2. Alors [a, b] ∩ R− × i{0} = ∅.

Hypothèses d’Unicité 2. Soit (a, b) ∈ C2. Alors a 6= 0, Re(a) > 0 et −→a .
−→
b > 0 1.

Formulées ainsi, l’hypothèse d’unicité implique l’hypothèse d’existence. Les résultats principaux de ce

chapitre peuvent s’énoncer ainsi (Théorèmes 1.4.1 et 1.5.2).

1. ou de façon équivalente, |mes(−̂→a ,
−→
b )| 6 π

2
rad.

I



II

Théorème 3. Soient Ω ⊆ RN un ouvert non vide et 0 < m < 1. Si le couple (a, b) satisfait l’Hypothèse

d’Existence 1, avec éventuellement b = 0, alors pour n’importe quel F ∈ Lm+1
m (Ω;C), l’équation (2)

admet au moins une solution u ∈ H1
0 (Ω) ∩ Lm+1(Ω). Si de plus l’Hypothèse d’Unicité 2 est vérifiée

alors la solution est unique.

L’existence s’obtient de la façon suivante. On commence par obtenir des estimations a priori. On

approxime ensuite l’équation avec une suite de non-linéarités tronquées à l’aide du Théorème de point

fixe de Schauder, puis on passe à la limite. L’unicité s’obtient en disant que, en gros, la non-linéarité

est la différentielle d’une fonction convexe et est donc monotone. Concernant la compacité du support

des solutions, le résultat est celui ci-dessous (Théorèmes 1.3.5 et 1.3.6).

Théorème 4. Soient Ω ⊆ RN un ouvert non vide, 0 < m < 1 et (a, b) satisfaisant l’Hypothèse

d’Existence 1, avec éventuellement b = 0.

1. Soient F ∈ L
m+1
m (Ω;C) et u ∈ H1

0 (Ω) ∩ Lm+1(Ω) une solution quelconque de (2). Si F est

à support compact et si ‖F‖Lm+1
m (Ω) est suffisamment petite alors u est à support compact et

suppu ⊂ Ω.

2. Soient F ∈ Lp(RN ;C), pour un p ∈ [1,∞], et u ∈ H1(RN )∩Lm+1(RN ) une solution quelconque

de (2). Si F est à support compact alors u est à support compacte.

La démonstration du Théorème 4 est pour le moins technique et repose sur une méthode d’énergie. Elle

fait appel, entre autres, à une inégalité de trace-interpolation (voir (1.7.12)). À l’aide des Théorèmes 3

et 4, on peut construire des solutions à support compact en espace pour l’équation (1) de la façon

suivante. Soient a ∈ C tel que a 6∈ R+, b ∈ R?+, 0 < m < 1 et F ∈ L
m+1
m (RN ;C). Soient alors

u0 ∈ H1(RN ) ∩ Lm+1(RN ) une solution de (2) donnée par le Théorème 3, avec −a, au lieu de a et

−F, au lieu de F. On pose pour tout t ∈ R, f(t) = Feibt et u(t) = u0e
ibt. Alors on vérifie aisément

que u ∈ C∞
(
R;H1(RN ) ∩ Lm+1(RN )

)
est une solution de (1) pour un tel f. Le Théorème 4 donne

alors le résultat suivant.

Corollaire 5. Avec les hypothèses et notations ci-dessus, si F est à support compact alors pour tout

t ∈ R, suppu(t) = suppF.

Chapitre 2 : Existence de solutions faibles pour des équations
de Schrödinger stationnaires amorties

À ce stade, deux choses sont insatisfaisantes :

– le résultat de compacité pour les solutions de l’équation d’évolution est trop restrictif (Corol-

laire 5),

– l’hypothèse F ∈ Lm+1
m est moins naturelle et plus restrictive que l’hypothèse F ∈ L2 (au moins

lorsque |Ω| est de mesure finie car dans ce cas, et puisque 0 < m < 1, L
m+1
m (Ω) ( L2(Ω)).

Pour ce dernier point, le choix est d’établir des résultats analogues au Chapitre 1, avec F ∈ L2 (quitte

à exclure la valeur b = 0) et d’y inclure la condition de Neumann homogène au bord. On s’intéresse
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donc également à, 
−i∆u+ a|u|−(1−m)u+ bu = F, dans Ω,

∂u

∂ν |Γ
= 0, sur Γ,

(3)

Évidemment, on considérera systématiquement dans ce cas que l’ouvert Ω est borné et de classe C1.

Concernant le premier point, l’idée est de se concentrer sur les solutions auto-semblables. En effet,

établir un résultat de compacité en espace des solutions pour l’équation (1) est à ce jour encore trop

difficile. D’où le choix de regarder d’abord les solutions auto-semblables car on peut se ramener à

une équation stationnaire de la façon (bien connue) suivante. Pour des raison d’homogénéité, f doit

vérifier,

∀λ > 0, f(t, x) = λ−
2m

1−m f(λ2t, λx), (4)

pour tout t > 0 et presque tout x ∈ RN . Des solutions auto-semblables u de (1) sont des solutions qui

s’écrivent sous la forme,

u(t, x) = t
1

1−mU

(
x√
t

)
, (5)

pour tout t > 0 et presque tout x ∈ RN , où le profil U est solution de,

−∆U − a|U |−(1−m)U − i

1−m
U +

i

2
x.∇U = −f(1).

En effectuant le changement (également très connu) d’inconnue g(x) = U(x)e−i
|x|2

8 , on se ramène à

l’étude de,

−∆g − a|g|−(1−m)g − i
N(1−m) + 4

4(1−m)
g − 1

16
|x|2g = −f(1)e−i

|x|2
8 , (6)

que l’on peut généraliser sous la forme,

−∆v + a|v|−(1−m)v + bv + cV 2v = H, (7)

où V est un potentiel réel et c est un nombre complexe. En adaptant la démonstration du Théorème 3,

on obtient les résultats suivants (Théorèmes 2.2.1, 2.2.4, 2.2.8, et 2.2.10).

Théorème 6. Soient Ω ⊆ RN un ouvert non vide et 0 < m < 1. Si le couple (a, b) satisfait l’Hypothèse

d’Existence 1 alors pour n’importe quel F ∈ L2(Ω;C), les équations (2) et (3) admettent au moins

une solution u ∈ H1(Ω) ∩ Lm+1(Ω). Si de plus l’Hypothèse d’Unicité 2 est vérifiée alors la solution

est unique.

Théorème 7. Soient Ω ⊆ RN un ouvert non vide, V ∈ L∞(Ω;R), 0 < m < 1 et a, b et c des

nombres complexes tels que Im(a) < 0, Im(b) < 0 et Im(c) 6 0. Alors pour n’importe quel H ∈
L2(Ω;C), l’équation (7) admet au moins une solution v ∈ H1(Ω)∩Lm+1(Ω), avec Dirichlet homogène

ou Neumann homogène comme condition au bord. Si de plus l’Hypothèse d’Unicité 2 est vérifiée et
−→a .−→c > 0 alors la solution est unique.
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Théorème 8. Soient les hypothèses et notations du Théorème 6. On suppose que F est à support

compact. Si l’une des conditions ci-dessous est satisfaite alors n’importe quelle solution u est à support

compact et suppu ⊂ Ω.

1. Ω = RN .

2. u ∈ H1
0 (Ω) et ‖F‖L2(Ω) est suffisamment petite.

3. L’Hypothèse d’Unicité 2 est vérifiée,
∂u

∂ν |Γ
= 0 et ‖F‖L2(Ω) est suffisamment petite.

Le résultat suivant permet d’obtenir des solutions pour l’équation (2), sans restrictions sur a, à l’aide

de l’inégalité de Poincaré,

∀u ∈ H1
0 (Ω), ‖u‖L2(Ω) 6 CP‖∇u‖L2(Ω). (8)

qui est valable dès que Ω est de mesure finie.

Théorème 9. Soient Ω ⊂ RN un ouvert non vide de mesure finie, 0 < m < 1 et (a, b) ∈ C2. Si

b ∈ R?− alors on suppose de plus que bC2
P > −1, où CP est la meilleure constante dans (8). Alors

pour n’importe quel F ∈ L2(Ω;C), l’équation (2) admet au moins une solution u ∈ H1
0 (Ω). Si de plus

l’Hypothèse d’Unicité 2 est vérifiée alors la solution est unique.

Chapitre 3 : Méthode d’énergie affinée pour la localisation du
support de solutions d’équations de Schrödinger non-linéaires
amorties

Bien que cités sous une forme globale, les théorèmes de localisation spatiale sont des résultats locaux.

Ils se démontrent avec une méthode d’énergie issue du livre de Antontsev, Dı́az et Shmarev [11].

Cette méthode est très bien adaptée pour les équations scalaires et les systèmes mais elle s’avère

inapplicable, en tous les cas telle quelle, pour les équations complexes, même si celles-ci sont vues

comme des systèmes d’équations scalaires en séparant la partie réelle de la partie imaginaire. Plutôt

que d’adapter la méthode à chaque type d’équation comme cela est fait dans le Chapitre 1, le but

est d’établir un critère qui engendrerait le phénomène de localisation voulu. Le résultat est alors le

suivant (Théorème 3.2.1) et s’obtient en affinant la méthode initiale de [11].

Théorème 10. Soit 0 < m < 1. Alors il existe une constante C = C(N,m) > 0 ayant la propriété

suivante: soient x0 ∈ RN , ρ0 > 0 et u ∈ H1
loc

(
B(x0, ρ0)

)
. Si l’on peut trouver des constantes L,M > 0

telle que pour presque tout ρ ∈ (0, ρ0),

‖∇u‖2L2(B(x0,ρ))
+ L‖u‖m+1

Lm+1(B(x0,ρ))
6M

∣∣∣∣∣
∫
S(x0,ρ)

u∇u. x− x0

|x− x0|
dσ

∣∣∣∣∣ , (9)

alors

u|B(x0,ρmax) ≡ 0,
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où

ρνmax =

(
ρν0 − CM2 max

{
1,

1

L2

}
max

{
ρν−1

0 , 1
}

× min
τ∈(m+1

2 ,1]

{
E(ρ0)γ(τ) max{b(ρ0)µ(τ), b(ρ0)η(τ)}

2τ − (1 +m)

})
+

,

et,

E(ρ0) = ‖∇u‖2L2(B(x0,ρ0)), b(ρ0) = ‖u‖m+1
Lm+1(B(x0,ρ0)),

k = 2(1 +m) +N(1−m), ν = k
m+1 > 2,

γ(τ) =
2τ − (1 +m)

k
∈ (0, 1), µ(τ) =

2(1− τ)

k
, η(τ) =

1−m
1 +m

− γ(τ) > 0.

pour tout τ ∈
(
m+1

2 , 1
]
.

Outre la difficulté de montrer qu’une solution vérifie (9), il convient également de contrôler les

différentes normes de celle-ci pour éviter que le rayon ρmax soit nul. Ceci explique les hypothèses

de petitesse sur F du Chapitre 1.

Chapitre 4 : Solutions auto-semblables

Nous avons maintenant les outils nécessaires pour construire des solutions auto-semblables à support

compact. On montre que, sous des hypothèses adéquats, si g est une solution de (6) alors elle vérifie (9).

En appliquant alors les Théorèmes 7 et 10 on obtient le résultat suivant (Théorème 4.1.2).

Théorème 11. Soient 0 < m < 1, a ∈ C tel que Im(a) > 0 et f ∈ C
(
(0,∞);L2(RN )

)
satisfaisant (4).

On suppose également que supp f(1) est compact. Si ‖f(1)‖L2(RN ) est suffisamment petite alors il existe

une solution auto-semblable (c’est-à-dire satisfaisant (5)),

u ∈ C
(
(0,∞);H2(RN )

)
∩ C1

(
(0,∞);H1(RN )

)
∩ C2

(
(0,∞);L2(RN )

)
,

de (1) telle que pour tout t > 0, suppu(t) est compact.

Chapitres 5 et 6 : Extinction en temps fini pour des solutions
d’équations de Schrödinger non-linéaires amorties

Dans ces deux chapitres, on étudie l’extinction en temps fini des solutions de (1). L’idée, qui est

particulièrement simple et semble être due à Carles et Gallo [53] 2, et Carles et Ozawa [55] 3, est la

suivante. Pour fixer les idées, supposons que f ≡ 0 dans (1). Si l’on multiplie l’équation (1) par iu,

que l’on intègre par parties et que l’on prend la partie réelle, il vient alors :

1

2

d

dt
‖u(t)‖2L2 + Im(a)‖u(t)‖m+1

Lm+1 = 0. (10)

2. dans le cas d’une variété compacte sans bord.
3. dans le cas de l’espace entier avec N 6 2.
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Il bien clair que si l’on veut avoir extinction en temps fini alors nécessairement, Im(a) > 0. On utilise

ensuite l’inégalité de Gagliardo-Nirenberg suivante :

‖u(t)‖
2m+1

2θ`

L2 6 ‖u(t)‖m+1
Lm+1‖u(t)‖

(m+1)(1−θ)
θ`

H`
, (11)

où θ` ∈ (0, 1) est une constante connue. Ainsi, si la solution u est uniformément bornée dans H` alors

on déduit de (10)–(11),

y′ + Cyδ 6 0,

avec δ = m+1
2θ`

, où y(t) = ‖u(t)‖2L2 . Après intégration, on obtient alors le comportement asymptotique

de u suivant les valeurs de δ.

• Si δ < 1 alors y(t)1−δ 6 (y(0)1−δ −Ct)+ et u s’annule au plus tard au temps T? = C−1y(0)1−δ.

• Si δ = 1 alors y(t) 6 y(0)e−Ct.

• Si δ > 1 alors y(t)δ−1 6 y(0)δ−1(1 + Ct)−1.

Ainsi pour obtenir extinction en temps fini, on doit avoir δ < 1 ce qui s’avère être équivalent à la

dimension N = 1 lorsque la solution en temps est dans H1. Si l’on veut augmenter en dimension

d’espace, la solution doit être alors plus régulière, disons uniformément bornée dans H2. Dans ce cas,

δ < 1 lorsque N 6 3. Étant donnée la non-linéarité, il n’est pas raisonnable d’espérer obtenir des

solutions plus régulières que H2, ce qui limite le résultat d’extinction en temps fini, tout du moins

pour cette méthode, aux dimensions d’espace 1, 2 et 3.

Concernant l’existence de solutions, on utilise la théorie des opérateurs maximaux monotones dans

L2. La monotonie de l’opérateur Au = −i∆u − ia|u|−(1−m)u, avec en gros D(A) = H2 ∩H1
0 , repose

sur l’inégalité,

Re

(
−i a

∫ (
|u|m−1u− |v|m−1v

)
(u− v)dx

)
> 0. (12)

On voit alors apparâıtre alors une compétition entre les parties réelles et imaginaires de a et de∫ (
|u|m−1u−|v|m−1v

)
(u− v)dx. Ce problème peut être réglé en utilisant un résultat de Liskevich and

Perel′muter [132] (Lemme 6.4.3) ce qui réduit le choix pour a à,

a ∈ C(m)
déf
=
{
z ∈ C; 2

√
mIm(z) > (1−m)|Re(z)|

}
. (13)

L’existence de solutions est alors réduit à la surjectivité de l’opérateur I+A. La méthode diffère selon

que l’on est dans un domaine borné ou dans tout l’espace.

Chapitre 5 : Le cas des domaines bornés

Lorsque Ω est borné la non-linéarité vérifie |u|m ∈ L 2
m (Ω) ↪→ L2(Ω) et l’on se retrouve dans l’espace

de l’opérateur. La surjectivité de l’opérateur I + A s’obtient alors par une méthode de perturbation.

On peut ainsi prolonger les résultats de Carles and Gallo [53] (Théorèmes 5.4.3, 5.4.4 et 5.4.5).

Théorème 12. Soient Ω un ouvert borné régulier de RN , 0 < m < 1, a ∈ C(m) \ {0} et

f ∈ L1
loc

(
[0,∞);L2(Ω)

)
.
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Alors pour tout u0 ∈ L2(Ω), il existe une unique solution,

u ∈ C
(
[0,∞);L2(Ω)

)
∩W 1,1

loc

(
[0,∞);H−2(Ω)

)
,

de (1). De plus, on a les résultats suivants.

1. Si de plus f ∈W 1,1
(
(0,∞);H1

0 (Ω)
)

et si u0 ∈ H1
0 (Ω) alors,

u ∈ Cw,b

(
[0,∞);H1

0 (Ω)
)
∩W 1,∞([0,∞);H−1(Ω)

)
.

2. Si de plus f ∈W 1,1
(
(0,∞);L2(Ω)

)
et si u0 ∈ H2(Ω) ∩H1

0 (Ω) alors,

u ∈ Cb

(
[0,∞);H1

0 (Ω)
)
∩ C1

b

(
[0,∞);H−1(Ω)

)
∩ L∞

(
(0,∞);H2(Ω)

)
∩W 1,∞((0,∞);L2(Ω)

)
.

Concernant l’extinction en temps fini, nous avons le résultat suivant (Théorème 5.3.2).

Théorème 13. Soient Ω un ouvert borné régulier de RN avec N 6 3, 0 < m < 1, a ∈ C(m) \ {0},
f ∈W 1,1

(
(0,∞);L2(Ω)

)
et u0 ∈ H1

0 (Ω). Supposons que l’une des conditions ci-dessous soit satisfaite.

1. N = 1 et f ∈W 1,1
(
(0,∞);H1

0 (Ω)
)
.

2. u0 ∈ H2(Ω) ∩H1
0 (Ω).

Soit u l’unique solution de (1). S’il existe T0 > 0 tel que pour presque tout t > T0,

f(t) = 0,

alors il existe un temps fini T? > T0 pour lequel,

‖u(t)‖L2(Ω) = 0.

pour tout t > T?. De plus, sous des hypothèses supplémentaires de décroissance de ‖f(t)‖L2(Ω) sur

l’intervalle [0, T0], on a T? = T0.

Chapitre 6 : Le cas de tout l’espace

Pour monter que R(I+A) = L2(RN ), on procède comme suit. On doit montrer que les solutions de (2)

sont dans H2(RN ), ce qui revient à dire que ∆u ∈ L2(RN ) ou, de façon équivalente, que u ∈ L2m(RN ).

On commence par établir des estimations a priori fines des solutions (voir les Lemmes 6.4.2 et 6.4.4,

ainsi que les figures p.111). Ensuite, on construit des solutions à support compact grâce au Théorème 6

et au point 2 du Théorème 4. Un argument de densité permet alors de conclure. On peut ainsi prolonger

les résultats de Carles and Ozawa [55] (Théorèmes 6.2.4, 6.2.6 et 6.2.7).

Théorème 14. Soient 0 < m < 1, a ∈ C(m) et

f ∈ L1
loc

(
[0,∞);L2(Ω)

)
.

Alors pour tout u0 ∈ L2(RN ), il existe une unique solution,

u ∈ C
(
[0,∞);L2(RN )

)
∩W 1,1

(
[0,∞);H−2(RN ) + L

2
m (RN )

)
,

de (1). De plus, on a les résultats suivants.
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1. Si de plus f ∈W 1,1
(
(0,∞);H1(RN )

)
et si u0 ∈ H1(RN ) alors,

u ∈ Cw,b

(
[0,∞);H1(RN )

)
∩W 1,∞((0,∞);H−1(RN ) + L

2
m (RN )

)
.

2. Si de plus f ∈W 1,1
(
(0,∞);L2(RN )

)
et si u0 ∈ H2(RN ) alors,

u ∈ Cb

(
[0,∞);H1(RN )

)
∩ L∞

(
(0,∞);H2(RN ) ∩ L2m(RN )

)
∩W 1,∞((0,∞);L2(RN )

)
.

Concernant l’extinction en temps fini, nous avons le résultat suivant (Théorème 6.3.1).

Théorème 15. Avec a ∈ C(m), le Théorème 13 est valable pour Ω = RN .

Chapitre 7 : Stabilisation de solutions d’équations amorties
([30])

Considérons l’équation des ondes amortie suivante :
utt(t, x)− uxx(t, x) + a(x)ut(t, x) = 0, avec (t, x) ∈ (0,∞)× (0, 1),

u(t, 0) = u(t, 1) = 0, avec t ∈ [0,∞),

u(0, x) = u0(x), ut(0, x) = u1(x), avec x ∈ (0, 1),

où a ∈ L∞(0, 1) est positive presque partout dans (0, 1). L’énergie associée à la solution est,

E(t) =
1

2

(
‖ut(t)‖2L2(0,1) + ‖ux(t)‖2L2(0,1)

)
,

et l’espace fonctionnel associée à cette énergie est H1
0 (0, 1)× L2(0, 1). Il est facile de voir que lorsque

le terme d’amortissement est absent (a = 0) alors l’énergie est constante, et que lorsque celui-ci est

présent alors l’énergie décrôıt. Par ailleurs, on sait également montrer que si, pour une constante a0 >

0, on a a > a0, presque partout sur un sous-ensemble I ⊂ (0, 1) de mesure non nulle, alors l’énergie

tend vers 0 (Haraux [95]). Ce terme permet donc de stabiliser l’énergie des solutions. Supposons

maintenant que l’on soit capable d’établir l’inégalité d’observabilité suivante :

E(0)− E(T ) > CE(0),

pour un temps T > 0 et une constante C > 0. Alors il est bien connu que dans ce cas, on a la

décroissance exponentielle des solutions,

∀t > 0, E(t) 6 CE(0)e−ωt,

pour des constantes C,ω > 0.

Considérons maintenant l’équation des ondes avec un amortissement plus faible,

utt − uxx + δaut(t, a) = 0, (t, x) ∈ (0,∞)× (0, 1), (14)

où a ∈ (0, 1). L’inégalité d’observabilité que l’on peut obtenir est alors,

E(0)− E(T ) > CE−(0), (15)
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où E− est une énergie faible, dans le sens où E− 6 E. L’idée est de prendre les données initiales dans

un espace plus réguliers, typiquement dans [H2(0, 1) ∩H1
0 (0, 1)]×H1

0 (0, 1). On a alors l’énergie forte

associée E+ et E−(0) 6 E(0) 6 E+(0). On aimerait donc interpoler E(0) entre E−(0) et E+(0) à

l’aide d’un inégalité généralisée de Hölder du type,

1 6 Φ

(
E−(0)

E(0)

)
Ψ

(
E+(0)

E(0)

)
,

de laquelle on obtiendrait,

E(0)Φ−1

 1

Ψ
(
E+(0)
E(0)

)
 6 E−(0). (16)

De (15) et (16), on aurait alors,

E(0)Φ−1

 1

Ψ
(
E+(0)
E(0)

)
 6 C(E(0)− E(T )).

De là, on serait capable d’obtenir la vitesse de convergence (Ammari and Tucsnak [8]),

∀t > 0, E(t) 6
C

Ψ−1

(
1

Φ( 1
t+1 )

)‖(u0, u1)‖2H2(0,1)×H1
0 (0,1).

Dès lors que Φ etΨ peuvent être déterminées, la vitesse est explicite.

Les énergies faibles et fortes sont reliées à l’énergie d’origine par des poids ω1 et ω2. On fait les

hypothèses suivantes. Soient (Ω,T , µ) un espace mesuré et ω1, ω2 : Ω −→ [0,∞) deux poids µ–

mesurables. On suppose qu’il existe deux fonctions concaves Φ,Ψ : R+ −→ R+ telles que pour

presque tout x ∈ Ω,

Φ(ω1(x))Ψ(ω2(x)) > 1. (17)

À l’aide de l’inégalité de Jensen, on peut alors démontrer le résultat suivant (Théorème 7.2.1).

Théorème 16. Avec les hypothèses et notations ci-dessus, on a pour tout 0 < p <∞ et toute fonction

f ∈ Lp(Ω,T , µ) non nulle,

1 6 Φ


∫
Ω

|f |pω1dµ

‖f‖pLp(Ω,T ,µ)

Ψ


∫
Ω

|f |pω2dµ

‖f‖pLp(Ω,T ,µ)

 , (18)

dès lors que f ∈ Lp(Ω,T , ω1dµ) ∩ Lp(Ω,T , ω2dµ).

Dans les applications, Ω = [1,+∞), µ est la mesure de Lebesgue et les poids vérifient, entre autres,

des hypothèses de convexité. On peut alors montrer l’existence de fonctions Φ et Ψ satisfaisant (18)

(Théorème 7.2.2 et Lemme 7.2.6).
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Théorème 17. Soient ω1, ω2 : [1,+∞) −→ [0,∞) deux poids convexes. On suppose que ω1 est

strictement décroissante avec lim
t→+∞

ω1(t) = 0, et que ω2 est strictement croissante avec lim
t→+∞

ω2(t) =

+∞. On pose,

∀t > 1, ϕ(t) =
ω1(t)

t
,

et,

Φ =
1

ϕ−1
et Ψ = ω−1

2 .

Alors, Φ,Ψ : R+ −→ R+ sont des fonctions concaves qui vérifient l’inégalité (17). En particulier, Φ

et Ψ satisfont l’inégalité (18).

La vitesse de convergence des solutions de (14) est connue pour a ∈ S, où S est un sous-ensemble

distinct de (0, 1) ∩ Qc, et ce résultat est dû Jaffard, Tucsnak and Zuazua [110, Theorem 3.3]). À

l’aide de la méthode ci-dessus, on étend ces résultats à (0, 1) ∩Qc (Propositions 7.4.2.3 et 7.4.3.4, et

Théorèmes 7.4.3.5 et 7.4.3.7), ce qui est optimal puisqu’il est connu que pour (0, 1) ∩Q, il existe des

solutions dont l’énergie ne tend pas vers 0.

Chapitre 8 : Sur des systèmes gradients amortis ([22, 21])

Dans le chapitre, on souhaite étudier le comportement asymptotique des solutions d’un système gra-

dient amorti du type “boule pesante”,

u′′(t) + γu′(t) +∇G(u(t)) = 0, t ∈ R+. (19)

On aimerait également faire le lien entre ce système et les systèmes quasi-gradients,

u′(t) + F
(
u(t)

)
= 0, t ∈ R+, (20)

qui sont a priori de nature totalement différente. Ici, γ > 0 et G ∈ C2(RN ;R). On rappelle que

le système (20) est dit quasi-gradient sur un sous-ensemble fermé Γ de RN , s’il existe une fonction

différentiable E : RN −→ R et α > 0 tels que,〈
∇E(u), F (u)

〉
> α ‖∇E(u)‖ ‖F (u)‖, pour tout u ∈ Γ, (21)

critE ∩ Γ = F−1({0}) ∩ Γ, (22)

où critE désigne l’ensemble des points critiques de E.

Le premier outil est l’inégalité de Kurdyka- Lojasiewicz ([133, 134, 124]). On dit alors que G est une

fonction KL en u ∈ RN s’il existe une fonction concave ϕ : [0, r0) −→ R+, dite désingularisante, telle

que ϕ(0) = 0, ϕ ∈ C([0, r0)) ∩ C1(0, r0), ϕ′ > 0 sur (0, r0) et∥∥∇(ϕ ◦ |G( . )−G(u)|)(u)
∥∥ > 1,

pour tout u dans un voisinage de u. Par exemple, les fonctions analytiques sont des fonctions KL.

L’hypothèse KL permet d’assurer la convergence des solutions bornées des systèmes gradients (c’est-

à-dire (20) avec F = ∇E). En fait, on a le même résultat pour les systèmes quasi-gradients, comme

le montre le résultat suivant (Théorème 8.3.1.2).
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Théorème 18. Soit F : RN −→ RN une fonction localement Lipschitzienne définissant un champ de

vecteurs quasi-gradient différentiable E sur RN . On suppose que E est une fonction KL. Soit u une

solution de (20). Alors,

1. ou bien ‖u(t)‖ t→∞−−−→∞,
2. ou bien u converge vers un point singulier u∞ de F lorsque t −→∞.

Dans ce dernier cas, on a également u′ ∈ L1
(
(0,∞);RN

)
, u′(t)

t→∞−−−→ 0 et

∀t > 0, ‖u(t)− u∞‖ 6
1

α
ϕ
(
E(u(t))− E(u∞)

)
,

pour n’importe quelle fonction désingularisante ϕ de E en u∞, où α est la constante dans (21).

Par ailleurs, les fonctions désingularisantes ont une vitesse d’explosion minimale à l’origine (Proposi-

tion 8.2.1.3 et Lemme 8.2.2.1).

Lemme 19. Soit G : RN −→ R une fonction analytique telle que G(0) = 0, ∇G(0) = 0 et 0 n’est pas

dans l’intérieur int critG de l’ensemble des points critiques de G. Puisque G est analytique, elle est

KL. Soit alors ϕ une fonction désingularisante. Alors, il existe deux constantes c, ε > 0 telles que,

ϕ′(t) >
c√
t
, (23)

pour tout t ∈ (0, ε).

Pour G ∈ C2(RN ;R), on définit F : RN × RN −→ RN par

F(u, v) =
(
− v, γv +∇G(u)

)
.

Alors le système (19) est équivalent à

U ′(t) + F
(
U(t)

)
= 0, t ∈ R+, avec U = (u, v).

Et finalement, en déformant l’énergie totale ET (u, v)
déf
= 1

2‖v‖
2 + G(u) du système (19), il s’avère

que les systèmes gradients du second ordre sont des systèmes quasi-gradients (Propositions 8.3.3.1

et 8.3.3.3).

Proposition 20. Soient G ∈ C2(RN ;R) et γ > 0. Pour chaque λ > 0, on définit l’énergie déformée

Eλ ∈ C1(RN × RN ;R) par

Eλ(u, v) = ET (u, v) + λ〈∇G(u), v〉,

où 〈 . , . 〉 désigne le produit scalaire dans RN . Alors pour chaque R > 0, il existe λ0 > 0 satisfaisant

la propriété suivante. Pour tout λ ∈ (0, λ0], il existe α > 0 tel que〈
∇Eλ(u, v),F(u, v)

〉
> α ‖∇Eλ(u, v)‖ ‖F(u, v)‖, (24)

pour tout (u, v) ∈ B(0, R)× RN . De plus,

crit Eλ ∩
(
B(0, R)× RN

)
= F−1({0}) ∩

(
B(0, R)× RN

)
, (25)

pour tout λ ∈ [0, λ0].

Enfin, si ϕ vérifiant (23) désingularise G en u ∈ critG alors ϕ désingularise Eλ en (u, 0), pour tout

λ > 0 suffisamment petit.
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Ainsi, grâce au Théorème 18 et la Proposition 20, nous sommes en mesure de déterminer la vitesse

de convergence des solutions (Théorème 4.1.2). Par ailleurs, ces résultats étendent ceux de Haraux et

Jendoubi [97].

Théorème 21. Soient G ∈ C2(RN ;R) et (u0, u
′
0) ∈ RN × RN . Soit u ∈ C2

(
[0,∞);RN ) l’unique

solution de (19) telle que (u(0), u′(0)) = (u0, u
′
0). On suppose que l’on a les hypothèses ci-dessous.

1. La trajectoire de u est bornée: sup
t>0
‖u(t)‖ <∞.

2. G est une fonction KL et chaque fonction désingularisante vérifie (23).

Alors on a les résultats suivants.

1. u′ ∈ L1
(
(0,∞);RN

)
, u′′ ∈ L1

(
(0,∞);RN

)
et u converge vers un point critique u∞ de G.

2. Soit ϕ désingularisant G en u∞. Alors il existe une constante c > 0 telle que pour tout t > 0,

‖u(t)− u∞‖ 6 cν(t),

où ν est solution de,

ν′(t) + (ϕ−1)′(ν(t)) = 0,

avec ν(0) > 0.

Chapitre 9 : Phénomène de concentration de masse pour l’équation
de Schrödinger non-linéaire dans le cas critique ([32])

Dans ce chapitre, on s’intéresse au comportement des solutions de l’équation (1) dans le cas critique

pour la masse. On montre que si le temps d’existence est fini alors un phénomène de concentration

de masse se produit. Plus précisément, on a le résultat suivant (Théorème 9.1.1).

Théorème 22. Soient a ∈ R \ {0}, m = 1 +
4

N
, f = 0, u0 ∈ L2(RN ) \ {0} et

u ∈ C((−Tmin, Tmax);L2(RN )) ∩ L
2(N+2)
N

loc ((−Tmin, Tmax);L
2(N+2)
N (RN )),

l’unique solution maximale de (1) telle que u(0) = u0. Il existe ε = ε(‖u0‖L2 , N, |a|) > 0 satisfaisant

la propriété suivante. Si Tmax <∞ alors

lim sup
t↗Tmax

sup
c∈RN

∫
B(c,(Tmax−t)

1
2 )

|u(t, x)|2dx > ε.

On un résultat analogue lorsque Tmin <∞.

Le Théorème 22 a été établi dans le cas particulier de la dimension N = 2 par Bourgain [42]. Sa

démonstration repose sur une inégalité de Strichartz plus fine démontrée en dimension 2 par Moyua,

Vargas and Vega [139]. Pour démontrer le Théorème 22, on commence donc par généraliser l’inégalité

améliorée de Strichartz pour n’importe quelle dimension (Théorème 9.1.2). L’outil majeur pour y

parvenir est une inégalité de restriction bilinéaire due à Tao [166] (Théorème 9.2.1).
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Pour chaque j ∈ Z, on recouvre RN de cubes dyadiques τ jk =
N∏
m=1

[km2−j , (km + 1)2−j), où k =

(k1, . . . , kN ) ∈ ZN . On pose : f jk(x) = f1τjk
(x). Soient 1 6 p, q <∞. On définit l’espace suivant :

Xp,q =
{
f ∈ Lploc(RN ); ‖f‖Xp,q <∞

}
,

où

‖f‖Xp,q =

∑
j∈Z

2j
N
2

2−p
p q

∑
k∈ZN

‖f jk‖
q
Lp(RN )

 1
q

.

On vérifie que (Xp,q, ‖ . ‖Xp,q ) est bien un espace de Banach. L’inégalité améliorée de Strichartz est

la suivante (Théorèmes 9.1.2 et 9.1.4).

Théorème 23. Soient q = 2(N+2)
N et 1 < p < 2 tels que N+3

N+1
1
q + 1

p < 1. Pour chaque fonction g telle

que g ∈ Xp,q ou ĝ ∈ Xp,q, on a

‖T ( . )g‖Lq(RN+1) 6 C min
{
‖g‖Xp,q , ‖ĝ‖Xp,q

}
, (26)

où C = C(N, p). De plus, L2(RN ) ↪→ Xp,q avec L2(RN ) 6= Xp,q. Finalement, il existe µ ∈
(

0, 1
p

)
tel

que pour tout g ∈ L2(RN ), on ait

‖T ( . )g‖Lq(RN+1) 6 C

[
sup

(j,k)∈Z×ZN
2j

N
2 (2−p)

∫
τjk

|ĝ(ξ)|pdξ

]µ
‖g‖1−µp

L2(RN )
6 C‖g‖L2(RN ), (27)

où C = C(N, p) et µ = µ(N, p).

Ensuite, grosso modo, grâce à (27), on se ramène à étudier le comportement d’un nombre fini de

solutions de l’équation libre de Schrödinger 4 (Lemmes 9.3.1 et 9.3.3) et l’on démontre le Théorème 22.

4. c’est-à-dire (1) avec a = 0, et toujours f ≡ 0.
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Chapitre 1

Localizing Estimates of the Support
of Solutions of some Nonlinear
Schrödinger Equations – The
Stationary Case

with Jesús Ildefonso D́ıaz∗

Abstract
The main goal of this paper is to study the nature of the support of the solution of suitable nonlinear

Schrödinger equations, mainly the compactness of the support and its spatial localization. This question

touches the very foundations underlying the derivation of the Schrödinger equation, since it is well-known a

solution of a linear Schrödinger equation perturbed by a regular potential never vanishes on a set of positive

measure. A fact, which reflects the impossibility of locating the particle. Here we shall prove that if the

perturbation involves suitable singular nonlinear terms then the support of the solution is a compact set,

and so any estimate on its spatial localization implies very rich information on places not accessible by the

particle. Our results are obtained by the application of certain energy methods which connect the compactness

of the support with the local vanishing of a suitable “energy function” which satisfies a nonlinear differential

inequality with an exponent less than one. The results improve and extend a previous short presentation by

the authors published in 2006.

1.1 Introduction

This paper deals with the study of the following stationary nonlinear Schrödinger equation (SNLS)

with a complex singular potential

−i∆u+ a|u|−(1−m)u+ bu = F (x), in Ω. (1.1.1)

Here, Ω ⊆ RN is an open subset, 0 < m < 1, and (a, b) ∈ C2. The interest of the consideration of this

stationary problem is motivated not only in order to study the asymptotic states, when t −→ ∞, of
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2 Localizing Estimates of the Support for the stationary Nonlinear Schrödinger Equation

the solutions of the associated evolution problem but also by the study of the so called standing waves

of the evolution problem (1.1.2) below, with b ∈ iR in (1.1.1). Indeed, choosing arbitrarily b ∈ iR
in (1.1.1) and setting for any (t, x) ∈ R× Ω, ϕ(t, x) = u(x)ebt, if u is a solution to (1.1.1) then ϕ is

a solution to 
i
∂ϕ

∂t
+ ∆ϕ+ ia|ϕ|−(1−m)ϕ = iF (x)ebt, in R× Ω,

ϕ|∂Ω = 0, on R× ∂Ω,

ϕ(0) = u, in Ω.

(1.1.2)

The main goal of this paper is to study the nature of the support of the solution of (1.1.1) : mainly

its compactness and localization. Let us mention that, in our opinion, this question touches the very

foundations of the derivation of the Schrödinger equation. Indeed, one of the main modifications in-

troduced by Quantum Mechanics, with respect Classical Mechanics, is the impossibility to localize

the state (position and velocity) of a particle. The solution u(t, x) is related to the probability of

finding the position and momentum of particle (see, e.g. the presentation made in the text book by

Strauss [163]. It is well-known that in most of the different versions of the Schrödinger equations the

corresponding solution never vanishes on a subset positive measure of the domain, which reflects the

impossibility of localizing the particle as mentioned above. This is the case, for instance, in case of

the linear Schrödinger equation and also for some nonlinear versions where the linear equation is per-

turbed by a nonlinear regular potential (see, for instance, the monographs of Sulem and Sulem [165]

and Cazenave [57]).

The main goal of this work is to show that if the linear Schrödinger equation is perturbed with sui-

table singular nonlinear potentials, then the support of the solution becomes a compact set and so any

estimate on its spatial localization implies very rich information on places which can not be occupied

by the particle.

We point out that complex potentials with certain types of singularities arise in many different situa-

tions (see, for instance, in Brezis and Kato [47], LeMesurier [127] and Liskevitch and Stollmann [131],

and the references therein). We also refer the reader to the survey Belmonte-Beitia [33] in which the

author supplying many references to this type of equation and many other contexts such as : semicon-

ductors, nonlinear optics, Bose-Einstein condensation, plasma physics, molecular dynamics. Special

mention is paid in this paper to the so-called Gross-Pitaevskii (corresponding to b 6= 0).

In this paper, we improve some of our previous results, outlined briefly in Bégout and Dı́az [24].

Moreover, we include here new estimates and generalizations. We are aware of very few other results

in the literature dealing with the support of solutions of nonlinear Schrödinger equations. For ins-

tance, Rosenau and Schochet [155] propose a (one-dimensional) quasilinear Schrödinger equation in

order to get solutions with compact support for each t fixed. That equation and the techniques used

in that paper are very different from the ones in the present work. Analogously, in a paper dated

from 2008 ([116]), Kashdan and Rosenau consider the question of the existence (with some numerical

experiments) of some special solutions : an one-dimensional travelling wave solution of soliton type

u(t, x) = A(x − λt) exp
(
i(`(x − λt) + ωt)

)
, for the special case of a = iγ (in problem (1.1.2)) and

m ∈ (0, 1). They also consider the two-dimensional case (now with changing propagation directions).

A nonlinear term (of cubic type) is added in their equation. Those interesting results are independent

of our study which also applies in the presence of some additional nonlinear terms as in the above
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mentioned reference.

A more restricted point of view was taken in the paper by Carles and Gallo [53] where the authors

prove finite time stabilization for a linear Schrödinger equations perturbed with a suitable singular

nonlinear potential. In their setting, they also prove some kind of compactness of the support of the

solution by means of a different energy method, but in their case the compactness occurs merely in

time and not in the spatial coordinates.

We also point out that different propagation effects have been intensively studied in the literature,

but most of them are related to singularities, spectral and other properties (see, for instance, Jen-

sen [115]). The question of the compactness of the support considered here is of very different nature.

In order to present our results, we shall start by indicating some very special cases which are conse-

quences of more technical results stated later (see Theorem 1.2.1 below).

Theorem 1.1.1. Let 0 < m < 1, let a ∈ R\{0} and let b ∈ R, b > 0. Let F ∈ L
m+1
m (RN ) with compact

support. Then there exists a unique weak solution u ∈ H1(RN ) ∩ Lm+1(RN ) (see Definition 1.2.3

below) of the problem

−i∆u+ a|u|−(1−m)u+ ibu = F (x), in RN .

In addition, u is compactly supported.

Theorem 1.1.2. Let Ω ⊆ RN be a nonempty open subset, let 0 < m < 1, let a ∈ R \ {0} and let

b ∈ R, b > 0. Let F ∈ L
m+1
m (Ω) with compact support. Assume that F is small enough in L

m+1
m (Ω).

Then there exists a unique weak solution u ∈ H1
0 (Ω) ∩ Lm+1(Ω) (see Definition 1.2.3 below) of the

problem {
−i∆u+ a|u|−(1−m)u+ ibu = F (x), in Ω,

u|∂Ω = 0, on ∂Ω.

In addition, u is compactly supported in Ω.

We emphasize that no sign assumption has been made on a in the precedent statements. Much more

general versions of our results are presented in the next section where we also include a detailed

explanation of the notations used in this paper.

1.2 Notations and general versions of the main results

Before stating our main results we shall indicate here some of the notations used throughout. Bold

symbols are used for complex mathematics objets. For a real number r, r+ = max{0, r} is the positive

part of r. We write i2 = −1. We denote by z the conjugate of the complex number z, by Re(z)

its real part and by Im(z) its imaginary part. For 1 6 p 6 ∞, p′ is the conjugate of p defined by
1
p + 1

p′ = 1. Let j, k ∈ Z with j < k. We then write [[j, k]] = [j, k]∩Z. We denote by ∂Ω the boundary of

a nonempty subset Ω ⊆ RN , Ω its closure, Ωc = RN \Ω its complement and ω b Ω means that ω ⊂ Ω

and that ω is a compact subset of RN . For an open subset Ω ⊆ RN , the usual Lebesgue and Sobolev

spaces are respectively denoted by Lp(Ω) = Lp(Ω;C) and Wm,p(Ω) = Wm,p(Ω;C) (1 6 p 6 ∞
and m ∈ N), Hm(Ω) = Wm,2(Ω;C), Hm

0 (Ω) = Wm,2
0 (Ω;C) is the closure of D(Ω) = D(Ω;C)
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under the Hm-norm, and H−m(Ω) is its topological dual. H1
c (Ω) =

{
u ∈H1(Ω); suppu b Ω

}
.

C(Ω) = C0(Ω) = C(Ω;C) = C0(Ω;C) is the space of continuous functions from Ω to C. For k ∈ N,
Ck(Ω) = Ck(Ω;C) is the space of functions lying in C(Ω;C) and having all derivatives of order lesser

or equal than k belonging to C(Ω;C). For 0 < α 6 1 and k ∈ N0
def
= N∪{0}, Ck,αloc (Ω) = Ck,αloc (Ω;C) ={

u ∈ Ck(Ω;C);∀ω b Ω,
∑
|β|=k

Hα
ω (Dβu) < +∞

}
, where Hα

ω (u) = sup{
(x,y)∈ω2

x 6=y

|u(x)−u(y)|
|x−y|α . The Lapla-

cian in Ω is written ∆ =
N∑
j=1

∂2

∂x2
j
. For a functional space E ⊂ L1

loc(Ω;C), we denote by Erad the

space of functions f ∈ E such that f is spherically symmetric. For a Banach space E, we denote by

E? its topological dual and by 〈 . , . 〉E?,E ∈ R the E? − E duality product. In particular, for any

T ∈ Lp′(Ω) and ϕ ∈ Lp(Ω) with 1 6 p < ∞, 〈T ,ϕ〉
Lp′ (Ω),Lp(Ω)

= Re
∫
Ω

T (x)ϕ(x)dx. For x0 ∈ RN

and r > 0, we denote by B(x0, r) = {x ∈ RN ; |x − x0| < r} the open ball of RN of center x0 and

radius r, by S(x0, r) = {x ∈ RN ; |x − x0| = r} its boundary and by B(x0, r) = B(x0, r) ∪ S(x0, r)

its closure. We also use the notation BΩ(x0, r) = Ω ∩ B(x0, r). As usual, we denote by C auxiliary

positive constants, and sometimes, for positive parameters a1, . . . , an, write C(a1, . . . , an) to indicate

that the constant C continuously depends only on a1, . . . , an (this convention also holds for constants

which are not denoted by “C”).

Let us return to equation (1.1.2). Note that no boundary condition is imposed since all the compact

support results (which are due to Theorem 1.2.1 below) rest on the notion of local solution (De-

finition 1.2.3 below). If Ω 6= RN , boundary conditions are necessary for establishing existence and

uniqueness of global solutions of (1.1.1). For the purpose of clarity, we shall consider the Dirichlet

case,

u|∂Ω = 0, on ∂Ω, (1.2.1)

rather than Neumann boundary condition, mixed boundary condition or another one. The choice of

the boundary condition is motivated by the integration by parts relation 〈∆u, v〉 = −〈∇u,∇v〉.

Compactness, existence and uniqueness results will follow from assumptions on (a, b) ∈ C2 stated

below. Define the following subsets

A = C \
{
z ∈ C; Re(z) = 0 and Im(z) 6 0

}
,

B = A ∪
{
0
}
.

Existence assumption. Let (a, b) ∈ C2 satisfy

(a, b) ∈ A× B and


Re(a)Re(b) > 0,

or

Re(a)Re(b) < 0 and Im(b) >
Re(b)

Re(a)
Im(a).

(1.2.2)
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Uniqueness assumption. Let (a, b) ∈ C2 satisfy

Im(a) > 0 and


a 6= 0 and Re(ab) > 0,

or

a = 0 and b ∈ B.

(1.2.3)

For a geometric explanation of these hypotheses, see Section 1.6. For (a, b) ∈ C2 satisfying (1.2.2), it

will be convenient to introduce the following constants. Let δ > 0 be an arbitrarily chosen parameter.

A(δ) =
|Re(a)|+ |Im(a)|+ δ

|Re(a)|
, if Re(a) 6= 0, (1.2.4)

B =
|Re(b)|+ |Im(b)|

|Re(b)|
, if Re(b) 6= 0, (1.2.5)

L =



δ, if Im(a) < 0 and Re(a)Re(b) > 0,

|Re(a)|, if Im(a) = 0, Im(b) > 0 and Re(a)Re(b) > 0,

Im(a) if Im(a) > 0 and Im(b) > 0,

Im(a)− Re(a)

Re(b)
Im(b), otherwise,

(1.2.6)

M =



max
{
A(δ), B

}
, if Im(a) < 0, Im(b) < 0 and Re(a)Re(b) > 0,

A(δ), if Im(a) < 0, Im(b) > 0 and Re(a)Re(b) > 0,

2 if Im(a) > 0, Im(b) > 0 and
(
Im(a) > 0 or Re(a)Re(b) > 0

)
,

B if
(
Im(a) > 0 and Im(b) < 0

)
or Re(a)Re(b) < 0.

(1.2.7)

Under hypothesis (1.2.2), one easily checks that A(δ), B, L and M are well defined and positive. The

parameter δ may seem very mysterious but, actually, it is not. In order to obtain the crucial estimate

(1.7.7), we apply Lemma 1.7.3 to (1.7.8) and (1.7.9). The hard case Im(a) < 0 can be treated in

the following way. If Re(a)Re(b) > 0 then we add the assumption Im(b) > Re(b)
Re(a) Im(a). But when

Re(a)Re(b) 6 0, if we do not want make an additional assumption on a and b, we have to introduce

a positive parameter δ in order to obtain a positive coefficient L = L(δ) in front of ‖u‖m+1

Lm+1(B(x0,ρ))

(played by C2 in Lemma 1.7.3). If we do not introduce this parameter (that is, if we choose δ = 0)

then we get L = 0 in (1.7.7) and we loose the effect of the nonlinearity (see Cases 5 and 6 in the proof

of Lemma 1.7.3).

Numerical computations of stationary solutions are done in Bégout and Torri [31], while the evolution

case and self-similar solutions are studied in Bégout and Dı́az [23, 26], respectively. In this paper, we

prove the results stated in Bégout and Dı́az [24] and add some generalizations. This paper is concerned

with the propagation of the support of F to the solution u, and all these results are a consequence of

the following theorem.
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Theorem 1.2.1. Let Ω ⊆ RN be a nonempty open subset, let 0 < m < 1, let (a, b) ∈ C2 sa-

tisfying (1.2.2), let L > 0 be given by (1.2.6) and let M > 0 be given by (1.2.7). There exists

C = C(N,m) > 0 satisfying the following property. Let F ∈ L1
loc(Ω), let u ∈ H1

loc(Ω) be any local

weak solution of (1.1.1) (see Definition 1.2.3 below), let x0 ∈ Ω and let ρ0 > 0. If ρ0 > dist(x0, ∂Ω)

then assume further that u ∈H1
0 (Ω). If F |BΩ(x0,ρ0) ≡ 0 then u|BΩ(x0,ρmax) ≡ 0, where

ρνmax =

(
ρν0 − CM2 max

{
1,

1

L2

}
max

{
ρν−1

0 , 1
}

× min
τ∈(m+1

2 ,1]

{
E(ρ0)γ(τ) max{b(ρ0)µ(τ), b(ρ0)η(τ)}

2τ − (1 +m)

})
+

, (1.2.8)

and where for any τ ∈
(
m+1

2 , 1
]
,

E(ρ0) = ‖∇u‖2
L2(BΩ(x0,ρ0))

, b(ρ0) = ‖u‖m+1

Lm+1(BΩ(x0,ρ0))
, γ(τ) = 2τ−(1+m)

k ∈ (0, 1),

µ(τ) = 2(1−τ)
k , η(τ) = 1−m

1+m − γ(τ) > 0, k = 2(1 +m) +N(1−m),

ν = k
m+1 > 2.

Remark 1.2.2. If the solution is too “large”, it may happen that ρmax = 0 and so the above result is

not consistent. A sufficient condition to observe a localizing effect is that the solution is small enough,

in a suitable sense. We give two results in this direction. The first one (Theorem 1.3.3) pertains to

the size of the solution, while the second one is concerned with the size of the external source F

(Theorem 1.3.5), which seems to be more natural. In addition, Theorem 1.3.5 says where the support

of the solutions is localized with respect to the support of the external source F .

Now, we state the precise notion of solution.

Definition 1.2.3. Let Ω ⊆ RN be an open subset, let (a, b) ∈ C2, let 0 < m < 1 and let F ∈ L1
loc(Ω).

We say that u is a local weak solution of (1.1.1) if u ∈ H1
loc(Ω) and if u is a solution of (1.1.1) in

D ′(Ω), that is

〈−i∆u+ a|u|−(1−m)u+ bu,ϕ〉D′(Ω),D(Ω) = 〈F ,ϕ〉D′(Ω),D(Ω), (1.2.9)

for any ϕ ∈ D(Ω).

We say that u is a global weak solution of (1.1.1) and (1.2.1) if u is a local weak solution of (1.1.1)

and if furthermore u ∈H1
0 (Ω) ∩Lm+1(Ω).

Let z ∈ C \ {0}. Since
∣∣|z|−(1−m)z

∣∣ = |z|m, it is understood that
∣∣|z|−(1−m)z

∣∣ = 0 when z = 0.

Remark 1.2.4. Here are some comments about Definition 1.2.3.

1. For a global weak solution u of (1.1.1) and (1.2.1), the boundary condition u|∂Ω = 0 is included

in the assumption u ∈ H1
0 (Ω). On the contrary, the notion of local weak solution does not

consider any boundary condition.

2. When u is a local weak solution of (1.1.1), we have∇u ∈ L2
loc(Ω), a|u|−(1−m)u ∈ L

m+1
m

loc (Ω) and

bu ∈ L2
loc(Ω). Then ∆u ∈ L1

loc(Ω) and equation (1.1.1) makes sense in L1
loc(Ω). Furthermore,
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L
m+1
m

loc (Ω) ⊂ L2
loc(Ω) and D(Ω) is dense in H1

c (Ω). It follows from Sobolev’s embedding that if

u is a local weak solution of (1.1.1) then

Re

∫
Ω

i∇u(x).∇ϕ(x)dx+ Re

∫
Ω

(
a|u(x)|−(1−m)u(x) + bu(x)

)
ϕ(x)dx

= Re

∫
Ω

F (x)ϕ(x)dx, (1.2.10)

for any ϕ ∈ H1
c (Ω) with either suppϕ ∩ suppF = ∅ or F ∈ L

p
p−1

loc (Ω), for some 1 6 p 6 ∞ if

N = 1, 1 6 p < ∞ if N = 2 or 1 6 p 6 2N
N−2 , if N > 3. For example, p = m + 1 is always an

admissible value.

3. In the same way, by density of D(Ω) in H1
0 (Ω)∩Lm+1(Ω)∩Lp(Ω), for any 1 6 p <∞, and in

H1
0 (Ω) ∩ Lm+1(Ω), if u is a global weak solution of (1.1.1) and (1.2.1) then (1.2.10) holds for

any ϕ ∈H1
0 (Ω) ∩Lm+1(Ω) with either suppϕ ∩ suppF = ∅ or ϕ ∈ Lp(Ω) and F ∈ L

p
p−1 (Ω),

for some 1 6 p <∞. In particular, if p is as in 2. of this remark with additionally p > m+1, then

in view of H1
0 (Ω) ∩ Lm+1(Ω) ↪→ Lp(Ω), equation (1.1.1) makes sense in H−1(Ω) + L

m+1
m (Ω)

and (1.2.10) holds for any ϕ ∈H1
0 (Ω) ∩Lm+1(Ω).

1.3 Spatial localization property

Theorem 1.3.1. Let Ω ⊆ RN be a nonempty open subset, let 0 < m < 1 and let (a, b) ∈ C2 satisfying

(1.2.2). Let F ∈ L
m+1
m (Ω), let u ∈ H1

loc(Ω) be any local weak solution of (1.1.1) (Definition 1.2.3),

let x0 ∈ Ω and let ρ1 > 0. If ρ1 > dist(x0, ∂Ω) then assume further that u ∈H1
0 (Ω). Then there exist

E? > 0 and ε? > 0 satisfying the following property. Let ρ0 ∈ (0, ρ1). If ‖∇u‖2
L2(BΩ(x0,ρ1))

< E? and

∀ρ ∈ (0, ρ1), ‖F ‖
m+1
m

L
m+1
m (BΩ(x0,ρ))

6 ε?(ρ− ρ0)p+, (1.3.1)

where p = 2(1+m)+N(1−m)
1−m > N + 2, then u|BΩ(x0,ρ0) ≡ 0. In other words, with the notation of

Theorem 1.2.1, ρmax = ρ0.

Remark 1.3.2. We may estimate E? and ε? as

E? = E?

(
‖u‖−1

Lm+1(B(x0,ρ1))
, ρ1,

ρ0

ρ1
,
L

M
,N,m

)
,

ε? = ε?

(
‖u‖−1

Lm+1(B(x0,ρ1))
,
ρ0

ρ1
,
L

M
,N,m

)
,

where L > 0 and M > 0 are given by (1.2.4) and (1.2.7), respectively. The dependence on 1
δ means

that for any value δ small enough, E? and ε? are bounded from below.

Note that p = 1
γ(1) , where γ is the function defined in Theorem 1.2.1.

Theorem 1.3.3. Let Ω ⊆ RN be a nonempty open subset, let 0 < m < 1, let (a, b) ∈ C2 sa-

tisfying (1.2.2), let L > 0 be given by (1.2.6) and let M > 0 be given by (1.2.7). There exists
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C = C(N,m) > 0 satisfying the following property. Let F ∈ L1
loc(Ω), let u ∈ H1

loc(Ω) be any lo-

cal weak solution of (1.1.1) (Definition 1.2.3), let x0 ∈ Ω and let ρ0 > 0. If 2ρ0 > dist(x0, ∂Ω) then

assume further that u ∈H1
0 (Ω). Finally, suppose F |BΩ(x0,2ρ0) ≡ 0, ‖u‖Lm+1(BΩ(x0,2ρ0)) 6 1 and one

of the two estimates (1.3.2) or (1.3.3) below is satisfied.

‖∇u‖
2(1−m)

k

L2(BΩ(x0,2ρ0))
6 C(2ν − 1)(1−m)M−2 min

{
1, L2

}
min

{
1

2
, ρ0

}ν−1

ρ0, (1.3.2)
‖∇u‖L2(BΩ(x0,2ρ0)) 6 1,

‖u‖
2s(m+1)

k

Lm+1(BΩ(x0,2ρ0))
6 C(2ν − 1)(1−m− 2s)M−2 min

{
1, L2

}
min

{
1

2
, ρ0

}ν−1

ρ0,
(1.3.3)

for some s ∈
(
0, 1−m

2

)
, where the constants k > ν > 2 are given in Theorem 1.2.1. Then u|BΩ(x0,ρ0) ≡

0.

Remark 1.3.4. Note that in estimate (1.3.2), 2(1−m)
k = 2

p , where p > N+2 is given in Theorem 1.3.1.

Theorem 1.3.5. Let Ω ⊆ RN be a nonempty open subset, let 0 < m < 1, let (a, b) ∈ C2 satisfying

(1.2.2), let L > 0 be given by (1.2.6) and let M > 0 be given by (1.2.7). Then for any ε > 0,

there exists δ0 = δ0(ε,N,m,L,M) > 0 satisfying the following property. Let F ∈ L
m+1
m (Ω) and let

u ∈H1
0 (Ω)∩Lm+1(Ω) be any global weak solution of (1.1.1) and (1.2.1). If suppF is a compact set

and if ‖F ‖
L

m+1
m (Ω)

6 δ0 then suppu ⊂ Ω ∩ O(ε), where O(ε) is the open bounded set

O(ε) =
{
x ∈ RN ; ∃y ∈ suppF such that |x− y| < ε

}
.

In particular, if ε > 0 is small enough then suppu ⊂ O(ε) ⊂ Ω.

We see that localization effect occurs under some smallness condition, either on the solution u (Theo-

rem 1.3.3) or on the external source F (Theorem 1.3.5). When Ω = RN , the phenomenon is simpler

since localization effect is always observed, without any condition of the size, neither on the solution

nor on the external source, as show the following result.

Theorem 1.3.6. Let 0 < m < 1, let (a, b) ∈ C2 satisfying (1.2.2), let F ∈ Lp(RN ), for some

1 6 p 6∞, and let u ∈H1(RN ) ∩Lm+1(RN ) be any global weak solution of (1.1.1). If suppF is a

compact set then suppu is also compact.

1.4 Existence and smoothness

In this section, we give an existence result of solutions for equation (1.1.1) (Theorem 1.4.1), some a

priori bounds for the solutions of equation (1.1.1) (Theorem 1.4.4), which will be useful to establish

our existence result, and a smoothness result for equation (1.1.1) (Proposition 1.4.5).

Theorem 1.4.1. Let Ω ⊆ RN be a nonempty open subset, let 0 < m < 1, let (a, b) ∈ C2 satisfying

(1.2.2) and let F ∈ L
m+1
m (Ω). Then equations (1.1.1) and (1.2.1) admits at least one global weak

solution u ∈ H1
0 (Ω) ∩ Lm+1(Ω). Furthermore, the following properties hold for any global weak

solution u
(
except Property 3)

)
.
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1) u ∈W 2,m+1
m

loc (Ω).

2) Let α ∈ (0,m]. If F ∈ C0,α
loc (Ω) then u ∈ C2,α

loc (Ω).

3) If Ω =
{
x ∈ RN ; r < |x| < R

}
, for some −∞ < r 6 r+ < R 6 +∞, and if F is spheri-

cally symmetric then there exists a spherically symmetric global weak solution u ∈H1
0 (Ω) ∩

Lm+1(Ω) of (1.1.1) and (1.2.1). For N = 1, this means that if F is an even (respectively, an

odd) function on Ω = (−R,−r)∪(r,R) then u is also an even (respectively, an odd) function.

Remark 1.4.2. Assume F is spherically symmetric. Since we do not know, in general, if we have

uniqueness of the solution, we are not able to show that any solution is radially symmetric. For a

uniqueness result, see Theorem 1.5.2 below.

Remark 1.4.3. Assume |Ω| <∞. There exists ε = ε(N) > 0 such that for any (a, b) ∈ C2, 0 < m < 1

and F ∈ L2(Ω), if |b||Ω| 2
N < ε then equations (1.1.1) and (1.2.1) admits at least one global weak

solution u ∈ H1
0 (Ω). In addition, u ∈ H2

loc(Ω). Finally, Properties 2) and 3) of Theorem 1.4.1 hold.

For more details, see Bégout and Torri [31].

Theorem 1.4.4. Let Ω ⊆ RN be a nonempty open subset, let 0 < m < 1, let (a, b) ∈ C2 satisfying

(1.2.2), let L > 0 be given by (1.2.6), let M > 0 be given by (1.2.7) and let F ∈ L
m+1
m (Ω). Let

u ∈H1
0 (Ω)∩Lm+1(Ω) be any global weak solution of (1.1.1) and (1.2.1). Then we have the following

estimates.

‖∇u‖2
L2(Ω)

+ ‖u‖m+1

Lm+1(Ω)
6M0‖F ‖

m+1
m

L
m+1
m (Ω)

, (1.4.1)

‖u‖2
H1

0 (Ω)
+ ‖u‖m+1

Lm+1(Ω)
6 CM̃0

(
1 + ‖F ‖

δ(m+1)
m

L
m+1
m (Ω)

)
‖F ‖

m+1
m

L
m+1
m (Ω)

, (1.4.2)

where M0 = M
(

2M
L

) 1
m max

{
1, 2

L

}
, δ = 2(1−m)

(N+2)−m(N−2) , M̃0 = M0(1 +Mδ
0 ) and C = C(N,m).

Proposition 1.4.5. Let a ∈ C, let 0 < m < 1, let V ∈ Lrloc(Ω;C), for any 1 < r < ∞, let

F ∈ L1
loc(Ω;C) and, for some ε > 0, let u ∈ L1+ε

loc (Ω;C)
(
u ∈ L1

loc(Ω;C) suffices if V ∈ L∞loc(Ω;C)
)

be a solution to

−∆u+ V u+ a|u|−(1−m)u = F (x), in D ′(Ω). (1.4.3)

Let 1 < q <∞ and suppose u ∈ Lqloc(Ω). Then the following regularity results hold.

1) If for some p ∈ [q,∞), F ∈ Lploc(Ω) then u ∈W 2,p
loc (Ω).

2) Let α ∈ (0,m]. If (F ,V ) ∈ C0,α
loc (Ω)×C0,α

loc (Ω) then u ∈ C2,α
loc (Ω).

Remark 1.4.6. Since 0 < m < 1 and u ∈ L1
loc(Ω), one has L

1
m

loc(Ω) ⊂ L1
loc(Ω) and so |u|−(1−m)u ∈

L1
loc(Ω). In addition, from Hölder’s inequality V u ∈ L1

loc(Ω) and it follows that ∆u ∈ L1
loc(Ω). In

conclusion, equation (1.4.3) makes senses in L1
loc(Ω).

Remark 1.4.7. We only state a local smoothness result since we are interested by compactly sup-

ported solutions. In this case, global smoothness is immediate. Nevertheless, one may wonder what

happens when a solution is not compactly supported. We use the notation of Proposition 1.4.5 and
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assume further that Ω is bounded 1 and has a C1,1 boundary. Let the assumptions of Proposition 1.4.5

be fulfilled and let u ∈ Lq(Ω), for some 1 < q <∞, be a solution to (1.4.3) such that u|∂Ω = 0 in the

sense of the trace 2.

1. If for some p ∈ [q,∞), F ∈ Lp(Ω) and V ∈ Lr(Ω), ∀r ∈ (1,∞), then u ∈W 2,p(Ω)∩W 1,p
0 (Ω).

Indeed, recalling that if for some 1 < p < ∞, a function v ∈ Lp(Ω) satisfies ∆v ∈ Lp(Ω) and

v|∂Ω = 0 in the sense of the trace2 then v ∈W 2,p(Ω)∩W 1,p
0 (Ω) (Grisvard [93], Corollary 2.5.2.2

p.131). We then apply the bootstrap method of the proof of Proposition 1.4.5 to prove the result,

where we use the embedding Lr(Ω) ↪→ Ls(Ω), which holds for any r > s (since Ω is bounded)

and the global regularity result of Grisvard [93] (Corollary 2.5.2.2 p.131) in place of a local

regularity result (Cazenave [58], Proposition 4.1.2 p.101–102).

2. Let α ∈ (0,m]. If Ω has a C2,α boundary and (F ,V ) ∈ C0,α(Ω)×C0,α(Ω) then u ∈ C2,α(Ω)∩
C0(Ω) 3. Indeed, it follows from the above remark that u ∈ W 2,N+1(Ω) ∩ H1

0 (Ω) and by

Sobolev’s embedding, u ∈ C0,1(Ω). Setting

f = F (x)− V u− a|u|−(1−m)u,

it then follow from equation (1.4.3) and estimate (1.8.5) below that f ∈ C0,α(Ω). Let v ∈ C def
=

C2,α(Ω) ∩C0(Ω) be a solution to

−∆w = f , (1.4.4)

given by Gilbarg and Trudinger [90], Theorem 6.14 p.107. Since u ∈ H1
0 (Ω) is also a solution

to (1.4.4), uniqueness for equation (1.4.4) holds in H1
0 (Ω) (Lax-Milgram’s Theorem) and C ⊂

H1
0 (Ω), we conclude that u = v and so u ∈ C.

We end this section by giving a result for the evolution equation (in a particular case).

Corollary 1.4.8. Let 0 < m < 1, let (λ, b) ∈ C × R satisfying λ 6= 0 and b > 0. If Im(λ) = 0 then

assume further Re(λ) 6 0. Finally, let F ∈ C0,m(RN ) be compactly supported. Then there exists a

solution u ∈ C∞
(
R;C2,m

b (RN )
)

toi
∂u

∂t
+ ∆u+ λ|u|−(1−m)u = F (x)eibt, in R× RN ,

u(0) = ϕ, in RN .
(1.4.5)

given by

∀(t, x) ∈ R× RN , u(t, x) = ϕ(x)eibt, (1.4.6)

1. Actually, assumptions on Ω we use in this remark are ∂Ω bounded and |Ω| <∞. But these two conditions imply
that Ω is bounded.

2. Let T : u −→
{
γu,γ ∂u

∂ν

}
be the trace function defined on D(Ω), let 1 < p < ∞ and let Xp(Ω) =

{
u ∈

Lp(Ω); ∆u ∈ Lp(Ω)
}
. By density of D(Ω) in Xp(Ω), T has a continuous and linear extension from Xp(Ω) into

W
− 1

p
,p

(∂Ω)×W−1− 1
p
,p

(∂Ω) (Hörmander [107], Theorem 2 p.503 ; Lions and Magenes [129], Lemma 2.2 and Theo-
rem 2.1 p.147 ; Lions and Magenes [130], Propositions 9.1, Proposition 9.2 and Theorem 9.1 p.82 ; Grisvard [93], p.54).
Since u ∈ Lq(Ω), it follows from equation (1.4.3) and Hölder’s inequality that u ∈ Xp(Ω), for any 1 < p < q. Then
“u|∂Ω = 0 in the sense of the trace” makes sense and means that γu = 0.

3. For k ∈ N0 and 0 < α 6 1, Ck,α(Ω) =
{
u ∈ Ck(Ω;C);

∑
|β|=k

Hα
Ω(Dβu) < +∞

}
⊂ W k,∞(Ω) (since Ω is

bounded) and C0(Ω) =
{
u ∈ C(Ω); ∀x ∈ ∂Ω, u(x) = 0

}
.
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where ϕ ∈ C2,m
b (RN ) is a solution compactly supported of

−∆ϕ− λ|ϕ|−(1−m)ϕ+ bϕ = −F (x), in RN , (1.4.7)

given by Theorem 1.4.1. Furthermore, for any t ∈ R, suppu(t) is compact.

1.5 Uniqueness

Theorem 1.5.1. Let Ω ⊆ RN be a nonempty open subset, let 0 < m < 1, let (a, b) ∈ C2 \ {(0,0)}
satisfying (1.2.3) and let F1,F2 ∈ L1

loc(Ω) be such that F1 − F2 ∈ L2(Ω). Let u1,u2 ∈ H1
0 (Ω) ∩

Lm+1(Ω) be two global weak solutions of

−i∆u1 + a|u1|−(1−m)u1 + bu1 = F1(x), in Ω, (1.5.1)

−i∆u2 + a|u2|−(1−m)u2 + bu2 = F2(x), in Ω, (1.5.2)

respectively. We have the following estimates.
‖u1 − u2‖L2(Ω) 6

|a|
Re
(
ab
)‖F1 − F2‖L2(Ω), if a 6= 0 and Re

(
ab
)
> 0,

‖u1 − u2‖L2(Ω) 6
1

b0
‖F1 − F2‖L2(Ω), if a = 0,

(1.5.3)

where b0 = |Re(b)|, if Re(b) 6= 0 and b0 = Im(b), if Re(b) = 0. If a 6= 0 and Re
(
ab
)

= 0 then assume

further that u1,u2 ∈ L∞(Ω). Then there exists a positive constant C = C(N,m) such that

‖u1 − u2‖L2(Ω) 6 C

(
‖u1‖L∞(Ω) + ‖u2‖L∞(Ω)

)1−m
|a|

‖F1 − F2‖L2(Ω). (1.5.4)

Theorem 1.5.2. Let Ω ⊆ RN be a nonempty open subset, let 0 < m < 1, let (a, b) ∈ C2 satisfying

(1.2.3) and let F ∈ L1
loc(Ω). Then equations (1.1.1) and (1.2.1) admit at most one global weak solution

u ∈H1
0 (Ω) ∩Lm+1(Ω).

Corollary 1.5.3. Let Ω ⊆ RN be a nonempty open subset, let 0 < m < 1, let (a, b) ∈ A×B satisfying

(1.2.3) and let F ∈ L
m+1
m (Ω). Then equations (1.1.1) and (1.2.1) admit a unique global weak solution

u ∈H1
0 (Ω) ∩Lm+1(Ω). Furthermore, this solution satisfies Properties 1)− 3) of Theorem 1.4.1.

Corollary 1.5.4. Let Ω ⊆ RN be a nonempty open subset, let 0 < m < 1 and let (a, b) ∈ C2 satisfying

(1.2.3). Then the problem −i∆u+ a|u|−(1−m)u+ bu = 0, in Ω,

u ∈H1
0 (Ω) ∩Lm+1(Ω),

has for unique solution u ≡ 0.

Corollary 1.5.5. Let 0 < m < 1, let (a, b) ∈ A × B satisfying (1.2.3) and let F ∈ C0,m(RN )

be compactly supported. Then there exists a unique solution u ∈ C2,m
b (RN ) of (1.1.1) and (1.2.1)

compactly supported. If furthermore F is spherically symmetric then u is also spherically symmetric.

For N = 1, this means that if F is an even (respectively, an odd) function then u is also an even

(respectively, an odd) function.
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1.6 Pictures

In this section, we give some geometric interpretation of the values of a and b. For convenience, we

repeat the hypotheses (1.2.2) and (1.2.3). We recall that,A = C \
{
z ∈ C; Re(z) = 0 and Im(z) 6 0

}
,

B = A ∪
{
0
}
.

For existence of solutions to problem (1.1.1) and (1.2.1), we suppose (a, b) ∈ C2 satisfies

(a, b) ∈ A× B and


Re(a)Re(b) > 0,

or

Re(a)Re(b) < 0 and Im(b) >
Re(b)

Re(a)
Im(a),

(1.6.1)

while for uniqueness, we assume

Im(a) > 0 and


a 6= 0 and Re(ab) > 0,

or

a = 0 and b ∈ B.

(1.6.2)

Existence. Condition (1.6.1) may easily be interpreted in this way : if b 6= 0 the one requires that

[a, b] ∩B = ∅, where B is the geometric representation of Ac. See Figures 1.1 and 1.2 below.

Uniqueness. The second condition of (1.6.2) is trivial. Indeed, b can be chosen anywhere in the

complex plane, except on the half-axis where Im(z) < 0. Let us consider the first condition. We first

choose a ∈ C\{0} such that Im(a) > 0, and we choose b with respect to a. We see a and b as vectors

of R2. Then we write, −→a =

(
Re(a)
Im(a)

)
,
−→
b =

(
Re(b)
Im(b)

)
and we have

Re
(
ab
)

= Re(a)Re(b) + Im(a)Im(b) = −→a .
−→
b , (1.6.3)

where . denotes the scalar product between two vectors of R2. Then the condition Re
(
ab
)
> 0 is

equivalent to
∣∣∣∠(−→a ,

−→
b )
∣∣∣ 6 π

2
rad (see Figure 1.3 below).

Remark 1.6.1. Let (a, b) ∈ C2. Thanks to (1.6.3), the following assertions are equivalent.

1) (a, b) satisfies (1.6.1)–(1.6.2) (or (1.2.2)–(1.2.3)).

2) (a, b) ∈ A× B satisfies (1.6.2) (or (1.2.3)).

3)
(

(a, b) satisfies (1.6.2)
)

,
(
a 6= 0

)
and

(
Im(a) = Re(b) = 0 =⇒ Im(b) > 0

)
.

In other words, when Im(a) 6= 0, uniqueness hypothesis (1.6.2) implies existence hypothesis (1.6.1)

(see Figure 1.4 below).
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Figure 1.1 – Existence, choice of b Figure 1.2 – Existence, choice of a and b

Figure 1.3 – Uniqueness Figure 1.4 – Uniqueness implies existence

1.7 Proofs of the localization properties

In this Section, we prove Theorems 1.2.1, 1.3.1, 1.3.3, 1.4.4, 1.3.5 and 1.3.6. We recall some useful

Gagliardo-Nirenberg’s and Young’s inequalities.

Proposition 1.7.1. Let Ω ⊆ RN be a nonempty open subset and let 0 6 p 6 1. Then, there exists a
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positive constant C = C(N) such that

∀u ∈H1
0 (Ω) ∩Lp+1(Ω), ‖u‖L2(Ω) 6 C‖∇u‖

N(1−p)
(N+2)−p(N−2)

L2(Ω)
‖u‖

2(1+p)
(N+2)−p(N−2)

Lp+1(Ω)
, (1.7.1)

∀u ∈H1
0 (Ω) ∩L1(Ω), ‖u‖p+1

Lp+1(Ω)
6 C‖∇u‖

2pN
N+2

L2(Ω)
‖u‖

(N+2)−p(N−2)
N+2

L1(Ω)
. (1.7.2)

Note that C does not depend on Ω.

Lemma 1.7.2. For any real x > 0, y > 0, ε > 0 and p > 1, one has

xy 6
1

p′
εp
′
xp
′
+

1

p
ε−pyp. (1.7.3)

Lemma 1.7.3. Let (a, b) ∈ C2 satisfying (1.2.2) and let C0, C1, C2, C3 be four nonnegative real

numbers satisfying ∣∣C1 + Im(a)C2 + Im(b)C3

∣∣ 6 C0, (1.7.4)∣∣Re(a)C2 + Re(b)C3

∣∣ 6 C0. (1.7.5)

Then one has

0 6 C1 + LC2 6MC0, (1.7.6)

where the positive constants L and M are defined by (1.2.6) and (1.2.7), respectively.

Proof. We split the proof in 6 cases. Let δ > 0.

Case 1. Im(a) > 0 and Im(b) > 0.

Then (1.7.6) follows from (1.7.4).

Case 2. Im(a) = 0, Im(b) > 0 and Re(a)Re(b) > 0.

We compute (1.7.4) + sign(Re(a))(1.7.5) and then obtain (1.7.6).

Case 3. Im(a) > 0, Im(b) < 0 and Re(a)Re(b) > 0.

We compute (1.7.4) + |Im(b)|
Re(b) (1.7.5) and then obtain (1.7.6).

Case 4. Re(a)Re(b) < 0.

If Im(b) = 0 then (1.2.2) implies Im(a) > 0, which falls into the scope of Case 1. So we may assume

Im(b) 6= 0. We compute (1.7.4)− Im(b)
Re(b) (1.7.5) and then obtain (1.7.6).

Case 5. Im(a) < 0, Im(b) > 0 and Re(a)Re(b) > 0.

We compute (1.7.4) + |Im(a)|+δ
Re(a) (1.7.5) and then obtain (1.7.6).

Case 6. Im(a) < 0, Im(b) < 0 and Re(a)Re(b) > 0.

We compute (1.7.4) + max
{
|Im(a)|+δ
|Re(a)| ,

|Im(b)|
|Re(b)|

}
(1.7.5). We then obtain (1.7.6).

This ends the proof.

Proof of Theorems 1.2.1 and 1.3.1. In order to establish our result in all cases of (1.2.2), we

will adopt the proofs of Theorem 2.1 p.12–18 and Theorem 3.2 p.28–30 of Antontsev, Dı́az and

Shmarev [11], which has to be adapted. We denote by σ the surface measure on a sphere, ρ2 = ρ0,

if we are concerned by Theorem 1.2.1 and ρ2 = ρ1, if we are concerned by Theorem 1.3.1. Assume

we have either ρ2 < dist(x0, ∂Ω)
(
⇐⇒ B(x0, ρ2) ⊂ Ω

)
or ρ2 > dist(x0, ∂Ω). The remaining case

ρ2 = dist(x0, ∂Ω)
(
⇐⇒ B(x0, ρ2) ⊂ Ω and ∂Ω ∩ S(x0, ρ2) 6= ∅

)
, will be treated at the end of
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the proof 4. If ρ2 > dist(x0, ∂Ω), we have u ∈ H1
0 (Ω). So we may define ũ ∈ H1

0

(
Ω ∪ B(x0, ρ2)

)
satisfying ũ|Ω ∈H1

0 (Ω), by setting ũ = u, in Ω and ũ = 0, in Ωc∩B(x0, ρ2). Then ∇ũ = ∇u, almost

everywhere in Ω and ∇ũ = 0, almost everywhere in Ωc∩B(x0, ρ2). Still if ρ2 > dist(x0,Ω), we denote

by F̃ the extension of F by 0 in Ωc ∩B(x0, ρ2). We now proceed with the proof in 7 steps.

Step 1. Let L and M be the constants defined by (1.2.6) and (1.2.7), respectively. For almost every

ρ ∈ (0, ρ2),

‖∇ũ‖2
L2(B(x0,ρ))

+ L‖ũ‖m+1

Lm+1(B(x0,ρ))
6MI(ρ) +MJ(ρ), (1.7.7)

where I(ρ) =

∣∣∣∣∣
∫
S(x0,ρ)

ũ∇ũ. x− x0

|x− x0|
dσ

∣∣∣∣∣ and J(ρ) =

∫
B(x0,ρ)

|F̃ (x)ũ(x)|dx. Moreover, I ∈ L1(0, ρ2)

and J ∈ L∞(0, ρ2).

From Hölder’s inequality, the above discussion and Sobolev’s embedding,

‖I‖L1(0,ρ2) 6 ‖ũ‖2H1(B(x0,ρ2))
<∞,

‖J‖L∞(0,ρ2) 6 ‖F̃ ‖
L

m+1
m (B(x0,ρ2))

‖ũ‖Lm+1(B(x0,ρ2)) <∞.

Let ρ ∈ (0, ρ2) For any n ∈ N, n > 1
ρ , we define the cutoff function ψn ∈W 1,∞(R) by

∀t ∈ R, ψn(t) =


1, if |t| ∈

[
0, ρ− 1

n

]
,

n(ρ− |t|), if |t| ∈
(
ρ− 1

n , ρ
)
,

0, if |t| ∈ [ρ,∞),

and we set for almost every x ∈ Ω ∪ B(x0, ρ2), ϕn(x) = ψn(|x − x0|)ũ(x). If ρ2 < dist(x0, ∂Ω)

then suppϕn ⊆ B(x0, ρ) ⊂ Ω and so ϕn ∈ H1
c (Ω). If ρ2 > dist(x0, ∂Ω) then ϕn|Ω ∈ H1

0 (Ω) and

suppϕn ⊆ Ω∩B(x0, ρ). It follows from Definition 1.2.3 and Remark 1.2.4, 2. and 3., that ϕ = iϕn|Ω
is an admissible test function and so

Re

∫
B(x0,ρ)

ψn(|x− x0|)
(
|∇ũ|2 − ia|ũ|m+1 − ib|ũ|2

)
dx

= −Re

∫
B(x0,ρ)

ψ′n(|x− x0|)ũ∇ũ.
x− x0

|x− x0|
dx+ Im

∫
B(x0,ρ)

ψn(|x− x0|)F̃ ũdx.

4. For simplicity, we assume that ∂Ω 6= ∅. Otherwise, we have Ω = RN and we only have to treat the first case :
B(x0, ρ2) ⊂ Ω.
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Introducing the spherical coordinates (r, σ), we get∣∣∣∣∣∣∣Re

∫
B(x0,ρ)

ψn(|x− x0|)
(
|∇ũ|2 − ia|ũ|m+1 − ib|ũ|2

)
dx

∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣Re

n ρ∫
ρ− 1

n

 ∫
S(x0,r)

ũ∇ũ. x− x0

|x− x0|
dσ

 dr

+ Im

∫
B(x0,ρ)

ψn(|x− x0|)F̃ ũdx

∣∣∣∣∣∣∣
6 n

ρ∫
ρ− 1

n

I(r)dr +

∫
B(x0,ρ)

ψn(|x− x0|)|F̃ (x)ũ(x)|dx.

We now let n ↗ ∞. Using the Lebesgue’s dominated convergence Theorem and recalling that I ∈
L1(0, ρ2), we obtain∣∣∣‖∇ũ‖2L2(B(x0,ρ))

+ Im(a)‖ũ‖m+1

Lm+1(B(x0,ρ))
+ Im(b)‖ũ‖2

L2(B(x0,ρ))

∣∣∣ 6 I(ρ) + J(ρ). (1.7.8)

Proceeding as above with ϕ = ϕn|Ω, we get∣∣∣Re(a)‖ũ‖m+1

Lm+1(B(x0,ρ))
+ Re(b)‖ũ‖2

L2(B(x0,ρ))

∣∣∣ 6 I(ρ) + J(ρ). (1.7.9)

Then Step 1 follows from (1.7.8), (1.7.9) and Lemma 1.7.3.

Let us recall and introduce some notations. Let τ ∈
(
m+1

2 , 1
]

and let ρ ∈ (0, ρ2). We set

E(ρ) = ‖∇ũ‖2
L2(B(x0,ρ))

, b(ρ) = ‖ũ‖m+1

Lm+1(B(x0,ρ))
, δ = k

2(1+m) ,

θ = (1+m)+N(1−m)
k ∈ (0, 1), ` = 1

θ(1+m) , γ(τ) = 2τ−(1+m)
k ∈ (0, 1),

µ(τ) = 2(1−τ)
k , η(τ) = 1−m

1+m − γ(τ) > 0.

Step 2. E ∈W 1,1(0, ρ2), for a.e. ρ ∈ (0, ρ2), E′(ρ) = ‖∇ũ‖2
L2(S(x0,ρ))

and

0 6 E(ρ) + b(ρ) 6 CL1ME′(ρ)
1
2

(
E(ρ)

1
2 + ρ−δb(ρ)

1
m+1

)θ
b(ρ)

1−θ
m+1

+ (2L1M)
m+1
m ‖F̃ ‖

m+1
m

L
m+1
m (B(x0,ρ))

, (1.7.10)

where C = C(N,m) and L1 = max
{

1, 1
L

}
.

We have the identity E(ρ) =

∫ ρ

0

(∫
S(x0,r)

|∇ũ|2dσ

)
dr. Since the mapping r 7−→

∫
S(x0,r)

|∇ũ|2dσ

lies in L1(0, ρ2), E is absolutely continuous on (0, ρ2). We then get the first part of the claim and we

only have to establish (1.7.10). Let ρ ∈ (0, ρ2). It follows from Cauchy-Schwarz’s inequality that

I(ρ) 6 ‖∇ũ‖L2(S(x0,ρ))
‖ũ‖L2(S(x0,ρ))

= E′(ρ)
1
2 ‖ũ‖L2(S(x0,ρ))

. (1.7.11)

We recall the interpolation-trace inequality (see Corollary 2.1 in Dı́az and Véron [78]. Note there is a

misprint : δ has to be replaced with −δ).

‖ũ‖L2(S(x0,ρ))
6 C

(
‖∇ũ‖L2(B(x0,ρ))

+ ρ−δ‖ũ‖Lm+1(B(x0,ρ))

)θ
‖ũ‖1−θ

Lm+1(B(x0,ρ))
, (1.7.12)
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where C = C(N,m). Putting together (1.7.7), (1.7.11) and (1.7.12), we obtain,

E(ρ) + b(ρ) 6 CL1ME′(ρ)
1
2

(
E(ρ)

1
2 + ρ−δb(ρ)

1
m+1

)θ
b(ρ)

1−θ
m+1 + L1M

∫
B(x0,ρ)

|F̃ (x)ũ(x)|dx. (1.7.13)

Applying Young’s inequality (Lemma 1.7.2) with x = ‖F̃ ‖
L

m+1
m (B(x0,ρ))

, y = ‖ũ‖Lm+1(B(x0,ρ))
,

ε =
(

2L1M
m+1

) 1
m+1

and p = m+ 1, we get

∫
B(x0,ρ)

|F̃ (x)ũ(x)|dx 6 m

m+ 1

(
2L1M

m+ 1

) 1
m

‖F̃ ‖
m+1
m

L
m+1
m (B(x0,ρ))

+
1

2L1M
b(ρ), (1.7.14)

for any ρ ∈ (0, ρ2). Putting together (1.7.13) and (1.7.14), we obtain (1.7.10). Hence Step 2.

Step 3. Let C0 be the constant in (1.7.10). For any τ ∈
(
m+1

2 , 1
]

and for a.e. ρ ∈ (0, ρ2),

C0L1ME′(ρ)
1
2

(
E(ρ)

1
2 + ρ−δb(ρ)

1
m+1

)θ
b(ρ)

1−θ
m+1

6
(
K1(τ)ρ−(ν−1)E′(ρ)

) 1
2

(E(ρ) + b(ρ))
γ(τ)+1

2 , (1.7.15)

where K1(τ) = CL2
1M

2 max
{
ρν−1

2 , 1
}

max{b(ρ2)µ(τ), b(ρ2)η(τ)} and C = C(N,m).

Let τ ∈
(
m+1

2 , 1
]

and let ρ ∈ (0, ρ2). A straightforward calculation yields(
E(ρ)

1
2 + ρ−δb(ρ)

1
m+1

)
b(ρ)

1−θ
θ(m+1)

= E(ρ)
1
2 b(ρ)

1−θ
θ(m+1) + ρ−δb(ρ)

1
θ(m+1)

= E(ρ)
1
2 b(ρ)τ(1−θ)`b(ρ)(1−τ)(1−θ)` + ρ−δb(ρ)

1
2 +τ(1−θ)`b(ρ)`−τ(1−θ)`− 1

2

6 2ρ−δ max
{
ρδ2, 1

}
K2(τ)

1
θ (E(ρ) + b(ρ))

1
2 +τ(1−θ)`

,

whereK2
2 (τ) = max{b(ρ2)µ(τ), b(ρ2)η(τ)}.Hence (1.7.15) withK1(τ) = 4C2

0L
2
1M

2K2
2 (τ) max

{
ρν−1

2 , 1
}
.

Step 4. For any τ ∈
(
m+1

2 , 1
]

and for a.e. ρ ∈ (0, ρ2),

0 6 E(ρ)1−γ(τ) 6 K1(τ)ρ−(ν−1)E′(ρ) + (4L1M)
(m+1)(1−γ(τ))

m ‖F̃ ‖
(m+1)(1−γ(τ))

m

L
m+1
m (B(x0,ρ))

. (1.7.16)

Putting together (1.7.10) and (1.7.15), and applying again Young’s inequality (1.7.3) with p = 2
γ(τ)+1 ,

ε = (γ(τ) + 1)
γ(τ)+1

2 , x =
(
K1(τ)ρ−(ν−1)E′(ρ)

) 1
2 and y = (E(ρ) + b(ρ))

γ(τ)+1
2 , we obtain

E(ρ) + b(ρ)

6
(
K1(τ)ρ−(ν−1)E′(ρ)

) 1
2

(E(ρ) + b(ρ))
γ(τ)+1

2 + (2L1M)
m+1
m ‖F̃ ‖

m+1
m

L
m+1
m (B(x0,ρ))

,

6 C
(
K1(τ)ρ−(ν−1)E′(ρ)

) 1
1−γ(τ)

+
1

2
(E(ρ) + b(ρ)) + (2L1M)

m+1
m ‖F̃ ‖

m+1
m

L
m+1
m (B(x0,ρ))

,

where C = p−1
p ε

p
p−1 = C(N,m). Changing, if needed, the constant C in the definition of K1(τ), we

obtain

E(ρ) + b(ρ) 6
(
K1(τ)ρ−(ν−1)E′(ρ)

) 1
1−γ(τ)

+ (4L1M)
m+1
m ‖F̃ ‖

m+1
m

L
m+1
m (B(x0,ρ))

.
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Raising both sides of the above inequality to the power 1−γ(τ) and recalling that
(
1−γ(τ)

)
∈ (0, 1),

we obtain (1.7.16).

Step 5. Let α ∈ (0, ρ0]. If E(α) = 0 then u|BΩ(x0,α) ≡ 0.

From our hypothesis, E′ = 0 on (0, α). Furthermore, ‖F̃ ‖
L

m+1
m (B(x0,α))

= 0
(
from assumption of

Theorem 1.2.1 or (1.3.1)
)
. It follows from Step 2 and continuity of b that b(α) = 0. Hence Step 5

follows.

Step 6. Proof of Theorem 1.2.1.

Thus ρ2 = ρ0 and ‖F̃ ‖
L

m+1
m (B(x0,ρ0))

= 0. For any τ ∈
(
m+1

2 , 1
]
, set r(τ)ν =

(
ρν0 − ν

K1(τ)E(ρ0)γ(τ)

γ(τ)

)
+

and let ρmax = max
τ∈(m+1

2 ,1]
r(τ). Note that definition of ρmax coincides with (1.2.8). Let τ ∈

(
m+1

2 , 1
]
.

We claim that E(r(τ)) = 0. Otherwise, E(r(τ)) > 0 and so E > 0 on [r(τ), ρ0). From (1.7.16), one

has (we recall that γ(τ)− 1 < 0),

for a.e. ρ ∈ (r(τ), ρ0), K1(τ)E′(ρ)E(ρ)γ(τ)−1 > ρν−1. (1.7.17)

We integrate this estimate between r(τ) and ρ0. We obtain

ν
K1(τ)

γ(τ)

(
E(ρ0)γ(τ) − E(r(τ))γ(τ)

)
> ρν0 − rν(τ).

By definition of r(τ), this gives E(r(τ)) 6 0. A contradiction, hence the claim. In particular, E(ρmax) =

0. It follows from Step 5 that u|BΩ(x0,ρmax) ≡ 0, which is the desired result. It remains to treat the

case where ρ0 = dist(x0, ∂Ω). We proceed as follows. Let n ∈ N, n > 1
ρ0
. We work on B

(
x0, ρ0 − 1

n

)
instead of B(x0, ρ0) and apply the above result. Thus u|B(x0,ρnmax) ≡ 0, where ρnmax is given by (1.2.8)

with ρ0 − 1
n in place of ρ0. We then let n ↗ ∞ which leads to the result. This finishes the proof of

Theorem 1.2.1.

Step 7. Proof of Theorem 1.3.1.

We have ρ2 = ρ1. Let γ = γ(1) and set for any ρ ∈ [0, ρ1], F (ρ) = (4L1M)
(m+1)(1−γ)

m ‖F̃ ‖
(m+1)(1−γ)

m

L
m+1
m (B(x0,ρ))

and K = K1(1)ρ
−(ν−1)
0 . Let E? =

(
γ

2K (ρ1 − ρ0)
) 1
γ and ε? = 1

2p′ (4L1M)
m+1
m

(
γ

2K

)p
. Note that p = 1

γ .

Assume now E(ρ1) < E?. Applying Step 4 with τ = 1, one has for a.e. ρ ∈ (ρ0, ρ1),

−KE′(ρ) + E(ρ)1−γ 6 F (ρ). (1.7.18)

Let define the function G by

∀ρ ∈ [0, ρ1], G(ρ) =
( γ

2K
(ρ− ρ0)+

) 1
γ

. (1.7.19)

Then G(ρ1) = E?, G ∈ C1([0, ρ1];R)
(

since 1
γ > 2

)
and G satisfies

∀ρ ∈ [0, ρ1], −KG′(ρ) +
1

2
G(ρ)1−γ = 0, (1.7.20)

E(ρ1) < G(ρ1). (1.7.21)

Finally and recalling that γ = 1
p , from our hypothesis (1.3.1) and (1.7.19), one has

∀ρ ∈ (0, ρ1), F (ρ) 6
1

2

( γ

2K
(ρ− ρ0)+

) 1−γ
γ

=
1

2
G(ρ)1−γ . (1.7.22)
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Putting together (1.7.18), (1.7.22) and (1.7.20), one obtains

−KE′(ρ) + E(ρ)1−γ 6 −KG′(ρ) +G(ρ)1−γ , for a.e. ρ ∈ (ρ0, ρ1). (1.7.23)

Now, we claim that for any ρ ∈ [ρ0, ρ1), E(ρ) 6 G(ρ). Indeed, if the claim does not hold, it follows

from (1.7.21) and continuity of E and G that there exist ρ? ∈ (ρ0, ρ1) and δ ∈ (0, ρ? − ρ0] such that

E(ρ?) = G(ρ?), (1.7.24)

E(ρ) > G(ρ), ∀ρ ∈ (ρ? − δ, ρ?). (1.7.25)

It follows from (1.7.23) and (1.7.25) that for a.e. ρ ∈ (ρ? − δ, ρ?), G′(ρ) < E′(ρ). But, with (1.7.24),

this implies that for any ρ ∈ (ρ?− δ, ρ?), G(ρ) > E(ρ), which contradicts (1.7.25), hence the claim. It

follows that 0 6 E(ρ0) 6 G(ρ0) = 0. We deduce with help of the Step 5 that u|BΩ(x0,ρ0) ≡ 0, which

is the desired result. It remains to treat the case where ρ1 = dist(x0, ∂Ω). We proceed as follows.

Assume E(ρ1) < E?. Then there exists ε > 0 small enough such that ρ0 < ρ1 − ε and E(ρ1) < E?(ε),

where E?(ε) =
(
γ

2K (ρ1 − ρ0 − ε)
) 1
γ . Since ε? is a non increasing function of ρ1, we do not need to

change its definition. Estimates (1.7.18)–(1.7.23) holding with ρ1 − ε in place of ρ1, it follows that

E(ρ0) = 0 and we finish with the help of Step 5. This ends the proof of Theorem 1.3.1.

Proof of Theorem 1.3.3. Let C0 = C0(N,m) be the constant in estimate (1.2.8) given by Theo-

rem 1.2.1. We then choose C = C−1
0 in (1.3.2) and (1.3.3). Using the notations of Theorem 1.2.1 and

its proof, we define for any τ ∈
(
m+1

2 , 1
]
,

r(τ)ν =

(
(2ρ0)ν − C0M

2 max

{
1,

1

L2

}
max

{
(2ρ0)ν−1, 1

}
×E(2ρ0)γ(τ) max{b(2ρ0)µ(τ), b(2ρ0)η(τ)}

2τ − (1 +m)

)
+

,

and recall that ρmax = max
τ∈(m+1

2 ,1]
r(τ). Assume (1.3.2) holds. Then ρmax > ρ1(1) > ρ0 and it follows

from (1.2.8) of Theorem 1.2.1 that b(ρ0) = 0. Now assume (1.3.3) holds. Since E(2ρ0) 6 1, b(2ρ0) 6 1

and 0 < µ(τ) < η(τ) < 1, for any τ ∈
(
m+1

2 , 1
)
, it follows from definitions of ρ1 and ρmax, that

ρνmax > ρ
ν
1(1− s) > (2ρ0)ν − C0M

2 min{1, L2}max{(2ρ0)ν−1, 1}
1−m− 2s

b(2ρ0)µ(1−s) > ρν0 .

By (1.2.8) of Theorem 1.2.1, b(ρ0) = 0. This concludes the proof.

Proof of Theorem 1.4.4. By Definition 1.2.3 and of Remark 1.2.4, 3., we can choose ϕ = iu and

ϕ = u in (1.2.10). We then obtain,

‖∇u‖2
L2(Ω)

+ Im(a)‖u‖m+1

Lm+1(Ω)
+ Im(b)‖u‖2

L2(Ω)
= Im

∫
Ω

Fudx,

Re(a)‖u‖m+1

Lm+1(Ω)
+ Re(b)‖u‖2

L2(Ω)
= Re

∫
Ω

Fudx.

Applying Lemma 1.7.3, these estimates yield,

‖∇u‖2
L2(Ω)

+ L‖u‖m+1

Lm+1(Ω)
6M

∫
Ω

|F | |u|dx. (1.7.26)
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We apply Young’s inequality (1.7.3) with x = |F |, y = |u|, ε =
(

2M
(m+1)L

) 1
m+1

and p = m + 1. With

(1.7.26), we get

‖∇u‖2
L2(Ω)

+
L

2
‖u‖m+1

Lm+1(Ω)
6M

(
2M

L

) 1
m

‖F ‖
m+1
m

L
m+1
m (Ω)

,

from which we deduce (1.4.1). Finally, applying Gagliardo-Nirenberg’s inequality (1.7.1), with p = m,

and Young’s inequality (1.7.3), with p = 4+N(1−m)
N(1−m) and ε = 1, one obtains

‖u‖
2

(N+2)−m(N−2)
4+N(1−m)

L2(Ω)
6 C‖∇u‖

2N(1−m)
4+N(1−m)

L2(Ω)
‖u‖

4(1+m)
4+N(1−m)

Lm+1(Ω)
6 C

(
‖∇u‖2

L2(Ω)
+ ‖u‖m+1

Lm+1(Ω)

)
,

and finally

‖u‖2
L2(Ω)

6 C
(
‖∇u‖2

L2(Ω)
+ ‖u‖m+1

Lm+1(Ω)

)δ+1

, (1.7.27)

where δ = 2(1−m)
(N+2)−m(N−2) . Estimate (1.4.2) then follows from (1.4.1) and (1.7.27).

Proof of Theorem 1.3.5. Let C be the constant given by Theorem 1.3.3 and let ε > 0. Set

K = suppF and K(ε) = O(ε). We would like to apply Theorem 1.3.3 with ρ0 = ε
4 . By (1.4.1) of Theo-

rem 1.4.4, there exists δ0 = δ0(ε,N,m,L,M) > 0 such that if ‖F ‖
L

m+1
m (Ω)

6 δ0 then ‖u‖Lm+1(Ω) 6 1

and

‖∇u‖
2(1−m)

k

L2(Ω)
6 C2−2ν(2ν − 1)(1−m)M−2 min{1, L2}min{2, ε}ν−1ε. (1.7.28)

We recall that the distance between two closed sets A and B of RN with one of them compact is

defined by

dist(A,B) = min
(x,y)∈A×B

|x− y|

and that

dist(A,B) > 0 ⇐⇒ A∩ B = ∅.

Let x0 ∈ K(ε)c. Let y ∈ B
(
x0,

ε
2

)
and let z ∈ K. By definition of K(ε), dist(K(ε)c,K) = ε. We then

have

ε = dist(K(ε)c,K) 6 |x0 − z| 6 |x0 − y|+ |y − z| 6
ε

2
+ |y − z|.

Taking the minimum on (y, z) ∈ B
(
x0,

ε
2

)
×K, we get

ε

2
6 dist

(
B
(
x0,

ε

2

)
,K
)
,

which means that B
(
x0,

ε
2

)
∩K = ∅, for any x0 ∈ K(ε)c. By (1.7.28), u satisfies (1.3.2) with ρ0 = ε

4

and we deduce that for any x0 ∈ K(ε)c, u|Ω∩B(x0,
ε
4 ) ≡ 0 (Theorem 1.3.3). Let n ∈ N. By compactness,

K
(

7ε
8

)c ∩B(0, n) may be covered by a finite number of balls B
(
x0,

ε
4

)
with x0 ∈ K(ε)c. Thus for any

n ∈ N, u|Ω∩K( 7ε
8 )

c∩B(0,n) ≡ 0. It follows that u = 0 almost everywhere on

⋃
n∈N

(
Ω ∩K

(
7ε

8

)c

∩B(0, n)

)
= Ω ∩K

(
7ε

8

)c

.
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This means that suppu ⊂ Ω ∩K
(

7ε
8

)
⊂ Ω ∩ O(ε). Finally, since K is a compact set, Ω is open and

K ⊂ Ω, it follows that if ε is small enough then O(ε) ⊂ Ω. This ends the proof.

Proof of Theorem 1.3.6. Let L, M and C be the constants given by (1.2.6), (1.2.7) and Theo-

rem 1.3.3, respectively. We would like to apply Theorem 1.3.3 with ρ0 = 1. Since F is compactly

supported and u ∈H1(RN ) ∩Lm+1(RN ), there exists R > 1 such that suppF ⊂ B(0, R− 1),

‖u‖Lm+1({|x|>R−1}) 6 1 and ‖∇u‖
2(1−m)

k

L2({|x|>R−1}) 6 C21−ν(2ν − 1)(1−m)M−2 min{1, L2}.

Let x0 ∈ RN be such that |x0| > R + 1. Then B(x0, 2) ∩ suppF = ∅ and, with help of the above

estimate, u satisfies (1.3.2) with ρ0 = 1. It follows from Theorem 1.3.3 that u|B(x0,1) ≡ 0. For each

integer n > 2, define the compact set Cn by

Cn =

{
x ∈ RN ; R+

1

n
6 |x| 6 R+ n− 1

n

}
.

By compactness, Cn may be covered by a finite number of balls B(x0, 1), where R+1 6 |x0| 6 R+1+n.

Thus for any n ∈ N, u|Cn ≡ 0. It follows that u = 0 almost everywhere on⋃
n>2

Cn =
{
x ∈ RN ; |x| > R

}
.

Then suppu ⊂ B(0, R), which is the desired result.

1.8 Proofs of the existence and smoothness results

In this Section, we prove Proposition 1.4.5, Theorem 1.4.1 and 1.4.8.

Proof of Proposition 1.4.5. By Remarks 1.4.6, equation (1.4.3) makes senses in L1
loc(Ω).

Proof of Property 1). Let 1 < q 6 p < ∞. Assume F ∈ Lploc(Ω) and u ∈ Lqloc(Ω) is a solution

to (1.4.3). For r ∈ (1,∞), r− denotes any real in (1, r). Assume v ∈ Lr−loc(Ω), for some 1 < r <∞, is

a solution of (1.4.3). It follows that |v|−(1−m)v ∈ L
r−
m

loc (Ω) and since 0 < m < 1, L
r−
m

loc (Ω) ⊂ Lrloc(Ω).

So by (1.4.3) and Hölder’s inequality, V v ∈ Lr−loc(Ω) and so ∆v ∈ Lmin{r−,p}
loc (Ω). Furthermore, if

for some 1 < r < ∞, v ∈ Lrloc(Ω;C) and ∆v ∈ Lrloc(Ω;C) then v ∈ W 2,r
loc (Ω;C) (see for instance

Cazenave [58], Proposition 4.1.2 p.101–102). We then have shown the following property. Let 1 < r <

∞.

u ∈ Lr
−

loc(Ω) =⇒ u ∈W 2,min{r−,p}
loc (Ω). (1.8.1)

Now, we proceed to the proof of Property 1) in 2 cases.

Case 1.
(
N
2 6 q 6 p

)
or
(
q < N

2 and q 6 p 6 Nq
N−2q

)
.

It follows from (1.8.1), applied with r = q, that u ∈ W 2,q−

loc (Ω). In one hand, if q < N
2 then

W 2,q−

loc (Ω) ⊂ Lp
−

loc(Ω). It follows from (1.8.1) (applied with r = p) and Sobolev’s embedding that

u ∈ Lp+δloc (Ω), for δ ∈ (0, 1) small enough. On the other hand, if q > N
2 then W 2,q−

loc (Ω) ⊂ Lp+1
loc (Ω).

So in both cases, u ∈ Lp+δloc (Ω). Applying (1.8.1) with r = p+ δ, we then obtain u ∈W 2,p
loc (Ω).
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Case 2. 1 < q < p, q < N
2 and Nq

N−2q < p.

We recall that if 1 < r < N
2 then Sobolev’s embedding is

W 2,r−

loc (Ω) ⊂ Ls
−

loc(Ω), for any 1 6 s <∞ such that
1

s
>

1

r
− 2

N
. (1.8.2)

Since Nq
N−2q < p, we may define the smallest integer n0 > 2 such that 1

q −
2n0

N < 1
p . We then set

1

pn0

=


1
p+1 , if 1

q −
2n0

N 6 0,

1
q −

2n0

N , if 1
q −

2n0

N > 0,

in order to have p < pn0
<∞. Finally, define the n0 real (pn)n∈J0,n0−1K by p0 = q and

∀n ∈ J0, n0 − 1K,
1

pn
=

1

p0
− 2n

N
.

It follows that for any n ∈ J1, n0 − 1K, q 6 pn−1 < pn 6 p < pn0
<∞ and

∀n ∈ J1, n0K,
1

pn
>

1

pn−1
− 2

N
. (1.8.3)

From (1.8.1)–(1.8.3) applied n0 times (and recalling that p < pn0
<∞), we then obtain u ∈W 2,p

loc (Ω).

This ends the proof of Property 1).

Proof of Property 2). We recall the following Sobolev’s embedding and estimate.

W 2,N+1
loc (Ω) ⊂ C

1, 1
N+1

loc (Ω) ⊂ C0,1
loc (Ω), (1.8.4)

∀(z1, z2) ∈ C2,
∣∣∣|z1|−(1−m)z1 − |z2|−(1−m)z2

∣∣∣ 6 5|z1 − z2|m. (1.8.5)

Assume further that (F ,V ) ∈ C0,α
loc (Ω) ×C0,α

loc (Ω), for some α ∈ (0,m]. In particular, V ∈ L∞loc(Ω)

and by Property 1), u ∈W 2,N+1
loc (Ω). It follows from (1.8.4), (1.8.5) and (1.4.3) that |u|−(1−m)u ∈

C0,m
loc (Ω) and so ∆u ∈ C0,α

loc (Ω). Thus u ∈ C2,α
loc (Ω) (Theorem 9.19 p.243–244 in Gilbarg and Tru-

dinger [90]). This concludes the proof of the proposition.

Proof of Theorem 1.4.1. Let L and M be the constants given by (1.2.6) and (1.2.7), respectively.

We proceed in 4 steps.

Step 1. Let Ω ⊂ RN be an open bounded subset and let g ∈ L2(Ω). Then there exists a unique

solution u ∈H1
0 (Ω) of

−∆u = g, in L2(Ω). (1.8.6)

Moreover, there exists a positive constant C = C(|Ω|, N) such that∥∥(−∆)−1g
∥∥
H1

0 (Ω)
6 C‖g‖L2(Ω), ∀g ∈ L

2(Ω). (1.8.7)

In particular, the mapping (−∆)−1 : L2(Ω) −→H1
0 (Ω) is linear continuous.

Existence and uniqueness come from Lax-Milgram’s Theorem where the bounded coercive bilinear

form a on H1
0 (Ω)×H1

0 (Ω) and the bounded linear functional L on H−1(Ω) are defined by

a(u,v) = Re

∫
Ω

∇u(x).∇v(x)dx and 〈L,v〉H−1,H1
0

= Re

∫
Ω

v(x)g(x)dx,
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respectively. Note that a is coercive due to Poincaré’s inequality. Taking the H−1 − H1
0 duality

product of equation (1.8.6) with u and applying Poincaré’s inequality, we obtain estimate (1.8.7) and

so continuity of (−∆)−1.

Step 2. Let Ω ⊂ RN be an open bounded subset, let 0 < m < 1, let (a, b) ∈ C2 and let F ∈ L2(Ω).

For each ` ∈ N, define f` = g` − iF , where

∀v ∈ L2(Ω), g`(v) =


ia|v|−(1−m)v + ibv, if |v| 6 `,

ia`m
v

|v|
+ ib`

v

|v|
, if |v| > `.

(1.8.8)

Then for any ` ∈ N, there exists at least one solution u` ∈H1
0 (Ω) of

−∆u` = f` (u`) , in L2(Ω).

It is clear that (f`)`∈N ⊂ C(L2(Ω);L2(Ω)). With the help of Step 1 and the continuous and compact

embedding i : H1
0 (Ω) ↪→ L2(Ω), we may define a continuous and compact sequence of mappings

(T`)`∈N of H1
0 (Ω) as follows. For any ` ∈ N, set

T` : H1
0 (Ω)

i
↪→ L2(Ω)

f`−→ L2(Ω)
(−∆)−1

−−−−−→ H1
0 (Ω)

v 7−→ i(v) = v 7−→ f`(v) 7−→ (−∆)−1(f`)(v)

Let ` ∈ N. Let C be the constant in (1.8.7) and set R = C(|a| + |b| + 1)
(

2`|Ω| 12 + ‖F ‖L2(Ω)

)
. Let

v ∈H1
0 (Ω). It follows from (1.8.7) that

‖T`(v)‖H1
0 (Ω) =

∥∥(−∆)−1(f`)(v)
∥∥
H1

0 (Ω)
6 C‖f`(v)‖L2(Ω)

6 C(|a|+ |b|+ 1)
(

(`m + `)|Ω| 12 + ‖F ‖L2(Ω)

)
6 R.

Hence, T`
(
H1

0 (Ω)
)
⊂ BH1

0
(0, R), where BH1

0
(0, R) =

{
u ∈H1

0 (Ω); ‖u‖H1
0 (Ω) 6 R

}
. In a nutshell,

T` is a continuous and compact mapping from H1
0 (Ω) into itself, BH1

0
(0, R) is a bounded, closed and

convex subset of H1
0 (Ω) and T`

(
BH1

0
(0, R)

)
⊂ BH1

0
(0, R). By the Schauder’s fixed point Theorem,

T` admits at least one fixed point u` ∈ BH1
0
(0, R). Hence Step 2 follows.

Step 3. Let be the hypotheses of the theorem. Assume further that Ω is bounded. Then equa-

tion (1.1.1) admits at least one solution u ∈H1
0 (Ω).

In other words, we have to solve

−∆u = f(u), in L2(Ω), (1.8.9)

where f = g − iF and for any v ∈ L2(Ω), g(v) = ia|v|−(1−m)v + ibv. Let (F k)k∈N ⊂ D(Ω) be such

that F k
L

m+1
m (Ω)−−−−−−−→
k→∞

F and for any k ∈ N, ‖F k‖
L

m+1
m (Ω)

6 2‖F ‖
L

m+1
m (Ω)

. Let g` be defined by (1.8.8)

and set for any (k, `) ∈ N2, fk` = g` − iF k. For any (k, `) ∈ N2, let uk` ∈H1
0 (Ω) be a solution of

−∆uk` = f`(u
k
` ), in L2(Ω), (1.8.10)
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given by Step 2. We take the H−1 −H1
0 duality product of equation (1.8.10) with uk` first and iuk`

second. Applying Lemma 1.7.3, we then get for any (k, `) ∈ N2,

‖∇uk` ‖
2
L2(Ω)

+ L‖uk` ‖
m+1

Lm+1({|uk
` |6`})

+ L`m‖uk` ‖L1({|uk
` |>`})

6M
∫

Ω

|F k||uk` |
(
χ{|uk

` |6`} + χ{|uk
` |>`}

)
dx.

Applying Young’s inequality (1.7.3) to the first term on the right-hand side and the Hölder’s inequality

to the second term of the right-hand side, we arrive to the following estimate.

2‖∇uk` ‖
2
L2(Ω)

+ L‖uk` ‖
m+1

Lm+1({|uk
` |6`})

+ 2‖uk` ‖L1({|uk
` |>`})

(
L`m −M‖F k‖L∞(Ω)

)
6M

(
2M

L

) 1
m

‖F k‖
m+1
m

L
m+1
m (Ω)

6 C‖F ‖
m+1
m

L
m+1
m (Ω)

. (1.8.11)

For any k ∈ N, there exists `k ∈ N large enough such that L`mk −M‖F k‖L∞(Ω) > 1. Moreover, Ω

being bounded, we have Lm+1(Ω) ↪→ L1(Ω). So
(
∇uk`k

)
k∈N and (uk`k)k∈N are bounded in L2(Ω) and

L1(Ω), respectively. It follows from Gagliardo-Nirenberg’s inequality (1.7.2) (applied with p = 1),

that (uk`k)k∈N is also bounded in L2(Ω) and so in H1
0 (Ω). Finally, by Rellich-Kondrachov’s Theorem,

there exists a subsequence (unϕ(n))n∈N of (uk`k)k∈N and h ∈ L2(Ω;R), such that

unϕ(n)

L2(Ω)−−−−→
n→∞

u, (1.8.12)

unϕ(n)

a.e. in Ω−−−−−→
n→∞

u, (1.8.13)∣∣∣unϕ(n)

∣∣∣ 6 h, for any n ∈ N, a.e. in Ω, (1.8.14)

By (1.8.13) and (1.8.14),

gϕ(n)

(
unϕ(n)

)
χ{
|un

ϕ(n)|6ϕ(n)
} a.e. in Ω−−−−−→

n→∞
g(u),

∀n ∈ N,
∣∣∣gϕ(n)

(
unϕ(n)

)∣∣∣ 6 C(hm + h) ∈ L1(Ω), a.e. in Ω.

It follows from the dominated convergence Theorem that

gϕ(n)

(
unϕ(n)

)
χ{
|un

ϕ(n)|6ϕ(n)
} L1(Ω)−−−−→

n→∞
g(u). (1.8.15)

In addition, by (1.8.12) and Hölder’s inequality,∥∥∥∥gϕ(n)

(
unϕ(n)

)
χ{
|un

ϕ(n)|>ϕ(n)
}∥∥∥∥
L1(Ω)

6
C

ϕ(n)

(∥∥unϕ(n)

∥∥m+1

Lm+1(Ω)
+
∥∥unϕ(n)

∥∥2

L2(Ω)

)
n→∞−−−−→ 0.

(1.8.16)

Putting together (1.8.15) and (1.8.16), we obtain

gϕ(n)

(
unϕ(n)

)
L1(Ω)−−−−→
n→∞

g(u). (1.8.17)
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Since Fn
n→∞−−−−→ F in L

m+1
m (Ω) ↪→ L1(Ω), we deduce with help of (1.8.12) and (1.8.17) that

∆unϕ(n)

H−2(Ω)−−−−−→
n→∞

∆u, (1.8.18)

fϕ(n)

(
unϕ(n)

)
L1(Ω)−−−−→
n→∞

f(u). (1.8.19)

By (1.8.10), we have for any n ∈ N, −∆unϕ(n) = fnϕ(n)

(
unϕ(n)

)
, in L2(Ω). Estimates (1.8.18) and

(1.8.19) allow to pass in the limit in this equation in the sense of D ′(Ω). This means that u ∈H1
0 (Ω)

is a solution of (1.8.9) and since f(u) ∈ L2(Ω), equation (1.8.9) makes sense in L2(Ω).

Step 4. Conclusion. Under the hypotheses of the theorem, equation (1.1.1) admits at least one solution

u ∈H1
0 (Ω) ∩Lm+1(Ω) and Properties 1)–3) of the theorem hold.

For any n ∈ N, we write Ωn = Ω ∩ B(0, n). Let n0 ∈ N be large enough to have Ωn0
6= ∅. For each

n > n0, let un ∈ H1
0 (Ωn) be any solution of (1.1.1) in Ωn given by Step 3, with the external source

Fn = F |Ωn . We define ũn ∈ H1
0 (Ω) by extending un by 0 in Ω ∩ B(0, n)c. Then ∇ũn = ∇un,

almost everywhere in Ωn and ∇ũn = 0, almost everywhere in Ω ∩ B(0, n)c. It follows from (1.4.2)

of Theorem 1.4.4 that (un)n∈N is bounded in H1
0 (Ωn) ∩ Lm+1(Ωn), or equivalently, (ũn)n∈N is

bounded in H1
0 (Ω) ∩ Lm+1(Ω). Up to a subsequence, that we still denote by (ũn)n∈N, there exists

u ∈H1
0 (Ω)∩Lm+1(Ω) such that ũn ⇀ u in H1

w(Ω), as n −→∞, and ũn
L

m+1
loc (Ω)
−−−−−−→
n→∞

u. Let ϕ ∈ D(Ω).

Since ũn
L

m+1
loc (Ω)
−−−−−−→
n→∞

u, we have |ũn|−(1−m)ũn
L

m+1
m

loc (Ω)
−−−−−−−→

n→∞
|u|−(1−m)u, and in particular

lim
n→∞

〈a|ũn|−(1−m)ũn,ϕ〉
L

m+1
m (Ω),Lm+1(Ω)

= 〈a|u|−(1−m)u,ϕ〉
L

m+1
m (Ω),Lm+1(Ω)

. (1.8.20)

Recalling that u ∈H1
0 (Ω) and ũn ⇀ u in H1

w(Ω), as n −→∞, we get with help of (1.8.20),

lim
n→∞

(
〈i∇ũn,∇ϕ〉L2(Ω),L2(Ω) + 〈a|ũn|−(1−m)ũn,ϕ〉

L
m+1
m (Ω),Lm+1(Ω)

+ 〈bũn,ϕ〉L2(Ω),L2(Ω)

)
= 〈−i∆u+ a|u|−(1−m)u+ bu〉D′(Ω),D(Ω). (1.8.21)

Let n1 > n0 be large enough to have suppϕ ⊂ Ωn1
. Using the basic properties of ũn described as

above and the fact un is a solution of (1.1.1) in Ωn, we obtain for any n > n1, ϕ|Ωn ∈ D(Ωn) and

0 = 〈−i∆un + a|un|−(1−m)un + bun − Fn,ϕ|Ωn〉D′(Ωn),D(Ωn)

=
〈
i∇un,∇

(
ϕ|Ωn

)〉
L2(Ωn),L2(Ωn)

+ 〈a|un|−(1−m)un,ϕ|Ωn〉Lm+1
m (Ωn),Lm+1(Ωn)

+ 〈bun,ϕ|Ωn〉L2(Ωn),L2(Ωn) − 〈Fn,ϕ|Ωn〉Lm+1
m (Ωn),Lm+1(Ωn)

= 〈i∇ũn,∇ϕ〉L2(Ω),L2(Ω) + 〈a|ũn|−(1−m)ũn,ϕ〉
L

m+1
m (Ω),Lm+1(Ω)

+ 〈bũn,ϕ〉L2(Ω),L2(Ω) − 〈F ,ϕ〉
L

m+1
m (Ω),Lm+1(Ω)

,

from which we deduce

〈i∇ũn,∇ϕ〉L2(Ω),L2(Ω) + 〈a|ũn|−(1−m)ũn,ϕ〉
L

m+1
m (Ω),Lm+1(Ω)

+ 〈bũn,ϕ〉L2(Ω),L2(Ω)

= 〈F ,ϕ〉
L

m+1
m (Ω),Lm+1(Ω)

,
(1.8.22)
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for any n > n1. Passing to the limit in (1.8.22), we get with (1.8.21),

〈−i∆u+ a|u|−(1−m)u+ bu,ϕ〉D′(Ω),D(Ω) = 〈F ,ϕ〉D′(Ω),D(Ω), ∀ϕ ∈ D(Ω),

which is the desired result. Properties 1) and 2) follow from Proposition 1.4.5. Finally, if F is spheri-

cally symmetric then u, obtained as a limit, is also spherically symmetric. Indeed, we replace all the

functional spaces E with Erad and we follow the above proof step by step. For N = 1, this includes

the case where F is an even function. Finally, if F is an odd function, it is sufficient to work with the

space Eodd = {v ∈ E; v is odd} in place of E. Hence Property 3).

Proof of Corollary 1.4.8. Let the assumptions of the corollary be satisfied. Let a = −iλ, b = ib and

G = −iF . Then (a, b) ∈ A× B satisfies (1.2.2) and we may apply Theorem 1.4.1 and Theorem 1.3.6

to find a solution ϕ ∈ C2,m
b (RN ) of (1.1.1) compactly supported for such a, b and G. It follows that

ϕ is a solution to (1.4.7). A straightforward calculation show that u defined by (1.4.6) is a solution

to (1.4.5). This ends the proof.

1.9 Proofs of the uniqueness results

In this Section, we prove Theorems 1.1.1, 1.1.2, 1.5.1 and 1.5.2, and Corollaries 1.5.3, 1.5.4 and 1.5.5.

Let 0 < m 6 1. Set for any z ∈ C, f(z) = |z|−(1−m)z, where it is understood that f(0) = 0. The

proof of Theorem 1.5.1 relies on the two following lemmas.

Lemma 1.9.1. Let 0 < m 6 1. Then there exists a positive constant C such that

∀(z1, z2) ∈ C2, Re
((
f(z1)− f(z2)

)
(z1 − z2)

)
> C

|z1 − z2|2

(|z1|+ |z2|)1−m ,

as soon as |z1|+ |z2| > 0.

Proof. We denote by | . |2 the Euclidean norm in R2. From Lemma 4.10, p.264 of Dı́az [73], there

exists a positive constant C such that(
|X|−(1−m)

2 X − |Y |−(1−m)
2 Y

)
.(X − Y ) > C

|X − Y |22
(|X|2 + |Y |2)1−m ,

for any (X,Y ) ∈ R2×R2 satisfying |X|2 + |Y |2 > 0. We apply this lemma with X =

(
Re(z1)
Im(z1)

)
and

Y =

(
Re(z2)
Im(z2)

)
. Note that |X|2 = |z1|, |Y |2 = |z2| and |X − Y |2 = |z1 − z2|. The result follows

from a direct calculation.

Corollary 1.9.2. Let 0 < m 6 1. Then,

Re
((
f(z1)− f(z2)

)
(z1 − z2)

)
> 0,

for any (z1, z2) ∈ C2.

Proof. The result is clear if |z1|+ |z2| = 0. Otherwise, apply Lemma 1.9.1.
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Remark 1.9.3. Corollary 1.9.2 still holds for any m > 0 and can be directly obtained as follows.

The mapping f (considered as a function from R2 onto R2) is the derivative of the convex function

F : R2 −→ R
(x, y) 7−→ 1

m+1 (x2 + y2)
m+1

2 .

It follows that f is a monotone function (Proposition 5.5 p.25 of Ekeland and Temam [83]).

Lemma 1.9.4. Let Ω ⊆ RN be an open subset, let 0 < m < 1, let (a, b) ∈ C2 satisfying (1.2.3) and

let F1,F2 ∈ L1
loc(Ω) be such that F1−F2 ∈ L2(Ω). Let u1,u2 ∈H1

0 (Ω)∩Lm+1(Ω) be two solutions

of (1.5.1) and (1.5.2), respectively. Then there exists a positive constant C = C(N,m) satisfying the

following property. If a 6= 0 then

Im(a)‖∇u1 −∇u2‖2L2 + C|a|2
∫
ω

|u1(x)− u2(x)|2

(|u1(x)|+ |u2(x)|)1−m dx+ Re
(
ab
)
‖u1 − u2‖2L2

6 Re

∫
Ω

a
(
F1(x)− F2(x)

)(
u1(x)− u2(x)

)
dx, (1.9.1)

where ω =
{
x ∈ Ω; |u1(x)|+ |u2(x)| > 0

}
. If a = 0 then

Re(b)‖u1 − u2‖2L2 = Re

∫
Ω

(
F1(x)− F2(x)

)(
u1(x)− u2(x)

)
dx, (1.9.2)

‖∇u1 −∇u2‖2L2 + Im(b)‖u1 − u2‖2L2 = Im

∫
Ω

(
F1(x)− F2(x)

)(
u1(x)− u2(x)

)
dx. (1.9.3)

Proof. Let u1 and u2 be two solutions of (1.1.1) and (1.2.1) and set u = u1−u2 and F = F1−F2.

Then u satisfies

−i∆u+ a
(
f(u1)− f(u2)

)
+ bu = F , in H−1(Ω) +L

m+1
m (Ω). (1.9.4)

Assume a 6= 0. We take the H−1 + L
m+1
m −H1

0 ∩ Lm+1 duality product of (1.9.4) with au. We

obtain,

Im(a)‖∇u‖2
L2 + |a|2〈f(u1)− f(u2),u〉

L
m+1
m ,Lm+1

+ Re
(
ab
)
‖u‖2

L2 = 〈aF ,u〉L2,L2 . (1.9.5)

Applying Lemma 1.9.1, there exists a positive constant C = C(N,m) such that

〈f(u1)− f(u2),u〉
L

m+1
m ,Lm+1

> C
∫
ω

|u(x)|2

(|u1(x)|+ |u2(x)|)1−m dx. (1.9.6)

Then (1.9.1) follows from (1.9.5) and (1.9.6). We turn out the case a = 0. Taking the H−1 +L
m+1
m −

H1
0 ∩ Lm+1 duality product of (1.9.4) with u and iu, one respectively obtains (1.9.2) and (1.9.3).

Proof of Theorem 1.5.1. Note that since (a, b) ∈ C2 \ {(0,0)} satisfies (1.2.3), if a = 0 and

Re(b) = 0 then one necessarily has Im(b) > 0. We apply estimates (1.9.1)–(1.9.3) of Lemma 1.9.4,
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according to the different cases, and Cauchy-Schwarz’s inequality. Estimates (1.5.3) and (1.5.4) follow.

Proof of Theorem 1.5.2. Let F ∈ L1
loc(Ω) and let u1,u2 ∈ H1

0 (Ω) ∩ Lm+1(Ω) be two solutions

of (1.1.1) and (1.2.1). By Lemma 1.9.4, (1.9.1)–(1.9.3) hold with F1 − F2 = 0. We first note that,

since u1 − u2 ∈ H1
0 (Ω), if ‖∇u1 − ∇u2‖L2 = 0 then u1 − u2 = 0, a.e. in Ω and uniqueness

holds. It follows from hypotheses (1.2.3) and Lemma 1.9.4 that one necessarily has ‖u1−u2‖L2 = 0,

‖∇u1 − ∇u2‖L2 = 0 or
∫
ω

|u1−u2|2
(|u1(x)|+|u2(x)|1−m)dx, where ω =

{
x ∈ Ω; |u1(x)| + |u2(x)| > 0

}
. Those

three cases imply that u1 = u2, a.e. in Ω. This finishes the proof of the theorem.

Proof of Corollary 1.5.3. Apply Theorem 1.4.1, Theorem 1.5.2 and Remark 1.6.1.

Proof of Corollary 1.5.4. By uniqueness (Theorem 1.5.2), u ≡ 0 is the unique solution.

Proof of Corollary 1.5.5. Apply Theorem 1.3.6, Theorem 1.4.1, Proposition 1.4.5, Theorem 1.5.2

and Remark 1.6.1.

Proof of Theorem 1.1.1. Apply Theorem 1.3.6 and Corollary 1.5.3.

Proof of Theorem 1.1.2. Apply Theorem 1.3.5 and Corollary 1.5.3.
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Existence of weak solutions to some
stationary Schrödinger equations
with singular nonlinearity

with Jesús Ildefonso D́ıaz∗

Abstract

We prove some existence (and sometimes also uniqueness) of solutions to some stationary equations as-

sociated to the complex Schrödinger operator under the presence of a singular nonlinear term. Among other

new facts, with respect some previous results in the literature for such type of nonlinear potential terms, we

include the case in which the spatial domain is possibly unbounded (something which is connected with some

previous localization results by the authors), the presence of possible non-local terms at the equation, the case

of boundary conditions different to the Dirichlet ones and, finally, the proof of the existence of solutions when

the right-hand side term of the equation is beyond the usual L2-space.

2.1 Introduction

This paper is concerned by existence of solutions for two kinds of equations related to the complex

Schrödinger operator,

−∆u+ a|u|−(1−m)u+ bu = F, in L2(Ω), (2.1.1)

−∆u+ a|u|−(1−m)u+ bu+ cV 2u = F, in L2(Ω), (2.1.2)

with homogeneous Dirichlet boundary condition

u|Γ = 0, (2.1.3)
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or homogeneous Neumann boundary condition

∂u

∂ν |Γ
= 0, (2.1.4)

where Ω is a subset of RN with boundary Γ, 0 < m < 1, (a, b, c) ∈ C3 and V ∈ L∞(Ω;R) is a real

potential. Here and in what follows, when Γ is of class C1, ν denotes the outward unit normal vector

to Γ. Moreover, ∆ =
N∑
j=1

∂2

∂x2
j

is the Laplacian in Ω.

In Bégout and Dı́az [25], the authors study the spatial localization property compactness of the sup-

port of solutions of equation (2.1.1) (see Theorems 1.3.1, 1.3.5, 1.3.6, 1.4.1, 1.4.4 and 1.5.2). Existence,

uniqueness and a priori bound are also established with the homogeneous Dirichlet boundary condi-

tion, F ∈ Lp(Ω) (2 < p < ∞) and (a, b) ∈ C2 satisfying assumptions (2.2.7) below. In this paper,

we give such existence and a priori bound results but for the weaker assumption F ∈ L2(Ω) (Theo-

rems 2.2.8 and 2.2.9) and also for some different hypotheses on (a, b) ∈ C2 (Theorems 2.2.1 and 2.2.3).

Additionally, we consider homogeneous Neumann boundary condition (Theorems 2.2.8 and 2.2.9).

In Bégout and Dı́az [26], spatial localization property for the partial differential equation (2.1.2)

associated to self-similar solutions of the nonlinear Schrödinger equation

iut + ∆u = a|u|−(1−m)u+ f(t, x),

is studied.

In this paper, we prove existence of solutions with homogeneous Dirichlet or Neumann boundary

conditions (Theorems 2.2.4) and establish a priori bounds (Theorem 2.2.6), for both equations (2.1.1)

and (2.1.2) with any of both boundary conditions (2.1.3) or (2.1.4). We also show uniqueness (Theo-

rem 2.2.10) and regularity results (Theorem 2.2.12), under suitable additional conditions. We send

the reader to the long introduction of Bégout and Dı́az [26] for many comments on the frameworks

in which the equation arises (Quantum Mechanics, Nonlinear Optics and Hydrodynamics) and their

connections with some other papers in the literature.

This paper is organized as follows. In the next section, we give results about existence, uniqueness,

regularity and a priori bounds for equations (2.1.1) and (2.1.2), with boundary conditions (2.1.3) or

(2.1.4), and notations are given in Section 2.3. Section 2.4, is devoted to the establishment of a priori

bounds for the different truncated nonlinearities of equations studied in this paper. In Section 2.5,

we prove the results given in Section 2.2. In Bégout and Dı́az [25], localization property is studied for

equation (2.1.1). The results we give require, sometimes, the same assumptions on (a, b) ∈ C2 as in

Bégout and Dı́az [25] but with a change of notation. See Comments 2.2.7 below for the motivation

of this change. In Section 2.6 we will show the existence of solutions to equation (2.1.2) for data in

a weighted subspace. Finally, in the last section, we state the principal results obtained in this paper

and give some applications. Existence of solutions for equation (2.1.2) is used in Bégout and Dı́az [26]

while existence of solutions for equation (2.1.1) is used in Bégout and Dı́az [27].

2.2 Main results

Here, we state the main results of this paper.
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Theorem 2.2.1 (Existence). Let Ω an open subset of RN be such that |Ω| < ∞ and assume

0 < m < 1, (a, b) ∈ C2 and F ∈ L2(Ω). If Re(b) < 0 then assume further that Im(b) 6= 0 or

− 1
C2

P
< Re(b), where CP is the Poincaré’s constant in (2.4.1) below. Then there exists at least a

solution u ∈ H1
0 (Ω) of (2.1.1). In addition, Symmetry Property 2.2.2 below holds.

Symmetry Property 2.2.2. If furthermore, for any R ∈ SON (R), RΩ = Ω and if F is spherically

symmetric then we may construct a solution which is additionally spherically symmetric. For N = 1,

this means that if F is an even (respectively, an odd) function then u is also an even (respectively, an

odd) function.

Theorem 2.2.3 (A priori bound). Let Ω an open subset of RN be such that |Ω| <∞ and assume

0 < m < 1, (a, b) ∈ C2 and F ∈ L2(Ω). If Re(b) < 0 then assume further that Im(b) 6= 0 or

− 1
C2

P
< Re(b), where CP is the constant in (2.4.1) below. Let u ∈ H1

0 (Ω) be any solution to (2.1.1).

Then we have the following estimate.

‖u‖H1
0 (Ω) 6 C,

where C = C(‖F‖L2(Ω), |Ω|, |a|, |b|, N,m).

Theorem 2.2.4 (Existence). Let Ω ⊆ RN be an open subset and assume V ∈ L∞(Ω;R), 0 < m < 1,

(a, b, c) ∈ C3 is such that Im(a) 6 0, Im(b) < 0 and Im(c) 6 0. If Re(a) 6 0 then assume further that

Im(a) < 0. Then we have the following result.

1) For any F ∈ L2(Ω), there exists at least a solution u ∈ H1
0 (Ω) ∩ Lm+1(Ω) to (2.1.2).

2) If we assume furthermore that Ω is bounded with a C1 boundary then the conclusion 1) still

holds true with u ∈ H1(Ω) and the boundary condition (2.1.4) instead of u ∈ H1
0 (Ω).

If, in addition, V is spherically symmetric then Symmetry Property 2.2.2 holds.

Remark 2.2.5. Here are some comments about boundary condition.

1) If u 6∈ C(Ω) and Ω has not a C0,1 boundary, the condition u|Γ = 0 does not make sense (in

the sense of the trace) and, in this case, has to be understood as u ∈ H1
0 (Ω).

2) Assume that Ω is bounded and has a C1,1 boundary. Let u ∈ H1(Ω) be any solution to (2.1.2)

with the boundary condition (2.1.4). Then u ∈ H2(Ω) and boundary condition ∂u
∂ν |Γ = 0

makes sense in the sense of the trace γ
(
∇u.ν

)
= 0. If, in addition, u ∈ C1(Ω) then obviously

for any x ∈ Γ, ∂u∂ν (x) = 0. Indeed, since u ∈ H1(Ω), ∆u ∈ L2(Ω) and (2.1.2) makes sense

almost everywhere in Ω, we have γ
(
∂u
∂ν

)
∈ H− 1

2 (Γ) and by Green’s formula,

Re

∫
Ω

∇u(x).∇v(x)dx−
〈
γ

(
∂u

∂ν

)
, γ(v)

〉
H−

1
2 (Γ),H

1
2 (Γ)

+ Re

∫
Ω

f
(
u(x)

)
v(x)dx = Re

∫
Ω

F (x)v(x)dx, (2.2.1)

for any v ∈ H1(Ω), where fu) = a|u|−(1−m)u + bu + cV 2u. (see Lemma 4.1, Theorem 4.2

and Corollary 4.1, p.155, in Lions and Magenes [129] and (1,5,3,10) in Grisvard [93], p.62).
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This implies that 〈
γ

(
∂u

∂ν

)
, γ(v)

〉
H−

1
2 (Γ),H

1
2 (Γ)

= 0, (2.2.2)

for any v ∈ H1(Ω). Let w ∈ H 1
2 (Γ). Let v ∈ H1(Ω) be such that γ(v) = w (Theorem 1.5.1.3,

p.38, in Grisvard [93]). We then deduce from (2.2.2) that,

∀w ∈ H 1
2 (Γ),

〈
γ

(
∂u

∂ν

)
, w

〉
H−

1
2 (Γ),H

1
2 (Γ)

= 0,

and so γ
(
∂u
∂ν

)
= 0. But also u ∈ L2(Ω) and ∆u ∈ L2(Ω). It follows that u ∈ H2(Ω)

(Proposition 2.5.2.3, p.131, in Grisvard [93]). Hence the result.

Theorem 2.2.6 (A priori bound). Let Ω ⊆ RN be an open subset, let V ∈ L∞(Ω;R), let 0 < m < 1,

let (a, b, c) ∈ C3 be such that Im(a) 6 0, Im(b) < 0 and Im(c) 6 0. If Re(a) 6 0 then assume

further that Im(a) < 0. Let F ∈ L2(Ω) and let u ∈ H1(Ω) be any solution to (2.1.2) with boundary

condition (2.1.3) or (2.1.4) 1. Then we have the following estimate.

‖u‖2H1(Ω) + ‖u‖m+1
Lm+1(Ω) 6M

(
‖V ‖4L∞(Ω) + 1

)
‖F‖2L2(Ω),

where M = M(|a|, |b|, |c|).

Comments 2.2.7. In the context of the paper of Bégout and Dı́az [25], we can establish an existence

result with the homogeneous Neumann boundary condition (instead of the homogeneous Dirichlet

condition) and F ∈ L2(Ω)
(
instead of F ∈ Lm+1

m (Ω)
)
. In Bégout and Dı́az [25], we introduced the set,

Ã = C \
{
z ∈ C; Re(z) = 0 and Im(z) 6 0

}
,

and assumed that (ã, b̃) ∈ C2 satisfies,

(ã, b̃) ∈ Ã× Ã and



Re(ã)Re(̃b) > 0,

or

Re(ã)Re(̃b) < 0 and Im(̃b) >
Re(̃b)

Re(ã)
Im(ã),

(2.2.3)

with possibly b̃ = 0, and we worked with

−i∆u+ ã|u|−(1−m)u+ b̃u = F̃ .

Nevertheless, to maintain a closer notation to many applied works in the literature (see, e.g., the

introduction of Bégout and Dı́az [26]), we do not work any more with this equation but with,

−∆u+ a|u|−(1−m)u+ bu = F,

1. for which we additionally assume that Ω has a C1 boundary.
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and b 6= 0. This means that we chose, ã = ia, b̃ = ib and F̃ = iF. Then assumptions on (a, b) are

changed by the fact that for z̃ = iz,

Re(z) = Re(−iz̃) = Im(z̃), (2.2.4)

Im(z) = Im(−iz̃) = −Re(z̃). (2.2.5)

It follows that the set Ã and (2.2.3) become,

A = C \
{
z ∈ C; Re(z) 6 0 and Im(z) = 0

}
, (2.2.6)

(a, b) ∈ A× A and


Im(a)Im(b) > 0,

or

Im(a)Im(b) < 0 and Re(b) >
Im(b)

Im(a)
Re(a).

(2.2.7)

Obviously, (
(ã, b̃) ∈ Ã× Ã satisfies (2.2.3)

)
⇐⇒

(
(a, b) ∈ A× A satisfies (2.2.7)

)
.

Assumptions (2.2.7) are made to prove the existence and the localization property of solutions to

equation (2.1.1). Now, we give some results about equation (2.1.1) when (a, b) ∈ A × A satisfies

(2.2.7).

Theorem 2.2.8 (Existence). Let Ω ⊆ RN be an open subset of RN , let 0 < m < 1 and let (a, b) ∈ A2

satisfies (2.2.7).

1) For any F ∈ L2(Ω), there exists at least a solution u ∈ H1
0 (Ω) ∩ Lm+1(Ω) to

−∆u+ a|u|−(1−m)u+ bu = F, in L2(Ω) + L
m+1
m (Ω). (2.2.8)

2) If we assume furthermore that Ω is bounded with a C1 boundary then the conclusion 1) still

holds true with u ∈ H1(Ω) and the boundary condition (2.1.4) instead of u ∈ H1
0 (Ω).

In addition, Symmetry Property 2.2.2 holds.

Theorem 2.2.9 (A priori bound). Let Ω ⊆ RN be an open subset of RN , let 0 < m < 1 and let

(a, b) ∈ A2 satisfies (2.2.7). Let F ∈ L2(Ω) and let u ∈ H1(Ω) ∩ Lm+1(Ω) be any solution to (2.2.8)

with boundary condition (2.1.3) or (2.1.4)1. Then we have the following estimate.

‖u‖2H1(Ω) + ‖u‖m+1
Lm+1(Ω) 6M‖F‖

2
L2(Ω),

where M = M(|a|, |b|).

Theorem 2.2.10 (Uniqueness). Let Ω ⊆ RN be an open subset, let V ∈ L∞loc(Ω;R), let 0 < m < 1

and let (a, b, c) ∈ C3 satisfies one of the three following conditions.

1) a 6= 0, Re(a) > 0, Re(ab) > 0 and Re(ac) > 0.

2) b 6= 0, Re(b) > 0, a = kb, for some k > 0 and Re(bc) > 0.
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3) c 6= 0, Re(c) > 0, a = kc, for some k > 0 and Re(bc) > 0.

Let F ∈ L1
loc(Ω). If there exist two solutions u1, u2 ∈ H1(Ω) ∩ Lm+1(Ω) of (2.1.2) with the same

boundary condition (2.1.3) or (2.1.4)1 such that V u1, V u2 ∈ L2(Ω) then u1 = u2.

Remark 2.2.11. Here are some comments about Theorems 2.2.1, 2.2.4, 2.2.8 and 2.2.10.

1) Assume F is spherically symmetric. Since we do not know, in general, if we have uniqueness

of the solution, we are not able to show that any solution is radially symmetric.

2) In Theorem 1.5.2, uniqueness for equation

−i∆u+ ã|u|−(1−m)u+ b̃u = F̃ ,

holds if ã 6= 0, Im(ã) > 0 and Re(ãb̃) > 0. By (2.2.4)–(2.2.5), those assumptions are equi-

valent to 1) of Theorem 2.2.10 above for equation (2.1.1) (of course, c = 0). It follows that

Theorem 2.2.10 above extends Theorem 1.5.2.

3) In 2) of the above theorem, if we want to make an analogy with 1), assumption a = kb, for

some k > 0 has to be replaced with Re(ab) > 0 and Im(ab) = 0. But,(
Re(ab) > 0 and Im(ab) = 0

)
⇐⇒

(
∃k > 0/a = kb

)
.

In the same way, (
Re(ac) > and Im(ac) = 0

)
⇐⇒

(
∃k > 0/a = kc

)
.

4) In the case of real solutions (with F ≡ 0 and (a, b, c) ∈ R × R × {0}), it is well-known that

if b < 0 then it may appear multiplicity of solutions (once m ∈ (0, 1) and a > 0). For more

details, see Theorem 1 in Dı́az and Hernández [74].

Theorem 2.2.12 (Regularity). Let Ω ⊆ RN be an open subset, let V ∈ Lrloc(Ω;C), for any 1 < r <

∞, let 0 < m < 1, let (a, b) ∈ C2, let F ∈ L1
loc(Ω), let 1 < q < ∞ and let u ∈ Lqloc(Ω) be any local

solution to

−∆u+ a|u|−(1−m)u+ V u = F, in D ′(Ω). (2.2.9)

Let q 6 p <∞ and let α ∈ (0,m].

1) If F ∈ Lploc(Ω) then u ∈W 2,p
loc (Ω). If (F, V ) ∈ C0,α

loc (Ω)× C0,α
loc (Ω) then u ∈ C2,α

loc (Ω).

2) Assume further that Ω is bounded with a C1,1 boundary, F ∈ Lp(Ω), V ∈ Lr(Ω;C), for

any 1 < r < ∞, u ∈ Lq(Ω) and γ(u) = 0. Then u ∈ W 2,p(Ω) ∩ W 1,p
0 (Ω). If (F, V ) ∈

C0,α(Ω)× C0,α(Ω) then u ∈ C2,α(Ω) ∩ C0(Ω).

3) Assume further that Ω is bounded with a C1,1 boundary, F ∈ Lp(Ω), V ∈ Lr(Ω;C), for any

1 < r < ∞, u ∈ Lq(Ω) and γ
(
∂u
∂ν

)
= 0. Then u ∈ W 2,p(Ω). If (F, V ) ∈ C0,α(Ω) × C0,α(Ω)

then u ∈ C2,α(Ω) and for any x ∈ Γ, ∂u∂ν (x) = 0.

Remark 2.2.13. Assume Ω is bounded and has a C1,1 boundary. Let V ∈
⋂

1<r<∞
Lr(Ω;C), 0 <

m < 1, (a, b) ∈ C2, 1 < q 6 p < ∞, F ∈ Lp(Ω) and let u ∈ Lq(Ω) be any solution to (2.2.9). Let
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T : u −→
{
γ(u), γ

(
∂u
∂ν

)}
be the trace function defined on D(Ω). By density of D(Ω) in Dq(∆)

def
={

u ∈ Lq(Ω); ∆u ∈ Lq(Ω)
}
, T has a linear and continuous extension from Dq(∆) into W−

1
q ,q(Γ) ×

W−1− 1
q ,q(Γ) (Hörmander [107], Theorem 2 p.503 ; Lions and Magenes [129], Lemma 2.2 and Theo-

rem 2.1 p.147 ; Lions and Magenes [130], Propositions 9.1, Proposition 9.2 and Theorem 9.1 p.82 ;

Grisvard [93], p.54). Since u ∈ Lq(Ω), it follows from equation (2.2.9) and Hölder’s inequality that

u ∈ Dq(∆), so that “γ(u) = 0” and “γ
(
∂u
∂ν

)
= 0” make sense.

The main difficulty to apply Theorem 2.2.12 is to show that such a solution of (2.2.9) verifies some

boundary condition. In the following result, we give a sufficient condition.

Proposition 2.2.14 (Regularity). Let Ω be a bounded open subset of RN with a C1,1 boundary, let

V ∈ LN (Ω;C) (V ∈ L2+ε(Ω;C), for some ε > 0, if N = 2 and V ∈ L2(Ω;C) if N = 1), let 0 < m < 1,

let a ∈ C and let F ∈ L2(Ω).

1) Let u ∈ H1
0 (Ω) be any solution to (2.2.9). Then u ∈ H2(Ω) and γ(u) = 0.

2) Let u ∈ H1(Ω) be any solution to (2.2.9) and (2.1.4). Then u ∈ H2(Ω) and γ
(
∂u
∂ν

)
= 0.

Remark 2.2.15. Any solution given by Theorems 2.2.1, 2.2.4 or 2.2.8 belongs to H2
loc(Ω) (Theo-

rem 2.2.12).

2.3 Notations

We indicate here some of the notations used throughout this paper which have not been defined

yet in the introduction (Section 2.1). We write i2 = −1. We denote by z the conjugate of the complex

number z, Re(z) its real part and Im(z) its imaginary part. For 1 6 p 6 ∞, p′ is the conjugate of p

defined by 1
p + 1

p′ = 1. The symbol Ω always indicates a nonempty open subset of RN (bounded or

not) ; its closure is denoted by Ω and its boundary by Γ. For A ∈ {Ω; Ω}, the space C(A) = C0(A)

is the set of continuous functions from A to C and Ck(A) (k ∈ N) is the space of functions lying in

C(A) and having all derivatives of order lesser or equal than k belonging to C(A). For 0 < α 6 1

and k ∈ N0
def
= N ∪ {0}, Ck,αloc (Ω) =

{
u ∈ Ck(Ω);∀ω b Ω,

∑
|β|=k

Hα
ω (Dβu) < +∞

}
, where Hα

ω (u) =

sup{
(x,y)∈ω2

x 6=y

|u(x)−u(y)|
|x−y|α . The notation ω b Ω means that ω is a bounded open subset of RN and ω ⊂ Ω. In

the same way, Ck,α(Ω) =

{
u ∈ Ck(Ω);

∑
|β|=k

Hα
Ω(Dβu) < +∞

}
. The space C0(Ω) consists of functions

belonging to C(Ω) and vanishing at the boundary Γ, D(Ω) is the space of C∞ functions with compact

support and D(Ω) is the restriction to Ω of functions lying in D(RN ). The trace function defined

on D(Ω) is denoted by γ. For 1 6 p 6 ∞ and m ∈ N, the usual Lebesgue and Sobolev spaces are

respectively denoted by Lp(Ω) and Wm,p(Ω), Wm,p
0 (Ω) is the closure of D(Ω) under the Wm,p-norm,

Hm(Ω) = Wm,2(Ω) and Hm
0 (Ω) = Wm,2

0 (Ω). For a Banach space E, its topological dual is denoted by

E? and 〈 . , .〉E?,E ∈ R is the E?−E duality product. In particular, for any T ∈ Lp′(Ω) and ϕ ∈ Lp(Ω)

with 1 6 p <∞, 〈T, ϕ〉Lp′ (Ω),Lp(Ω) = Re
∫
Ω

T (x)ϕ(x)dx. We write, W−m,p
′
(Ω) = (Wm,p

0 (Ω))
?

(p <∞)

and H−m(Ω) = (Hm
0 (Ω))

?
. Unless if specified, any function belonging in a functional space

(
Wm,p(Ω),
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Ck(Ω), etc
)

is supposed to be a complex-valued function
(
Wm,p(Ω;C), Ck(Ω;C), etc

)
. We denote by

SON (R) the special orthogonal group of RN . Finally, we denote by C auxiliary positive constants,

and sometimes, for positive parameters a1, . . . , an, write C(a1, . . . , an) to indicate that the constant

C continuously depends only on a1, . . . , an (this convention also holds for constants which are not

denoted by “C”).

2.4 A priori estimates

The proofs of the existence theorems relies on a priori bounds, in order to truncate the nonlinearity

and pass to the limit. These bounds are formally obtained by multiplying the equation by u and iu,

integrate by parts and by making some linear combinations with the obtained results. Now, we recall

the well-known Poincaré’s inequality. If |Ω| <∞ then,

∀u ∈ H1
0 (Ω), ‖u‖L2(Ω) 6 CP‖∇u‖L2(Ω). (2.4.1)

where CP = CP(|Ω|, N). We will frequently use Hölder’s inequality in the following form. If |Ω| <∞
and 0 6 m 6 1 then L2(Ω) ↪→ Lm+1(Ω) and

∀u ∈ L2(Ω), ‖u‖m+1
Lm+1(Ω) 6 |Ω|

1−m
2 ‖u‖m+1

L2(Ω). (2.4.2)

Finally, we recall the well-known Young’s inequality. For any real x > 0, y > 0 and µ > 0, one has

xy 6
µ2

2
x2 +

1

2µ2
y2. (2.4.3)

Lemma 2.4.1. Let Ω an open subset of RN be such that |Ω| <∞, let ω an open subset of RN be such

that ω ⊆ Ω, let 0 6 m 6 1, let (a, b) ∈ C2, let α, β > 0 and let F ∈ L2(Ω). Let u ∈ H1
0 (Ω) satisfies∣∣∣‖∇u‖2L2(Ω) + Re(a)

(
‖u‖m+1

Lm+1(ω) + α‖u‖L1(ωc)

)
+ Re(b)

(
‖u‖2L2(ω) + β‖u‖L1(ωc)

) ∣∣∣ 6 ∫
Ω

|Fu|dx, (2.4.4)

∣∣∣Im(a)
(
‖u‖m+1

Lm+1(ω) + α‖u‖L1(ωc)

)
+ Im(b)

(
‖u‖2L2(ω) + β‖u‖L1(ωc)

)∣∣∣ 6 ∫
Ω

|Fu|dx. (2.4.5)

Here, ωc = Ω \ ω. Assume that one of the three following assertions holds.

1) Re(b) > 0. If Re(a) < 0 and |ω| < |Ω| then assume further that α‖u‖L1(ωc) 6 ‖u‖m+1
Lm+1(ωc).

2) Re(b) < 0 and Im(b) 6= 0. If |ω| < |Ω| then assume further that α‖u‖L1(ωc) 6 ‖u‖m+1
Lm+1(ωc),

F ∈ L∞(Ω) and −α|Im(a)|+ β
2 |Im(b)| > ‖F‖L∞(Ω).

3) −C−2
P < Re(b) < 0, where CP is the constant in (2.4.1), α‖u‖L1(ωc) 6 ‖u‖m+1

Lm+1(ωc) and

β‖u‖L1(ωc) 6 ‖u‖2L2(ωc).

Then we have the following estimate.

‖u‖H1
0 (Ω) 6 C, (2.4.6)

where C = C(‖F‖L2(Ω), |Ω|, |a|, |b|, N,m).
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Remark 2.4.2. Obviously, if |ω| = |Ω| then α‖u‖L1(ωc) 6 ‖u‖m+1
Lm+1(ωc) and β‖u‖L1(ωc) 6 ‖u‖2L2(ωc).

Proof of Lemma 2.4.1. By Poincaré’s inequality (2.4.1), it is sufficient to establish

‖∇u‖L2(Ω) 6 C(‖F‖L2(Ω), |Ω|, |a|, |b|, N,m). (2.4.7)

Moreover, it follows from (2.4.3) and (2.4.1) that for any µ > 0,∫
Ω

|Fu|dx 6 C2
P

2
‖F‖2L2(Ω) +

1

2
‖∇u‖2L2(Ω). (2.4.8)

Finally, it follows from (2.4.2) and (2.4.1) that if α‖u‖L1(ωc) 6 ‖u‖m+1
Lm+1(ωc) then one has,

‖u‖m+1
Lm+1(ω) + α‖u‖L1(ωc) 6 ‖u‖m+1

Lm+1(Ω) 6 C
m+1
P |Ω|

1−m
2 ‖∇u‖m+1

L2(Ω). (2.4.9)

We divide the proof in 3 steps.

Step 1. Proof of (2.4.7) with Assumption 1).

Assume hypothesis 1) holds true. If Re(a) > 0 then (2.4.7) follows from (2.4.4) and (2.4.8), while if

Re(a) < 0 we then deduce from (2.4.4), (2.4.8) and (2.4.9) that,(
‖∇u‖1−mL2(Ω) − |Re(a)|Cm+1

P |Ω|
1−m

2

)
‖∇u‖m+1

L2(Ω) 6 C
2
P‖F‖2L2(Ω).

Hence (2.4.7).

Step 2. Proof of (2.4.7) with Assumption 2).

As for Step 1, it follows from (2.4.5), (2.4.2), (2.4.3) and Hölder’s inequality that

Im(b)|
(
‖u‖2L2(ω) + β‖u‖L1(ωc)

)
6 |Im(a)||Ω|

1−m
2 ‖u‖m+1

L2(ω) + α|Im(a)|‖u‖L1(ωc)

+
1

2|Im(b)|
‖F‖2L2(ω) +

|Im(b)|
2
‖u‖2L2(ω) + ‖F‖L∞(ωc)‖u‖L1(ωc).

Recalling that when |ω| < |Ω|, −α|Im(a)|+ β
2 |Im(b)| > ‖F‖L∞(Ω), the above estimate yields(

|Im(b)|‖u‖1−mL2(ω) − 2|Im(a)||Ω|
1−m

2

)
‖u‖m+1

L2(ω) + β|Im(b)|‖u‖L1(ωc) 6
1

|Im(b)|
‖F‖2L2(ω). (2.4.10)

If |Im(b)|‖u‖1−mL2(ω) − 2|Im(a)||Ω| 1−m2 6 1 then

‖u‖L2(ω) 6 C(‖F‖L2(Ω), |Ω|, |a|, |b|,m)
not.
= C0, (2.4.11)

and it follows from (2.4.5), (2.4.2), (2.4.11) and Hölder’s inequality that,

(
β|Im(b)| − α|Im(a)|

)
‖u‖L1(ωc) 6 C(C0) + ‖F‖L∞(ωc)‖u‖L1(ωc)

6 C(C0) +

(
β

2
|Im(b)| − α|Im(a)|

)
‖u‖L1(ωc),

so that,

β‖u‖L1(ωc) 6 C(‖F‖L2(Ω), |Ω|, |a|, |b|,m)
not.
= C1. (2.4.12)
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But if |Im(b)|‖u‖1−mL2(ω) − 2|Im(a)||Ω| 1−m2 > 1 then (2.4.11) and (2.4.12) come from (2.4.10).

Finally, by (2.4.4), (2.4.8), (2.4.9), (2.4.11) and (2.4.12), one obtains

‖∇u‖2L2(Ω) 6 |Re(a)|Cm+1
P |Ω|

1−m
2 ‖∇u‖m+1

L2(Ω) + C(C0, C1) +
C2

P

2
‖F‖2L2(Ω) +

1

2
‖∇u‖2L2(Ω).

It follows that
(
‖∇u‖1−mL2(Ω) − C

)
‖∇u‖m+1

L2(Ω) 6 C + C2
P‖F‖2L2(Ω), from which we easily deduce (2.4.7).

Step 3. Proof of (2.4.7) with Assumption 3).

By Assumption 3), (2.4.1), (2.4.3) and (2.4.9)

‖∇u‖2L2(Ω) 6 C‖∇u‖
m+1
L2(Ω) +

(
|Re(b)|C2

P +
C2

P

2µ2

)
‖∇u‖2L2(Ω) +

µ2

2
‖F‖2L2(Ω),

where C = C(|Ω|, |a|, N,m). We then deduce,((
1− |Re(b)|C2

P −
C2

P

2µ2

)
‖∇u‖1−mL2(Ω) − C

)
‖∇u‖m+1

L2(Ω) 6
µ2

2
‖F‖2L2(Ω).

Since |Re(b)| < C−2
P , there exists µ0 > 0 such that C2

def.
= 1 − |Re(b)|C2

P −
C2

P

2µ2
0
> 0. For such a µ0,(

C2‖∇u‖1−mL2(Ω) − C
)
‖∇u‖m+1

L2(Ω) 6
µ2

0

2 ‖F‖
2
L2(Ω), from which (2.4.7) follows.

Corollary 2.4.3. Let (Ωn)n∈N a sequence of open subsets of RN be such that sup
n∈N
|Ωn| < ∞, let

0 < m < 1, let (a, b) ∈ C2 and let (Fn)n∈N ⊂ L∞(Ωn) be such that sup
n∈N
‖Fn‖L2(Ωn) <∞. If Re(b) < 0

then assume further that Im(b) 6= 0 or − 1
C2

P
< Re(b), where CP is the constant in (2.4.1). Let

(un` )(n,`)∈N2 ⊂ H1
0 (Ωn) be a sequence satisfying

∀n ∈ N, ∀` ∈ N, −∆un` + f`
(
un`
)

= Fn, in L2(Ωn), (2.4.13)

where for any ` ∈ N,

∀u ∈ L2(Ωn), f`(u) =


a|u|−(1−m)u+ bu, if |u| 6 `,

a`m
u

|u|
+ b`

u

|u|
, if |u| > `.

(2.4.14)

Then there exists a diagonal extraction
(
unϕ(n)

)
n∈N

of (un` )(n,`)∈N2 such that the following estimate

holds.

∀n ∈ N,
∥∥unϕ(n)

∥∥
H1

0 (Ωn)
6 C,

where C = C

(
sup
n∈N
‖Fn‖L2(Ωn), sup

n∈N
|Ωn|, |a|, |b|, N,m

)
.

Proof. Choosing un` and iun` as test functions, we get

‖∇un` ‖2L2(Ωn) + Re(a)
(
‖un` ‖m+1

Lm+1({|un` |6`})
+ `m‖un` ‖L1({|un` |>`})

)
+ Re(b)

(
‖un` ‖2L2({|un` |6`})

+ `‖un` ‖L1({|un` |>`})

)
= Re

∫
Ωn

Fnun` dx,
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Im(a)
(
‖un` ‖m+1

Lm+1({|un` |6`})
+ `m‖un` ‖L1({|un` |>`})

)
+ Im(b)

(
‖un` ‖2L2({|un` |6`})

+ `‖un` ‖L1({|un` |>`})

)
= Im

∫
Ωn

Fnun` dx,

for any (n, `) ∈ N2. We first note that,

∀(n, `) ∈ N2,

`
m‖un` ‖L1({|un` |>`}) 6 ‖u

n
` ‖
m+1
Lm+1({|un` |>`})

,

`‖un` ‖L1({|un` |>`}) 6 ‖u
n
` ‖2L2({|un` |>`})

,
(2.4.15)

For each n ∈ N, we choose ϕ(n) ∈ N large enough to have ϕ(n)1−m > 2
‖Fn‖L∞(Ωn)+|Im(a)|

|Im(b)| , when

Im(b) 6= 0 and ϕ(n) = n, when Im(b) = 0. Thus for any n ∈ N, as soon as Im(b) 6= 0, one has

‖Fn‖L∞(Ωn) < −ϕ(n)m|Im(a)|+ ϕ(n)

2
|Im(b)|. (2.4.16)

With help of (2.4.15) and (2.4.16), we may apply Lemma 2.4.1 to unϕ(n), for each n ∈ N, with

ω =
{
x ∈ Ωn;

∣∣∣unϕ(n)(x)
∣∣∣ 6 ϕ(n)

}
, α = ϕ(n)m and β = ϕ(n).

Lemma 2.4.4. Let Ω ⊆ RN be an open subset, let ω an open subset of RN be such that ω ⊆ Ω, let

m > 0 and let (a, b, c) ∈ C3 be such that Im(b) 6= 0. If Re(a) 6 0 then assume further that Im(a) 6= 0.

Let α, β,R > 0, let F ∈ L2(Ω) and let

A =


max

{
1, 1+|b|+R2|c|

|Im(b)| , |Re(a)|
|Im(a)|

}
, if Re(a) 6 0,

max
{

1, 1+|b|+R2|c|
|Im(b)|

}
, if Re(a) > 0.

If |ω| < |Ω| then assume further that F ∈ L∞(Ω) and β > 2A‖F‖L∞(Ω) + 1. Let u ∈ H1(Ω) satisfies

‖∇u‖2L2(Ω) + Re(a)
(
‖u‖m+1

Lm+1(ω) + α‖u‖L1(ωc)

)
− (|b|+R2|c|)

(
‖u‖2L2(ω) + β‖u‖L1(ωc)

)
6
∫

Ω

|Fu|dx, (2.4.17)

|Im(a)|
(
‖u‖m+1

Lm+1(ω) + α‖u‖L1(ωc)

)
+ |Im(b)|

(
‖u‖2L2(ω) + β‖u‖L1(ωc)

)
6
∫

Ω

|Fu|dx. (2.4.18)

Then there exists a positive constant M = M(|a|, |b|, |c|) such that,

‖∇u‖2L2(Ω) + ‖u‖2L2(ω) + ‖u‖m+1
Lm+1(ω) + ‖u‖L1(ωc) 6M(R4 + 1)‖F‖2L2(Ω). (2.4.19)

Proof. Let A be as in the lemma. We multiply (2.4.18) by A and sum the result to (2.4.17). This

yields,

‖∇u‖2L2(Ω) +A0

(
‖u‖m+1

Lm+1(ω) + α‖u‖L1(ωc)

)
+ ‖u‖2L2(ω) + β‖u‖L1(ωc) 6 2A

∫
Ω

|Fu|dx,

where A0 = A|Im(a)|+ Re(a). Applying Hölder’s inequality and (2.4.3), we get

‖∇u‖2L2(Ω) + ‖u‖2L2(ω) +A0‖u‖m+1
Lm+1(ω) + β‖u‖L1(ωc)

6 2A‖F‖L∞(Ω)‖u‖L1(ωc) + 2A2‖F‖2L2(Ω) +
1

2
‖u‖2L2(ω),
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from which we deduce the result if |ω| = |Ω|. Now, suppose |ω| < |Ω|. The above estimate leads to,

‖∇u‖2L2(Ω) + ‖u‖2L2(ω) +A0‖u‖m+1
Lm+1(ω) +

(
β − 2A‖F‖L∞(Ω)

)
‖u‖L1(ωc) 6 4A2‖F‖2L2(Ω),

from which we prove the lemma since β − 2A‖F‖L∞(Ω) > 1.

Lemma 2.4.5. Let (a, b) ∈ A2 satisfies (2.2.7). Then there exists δ? = δ?(|a|, |b|) ∈ (0, 1], L =

L(|a|, |b|) and M = M(|a|, |b|) satisfying the following property. If δ ∈ [0, δ?] and C0, C1, C2, C3, C4

are six nonnegative real numbers satisfying∣∣C1 + δC2 + Re(a)C3 +
(
Re(b)− δ

)
C4

∣∣ 6 C0, (2.4.20)∣∣Im(a)C3 + Im(b)C4

∣∣ 6 C0, (2.4.21)

then

0 6 C1 + LC3 + LC4 6MC0. (2.4.22)

Proof. We split the proof in 4 cases. Let γ > 0 be small enough to be chosen later. Note that when

Im(a)Im(b) > 0 then estimate (2.4.21) can be rewritten as

|Im(a)|C3 + |Im(b)|C4 6 C0. (2.4.23)

Case 1. Re(a) > 0, Re(b) > 0 and Im(a)Im(b) > 0. We add (2.4.23) with (2.4.20) and obtain,

C1 +
(
Re(a) + |Im(a)|

)
C3 +

(
Re(b)− δ? + |Im(b)|

)
C4 6 2C0.

Case 2.
(

Re(a) > 0, Re(b) < 0 and Im(a)Im(b) > 0
)

or
(

Im(a)Im(b) < 0
)
. Then,

C1 +
Re(a)Im(b)− Re(b)Im(a) + γIm(a)

Im(b)
C3 + (γ − δ?)C4 6

|Re(b)|+ |Im(b)|+ γ

|Im(b)|
C0.

where we computed (2.4.20)− Re(b)−γ
Im(b) (2.4.21).

Case 3. Re(a) < 0, Re(b) > 0 and Im(a)Im(b) > 0. By computing (2.4.20)− Re(a)−γ
Im(a) (2.4.21), we get,

C1 + γC3 +

(
Re(b)Im(a)− Re(a)Im(b) + γIm(b)

Im(a)
− δ?

)
C4 6

|Re(a)|+ |Im(a)|+ γ

|Im(a)|
C0.

Case 4. Re(a) < 0, Re(b) < 0 and Im(a)Im(b) > 0. Note that since (a, b) ∈ A2 then necessarily

Im(a)Im(b) 6= 0. Thus, we can compute (2.4.20) + max
{
|Re(a)|+γ
|Im(a)| ,

|Re(b)|+γ
|Im(b)|

}
(2.4.23) and obtain,

C1 + γC3 + (γ − δ?)C4 6

(
|Re(a)|+ |Im(a)|+ γ

|Im(a)|
+
|Re(b)|+ |Im(b)|+ γ

|Im(b)|

)
C0.

In both cases, we may choose γ > 0 small enough to have
Re(a)Im(b)− Re(b)Im(a) + γIm(a)

Im(b)
> 0, in Case 2,

Re(b)Im(a)− Re(a)Im(b) + γIm(b)

Im(a)
> 0, in Case 3.
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Then we choose 0 < δ? < min
{

1, γ, |Im(b)|+ |Re(b)|
}

such that

δ? <
Re(b)Im(a)− Re(a)Im(b) + γIm(b)

Im(a)
, in Case 3.

This ends the proof.

Corollary 2.4.6. Let Ω ⊆ RN be an open subset, let V ∈ L∞(Ω;R), let 0 < m < 1 and let (a, b, c) ∈
C3 be such that Im(a) 6 0, Im(b) < 0 and Im(c) 6 0. If Re(a) 6 0 then assume further that Im(a) < 0.

Let δ > 0. Let (Fn)n∈N ⊂ L∞(Ω)∩L2(Ω) be bounded in L2(Ω) and let (un` )(n,`)∈N2 ⊂ H1(Ω)∩Lm+1(Ω)

be a sequence satisfying

∀n ∈ N, (2.4.24)

with boundary condition (2.1.3) or (2.1.4), where for any ` ∈ N,

∀u ∈ L2(Ω), f`(u) =


a|u|−(1−m)u+ (b− δ)u+ cV 2u, if |u| 6 `,

a`m
u

|u|
+ (b− δ)` u

|u|
+ cV 2`

u

|u|
, if |u| > `.

(2.4.25)

For (2.1.4), Ω is assumed to have a C1 boundary. Then there exist M = M
(
‖V ‖L∞(Ω), |a|, |b|, |c|

)
and

a diagonal extraction
(
unϕ(n)

)
n∈N

of (un` )(n,`)∈N2 for which,

∥∥∇unϕ(n)

∥∥2

L2(Ω)
+
∥∥unϕ(n)

∥∥2

L2
({∣∣∣unϕ(n)

∣∣∣6ϕ(n)
}) +

∥∥unϕ(n)

∥∥m+1

Lm+1
({∣∣∣unϕ(n)

∣∣∣6ϕ(n)
})

+
∥∥unϕ(n)

∥∥
L1
({∣∣∣unϕ(n)

∣∣∣>ϕ(n)
}) 6M sup

n∈N
‖Fn‖2L2(Ω),

for any n ∈ N. The same is true if we replace the conditions on (a, b, c) by (a, b, c) ∈ A × A × {0}
satisfies (2.2.7) and δ 6 δ?, where δ? is given by Lemma 2.4.5. In this case, M = M(|a|, |b|).

Proof. Choosing un` and iun` as test functions, we obtain

‖∇un` ‖2L2(Ω) + Re(a)
(
‖un` ‖m+1

Lm+1({|un` |6`})
+ `m‖un` ‖L1({|un` |>`})

)
+
(
Re(b)− ‖V ‖2L∞(Ω)|Re(c)|

) (
‖un` ‖2L2({|un` |6`})

+ `‖un` ‖L1({|un` |>`})

)
6 Re

∫
Ω

Fnun` dx, (2.4.26)

Im(a)
(
‖un` ‖m+1

Lm+1({|un` |6`})
+ `m‖un` ‖L1({|un` |>`})

)
+ Im(b)

(
‖un` ‖2L2({|un` |6`})

+ `‖un` ‖L1({|un` |>`})

)
+ Im(c)

(
‖V u‖2L2({|un` |6`}))

+ `‖V 2u‖L1({|un` |>`}))

)
= Im

∫
Ω

Fnun` dx, (2.4.27)

for any (n, `) ∈ N2. If (a, b, c) ∈ A× A× {0} satisfies (2.2.7), then we obtain

‖∇un` ‖2L2(Ω) + δ‖un` ‖2L2(Ω) + Re(a)
(
‖un` ‖m+1

Lm+1({|un` |6`})
+ `m‖un` ‖L1({|un` |>`})

)
+
(
Re(b)− δ

) (
‖un` ‖2L2({|un` |6`})

+ `‖un` ‖L1({|un` |>`})

)
= Re

∫
Ω

Fnun` dx, (2.4.28)



42 Existence of weak solutions

Im(a)
(
‖un` ‖m+1

Lm+1({|un` |6`})
+ `m‖un` ‖L1({|un` |>`})

)
+ Im(b)

(
‖un` ‖2L2({|un` |6`})

+ `‖un` ‖L1({|un` |>`})

)
= Im

∫
Ω

Fnun` dx, (2.4.29)

for any (n, `) ∈ N2. For this last case, it follows from Lemma 2.4.5, Hölder’s inequality and (2.4.3)

that

‖∇un` ‖2L2(Ω) +
L

2
‖un` ‖2L2({|un` |6`})

+ L
∥∥un` ∥∥m+1

Lm+1({|un` |6`})

+
(
L`−M‖F‖L∞(Ω)

)
‖un` ‖L1({|un` |>`}) 6

M2

2L
‖F‖2L2(Ω).

Then the result follows by choosing for each n ∈ N, ϕ(n) ∈ N large enough to have Lϕ(n) −
M‖F‖L∞(Ω) > 1. Now we turn out to the case (2.4.26)–(2.4.27). Let M and A be given by Lemma 2.4.4

with R = ‖V ‖L∞(Ω). For each n ∈ N, let ϕ(n) ∈ N be large enough to have ϕ(n) > 2A‖Fn‖L∞(Ω) + 1,

if |ω| < |Ω| and ϕ(n) = n, if |ω| = |Ω|. For each n ∈ N, with help of (2.4.26) and (2.4.27), we

may apply Lemma 2.4.4 to unϕ(n) with ω =
{
x ∈ Ω;

∣∣∣unϕ(n)(x)
∣∣∣ 6 ϕ(n)

}
, α = ϕ(n)m, β = ϕ(n) and

R = ‖V ‖L∞(Ω). Hence the result.

2.5 Proofs of the main results

Proof of Theorem 2.2.12. Property 1) follows from Proposition 1.4.5 while Property 2) comes

from Remark 1.4.7. It remains to establish Property 3). Assume first that F ∈ Lp(Ω) and V ∈⋂
1<r<∞

Lr(Ω). It follows from the equation that for any ε ∈ (0, q − 1), ∆u ∈ Lq−ε(Ω). We now

recall an elliptic regularity result. If for some 1 < s < ∞, u ∈ Ls(Ω) satisfies ∆u ∈ Ls(Ω) and

γ(∇u.ν) = 0 then u ∈W 2,s(Ω) (Proposition 2.5.2.3, p.131, in Grisvard [93]). Since for any ε ∈ (0, q−1),

u,∆u ∈ Lq−ε(Ω) and γ(∇u.ν) = 0 (by assumption), by following the bootstrap method of the proof

p.21–22 of Property 1) of Proposition 1.4.5, we obtain the result. Indeed, therein, it is sufficient to

apply the global regularity result in Grisvard [93] (Proposition 2.5.2.3, p.131) in place of the local

regularity result in Cazenave [58] (Proposition 4.1.2, p.101-102). Now, you turn out to the Hölder

regularity. Assume F ∈ C0,α(Ω) and V ∈ C0,α(Ω). By global smoothness property in W 2,p proved

above, we know that u ∈ W 2,N+1(Ω) and γ(∇u.ν) = 0 in LN+1(Γ). It follows from the Sobolev’s

embedding, W 2,N+1(Ω) ↪→ C1, 1
N+1 (Ω) ↪→ C0,1(Ω), that for any x ∈ Γ, ∂u∂ν (x) = 0 and u ∈ C0,1(Ω). A

straightforward calculation yields,

∀(x, y) ∈ Ω
2
,
∣∣∣|u(x)|−(1−m)u(x)− |u(y)|−(1−m)u(y)

∣∣∣ 6 5|u(x)− u(y)|m 6 5|x− y|m.

Setting, g = F − (a|u|−(1−m)u + (b − 1)u + cV u), we deduce that g ∈ C0,α(Ω). Let v ∈ C2,α(Ω) be

the unique solution to {
−∆v + v = g, in Ω,
∂v
∂ν = 0, on Γ,

(see, for instance, Theorem 3.2 p.137 in Ladyzhenskaya and Ural’tseva [125]). It follows that u and

v are two H1-solutions of the above equations and since uniqueness holds in H1(Ω) (Lax-Milgram’s
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Theorem), we deduce that u = v. Hence u ∈ C2,α(Ω). This concludes the proof 2.

Proof of Proposition 2.2.14. We first establish Property 1). Since Ω has C0,1 boundary and

u ∈ H1
0 (Ω), it follows that γ(u) = 0. Moreover, Sobolev’s embedding and equation (2.2.9) imply

that ∆u ∈ L2(Ω). We then obtain that u ∈ H2(Ω) (Grisvard [93], Corollary 2.5.2.2, p.131). Hence

Property 1). We turn out to Property 2). It follows from equation (2.2.9) that ∆u ∈ L2(Ω), so that

(2.2.9) makes sense a.e. in Ω. Then Property 2) comes from the arguments of 2) of Remark 2.2.5.

Lemma 2.5.1. Let O ⊂ RN be a bounded open subset, let V ∈ L∞(Ω;C), let 0 < m < 1, let

(a, b, c) ∈ C3 and let F ∈ L2(O). Let δ ∈ [0, 1]. Then for any ` ∈ N, there exist a solution u1
` ∈ H1

0 (O)

to

−∆u` + δu` + f`(u`) = F, in L2(O), (2.5.1)

with boundary condition (2.1.3) and a solution u2
` ∈ H1(O) to (2.5.1) with boundary condition (2.1.4)

(in this case, O is assumed to have a C1 boundary and δ > 0), where

∀u ∈ L2(Ω), f`(u) =


a|u|−(1−m)u+ (b− δ)u+ cV 2u, if |u| 6 `,

a`m
u

|u|
+ (b− δ)` u

|u|
+ cV 2`

u

|u|
, if |u| > `.

(2.5.2)

If, in addition, V is spherically symmetric then Symmetry Property 2.2.2 holds.

Proof. We proceed with the proof in two steps. Let H = H1
0 (O), in the homogeneous Dirichlet case,

and H = H1(O), in the homogeneous Neumann case. Let δ ∈ [0, 1]
(
with additionally δ > 0 and Γ of

class C1 if H = H1(O)
)
. Step 1 below being obvious, we omit the proof.

Step 1. ∀G ∈ L2(O), ∃!u ∈ H s.t.−∆u+δu = G.Moreover, ∃α > 0 s.t. ∀G ∈ L2(O),
∥∥(−∆ + δI)−1G

∥∥
H1(O)

6

α‖G‖L2(O). Finally, Symmetry Property 2.2.2 holds.

Step 2. Conclusion.

For each ` ∈ N, we define g` = −f`+F ∈ C
(
L2(O);L2(O)

)
. With help of the continuous and compact

embedding i : H ↪→ L2(O) and Step 1, we may define a continuous and compact sequence of mappings

(T`)`∈N of H as follows. For any ` ∈ N, set

T` : H
i
↪→ L2(O)

g`−→ L2(O)
(−∆+δI)−1

−−−−−−−→ H

u 7−→ i(u) = u 7−→ g`(u) 7−→ (−∆ + δu)−1(g`)(u)

Set ρ = 2α(|a|+ |b|+ |c|+ 1)
((
‖V ‖2L∞(Ω) + 2

)
`|O| 12 + ‖F‖L2(O)

)
. Let u ∈ H. It follows that,

‖T`(u)‖H1(O) =
∥∥(−∆ + δI)−1(g`)(u)

∥∥
H1(O)

6 α‖g`(u)‖L2(O) 6 ρ.

Existence comes from the Schauder’s fixed point Theorem applied to T`. The Symmetry Property 2.2.2

is obtained by working in Hrad in place of H
(
and in Heven and Hodd for N = 1

)
.

2. More directly, we could have said that since u ∈W 2,N+1(Ω), γ(∇u.ν) = 0 and ∆u ∈ C0,α(Ω) (by the estimate of
the nonlinearity) then by Theorem 6.3.2.1, p.287, in Grisvard [93], u ∈ C2,α(Ω). But this theorem requires Ω to have a
C2,1 boundary.
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Proof of Theorem 2.2.1. Let for any u ∈ L2(Ω), f(u) = a|u|−(1−m)u + bu. Set Ωn = Ω ∩ B(0, n).

Let (Gn)n∈N ⊂ D(Ω) be such that Gn
L2(Ω)−−−−→
n→∞

F. Let
(
un`
)

(n,`)∈N2 ⊂ H1
0 (Ωn) a sequence of solutions

of (2.5.1) be given by Lemma 2.5.1 with O = Ωn, c = δ = 0 and Fn = Gn|Ωn . We define ũn` ∈
H1

0 (Ω) by extending un by 0 in Ω ∩ Ωc
n. We also denote by f̃` the extension by 0 of f` in Ω ∩ Ωc

n.

By Corollary 2.4.3, there exists a diagonal extraction
(
ũnϕ(n)

)
n∈N

of
(
ũn`
)

(n,`)∈N2 which is bounded

in H1
0 (Ω). By reflexivity of H1

0 (Ω), Rellich-Kondrachov’s Theorem and converse of the dominated

convergence theorem, there exist u ∈ H1
0 (Ω) and g ∈ L2

loc(Ω;R) such that, up to a subsequence that

we still denote by
(
ũnϕ(n)

)
n∈N

, ũnϕ(n)

L2
loc(Ω)−−−−−→
n→∞

u, ũnϕ(n)

a.e. in Ω−−−−−→
n→∞

u and
∣∣∣ũnϕ(n)

∣∣∣ 6 g, a.e. in Ω, By these

two last estimates, f̃ϕ(n)

(
ũnϕ(n)

)
a.e. in Ω−−−−−→
n→∞

f(u) and
∣∣∣f̃ϕ(n)

(
ũnϕ(n)

)∣∣∣ 6 C(gm + g) ∈ L2
loc(Ω), a.e. in Ω.

From the dominated convergence Theorem, f̃ϕ(n)

(
ũnϕ(n)

)
L2

loc(Ω)−−−−−→
n→∞

f(u). Let ϕ ∈ D(Ω). Let n? ∈ N be

large enough to have suppϕ ⊂ Ωn? . We have by (2.5.1),

∀n > n?,
〈
−i∆unϕ(n) + fϕ(n)

(
unϕ(n)

)
− Fn, ϕ|Ωn

〉
D′(Ωn),D(Ωn)

= 0.

The above convergencies lead to,

〈−∆u+ f(u)− F,ϕ〉D′(Ω),D(Ω)

= 〈−u,∆ϕ〉D′(Ω),D(Ω) + 〈f(u)− F,ϕ〉D′(Ω),D(Ω)

= lim
n→∞

〈
−ũnϕ(n),∆ϕ

〉
D′(Ω),D(Ω)

+ lim
n→∞

〈
f̃ϕ(n)

(
ũnϕ(n)

)
−Gn, ϕ

〉
D′(Ω),D(Ω)

= lim
n→∞

〈
−∆unϕ(n) + fϕ(n)

(
unϕ(n)

)
− Fn, ϕ|Ωn

〉
D′(Ωn),D(Ωn)

= 0.

By density, we then obtain that u ∈ H1
0 (Ω) is a solution to −∆u + f(u) = F, in L2(Ω). Finally, if

F is spherically symmetric then u (obtained as a limit of solutions given by Lemma 2.5.1) is also

spherically symmetric. For N = 1, this includes the case where F is an even function.

Proof of Theorems 2.2.3 and 2.2.9. Choosing u and iu as test functions, we obtain

‖∇u‖2L2(Ω) + Re(a)‖u‖m+1
Lm+1(Ω) + Re(b)‖u‖2L2(Ω) = Re

∫
Ω

Fudx,

Im(a)‖u‖m+1
Lm+1(Ω) + Im(b)‖u‖2L2(Ω) = Im

∫
Ω

Fudx.

Theorem 2.2.3 follows immediately from Lemma 2.4.1 applied with ω = Ω, while Theorem 2.2.9 is a

consequence of Lemma 2.4.5 applied with δ = 0 and (2.4.3). This ends the proof.

Proof of Theorem 2.2.6. Choosing u and iu as test functions, we obtain

‖∇u‖2L2(Ω) + Re(a)‖u‖m+1
Lm+1(Ω) +

(
Re(b)− |Re(c)|‖V ‖2L∞(Ω)

)
‖u‖2L2(Ω) 6

∫
Ω

|Fu|dx,

|Im(a)|‖u‖m+1
Lm+1(Ω) + |Im(b)|‖u‖2L2(Ω) + |Im(c)|‖V u‖2L2(Ω) 6

∫
Ω

|Fu|dx.

The theorem follows Lemma 2.4.4 applied with ω = Ω, R = ‖V ‖L∞(Ω) and α = β = 0.
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Proof of Theorems 2.2.4 and 2.2.8. We first assume that Ω is bounded. Let H = H1
0 (Ω), in the

homogeneous Dirichlet case, and H = H1(Ω), in the homogeneous Neumann case. Let δ? be given by

Lemma 2.4.5 and let for any u ∈ L2(Ω), f(u) = a|u|−(1−m)u+bu+cV 2u (with c = 0 in the case of Theo-

rem 2.2.8). Let (Fn)n∈N ⊂ D(Ω) be such that Fn
L2(Ω)−−−−→
n→∞

F. Let
(
un`
)

(n,`)∈N2 ⊂ H a sequence of solu-

tions of (2.5.1) be given by Lemma 2.5.1 withO = Ω, δ = 1 for Theorem 2.2.4, δ = δ? for Theorem 2.2.8

and such Fn. By Corollary 2.4.6, there exists a diagonal extraction
(
unϕ(n)

)
n∈N

of
(
un`
)

(n,`)∈N2 which

is bounded in W 1,1(Ω) ∩ Ḣ1(Ω). Let 1 < p < 2 be such that W 1,1(Ω) ↪→ Lp(Ω). Then
(
unϕ(n)

)
n∈N

is bounded in W 1,p(Ω) and there exist u ∈ W 1,p(Ω) ∩ Ḣ1(Ω) and g ∈ Lp(Ω;R) such that, up to

a subsequence that we still denote by
(
unϕ(n)

)
n∈N

, unϕ(n)

Lp(Ω)−−−−→
n→∞

u, ∇unϕ(n) ⇀ ∇u in
(
L2
w(Ω)

)N
, as

n −→∞, unϕ(n)

a.e. in Ω−−−−−→
n→∞

u,
∣∣∣unϕ(n)

∣∣∣ 6 g, a.e. in Ω and

(
unϕ(n)1

{∣∣∣unϕ(n)

∣∣∣6ϕ(n)
})

n∈N
is bounded in L2(Ω),

where the last estimate comes from Corollary 2.4.6. By these three last estimates and Fatou’s Lemma,

u ∈ L2(Ω), fϕ(n)

(
unϕ(n)

)
a.e. in Ω−−−−−→
n→∞

f(u) − δu and
∣∣∣fϕ(n)

(
unϕ(n)

)∣∣∣ 6 C(gm + g) ∈ Lp(Ω), a.e. in Ω. It

follows that u ∈ H1(Ω). From the dominated convergence Theorem, fϕ(n)

(
unϕ(n)

)
Lp(Ω)−−−−→
n→∞

f(u) − δu.
Consider the Dirichlet boundary condition. We recall a Gagliardo-Nirenberg’s inequality.

∀w ∈ H1
0 (Ω), ‖w‖N+2

L2(Ω) 6 C‖w‖
2
L1(Ω)‖∇w‖

N
L2(Ω),

where C = C(N). In particular, C does not depend on Ω. Since
(
unϕ(n)

)
n∈N
⊂ H1

0 (Ω) is bounded

in W 1,1(Ω) ∩ Ḣ1(Ω), it follow from the above Gagliardo-Nirenberg’s inequality that
(
unϕ(n)

)
n∈N

is

bounded in H1
0 (Ω), so that u ∈ H1

0 (Ω). Now, we show that u ∈ H is a solution. Let m0 ∈ N be large

enough to have Hm0(Ω) ↪→ Lp
′
(Ω). Let v ∈ D(Ω), if H = H1

0 (Ω) and let v ∈ Hm0(Ω), if H = H1(Ω).

By (2.5.1), we have for any n ∈ N,〈
∇unϕ(n),∇v

〉
L2(Ω),L2(Ω)

+
〈
δunϕ(n) + fϕ(n)

(
unϕ(n)

)
, v
〉
Lp(Ω),Lp′ (Ω)

− 〈Fn, v〉L2(Ω),L2(Ω) = 0. (2.5.3)

Above convergencies lead to allow us to pass in the limit in (2.5.3) and by density of D(Ω) in H1
0 (Ω)

and density of Hm0(Ω) in H1(Ω) (see, for instance, Corollary 9.8, p.277, in Brezis [44]), it follows that

∀v ∈ H, 〈∇u,∇v〉L2(Ω),L2(Ω) + 〈f(u), v〉L2(Ω),L2(Ω) = 〈F, v〉L2(Ω),L2(Ω).

This finishes the proof of the existence for Ω bounded. Approximating Ω by an exhaustive sequence

of bounded sets (Ω ∩B(0, n))n∈N , the case Ω unbounded can be treated in the same way as in the

proof of Theorem 2.2.1. The symmetry property also follows as in the proof of Theorem 2.2.1.

Proof of Theorem 2.2.10. Let u1, u2 ∈ H1(Ω) ∩ Lm+1(Ω) be two solutions of (2.1.2) such that

V u1, V u2 ∈ L2(Ω). We set u = u1 − u2, f(v) = |v|−(1−m)v and g(v) = af(v) + bv + cV 2v. From

Lemma 1.9.1, there exists a positive constant C such that,

C

∫
ω

|u1(x)− u2(x)|2

(|u1(x)|+ |u2(x)|)1−m dx 6 〈f(u1)− f(u2), u1 − u2〉
L
m+1
m (Ω),Lm+1(Ω)

, (2.5.4)
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where ω =
{
x ∈ Ω; |u1(x)|+ |u2(x)| > 0

}
. We have that u satisfies −∆u+g(u1)−g(u2) = 0. Choosing

v = au as a test function, we get

Re(a)‖∇u‖2L2 + |a|2〈f(u1)− f(u2), u1 − u2〉
L
m+1
m ,Lm+1

+ Re(ab)‖u‖2L2 + Re (ac) ‖V u‖2L2 = 0.

It follows from the above estimate and (2.5.4) that,

Re(a)‖∇u‖2L2 + C|a|2
∫
ω

|u1(x)− u2(x)|2

(|u1(x)|+ |u2(x)|)1−m dx+ Re(ab)‖u‖2L2 + Re (ac) ‖V u‖2L2 6 0,

which yields Property 1). Properties 2) and 3) follow in the same way.

Remark 2.5.2. It is not hard to adapt the above proof to find other criteria of uniqueness.

2.6 On the existence of solutions of the Dirichlet problem for
data beyond L2(Ω)

In this section we shall indicate how some of the precedent results of this paper can be extended

to some data F which are not in L2(Ω) but in the more general Hilbert space L2(Ω; δα), where

δ(x) = dist(x,Γ) and α ∈ (0, 1).

In order to justify the associated notion of solution, we start by assuming that a function u solves

equation

−∆u+ f(u) = F, in Ω, (2.6.1)

with the Dirichlet boundary condition (2.1.3), u|Γ = 0, and we multiply (formally) by v(x)δ(x), with

v ∈ H1
0 (Ω; δα)

(
the weighted Sobolev space associated to the weight δα(x)

)
, we integrate by parts (by

Green’s formula) and we take the real part. Then we get,

Re

∫
Ω

∇u.∇v δαdx+ Re

∫
Ω

v∇u.∇δαdx+ Re

∫
Ω

f(u) v δαdx = Re

∫
Ω

F v δαdx. (2.6.2)

To give a meaning to the condition (2.6.2), we must assume that

F ∈ L2(Ω; δα), (2.6.3)

where ‖F‖2L2(Ω;δα) =

∫
Ω

|F (x)|2δα(x)dx, and to include in the definition of solution the conditions

u ∈ H1
0 (Ω; δα) and f(u) ∈ L2(Ω; δα). (2.6.4)

The justification of the second term in (2.6.2) is far to be trivial and requires the use of a version of

the following Hardy type inequality,∫
Ω

|v(x)|2δ−(2−α)(x)dx 6 C
∫
Ω

|∇v(x)|2δα(x)dx, (2.6.5)
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which holds for some constant C independent of v, for any v ∈ H1
0 (Ω; δα) once we assume that

Ω is a bounded open subset of RN with Lipschitz boundary (2.6.6)

(see, e.g., Kufner [121] and also Drábek, Kufner and Nicolosi [79], Kufner and Opic [122], Kufner and

Sänding [123] and Nečas [141]). Notice that under (2.6.6), we know that δ ∈W 1,∞(Ω) and so∣∣∣∣∣∣
∫
Ω

v∇u.∇δαdx

∣∣∣∣∣∣ =

∣∣∣∣∣∣
∫
Ω

(
δ
α
2∇u

)
.

(
v

δ
α
2
∇δα

)
dx

∣∣∣∣∣∣ 6 α‖∇δ‖L∞(Ω)‖∇u‖L2(Ω;δα)‖v‖L2(Ω;δ−(2−α)) <∞,

by Cauchy-Schwarz’s inequality and (2.6.5).

Definition 2.6.1. Assumed (2.6.3), (2.6.6) and α ∈ (0, 1), we say that u ∈ H1
0 (Ω; δα) is a solution

of (2.6.1) and (2.1.3) in H1
0 (Ω; δα) if (2.6.4) holds and the integral condition (2.6.2) holds for any

v ∈ H1
0 (Ω; δα).

Remark 2.6.2. Notice that H1
0 (Ω; δα) ↪→ L2(Ω) (by the Hardy’s inequality (2.6.5) and (2.6.6)).

Moreover, since

δ−sα ∈ L1(Ω), for any s ∈ (0, 1), (2.6.7)

we know (Drábek, Kufner and Nicolosi [79], p.30) that

H1
0 (Ω; δα) ↪→W 1,ps(Ω), with ps =

2s

s+ 1
.

Remark 2.6.3. Obviously, there are many functions F such that F ∈ L2(Ω; δα)\L2(Ω) (for instance,

if F (x) ∼ 1
δ(x)β

, for some β > 0, then F ∈ L2(Ω; δα), if β < α+1
2 but F 6∈ L2(Ω), once β > 1

2 . This

fact is crucial when the nonlinear term f(u) involves a singular term of the form as in (2.1.2) but with

m ∈ (−1, 0) (see Dı́az, Hernández and Rakotoson [75] for the real case).

Remark 2.6.4. We point out that in most of the papers dealing with weighted solutions of semili-

near equations, the notion of solution is not justified in this way but merely by replacing the Laplace

operator by a bilinear form which becomes coercive on the space H1
0 (Ω; δα). The second integral

term in (2.6.2) is not mentioned
(
since, formally, the multiplication of the equation is merely by

v ∈ H1
0 (Ω; δα)

)
but then it is quite complicated to justify that such alternative solutions satisfy the

pde equation (2.1.2) when they are assumed, additionally, that ∆u ∈ L2
loc(Ω). We also mention now

(although it is a completely different approach) the notion of L1(Ω; δ)-very weak solution developed

recently for many scalars semilinear equations : see, e.g., Brezis, Cazenave, Martel and Ramiandri-

soa [46], Dı́az and Rakotoson [77] and the references therein).

By using exactly the same a priori estimates, but now adapted to the space H1
0 (Ω; δα), we get the

following result.

Theorem 2.6.5. Let Ω be a bounded open subset with Lipschitz boundary, V ∈ L∞(Ω;R), 0 < α < 1,

0 < m < 1, (a, b, c) ∈ C3 as in Theorem 2.2.4 and let F ∈ L2(Ω; δα). Then we have the following

result.
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1) There exists at least a solution u ∈ H1
0 (Ω; δα) to (2.1.2). Furthermore, any such solution

belongs to H2
loc(Ω).

2) If, in addition, we assume the conditions of Theorem 2.2.10, this solution is unique in the

class of H1
0 (Ω; δα)-solutions.

Remark 2.6.6. In the proof of the a priori estimates, it is useful to replace the weighted function

δ by a more smooth function having the same behavior near Γ. This is the case, for instance of the

first eigenfunction ϕ1 of the Laplace operator,{
−∆ϕ1 = λ1ϕ1, in Ω,

ϕ1|Γ = 0, on Γ.

It is well-known that ϕ1 ∈ W 2,∞(Ω) ∩W 1,∞
0 (Ω) and that C1δ(x) 6 ϕ1(x) 6 C2δ(x), for any x ∈ Ω,

for some positive constants C1 and C2, independent of x. Now, with this new weighted function, it is

easy to see that the second term in (2.6.2) does not play any important role since, for instance, when

taking v = u as test function, we get that

Re

∫
Ω

u∇u.∇ϕα1 dx =
1

2

∫
Ω

∇|u|2.∇ϕα1 dx = −1

2

∫
Ω

|u|2∆ϕα1 dx

=
αλ1

2

∫
Ω

|u|2ϕα1 dx+
α(1− α)

2

∫
Ω

|u|2ϕ−(2−α)
1 |∇ϕ1|2dx > 0.

2.7 Conclusions

In this section, we summarize the results obtained in Section 2.2 and give some applications.

The next result comes from Theorems 2.2.1, 2.2.3 and 2.2.10.

Theorem 2.7.1. Let Ω an open subset of RN be such that |Ω| < ∞ and assume 0 < m < 1,

(a, b) ∈ C2 and F ∈ L2(Ω). Assume that Re(b) > − 1
C2

P
or Im(b) 6= 0, where CP is the Poincaré’s

constant in (2.4.1). Then there exists at least a solution u ∈ H1
0 (Ω) to

−∆u+ a|u|−(1−m)u+ bu = F, in L2(Ω). (2.7.1)

Furthermore, ‖u‖H1
0 (Ω) 6 C(‖F‖L2(Ω), |Ω|, |a|, |b|, N,m). Finally, if −→a .

−→
b > 0 then the solution is

unique.

In the above theorem, the complex numbers a and b are seen as vectors −→a and
−→
b of R2. Consequently,

−→a .
−→
b denotes the scalar product between these vectors of R2.

The novelty of Theorem 2.7.1 is about the range of (a, b) : we obtain existence of solution with, for

instance, (a, b) ∈ R− × (−ε, 0), with ε > 0 small enough, or (a, b) = (−1 + i,−1− i). Recall that, up

to today, existence was an open question when (a, b) ∈ R−×R− or [a, b]∩R−× i{0} 6= ∅ (Bégout and

Dı́az [25]). Knowing that for such (a, b) equation (2.7.1) admits solutions, it would be interesting if,

whether or not, solutions with compact support exist, as in Bégout and Dı́az [25].

By Theorems 2.2.4, 2.2.6 and 2.2.10, we get the following result.
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Theorem 2.7.2. Let Ω ⊆ RN be a bounded open subset, let 0 < m < 1 and let (a, b, c) ∈ C3 be

such that Im(a) < 0, Im(b) < 0 and Im(c) 6 0. For any F ∈ L2(Ω), there exists at least a solution

u ∈ H1(Ω) to

−∆u+ a|u|−(1−m)u+ bu+ c|x|2u = F, in L2(Ω), (2.7.2)

with boundary condition (2.1.3) or (2.1.4)1. Furthermore,

‖u‖H1(Ω) 6 C(|a|, |b|, |c|)(R2 + 1)‖F‖L2(Ω),

where B(0, R) ⊃ Ω. Finally, if −→a .
−→
b > 0 and −→a .−→c > 0 then the solution is unique.

Since, now, we are able to show that equation (2.7.2) admits solutions, we can study the propagation

support phenomena. Indeed, we can show that, under some suitable conditions, there exists a self-

similar solution u to

iut + ∆u = a|u|−(1−m)u+ f(t, x), in RN ,

such that for any t > 0, suppu(t) is compact (see Bégout and Dı́az [27]).

Now, we turn out to equation (2.7.1) by extending some results found in Bégout and Dı́az [25]. These

results are due to Theorems 2.2.8, 2.2.9 and 2.2.10.

Theorem 2.7.3. Let Ω ⊆ RN be an open subset of RN , let 0 < m < 1 and let (a, b) ∈ A2 satis-

fies (2.2.7). For any F ∈ L2(Ω), there exists at least a solution u ∈ H1(Ω) ∩ Lm+1(Ω) to

−∆u+ a|u|−(1−m)u+ bu = F, in L2(Ω) + L
m+1
m (Ω), (2.7.3)

with boundary condition (2.1.3) or (2.1.4)1 (in this last case, Ω is assumed bounded). Furthermore,

‖u‖2H1(Ω) + ‖u‖m+1
Lm+1(Ω) 6M(|a|, |b|)‖F‖2L2(Ω).

Finally, if −→a .
−→
b > 0 then the solution is unique.

When |Ω| <∞, Theorem 2.7.3 is an improvement of Theorem 1.4.1, since we may choose F ∈ L2(Ω),

instead of F ∈ Lm+1
m (Ω) and that L

m+1
m (Ω) ( L2(Ω). In addition, this existence result extends to the

homogeneous Neumann boundary condition. In this context, we may show three kinds of new results,

under assumptions of Theorem 2.7.3.

• If Ω = RN and if F ∈ L2(RN ) has compact support then equation (2.7.3) admits solutions and

any solution is compactly supported.

• If ‖F‖L2(Ω) is small enough and if F has compact support then equation (2.7.3) admits solutions

with the homogeneous Dirichlet boundary condition and any solution is compactly supported in Ω.

• If ‖F‖L2(Ω) is small enough, if −→a .
−→
b > 0 and if F has compact support then equation (2.7.3)

admits a unique solution with the homogeneous Neumann boundary condition and, in fact, this

solution is compactly supported in Ω.

For more details, see Bégout and Dı́az [27]. Finally, in Section 2.6 we extended our techniques of

proofs to the case in which the datum F is very singular near the boundary of Ω but still is in some

weighted Lebesgue space (see Theorem 2.6.5).
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Chapitre 3

A sharper energy method for the
localization of the support to some
stationary Schrödinger equations
with a singular nonlinearity

with Jesús Ildefonso D́ıaz∗

Abstract

We prove the compactness of the support of the solution of some stationary Schrödinger equations with a

singular nonlinear order term. We present here a sharper version of some energy methods previously used in

the literature and, in particular, by the authors.

3.1 Introduction

Since the beginnings of the eighties of the last century, it is already well-known that the absence of the

maximum principle for the case of systems and higher order nonlinear partial differential equations

was one of the main motivations of the introduction of suitable energy methods allowing to conclude

the compactness of the support of their solutions (see, e.g., the presentation made in the monograph

Antontsev, Dı́az and Shmarev [11]).

The application of such type of methods to the case of nonlinear Schrödinger equations with a singular

zero order term required some important improvements of the method. That was the main object of

the previous author’s papers of Bégout and Dı́az [24, 25].

The main goal of this new paper is to present a sharper version of the mentioned method potentially

able to be applied to many other problems related to this type of Schrödinger equations such as

the study of self-similar solutions, case of Neumann boundary conditions, presence of nonlocal terms
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(such as, for instance, in Hartree-Fock theory : Cazenave [57]), etc., which can not be treated with the

mere technique presented in Bégout and Dı́az [24, 25]. As a matter of fact, the concrete application of

this sharper energy method to the concrete case of self-similar solutions of the evolution Schrödinger

problem requires many additional arguments justifying the special structure of those solutions, reason

why we decided to present it in a separated work (Bégout and Dı́az [26]). We send the reader to

Bégout and Dı́az [26] for a long description of the important role of the compactness of the solution

in this context and for many other references related to this qualitative property of the solution.

This paper is organized as follows. Below, we give some notations which will be used throughout

this paper. In Section 3.2, we give the precise “localization” estimates which imply a solution of a

partial differential equation to be compactly supported
(

see Theorems 3.2.1 and 3.2.2, and especially

estimates (3.2.1) and (3.2.3)
)

. In Section 3.3, we give a tool which permits, from a solution of some

partial differential equation, to establish the “localization” estimate (Theorem 3.3.1). The results of

these two sections are proved in Section 3.4. In Bégout and Dı́az [25], localization property is studied

for the complex-valued equation

−∆u+ a|u|−(1−m)u+ bu = F, in Ω. (3.1.1)

We also study this property here, but with a change of notation (see Remark 3.5.1 below for the

motivation of this change). Section 3.5 is devoted to the study of the localization property of the

solutions of equation (3.1.1), in the same spirit as Bégout and Dı́az [25], but with the homogeneous

Neumann boundary condition instead of the homogeneous Dirichlet boundary condition (compare

Theorem 3.5.6 below with Theorem 1.3.5). Finally, at the end of the paper, we treat equation (3.1.1)

with the homogeneous Dirichlet boundary condition (Remark 3.5.8). We state the same results as in

Bégout and Dı́az [25], but with now the weaker assumption F ∈ L2(Ω).

Before ending this section, we shall indicate here some of the notations used throughout. We write

i2 = −1. We denote by z the conjugate of the complex number z. For 1 6 p 6∞, p′ is the conjugate

of p defined by 1
p + 1

p′ = 1. For j, k ∈ Z with j < k, Jj, kK = [j, k] ∩ Z. We denote by Γ the

boundary of a nonempty subset Ω ⊆ RN and Ωc = RN \ Ω its complement. Unless if specified,

any function lying in a functional space
(
Lp(Ω), Wm,p(Ω), etc

)
is supposed to be a complex-valued

function
(
Lp(Ω;C), Wm,p(Ω;C), etc

)
. For a Banach space E, we denote by E? its topological dual

and by 〈 . , . 〉E?,E ∈ R the E? −E duality product. In particular, for any T ∈ Lp′(Ω) and ϕ ∈ Lp(Ω)

with 1 6 p < ∞, 〈T, ϕ〉Lp′ (Ω),Lp(Ω) = Re
∫
Ω

T (x)ϕ(x)dx. As usual, we denote by C auxiliary positive

constants, and sometimes, for positive parameters a1, . . . , an, write C(a1, . . . , an) to indicate that the

constant C continuously depends only on a1, . . . , an (this convention also holds for constants which

are not denoted by “C”).

3.2 From suitable local inequalities to the vanishing of the
involved complex functions on some small ball

In this section, we establish some results improving the presentation of some energy methods of

Antontsev, Dı́az and Shmarev [11] which allow to prove localization properties of solutions of a
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general class of nonlinear partial differential equations (Section 3.5, Remark 3.5.8 below and Bégout

and Dı́az [26]). In contrast to the presentation in Bégout and Dı́az [25] (see e.g. Theorem 1.1.1), the

following statement does not need any information on the second order equation but it will merely

use a suitable balance between the total local energy (diffusion + absorption local energies) and the

local boundary flux. This will be crucial for the applicability of the method to cases for which the

techniques of Bégout and Dı́az [24, 25] can not be applied.

Theorem 3.2.1. Assume 0 < m < 1 and let N ∈ N. Then there exists C = C(N,m) satisfying the

following property: let x0 ∈ RN , ρ0 > 0 and u ∈ H1
loc

(
B(x0, ρ0)

)
. If there exist L > 0 and M > 0 such

that for almost every ρ ∈ (0, ρ0),

‖∇u‖2L2(B(x0,ρ))
+ L‖u‖m+1

Lm+1(B(x0,ρ))
6M

∣∣∣∣∣
∫
S(x0,ρ)

u∇u. x− x0

|x− x0|
dσ

∣∣∣∣∣ , (3.2.1)

then u|B(x0,ρmax) ≡ 0, where

ρνmax =

(
ρν0 − CM2 max

{
1,

1

L2

}
max

{
ρν−1

0 , 1
}

× min
τ∈(m+1

2 ,1]

{
E(ρ0)γ(τ) max{b(ρ0)µ(τ), b(ρ0)η(τ)}

2τ − (1 +m)

})
+

, (3.2.2)

and where,

E(ρ0) = ‖∇u‖2L2(B(x0,ρ0)), b(ρ0) = ‖u‖m+1
Lm+1(B(x0,ρ0)),

k = 2(1 +m) +N(1−m), ν = k
m+1 > 2,

γ(τ) =
2τ − (1 +m)

k
∈ (0, 1), µ(τ) =

2(1− τ)

k
, η(τ) =

1−m
1 +m

− γ(τ) > 0.

for any τ ∈
(
m+1

2 , 1
]
.

Here and in what follows, r+ = max{0, r} denotes the positive part of the real number r. For x0 ∈ RN

and r > 0, B(x0, r) is the open ball of RN of center x0 and radius r, S(x0, r) is its boundary and

B(x0, r) is its closure. Finally, σ is the surface measure on a sphere. A sharper estimate, in the same

line of extension of the applicability of the techniques of Bégout and Dı́az [24, 25] indicated before,

can be obtained under some additional assumption on F.

Theorem 3.2.2. Let 0 < m < 1, x0 ∈ RN , ρ1 > ρ0 > 0, F ∈ L2
(
B(x0, ρ1)

)
and u ∈ H1

loc

(
B(x0, ρ1)

)
.

If there exist L > 0 and M > 0 such that for almost every ρ ∈ (0, ρ1),

‖∇u‖2L2(B(x0,ρ))
+ L‖u‖m+1

Lm+1(B(x0,ρ))
+ L‖u‖2L2(B(x0,ρ))

6M

(∣∣∣∣∣
∫
S(x0,ρ)

u∇u. x− x0

|x− x0|
dσ

∣∣∣∣∣+

∫
B(x0,ρ)

|F (x)u(x)|dx

)
, (3.2.3)

then there exist E? > 0 and ε? > 0 satisfying the following property: if ‖∇u‖2L2(B(x0,ρ1)) < E? and

‖F‖2L2(B(x0,ρ))
6 ε?

(
(ρ− ρ0)+

)p
, ∀ρ ∈ (0, ρ1), (3.2.4)

where p = 2(1+m)+N(1−m)
1−m , then u|B(x0,ρ0) ≡ 0. In other words, with the notation of Theorem 3.2.1,

ρmax = ρ0.
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Remark 3.2.3. We may estimate E? and ε? as

E? = E?

(
‖u‖−1

Lm+1(B(x0,ρ1)), ρ1,
ρ0

ρ1
,
L

M
,N,m

)
,

ε? = ε?

(
‖u‖−1

Lm+1(B(x0,ρ1)),
ρ0

ρ1
,
L

M
,N,m

)
.

The dependence on 1
δ means that if δ goes to 0 then E? and ε? may be very large. Note that p = 1

γ(1) ,

where γ is the function defined in Theorem 3.2.1.

Remark 3.2.4. Note that by Cauchy-Schwarz’s inequality, the right-hand side in (3.2.1) belongs to

L1
loc([0, ρ0);R) and so is defined almost everywhere in (0, ρ0). Consequently, by Hölder’s inequality,

the right-hand side in (3.2.3) is defined almost everywhere in (0, ρ1).

3.3 A general framework of applications related to the Schrödin-
ger operator

The following result will be applied later to many concrete equations associated to the Schrödinger

operator.

Theorem 3.3.1. Let Ω ⊂ RN be a nonempty open subset of RN , let x0 ∈ Ω, let ρ0 > 0, let 1 6

p1, . . . , pn1
, q1, . . . , qn2

<∞, let F ∈ L1
loc(Ω) be such that F|Ω∩B(x0,ρ0) ∈ L2

(
Ω ∩B(x0, ρ0)

)
and let

f ∈ C

 n2⋂
k=1

Lqkloc(Ω);

n1∑
j=1

L
p′j
loc(Ω)

 .

Let u ∈ H1
loc(Ω) ∩ Lpjloc(Ω) ∩ Lqkloc(Ω), for any (j, k) ∈ J1, n1K× J1, n2K, be any solution to the complex-

valued equation

−∆u+ f(u) = F, in D ′(Ω). (3.3.1)

If ρ0 > dist(x0,Γ) then assume further that

f ∈ C

 n2⋂
k=1

Lqk(Ω);

n1∑
j=1

Lp
′
j (Ω)

 , u ∈ H1
0 (Ω),

u|Ω∩B(x0,ρ0) ∈ Lpj
(
Ω ∩B(x0, ρ0)

)
∩ Lqk

(
Ω ∩B(x0, ρ0)

)
,

for any (j, k) ∈ J1, n1K× J1, n2K. Set for every ρ ∈ [0, ρ0),

I(ρ) =

∣∣∣∣∣
∫

Ω∩S(x0,ρ)

u∇u. x− x0

|x− x0|
dσ

∣∣∣∣∣ , J(ρ) =

∫
Ω∩B(x0,ρ)

|F (x)u(x)|dx, (3.3.2)

w(ρ) =

∫
Ω∩S(x0,ρ)

u∇u. x− x0

|x− x0|
dσ, IRe(ρ) = Re

(
w(ρ)

)
, IIm(ρ) = Im

(
w(ρ)

)
. (3.3.3)
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Then we have,

I, J, IRe, IIm ∈ C([0, ρ0);R), (3.3.4)

‖∇u‖2L2(Ω∩B(x0,ρ))
+ Re

 ∫
Ω∩B(x0,ρ)

f(u)udx

 = Re

 ∫
Ω∩B(x0,ρ)

F (x)u(x)dx

+ IRe(ρ), (3.3.5)

Im

 ∫
Ω∩B(x0,ρ)

f(u)udx

 = Im

 ∫
Ω∩B(x0,ρ)

F (x)u(x)dx

+ IIm(ρ), (3.3.6)

for any ρ ∈ [0, ρ0).

Remark 3.3.2. One easily sees that if ρ0 < dist(x0,Γ) then I, J, IRe, IIm ∈ C([0, ρ0];R).

Example 3.3.3. We give some functions f for which Theorem 3.3.1 applies.

1) Typically, we apply Theorem 3.3.1 to

f(u) = a|u|−(1−m)u+ bu+ V u,

with (a, b) ∈ C2, V ∈ L∞loc(Ω) and 0 < m < 1. One easily checks that,

f ∈ C
(
L2

loc(Ω) ∩ Lm+1
loc (Ω);L2

loc(Ω) + L
m+1
m

loc (Ω)
)
.

If in addition, V ∈ L∞(Ω) then one also has,

f ∈ C
(
L2(Ω) ∩ Lm+1(Ω);L2(Ω) + L

m+1
m (Ω)

)
.

Let z ∈ C \ {0}. Since
∣∣|z|−(1−m)z

∣∣ = |z|m, it is understood in the above example that∣∣|z|−(1−m)z
∣∣ = 0 when z = 0.

2) Hartree-Fock type equations. Let V ∈ Lp(RN ;R) +L∞(RN ;R), with min
{

1, N2
}
< p <

∞ and let W ∈ Lq(RN ;R) + L∞(RN ;R), with min
{

1, N4
}
< q <∞. Set r = 2p

p−1 , s = 4q
q−1 ,

E = L2(RN ) ∩ L4(RN ) ∩ Lr(RN ) ∩ Ls(RN ),

f(u) = V u+ (W ? |u|2)u,

for any u ∈ H1(RN ). Then H1(RN ) ↪→ E with dense embedding and, by density of D(RN )

in spaces Lm(RN ), for any m ∈ [1,∞), we have

E? = L2(RN ) + L
4
3 (RN ) + Lr

′
(RN ) + Ls

′
(RN ),

f ∈ C
(
E;E?

)
,

f ∈ C
(
H1(RN );H−1(RN )

)
.

See Cazenave [57] (Proposition 1.1.3, Proposition 3.2.2, Remark 3.2.3, Proposition 3.2.9,

Remark 3.2.10 and Example 3.2.11).
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3.4 Proofs of the main results

Before proceeding to the proof of Theorems 3.2.1 and 3.2.2, we recall the well-known Young’s inequa-

lity. For any real x > 0, y > 0, λ > 1 and ε > 0, one has

xy 6
1

λ′
ελ
′
xλ
′
+

1

λ
ε−λyλ. (3.4.1)

Proof of Theorems 3.2.1 and 3.2.2. We write ρ? = ρ0, for the proof of Theorem 3.2.1 and ρ? = ρ1,

for the proof of Theorem 3.2.2. Let us introduce some notations. Let ρ ∈ (0, ρ?). We set

E(ρ) = ‖∇u‖2L2(B(x0,ρ))
, b(ρ) = ‖u‖m+1

Lm+1(B(x0,ρ))
, a(ρ) = ‖u‖2L2(B(x0,ρ))

,

θ = (1+m)+N(1−m)
k ∈ (0, 1), ` = 1

θ(1+m) , δ = k
2(1+m) .

We may assume that u ∈ H1
(
B(x0, ρ?)

)
. Indeed, the case u ∈ H1

loc

(
B(x0, ρ?)

)
can be treated by

following the method in Bégout and Dı́az [25] (see the end of Step 6, p.18, for Theorem 3.2.1 and the

end of Step 7, p.19, for Theorem 3.2.2. We now proceed with the proof in 3 steps.

Step 1. E ∈W 1,1(0, ρ?), for a.e. ρ ∈ (0, ρ?), E
′(ρ) = ‖∇u‖2L2(S(x0,ρ))

and

E(ρ) + b(ρ) 6
1

2

(
K1(τ)ρ−(ν−1)E′(ρ)

) 1
2

(E(ρ) + b(ρ))
γ(τ)+1

2 + (L1M)2‖F‖2L2(B(x0,ρ))
, (3.4.2)

where K1(τ) = C(N,m)L2
1M

2 max
{
ρν−1
? , 1

}
max{b(ρ?)µ(τ), b(ρ?)

η(τ)} and L1 = max
{

1, 1
L

}
.

By the first lines of Step 2, p.16, we only have to show (3.4.2). Let ρ ∈ (0, ρ?). We have to slightly

modify the proof of Bégout and Dı́az [25]. Indeed, since F ∈ L2, we need of the term ‖u‖2L2 . We have,∣∣∣∣∣
∫
S(x0,ρ)

u∇u. x− x0

|x− x0|
dσ

∣∣∣∣∣ 6 E′(ρ)
1
2 ‖u‖L2(S(x0,ρ)), (3.4.3)

‖u‖L2(S(x0,ρ)) 6 C(N,m)
(
‖∇u‖L2(B(x0,ρ)) + ρ−δ‖u‖Lm+1(B(x0,ρ))

)θ ‖u‖1−θLm+1(B(x0,ρ))
. (3.4.4)

See (1.7.11)–(1.7.12). Putting together (3.2.1) (for Theorem 3.2.1), (3.2.3) (for Theorem 3.2.2), (3.4.3)

and (3.4.4), we obtain,

E(ρ) + b(ρ) + κa(ρ)

6 CL1ME′(ρ)
1
2

(
E(ρ)

1
2 + ρ−δb(ρ)

1
m+1

)θ
b(ρ)

1−θ
m+1 + L1M

∫
B(x0,ρ)

|F (x)u(x)|dx, (3.4.5)

where κ = 0, in the case of Theorem 3.2.1 and where κ = 1, in the case of Theorem 3.2.2. In the case

of Theorem 3.2.2, we apply (3.4.1) with x = |F |, y = |u|, λ = 2 and ε =
√
L1M, and we get∫

B(x0,ρ)

|F (x)u(x)|dx 6 L1M

2
‖F‖2L2(B(x0,ρ))

+
1

2L1M
a(ρ), (3.4.6)

for any ρ ∈ (0, ρ?). Putting together (3.4.5) and (3.4.6), we obtain for both theorems, for a.e. ρ ∈
(0, ρ?),

E(ρ) + b(ρ) 6 C0L1ME′(ρ)
1
2

(
E(ρ)

1
2 + ρ−δb(ρ)

1
m+1

)θ
b(ρ)

1−θ
m+1 + (L1M)2‖F‖2L2(B(x0,ρ))

. (3.4.7)
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Let τ ∈
(
m+1

2 , 1
]

and let ρ ∈ (0, ρ?). A straightforward calculation yields

(
E(ρ)

1
2 + ρ−δb(ρ)

1
m+1

)
b(ρ)

1−θ
θ(m+1)

= E(ρ)
1
2 b(ρ)

1−θ
θ(m+1) + ρ−δb(ρ)

1
θ(m+1)

= E(ρ)
1
2 b(ρ)τ(1−θ)`b(ρ)(1−τ)(1−θ)` + ρ−δb(ρ)

1
2 +τ(1−θ)`b(ρ)`−τ(1−θ)`− 1

2

6 2ρ−δ max
{
ρδ?, 1

}
K2

2 (τ)
1
2θ (E(ρ) + b(ρ))

1
2 +τ(1−θ)`

,

where K2
2 (τ) = max{b(ρ?)µ(τ), b(ρ?)

η(τ)}, since µ(τ)
2θ = (1 − τ)(1 − θ)` and η(τ)

2θ = ` − τ(1 − θ)` − 1
2 .

Hence (3.4.2) follows from (3.4.7) and the above estimate withK1(τ) = 16C2
0L

2
1M

2K2
2 (τ) max

{
ρν−1
? , 1

}
,

since 2δθ = ν − 1 and θ
(

1
2 + τ(1− θ)`

)
= γ(τ)+1

2 .

Step 2. For any τ ∈
(
m+1

2 , 1
]

and for a.e. ρ ∈ (0, ρ?),

0 6 E(ρ)1−γ(τ) 6 K1(τ)ρ−(ν−1)E′(ρ) + (2L1M)2(1−γ(τ))‖F‖2(1−γ(τ))
L2(B(x0,ρ))

.

Following Step 4, p.17, but with Young’s inequality (3.4.1) applied with x = 1
2

(
K1(τ)ρ−(ν−1)E′(ρ)

) 1
2 ,

y = (E(ρ) + b(ρ))
γ(τ)+1

2 , λ = λ(τ) = 2
γ(τ)+1 and ε = ε(τ) = (γ(τ) + 1)

1
λ(τ) , Step 2 follows from the

estimates

E(ρ) + b(ρ)

6
1

2

(
K1(τ)ρ−(ν−1)E′(ρ)

) 1
2

(E(ρ) + b(ρ))
γ(τ)+1

2 + (L1M)2‖F‖2L2(B(x0,ρ))
,

6
C(τ)

2
λ(τ)
λ(τ)−1

(
K1(τ)ρ−(ν−1)E′(ρ)

) 1
1−γ(τ)

+
1

2
(E(ρ) + b(ρ)) + (L1M)2‖F‖2L2(B(x0,ρ))

,

6
1

2

(
K1(τ)ρ−(ν−1)E′(ρ)

) 1
1−γ(τ)

+
1

2
(E(ρ) + b(ρ)) + (L1M)2‖F‖2L2(B(x0,ρ))

,

C(τ) =
λ(τ)− 1

λ(τ)
ε(τ)

λ(τ)
λ(τ)−1 <

λ
(
m+1

2

)
− 1

λ
(
m+1

2

) (γ(τ) + 1)
1

λ(τ)−1 <
1

2
2

1
λ(τ)−1 <

1

2
2

λ(τ)
λ(τ)−1 .

Step 3. Conclusion.

Now, following from Step 5 to Step 7, p.18–19, where estimate (1.7.16) therein has to be replaced

with estimate of the above Step 2 and where the mapping ρ 7−→ F (ρ) has to be replaced with the

new function ρ 7−→ (2L1M)2(1−γ)‖F‖2(1−γ)
L2(B(x0,ρ))

, we prove Theorems 3.2.1 and 3.2.2. This achieves

the proof.

Proof of Theorem 3.3.1. If ρ0 > dist(x0,Γ) then u ∈ H1
0 (Ω). So we may extend u by 0 on

Ωc ∩ B(x0, ρ0). Denoting ũ this extension, we have ũ ∈ H1
0

(
Ω ∪ B(x0, ρ0)

)
. We first consider the

case where ρ0 6= dist(x0,Γ). We deal with ρ0 = dist(x0,Γ) at the end of the proof. It follows that

J ∈ C([0, ρ0];R) and by Cauchy-Schwarz’s inequality, I ∈ L1(0, ρ0). Thus, I, J, IRe, IIm are defined

almost everywhere on (0, ρ0). It follows from (3.3.1) that,

〈∇u,∇ϕ〉D′(Ω),D(Ω) + 〈f(u), ϕ〉D′(Ω),D(Ω) = 〈F,ϕ〉D′(Ω),D(Ω), (3.4.8)
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for any ϕ ∈ D(Ω). Let ρ ∈ (0, ρ0). For any n ∈ N, n > 1
ρ , we define ψn ∈W 1,∞(R;R) by

∀t ∈ R, ψn(t) =


1, if |t| ∈

[
0, ρ− 1

n

]
,

n(ρ− |t|), if |t| ∈
(
ρ− 1

n , ρ
)
,

0, if |t| ∈ [ρ,∞),

and we set ϕ̃n(x) = ψn(|x − x0|)ũ(x) and ϕn = ϕ̃n|Ω, for almost every x ∈ Ω ∪ B(x0, ρ0). We easily

check that for any (j, k) ∈ J1, n1K× J1, n2K,

ϕn|Ω∩B(x0,ρ0) ∈ H1
0

(
Ω ∩B(x0, ρ0)

)
∩ Lpj

(
Ω ∩B(x0, ρ0)

)
∩ Lqk

(
Ω ∩B(x0, ρ0)

)
,

ϕ̃n ∈ H1
0

(
Ω ∪B(x0, ρ0)

)
∩ Lpj

(
Ω ∪B(x0, ρ0)

)
∩ Lqk

(
Ω ∪B(x0, ρ0)

)
,

ϕn ∈ H1
0 (Ω) ∩ Lpj (Ω) ∩ Lqk(Ω).

Then there exists (ϕmn )m∈N ⊂ D(Ω) such that for any (n,m) ∈ N2, suppϕmn ⊂ Ω ∩B(x0, ρ0) and

ϕmn
H1

0 (Ω)∩Lpj (Ω)∩Lqk (Ω)−−−−−−−−−−−−−−−→
m−→∞

ϕn,

for any (j, k) ∈ J1, n1K × J1, n2K. Consequently, ϕ = ϕn are admissible test functions in (3.4.8). We

have, 〈
∇u,∇ϕn

〉
L2(Ω),L2(Ω)

= 〈∇ũ,∇ϕ̃n〉L2(Ω∪B(0,ρ0)),L2(Ω∪B(0,ρ0))

=

∫
B(x0,ρ)

ψn
(
|x− x0|

)
|∇ũ|2dx− nRe

 ρ∫
ρ− 1

n

 ∫
S(x0,r)

ũ∇ũ. x− x0

|x− x0|
dσ

 dr

 ,

where we introduced the spherical coordinates (r, σ) at the last line. We now let n ↗ ∞. Using the

Lebesgue’s dominated convergence Theorem and recalling that IRe ∈ L1((0, ρ0);R), we obtain

lim
n→∞

〈
∇u,∇ϕn

〉
L2(Ω),L2(Ω)

= ‖∇u‖2L2(Ω∩B(x0,ρ))
− IRe(ρ). (3.4.9)

Proceeding as above but also with ϕ = iϕn, we get lim
n→∞

〈
∇u, i∇ϕn

〉
L2,L2 = −IIm(ρ) and

lim
n→∞

〈f(u), ϕn〉F?,E = Re
(
A(u)

)
, lim

n→∞
〈f(u), iϕn〉F?,E = Im

(
A(u)

)
,

lim
n→∞

〈F,ϕn〉L2,L2 = Re
(
B(u)

)
, lim

n→∞
〈F, iϕn〉L2,L2 = Im

(
B(u)

)
.

where E =

n2⋂
j=1

Lqj (Ω), F =

n1⋂
j=1

Lpj (Ω), A(u) =

∫
Ω∩B(x0,ρ)

f(u)udx andB(u) =

∫
Ω∩B(x0,ρ)

F (x)u(x)dx.

Estimates (3.3.5) and (3.3.6) then follow from (3.4.9) and these five last estimates. Since all terms in

(3.3.5) and (3.3.6) are continuous on [0, ρ0], except eventually IRe and IIm, we deduce that IRe and

IIm are continuous and (3.3.5) and (3.3.6) hold for any ρ ∈ [0, ρ0]. The case ρ0 = dist(x0,Γ) follows

from the above proof applied with ρn0 = ρ0 − 1
n in place of ρ0 and letting n↗∞.
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3.5 Application to the localization property to the case of
Neumann boundary conditions

In Bégout and Dı́az [25], the authors study the localization property for equation (3.5.6) below with

the homogeneous Dirichlet boundary condition (see, for instance, Theorem 1.3.5). In Theorem 3.5.6

below, we show that the same property holds with the homogeneous Neumann boundary condition.

Before, we need to prove that solutions exist. This can be found in Bégout and Dı́az [28]. Note that

from Bégout and Dı́az [25] to this paper, there was a slight change of notation. See Remark 3.5.1

below.

Remark 3.5.1. In the context of the paper of Bégout and Dı́az [25], we can establish an existence

result with the homogeneous Neumann boundary condition (instead of the homogeneous Dirichlet

condition) and F ∈ L2(Ω)
(
instead of F ∈ Lm+1

m (Ω)
)
. In Bégout and Dı́az [25], we introduced the set,

Ã = C \
{
z ∈ C; Re(z) = 0 and Im(z) 6 0

}
,

and assumed that (ã, b̃) ∈ C2 satisfies,

(ã, b̃) ∈ Ã× Ã and



Re(ã)Re(̃b) > 0,

or

Re(ã)Re(̃b) < 0 and Im(̃b) >
Re(̃b)

Re(ã)
Im(ã),

(3.5.1)

with possibly b̃ = 0, and we worked with

−i∆u+ ã|u|−(1−m)u+ b̃u = F̃ .

But here in order to follow a closer notation with most of the works dealing with Schrödinger equations,

we do not work any more with this equation but with,

−∆u+ a|u|−(1−m)u+ bu = F,

and b 6= 0. This means that we choose, ã = ia, b̃ = ib and F̃ = iF. Then assumptions on (a, b) are

changed by the fact that for z̃ = iz,

Re(z) = Re(−iz̃) = Im(z̃), (3.5.2)

Im(z) = Im(−iz̃) = −Re(z̃). (3.5.3)

It follows that the set Ã and (3.5.1) become,

A = C \
{
z ∈ C; Re(z) 6 0 and Im(z) = 0

}
, (3.5.4)

(a, b) ∈ A× A and


Im(a)Im(b) > 0,

or

Im(a)Im(b) < 0 and Re(b) >
Im(b)

Im(a)
Re(a).

(3.5.5)
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Obviously, (
(ã, b̃) ∈ C2 satisfies (3.5.1)

)
⇐⇒

(
(a, b) ∈ C2 satisfies (3.5.5)

)
.

Assumptions (3.5.5) are made to prove the existence and the localization property of solutions to

−∆u+ a|u|−(1−m)u+ bu = F, in L2(Ω). (3.5.6)

For uniqueness, the hypotheses are the following (Theorem 2.2.10).

Assumption 3.5.2 (Uniqueness). Assume that (a, b) ∈ C2 satisfies one of the two following condi-

tions.

1) a 6= 0, Re(a) > 0 and Re(ab) > 0.

2) b 6= 0, Re(b) > 0 and a = kb, for some k > 0.

A geometric interpretation of (3.5.5) and 1) of Assumption 3.5.2 is given in Section 1.6 of Chapter 1,

modulus a rotation in the complex plane. Now, we give some results about equation (3.5.6) when

(a, b) ∈ C2 satisfies (3.5.5).

Corollary 3.5.3 (Neumann boundary conditions). Let Ω be a nonempty bounded open subset

of RN having a C1 boundary, let ν be the outward unit normal vector to Γ, let 0 < m < 1 and let

(a, b) ∈ C2 satisfies (3.5.5). For any F ∈ L2(Ω), there exists at least one solution u ∈ H1(Ω) to−∆u+ a|u|−(1−m)u+ bu = F, in L2(Ω),
∂u

∂ν |Γ
= 0.

(3.5.7)

If furthermore (a, b) satisfies Assumption 3.5.2 then the solution of (3.5.7) is unique. Let v ∈ H1(Ω)

be any solution to (3.5.7). Then v ∈ H2
loc(Ω). In addition,

‖v‖H1(Ω) 6M‖F‖L2(Ω), (3.5.8)

where M = M(|a|, |b|). Finally, if for some α ∈ (0,m], F ∈ C0,α
loc (Ω) then u ∈ C2,α

loc (Ω).

Symmetry Property 3.5.4. If furthermore, for any R ∈ SON (R), RΩ = Ω and if F is spherically

symmetric then we may construct a solution which is additionally spherically symmetric. For N = 1,

this means that if F is an even (respectively, an odd) function then u is also an even (respectively, an

odd) function.

Here and in what follows, SON (R) denotes the special orthogonal group of RN .

Remark 3.5.5. One easily checks that if (a, b) ∈ A2 satisfies Re(a) > 0 and Re(ab) > 0 then

(a, b) ∈ C2 verifies (3.5.5). In this case, uniqueness assumptions imply existence assumptions.

Proof of Corollary 3.5.3 and Symmetry Property 3.5.4. The result comes from Chapter 2 :

Theorem 2.2.8 (existence and symmetry property), Theorem 2.2.10 (uniqueness), Theorem 2.2.9
(
a

priori estimate (3.5.8)
)

and Theorem 2.2.12 (local smoothness).

Concerning the support of solution of (3.5.7) we have :
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Theorem 3.5.6. Let Ω be a nonempty bounded open subset of RN having a C1 boundary, let 0 <

m < 1 and let (a, b) ∈ C2 satisfies (3.5.5). Then there exists ε? > 0 such that for any 0 < ε 6 ε?, there

exists δ0 = δ0(ε, |a|, |b|, N,m) > 0 satisfying the following property. Let F ∈ L2(Ω) and let u ∈ H1(Ω)

be a solution to (3.5.7). If uniqueness holds for the problem (3.5.7) 1, suppF is a compact set and

‖F‖L2(Ω) 6 δ0 then suppu ⊂ K(ε) ⊂ Ω, where

K(ε) =
{
x ∈ RN ; ∃y ∈ suppF such that |x− y| 6 ε

}
,

which is compact.

The proof relies on the following lemma.

Lemma 3.5.7. Let Ω ⊂ RN be a nonempty open subset of RN , let 0 < m < 1 and let (a, b) ∈ C2

satisfies (3.5.5). Let F ∈ L1
loc(Ω) and let u ∈ H1

loc(Ω) be any solution to

−∆u+ a|u|−(1−m)u+ bu = F, in D ′(Ω). (3.5.9)

Then there exist two positive constants L = L(|a|, |b|) and M = M(|a|, |b|) satisfying the following

property. Let x0 ∈ Ω and ρ? > 0. If F|Ω∩B(x0,ρ?) ∈ L2
(
Ω ∩B(x0, ρ?)

)
then for any ρ ∈ [0, ρ?),

‖∇u‖2L2(Ω∩B(x0,ρ))
+ L‖u‖m+1

Lm+1(Ω∩B(x0,ρ))
+ L‖u‖2L2(Ω∩B(x0,ρ))

6M

(∣∣∣∣∣
∫

Ω∩S(x0,ρ)

u∇u. x− x0

|x− x0|
dσ

∣∣∣∣∣+

∫
Ω∩B(x0,ρ)

|F (x)u(x)|dx

)
, (3.5.10)

where it is additionally assumed that u ∈ H1
0 (Ω) if ρ? > dist(x0,Γ).

Proof. Let x0 ∈ Ω and let ρ? > 0. We set for every ρ ∈ [0, ρ?),

I(ρ) =

∣∣∣∣∣
∫

Ω∩S(x0,ρ)

u∇u. x− x0

|x− x0|
dσ

∣∣∣∣∣ and J(ρ) =

∫
Ω∩B(x0,ρ)

|F (x)u(x)|dx.

It follows from Theorem 3.3.1 that I, J ∈ C([0, ρ?);R) and∣∣∣‖∇u‖2L2(Ω∩B(x0,ρ))
+ Re(a)‖u‖m+1

Lm+1(Ω∩B(x0,ρ))
+ Re(b)‖u‖2L2(Ω∩B(x0,ρ))

∣∣∣ 6 I(ρ) + J(ρ), (3.5.11)∣∣∣Im(a)‖u‖m+1
Lm+1(Ω∩B(x0,ρ))

+ Im(b)‖u‖2L2(Ω∩B(x0,ρ))

∣∣∣ 6 I(ρ) + J(ρ), (3.5.12)

for any ρ ∈ [0, ρ?). Estimate (3.5.10) then follows from (3.5.11), (3.5.12) and Lemma 2.4.5 with δ = 0.

Hence the result.

Proof of Theorem 3.5.6. Let F ∈ L2(Ω) with suppF ⊂ Ω and let u ∈ H1(Ω) a solution to (3.5.7)

be given by Theorem 3.5.3. Set K = suppF and

O(ε) =
{
x ∈ RN ; ∃y ∈ K such that |x− y| < ε

}
.

Then K(ε) = O(ε). Let ε? > 0 be small enough to have K(5ε?) ⊂ Ω and let ε ∈ (0, ε?]. Let L and M be

given by Lemma 3.5.7 applied with ρ? = 2ε. By Theorem 3.2.1 and estimate (3.5.8) in Theorem 3.5.3

1. which is the case, for instance, if (a, b) ∈ C2 satisfies Assumption 3.5.2.
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above, there exists δ0 = δ0(ε, |a|, |b|, N,m) > 0 such that if ‖F‖L2(Ω) 6 δ0 then u|B(x0,ε) ≡ 0, for any

x0 ∈ Ω such that B(x0, 2ε)∩K = ∅ and B(x0, 2ε) ⊂ Ω. One easily sees that B(x0, 2ε)∩K = ∅, for any

x0 ∈ K(2ε)c ∩K(3ε). We deduce that for any x0 ∈ K(2ε)c ∩K(3ε), u|B(x0,ε) ≡ 0. By compactness,

there exist n ∈ N and x1, . . . , xn ∈ K(2ε)c ∩K(3ε) such that,

K(ε)c ∩ O(4ε) ⊂
n⋃
j=1

B(xj , ε) ⊂
n⋃
j=1

B(xj , 2ε) ⊂ K(5ε) ⊂ Ω.

It follows that u|K(ε)c∩O(4ε) ≡ 0. Let us define ũ in Ω by,

ũ =

{
u, in O(2ε),

0, in Ω \ O(2ε).

It follows that supp ũ ⊂ K(ε) and ũ ∈ H1
0 (Ω) is a solution to (3.5.7). By uniqueness assumption,

ũ = u so that suppu ⊂ K(ε) ⊂ Ω, which is the desired result.

Remark 3.5.8. In Bégout and Dı́az [25], the authors study existence, uniqueness, smoothness and

localization property for the equations (3.5.6) with an external source F belonging to L
m+1
m (Ω) with

0 < m < 1 (see, for instance, Theorem 1.3.5). Below, we explain how the same results hold true with

the weaker assumption F ∈ L2(Ω). Indeed, when |Ω| < ∞ and 0 < m < 1, L
m+1
m (Ω) ↪→ L2(Ω) and

L
m+1
m (Ω) 6= L2(Ω). Results of existence can be found in Bégout and Dı́az [28] jointly to some others

additional results. Hypotheses on (a, b) ∈ C2 are the same as in Bégout and Dı́az [25], except we have

to require b 6= 0. Note that from Bégout and Dı́az [25] to the present paper, there was a change of

notation. See Remark 3.5.1 for precision. Throughout this remark, equation (3.5.6) with homogeneous

Dirichlet boundary condition are considered and F is always assumed to belong in L2(Ω) (instead

of L
m+1
m (Ω) in Bégout and Dı́az [25]) and assumptions on (a, b) are (3.5.5) and Assumption 3.5.2,

instead of (1.2.2) and (1.2.3).

Analogous results to Theorems 1.4.1, 1.4.4 and Corollary 1.5.3 can be easily adapted. Indeed, by

Theorems 2.2.8, 2.2.9, 2.2.10 and 2.2.12, these results hold but with u ∈ H2
loc(Ω) and

‖u‖2H1(Ω) + ‖u‖m+1
Lm+1(Ω) 6M‖F‖

2
L2(Ω), (3.5.13)

instead of u ∈ W 2,m+1
m

loc (Ω), (1.4.1) and (1.4.2). Concerning the localization property, Theorems 1.3.1

and 1.3.5 still hold true but with F ∈ L2(Ω) and

∀ρ ∈ (0, ρ1), ‖F‖2L2(Ω∩B(x0,ρ))
6 ε?(ρ− ρ0)p+, (3.5.14)

instead of (1.3.1). The proofs are essentially the same where we use Lemma 3.5.7 and (3.5.13) above

instead of (1.4.1). It follows that Theorems 1.1.1 and 1.1.2 can be easily adapted with the obvious

modifications.



Chapitre 4

Self-similar solutions with
compactly supported profile of
some nonlinear Schrödinger
equations

with Jesús Ildefonso D́ıaz∗

Abstract
“Sharp localized” solutions (i.e. with compact support for each given time t) of a singular nonlinear

type Schrödinger equation in the whole space RN are constructed here under the assumption that they have

a self-similar structure. It requires the assumption that the external forcing term satisfies that f(t, x) =

t−(p−2)/2F (t−1/2x) for some complex exponent p and for some profile function F which is assumed to be

with compact support in RN . We show the existence of solutions of the form u(t, x) = tp/2U(t−1/2x), with a

profile U , which also has compact support in RN . The proof of the localization of the support of the profile

U uses some suitable energy method applied to the stationary problem satisfied by U after some unknown

transformation.

4.1 Introduction and main result

This paper deals with the study of “sharp localized” solutions of the nonlinear type Schrödinger

equation in the whole space RN ,

i
∂u

∂t
+ ∆u = a|u|−(1−m)u+ f(t, x), (4.1.1)

under the fundamental assumption m ∈ (0, 1) and for different choices of the complex coefficient a.

Here we use the notation of bold symbols for complex mathematics entities, i2 = −1 and ∆ =
N∑
j=1

∂2

∂x2
j

for the Laplacian in the variables x.
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By the term “sharp localized solutions” we understand solutions which are more than merely the so

called “localized solutions” considered earlier by many authors. For instance, most of the “localized

type solutions” in the previous literature must vanish at infinity in an asymptotic way : |u(t, x)| −→ 0

as |x| −→ ∞. They have been intensively studied mostly when some other structure property is added

to the solution. It is the case of the special solutions which receive also other names such as standing

waves, travelling waves, solitons, etc.

Here we are interested on solutions which have a sharper decay when |x| goes to infinity in the sense

that we will require the support of the function u(t, . ) to be a compact set of RN , for any t > 0.

We recall that equations of the type (4.1.1) arise in many different contexts : Nonlinear Optics, Quan-

tum Mechanics, Hydrodynamics, etc., and that, for instance, in Quantum Mechanics the main interest

concerns the case in which Re(a) > 0, Im(a) = 0 (here and in which follows Re(a) is the real part

of the complex number a and Im(a) is its imaginary part) and that in Nonlinear Optics the t does

not represent time but the main scalar variable which appears in the propagation of the wave guide

direction (see Agrawal and Kivshar [3], p.7 ; Temam and Miranville [169], p.517). Sometimes equations

of the type (4.1.1) are named as Gross-Pitaevskĭı type of equations in honor of two famous papers by

those authors in 1961 (Gross [94] and Pitaevskĭı [149]). For some physical details and many references,

we send the reader to the general presentations made in the books Ablowitz, Prinari and Trubatch

[1], Cazenave [57] and Sulem and Sulem [165].

In most of the papers on equations of the type (4.1.1), it is assumed that m = 3 (the so called cubic

case). Nevertheless there are applications in which the general case m > 0 is of interest. For instance,

it is the case of the so called “non-Kerr type equations” arising in the study of optical solitons (see,

e.g., Agrawal and Kivshar [3], p.14 and following).

The case m ∈ (0, 1) has been studied before by other authors but under different points of view : some

explicit self-similar solutions (the so called algebraic solitons) can be found in Polyanin and Zaitsev

[151] (see also Agrawal and Kivshar [3], p.33). We also mention here the series of interesting papers

by Rosenau and co-authors (Kashdan and Rosenau [116], Rosenau and Schuss [156]) in which “sharp

localized” solutions are also considered with other type of statements and methods.

We also mention that the case Re(a) > 0 (which corresponds to the dissipative case, also called

defocusing or repulsive case, when Im(a) = 0) must be well distinguished of the so called attractive

problem (or also focusing case) in which it is assumed that Re(a) < 0 (and Im(a) = 0). See, e.g.,

Ablowitz, Prinari and Trubatch [1], Cazenave [57], Sulem and Sulem [165] and their references).

The case of complex potentials with certain types of singularities, i.e. corresponding to the choice

Im(a) 6= 0, has been previously considered by several authors, and arises in many different situations

(see, for instance, Brezis and Kato [47], Carles and Gallo [53], LeMesurier [127], Liskevich and Stoll-

mann [131] and the references therein).

Here we assume that the datum f is not zero and represents some other physical magnitude which

may arise in the possible coupling with some different phenomenon : see the different chapters of Part

IV of the book Sulem and Sulem [165], the interaction phenomena between long waves and short

waves (Benney [34], Dias and Figueira [72], Urrea [177] and their references), etc.
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Obviously, the property of the compactness of the support of u(t, . ) requires the assumption that

“the support” of the datum function f(t, . ) is a compact set of RN , for a.e. t > 0. Because of that,

the qualitative property we consider in this paper can be understood as a “finite speed of propagation

property” typical of linear wave equations. We point out that our treatment is very different than

other “propagation properties” studied previously in the literature for Schrödinger equations which

are formulated in terms of the spectrum of the solutions. See, e.g., the so called Anderson localization

(Anderson [9]), Jensen [115], etc.

One of the main reasons of the study of “sharp localized” solutions arises from the fact that, if we

assume for the moment f ≡ 0, then

∂

∂t
|u|2 + divJ = 2Im(a)|u|m+1,

where

J
def
=
(
u∇u− u∇u

)
= −2Re(iu∇u),

(u denotes the conjugate of the complex function u) and so we get (at least formally) that

1

2

d

dt

∫
RN
|u(t, x)|2dx = Im(a)

∫
RN
|u(t, x)|m+1dx.

Notice that if Im(a) 6= 0 then there is no mass conservation. For instance, this is the case studied by

Carles and Gallo [53] where they prove that actually the solution vanishes after a finite time, once that

m ∈ (0, 1). More generally, it is easy to see that the two following conservation laws hold, once a ∈ R
and f ≡ 0 : if u(t) ∈H1(RN )∩Lm+1(RN ) then we have the mass conservation d

dt‖u(t)‖2
L2(RN )

= 0,

moreover, if u(t) ∈H2(RN )∩L2m(RN ) then u(t) ∈ Lm+1(RN ) and we have conservation of energy
d
dtE

(
u(t)

)
= 0, where

E
(
u(t)

)
=

1

2
‖∇u(t)‖2

L2(RN )
+

a

m+ 1
‖u(t)‖m+1

Lm+1(RN )
.

Indeed, in the first case, ∆u(t) ∈ H−1(RN ) and |u(t)|−(1−m)u(t) ∈ L
m+1
m (RN ). It follows from

the equation (4.1.1) that ∂u(t)
∂t ∈ H−1(RN ) + L

m+1
m (RN ) and since

(
H1(RN ) ∩Lm+1(RN )

)?
=

H−1(RN ) + L
m+1
m (RN ), it follows that we may take the duality product of equation (4.1.1) with

iu(t), from which the mass conservation follows. In the same way, since u(t) ∈ L2(RN ) ∩ L2m(RN )

and 0 < m < 1, we get that u(t) ∈ Lm+1(RN ). We also easily have that ∆u(t) ∈ L2(RN ) and

|u(t)|−(1−m)u(t) ∈ L2(RN ). It follows from the equation (4.1.1) that ∂u(t)
∂t ∈ L

2(RN ) and so we may

take the duality product of equation (4.1.1) with ∂u(t)
∂t , from which the conservation of energy follows.

Like in the pioneering study by Schrödinger, the condition Im(a) = 0 implies that |u|2 represents a

probability density, and so the study of “sharp localized solutions” becomes very relevant (recall the

Heisenberg Uncertainty Principle). As we will show here (sequel of previous papers by the authors,

Bégout and Dı́az [24, 25]), if m ∈ (0, 1), under suitable conditions on the coefficient a (for instance

for Re(a) > 0 and Im(a) = 0), it is possible to get some estimates on the support of solutions u(t, x)

showing that the probability |u(t, x)|2 to localize a particle is zero outside of a compact set of RN .
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The natural structure for searching self-similar solutions is based on the transformation λ 7−→ uλ,

where for λ > 0, p ∈ C and u ∈ C
(
(0,∞);L1

loc(RN )
)
, we define

uλ(t, x) = λ−pu(λ2t, λx), ∀t > 0, for a.e. x ∈ RN . (4.1.2)

Recall that since p ∈ C then λp
def
= ep lnλ = eRe(p) lnλeiIm(p) lnλ = λRe(p)eiIm(p) lnλ and that |λp| =

λRe(p). Our main assumption on the datum f is that

f(t, x) = λ−(p−2)f(λ2t, λx), ∀λ > 0, (4.1.3)

for some p ∈ C, for any t > 0 and almost every x ∈ RN , or equivalently, that

f(t, x) = t
p−2

2 F

(
x√
t

)
, (4.1.4)

for any t > 0 and almost every x ∈ RN , where F = f(1). It is easy to build functions f satisfying

(4.1.3). Indeed, for any given function F , we define f by (4.1.4). Then f(1) = F and f satisfies

(4.1.3). Finally, if we assume Re(p) = 2
1−m then a direct calculation show that if u is a solution

to (4.1.1) then for any λ > 0, uλ is also a solution to (4.1.1), and conversely.

We easily check that if u satisfies the invariance property u = uλ, for any λ > 0, then

u(t, x) = t
p
2U

(
x√
t

)
, (4.1.5)

for any t > 0 and almost every x ∈ RN , where U = u(1). Thus, we arrive to the following notion :

Definition 4.1.1. Let 0 < m < 1, let f ∈ C
(
(0,∞);L2

loc(RN )
)

satisfies (4.1.3) and let p ∈ C be

such that Re(p) = 2
1−m . A solution u of (4.1.1) is said to be self-similar if u ∈ C

(
(0,∞);L2

loc(RN )
)

and if for any λ > 0, uλ = u, where uλ is defined by (4.1.2). In this cases, u(1) is called the profile

of u and is denoted by U .

It follows from equation (4.1.1) and (4.1.5) that U satisfies

−∆U + a|U |−(1−m)U − ip

2
U +

i

2
x.∇U = −F , (4.1.6)

in D ′(RN ), where F = f(1). Conversely, ifU ∈ L2
loc(RN ) verifies (4.1.6), in D ′(RN ), then the function

u defined by (4.1.5) belongs to C
(
(0,∞);L2

loc(RN )
)

and is a self-similar solution to (4.1.1), where f

is defined by (4.1.4) and satisfies (4.1.3). It is useful to introduce the unknown transformation

g(x) = U(x)e−i
|x|2

8 . (4.1.7)

Then for any m ∈ R, p ∈ C and U ∈ L2
loc(RN ), U is a solution to (4.1.6) in D ′(RN ) if and only if

g ∈ L2
loc(RN ) is a solution to

−∆g + a|g|−(1−m)g − i
N + 2p

4
g − 1

16
|x|2g = −Fe−i

| . |2
8 , (4.1.8)

in D ′(RN ). It will be convenient to study (4.1.8) instead of (4.1.6). Indeed, formally, if we multiply

(4.1.8) by ±g or ±ig, integrate by parts and take the real part, one obtains some positive or negative
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quantities. But the same method applied to (4.1.6) gives (at least directly) nothing because of the

term ix.∇U .

Notice that if p ∈ C is such that Re(p) = 2
1−m and if f ∈ C

(
(0,∞);L2(RN )

)
and satisfies (4.1.3)

with f(t0) compactly supported for some t0 > 0, then it follows from (4.1.3) that for any t > 0,

suppf(t) is compact. Moreover, from (4.1.5), if u is a self-similar solution of (4.1.1) and if suppU

is compact then for any t > 0, suppu(t) is compact. As a matter of fact, it is enough to have that

u(t0) is compactly supported for some t0 > 0 to have that u satisfies (4.1.9) below and suppu(t)

is compact, for any t > 0. Indeed, U = u(1) satisfies (4.1.6) and by (4.1.5), suppU and suppu(t)

are compact for any t > 0. Let g be defined by (4.1.7). Then g is a solution compactly supported

to (4.1.8) and it follows the results of Section 4.3 below that g ∈H2
c (RN ). By (4.1.7), we obtain that

U ∈H2
c (RN ) and we deduce easily from (4.1.5) that u satisfies (4.1.9).

The main result of this paper is the following.

Theorem 4.1.2. Let 0 < m < 1, let a ∈ C be such that Im(a) 6 0. If Re(a) 6 0 then assume

further that Im(a) < 0. Let p ∈ C be such that Re(p) = 2
1−m and let f ∈ C

(
(0,∞);L2(RN )

)
satisfying (4.1.3). Assume also that suppf(1) is compact.

1. If ‖f(1)‖L2(RN ) is small enough then there exists a self-similar solution

u ∈ C
(
(0,∞);H2(RN )

)
∩C1

(
(0,∞);H1(RN )

)
∩C2

(
(0,∞);L2(RN )

)
(4.1.9)

to (4.1.1) such that for any t > 0, suppu(t) is compact. In particular, u is a strong solution

and verifies (4.1.1) for any t > 0 in L2(RN ), and so almost everywhere in RN .

2. Let R > 0. For any ε > 0, there exists δ0 = δ0(R, ε, |a|, |p|, N,m) > 0 satisfying the following

property: if suppf(1) ⊂ B(0, R) and if ‖f(1)‖L2(RN ) 6 δ0 then the profile U of the solution

obtained above verifies suppU ⊂ K(ε) ⊂ B(0, R+ ε), where

K(ε) =
{
x ∈ RN ; ∃y ∈ suppf(1) such that |x− y| 6 ε

}
,

which is compact.

3. Let R0 > 0. Assume now further that Re(a) > 0, Im(a) = 0 and

4Im(p) + 2

√
4Im2(p) + 2 > R2

0.

Then the solution is unique in the set of functions C
(
(0,∞);L2

c(RN )
)

whose profile V satisfies

suppV ⊂ B(0, R0).

In contrast with many other papers on self-similar solutions of equations dealing with exponents

m > 1 (see Cazenave and Weissler [61, 62, 63] and their references), in this paper we do not prescribe

any initial data u(0) to (4.1.1) since we are only interested on any solution u(t) by an external source

f(t) compactly supported. Moreover, we point out that if u ∈ C
(
[0,∞);Lq(RN )

)
is a self-similar

solution to (4.1.1), for some 0 < q 6 ∞, then necessarily u(0) = 0. Indeed, with help of (4.1.5), we

easily show that U ∈ Lq(RN ) and that for any t > 0, ‖u(t)‖Lq(RN ) = t
1

1−m+ N
2q ‖U‖Lq(RN ), implying

necessarily that u(0) = 0. On the other hand, notice that if u ∈ C
(
[0,∞); D ′(RN )

)
is a self-similar

solution to (4.1.1) then one cannot expect to have u(0) ∈ Lq(RN ), unless u(0) = 0. Indeed, we would
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have uλ(0) = u(0) in Lq(RN ) and for any λ > 0, ‖u(0)‖Lq(RN ) = λ
2

1−m+N
q ‖u(0)‖Lq(RN ) and again

we deduce that necessarily u(0) = 0. More generally, the set of functions u satisfying the invariance

property,

∀λ > 0, for a.e. x ∈ RN , uλ(x)
def
= λ−pu(λx) = u(x),

and lying in Lq(RN ) is reduced to 0.

In the special case of self-similar solution, the above arguments show that if f ≡ 0, a ∈ R and

u ∈ C
(
(0,∞);L2

c(RN )
)

then necessarily u(t) = 0, for any t > 0. Indeed, if u ∈ C
(
(0,∞);L2

c(RN )
)

is a self-similar solution to (4.1.1) then its profile U belongs to L2(RN ) and u ∈ C2((0;∞) × RN )

(see Section 4.3 below). So for any t > 0, we can multiply the above equation by −iu(t), integrate by

parts over RN and take the real part. We then deduce the mass conservation, d
dt‖u(t)‖2

L2(RN )
= 0,

which yields with the above identity,

‖U‖L2(RN ) = ‖u(t)‖L2(RN ) = t
1

1−m+N
4 ‖U‖L2(RN ),

for any t > 0. Hence the result. As a matter of fact, if ` ∈ {0, 1, 2} and if u ∈ C
(
(0,∞);H`(RN )

)
is a

self-similar solution to (4.1.1) then one easily deduces from (4.1.5) that actually lim
t↘0
‖u(t)‖H`(RN ) = 0.

We also mention here that our treatment of sharp localized solutions has some indirect connections

with the study of the “unique continuation property”. Indeed, we are showing that this property does

not hold when m ∈ (0, 1), in contrast to the case of linear and other type of nonlinear Schrödinger

equations (see, e.g., Kenig, Ponce and Vega [118], Urrea [177]).

The paper is organized as follows. In the next section, we introduce some notations and give general

versions of the main results (Theorems 4.2.3 and 4.2.5). In Section 4.3, we recall some existence,

uniqueness, a priori bound and smoothness results of solutions to equation (4.1.8) associated to the

evolution equation (4.1.1). Finally, Section 4.4 is devoted to the proofs of the mentioned results, which

we carry out by improving some energy methods presented in Antontsev, Dı́az and Shmarev [11].

4.2 Notations and general versions of the main result

Before stating our main results, we will indicate here some of the notations used throughout. For

1 6 p 6∞, p′ is the conjugate of p defined by 1
p + 1

p′ = 1. We denote by Ω the closure of a nonempty

subset Ω ⊆ RN and by Ωc = RN \ Ω its complement. We note ω b Ω to mean that ω ⊂ Ω and that

ω is a compact subset of RN . Unless if specified, any function lying in a functional space
(
Lp(Ω),

Wm,p(Ω), etc
)

is supposed to be a complex-valued function
(
Lp(Ω;C), Wm,p(Ω;C), etc

)
. For a

functional space E ⊂ L1
loc(Ω;C), we denote by Ec =

{
f ∈ E; suppf b Ω

}
. For a Banach space E,

we denote by E? its topological dual and by 〈 . , .〉E?,E ∈ R the E?−E duality product. In particular,

for any T ∈ Lp′(Ω) and ϕ ∈ Lp(Ω) with 1 6 p < ∞, 〈T ,ϕ〉
Lp′ (Ω),Lp(Ω)

= Re
∫
Ω

T (x)ϕ(x)dx. For

x0 ∈ RN and r > 0, we denote by B(x0, r) the open ball of RN of center x0 and radius r, by S(x0, r)

its boundary and by B(x0, r) its closure. As usual, we denote by C auxiliary positive constants,

and sometimes, for positive parameters a1, . . . , an, write C(a1, . . . , an) to indicate that the constant
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C continuously depends only on a1, . . . , an (this convention also holds for constants which are not

denoted by “C”).

Now, we state the precise notion of solution.

Definition 4.2.1. Let Ω be a nonempty bounded open subset of RN , let (a, b, c) ∈ C3, let 0 < m 6 1

and let G ∈ L1
loc(Ω).

1. We say that g is a local very weak solution to

−∆g + a|g|−(1−m)g + bg + cx.∇g = G, (4.2.1)

in D ′(Ω), if g ∈ L2
loc(Ω) and if

〈g,−∆ϕ〉D′(Ω),D(Ω) + 〈H(g),ϕ〉D′(Ω),D(Ω) = 〈G,ϕ〉D′(Ω),D(Ω), (4.2.2)

for any ϕ ∈ D(Ω), where

H(h) = a|h|−(1−m)h+ bh+ cx.∇h, (4.2.3)

for any h ∈ L2
loc(Ω). If, in addition, g ∈ L2(Ω) then we say that g is a global very weak solution

to (4.2.1).

2. We say that g is a local weak solution to (4.2.1) in D ′(Ω), if g ∈H1
loc(Ω) and if

〈∇g,∇ϕ〉D′(Ω),D(Ω) + 〈H(g),ϕ〉D′(Ω),D(Ω) = 〈G,ϕ〉D′(Ω),D(Ω), (4.2.4)

for any ϕ ∈ D(Ω), where H ∈ C
(
L2

loc(Ω); D ′(Ω)
)

is defined by (4.2.3).

3. We say that g is a local weak solution to

−∆g + a|g|−(1−m)g + bg + c|x|2g = G, (4.2.5)

in D ′(Ω), if g ∈H1
loc(Ω) and if g satisfies (4.2.4), for any ϕ ∈ D(Ω), where

H(h) = a|h|−(1−m)h+ bh+ c|x|2h, (4.2.6)

for any h ∈H1
loc(Ω).

4. Assume further that G ∈ L2(Ω). We say that g is a global weak solution to (4.2.1) and

g|Γ = 0, (4.2.7)

in L2(Ω), if g ∈H1
0 (Ω) and if

〈∇g,∇v〉L2(Ω),L2(Ω) + 〈H(g),v〉L2(Ω),L2(Ω) = 〈G,v〉L2(Ω),L2(Ω), (4.2.8)

for any v ∈H1
0 (Ω), where H ∈ C

(
H1(Ω);L2(Ω)

)
is defined by (4.2.3). Note that ∆g ∈ L2(Ω),

so that equation (4.2.1) makes sense in L2(Ω) and almost everywhere in Ω.

5. Assume further that G ∈ L2(Ω). We say that g is a global weak solution to (4.2.5) and (4.2.7), in

L2(Ω), if g ∈H1
0 (Ω) and if g satisfies (4.2.8), for any v ∈H1

0 (Ω), where H ∈ C
(
L2(Ω);L2(Ω)

)
is defined by (4.2.6). Note that ∆g ∈ L2(Ω), so that equation (4.2.5) makes sense in L2(Ω) and

almost everywhere in Ω.
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In the above definition, Γ denotes the boundary of Ω and C(Ω) = C0(Ω) is the space of complex-

valued functions which are defined and continuous over Ω. Obviously, for k ∈ N, Ck(Ω) denotes the

space of complex-valued functions lying in C(Ω) and having all derivatives of order lesser or equal

than k belonging to C(Ω).

Remark 4.2.2. Here are some comments about Definition 4.2.1.

1. Note that in Definition 4.2.1, any global weak solution is a local weak and a global very weak

solution, and any local weak or global very weak solution is a local very weak solution.

2. Assume that Ω has a C0,1 boundary. Let g ∈H1(Ω). Then boundary condition g|Γ = 0 makes

sense in the sense of the trace γ(g) = 0. Thus, it is well-known that g ∈ H1
0 (Ω) if and only if

γ(g) = 0. If furthermore Ω has a C1 boundary and if g ∈ C(Ω) ∩H1
0 (Ω) then for any x ∈ Γ,

g(x) = 0 (Theorem 9.17, p.288, in Brezis [44]). Finally, if g 6∈ C(Ω) and Ω has not a C0,1

boundary, the condition g|Γ = 0 does not make sense and, in this case, has to be understood as

g ∈H1
0 (Ω).

3. Let 0 < m 6 1 and let z ∈ C\{0}. Since
∣∣|z|−(1−m)z

∣∣ = |z|m, it is understood in Definition 4.2.1

that
∣∣|z|−(1−m)z

∣∣ = 0 when z = 0.

The main results of this section are the two following theorems implying, as a special case, the

statement of Theorem 4.1.2.

Theorem 4.2.3. Let Ω ⊂ B(0, R) be a nonempty bounded open subset of RN , let 0 < m < 1, let

(a, b, c) ∈ C3 be such that Im(a) 6 0, Im(b) < 0 and Im(c) 6 0. If Re(a) 6 0 then assume further

that Im(a) < 0. Then there exist three positive constants C = C(N,m), L = L(R, |a|, |p|, N,m) and

M = M(R, |a|, |p|, N,m) satisfying the following property: let G ∈ L1
loc(Ω), let g ∈ H1

loc(Ω) be any

local weak solution to (4.2.5), let x0 ∈ Ω and let ρ0 > 0. If ρ0 > dist(x0,Γ) then assume further that

g ∈H1
0 (Ω). Assume now that G|Ω∩B(x0,ρ0) ≡ 0. Then g|Ω∩B(x0,ρmax) ≡ 0, where

ρνmax =

(
ρν0 − CM2 max

{
1,

1

L2

}
max

{
ρν−1

0 , 1
}

× min
τ∈(m+1

2 ,1]

{
E(ρ0)γ(τ) max{b(ρ0)µ(τ), b(ρ0)η(τ)}

2τ − (1 +m)

})
+

, (4.2.9)

where

E(ρ0) = ‖∇g‖2
L2(Ω∩B(x0,ρ0))

, b(ρ0) = ‖g‖m+1

Lm+1(Ω∩B(x0,ρ0))
,

k = 2(1 +m) +N(1−m), ν = k
m+1 > 2,

and where

γ(τ) =
2τ − (1 +m)

k
∈ (0, 1), µ(τ) =

2(1− τ)

k
, η(τ) =

1−m
1 +m

− γ(τ) > 0.

for any τ ∈
(
m+1

2 , 1
]
.

Here and in what follows, r+ = max{0, r} denotes the positive part of the real number r.
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Remark 4.2.4. If the solution is too “large”, it may happen that ρmax = 0 and so the above result is

not consistent. A sufficient condition to observe a localizing effect is that the solution is small enough,

in a suitable sense. We give below a sufficient condition on the data a ∈ C, p ∈ C and G to have

ρmax > 0.

Theorem 4.2.5. Let Ω ⊂ B(0, R) be a nonempty bounded open subset of RN , let 0 < m < 1, let

(a, b, c) ∈ C3 be such that Im(a) 6 0, Im(b) < 0 and Im(c) 6 0. If Re(a) 6 0 then assume further

that Im(a) < 0. Let G ∈ L1
loc(Ω), let g ∈ H1

loc(Ω) be any local weak solution to (4.2.5), let x0 ∈ Ω

and let ρ1 > 0. If ρ1 > dist(x0,Γ) then assume further that g ∈H1
0 (Ω). Then there exist two positive

constants E? > 0 and ε? > 0 satisfying the following property: let ρ0 ∈ (0, ρ1) and assume that

‖∇g‖2
L2(Ω∩B(x0,ρ1))

< E? and

∀ρ ∈ (0, ρ1), ‖G‖2
L2(Ω∩B(x0,ρ))

6 ε?(ρ− ρ0)p+, (4.2.10)

where p = 2(1+m)+N(1−m)
1−m . Then g|Ω∩B(x0,ρ0) ≡ 0. In other words (with the notation of Theorem 4.2.3),

ρmax = ρ0.

Remark 4.2.6. We may estimate E? and ε? as

E? = E?

(
‖g‖−1

Lm+1(B(x0,ρ1))
, ρ1,

ρ0

ρ1
,
L

M
,N,m

)
,

ε? = ε?

(
‖g‖−1

Lm+1(B(x0,ρ1))
,
ρ0

ρ1
,
L

M
,N,m

)
,

where L > 0 and M > 0 are given by Theorem 4.2.3. The dependence on 1
δ means that if δ goes

to 0 then E? and ε? may be very large. Note that p = 1
γ(1) , where γ is the function defined in

Theorem 4.2.3.

4.3 Existence, uniqueness and smoothness

We recall the following results which are taken from other works by the authors (Bégout and

Dı́az [28], Theorems 2.2.4, 2.2.6 and 2.2.12). Let Ω ⊂ B(0, R) be a nonempty bounded open subset

of RN , let 0 < m < 1 and let (a, b, c) ∈ C3 be such that Im(a) 6 0, Im(b) < 0 and Im(c) 6 0. If

Re(a) 6 0 then assume further that Im(a) < 0. For any G ∈ L2(Ω), there exists at least one global

weak solution g ∈H1
0 (Ω) ∩H2

loc(Ω) to (4.2.5) and (4.2.7). Moreover, if Ω has a C1,1 boundary then

g ∈H2(Ω). Finally,

‖g‖H1(Ω) 6M0(R2 + 1)‖G‖L2(Ω), (4.3.1)

where M0 = M0(|a|, |b|, |c|). Finally, if U belongs to L2
loc(Ω) with U a local very weak solution to

−∆U + a|U |−(1−m)U + bU + icx.∇U = F , in D ′(Ω),(
with any (a, b, c) ∈ C×C×R

)
then U ∈H2

loc(Ω). Indeed, by the unknown transformation described

at the beginning of Section 4.4 below, we are brought back to the study of the smoothness of solutions

to equation,

−∆g + a|g|−(1−m)g +

(
b− i

cN

2

)
g − c2

4
|x|2g = F (x)e−ic

|x|2
4 , in D ′(Ω),
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for which the above smoothness result applies. Concerning the uniqueness of solutions, we have the

following result.

Theorem 4.3.1 (Uniqueness). Let Ω ⊆ RN be a nonempty open subset let 0 < m < 1, let (a, b, c) ∈
R× C× R be such that a > 0, Re(b) > 0 and c > 0. Then for any F ∈ L2(Ω), equation

−∆U − ia|U |−(1−m)U − ibU + icx.∇U = F , in D ′(Ω),

admits at most one global very weak solution compact with support U ∈ L2
c(Ω).

Proof. Let U1,U2 ∈ L2
c(Ω) be two global very weak solutions both compactly supported to the

above equation. By the results above, one has U1,U2 ∈ H2
c (Ω). Setting g1 = U1e

−ic | . |
2

4 and g2 =

U2e
−ic | . |

2

4 , a straightforward calculation shows that (see also the beginning of Section 4.4 below)

g1, g2 ∈H2
c (Ω) satisfy

−∆g + ã|g|−(1−m)g + b̃g + c̃V 2g = F̃ , in L2(Ω),

where ã = −ia, b̃ = −i
(
b+ cN

2

)
, c̃ = − c

2

4 , V (x) = |x| and F̃ = Fe−ic
| . |2

4 . Note that,

ã 6= 0, Re(ã) = 0,

Re
(
ã b̃
)

= Re

(
a

(
b+

cN

2

))
= aRe(b) +

1

2
acN > 0,

Re
(
ã c̃
)

=
ac2

4
Re(i) = 0.

It follows from 1) of Theorem 2.2.10 that g1 = g2 and hence, U1 = U2.

Remark 4.3.2. Notice that uniqueness for self-similar solution is relied to uniqueness for (4.1.8).

Using Theorem 2.2.10, we can show that the uniqueness of self-similar solutions to equation (4.1.1)

holds in the class of functions C
(
(0,∞);L2

c(RN )
)

when, for instance, Re(a) = 0 and Im(a) < 0

(Theorem 4.3.1). These hypotheses are the same as in Carles and Gallo [53]. We point out that it seems

possible to adapt the uniqueness method of Theorem 2.2.10 to obtain other criteria of uniqueness.

Remark 4.3.3. In the proof of uniqueness of Theorem 4.1.2, we will use the Poincaré’s inequa-

lity (4.4.9). This estimate can be improved in several ways. For instance, for any x0 ∈ RN and any

R > 0, we have

‖u‖L2(B(x0,R)) 6
2R

π
‖∇u‖L2(B(x0,R)), (4.3.2)

which is substantially better than (4.4.9), since 2
π < 1 <

√
2. Actually, (4.3.2) holds for any u ∈

H1
(
B(x0, R)

)
such that ∫

B(x0,R)

u(x)dx = 0,

and
∂2u

∂xj∂xk
∈ L∞

(
B(x0, R)

)
, for any (j, k) ∈ J1, NK × J1, NK. See Payne and Weinberger [148] for

more details.
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4.4 Proofs of the localization properties

We start by pointing out that if Ω ⊆ RN is a nonempty open subset and if 0 < m 6 1, we have

the following property : let U ∈H1
loc(Ω) be a local weak solution to

−∆U + a|U |−(1−m)U + bU + icx.∇U = F (x), in D ′(Ω),

for some (a, b, c) ∈ C×C×R and F ∈ L1
loc(Ω). Setting g(x) = U(x)e−ic

|x|2
4 , for almost every x ∈ Ω,

it follows that g ∈H1
loc(Ω) is a local weak solution to

−∆g + a|g|−(1−m)g +

(
b− i

cN

2

)
g − c2

4
|x|2g = F (x)e−ic

|x|2
4 , in D ′(Ω).

Conversely, if g ∈H1
loc(Ω) is a local weak solution to

−∆g + a|g|−(1−m)g + bg − c2|x|2g = G(x), in D ′(Ω),

for some (a, b, c) ∈ C × C × R and G ∈ L1
loc(Ω), then setting U(x) = g(x)eic

|x|2
2 , for almost every

x ∈ Ω, it follows that U ∈H1
loc(Ω) is a local weak solution to

−∆U + a|U |−(1−m)U + (b+ icN)U + 2icx.∇U = G(x)eic
|x|2

2 , in D ′(Ω).

The proof of Theorems 4.2.3 and 4.2.5 follows the main structure of application of the energy methods

introduced to the study of free boundary (see, e.g., the general presentation made in the monograph

Antontsev, Dı́az and Shmarev [11]). In both cases, the conclusions follow quite easily once it is obtained

a general differential inequality for the local energy E(ρ) of the type

E(ρ)α 6 Cρ−βE′(ρ) +K(ρ− ρ0)ω+, (4.4.1)

for some positive constants C, β and ω with K = 0, in case of Theorem 4.2.3 and K > 0 small enough,

in case of Theorem 4.2.5. The key estimate which leads to desired local behaviour is that the exponent

α arising in (4.4.1) satisfies that α ∈ (0, 1).

Although the main steps to prove (4.4.1) follow the same steps already indicated in the monograph

Antontsev, Dı́az and Shmarev [11], it turns out that the concrete case of the systems of scalar equations

generated by the Schrödinger operator does not fulfill the assumptions imposed in Antontsev, Dı́az

and Shmarev [11] for the case of systems of nonlinear equations. The extension of the method which

applied to the system associated to the complex Schrödinger operator is far to be trivial and it was

the main object of Bégout and Dı́az [25]. Unfortunately, the extension of the method presented in

Bégout and Dı́az [25] is not enough to be applied to the fundamental equation of the present paper(
i.e. (4.1.8) or (4.2.5)

)
mainly due to the presence of the source term −c2|x|2g. A sharper version

of the energy method, also applicable to a different type of nonlinear complex Schrödinger type

equations (for instance containing a Hartree-Fock type nonlocal term), was developed in Bégout and

Dı́az [27], where the applicability of the energy method was reduced to prove a certain local energy

balance. Such a local balance will be proved here in the following lemma. Thanks to that, the proofs

of Theorems 4.2.3 and 4.2.5 are then a corollary of Theorems 3.2.1 and 3.2.2.
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Lemma 4.4.1. Let Ω ⊂ B(0, R) be a nonempty bounded open subset of RN , let 0 < m < 1, let

(a, b, c) ∈ C3 be such that Im(a) 6 0, Im(b) < 0 and Im(c) 6 0. If Re(a) 6 0 then assume further

that Im(a) < 0. Let G ∈ L1
loc(Ω) and let g ∈ H1

loc(Ω) be any local weak solution to (4.2.5). Then

there exist two positive constants L = L(R, |a|, |b|, |c|) and M = M(R, |a|, |b|, |c|) such that for any

x0 ∈ Ω and any ρ? > 0, if G|Ω∩B(x0,ρ?) ∈ L2
(
Ω ∩B(x0, ρ?)

)
then we have

‖∇g‖2
L2(Ω∩B(x0,ρ))

+ L‖g‖m+1

Lm+1(Ω∩B(x0,ρ))
+ L‖g‖2

L2(Ω∩B(x0,ρ))

6M

(∣∣∣∣∣
∫

Ω∩S(x0,ρ)

g∇g. x− x0

|x− x0|
dσ

∣∣∣∣∣+

∫
Ω∩B(x0,ρ)

|G(x)g(x)|dx

)
, (4.4.2)

for every ρ ∈ [0, ρ?), where it is additionally assumed that g ∈H1
0 (Ω) if ρ? > dist(x0,Γ).

Proof. Let x0 ∈ Ω and let ρ? > 0. Let σ be the surface measure on a sphere and set for every

ρ ∈ [0, ρ∗),

I(ρ) =

∣∣∣∣∣
∫

Ω∩S(x0,ρ)

g∇g. x− x0

|x− x0|
dσ

∣∣∣∣∣ , J(ρ) =

∫
Ω∩B(x0,ρ)

|G(x)g(x)|dx,

w(ρ) =

∫
Ω∩S(x0,ρ)

g∇g. x− x0

|x− x0|
dσ, IRe(ρ) = Re

(
w(ρ)

)
, IIm(ρ) = Im

(
w(ρ)

)
.

It follows from Theorem 3.3.1 that I, J, IRe, IIm ∈ C([0, ρ∗);R) and that,

‖∇g‖2
L2(Ω∩B(x0,ρ))

+ Re(a)‖g‖m+1

Lm+1(Ω∩B(x0,ρ))
+ Re(b)‖g‖2

L2(Ω∩B(x0,ρ))

+ Re(c)‖|x|g‖2
L2(Ω∩B(x0,ρ))

= IRe(ρ) + Re

 ∫
Ω∩B(x0,ρ)

G(x)g(x)dx

 , (4.4.3)

Im(a)‖g‖m+1

Lm+1(Ω∩B(x0,ρ))
+ Im(b)‖g‖2

L2(Ω∩B(x0,ρ))
+ Im(c)‖|x|g‖2

L2(Ω∩B(x0,ρ))

= IIm(ρ) + Im

 ∫
Ω∩B(x0,ρ)

G(x)g(x)dx

 , (4.4.4)

for any ρ ∈ [0, ρ?). From these estimates, we obtain∣∣∣‖∇g‖2L2(B(x0,ρ))
+ Re(a)‖g‖m+1

Lm+1(B(x0,ρ))
+ Re(b)‖g‖2

L2(B(x0,ρ))

+Re(c)‖|x|g‖2
L2(B(x0,ρ))

∣∣∣ 6 I(ρ) + J(ρ), (4.4.5)

|Im(a)|‖g‖m+1

Lm+1(B(x0,ρ))
+ |Im(b)|‖g‖2

L2(B(x0,ρ))
+ |Im(c)|‖|x|g‖2

L2(B(x0,ρ))
6 I(ρ) + J(ρ), (4.4.6)

for any ρ ∈ [0, ρ?). Let A > 1 to be chosen later. We multiply (4.4.6) by A and sum the result

with (4.4.5). This leads to,

‖∇g‖2
L2(B(x0,ρ))

+A1‖g‖m+1

Lm+1(B(x0,ρ))
+A2‖g‖2L2(B(x0,ρ))

+ Re(c)‖|x|g‖2
L2(B(x0,ρ))

6 2A
(
I(ρ) + J(ρ)

)
, (4.4.7)
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where

A1 =

Re(a), if Re(a) > 0,

A|Im(a)| − |Re(a)|, if Re(a) 6 0,

A2 = A|Im(b)| − |Re(b)|.

But (4.4.7) yields,

‖∇g‖2
L2(B(x0,ρ))

+A1‖g‖m+1

Lm+1(B(x0,ρ))
+
(
A2 −R2|Re(c)|

)
‖g‖2

L2(B(x0,ρ))
6 2A

(
I(ρ) + J(ρ)

)
(4.4.8)

We choose A = A(R, |a|, |b|, |c|) large enough to have A|Im(a)| − |Re(a)| > 1 (when Re(a) 6 0) and

A2 − R2|Re(c)| > 1. Then (4.4.2) comes from (4.4.8) with L = min
{
A1, 1

}
and M = 2A. Note that

L = L(R, |a|, |b|, |c|) and M = M(R, |a|, |b|, |c|). This concludes the proof.

Remark 4.4.2. When ρ? 6 dist(x0,Γ) and G ∈ L2
loc(Ω), one may easily obtain (4.4.3)–(4.4.4)

without the technical Theorem 3.3.1. Indeed, it follows from Proposition 1.4.5 that g ∈ H2
loc(Ω), so

that equation (4.2.5) makes sense in L2
loc(Ω) and almost everywhere in Ω. Thus, if ρ? 6 dist(x0,Γ)

then g|B(x0,ρ) ∈H
2
(
B(x0, ρ)

)
and (4.4.3)

(
respectively, (4.4.4)

)
is obtained by multiplying (4.2.5) by

g (respectively, by ig), integrating by parts over B(x0, ρ) and taking the real part.

Proof of Theorem 4.2.3. By Lemma 4.4.1, u satisfies (3.2.1). The result then comes from Theo-

rem 3.2.1.

Proof of Theorem 4.2.5. By Lemma 4.4.1, u satisfies (3.2.3). The result then comes from Theo-

rem 3.2.2.

Proof of Theorem 4.1.2. Let R > 0. Let ε > 0 and let f ∈ C
(
(0,∞);L2(RN )

)
satisfying (4.1.3)

and suppf(1) ⊂ B(0, R). Let M0 be the constant in (4.3.1). Let b = −iN+2p
4 , c = − 1

16 and G =

−f(1)e−i
| . |2

8 . Note that Im(a) 6 0, Im(b) = −N(1−m)+4
4(1−m) < 0 and Im(c) = 0. In addition, if Re(a) 6 0

then Im(a) < 0. It follows that the existence result of Section 4.3 applies to equation (4.1.8) : let

g ∈ H1
0 (B(0, 2R + 2ε)) ∩ H2(B(0, 2R + 2ε)) be such a solution to (4.1.8) and (4.2.7). We apply

Theorem 4.2.3 with ρ0 = 2ε. By (4.3.1), there exists δ0 = δ0(R, ε, |a|, |b|, |c|, N,m) > 0 such that if

‖f(1)‖L2(RN ) 6 δ0 then ρmax > ε. Set K = suppf(1) = suppG. Let x0 ∈ K(2ε)c ∩ B(0, 2R + 2ε).

Let y ∈ B(x0, 2ε) and let z ∈ K. By definition of K(2ε), dist(K(2ε)c,K) = 2ε. We then have

2ε = dist(K(2ε)c,K) 6 |x0 − z| 6 |x0 − y|+ |y − z| < 2ε+ |y − z|.

It follows that for any z ∈ K, |y − z| > 0, so that y 6∈ K. This means that B(x0, 2ε) ∩K = ∅, for any

x0 ∈ K(2ε)c ∩B(0, 2R+ 2ε). By Theorem 4.2.3 we deduce that for any x0 ∈ K(2ε)c ∩B(0, 2R+ 2ε),

g|B(x0,ε) ≡ 0. By compactness, K(ε)c ∩ B(0, 2R + 2ε) may be covered by a finite number of sets

B(x0, ε) ∩ B(0, 2R + 2ε) with x0 ∈ K(2ε)c. It follows that g|K(ε)c∩B(0,2R+2ε) ≡ 0. This means that

supp g ⊂ K(ε) ⊂ B(0, 2R+ 2ε). We then extend g by 0 outside of B(0, 2R+ 2ε). Thus, g ∈H2
c (RN )

is a solution to (4.1.8) in RN . Now, let U = gei
| . |2

8 and let for any t > 0, u(t) = t
p
2U

(
√̇
t

)
. It

follows that suppU = supp g ⊂ K(ε), U ∈H2
c (RN ) and U is a solution to (4.1.6) in RN . By (4.1.5),

u verifies (4.1.9) and is a solution to (4.1.1) in (0,∞) × RN with u(1) = U compactly supported in



76 Self-similar solutions with compactly supported profile

K(ε). By Definition 4.1.1, u is self-similar and still by (4.1.5), suppu(t) is compact for any t > 0.

Hence Properties 1 and 2. It remains to show Property 3. Let R0 > 0 and assume further that

Re(a) > 0, Im(a) = 0 and 0 < R2
0 6 4Im(p) + 2

√
4Im2(p) + 2. Let u1,u2 ∈ C

(
(0,∞);L2

c(RN )
)

be two solutions to (4.1.1) whose profile U1,U2 satisfy suppU , suppV ⊂ B(0, R0). By Section 4.3,

U1,U2 ∈H2
c (RN ). For j ∈ {1, 2}, let gj = Uje

−i | . |
2

8 . It follows that g1 and g2 belong to H2
c (RN ),

are compactly supported in B(0, R0) and satisfy the same equation (4.1.8). Let g = g1 − g2 and set

for any h ∈ L2
c(RN ), H(h) = |h|−(1−m)h. It follows that,

−∆g + a
(
H(g1)−H(g2)

)
− i

N + 2p

4
g − 1

16
|x|2g = 0, a.e. in RN .

Multiplying this equation by g, integrating by parts over RN and taking the real part, we get

‖∇g‖2
L2 + a〈H(g1)−H(g2), g1 − g2〉L2,L2 − Re

(
i
N + 2p

4

)
‖g‖2

L2 −
1

16
‖| . |g‖2

L2

= ‖∇g‖2
L2 + a〈H(g1)−H(g2), g1 − g2〉L2,L2 +

1

2
Im(p)‖g‖2

L2 −
1

16
‖| . |g‖2

L2

= 0,

We recall the following refined Poincaré’s inequality (Bégout and Torri [31]).

∀u ∈H1
0

(
B(0, R0)

)
, ‖u‖2

L2(B(0,R0))
6 2R2

0‖∇u‖2L2(B(0,R0))
, (4.4.9)

If follows from (4.4.9) and Lemma 1.9.1 that there exists a positive constant C such that,(
1

2R2
0

+
1

2
Im(p)− R2

0

16

)
‖g‖2

L2 + Ca

∫
ω

|g1(x)− g2(x)|2

(|g1(x)|+ |g2(x)|)1−m dx 6 0,

where ω =
{
x ∈ Ω; |g1(x)|+ |g2(x)| > 0

}
. But,

1

2R2
0

+
1

2
Im(p)− R2

0

16
=

1

16R2
0

(
−R4

0 + 8Im(p)R2
0 + 8

)
> 0,

when

0 6 R2
0 6 4Im(p) + 2

√
4Im2(p) + 2.

It follows that g1 = g2 which implies that U1 = U2 and for any t > 0, u1(t) = u2(t). This ends the

proof.
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Finite time extinction for the
strongly damped nonlinear
Schrödinger equation in bounded
domains
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Abstract
We prove the finite time extinction property (u(t) ≡ 0 on Ω for any t > T?, for some T? > 0) for solutions

of the nonlinear Schrödinger problem iut+∆u+a|u|−(1−m)u = f(t, x), on a bounded domain Ω of RN , N 6 3,

a ∈ C with Im(a) > 0 (the damping case) and under the crucial assumptions 0 < m < 1 and the dominating

condition 2
√
m Im(a) > (1−m)|Re(a)|. We use an energy method as well as several a priori estimates to prove

the main conclusion. The presence of the non-Lipschitz nonlinear term in the equation introduces a lack of

regularity of the solution requiring a study of the existence and uniqueness of solutions satisfying the equation

in some different senses according to the regularity assumed on the data.

5.1 Introduction

This paper deals with the finite time extinction property of solutions of the nonlinear Schrödinger

problem 
i
∂u

∂t
+ ∆u+ a|u|−(1−m)u = f(t, x), in (0,∞)× Ω,

u(t)|Γ = 0, on (0,∞)× Γ,

u(0) = u0, in Ω,

(5.1.1)

when, roughly speaking, we assume that N 6 3,

a ∈ C with Im(a) > 0, (5.1.2)
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plutense de Madrid, Plaza de las Ciencias, 3, 28040 Madrid, Spain, e-mail : jidiaz@ucm.es

2010 Mathematics Subject Classification : 35Q55 (35A01, 35A02, 35B40, 35D30, 35D35)
Key Words : damped Schrödinger equation, existence, uniqueness, finite time extinction, asymptotic behavior

77

jidiaz@ucm.es


78 Finite time extinction in bounded domains

and

0 < m < 1. (5.1.3)

We start by pointing out that this finite time extinction property (u(t) ≡ 0 on Ω for any t > T?, for

some T? > 0) represents, clearly, the most opposite property to the famous Max Born result on the

conservation of the mass

‖u(t)‖L2(Ω) = ‖u0‖L2(Ω), for any t > 0,

which arises (when f = 0) in the linear case (and more generally if Im(a) = 0 : see Proposition 5.2.3

below) and which allows the probabilistic understanding of the complex wave solution u(t, x) in the

context of the applications of the linear Schrödinger equation in Quantum Mechanics. It is well known

that the presence of a damping term (5.1.2) makes the equation irreversible with respect the time.

We also recall that the Schrödinger equation in presence of a nonlinear term in the equation (as, e.g.,

problem (5.1.1) when a ∈ C and a 6= 0) arises in many other different contexts as, e.g., Nonlinear

Optics, Hydrodynamics, etc., and that those other contexts, for instance in Nonlinear Optics, the

variable t does not represent time but the main scalar spacial variable which appears in the propagation

of the waveguide direction (see e.g. Agrawal and Kivshar [3], Sulem and Sulem [165], Shi, Xu, Yang,

Yang and Yin [158] and its many references).

As a matter of fact, the nonlinear Schrödinger equation under condition (5.1.2) is referred in the

literature as the damped case and it was intensively studied since the middle of the past century

under different additional conditions (but most of them for m > 1) (see, e.g., Nelson [142], Pozzi [152],

Bardos and Brezis [17], Lions [128], Kato [117], Brezis and Kato [47], Vladimirov [179], Tsutsumi [171],

Temam and Miranville [169], Kita and Shimomura [120], Carles and Gallo [53], Carles and Ozawa [55]

and Hayashi, Li and Naumkin [104], among others).

In our above formulation we assume that a ∈ C and thus a possible, non-dominant non-dissipative

nonlinear term may coexists with the damping term (i.e., we allow Re(a) 6= 0). Nevertheless, our main

result on the finite time extinction for |Ω| <∞ requires the dominating condition

2
√
m Im(a) > (1−m)|Re(a)|,

as well as the assumption (5.1.3) on a strong damping.

We also recall that in most of the papers on the nonlinear equation (5.1.1) it is assumed that m = 3

(the so called cubic case). Nevertheless there are several applications in which the general case m > 0

is of interest. For instance, it is the case of the so called non-Kerr type equations arising in the study

of optical solitons (see, e.g., [3]). For some other physical details and many references, we refer the

reader to the general presentations made in the books [3] and [165]. Some other references concerning

the case m ∈ (0, 1) are quoted in our previous paper Bégout and Dı́az [26]. We also mention that

the spacial localization phenomenon (solutions with support u(t, . ) being a compact, when Ω is

unbounded) requires a different balance between the damping and non-damping components (mainly

with Im(a) > 0) of the nonlinear term a|u|m−1u (see [25, 26, 27]).

In spite of the large amount of papers devoted to the existence and uniqueness results of nonlinear
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Schrödinger equations with a damping term only very few of them allowed the consideration of a

strong damping term (i.e. condition (5.1.3)). This is the reason why we presented here some new

results on the general theory of the existence, uniqueness and regularity of solutions of the strongly

damped Schrödinger equation improving several previous papers in the literature (see, e.g. Carles and

Gallo [53], Lions [128], Brezis and Cazenave [45] and Vrabie [181]) which are needed for the study of

the finite time extinction property.

Since the comparison principle does not apply to our problem, the main tool to prove the finite time

extinction property is a suitable energy method in the spirit of the collection of energy methods quoted

in the monograph Antontsev, Dı́az and Shmarev [11]. Nevertheless, the adaptation to the nonlinear

Schrödinger equation requires some new estimates and also a sharper study of the ordinary differential

inequality satisfied by the mass. We start by giving, in Section 5.2, a semi-abstract result (which is

proved in Section 5.5) in which the finite time extinction property is derived under a general regularity

condition on the solution. The presence of the non-Lipschitz nonlinear term in the equation introduces

a lack of regularity of the solution (in contrast to the case in which m > 1) and so we shall devote

Section 5.4 to present a separated study of the existence and uniqueness of solutions satisfying the

equation in some different sense according to the regularity assumed on the data. To this purpose, we

use mainly some monotonicity methods, jointly with suitable regularizations and passing to the limit,

improving previous results in the literature. Section 5.3 concerns the finite time extinction and the

asymptotic behavior of the solution. The proofs of the results of Sections 5.3 and 5.4 are presented in

Sections 5.7 and 5.6, respectively. An Appendix (p.201), collecting some technical auxiliary results, is

also presented for the convenience of the reader.

We point out that in our formulation it may arise a non-homogeneous term (on which we assume a

finite time extinction T0) and that, surprisingly enough, under some critical decay to zero of f(t, . )

at t = T0, we can conclude that the corresponding solution u also vanishes after the same time t = T0

(see Theorem 5.2.1 part 2). Our energy method allows us also to get some large time decay estimates

in some cases, always under the presence of a damping term, in which the conditions on the finite

time extinction property fails (see Theorems 5.3.5 and 5.3.6 below). See Shimomura [159] for a related

result with m = 1 + 2
N .

We mention that it seems possible to apply the techniques of this paper to the consideration of some

other complex-valued nonlinear equations such as the Gross-Pitaevskii equations, the Hartree-Fock

equations, and the Ginzburg-Landau equations (see, e.g., Bégout and Dı́az [28], Antontsev, Dias and

Figueira [10], Okazawa and Yokota [147] and its many references).

Finally, we collect here some notations which will be used along with this paper. We let N0 = N∪{0}.
Let t ∈ R. Then t+ = max{t, 0} is the positive part of t. We denote by z the conjugate of the complex

number z, by Re(z) its real part and by Im(z) its imaginary part. For 1 6 p 6∞, p′ is the conjugate

of p defined by 1
p + 1

p′ = 1. We write Γ the boundary of a subset Ω ⊂ RN . Unless if specified, all

functions are complex-valued (H1(Ω) = H1(Ω;C), etc). The notations Lp(Ω) (p ∈ (0,∞]), W k,p(Ω),

W k,p
0 (Ω), Hk(Ω), Hk

0 (Ω) (p ∈ [1,∞], k ∈ N), W−k,p
′
(Ω) and H−k(Ω) (p ∈ [1,∞), k ∈ N) refer as

the usual well known different Lebesgue, Sobolev and Hilbert spaces and their topological dual. By

convention of notation, W 0,p(Ω) = W 0,p
0 (Ω) = Lp(Ω). For a Banach space X, we denote by X? its

topological dual and by 〈 . , . 〉X?,X ∈ R the X?−X duality product. In particular, for any T ∈ Lp′(Ω)
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and ϕ ∈ Lp(Ω) with 1 6 p <∞, 〈T, ϕ〉Lp′ (Ω),Lp(Ω) = Re
∫

Ω
T (x)ϕ(x)dx. The scalar product in L2(Ω)

between two functions u, v is, (u, v)L2(Ω) = Re
∫

Ω
u(x)v(x)dx. For a Banach space X and p ∈ [1,∞],

u ∈ Lploc

(
[0,∞);X

)
means that u ∈ Lploc

(
(0,∞);X

)
and for any T > 0, u|(0,T ) ∈ Lp

(
(0, T );X

)
. In

the same way, u ∈ W 1,p
loc

(
[0,∞);X

)
means that u ∈ Lploc

(
[0,∞);X

)
, u is absolutely continuous over

[0,∞) (so it has a derivative u′ almost everywhere on (0,∞)) and u′ ∈ Lploc

(
[0,∞);X

)
. For a real x,

[x] denotes its integer part. As usual, we denote by C auxiliary positive constants, and sometimes, for

positive parameters a1, . . . , an, write as C(a1, . . . , an) to indicate that the constant C depends only

on a1, . . . , an and that this dependence is continuous (we will use this convention for constants which

are not denoted merely by “C”).

5.2 A semi-abstract result for finite time extinction

We consider the following nonlinear Schrödinger equation.
i
∂u

∂t
+ ∆u+ a|u|−(1−m)u = f(t, x), in (0,∞)× Ω,

u(t)|Γ = 0, on (0,∞)× Γ,

u(0) = u0, in Ω,

(5.2.1)

(5.2.2)

(5.2.3)

The next result proves the finite time extinction of solutions (in some cases even in the same time in

which the source f(t, x) vanishes) under suitable “regularity” conditions on the solution (this is the

reason why we denote as “semi-abstract” such a framework). In the following sections we shall obtain

sufficient conditions implying that such a framework holds.

Theorem 5.2.1. Let Ω ⊆ RN be an open subset, 0 < m 6 1, a ∈ C, f ∈ L1
loc

(
[0,∞);L2(Ω)

)
and

u0 ∈ L2(Ω). Assume that u is any strong solution to (5.2.1)–(5.2.3) (see Definition 5.4.1 below) and

that,

u ∈ L∞
(
(0,∞);H`

0(Ω)
)
, (5.2.4)

where ` =
[
N
2

]
+ 1 (or H`(Ω) instead of H`

0(Ω), if Ω is a half-space or if Ω has a bounded C0,1-

boundary). Then the following conclusions hold.

1) If there exists T0 > 0 such that,

for almost every t > T0, f(t) = 0, (5.2.5)

then there exists a finite time T? > T0 such that,

∀t > T?, ‖u(t)‖L2(Ω) = 0. (5.2.6)

Furthermore,

T? 6
2 `CGN ‖u‖

N(1−m)
2`

L∞((0,∞);H`(Ω))

Im(a)(1−m)(2`−N)
‖u(T0)‖

(1−m)(2`−N)
2`

L2(Ω) + T0, (5.2.7)

where CGN = CGN(N,m) is the constant in the inequality (5.5.6) below.
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2) There exist ε? = ε?(Im(a), N,m) satisfying the following property. Let T0 > 0 and let CGN be the

constant in (5.5.6). If,

‖u‖1−m
L∞((0,∞);H`(Ω))

6 Im(a)C−1
GN δ (1− δ)T0, (5.2.8)

and if for almost every t > 0,

‖f(t)‖2L2(Ω) 6 ε?‖u‖
− 2N

2`−N
L∞((0,∞);H`(Ω))

(
T0 − t

) 2δ−1
1−δ

+
, (5.2.9)

where δ = (2`+N)+m(2`−N)
4` ∈

(
1
2 , 1
)
, then (5.2.6) holds true with T? = T0.

Remark 5.2.2. Notice that δ (1− δ) = (2`−N)(1−m)((2`+N)+m(2`−N))
16`2 and 2δ−1

1−δ = 2N(1−m)+2`m
(2`−N)(1−m) .

The following result collects several very useful a priori estimates and some time differentiability

conditions.

Proposition 5.2.3. Let Ω ⊆ RN be an open subset, 0 < m 6 1, a ∈ C, f ∈ L1
loc

(
[0,∞);L2(Ω)

)
and

u0 ∈ L2(Ω). Assume that u is any weak solution to (5.2.1)–(5.2.3) (see Definition 5.4.1 below). Then

we have the following results.

u ∈ Lm+1
loc

(
[0,∞);Lm+1(Ω)

)
, (5.2.10)

1

2
‖u(t)‖2L2(Ω) + Im(a)

t∫
s

‖u(σ)‖m+1
Lm+1(Ω)dσ >

1

2
‖u(s)‖2L2(Ω)

+ Im

t∫∫
sΩ

f(σ, x)u(σ, x) dx dσ, if Im(a) 6 0,

1

2
‖u(t)‖2L2(Ω) + Im(a)

t∫
s

‖u(σ)‖m+1
Lm+1(Ω)dσ 6

1

2
‖u(s)‖2L2(Ω)

+ Im

t∫∫
sΩ

f(σ, x)u(σ, x) dx dσ, if Im(a) > 0,

(5.2.11)

for any t > s > 0. Finally, if u satisfies one of the conditions below then the map t 7−→ ‖u(t)‖2L2(Ω)

belongs to W 1,1
loc

(
[0,∞);R

)
and we have equality in (5.2.11).

a) u is a strong solution (see Definition 5.4.1 below),

b) |Ω| <∞,
c) m = 1,

d) Im(a) = 0.

Remark 5.2.4. Here are some comments about Theorem 5.2.1.

1) Let f satisfies (5.2.5) and let u be a weak solution (see Definition 5.4.1 below). By (5.2.11) we

obtain that for any t > T0,‖u(t)‖L2(Ω) = ‖u(T0)‖L2(Ω), if Im(a) = 0,

‖u(t)‖L2(Ω) > ‖u(T0)‖L2(Ω), if Im(a) < 0.
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It follows that in those cases the finite time extinction is not reachable. If m = 1 then we have,

thanks to Proposition 5.2.3,

∀t > T0, ‖u(t)‖L2(Ω) = ‖u(T0)‖L2(Ω)e
−Im(a)(t−T0).

And again, there is no finite time extinction.

2) Let u be a weak solution of (5.2.1) (see Definition 5.4.1). It is obvious from the equation and 1)

of this remark that if u vanishes at a finite time T? > 0 then necessarily f must satisfy (5.2.5)

(but not necessarily the decay condition (5.2.9)) and that necessarily Im(a) > 0 and m < 1. If, in

addition, |Ω| <∞ then we have,

T? >
‖u(T0‖1−mL2(Ω)

(1−m)Im(a)|Ω| 1−m2
+ T0. (5.2.12)

Indeed, it follows from (5.2.5), Proposition 5.2.3 and Hölder’s inequality that for almost every

t > T0,

1

2

d

dt
‖u(t)‖2L2(Ω) = −Im(a)‖u(t)‖m+1

Lm+1(Ω) > −Im(a)|Ω|
1−m

2 ‖u(t)‖m+1
L2(Ω),

that is, y′ > −2Im(a)|Ω| 1−m2 y
m+1

2 , where y( . ) = ‖u( . )‖2L2(Ω). After integration we get,

y(t)
1−m

2 >
(
y(T0)

1−m
2 − (1−m)Im(a)|Ω|

1−m
2 (t− T0)

)
+
,

for any t > T0, since y > 0. Hence the result.

3) The proof of the finite time extinction of u strongly relies on Gagliardo-Nirenberg’s inequality

(Lemma 5.5.4 below), that is : for any v ∈ H`
0(Ω) ∩ Lm+1(Ω) (or H`(Ω) instead of H`

0(Ω), if Ω is

a half-space or if Ω has a bounded C0,1-boundary),

‖v‖
(2`+N)+m(2`−N)

2`

L2(Ω) 6 CGN‖v‖m+1
Lm+1(Ω)‖v‖

N(1−m)
2`

H`(Ω)
, (5.2.13)

to get the ordinary differential inequality (5.5.11) below :

y′(t) + 2 Im(a)C−1
GN ‖u‖

−N(1−m)
2`

L∞((0,∞);H`(Ω))
y(t)δ 6 0, t > T0, (5.2.14)

where δ = (2`+N)+m(2`−N)
4` , y = ‖u( . )‖2L2(Ω) and CGN = CGN(N,m, `). This holds thanks to

the non increasing property (5.2.11) of the mass (we recall that Im(a) > 0 is necessary to have

finite time extinction, by 1) of this remark). But this method fails if N > 2`. Indeed, first of all,

Gagliardo-Nirenberg’s inequality imposes that 0 6 m 6 1. And as seen in 1) of this remark, finite

time extinction is not reachable for m = 1. So, assume that 0 6 m < 1, (5.2.5) is fulfilled and

u satisfies (5.2.4), where the integer ` has to be chosen later. Then for any ` > 1, we may apply

Lemma 5.5.4 below, which is (5.2.13) with v = u(t), and we finally get (5.2.14). But if N is even

and ` = N
2 then δ = 1 and Lemma 5.5.1 below yield,

‖u(t)‖L2(Ω) 6 ‖u(T0)‖L2(Ω)e
−Im(a)C−1 (t−T0), (5.2.15)
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for any t > T0, where C = C(‖u‖L∞((0,∞);H`(Ω)), N,m). In the same way, if 1 6 ` < N
2 then δ > 1

and Lemma 5.5.1 below yield,

‖u(t)‖L2(Ω) 6
‖u(T0)‖L2(Ω)(

1 + Im(a)C−1(1−m)(N − 2`)‖u(T0)‖
(1−m)(N−2`)

2`

L2(Ω) (t− T0)

) 2`
(1−m)(N−2`)

, (5.2.16)

for any t > T0, where C = C(‖u‖L∞((0,∞);H`(Ω)), N,m), and again this estimate does not give

necessarily any finite time extinction result.

5.3 Finite time extinction and asymptotic behavior of solu-
tions

Most of the results in this paper hold under the structural assumptions below.

Assumption 5.3.1. We assume that Ω ⊆ RN is a nonempty subset, 0 < m 6 1 and a ∈ C with

Im(a) > 0. If m < 1 then we assume further that,

2
√
m Im(a) > (1−m)|Re(a)|, (5.3.1)

|Ω| <∞. (5.3.2)

Theorem 5.3.2. Let Assumption 5.3.1 be fulfilled with N ∈ {1, 2, 3} and m < 1. Let f ∈W 1,1
loc

(
[0,∞);L2(Ω)

)
,

u0 ∈ H1
0 (Ω) and assume that one of the following hypotheses holds.

1) N = 1 and f ∈W 1,1
loc

(
[0,∞);H1

0 (Ω)
)
.

2) N ∈ {1, 2, 3}, Ω is bounded with a C1,1-boundary and u0 ∈ H2(Ω) ∩H1
0 (Ω).

Let u be the unique strong solution of (5.2.1)–(5.2.3) (see Definition 5.4.1, Theorems 5.4.4 and 5.4.5

and Remark 5.4.6 below). Finally, assume that there exists T0 > 0 such that,

for almost every t > T0, f(t) = 0.

Then we have the following results.

a) There exists a finite time T? > T0 such that,

∀t > T?, ‖u(t)‖L2(Ω) = 0. (5.3.3)

Furthermore, T? satisfies the estimates (5.2.7) and (5.2.12).

b) There exists ε? = ε?(|a|, |Ω|, N,m) satisfying the following property. Let δ be given in Property 2)

of Theorem 5.2.1. If f ∈W 1,1
(
(0,∞);H1

0 (Ω)
)
,

(
‖u0‖H1

0 (Ω) + ‖f‖L1((0,∞);H1
0 (Ω))

)1−m
6 ε? min

{
1, T0

}
, if N = 1,(

‖u0‖mH2(Ω) + ‖f‖m
W 1,1((0,∞);H1

0 (Ω))

)1−m
6 ε? min

{
1, T0

}
, if N ∈ {2, 3},

and if for almost every t > 0,

‖f(t)‖2L2(Ω) 6 ε?
(
T0 − t

) 2δ−1
1−δ

+
,

then (5.3.3) holds with T? = T0.
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Remark 5.3.3. Notice that 2δ−1
1−δ = 2 1+m

1−m , if N ∈ {1, 2} and 2δ−1
1−δ = 2 3+m

1−m , if N = 3.

Remark 5.3.4. Theorem 5.3.2 is an extension of the main result of Carles and Gallo [53] in the sense

that they obtain the same conclusion as in a) but under the additional conditions Re(a) = 0, f = 0

and without the lower bound for T?. As far as we know, the result in b) is new.

The following result gives some asymptotic decay estimates, for large time, for the case of higher

dimensions N > 4.

Theorem 5.3.5. Let Assumption 5.3.1 be fulfilled with N > 4 and m < 1. Let f ∈W 1,1
loc

(
[0,∞);L2(Ω)

)
and let u0 ∈ H1

0 (Ω). Assume further that f ∈W 1,1
loc

(
[0,∞);H1

0 (Ω)
)

or u0 ∈ H2(Ω) and that Ω is boun-

ded with a C1,1-boundary. Let u be the unique strong solution of (5.2.1)–(5.2.3) (see Definition 5.4.1,

Theorems 5.4.4 and 5.4.5 and Remark 5.4.6 below). Finally, assume that there exists T0 > 0 such that

for almost every t > T0, f(t) = 0.

Then we have for any t > T0,

‖u(t)‖L2(Ω) 6 ‖u(T0)‖L2(Ω)e
−Im(a)C−1 (t−T0),

if N = 4 and u0 ∈ H2(Ω), and,

‖u(t)‖L2(Ω) 6
‖u(T0)‖L2(Ω)(

1 + Im(a)C−1(1−m)(N − 2`)‖u(T0)‖
(1−m)(N−2`)

2`

L2(Ω) (t− T0)

) 2`
(1−m)(N−2`)

,

if N > 5 or u0 ∈ H1
0 (Ω), where C = C(‖u‖L∞((0,∞);H`(Ω)), N,m).

Theorem 5.3.6. Let Assumption 5.3.1 be fulfilled, let f ∈ L1
loc

(
[0,∞);L2(Ω)

)
, let u0 ∈ L2(Ω) and

let u be the unique weak solution of (5.2.1)–(5.2.3) (see Definition 5.4.1 and Theorem 5.4.3 below). If

f ∈ L1
(
(0,∞);L2(Ω)

)
,

then,

lim
t↗∞

‖u(t)‖Lp(Ω) = 0,

for any p ∈ (0, 2] (with p = 2, if m = 1 and |Ω| =∞).

Remark 5.3.7. Note that for m = 1 in Theorem 5.3.6, if the stronger assumption (5.2.5) holds then

we have,

∀t > T0, ‖u(t)‖L2(Ω) = ‖u(T0)‖L2(Ω)e
−Im(a)(t−T0).

See 1) of Remark 5.2.4.
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5.4 Existence and uniqueness of solutions

Here and after, we shall always identify L2(Ω) with its topological dual. Let Ω ⊆ RN be an open

subset, let 0 < m 6 1 and let X = H ∩ Lm+1(Ω), where H = L2(Ω) or H = H1
0 (Ω). It follows from

Lemma B.2 and 2) of Lemma B.4 below that,

X? = H? + L
m+1
m (Ω),

Lm+1
loc

(
[0,∞);X

)
∩W 1,m+1

m

loc

(
[0,∞);X?

)
↪→ C

(
[0,∞);L2(Ω)

)
.

This justifies the notion of solution below (and it explains the sense in which the initial condition is

satisfied).

Definition 5.4.1. Let Ω ⊆ RN be an open subset, 0 < m 6 1, a ∈ C, f ∈ L1
loc

(
[0,∞);L2(Ω)

)
and

u0 ∈ L2(Ω). Let us consider the following assertions.

1) u ∈ Lm+1
loc

(
[0,∞);H1

0 (Ω) ∩ Lm+1(Ω)
)
∩W 1,m+1

m

loc

(
[0,∞);H? + L

m+1
m (Ω)

)
,

2) For almost every t > 0, ∆u(t) ∈ H?.

3) u satisfies (5.2.1) in D ′
(
(0,∞)× Ω

)
.

4) u(0) = u0.

We shall say that u is a strong solution if u is a H2-solution or a H1
0 -solution. We shall say that u

is a H2-solution of (5.2.1)–(5.2.3)
(
respectively, a H1

0 -solution of (5.2.1)–(5.2.3)
)
, if u satisfies the

Assertions 1)–4) with H = L2(Ω)
(
respectively, with H = H1

0 (Ω)
)
.

We shall say that u is a L2-solution or simply a weak solution of (5.2.1)–(5.2.3) is there exists a pair,

(fn, un)n∈N ⊂ L1
loc

(
[0,∞);L2(Ω)

)
× C

(
[0,∞);L2(Ω)

)
, (5.4.1)

such that for any n ∈ N, un is a H2-solution of (5.2.1)–(5.2.2) where the right-hand side member of

(5.2.1) is fn, and if

fn
L1((0,T );L2(Ω))−−−−−−−−−−→

n→∞
f and un

C([0,T ];L2(Ω))−−−−−−−−−→
n→∞

u, (5.4.2)

for any T > 0.

Remark 5.4.2. Before making some comments on the above definition, it is useful to analyze some

peculiar properties which arise when Ω is unbounded. Let 0 < m 6 1. Set for any z ∈ C, g(z) =

|z|−(1−m)z (g(0) = 0) and let us define the mapping for any measurable function u : Ω −→ C, which

we still denote by g, by g(u)(x) = g(u(x)). Let H = L2(Ω) or H = H1
0 (Ω). It follows from (5.6.4)

below that,

g ∈ C
(
Lm+1(Ω);L

m+1
m (Ω)

)
and g is bounded on bounded sets. (5.4.3)

In particular, if |Ω| < ∞ or if m = 1 then H1
0 (Ω) ↪→ L2(Ω) ↪→ Lm+1(Ω) with dense embedding and

thus, L
m+1
m (Ω) ↪→ L2(Ω) ↪→ H−1(Ω). We then obtain,

g ∈ C
(
L2(Ω);L2(Ω)

)
∩ C

(
H1

0 (Ω);H−1(Ω)
)

and g is bounded on bounded sets, (5.4.4)
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and Assertion 1) becomes,

u ∈ Lm+1
loc

(
[0,∞);H1

0 (Ω)
)
∩W 1,m+1

m

loc

(
[0,∞);H?

)
. (5.4.5)

But if |Ω| =∞ and m < 1 then the regularity (5.4.4) is not anymore valid. By Lemma B.2 below, we

have,

D(Ω) ↪→ X ↪→ Lm+1(Ω) with both dense embeddings, (5.4.6)

where X = H ∩ Lm+1(Ω). It follows that,

L
m+1
m (Ω) ↪→ X? ↪→ D ′(Ω). (5.4.7)

This gives with (5.4.3),

g ∈ C(X;X?) and g is bounded on bounded sets. (5.4.8)

It follows from (5.4.3) and (5.4.6)–(5.4.8) that,

〈g(u), v〉X?,X = 〈g(u), v〉
L
m+1
m (Ω),Lm+1(Ω)

= Re

∫
Ω

g(u)vdx, (5.4.9)

for any u, v ∈ X. Now, let us make some comments about Definition 5.4.1.

1) As seen at the beginning of this section, any strong or weak solution belongs to C
(
[0,∞);L2(Ω)

)
and Assertion 4) makes sense in L2(Ω).

2) It is obvious that a H2-solution is also a H1
0 -solution and a weak solution. But it is not clear that

a H1
0 -solution is a weak solution, without assuming a continuous dependence of the solution with

respect to the initial data. Such a result will be established with the additional assumption (5.3.1)

on a (see Lemma 5.6.5 below).

3) If |Ω| <∞ or if m = 1 then it follows from (5.4.4), (5.4.5) and Assertion 2) that any H2-solution

(respectively, any H1
0 -solution) satisfies (5.2.1) in L2(Ω)

(
respectively, in H−1(Ω)

)
, for almost

every t > 0. Note also that Assertion 2) of Definition 5.4.1 is not an additional assumption for the

H1
0 -solutions.

4) If |Ω| =∞ and if m < 1 then it follows from (5.4.8) and Assertions 1) and 2) that any H2-solution

(respectively, any H1
0 -solution) satisfies (5.2.1) in L2(Ω) + L

m+1
m (Ω)

(
respectively, in H−1(Ω) +

L
m+1
m (Ω)

)
, for almost every t > 0.

5) Assume that u is a weak solution. By Definition 5.4.1, there exists (fn, un)n∈N satisfying (5.4.1)–

(5.4.2) such that for any n ∈ N, un is a H2-solution of (5.2.1)–(5.2.2) where the right-hand side of

(5.2.1) is fn. Applying (5.6.4)–(5.6.5) below, we deduce that for any T > 0,

∆un
C([0,T ];H−2(Ω))−−−−−−−−−−−→

n→∞
∆u,

g(un)
C([0,T ];L2(Ω))−−−−−−−−−→

n→∞
g(u), if |Ω| <∞,

g(un)
C([0,T ];L

2
m (Ω))−−−−−−−−−−→

n→∞
g(u).
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Now, we set : Y = H2
0 (Ω) ∩ L

2
2−m (Ω). By Lemma B.2 below, we have,

Y ? = H−2(Ω) + L
2
m (Ω),

D(Ω) ↪→ Y ↪→ H2
0 (Ω), L2(Ω), L

2
2−m (Ω) with dense embedding,

H−2(Ω), L2(Ω), L
2
m (Ω) ↪→ Y ? ↪→ D ′(Ω).

Using the above uniform convergences and (5.4.2), we deduce that,

∞∫
0

〈
i
∂u

∂t
+ ∆u+ ag(u), ϕ

〉
Y ?,Y

ψ(t) dt =

∞∫
0

〈
f(t), ϕ

〉
Y ?,Y

ψ(t)dt.

for any ϕ ∈ Y and ψ ∈ D
(
(0,∞);R

)
.

As a conclusion, if u is a weak solution then u ∈ W 1,1
loc

(
[0,∞);Y ?

)
and it solves (5.2.1) in Y ?, for

almost every t > 0. In particular, u satisfies (5.2.1) in D ′
(
(0,∞)× Ω

)
. If, in addition, |Ω| <∞ or

if m = 1 then we deduce from the above that u ∈ W 1,1
loc

(
[0,∞);H−2(Ω)

)
and u solves (5.2.1) in

H−2(Ω), for almost every t > 0.

6) When m < 1 then except for Theorem 5.2.1 and Proposition 5.2.3, all the results of the following

Sections 5.2–5.4 will be stated with |Ω| <∞.

7) Notice that the boundary condition u(t)|Γ = 0 is included in the assumption u(t) ∈ H1
0 (Ω).

Theorem 5.4.3 (Existence and uniqueness of L2-solutions). Let Assumption 5.3.1 be fulfilled

and let f ∈ L1
loc

(
[0,∞);L2(Ω)

)
. Then for any u0 ∈ L2(Ω), there exists a unique weak solution u to

(5.2.1)–(5.2.3). In addition, we have the following properties.

1) The map t 7−→ ‖u(t)‖2L2(Ω) belongs to W 1,1
loc

(
[0,∞);R

)
and we have,

1

2

d

dt
‖u(t)‖2L2(Ω) + Im(a)‖u(t)‖m+1

Lm+1(Ω) = Im

∫
Ω

f(t, x)u(t, x) dx, (5.4.10)

for almost every t > 0.

2) If v is another weak solution of (5.2.1)–(5.2.2) with v(0) = v0 ∈ L2(Ω) and h ∈ L1
loc([0,∞);L2(Ω)),

instead of f in (5.2.1) then,

‖u(t)− v(t)‖L2(Ω) 6 ‖u(s)− v(s)‖L2(Ω) +

t∫
s

‖f(σ)− h(σ)‖L2(Ω)dσ, (5.4.11)

for any t > s > 0.

Theorem 5.4.4 (Existence and uniqueness of H1
0 -solutions). Let Assumption 5.3.1 be fulfilled

and let f ∈ W 1,1
loc

(
[0,∞);H1

0 (Ω)
)
. Then for any u0 ∈ H1

0 (Ω), there exists a unique H1
0 -solution u to

(5.2.1)–(5.2.3). Furthermore, u is also a weak solution and satisfies the following properties.

1) u ∈ C
(
[0,∞);L2(Ω)

)
∩ C1

(
[0,∞);H−2(Ω)

)
and u satisfies (5.2.1) in H−2(Ω), for any t > 0.
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2) u ∈ Cw

(
[0,∞);H1

0 (Ω)
)
∩W 1,∞

loc

(
[0,∞);H−1(Ω)

)
and,

‖u(t)− u(s)‖L2(Ω) 6M |t− s|
1
2 ,

‖∇u(t)‖L2(Ω) 6 ‖∇u0‖L2(Ω) +

∫ t

0

‖∇f(s)‖L2(Ω)ds,

(5.4.12)

(5.4.13)

for any t > s > 0, where M2 = 2‖u‖L∞((s,t);H1
0 (Ω))‖ut‖L∞((s,t);H−1(Ω)).

3) The map t 7−→ ‖u(t)‖2L2(Ω) belongs to C1
(
[0,∞);R

)
and (5.4.10) holds for any t > 0.

4) If f ∈W 1,1
(
(0,∞);H1

0 (Ω)
)

then we have,

u ∈ L∞
(
(0,∞);H1

0 (Ω)
)
∩W 1,∞((0,∞);H−1(Ω)

)
∩ C1

b

(
[0,∞);H−2(Ω)

)
.

Theorem 5.4.5 (Existence and uniqueness of H2-solutions). Let Assumption 5.3.1 be fulfilled

and let f ∈ W 1,1
loc

(
[0,∞);L2(Ω)

)
. Then for any u0 ∈ H1

0 (Ω) with ∆u0 ∈ L2(Ω), there exists a unique

H2-solution u to (5.2.1)–(5.2.3). Furthermore, u satisfies the following properties.

1) u ∈ C
(
[0,∞);H1

0 (Ω)
)
∩ C1

(
[0,∞);H−1(Ω)

)
, u satisfies (5.2.1) in H−1(Ω), for any t > 0.

2) u ∈W 1,∞
loc

(
[0,∞);L2(Ω)

)
, ∆u ∈ L∞loc

(
[0,∞);L2(Ω)

)
and,


‖u(t)− u(s)‖L2(Ω) 6 ‖ut‖L∞((s,t);L2(Ω))|t− s|,

‖∇u(t)−∇u(s)‖L2(Ω) 6M |t− s|
1
2 ,

‖ut‖L∞((0,t);L2(Ω)) 6 ‖∆u0 + a|u0|m−1u0 − f(0)‖L2(Ω) +

∫ t

0

‖f ′(σ)‖L2(Ω)dσ,

(5.4.14)

(5.4.15)

(5.4.16)

for any t > s > 0, where M2 = 2‖ut‖L∞((s,t);L2(Ω))‖∆u‖L∞((s,t);L2(Ω)).

3) The map t 7−→ ‖u(t)‖2L2(Ω) belongs to C1
(
[0,∞);R

)
and (5.4.10) holds for any t > 0.

4) If f ∈W 1,1
(
(0,∞);L2(Ω)

)
then we have,

u ∈ Cb

(
[0,∞);H1

0 (Ω)
)
∩ C1

b

(
[0,∞);H−1(Ω)

)
∩W 1,∞((0,∞);L2(Ω)

)
,

∆u ∈ L∞
(
(0,∞);L2(Ω)

)
.

Remark 5.4.6. Let E =
{
u ∈ H1

0 (Ω); ∆u ∈ L2(Ω)
}

with ‖u‖2E = ‖u‖2L2(Ω) + ‖∆u‖2L2(Ω). We recall

that E ⊂ H2
loc(Ω) (Theorem 8.8, in Gilbarg and Trudinger [90]). If Ω = RN then E = H2(RN ) with

equivalent norms (by the Fourier transform and Plancherel’s formula), while if Ω is bounded and

Γ is of class C1,1 then E = H2(Ω) ∩ H1
0 (Ω) with equivalent norms (Theorem 8.12, in Gilbarg and

Trudinger [90] and Corollary 2.5.2.2, in Grisvard [93]). In order to get the equivalence of norms, we

may use the inequalities,

‖∇u‖2L2(Ω) 6 ‖u‖L2(Ω)‖∆u‖L2(Ω) 6 ‖u‖2L2(Ω) + ‖∆u‖2L2(Ω), (5.4.17)

which hold for any subset Ω ⊆ RN and any u ∈ H2(Ω) ∩H1
0 (Ω).

Remark 5.4.7. Since f ∈ C
(
[0,∞);L2(Ω)

)
(by 1) of Lemma B.4), estimate (5.4.16) with f(0) makes

sense.
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Remark 5.4.8. It follows from (5.4.11) and (5.4.13) that if N = 1 then the decay assumptions (5.2.8)

and (5.2.9) may be replaced with,(
‖u0‖H1

0 (Ω) + ‖f‖L1((0,∞);H1
0 (Ω))

)1−m
6 ε? min

{
1, T?

}
,

‖f(t)‖2L2(Ω) 6 ε?
(
T? − t

) 2δ−1
1−δ

+
, (5.4.18)

for almost every t > 0, where ν? = ε?(Im(a), N,m). In the same way, it follows from (5.4.11), (5.4.13),

(5.4.16), Remark 5.4.6 and (5.2.1) that if N 6 3 and Ω is bounded with a C1,1-boundary then (5.2.8)

may be replaced with,(
‖u0‖mH2(Ω) + ‖f‖mW 1,1((0,∞);H1

0 (Ω))

)1−m
6 ε? min

{
1, T?

}
,

and (5.2.9) with (5.4.18), where ε? = ε?(|a|, |Ω|, N,m).

5.5 Proof of the semi-abstract result on the finite time ex-
tinction

The proof of Theorem 5.2.1 relies on the three following lemmas.

Lemma 5.5.1. Let y ∈W 1,1
loc

(
[0,∞);R

)
with y > 0 over (0,∞), δ ∈ R, α > 0 and T0 > 0. If

y′ + 2αyδ 6 0,

almost everywhere on (T0,∞), then we have,

y(t) 6



(
y(T0)1−δ + 2α(1− δ)(T0 − t)

) 1
1−δ

+
, if δ < 1,

y(T0)e−2α(t−T0), if δ = 1,

y(T0)(
1 + 2α(δ − 1)y(T0)δ−1(t− T0)

) 1
δ−1

if δ > 1,

for any t > T0. In particular, if δ < 1 then for any t > T?, y(t) = 0 where,

T? 6
1

2α(1− δ)
y(T0)1−δ + T0.

Proof. The result follows by integration of the ordinary differential inequality over (T0, t).

The following lemma improves a similar result contained in Antontsev, Dı́az and Shmarev [11] (Pro-

position 1.1).

Lemma 5.5.2. Let y ∈W 1,1
loc

(
[0,∞);R

)
with y > 0 over [0,∞), δ ∈ (0, 1), α, T0 > 0 and,

y? =
(
α δδ(1− δ)

) 1
1−δ , (5.5.1)

x? = (α δ (1− δ)T0)
1

1−δ . (5.5.2)
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If,

y(0) 6 x?, (5.5.3)

and if for almost every t > 0,

y′(t) + αy(t)δ 6 y? (T0 − t)
δ

1−δ
+ , (5.5.4)

then for any t > T0, y(t) = 0.

Proof. Set for any t ∈ [0, T0], z(t) = x?T
− 1

1−δ
0 (T0 − t)

1
1−δ . We have for almost every t ∈ (0, T0),

z′(t) + αz(t)δ = y? (T0 − t)
δ

1−δ > y′(t) + αy(t)δ. (5.5.5)

We claim that for any t ∈ [0, T0], y(t) 6 z(t). If not, since by (5.5.3) z(0) > y(0) and y and z are

continuous over [0, T0] (by 1) of Lemma B.4), there exist t? ∈ [0, T0) and ε ∈ (0, T0 − t?) such that

y(t?) = z(t?) and y(t) > z(t), for any t ∈ (t?, t? + ε). This leads with (5.5.5) to, y′ 6 z′, almost

everywhere on (t?, t? + ε). Integrating over (t?, t) for t ∈ (t?, t? + ε), we obtain that y(t) 6 z(t), for

any t ∈ [t?, t? + ε]. A contradiction. Hence the claim. In particular, y(T0) 6 z(T0) = 0. But from

(5.5.4), y is non increasing over (T0,∞). Hence the result, since y > 0 everywhere.

Remark 5.5.3. Let us explain how we found y? and x? in Lemma 5.5.2. We look for a solution of

the ordinary differential inequality (5.5.4). Set for any x > 0,

∀x > 0, f(x) = (1− δ)−1T
− 1

1−δ
0 xδ

(
α(1− δ)T0 − x1−δ) ,

∀t ∈ [0, T0], z(t) = xT
− 1

1−δ
0 (T0 − t)

1
1−δ
+ .

We want z(0) = x > y(0) to apply our proof. A straightforward calculation yields,

z′(t) + αz(t)δ = f(x) (T0 − t)
δ

1−δ .

We compute, argmax
x>0

f(x) = x?, where x? is given by (5.5.2), and f(x?) = y?, where y? is given by

(5.5.1). We then choose x = x? in the definition of z and we obtain the condition (5.5.3).

Lemma 5.5.4 (Gagliardo-Nirenberg’s inequality). Let N ∈ N, let Ω ⊆ RN be an open subset,

let 0 6 m 6 1 and let ` ∈ N. Then for any v ∈ H`
0(Ω) ∩ Lm+1(Ω),

‖v‖
(2`+N)+m(2`−N)

2`

L2(Ω) 6 C‖v‖m+1
Lm+1(Ω)‖v‖

N(1−m)
2`

H`(Ω)
, (5.5.6)

where C = C(m, `,N). If Ω is a half-space or if Ω has a bounded C0,1-boundary then (5.5.6) holds for

any v ∈ H`(Ω).

Proof. See, for instance, Friedman [86], Theorem 9.3, for v ∈ D(RN ) and so, by extension and density,

for v ∈ H`
0(Ω) ∩ Lm+1(Ω). If Ω is a half-space or if Ω has a bounded C0,1-boundary then there exists

a linear extension operator E such that for any k ∈ N0 and p ∈ [1,∞],

E ∈ L
(
W k,p(Ω);W k,p(RN )

)
,
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and Eu = u, almost everywhere in Ω (Stein [161], Theorem 5, §3.2, §3.3 ; Adams [2], Theorem 4.26 ;

see also Grisvard [93], Theorem 1.4.3.1).

Proof of Proposition 5.2.3. Let the assumptions of the theorem be fulfilled. We first assume that

u is a strong solution. Let H be as in Definition 5.4.1 and let X = H ∩Lm+1(Ω). By Definition 5.4.1,

we have (5.2.10) and by 3) and 4) of Remark 5.4.2, we can take the X? − X duality product with

iu. Estimate (5.2.11) with equality then follows from (5.4.9) and 1) of Lemma B.5. Now, assume that

u is a weak solution. Let (fn)n∈N and (un)n∈N be as in Definition 5.4.1. According to the above, it

follows from Hölder’s inequality that fu ∈ L1
loc

(
[0,∞);L1(Ω)

)
and,

fnun
L1

loc([0,∞);L1(Ω))−−−−−−−−−−−→
n→∞

fu, (5.5.7)

1

2
‖un(t)‖2L2(Ω) + Im(a)

t∫
s

‖un(σ)‖m+1
Lm+1(Ω)dσ

=
1

2
‖un(s)‖2L2(Ω) + Im

t∫∫
sΩ

fn(σ, x)un(σ, x) dxdσ, (5.5.8)

for any n ∈ N and t > s > 0. If |Ω| < ∞ or if m = 1 then for any T > 0, C([0, T ];L2(Ω)) ↪→
C([0, T ];Lm+1(Ω)) and then we are allowed to pass to the limit in (5.5.8) under the integral symbol.

We then get with (5.5.7) the desired result under the hypotheses b), c) or d). If |Ω| =∞, m < 1 and

Im(a) > 0 then for any T > 0, C([0, T ];L2(Ω)) ↪→ C([0, T ];Lm+1
loc (Ω)). By (5.5.8),

1

2
‖un(t)‖2L2(Ω) + Im(a)

t∫
s

‖un(σ)‖m+1
Lm+1(Ω∩B(0,R))dσ

6
1

2
‖un(s)‖2L2(Ω) + Im

t∫∫
sΩ

fn(σ, x)un(σ, x) dx dσ,

for any t > s > 0, R > 0 and n ∈ N. Passing to the limit in n first and then in R then, we obtain

(5.2.10) and (5.2.11) with the help of the monotone convergence Theorem and (5.5.7). We proceed in

the same way if |Ω| =∞, m < 1 and Im(a) 6 0.

Proof of Theorem 5.2.1. By (5.5.6) and Proposition 5.2.3, we have for almost every t > 0,

‖u(t)‖
(2`+N)+m(2`−N)

2`

L2(Ω) 6 CGN‖u‖
N(1−m)

2`

L∞((0,∞);H`(Ω))
‖u(t)‖m+1

Lm+1(Ω),

d

dt
‖u(t)‖2L2(Ω) + 2Im(a)‖u(t)‖m+1

Lm+1(Ω) = 2Im

∫
Ω

f(t, x)u(t, x)dx.

It follows that,

d

dt
‖u(t)‖2L2(Ω) + 2α‖u(t)‖2δL2(Ω) 6 2

∫
Ω

|f(t, x)||u(t, x)|dx, (5.5.9)
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for almost every t > 0, where α = Im(a)C−1
GN‖u‖

−N(1−m)
2`

L∞((0,∞);H`(Ω))
and δ = (2`+N)+m(2`−N)

4` . Since

0 < m < 1 and ` =
[
N
2

]
+ 1, we have 1

2 < δ < 1. Using the Young inequality,

xy 6
ε−p

′

p′
xp
′
+
εp

p
yp,

with x = ‖f(t)‖L2(Ω), y = ‖u(t)‖L2(Ω), p = 2δ and ε = (αδ)
1
2δ , one obtains with Cauchy-Schwarz’s

inequality,

2

∫
Ω

|f(t, x)||u(t, x)|dx 6 2δ − 1

δ
(αδ)−

1
2δ−1 ‖f(t)‖

2δ
2δ−1

L2(Ω) + α‖u(t)‖2δL2(Ω). (5.5.10)

Finally, set for any t > 0, y(t) = ‖u(t)‖2L2(Ω) and let us prove Property 1). If f satisfies (5.2.5) then

(5.5.9) may be rewritten as,

y′(t) + 2αy(t)δ 6 0, (5.5.11)

for almost every t > T0. We then conclude with the help of Lemma 5.5.1. Now assume that (5.2.8)–

(5.2.9) hold where the constant ε? has to be determined later. We then have,

y(0)1−δ 6 α δ (1− δ)T0, (5.5.12)

‖f(t)‖2L2(Ω) 6 ε?‖u‖
−N(1−m)

2`
1

1−δ
L∞((0,∞);H`(Ω))

(
T0 − t

) 2δ−1
1−δ

+
, (5.5.13)

where (5.5.12) is a consequence of (5.2.8) and (5.5.13) is nothing else but (5.2.9). Gathering together

(5.5.9), (5.5.10) and (5.5.13), one gets

y′(t) + αy(t)δ 6
2δ − 1

δ
(Im(a)C−1

GNδ)
− 1

2δ−1 ε
δ

2δ−1
? ‖u‖−

N(1−m)
2`

1
1−δ

L∞((0,∞);H`(Ω))

(
T0 − t

) δ
1−δ
+

.

Choosing ε? = (2δ − 1)−
2δ−1
δ (Im(a)C−1

GNδ)
1

1−δ (1− δ)
2δ−1
δ(1−δ) , one obtains,

y′(t) + αy(t)δ 6 y?
(
T0 − t

) δ
1−δ
+

.

for almost every t > 0, where y? is given by (5.5.1). Notice that (5.5.12) is nothing else but (5.5.3).

We infer by Lemma 5.5.2 that y(t) = 0, for any t > T0.

5.6 Proofs of the existence and uniqueness theorems

Lemma 5.6.1. Let Assumption 5.3.1 be fulfilled. Let us define the following (nonlinear) operator on

L2(Ω). D(A) =
{
u ∈ H1

0 (Ω); ∆u ∈ L2(Ω)
}
,

∀u ∈ D(A), Au = −i∆u− ia|u|−(1−m)u,
(5.6.1)

Then A is a maximal monotone operator on L2(Ω) (and so m-accretive) with domain dense.

The proof relies on the following lemmas.
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Lemma 5.6.2 ([132]). Let 0 < m 6 1. Set for any z ∈ C, g(z) = |z|−(1−m)z (g(0) = 0). Then for

any (z1, z2) ∈ C× C,

2
√
m
∣∣∣Im((g(z1)− g(z2)

)(
z1 − z2

))∣∣∣ 6 (1−m)Re
((
g(z1)− g(z2)

)(
z1 − z2

))
, (5.6.2)

|g(z1)− g(z2)| 6 3|z1 − z2|m. (5.6.3)

Let Ω ⊆ RN be an open subset. We define the mapping for any measurable function u : Ω −→ C,
which we still denote by g, by g(u)(x) = g(u(x)). Then for any p ∈ [1,∞),

g ∈ C
(
Lp(Ω);L

p
m (Ω)

)
and g is bounded on bounded sets, (5.6.4)

g ∈ C
(
L2(Ω);L2(Ω)

)
and g is bounded on bounded sets, if |Ω| <∞. (5.6.5)

Finally, let a ∈ C with Im(a) > 0 satisfying (5.3.1). If
(
g(u)− g(v)

)
(u− v) ∈ L1(Ω) then,

Re

−i a

∫
Ω

(g(u)− g(v))(u− v)dx

 > 0. (5.6.6)

We may choose, for instance, u, v ∈ L2(Ω), if |Ω| <∞, or u, v ∈ Lm+1(Ω), in the general case.

Proof. Estimate (5.6.2) is Lemma 2.2 of Liskevich and Perel′muter [132] while (1.2.7) comes from

Lemma B.1, implying (5.6.4) and (5.6.5). Finally, by (5.6.4), (5.6.5) and Hölder’s inequality, we have(
g(u)− g(v)

)
(u− v) ∈ L1(Ω), for any u, v as in the statement of the lemma and by (5.6.2),

Re

−i a

∫
Ω

(
g(u)− g(v)

)
(u− v)dx


= Im(a)Re

∫
Ω

(
g(u)− g(v)

)(
u− v

)
dx+ Re(a)Im

∫
Ω

(
g(u)− g(v)

)(
u− v

)
dx

>

(
Im(a)− |Re(a)|1−m

2
√
m

)
Re

∫
Ω

(
g(u)− g(v)

)(
u− v

)
dx

> 0.

This ends the proof.

Proof of Lemma 5.6.1. The density of the domain of the operator is obvious. Let g be as in

Lemma 5.6.2. It is well known that (−i∆, D(A)) is a maximal monotone operator on L2(Ω) (Propo-

sition 2.6.12 in Cazenave and Haraux [59]). In addition, if we define B on L2(Ω) by Bu = −iag(u), it

follows from (5.6.4)–(5.6.6) that B ∈ C(L2(Ω);L2(Ω)) and

(Bu−Bv, u− v)L2(Ω) = Re

−i a

∫
Ω

(g(u)− g(v))(u− v)dx

 > 0,

for any u, v ∈ L2(Ω). We then infer that A = −i∆ +B is a maximal monotone operator (Brezis [43],

Corollaries 2.5 and 2.7).

To obtain (5.4.13), we need to regularize the nonlinearity in order to apply the ∇ operator. We then

establish the next lemma.
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Lemma 5.6.3. Let Ω ⊆ RN be an open subset, let 0 < m < 1, let a ∈ C with Im(a) > 0 satisfying

(5.3.1) and let ε ∈ (0, 1). Let for any u ∈ L2(Ω), gε(u) = (|u|2 + ε)−
1−m

2 u. Finally, let g be as in

Lemma 5.6.2 and let D(A) be defined by (5.6.1). Then,

gε ∈ C
(
L2(Ω);L2(Ω)

)
∩ C

(
H1

0 (Ω);H1
0 (Ω)

)
, (5.6.7)

∀u ∈ D(A), Re

ia

∫
Ω

gε(u)∆udx

 > 0, (5.6.8)

∀u ∈ D(A) such that um∆u ∈ L1(Ω), Re

ia

∫
Ω

g(u)∆udx

 > 0. (5.6.9)

Remark 5.6.4. If Ω ⊆ RN is arbitrary, m = 1 and Im(a) > 0 then for any u ∈ D(A),

Re

(
ia

∫
Ω

g(u)∆udx

)
= Im(a)‖∇u‖2L2(Ω) > 0.

In other words, one directly obtains (5.6.9).

Proof of Lemma 5.6.3. A straightforward calculation shows that for any ε ∈ (0, 1),

|gε(u)− gε(v)| 6 Cε−1|u− v|,

|∇gε(u)| 6 Cε−1|∇u|.

It follows that if u ∈ H1
0 (Ω) then gε(u) ∈ H1

0 (Ω) and (5.6.7) comes from the above estimates and the

partial converse of the dominated convergence Theorem (see, for instance, Brezis [44], Theorem 4.9).

Let us turn out to the proof of (5.6.8). Let u ∈ D(A). It follows from (5.6.7) that we can take the

scalar product in L2 between iagε(u) and ∆u. We then obtain,

Re

ia

∫
Ω

gε(u)∆udx

 = (iagε(u),∆u)L2(Ω) = −(ia∇gε(u),∇u)L2(Ω)

= Re

−ia

∫
Ω

|∇u|2(|u|2 + ε)− (1−m)Re(u∇u).u∇u
(|u|2 + ε)

3−m
2

dx


= Im(a)

∫
Ω

|∇u|2(|u|2 + ε)− (1−m)|Re(u∇u)|2

(|u|2 + ε)
3−m

2

dx− Re(a)

∫
Ω

(1−m)Re(u∇u).Im(u∇u)

(|u|2 + ε)
3−m

2

dx

= ε Im(a)

∫
Ω

|∇u|2

(|u|2 + ε)
3−m

2

dx

+ Im(a)

∫
Ω

m|Re(u∇u)|2 + |Im(u∇u)|2

(|u|2 + ε)
3−m

2

dx− Re(a)

∫
Ω

(1−m)Re(u∇u).Im(u∇u)

(|u|2 + ε)
3−m

2

dx

where we used in the last equality the fact that, |∇u|2|u|2 = |Re(u∇u)|2 + |Im(u∇u)|2. To conclude,

it remains to show that,

(1−m)|Re(a)| |Re(u∇u)| |Im(u∇u)| 6 Im(a)
(
m|Re(u∇u)|2 + |Im(u∇u)|2

)
. (5.6.10)
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Using our assumption on a and the following Young inequality,

2|xy| 6 δx2 +
y2

δ
,

with x = |Re(u∇u)|, y = |Im(u∇u)| and δ =
√
m, we obtain,

(1−m)|Re(a)| |Re(u∇u)| |Im(u∇u)|

6 2
√
m Im(a)|Re(u∇u)| |Im(u∇u)|

6
√
m Im(a)

(√
m|Re(u∇u)|2 +

|Im(u∇u)|2√
m

)
6 Im(a)

(
m|Re(u∇u)|2 + |Im(u∇u)|2

)
,

which is (5.6.10). Finally, since we have gε(u)
a.e. on Ω−−−−−−→
ε↘0

g(u) and |gε(u)|
a.e.
6 |g(u)|, for any ε > 0,

(5.6.9) is a consequence of (5.6.8) and the dominated convergence Theorem.

Concerning the continuous dependence with respect to the data we have :

Lemma 5.6.5. Let Ω ⊆ RN be an open subset, 0 < m 6 1 and a ∈ C with Im(a) > 0 satisfying (5.3.1).

Let X = L2(Ω)∩Lm+1(Ω) or X = H1
0 (Ω)∩Lm+1(Ω). Finally, let f1, f2 ∈ L1

loc([0,∞);L2(Ω)) and let

u, v ∈ Lploc

(
[0,∞);X

)
∩W 1,p′

loc

(
[0,∞);X?

)
,

for some 1 < p <∞. If,

iut + ∆u+ a|u|−(1−m)u = f1,

ivt + ∆v + a|v|−(1−m)v = f2,

in D ′
(
(0,∞)× Ω

)
, then u, v ∈ C

(
[0,∞);L2(Ω)

)
and

‖u(t)− v(t)‖L2(Ω) 6 ‖u(s)− v(s)‖L2(Ω) +

t∫
s

‖f1(σ)− f2(σ)‖L2(Ω)dσ, (5.6.11)

for any t > s > 0.

Proof. By Lemma B.2 and the dense embedding X ↪→ L2(Ω), we have L2(Ω) ↪→ X? ↪→ D ′Ω) and

for any (x, y) ∈ L2(Ω)×X,

(x, y)L2(Ω) = 〈x, y〉L2(Ω),L2(Ω) = 〈x, y〉X?,X . (5.6.12)

It follows from above and (5.4.8) that the equations in the lemma make sense in X? and we then

have,

i(u− v)t + ∆(u− v) +
(
ag(u)− ag(v)

)
= f1 − f2, in X?,

almost everywhere on (0,∞), where g is as in Lemma 5.6.2. Taking the X? −X duality product of

the above equation with i(u− v), it follows from 2) of Lemma B.4, 1) of Lemma B.5 and (5.6.12) that

u, v ∈ C
(
[0,∞);L2(Ω)

)
, the mapping t 7−→ ‖u(t)− v(t)‖2L2(Ω) belongs to W 1,1

loc

(
[0,∞);R

)
and,

1

2

d

dt
‖u( . )− v( . )‖2L2(Ω) +

〈
ag(u)− ag(v), i(u− v)

〉
X?,X

=
(
f1 − f2, i(u− v)

)
L2(Ω)

,
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almost everywhere on (0,∞). Applying (5.4.9), (5.6.6) and Cauchy-Schwarz’s inequality to the above,

one infers

1

2

d

dt
‖u( . )− v( . )‖2L2(Ω) 6 ‖f1 − f2‖L2(Ω)‖u− v‖L2(Ω),

almost everywhere on (0,∞). Integrating over (s, t), one obtains (5.6.11).

Proof of Theorem 5.4.5. By Lemma 5.6.1 and Vrabie [181] (Theorem 1.7.1), there exists a unique

u ∈ W 1,∞
loc

(
[0,∞);L2(Ω)

)
satisfying u(t) ∈ H1

0 (Ω), ∆u(t) ∈ L2(Ω) and (5.2.1) in L2(Ω), for al-

most every t > 0, u(0) = u0 and (5.4.16). Then (5.4.14) comes from (5.4.16). It follows from 1) of

Lemma B.4, (5.6.4)–(5.6.5), (5.4.16), (5.4.17) and (5.2.1) that,

f ∈ C
(
[0,∞);L2(Ω)

)
, (5.6.13)

|u|−(1−m)u ∈ C
(
[0,∞);L2(Ω)

)
, (5.6.14)

∆u ∈ L∞loc

(
[0,∞);L2(Ω)

)
, (5.6.15)

u ∈ L∞loc

(
[0,∞);H1

0 (Ω)
)
,

so that u is a H2-solution and u ∈ C
(
[0,∞);H1

0 (Ω)
)

(by 3) of Lemma B.4). So,

∆u ∈ C
(
[0,∞);H−1(Ω)

)
. (5.6.16)

It then follows from (5.6.13), (5.6.14), (5.6.16) and (5.2.1) that,

ut ∈ C
(
[0,∞);H−1(Ω)

)
.

By (5.4.17), (5.4.14) and (5.6.15), one obtains (5.4.15) and Properties 1) and 2) are proved. Property 3)

follows easily from Property 1), (B.3) and Proposition 5.2.3. Finally, Property 4) comes from (5.6.11),

(5.4.16), (5.4.17), (5.6.4), (5.6.5), the embedding 1) of Lemma B.4 and (5.2.1). This concludes the

proof of the theorem.

Proof of Theorem 5.4.3. Existence comes from density of H2
0 (Ω)×W 1,1

loc ([0,∞);L2(Ω)) in L2(Ω)×
L1

loc([0,∞);L2(Ω)), Theorem 5.4.5, (5.6.11) and completeness of C
(
[0, T ];L2(Ω)

)
, for any T > 0.

Property 1) comes from Proposition 5.2.3. Estimate (5.4.11) being stable by passing to the limit in

C
(
[0, T ];L2(Ω)

)
×L1

(
(0, T );L2(Ω)

)
, for any T > 0, it is sufficient to establish it for the H2-solutions.

This then comes from Lemma 5.6.5 and the uniqueness conclusion of the theorem follows. Finally,

Property 1) comes from Proposition 5.2.3.

Proof of Theorem 5.4.4. The uniqueness of solutions comes from Lemma 5.6.5. Let f ∈W 1,1
loc ([0,∞);H1

0 (Ω))

and let u0 ∈ H1
0 (Ω). Let (ϕn)n∈N ⊂ H2

0 (Ω) be such that ϕn
H1

0 (Ω)−−−−→
n→∞

u0. Finally, let g be defined as

in Lemma 5.6.2 and for each n ∈ N, let un be the unique H2-solution of (5.2.1)–(5.2.2) such that

un(0) = ϕn, given by Theorem 5.4.5. By Lemma 5.6.5, we have for any T > 0 and n, p ∈ N,

‖un‖C([0,T ];L2(Ω)) 6 ‖ϕn‖L2(Ω) +

∫ T

0

‖f(t)‖L2(Ω)dt, (5.6.17)

‖un − up‖L∞((0,∞);L2(Ω)) 6 ‖ϕn − ϕp‖L2(Ω),
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It follows that for any T > 0, (un)n∈N is a Cauchy sequence in C
(
[0, T ];L2(Ω)

)
. As a consequence,

and with (5.6.4)–(5.6.5), there exists u ∈ C
(
[0,∞);L2(Ω)

)
such that for any T > 0,

un
C([0,T ];L2(Ω))−−−−−−−−−→

n→∞
u, (5.6.18)

g(u) ∈ C
(
[0, T ];L2(Ω)

)
, (5.6.19)

g(un)
C([0,T ];L2(Ω))−−−−−−−−−→

n→∞
g(u). (5.6.20)

By definition, it follows from (5.6.18) that u is a weak solution of (5.2.1)–(5.2.3) (take fn = f, for

any n ∈ N). By 3) of Remark 5.4.2, we can take the L2-scalar product of (5.2.1) with −i∆un and it

follows from (B.4) that for any n ∈ N and almost every s > 0,

1

2

d

dt
‖∇un(s)‖2L2(Ω) + Re

ia

∫
Ω

g(un(s))∆un(s)dx

 =
(
∇f(s), i∇un(s)

)
L2(Ω)

,

which gives with (5.6.9), Remark 5.6.4 and Cauchy-Schwarz’s inequality,

1

2

d

dt
‖∇un(s)‖2L2(Ω) 6 ‖∇fn(s)‖L2(Ω)‖∇un(s)‖L2(Ω).

By integration, we obtain for any t > 0 and any n ∈ N,

‖∇un(t)‖L2(Ω) 6 ‖∇ϕn‖L2(Ω) +

∫ t

0

‖∇f(s)‖L2(Ω)ds. (5.6.21)

By the Sobolev embedding 1) of Lemma B.4,

W 1,1
loc

(
[0,∞);L2(Ω)

)
↪→ C

(
[0,∞);L2(Ω)

)
, (5.6.22)

(5.6.17), (5.6.20), (5.6.21) and (5.2.1), we infer that,

(un)n∈N is bounded in L∞
(
(0, T );H1

0 (Ω)
)
∩W 1,∞((0, T );H−1(Ω)

)
, (5.6.23)

for any T > 0. Applying Propositions 1.3.14 and 1.1.2 in Cazenave [57], it follows from (5.6.18) and

(5.6.23) that,

u ∈ Cw

(
[0,∞);H1

0 (Ω)
)
∩W 1,∞

loc

(
[0,∞);H−1(Ω)

)
, (5.6.24)

∆u ∈ C
(
[0,∞);H−2(Ω)

)
, (5.6.25)

un(t) ⇀ u(t), in H1
w(Ω), as n→∞, (5.6.26)

for any t > 0. Since u is a weak solution, u solves (5.2.1) in H−2(Ω), for almost every t > 0 (Property 5)

of Remark 5.4.2). As a consequence, and with help of (5.6.19), (5.6.22) and (5.6.25), we have that

ut ∈ C
(
[0,∞);H−2(Ω)

)
and u satisfies (5.2.1) in H−2(Ω), for any t > 0. We then infer with (5.6.24)

that u is a H1
0 -solution and Property 1) holds. Still by (5.6.24), we have for any t > s > 0,

‖u(t)− u(s)‖2L2(Ω) 6 2‖u‖L∞((s,t);H1
0 (Ω))‖u(t)− u(s)‖H−1(Ω)

6 2‖u‖L∞((s,t);H1
0 (Ω))‖ut‖L∞((s,t);H−1(Ω))|t− s|,

which is (5.4.12). By (5.6.26), the weak lower semicontinuity of the norm and (5.6.21), one obtains

(5.4.13) and Property 2) is proved. Property 3) follows easily from Proposition 5.2.3 and the fact that

u, f ∈ C
(
[0,∞);L2(Ω)

)
and L2(Ω) ↪→ Lm+1(Ω). Finally, Property 4) comes from (5.4.11), (5.4.13),

(5.6.4), (5.6.5), 1) of Lemma B.4 and (5.2.1). This concludes the proof of the theorem.
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5.7 Proofs of the finite time extinction property and asymp-
totic behavior theorems

Proof of Theorem 5.3.2. For the Property a), apply Theorems 5.4.4, 5.4.5, Remark 5.4.6 and

Theorem 5.2.1 (with ` = 1, if u0 ∈ H1
0 (Ω) and ` = 2, if u0 ∈ H2(Ω) ∩ H1

0 (Ω)). We then obtain the

finite time extinction result and the upper bound on T?. The lower bound on T? comes from 2) of

Remark 5.2.4. Property b) comes from Remark 5.4.8.

Proof of Theorem 5.3.5. By Theorems 5.4.4, 5.4.5 and Remark 5.4.6, u ∈ L∞
(
(0,∞);H`(Ω)

)
,

where ` = 1, if u0 ∈ H1
0 (Ω) and ` = 2, if u0 ∈ H2(Ω) ∩ H1

0 (Ω). The result then comes from 3) of

Remark 5.2.4.

Proof of Theorem 5.3.6. Let the assumptions of the theorem be fulfilled. We proceed to the proof

in two steps.

Step 1. Assume further that f ∈ D
(
[0,∞);L2(Ω)

)
and u0 ∈ H2

0 (Ω). Then, lim
t↗∞

‖u(t)‖L2(Ω) = 0.

It follows from uniqueness and Theorem 5.4.5 that u is a H2-solution and u ∈ L∞
(
(0,∞);H1

0 (Ω)
)
. Let

[0, T0] ⊃ supp f. By (5.4.10), d
dt‖u(t)‖2L2(Ω) 6 0, for any t > T0. It follows that lim

t↗∞
‖u(t)‖L2(Ω) = `0,

for some `0 ∈ [0,∞). If m = 1 then we have, one more time by (5.4.10), d
dt‖u(t)‖2L2(Ω) 6 −2Im(a)`20,

for any t > T0. It follows that `0 = 0. Now, assume that m < 1 and suppose, by contradiction,

that `0 6= 0. Let q ∈ (2,∞) with (N − 2)q < 2N. By Hölder’s inequality and Sobolev’s embedding

H1
0 (Ω) ↪→ Lq(Ω), there exists θ ∈ (0, 1) such that,

0 < `0 6 ‖u(t)‖L2(Ω) 6 ‖u(t)‖θLm+1(Ω)‖u(t)‖1−θLq(Ω) 6 C‖u(t)‖θLm+1(Ω)‖u‖
1−θ
L∞((0,∞);H1

0 (Ω))
,

for any t > T0. We infer that, inf
t>T0

‖u(t)‖Lm+1(Ω) > 0, which implies with (5.4.10),

d

dt
‖u(t)‖2L2(Ω) 6 −2Im(a) inf

t>T0

‖u(t)‖m+1
Lm+1(Ω) < 0,

for any t > T0. As a consequence, lim
t↗∞

‖u(t)‖L2(Ω) = −∞, a contradiction.

Step 2. Conclusion.

Let (ϕn)n∈N ⊂ H2
0 (Ω) and (fn)n∈N ⊂ D

(
[0,∞);L2(Ω)

)
be such that,

ϕn
L2(Ω)−−−−→
n→∞

u0 and fn
L1((0,∞);L2(Ω))−−−−−−−−−−−→

n→∞
f.

For each n ∈ N, let un the H2-solution to (5.2.1)–(5.2.2), with fn instead of f, be such that un(0) = ϕn,

given by Theorem 5.4.5. Let n ∈ N. It follows from (5.4.11) that,

‖u(t)‖L2(Ω) 6 ‖u− un‖L∞((0,∞);L2(Ω)) + ‖un(t)‖L2(Ω)

6 ‖u0 − ϕn‖L2(Ω) + ‖f − fn‖L1((0,∞);L2(Ω)) + ‖un(t)‖L2(Ω),

for any t > 0. We get from Step 1,

lim sup
t↗∞

‖u(t)‖L2(Ω) 6 ‖u0 − ϕn‖L2(Ω) + ‖f − fn‖L1((0,∞);L2(Ω)).
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Letting n↗∞, we obtain lim
t↗∞

‖u(t)‖L2(Ω) = 0. Finally, the general case comes from the embedding

L2(Ω) ↪→ Lp(Ω), which holds for any p ∈ (0, 2], as soon as |Ω| <∞. This concludes the proof.
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Chapitre 6

Finite time extinction for a damped
nonlinear Schrödinger equation in
the whole space

Abstract

We consider a nonlinear Schrödinger equation set in the whole space with a single power of interaction

and an external source. We first establish existence and uniqueness of the solutions and then show, in low

space dimension, that the solutions vanish at a finite time. Under a smallness hypothesis of the initial data

and some suitable additional assumptions on the external source, we also show that we can choose the upper

bound on which time the solutions vanish.

6.1 Introduction and explanation of the method

Let us consider the following Schrödinger equation with a nonlinear damping term,

iut + ∆u+ a|u|m−1u = f(t, x), in (0,∞)× Ω, (6.1.1)

where Ω ⊆ RN is an open subset, a ∈ C, 0 < m < 1 and f : (0,∞)×Ω −→ C measurable is an external

source. When a ∈ R, m > 1 and f = 0, equation (6.1.1) has been intensively studied, especially with

Ω = RN (among which existence, uniqueness, blow-up, scattering theory, time decay). The literature

is too extensive to give an exhaustive list. See, for instance, the monographs of Cazenave [57], Sulem

and Sulem [165], Tao [167] and the references therein. The case a ∈ C is more anecdotic. See, for

instance, Bardos and Brezis [17], Lions [128], Tsutsumi [171] and Shimomura [159]. Note that except

in [128], it is always assumed m > 1.

In this paper, we are looking for solutions which vanishes at a finite time. For many reasons, we

have to consider 0 < m < 1. When m = 1, existence is not hard to obtain, since the equation is

linear, while the finite time property is not possible (which is a direct consequence of (6.1.4)). To our

knowledge the first paper in this direction is due to Carles and Gallo [53] with a = i, f = 0 and Ω is a

compact manifold without boundary. To construct solutions, they regularize the nonlinearity and use
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a compactness method to pass in the limit. They prove the finite time extinction property for N 6 3

including the case m = 0. More recently, Carles and Ozawa [55] obtain the existence, uniqueness

and finite time extinction for Ω = RN , a ∈ iR+ and f = 0. Due to the lack of compactness, they

restrict their study to N 6 2 and add an harmonic confinement in (6.1.1) for some technical reasons.

For the finite time property with N = 2 they also restrict the range of m to
[

1
2 , 1
)

and make a

smallness assumption of the initial data. In this paper, we work in the whole space and we remove of

all these restrictions and extend the previous results to a large class of values of a (see, for instance,

Theorems 6.2.7 and 6.3.1). Indeed, we shall assume that the complex number a is in a cone of the

complex plane. More precisely,

a ∈ C(m)
def
=
{
z ∈ C; Im(z) > 0 and 2

√
mIm(z) > (1−m)|Re(z)|

}
. (6.1.2)

The assumption that a belongs to the cone C(m) was considered in a series of papers by Okazawa and

Yokota [145, 146, 147]. They studied the asymptotic behavior of the solutions to the complex Ginzburg-

Landau equation in a bounded domain with the assumption (6.1.2) and, sometimes, with m > 1. See

also Kita and Shimomura [120] and Hou, Jiang, Li and You [108] where (6.1.2) is assumed but with

(among others restrictive assumptions) m > 1. In all these papers, there is no finite time extinction

result. We would also like mention the (very complete) work of Antontsev, Dias and Figueira [10]

where they consider the complex Ginzburg-Landau equation,

e−iγut −∆u+ |u|m−1u = f(t, x), in (0,∞)× Ω, (6.1.3)

where Ω is bounded, 0 < m < 1 and −π2 < γ < π
2 . In particular, e−iγ 6= ±i. They show spatial locali-

zation, waiting time and finite time extinction properties. The case of equation (6.1.3) with a delayed

nonlocal perturbation is studied in the recent paper of Dı́az, Padial, Tello and Tello [76]. Finally,

Hayashi, Li and Naumkin [104] study time decay for a more classical Schrödinger equation (6.1.1) (a

satisfying (6.1.2), m > 1 and Ω = RN ).

In this paper, we are interested in the finite time extinction of the solution. Formally, this result is

not too hard to obtain (the method we explain below for the finite time extinction property is that

used in [53, 55, 29]). Suppose f = 0. It is well known that solutions that vanish in finite time do not

exist when m > 1 (at least when a ∈ R). Indeed, multiplying (6.1.1) by iu, integrating by parts and

taking the real part, we obtain,

1

2

d

dt
‖u(t)‖2L2 + Im(a)‖u(t)‖m+1

Lm+1 = 0. (6.1.4)

To expect a finite time extinction, the mass has to be non increasing and so Im(a) > 0. Now, since

m + 1 < 2, we may interpolate L2 between Lm+1 and Lp, for some p > 2, and control the Lp-norm

by a Sobolev norm. Using a Gagliardo-Nirenberg’s inequality,

‖u(t)‖
2m+1

2θ`

L2 6 ‖u(t)‖m+1
Lm+1‖u(t)‖

(m+1)(1−θ`)
θ`

H`
, (6.1.5)

for some an explicit constant θ` ∈ (0, 1), if u is bounded in H` then putting together (6.1.4)–(6.1.5),

we arrive at the ordinary differential equation,

y′ + Cyδ 6 0, (6.1.6)
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with δ = m+1
2θ`

, where y(t) = ‖u(t)‖2L2 . By integration, we then obtain the asymptotic behavior of u

with respect to the value of δ.

• If δ < 1 then y(t)1−δ 6 (y(0)1−δ − Ct)+ and so u vanishes before time T? = C−1y(0)1−δ.

• If δ = 1 then y(t) 6 y(0)e−Ct.

• If δ > 1 then y(t)δ−1 6 y(0)δ−1(1 + Ct)−1.

As a consequence, a sufficient condition to have extinction in finite time is δ < 1 which turns out to

be equivalent to N = 1 when ` = 1. To increase the space dimension, we assume that u is bounded in

H2 and we deduce that δ < 1 when N 6 3. Theoretically, we can reach any space dimension if u is

bounded in H` for ` large enough (actually, if ` =
[
N
2

]
+ 1, where

[
N
2

]
denotes the integer part of N

2 ;

see Theorem 5.2.1). But this is not reasonable due to the lack of regularity of the nonlinearity, which

is merely Hölder continuous. A reachable goal is to obtain existence and boundedness of the solutions

in H2.

Now, we focus on the construction of a solution to (6.1.1) in RN with f = 0 (to fix ideas). First of

all, we would like to uniformly control ‖u(t)‖2H1 . Estimate (6.1.4) partially answers this question. For

‖∇u(t)‖2L2 , we multiply (6.1.1) by i∆u and take the real part. We get,

1

2

d

dt
‖∇u(t)‖2L2 + Re

ia

∫
RN

|u(t)|m−1u(t)∆u(t)dx

 = 0.

We then expect to have,

Re

ia

∫
RN

|u(t)|m−1u(t)∆u(t)dx

 > 0. (6.1.7)

Regularizing the nonlinearity, integrating by parts and passing to the limit, (6.1.7) can be proved under

assumption (6.1.2) (Lemma 6.4.4). Actually, we extended the method found in Carles and Gallo [53],

where the situation is simpler since a = i. Assume Ω ⊆ RN . To construct a solution to (6.1.1), we use

theory of the maximal monotone operators in the Hilbert space L2. We then consider the operator,

Au = −i∆u− ia|u|m−1u, (6.1.8)

with the natural domain 1 D(A) =
{
u ∈ H1

0 (Ω);um ∈ L2(Ω) and ∆u ∈ L2(Ω)
}
. Monotonicity relies

on the inequality,

Re

−i a

∫
Ω

(
|u|m−1u− |v|m−1v

)
(u− v)dx

 > 0. (6.1.9)

Once (6.1.9) is proved, it remains to show that R(I + A) = L2 (Theorem 6.4.1 and Corollary 6.4.5).

This means that for any F ∈ L2, the equation

−i∆u− ia|u|m−1u+ u = F, (6.1.10)

admits a solution belonging to D(A). Existence, uniqueness, a priori estimates and smoothness of the

solutions of (6.1.10) for a large class of values of a (including (6.1.2)) have been intensively studied

1. It is natural in the sense that it is the smallest domain, in the sense of the inclusion, for which D(A) ⊂ L2.
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in the papers by Bégout and Dı́az [25, 28]. The natural 2 space to look for a solution is H1
0 ∩ Lm+1.

When Ω is bounded with a smooth boundary, a bootstrap method yields u ∈ H2(Ω). Note that in

this case, the condition um ∈ L2(Ω) is automatically verified since um ∈ L 2
m (Ω) ↪→ L2(Ω) and then

u ∈ D(A). Although this method works very well, we proposed another one in Bégout and Dı́az [29] :

we make the sum of two monotone operators, where one of them is maximal monotone (−i∆) and

the other one is continuous over L2(Ω) (−ia|u|m−1u). A difficulty appears when Ω is unbounded, say

Ω = RN . In this case, we have D(A) = H2(RN ) ∩ L2m(RN ) and we have to show that a solution

u ∈ H1(RN )∩Lm+1(RN ) belongs to L2m(RN ), or equivalently ∆u ∈ L2(RN ). Having (6.1.7) in mind,

a natural method would be to multiply (6.1.10) by −∆u and take the real part. But then we lose the

term ‖∆u‖2L2(RN ). The original idea is to rotate a in the complex plane and stay in the cone C(m) to

still have (6.1.7) (see Lemma 6.4.2 and the picture p.111). If we can find b ∈ C such that ab ∈ C(m)

then multiplying (6.1.10) by −b∆u, integrating by parts and taking the real part, we arrive at,

−Im(b)‖∆u‖2L2(RN ) + Re

iab

∫
RN

|u|m−1u∆udx

+ Re(b)‖∇u‖2L2(RN ) = −Re

b ∫
RN

F∆udx

 .

We see that we must have Im(b) < 0 and so the rotation has to be made in the negative sense. So

we exclude the boundary of C(m) located in the first quarter complex plane.Hence Assumption 6.2.1.

Note that the sign of Re(b) has no importance since we already have an estimate in H1(RN ). Having

a priori estimates, we may construct a solution u ∈ H2(RN ) ∩ L2m(RN ) of (6.1.10) as a limit of

solutions with compact support. The existence of such solutions is provided in Bégout and Dı́az [25]

(see also Bégout and Dı́az [27]). To conclude the explanation of our method, we go back to the proof

of (6.1.9). When a = i, this is very simple since this estimate is equivalent to the monotonicity of the

derivative of the convex function defined on R2 by, (x, y) 7−→ 1
m+1 (x2 + y2)

m+1
2 (see Remark 1.9.3).

But when Re(a) 6= 0 then the imaginary part of the integral in (6.1.9) is still there. Fortunately,

this can be controlled by its real part under assumption (6.1.2) and a consequence of Liskevich and

Perel′muter [132] (Lemma 2.2).

Finally, we consider the limit cases m = 0 and m = 1 for the values of a. Since lim
m↘0

C(m) = {0} ×

i(0,∞), it seems that no extension of [53, 55] is possible. The other limit case lim
m↗1

C(m) = R× i(0,∞)

is entirely treated in Bégout and Dı́az [29] : existence, uniqueness and boundedness for any subset

Ω ⊆ RN .

We will use the following notations throughout this paper. We denote by z the conjugate of the

complex number z, by Re(z) its real part and by Im(z) its imaginary part. Unless if specified, all

functions are complex-valued (H1(Ω) = H1(Ω;C), etc). For 1 6 p 6 ∞, p′ is the conjugate of

p defined by 1
p + 1

p′ = 1. For a Banach space X, we denote by X? its topological dual and by

〈 . , . 〉X?,X ∈ R the X? −X duality product. In particular, for any T ∈ Lp′(Ω) and ϕ ∈ Lp(Ω) with

1 6 p < ∞, 〈T, ϕ〉Lp′ (Ω),Lp(Ω) = Re
∫

Ω
T (x)ϕ(x)dx. The scalar product in L2(Ω) between two func-

tions u, v is, (u, v)L2(Ω) = Re
∫

Ω
u(x)v(x)dx. For a Banach space X and p ∈ [1,∞], u ∈ Lploc

(
[0,∞);X

)
means that for any T > 0, u|(0,T ) ∈ Lp

(
(0, T );X

)
. In the same way, we will use the notation

u ∈ W 1,p
loc

(
[0,∞);X

)
. As usual, we denote by C auxiliary positive constants, and sometimes, for

2. Multiply (6.1.10) by iu and u, integrate by parts and take the real part.
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positive parameters a1, . . . , an, write as C(a1, . . . , an) to indicate that the constant C depends only

on a1, . . . , an and that dependence is continuous (we will use this convention for constants which are

not denoted by “C”).

This paper is organized as follows. In Section 6.2, we state the mains results about existence, unique-

ness and boundness for (6.1.1) (Theorem 6.2.4, 6.2.6 and 6.2.7). In Section 6.3, we give the results

about the finite time extinction property and the asymptotic behavior (Theorems 6.3.1, 6.3.4 and

6.3.5). The proofs of the existence, uniqueness and boundness are made in Section 6.4 while those of

the finite time extinction property and the asymptotic behavior are given in Section 6.5.

6.2 Existence and uniqueness of the solutions

Let 0 < m < 1, let a ∈ C, let f ∈ L1
loc

(
[0,∞);L2(RN )

)
and let u0 ∈ L2(RN ). We consider the

following nonlinear Schrödinger equation.i
∂u

∂t
+ ∆u+ a|u|−(1−m)u = f(t, x), in (0,∞)× RN ,

u(0) = u0, in RN ,

(6.2.1)

(6.2.2)

The main results in this paper hold with the assumptions below.

Assumption 6.2.1. We assume that 0 < m < 1 and a ∈ C satisfy,

2
√
m Im(a) > (1−m)|Re(a)|. (6.2.3)

If Re(a) > 0 then we assume further that,

2
√
m Im(a) > (1−m)Re(a). (6.2.4)

Here and after, we shall always identify L2(RN ) with its topological dual. Let 0 < m < 1 and let

X = H ∩ Lm+1(RN ), where H = L2(RN ) or H = H1(RN ). We recall that (Lemmas B.2 and B.4),

X? = H? + L
m+1
m (RN ), (6.2.5)

D(RN ) ↪→ X ↪→ Lm+1(RN ) with both dense embeddings, (6.2.6)

L
m+1
m (RN ) ↪→ X? ↪→ D ′(RN ) with both dense embeddings, (6.2.7)

Lm+1
loc

(
[0,∞);X

)
∩W 1,m+1

m

loc

(
[0,∞);X?

)
↪→ C

(
[0,∞);L2(RN )

)
. (6.2.8)

This justifies the notion of solution below (and especially 4)).

Definition 6.2.2. Let 0 < m < 1, let a ∈ C, let f ∈ L1
loc

(
[0,∞);L2(RN )

)
and let u0 ∈ L2(RN ). Let

us consider the following assertions.

1) u ∈ Lm+1
loc

(
[0,∞);H1(RN ) ∩ Lm+1(RN )

)
∩W 1,m+1

m

loc

(
[0,∞);H? + L

m+1
m (RN )

)
,

2) For almost every t > 0, ∆u(t) ∈ H?.

3) u satisfies (6.2.1) in D ′
(
(0,∞)× RN

)
.
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4) u(0) = u0.

We shall say that u is a strong solution if u is an H2-solution or an H1-solution. We shall say that u

is an H2-solution of (6.2.1)–(6.2.2)
(
respectively, an H1-solution of (6.2.1)–(6.2.2)

)
, if u satisfies the

Assertions 1)–4) with H = L2(RN )
(
respectively, with H = H1(RN )

)
.

We shall say that u is a L2-solution or a weak solution of (6.2.1)–(6.2.2) is there exists a pair,

(fn, un)n∈N ⊂ L1
loc

(
[0,∞);L2(RN )

)
× C

(
[0,∞);L2(RN )

)
, (6.2.9)

such that for any n ∈ N, un is an H2-solution of (6.2.1) where the right-hand side of (6.2.1) is fn,

and if

fn
L1((0,T );L2(RN ))−−−−−−−−−−−→

n→∞
f and un

C([0,T ];L2(RN ))−−−−−−−−−−→
n→∞

u, (6.2.10)

for any T > 0, and if u satisfies (6.2.2).

Remark 6.2.3. Let 0 < m < 1. Set for any z ∈ C, g(z) = |z|−(1−m)z (g(0) = 0). We define the

mapping for any measurable function u : RN −→ C, which we still denote by g, by g(u)(x) = g(u(x)).

Let X be as in the beginning of this section (see (6.2.5)–(6.2.8)). From (6.2.6), (6.2.7) and the basic

estimate,

∀(z1, z2) ∈ C2, |g(z1)− g(z2)| 6 C|z1 − z2|m, (6.2.11)

we deduce easily that,

g ∈ C
(
Lm+1(RN );L

m+1
m (RN )

)
and g is bounded on bounded sets, (6.2.12)

g ∈ C(X;X?) and g is bounded on bounded sets. (6.2.13)

By (6.2.6)–(6.2.7) and (6.2.12)–(6.2.13), it follows that,

〈g(u), v〉X?,X = 〈g(u), v〉
L
m+1
m (RN ),Lm+1(RN )

= Re

∫
RN

g(u)vdx, (6.2.14)

for any u, v ∈ X. Now, let us collect some basic informations about the solutions.

1) Any strong or weak solution belongs to C
(
[0,∞);L2(RN )

)
and Assertion 4) makes sense in L2(RN )

(by (6.2.8)).

2) It is obvious that an H2-solution is also an H1-solution and a weak solution. But it is not clear that

an H1-solution is a weak solution, without a continuous dependence of the solution with respect

to the initial data. Such a result will be established with the additional assumptions (6.2.3)–(6.2.4)

on a (see Lemma 6.4.6 below). Note also that Assertion 2) of Definition 6.2.2 is not an additional

assumption for the H1-solutions.

3) AnyH2-solution (respectively, anyH1-solution) satisfies (6.2.1) in L2(RN )+L
m+1
m (RN )

(
respectively,

in H−1(RN ) + L
m+1
m (RN )

)
, for almost every t > 0. Indeed, this is a direct consequence of Defini-

tion 6.2.2 and (6.2.13).
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4) If u is a weak solution then u ∈W 1,1
loc

(
[0,∞);Y ?

)
and it solves (6.2.1) in Y ?, for almost every t > 0,

where Y = H2(RN ) ∩ L
2

2−m (RN ) and Y ? = H−2(RN ) + L
2
m (RN ) ↪→ D ′(RN ) (by Lemma B.2).

Indeed, using the notation of Definition 6.2.2 and (6.2.11), this comes from (6.2.10) and the uniform

convergences,

∆un
C([0,T ];H−2(RN ))−−−−−−−−−−−−→

n→∞
∆u, (6.2.15)

g(un)
C([0,T ];L

2
m (RN ))−−−−−−−−−−−→

n→∞
g(u), (6.2.16)

for any T > 0. In particular, u solves (6.2.1) in D ′
(
(0,∞)× RN

)
.

Theorem 6.2.4 (Existence and uniqueness of L2-solutions). Let Assumption 6.2.1 be fulfilled

and let f ∈ L1
loc

(
[0,∞);L2(RN )

)
. Then for any u0 ∈ L2(RN ), there exists a unique weak solution u

to (6.2.1)–(6.2.2). In addition,

u ∈ Lm+1
loc

(
[0,∞);Lm+1(RN )

)
, (6.2.17)

1

2
‖u(t)‖2L2(RN ) + Im(a)

t∫
s

‖u(σ)‖m+1
Lm+1(RN )

dσ 6
1

2
‖u(s)‖2L2(RN ) + Im

t∫∫
s RN

f(σ, x)u(σ, x) dxdσ,

(6.2.18)

for any t > s > 0. Finally, if v is a weak solution of (6.2.1) with v(0) = v0 ∈ L2(RN ) and g ∈
L1

loc([0,∞);L2(RN )) instead of f in (6.2.1) then,

‖u(t)− v(t)‖L2(RN ) 6 ‖u(s)− v(s)‖L2(RN ) +

t∫
s

‖f(σ)− g(σ)‖L2(RN )dσ, (6.2.19)

for any t > s > 0.

Remark 6.2.5. Let Assumption 6.2.1 be fulfilled. Let p ∈ [m + 1, 2). It follows from (6.2.18) and

Hölder’s and Young’s inequalities that if f ∈ L1
(
(0,∞);L2(RN )

)
then,

u ∈ L∞
(
(0,∞);L2(RN )

)
∩ Lm+1

(
(0,∞);Lm+1(RN )

)
.

By interpolation, we infer that for any p ∈ [m+ 1, 2),

u ∈ Cb

(
[0,∞);L2(RN )

)
∩ L

p(1−m)
2−p

(
(0,∞);Lp(RN )

)
. (6.2.20)

If, in addition, (ϕn)n∈N ⊂ L2(RN ), (fn)n∈N ⊂ L1
(
(0,∞);L2(RN )

)
and,

ϕn
L2(RN )−−−−−→
n→∞

u0 and fn
L1((0,∞);L2(RN ))−−−−−−−−−−−−→

n→∞
f,

then by (6.2.19), (6.2.20) and again by interpolation, we have for any p ∈ (m+ 1, 2),

un
Cb([0,∞);L2(RN ))∩L

p(1−m)
2−p ((0,∞);Lp(RN ))−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

n→∞
u,

where for each n ∈ N, un is the weak solution of (6.2.1) with un(0) = ϕn and fn instead of f.
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Theorem 6.2.6 (Existence and uniqueness of H1-solutions). Let Assumption 6.2.1 be fulfilled

and let f ∈ W 1,1
loc

(
[0,∞);H1(RN )

)
. Then for any u0 ∈ H1(RN ), there exists a unique H1-solution u

to (6.2.1)–(6.2.2). Furthermore, u is also a weak solution and satisfies the following properties.

1) u ∈ C
(
[0,∞);L2(RN )

)
∩ C1

(
[0,∞);Y ?

)
and u satisfies (6.2.1) in Y ?, for any t > 0, where Y ? =

H−2(RN ) + L
2
m (RN ).

2) u ∈ Cw

(
[0,∞);H1(RN )

)
∩W 1,∞

loc

(
[0,∞);H−1(RN ) + L

2
m (RN )

)
and,

‖∇u(t)‖L2(RN ) 6 ‖∇u0‖L2(RN ) +

∫ t

0

‖∇f(s)‖L2(RN )ds, (6.2.21)

for any t > 0.

3) The map t 7−→ ‖u(t)‖2L2(RN ) belongs to W 1,1
loc

(
[0,∞);R

)
and we have,

1

2

d

dt
‖u(t)‖2L2(RN ) + Im(a)‖u(t)‖m+1

Lm+1(RN )
= Im

∫
RN

f(t, x)u(t, x) dx, (6.2.22)

for almost every t > 0.

Theorem 6.2.7 (Existence and uniqueness of H2-solutions). Let Assumption 6.2.1 be fulfilled

and let f ∈ W 1,1
loc

(
[0,∞);L2(RN )

)
. Then for any u0 ∈ H2(RN ) ∩ L2m(RN ), there exists a unique

H2-solution u to (6.2.1)–(6.2.2). Furthermore, u satisfies (6.2.1) in L2(RN ), for almost every t > 0,

and the following properties.

1) u ∈ C
(
[0,∞);H1(RN ) ∩ Lm+1(RN )

)
∩ C1

(
[0,∞);H−1(RN ) + L

m+1
m (RN )

)
and u satisfies (6.2.1)

in H−1(RN ) + L
m+1
m (RN ), for any t > 0.

2) u ∈W 1,∞
loc

(
[0,∞);L2(RN )

)
∩ L∞loc

(
[0,∞);H2(RN ) ∩ L2m(RN )

)
and,

‖u(t)− u(s)‖L2(RN ) 6 ‖ut‖L∞((s,t);L2(RN ))|t− s|,

‖∇u(t)−∇u(s)‖L2(RN ) 6M |t− s|
1
2 ,

‖ut‖L∞((0,t);L2(RN )) 6 ‖∆u0 + a|u0|m−1u0 − f(0)‖L2(RN ) +

∫ t

0

‖f ′(σ)‖L2(RN )dσ,

(6.2.23)

(6.2.24)

(6.2.25)

for any t > s > 0, where M2 = 2‖ut‖L∞((s,t);L2(RN ))‖∆u‖L∞((s,t);L2(RN )).

3) The map t 7−→ ‖u(t)‖2L2(RN ) belongs to C1
(
[0,∞);R

)
and (6.2.22) holds for any t > 0.

4) If f ∈W 1,1
(
(0,∞);L2(RN )

)
then we have,

u ∈ Cb

(
[0,∞);H1(RN )

)
∩ L∞

(
(0,∞);H2(RN ) ∩ L2m(RN )

)
∩W 1,∞((0,∞);L2(RN )

)
.

Remark 6.2.8. It follows from Lemma B.4 below that f ∈ C
(
[0,∞);L2(RN )

)
and so, estimate (6.2.25)

with f(0) makes sense.

Remark 6.2.9. We recall that if u ∈ L2(RN ) with ∆u ∈ L2(RN ) then u ∈ H2(RN ). Furthermore, if

‖u‖2H2,2(RN ) = ‖u‖2L2(RN ) +‖∆u‖2L2(RN ) then ‖ .‖H2,2(RN ) and ‖ .‖H2(RN ) are equivalent norms. Indeed,

this us due to the Fourier transform and Plancherel’s formula. Finally, note that,

‖∇u‖2L2(RN ) 6 ‖u‖L2(RN )‖∆u‖L2(RN ) 6 ‖u‖2L2(RN ) + ‖∆u‖2L2(RN ), (6.2.26)

for any u ∈ H2(RN ).
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Remark 6.2.10. Using a radically different method than the one we propose here, we may show

that all the results of this section remain valid if we replace RN with an unbounded domain Ω 6= RN .
This will be the subject of a future work.

6.3 Finite time extinction and asymptotic behavior

Following the method by Carles and Gallo [53] (also used by Carles and Ozawa [55]) and Bégout and

Dı́az [29], we are able to prove the finite time extinction and asymptotic behavior results.

Theorem 6.3.1. Let Assumption 6.2.1 be fulfilled with N ∈ {1, 2, 3}, let f ∈ W 1,1
(
(0,∞);L2(RN )

)
,

let u0 ∈ H1(RN ) and assume that one of the following hypotheses holds.

1) N = 1 and f ∈W 1,1
(
(0,∞);H1(R)

)
.

2) N ∈ {1, 2, 3} and u0 ∈ H2(RN ) ∩ L2m(RN ).

Let u be the unique strong solution of (6.2.1)–(6.2.2). Finally, assume that there exists T0 > 0 such

that,

for almost every t > T0, f(t) = 0.

Let ` be the exponant in u0 ∈ H`(RN ). We have the following results.

a) There exists a finite time T? > T0 such that,

∀t > T?, ‖u(t)‖L2(RN ) = 0. (6.3.1)

Furthermore,

T? 6 C‖u‖
N(1−m)

2`

L∞((0,∞);H`(RN ))
‖u(T0)‖

(1−m)(2`−N)
2`

L2(RN )
+ T0, (6.3.2)

where C = C(Im(a), N,m, `).

b) There exists ε? = ε?(|a|, N,m) satisfying the following property. Let δ = (2`+N)+m(2`−N)
4` ∈

(
1
2 , 1
)
.

If f ∈W 1,1
(
(0,∞);H1(RN )

)
,

(
‖u0‖H1(RN ) + ‖f‖L1((0,∞);H1(RN ))

)1−m
6 ε? min

{
1, T0

}
, if N = 1,(

‖u0‖mH2(RN ) + ‖f‖mW 1,1((0,∞);H1(RN ))

)1−m
6 ε? min

{
1, T0

}
, if N ∈ {2, 3},

and if for almost every t > 0,

‖f(t)‖2L2(RN ) 6 ε?
(
T0 − t

) 2δ−1
1−δ

+
, (6.3.3)

then (6.3.1) holds with T? = T0.

Remark 6.3.2. If (N, `) ∈ {(1, 1), (2, 2)} then 2δ−1
1−δ = 2 1+m

1−m , if (N, `) = (1, 2) then 2δ−1
1−δ = 2 1+3m

3(1−m)

and if (N, `) = (3, 2) then 2δ−1
1−δ = 2 3+m

1−m . Note that if N = 1 and u0 ∈ H2(RN ) then there are two

possible choices for 2δ−1
1−δ in (6.3.3) : 2 1+m

1−m or 2 1+3m
3(1−m) . Since for t near T0, T0 − t < 1 then the choice

the less restrictive is that for which 2δ−1
1−δ is the smallest as possible, that is 2 1+3m

3(1−m) .
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Remark 6.3.3. In the case of our nonlinearity, Theorem 6.3.1 is an improvement of the result of

Carles and Ozawa [55] in the sense they obtain the same conclusion as in a) but with a presence

harmonic confinement in (6.2.1), Re(a) = 0, f = 0, N ∈ {1, 2} and
(
u0 ∈ H1(R) ∩ F (H1(R)) 3

)
,

if N = 1 and
(
u0 ∈ H2(R2) ∩ F (H2(R2))3, ‖u0‖L2(R2) small enough and 1

2 6 m < 1
)
, if N = 2.

Additional nonlinearities are also considered in [55].

Theorem 6.3.4. Let Assumption 6.2.1 be fulfilled with N > 4, let f ∈W 1,1
loc

(
[0,∞);L2(RN )

)
and let

u0 ∈ H1(RN ). Suppose further that f ∈ W 1,1
loc

(
[0,∞);H1(RN )

)
or u0 ∈ H2(RN ). Let u be the unique

strong solution of (6.2.1)–(6.2.2). Finally, assume that there exists T0 > 0 such that,

for almost every t > T0, f(t) = 0.

Then we have for any t > T0,

‖u(t)‖L2(RN ) 6 ‖u(T0)‖L2(RN )e
−C(t−T0),

if N = 4 and u0 ∈ H2(RN ),

‖u(t)‖L2(RN ) 6
‖u(T0)‖L2(RN )(

1 + C‖u(T0)‖
(1−m)(N−2`)

2`

L2(RN )
(t− T0)

) 2`
(1−m)(N−2`)

,

if N > 5 or u0 ∈ H1(RN ), where C = C(‖u‖L∞((0,∞);H`(RN )), Im(a), N,m, `).

Theorem 6.3.5. Let Assumption 6.2.1 be fulfilled, let f ∈ L1
loc

(
[0,∞);L2(RN )

)
, let u0 ∈ L2(RN )

and let u be the unique weak solution of (6.2.1)–(6.2.2). If

f ∈ L1
(
(0,∞);L2(RN )

)
,

then,

lim
t↗∞

‖u(t)‖L2(RN ) = 0.

6.4 Proofs of the existence and uniqueness theorems

Since we have to prove existence in the whole space, the method is radically different than that used

in Bégout and Dı́az [29].

Theorem 6.4.1. Let Assumption 6.2.1 be fulfilled and let λ, b0 > 0. Then for any F ∈ L2(RN ), there

exists a unique solution u to,u ∈ H
2(RN ) ∩ L2m(RN ),

−λ∆u− aλ|u|−(1−m)u− ib0u = F, in L2(RN ).
(6.4.1)

In addition,

‖u‖2H2(RN ) + ‖u‖m+1
Lm+1(RN )

+ ‖u‖2mL2m(RN ) 6M‖F‖
2
L2(RN ), (6.4.2)

3. F (H1(R)) ↪→ L2m(R) and F (H2(R2)) ↪→ L2m(R2), for any 1
3
< m 6 1.
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where M = M(|a|,Arg(a), b0, λ). Furthermore, if F is compactly supported then so is u. Finally, let

G ∈ L2(RN ). If v is a solution to (6.4.1) with G instead of F then,

‖u− v‖L2(RN ) 6
1

b0
‖F −G‖L2(RN ). (6.4.3)

Here and after, Arg(a) ∈ (0, π) denotes the principal value of the argument of a.

The proof of the theorem relies on the following lemmas.

Lemma 6.4.2. Let Assumption 6.2.1 be fulfilled. Then there exists b ∈ C, with |b| = 1, satisfying the

following property.

Re(b) > 0 and Im(b) < 0, (6.4.4)

2
√
m Im(ab) > (1−m)Re(ab) > 0. (6.4.5)

In addition, b = b(Arg(a)). In particular, ab satisfies (6.2.3)–(6.2.4) of Assumption 6.2.1.

Proof. Let θa = Arg(a) ∈ (0, π), since Im(a) > 0. We look for b = e−iθb , where 0 < θb <
π
2 .

Case 1 : Re(a) < 0.

If follows that, π
2 < θa < π. We choose θb = θa − π

2 . We then have ab = i|a| and the conclusion is

clear.

Case 2 : Re(a) > 0.

If follows that, 0 < θa 6 π
2 and by (6.2.4), one has

2
√
m sin(θa) > (1−m) cos(θa) > 0. (6.4.6)

By continuity and (6.4.6), there exists θb ∈ (0, θa) such that,

2
√
m sin(θa − θb) > (1−m) cos(θa − θb) > 0. (6.4.7)

Then, 0 < θa − θb < π
2 , ab = |a|ei(θa−θb) and again the conclusion is clear.

We may summarize the proof of Lemma 6.4.2 with the picture below.

.

.0

1

i

a = |a|eiθa

b = e−iθb

ab

+

−θb

←− −θb
Re(z)

Im(z)

Im(z)= 1−m
2
√
m
|Re(z)|

θb = θa − π
2

Case 1 : Re(a) < 0

.

.

.

0

1

i

a

b = e−iθb

ab

+

−θb

←− −θb
Re(z)

Im(z)

Im(z)= 1−m
2
√
m
|Re(z)|

0 < θb � 1
Case 2 : Re(a) > 0
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Lemma 6.4.3. Let 0 < m < 1. Set for any z ∈ C, g(z) = |z|−(1−m)z (g(0) = 0). We define the

mapping for any measurable function u : RN −→ C, which we still denote by g, by g(u)(x) = g(u(x)).

Then for any p ∈ [1,∞),

g ∈ C
(
Lp(RN );L

p
m (RN )

)
and g is bounded on bounded sets. (6.4.8)

Let a ∈ C with Im(a) > 0 satisfying (6.2.3). Then
(
g(u)− g(v)

)
(u− v) ∈ L1(RN ) and,

Re

−i a

∫
RN

(
g(u)− g(v)

)
(u− v)dx

 > 0, (6.4.9)

for any u, v ∈ Lm+1(RN ).

Proof. Property (6.4.8) is an obvious consequence of (6.2.11) which implies the integrability property

in the lemma. By Lemma 2.2 of Liskevich and Perel′muter [132], we have

2
√
m
∣∣∣Im((g(z1)− g(z2)

)(
z1 − z2

))∣∣∣ 6 (1−m)Re
((
g(z1)− g(z2)

)(
z1 − z2

))
, (6.4.10)

for any (z1, z2) ∈ C2. Let u, v ∈ Lm+1(RN ). We have by (6.4.10),

Re

−i a

∫
RN

(
g(u)− g(v)

)
(u− v)dx


= Im(a)Re

∫
RN

(
g(u)− g(v)

)(
u− v

)
dx+ Re(a)Im

∫
RN

(
g(u)− g(v)

)(
u− v

)
dx

>

(
Im(a)− |Re(a)|1−m

2
√
m

)
Re

∫
RN

(
g(u)− g(v)

)(
u− v

)
dx

> 0.

The lemma is proved.

Lemma 6.4.4 ([29]). Let 0 < m < 1 and let a ∈ C with Im(a) > 0 satisfying (6.2.3). Let g be as in

Lemma 6.4.3. Then g(u)∆u ∈ L1(RN ) and,

Re

ia

∫
RN

g(u)∆udx

 > 0, (6.4.11)

for any u, v ∈ H2(RN ) ∩ L2m(RN ).

Proof. See Lemma 5.6.3.

Proof of Theorem 6.4.1. Let Assumption 6.2.1 be fulfilled, λ, b0 > 0 and F ∈ L2(RN ). Let g be as

in Lemma 6.4.3. We want to solve,

−λ∆u− aλg(u)− ib0u = F, in H−1(RN ) + L
m+1
m (RN ). (uF )
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We proceed with the proof in five steps.

Step 1 : A first estimate. Let G ∈ L2(RN ). If u, v ∈ H2
loc(RN )∩H1(RN )∩Lm+1(RN ) are solutions

of (uF ) and (vG), respectively, then estimate (6.4.3) holds true.

We multiply by iϕ, for ϕ ∈ D(RN ), the equation satisfied by u− v, we integrate by parts and we take

the real part. By density of D(RN ) in H1(RN )∩Lm+1(RN ) and (6.4.8),
(
g(u)−g(v)

)
(u− v) ∈ L1(RN )

and we may choose ϕ = u− v. It follows that,

λRe

−ia

∫
RN

(
g(u)− g(v)

)
(u− v)dx

+ b0‖u− v‖2L2(RN ) = −Im

 ∫
RN

(F −G)(u− v)dx

 .

(6.4.12)

Estimate (6.4.3) then comes from (6.4.12), (6.4.9) and Cauchy-Schwarz’s inequality.

Step 2 : A second estimate. If u is a solution to (6.4.1) then u ∈ Lm+1(RN ) and satisfies (6.4.2).

Since 2m < m+ 1 < 2, then L2m(RN ) ∩ L2(RN ) ⊂ Lm+1(RN ). By Theorem 2.2.9,

‖u‖2H1(RN ) + ‖u‖m+1
Lm+1(RN )

6M(|a|, b0, λ)‖F‖2L2(RN ). (6.4.13)

Let b ∈ C be given by Lemma 6.4.2. We multiply the equation in (6.4.1) by −ib∆u, integrate by parts

and take the real part. We obtain,

− λIm(b)‖∆u‖2L2(RN ) + λRe

iab

∫
RN

g(u)∆udx

+ b0Re(b)‖∇u‖2L2(RN )

= Im

(
b

∫
RN

F∆udx

)
. (6.4.14)

By (6.4.5), we may apply Lemma 6.4.4. Using (6.4.4), (6.4.11) and applying Cauchy-Schwarz’s in-

equality in (6.4.14), one obtains,

‖∆u‖L2(RN ) 6
|b|

λ|Im(b)|
‖F‖L2(RN ). (6.4.15)

Now, since by Plancherel’s formula, ‖u‖Ḣ2(RN ) 6 C‖|ξ|2û‖L2(RN ) 6 C‖∆u‖L2(RN ), putting together

(6.4.13) and (6.4.15), one obtains (6.4.2).

Step 3 : Compactness of the solution. If suppF is compact and if u ∈ H1(RN ) ∩ Lm+1(RN ) is

a solution to (uF ) then suppu is compact.

This comes from Theorem 1.3.6.

Step 4 : Existence and uniqueness. There exists a unique solution u ∈ H2
loc(RN ) ∩ H1(RN ) ∩

Lm+1(RN ) to (uF ).

By Theorem 2.2.8, equation (uF ) admits a solution u ∈ H1(RN ) ∩ Lm+1(RN ). By Proposition 1.4.5,

u ∈ H2
loc(RN ). Finally, by Step 1 this solution is unique.

Step 5 : Conclusion.

Estimates (6.4.2)–(6.4.3), uniqueness and compactness property come from Steps 1–3, once the exis-

tence of a solution to (6.4.1) is proved. Let u ∈ H2
loc(RN )∩H1(RN )∩Lm+1(RN ) the solution of (uF )

be given by Step 4. Let (Fn)n∈N ⊂ D(RN ) be such that Fn
L2(RN )−−−−−→
n→∞

F. Finally, for each n ∈ N, denote
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by un the unique solution to (6.4.1), where the right-hand side is Fn instead of F (Steps 4 and 3).

By Steps 1 and 2, (un)n∈N is bounded in H2(RN ) and un
L2(RN )−−−−−→
n→∞

u. It follows that u ∈ H2(RN )

and, from the equation in (6.4.1), g(u) ∈ L2(RN ). Hence u is a solution to (6.4.1). This concludes the

proof.

Corollary 6.4.5. Let Assumption 6.2.1 be fulfilled. Let us define the following (nonlinear) operator

on L2(RN ). D(A) = H2(RN ) ∩ L2m(RN ),

∀u ∈ D(A), Au = −i∆u− ia|u|−(1−m)u,

Then A is maximal monotone on L2(RN ) (and so m-accretive) with dense domain.

Proof. The density is obvious. For any λ > 0, I + λA is bijective from D(A) onto L2(RN ) and

(I + λA)−1 is a contraction (Theorem 6.4.1). It follows that A is maximal monotone (Brezis [43],

Proposition 2.2, p.23).

Proof of Theorem 6.2.7. Let g be as in Lemma 6.4.3. We first recall that by 1) of Lemma B.4,

f ∈ C
(
[0,∞);L2(RN )

)
. (6.4.16)

By Corollary 6.4.5 and Barbu [16] (Theorem 2.2, p.131), there exists a unique u ∈W 1,∞
loc

(
[0,∞);L2(RN )

)
satisfying u(t) ∈ H2(RN ) ∩ L2m(RN ) and (6.2.1) in L2(RN ), for almost every t > 0, u(0) = u0

and (6.2.25). This last estimate yields (6.2.23). Since u ∈ W 1,∞
loc

(
[0,∞);L2(RN )

)
, it follows from

Lemma B.5 that the map M : t 7−→ 1
2‖u(t)‖2L2(RN ) belongs to W 1,∞

loc

(
[0,∞);R

)
and M ′(t) =(

u(t), ut(t)
)
L2(RN )

, for almost every t > 0. Multiplying (6.2.1) by iu, integrating by parts over RN

and taking the real part, we obtain (6.2.22), for almost every t > 0. We deduce easily from (6.2.22),

(6.4.16) and Hölder’s inequality that u ∈ L∞loc

(
[0,∞);Lm+1(RN )

)
. Multiplying again (6.2.1) by u,

integrating by parts and taking the real part, we get

‖∇u(t)‖2L2(RN ) 6 |Re(a)|‖u(t)‖m+1
Lm+1(RN )

+
(
‖ut(t)‖L2(RN ) + ‖f(t)‖L2(RN )

)
‖u(t)‖L2(RN ),

for almost every t > 0. It follows that u ∈ L∞loc

(
[0,∞);H1(RN )

)
. We infer that u is an H2-solution.

Let b ∈ C be given by Lemma 6.4.2. We multiply (6.2.1) by iabg(u), integrate and take the real part.

We get,

Re

ab ∫
RN

utg(u)dx

+ Re

iab

∫
RN

g(u)∆udx


+ |a|2Re(ib)‖g(u)‖2L2(RN ) = Re

iab

∫
RN

fg(u)dx

 . (6.4.17)

By Lemma 6.4.2, we have (6.4.11). This implies,

Re

iab

∫
RN

g(u)∆udx

 = Re

iab

∫
RN

g(u)∆udx

 > 0, (6.4.18)
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and (6.4.17) becomes,

|a||Im(b)| ‖u‖2mL2m(RN ) 6
∫
RN

|(ut + if)g(u)|dx, (6.4.19)

since Re(ib) = −Im(b) > 0, by (6.4.4). By Cauchy-Schwarz’s and Young’s inequalities, we get∫
RN

|(ut + if)g(u)|dx 6 1

2|a||Im(b)|
‖ut + if‖2L2(RN ) +

|a||Im(b)|
2

‖u‖2mL2m(RN ). (6.4.20)

Putting together (6.4.19) and (6.4.20), we arrive at,

‖u(t)‖2mL2m(RN ) 6
1

|a|2|Im(b)|2
(
‖ut(t)‖L2(RN ) + ‖f(t)‖L2(RN )

)2
, (6.4.21)

for almost every t > 0. Multiplying again (6.2.1) by ib∆u, using (6.4.18) and proceeding as above, we

arrive at,

‖∆u(t)‖L2(RN ) 6
1

|Im(b)|
(
‖ut(t)‖L2(RN ) + ‖f(t)‖L2(RN )

)
, (6.4.22)

for almost every t > 0. By (6.4.16), (6.4.21), (6.4.22), Remark 6.2.9 and Hölder’s inequality (recalling

that 2m < m+ 1 < 2), we obtain,

u ∈ L∞loc

(
[0,∞);H2(RN )

)
∩ L∞loc

(
[0,∞);L2m(RN )

)
, (6.4.23)

u ∈ C
(
[0,∞);L2(RN )

)
∩ L∞loc

(
[0,∞);L2m(RN )

)
↪→ C

(
[0,∞);Lm+1(RN )

)
. (6.4.24)

Recalling that u ∈W 1,∞
loc

(
[0,∞);L2(RN )

)
, by (6.4.23) and the embedding 3) of Lemma B.4, we have

u ∈ C
(
[0,∞);H1(RN )

)
. We then deduce Property 1), with help of (6.2.13), (6.4.16) and (6.2.1).

With (6.2.26), (6.2.23) and (6.4.23), we get (6.2.24) and Property 2) is proved. Property 3) comes

from (6.2.22), (6.4.16) and (6.4.24). Finally, Property 4) follows easily from the embedding 1) of

Lemma B.4, Remarks 6.2.5 and 6.2.9, (6.2.25), (6.4.21) and (6.4.22). This concludes the proof of the

theorem.

Lemma 6.4.6. Let Assumption 6.2.1 be fulfilled and f, g ∈ L1
loc

(
[0,∞);L2(RN )

)
. If u and v are

strong solutions or weak solutions of

iut + ∆u+ a|u|−(1−m)u = f1,

ivt + ∆v + a|v|−(1−m)v = f2,

respectively, then u, v ∈ C
(
[0,∞);L2(Ω)

)
and

‖u(t)− v(t)‖L2(Ω) 6 ‖u(s)− v(s)‖L2(Ω) +

t∫
s

‖f1(σ)− f2(σ)‖L2(Ω)dσ, (6.4.25)

for any t > s > 0.
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Proof. Let X = H1(RN )∩Lm+1(RN ) and let u, v be as in the lemma. Continuity comes from (6.2.8)

and Definition 6.2.2. Estimate (6.4.25) being stable by passing to the limit in C
(
[0, T ];L2(RN )

)
×

L1
(
(0, T );L2(RN )

)
, for any T > 0, it is sufficient to establish it for the H2-solutions. And since

an H2-solution is an H1 solution, we may assume that u, v are H1 solution. Making the difference

between the two equations, it follows from 3) of Remark 6.2.3 that we can take the X? −X duality

product of the result with i(u− v). With help of (B.3) below, (6.2.14), (6.4.9) and Cauchy-Schwarz’s

inequality, we then arrive at,

1

2

d

dt
‖u( . )− v( . )‖2L2(Ω) 6 ‖f1 − f2‖L2(Ω)‖u− v‖L2(Ω),

almost everywhere on (0,∞). Integrating over (s, t), one obtains (6.4.25).

Proof of Theorem 6.2.4. Existence, estimate (6.2.19) and uniqueness comes from density of

H2(RN )×W 1,1
loc ([0,∞);L2(RN )) in L2(RN )×L1

loc([0,∞);L2(RN )), Theorem 6.2.7, Lemma 6.4.6 and

completeness of C
(
[0, T ];L2(RN )

)
, for any T > 0. Finally, estimates (6.2.17)–(6.2.18) comes from

Proposition 5.2.3. This ends the proof of the theorem.

Proof of Theorem 6.2.6. Uniqueness comes from Lemma 6.4.6. Let f ∈W 1,1
loc ([0,∞);H1(RN )) and

let u0 ∈ H1(RN ). Let (ϕn)n∈N ⊂ D(RN ) be such that ϕn
H1(RN )−−−−−→
n→∞

u0. Finally, let g be defined as in

Lemma 6.4.3 and for each n ∈ N, let un the unique H2-solution of (6.2.1) such that un(0) = ϕn, be

given by Theorem 6.2.7. By Lemma 6.4.6, we have for any T > 0 and n, p ∈ N,

‖un‖C([0,T ];L2(RN )) 6 ‖ϕn‖L2(RN ) +

∫ T

0

‖f(t)‖L2(RN )dt, (6.4.26)

‖un − up‖L∞((0,∞);L2(RN )) 6 ‖ϕn − ϕp‖L2(RN ),

It follows that for any T > 0, (un)n∈N is a Cauchy sequence in C
(
[0, T ];L2(RN )

)
. As a consequence,

there exists u ∈ C
(
[0,∞);L2(RN )

)
such that for any T > 0,

un
C([0,T ];L2(RN ))−−−−−−−−−−→

n→∞
u. (6.4.27)

By definition, it follows from (6.4.27) that u is a weak solution of (6.2.1)–(6.2.2). By Theorem 6.2.7,

we can take the L2-scalar product of (6.2.1) with −i∆un and it follows from (B.4) that for any n ∈ N
and almost every s > 0,

1

2

d

dt
‖∇un(s)‖2L2(RN ) + Re

ia

∫
RN

g(un(s))∆un(s)dx

 =
(
∇f(s), i∇un(s)

)
L2(RN )

.

which gives with (6.4.11) and Cauchy-Schwarz’s inequality,

1

2

d

dt
‖∇un(s)‖2L2(RN ) 6 ‖∇f(s)‖L2(RN )‖∇un(s)‖L2(RN ).

By integration, we obtain for any t > 0 and any n ∈ N,

‖∇un(t)‖L2(RN ) 6 ‖∇ϕn‖L2(RN ) +

∫ t

0

‖∇f(s)‖L2(RN )ds. (6.4.28)
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By the Sobolev embedding 1) of Lemma B.4,

W 1,1
loc

(
[0,∞);L2(RN )

)
↪→ C

(
[0,∞);L2(RN )

)
, (6.4.29)

(6.4.26), (6.4.28), (6.4.8) and (6.2.1), we infer that,

(un)n∈N is bounded in L∞
(
(0, T );H1(RN )

)
∩W 1,∞((0, T );Z?

)
, (6.4.30)

for any T > 0, where Z? = H−1(RN ) + L
2
m (RN ) is the topological dual space of Z = H1(RN ) ∩

L
2

2−m (RN ). Note that Z? is reflexive (Lemma B.2) and since H1(RN ) ↪→ Z?, it follows from (6.4.27),

(6.4.30), (6.2.15) and Proposition 1.1.2, p.2, and (ii) of Remark 1.3.13, p.12, in Cazenave [57] that,

u ∈ Cw

(
[0,∞);H1(RN )

)
∩W 1,∞

loc

(
[0,∞);Z?

)
, (6.4.31)

∆u ∈ C
(
[0,∞);H−2(RN )

)
, (6.4.32)

un(t) ⇀ u(t), in H1
w(RN ), as n→∞, (6.4.33)

for any t > 0. After integration of (6.2.22), we see with help of (6.4.26) that for any T > 0, (un)n∈N is

bounded in Lm+1
(
(0, T );Lm+1(RN )

) ∼= Lm+1
(
(0, T )×RN

)
, which is reflexive. We infer with (6.4.27),

u ∈ Lm+1
loc

(
[0,∞);Lm+1(RN )

)
. (6.4.34)

By (6.4.29), (6.4.31), (6.4.34) and (6.2.1), it follows that u satisfies 1) of Definition 6.2.2 and then u

is an H1-solution. By 3) of Remark 6.2.3, we can take the X − X? duality product with iu, where

X = H1(RN )∩Lm+1(RN ). Applying Lemma B.5 and (6.2.14), Property 3) follows. Estimate (6.2.21)

comes from (6.4.33), (6.4.28) and the weak lower semicontinuity of the norm. Finally, smoothness of

the solution in Properties 1) and 2) follows easily from (6.4.29), (6.4.31), (6.4.32), (6.4.8) and the

equation (6.2.1). This concludes the proof of the theorem.

6.5 Proofs of the finite time extinction and asymptotic beha-
vior theorems

Proof of Theorem 6.3.1. Apply Theorems 6.2.6, 6.2.7 and use the general theorem of finite time

extinction (Theorem 5.2.1 and Remark 5.4.8). Nevertheless, to make the proof more understandable,

we briefly explain how to obtain (6.3.1)–(6.3.2). Let ` = 1, if u0 ∈ H1(RN ) and ` = 2, if u0 ∈ H2(RN ).

Assume that for some T0 > 0, f(t) = 0, for almost every t > T0. It follows from Theorems 6.2.6, 6.2.7

and Remark 6.2.5 that u ∈ L∞
(
(0,∞);H`(RN )

)
. We have by Gagliardo-Nirenberg’s inequality and

(6.2.22),

‖u(t)‖
(2`+N)+m(2`−N)

2`

L2(RN )
6 C‖u‖

N(1−m)
2`

L∞((0,∞);H`(RN ))
‖u(t)‖m+1

Lm+1(RN )
,

d

dt
‖u(t)‖2L2(RN ) + 2Im(a)‖u(t)‖m+1

Lm+1(RN )
= 0,

for almost every t > T0. It follows that,

y′(t) + Cy(t)δ 6 0, (6.5.1)
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for almost every t > T0, where y(t) = ‖u(t)‖2L2(RN ) and δ = (2`+N)+m(2`−N)
4` . By our assumption on

`, we have δ ∈ (0, 1) if N 6 3. Hence (6.3.1)–(6.3.2) by integration.

Proof of Theorem 6.3.4. Let ` = 1, if u0 ∈ H1(RN ) and ` = 2, if u0 ∈ H2(RN ). By Theorems 6.2.6,

6.2.7 and Remark 6.2.5, u ∈ L∞
(
(0,∞);H`(RN )

)
. Repeating the proof of Theorem 6.3.1, we obtain

obtain (6.5.1). According to the different cases as in the theorem, we have δ = 1 or δ > 1. The

results then follow by integration (see also (6.1.6) and the lines below). For more details, see 3) of

Remark 5.2.4.

Proof of Theorem 6.3.5. By Remark 6.2.5, we may assume that f ∈ D
(
[0,∞);L2(RN )

)
and

u0 ∈ H2(RN ). Let [0, T0] ⊃ supp f. By (6.2.22), d
dt‖u(t)‖2L2(RN ) 6 0, for any t > T0. It follows that

lim
t↗∞

‖u(t)‖L2(RN ) = `0, for some `0 ∈ [0,∞). Let q ∈ (2,∞) with (N − 2)q < 2N. By Hölder’s

inequality and Sobolev’s embedding H1(RN ) ↪→ Lq(RN ), there exists θ ∈ (0, 1) such that,

`0 6 ‖u(t)‖L2(RN ) 6 ‖u(t)‖θLm+1(RN )‖u(t)‖1−θ
Lq(RN )

6 C‖u(t)‖θLm+1(RN )‖u‖
1−θ
L∞((0,∞);H1(RN ))

,

for any t > T0. We get, still by (6.2.22),

d

dt
‖u(t)‖2L2(RN ) 6 −C`

m+1
θ

0 6 0,

for any t > T0. Hence `0 = 0.
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Chapitre 7

A Generalized Interpolation
Inequality and its Application to
the Stabilization of Damped
Equations

with Fernando Soria∗

Abstract
In this paper, we establish a generalized Hölder’s or interpolation inequality for weighted spaces in which

the weights are non-necessarily homogeneous. We apply it to the stabilization of some damped wave-like

evolution equations. This allows obtaining explicit decay rates for smooth solutions for more general classes

of damping operators. In particular, for 1 − d models, we can give an explicit decay estimate for pointwise

damping mechanisms supported on any strategic point.

7.1 Introduction

We are interested on a generalized Hölder’s or interpolation inequality, in order to establish explicit

decay rates for smooth solutions of damped wave-like equations with weak damping.

Let (Ω,T , µ) be a measure space and let ω1 and ω2 be two µ-measurable weights on Ω. The problem

we address consists in finding suitable functions Φ and Ψ such that

1 6 Φ


∫

Ω

|f(x)|ω1(x)dµ(x)

‖f‖L1(Ω,T ,µ)

Ψ


∫

Ω

|f(x)|ω2(x)dµ(x)

‖f‖L1(Ω,T ,µ)

 , (7.1.1)

for any f ∈ L1(Ω,T , µ) ∩ L1(Ω,T , ω1dµ) ∩ L1(Ω,T , ω2dµ).
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The case where the weights functions are homogeneous is well-known. Indeed, if ω1(x) = |x|α and

ω2(x) = |x|−β (α, β > 0), the classical Hölder’s inequality gives

∫
Ω

|f(x)|dx 6
(∫

Ω

|f(x)| |x|αdx

) β
α+β

(∫
Ω

|f(x)| |x|−βdx

) α
α+β

, (7.1.2)

where dx denotes the Lebesgue’s measure or, equivalently,

1 6


∫

Ω

|f(x)| |x|αdx∫
Ω

|f(x)|dx


β

α+β

∫

Ω

|f(x)| |x|−βdx∫
Ω

|f(x)|dx


α

α+β

.

Obviously, (7.1.2) is a particular case of (7.1.1), in which the functions Φ and Ψ are respectively

Φ(t) = t
β

α+β and Ψ(t) = t
α

α+β .

This paper is devoted to obtain a generalization of (7.1.2) for non-homogeneous weights. We are

typically interested in situations in which, for instance, ω1(x) = e−|x| and ω2(x) = |x|2. As we shall

see, if we are able to get an interpolation inequality of the form (7.1.1) in this case, we will be able to

give new explicit decay rates for damped 1− d wave equations with pointwise damping.

Let us briefly illustrate the connection between these two issues.

Let a ∈ L∞(0, 1) be a nonnegative and bounded damping potential and consider the damped wave

equation in one space dimension,
utt(t, x)− uxx(t, x) + a(x)ut(t, x) = 0, for (t, x) ∈ (0,∞)× (0, 1),

u(t, 0) = u(t, 1) = 0, for t ∈ [0,∞),

u(0, x) = u0(x), ut(0, x) = u1(x), for x ∈ (0, 1).

(7.1.3)

This system is well-posed. More precisely, for any initial data u0 ∈ H1
0 (0, 1) and u1 ∈ L2(0, 1), there

exists a unique solution in the class C([0,∞);H1
0 (0, 1)) ∩ C1([0,∞);L2(0, 1)). The energy of solutions

E(t) =
1

2

(
‖ut(t)‖2L2(0,1) + ‖ux(t)‖2L2(0,1)

)
,

decreases along trajectories according to the dissipation law

d

dt
E(t) = −

1∫
0

a(x)|ut(t, x)|2dx. (7.1.4)

The decay rate of the energy depends on the efficiency of the damping term when absorbing the

energy of the system according to (7.1.4).

Using LaSalle’s invariance principle, it is easy to see that the energy of every solution tends to zero as

t −→ ∞ whenever the damping potential a satisfies for almost every x ∈ I, a(x) > a0 > 0, for some

constant a0 > 0, where I ⊂ (0, 1) is a set of positive measure (Haraux [95]). In the 1 − d case under
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consideration, in fact, one can even show that the energy of solutions tends to zero exponentially. To

prove this fact, it is sufficient to show that for some T > 0 and C > 0 the following inequality holds

E(0) 6 C

T∫
0

1∫
0

a(x)|ut(t, x)|2dxdt, (7.1.5)

for every solution.

This inequality, which is often referred to as observability inequality, asserts that the damping mecha-

nism during a time interval (0, T ) suffices to capture a fraction of the total energy of all solutions.

Combining (7.1.4), (7.1.5) and the semigroup property, it is easy to see that the exponential decay

property holds, i.e. there exist C > 0 and ω > 0 such that

∀t > 0, E(t) 6 CE(0)e−ωt, (7.1.6)

for every solution.

In fact, to prove that (7.1.5) is fulfilled, one can use the fact that it is sufficient to prove it for the

solutions of the corresponding conservative systems (7.1.3) with a = 0. In that case, the inequality is

easy to get for T = 2 using the Fourier decomposition of solutions.

Let us now consider a case where the control is supported simply on a point a ∈ (0, 1) through a

Dirac mass,

utt − uxx + δaut(t, a) = 0, (t, x) ∈ (0,∞)× (0, 1), (7.1.7)

with the same boundary conditions, initial data and energy as before. Here, δa denotes the Dirac mass

concentrated in a.

When the point a ∈ Q, there are solutions of (7.1.7) that do not decay and for which the energy is

constant in time. This is due to the fact that rational points are nodal ones for the corresponding

Sturm-Liouville problem.

When a 6∈ Q, LaSalle’s invariance principle allows proving that the energy of each solution tends to

zero as t −→ ∞. However, in this case the exponential decay rate does not hold. This is due to the

fact that, even if a 6∈ Q, the damping term does not dissipative uniformly all the Fourier components

of the solutions. This can be easily seen when analyzing the analogue of (7.1.5). Indeed, there exists

a sequence of separate variable solutions of the conservative problem (7.1.3) with a = 0 for which the

energy E(0) is of order one and the dissipated quantity,

∫ T

0

|ut(t, a)|2dt, tends to zero. This sequence

can be built in separated variables, based on the sequence of eigenfunction sin(nx) such that sin(na)

tends to zero as n tends to infinity. The main difference with the case where the damping potential

a > 0 is positive on a set of positive measure is that, in that case, inf
n>1

∫ 1

0

a(x) sin2(nx)dx > 0.

In view of this, one may only expect a weaker observability inequality to hold. A natural way of

proceeding in this case is to obtain a weakened version of (7.1.5) in which the energy E(0) in the
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left hand side is replaced by a weaker energy E−(0) which, roughly speaking, is the Fourier norm of

solutions with weights sin2(na). More precisely,

E−(0) 6 C

T∫
0

|ut(t, a)|2dt = −C(E(T )− E(0)). (7.1.8)

The problem is then how to derive an explicit decay rate for the energy E out of (7.1.8). First, we need

to assume some more regularity on the initial data, say, (u0, u1) ∈ [H2(0, 1) ∩ H1
0 (0, 1)] × H1

0 (0, 1).

We denote by E+ the corresponding energy, E+(0) = 1
2‖(u

0, u1)‖2
H2(0,1)×H1

0 (0,1)
.

In this way, we have three different energies with different degrees of strength : E, which is the

reference energy in which we are interested, E+, which is finite because the initial data have been

taken to be smooth, and E− which is the weaker energy the damping really damps out according to

(7.1.8).

Applying (7.1.1), one can deduce an interpolation inequality of the form

1 6 Φ

(
E−(0)

E(0)

)
Ψ

(
E+(0)

E(0)

)
, (7.1.9)

where Φ and Ψ depend on the energies E+ and E− under consideration, E+(0) being the strong norm

E+(0) = 1
2‖(u

0, u1)‖2
H2(0,1)×H1

0 (0,1)
. This clearly implies

E(0)Φ−1

 1

Ψ
(
E+(0)
E(0)

)
 6 E−(0), (7.1.10)

which, together with the weak observability inequality (7.1.8) yields,

E(0)Φ−1

 1

Ψ
(
E+(0)
E(0)

)
 6 C(E(0)− E(T )), (7.1.11)

which, together with the semigroup property yield (see Ammari and Tucsnak [8]),

∀t > 0, E(t) 6
C

Ψ−1

(
1

Φ( 1
t+1 )

)‖(u0, u1)‖2H2(0,1)×H1
0 (0,1). (7.1.12)

Our method is closely of that one developed by Nicaise [143], in which the decay estimate of the

energy looks like (7.1.12) (see Section 5 in [143]). But unfortunately, his method cannot apply in this

paper because the damping term has to be more regular, in some sense, that one we consider (see

[143]).

Obviously, the decay rate in (7.1.12) depends on the behavior of the functions Ψ and Φ. More preci-

sely, it depends on the behavior of Φ(t) near t = 0 and then of that of Ψ−1 at infinity. Therefore, in

order to determine the decay of solutions it is necessary to have a sharp description of the functions

Φ and Ψ entering in the interpolation inequality.
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The behavior of Φ and Ψ depends on the energies E, E+ and E− under consideration. We recall that

E− is given by the weak observability inequality (7.1.8). This is intimately related to the weakness

of the damping mechanism and no choice can be done at that level. By the contrary, there is some

liberty at the level of choosing E+ since the initial data can be chosen to be as smooth as we like.

Obviously, one expects a faster decay rate for solutions when they are smoother. This is indeed the

case as our analysis shows. All this can be precisely quantified by the analysis of the functions Φ and

Ψ in the interpolation inequality.

How Φ and Ψ depend on the energies E+ and E−, in the general context of the interpolation inequality

(7.1.1), corresponds to analyzing how the functions Φ and Ψ depend on the weight functions ω1 and

ω2. This article is precisely devoted to prove a rather general version of (7.1.1) with a careful analysis

of the behavior of Φ and Ψ. This will allow us to get explicit decay rates not only for the model pro-

blem above of the 1− d wave equation with pointwise damping but also for some other models that

we shall discuss below. In particular, we will be able to give explicit decay rates for the stabilization

of a beam by means of a piezoelectric actuators, a problem that was discussed by Tucsnak [173, 174]

in the context of control.

There is an extensive literature concerning the stabilization of damped wave-like equations. But most

of it refers to the case where the damping term (linear or nonlinear one) is able to capture the whole

energy of the system (see, for instance, Haraux and Zuazua [103], Nicaise [143] and Zuazua [184]).

In these works, the multiplier method is implied, as a tool to quantify the amount of energy that

the dissipative mechanism is able to observe. But to apply this method, the damping term has to

be active in a large subset of the domain or of the boundary where the equation holds. Much less is

known when the damping term is located in a narrow set, like, for instance, pointwise dampers in one

space dimension. But, as we have shown above, the results one may expect in that setting need to

be necessarily of a weaker nature since in those situations the damping term is only able to absorb a

lower order energy. In particular, in this context, multiplier methods do not apply.

We focus mainly on the wave equation with a damping control concentrated on an interior point.

Some partial results of explicit decay rates already exist and can be found in Ammari, Henrot and

Tucsnak [5, 6], Jaffard, Tucsnak and Zuazua [110] and Tucsnak [175]. As explained above, our gene-

ralized interpolation inequality allows answering to this in much more generality. We will also address

the stabilization of Bernoulli–Euler beams with force and moment damping. For partial results of

explicit decay rates, see Ammari and Tucsnak [7].

This paper is organized as follows. In Section 7.2, we establish our generalized Hölder’s inequality or

interpolation inequality (Theorems 7.2.1 and 7.2.2). In Section 7.3, we give a criterion of optimality

for Theorem 7.2.1 (Definition 7.3.3) and a sufficient condition to have optimality in our interpola-

tion inequality (Proposition 7.3.5). In Section 7.4, we apply these results to get explicit decay rates

for the damped wave (see (7.4.2.1)) with Dirichlet boundary condition and in Section 7.5 we briefly

explain how these results can be applied to the wave equation with mixed boundary condition (Sub-

section 7.5.1, equation (7.5.1.1)) and to some beam equations (Subsection 7.5.2, equation (7.5.2.1)).

The explicit decay rates are given. These results extend the previous ones by Ammari, Henrot and

Tucsnak [6], Ammari and Tucsnak [7] and Jaffard, Tucsnak and Zuazua [110].

We end this section by introducing some notations. For a real valued function f defined on an open
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interval I (respectively, (m,∞) for some m ∈ R) and for a ∈ ∂I (respectively, a ∈ {m,∞}), the

notation f(a) means lim
t→a
t∈I

f(t). For a ∈ R, we denote by δa the Dirac mass concentrated in a.

7.2 An interpolation inequality

Our analysis requires some elementary notions and results on convex functions.

Recall that if f : I −→ R is a convex function on an open interval I, then it is continuous, locally

absolutely continuous on I and it is of class C1 almost everywhere. More precisely, there exists a finite

or countable set N ⊂ I such that f is of class C1 relatively to I \ N . In particular, for any t, s ∈ I,

f(t) − f(s) =

∫ t

s

f ′(σ)dσ. In addition, f ′ is nondecreasing relatively to I \ N . Furthermore, f has

a left derivative f ′` and a right derivative f ′r at each point of I and for any t, s ∈ I such that s < t,

f ′`(s) 6 f ′r(s) 6 f ′`(t) 6 f ′r(t). For more details, see Niculescu and Persson [144] (Theorems 1.3.1 and

1.3.3, p.12, Proposition 3.4.2, p.87 and Theorem 3.7.3, p.96) and Rockafellar [153] (Corollary 10.1.1,

p.83, Theorem 10.4, p.86 and Theorem 25.3, p.244). Finally, we recall that f is a concave function if

−f is a convex function.

Let (Ω,T , µ) be a measure space and let ω1, ω2 : Ω −→ [0,∞) be two µ–measurable weights. In order

to establish our generalized Hölder’s inequality, we need the following hypotheses.{
Φ : I1 −→ [0,∞) is a concave function, I1 is an

open interval and for a.e. x ∈ Ω, ω1(x) ∈ I1,
(7.2.1)

{
Ψ : I2 −→ [0,∞) is a concave function, I2 is an

open interval and for a.e. x ∈ Ω, ω2(x) ∈ I2,
(7.2.2)

for a.e. x ∈ Ω, 1 6 Φ(ω1(x))Ψ(ω2(x)). (7.2.3)

Theorem 7.2.1. Let (Ω,T , µ) be a measure space, ω1, ω2 : Ω −→ [0,∞) be two µ–measurable

weights and 0 < p < ∞. If there exist two functions Φ et Ψ satisfying (7.2.1) − (7.2.3) then for any

f ∈ Lp(Ω,T , µ), f 6≡ 0, we have

1 6 Φ


∫
Ω

|f |pω1dµ

‖f‖pLp(Ω,T ,µ)

Ψ


∫
Ω

|f |pω2dµ

‖f‖pLp(Ω,T ,µ)

 , (7.2.4)

as soon as Lp(Ω,T , ω1dµ) ∩ Lp(Ω,T , ω2dµ).

Obviously, one of the main issues to be clarified is whether there exist functions Φ and Ψ satisfying

the requirements (7.2.1), (7.2.2) and (7.2.3). This, of course, depends on the properties that the

weight functions ω1 and ω2 satisfy. Below we shall give sufficient conditions on the weights ω1 and ω2

guaranteeing that Φ and Ψ as above exist. This can be done by imposing some stronger conditions
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on the weight functions. More precisely, assume that Ω = (m,∞) (for some m ∈ R), dµ = dx is the

Lebesgue’s measure and

ω1 : (m,∞) −→ (0, ω1(m)) is a convex and decreasing function and ω1(∞) = 0, (7.2.5)

ω2 : (m,∞) −→ (0,∞) is a convex and increasing function and ω2(∞) =∞, (7.2.6)

Φ : (0, ω1(m)) −→ (0,∞) is a concave and increasing function and Φ(0) = 0, (7.2.7)

Ψ : (ω2(m),∞) −→ (0,∞) is a concave and increasing function and Ψ(∞) =∞, (7.2.8)

∀t ∈ (m,∞), 1 6 Φ(ω1(t))Ψ(ω2(t)). (7.2.9)

Note that in (7.2.7), hypothesis Φ(0) = 0 means that Φ can be extended by continuity in 0 by 0.

The following result asserts that functions satisfying (7.2.7)–(7.2.9) (and so (7.2.1)–(7.2.3)) exist, if

the weights ω1 and ω2 verify the additional assumptions (7.2.5)–(7.2.6).

Theorem 7.2.2. Let m > 0 and let ω1, ω2, be two weights satisfying (7.2.5)− (7.2.6). We define the

function ϕ by

∀t > m, ϕ(t) = m
ω1(t)

t
. (7.2.10)

Then the following assertions hold.

1. The function Φ defined on [0, ω1(m)) by Φ(0) = 0 and Φ(t) =
1

ϕ−1(t)
, for t 6= 0, satisfies (7.2.7).

2. The function Ψ defined on (ω2(m),∞) by Ψ(t) = ω−1
2 (t) satisfies (7.2.8).

3. For Φ and Ψ defined as above, estimate (7.2.9) holds.

Before proving Theorems 7.2.1–7.2.2, let us establish some preliminaries lemmas. The following result

being a direct consequence of the definition of convex functions, we omit the proof.

Lemma 7.2.3. Let I ⊂ R be an interval and let ϕ : I −→ R be a function. Then ϕ is increasing and

concave on I if and only if ϕ−1 is increasing and convex on ϕ(I).

The next lemma is the inverse version of the classical Jensen’s inequality (W. Rudin [157]).

Lemma 7.2.4 (Inverse Jensen’s inequality). Let (Ω,T , ν) be a measure space such that ν(Ω) = 1

and let −∞ 6 a < b 6 +∞. Assume that

1) ϕ : (a, b) −→ R is a concave function,

2) f ∈ L1(Ω,T , ν) is such that for almost every x ∈ Ω, f(x) ∈ (a, b).

Then ϕ(f)+ ∈ L1(Ω,T , ν) and

∫
Ω

ϕ(f)dν 6 ϕ

 ∫
Ω

fdν

 . (7.2.11)

Remark 7.2.5. Since ϕ is concave on (a, b), it is continuous and ϕ ◦ f is a T -measurable function.

Furthermore, ϕ(f)+ ∈ L1(Ω,T , ν) so the left-hand side of (7.2.11) makes sense and

∫
Ω

ϕ(f)dν ∈
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[−∞,+∞). Indeed, since ϕ is a concave function, it follows from the discussion at the beginning of

this section that for any t, s ∈ (a, b), ϕ(t) 6 ϕ(s) + ϕ′`(s)(t− s). In particular,

ϕ(f) 6 ϕ(t0) + ϕ′`(t0)(f − t0), a.e. in Ω, (7.2.12)

ϕ(f)+ 6 |ϕ(t0)|+ |ϕ′`(t0)|(|f |+ |t0|) ∈ L1(Ω,T , ν),

where t0 =

∫
Ω

fdν. Integrating (7.2.12) over Ω, we obtain (7.2.11). For more details, see Theorem 3.3

p.62 in W. Rudin [157].

Now, we are in the conditions to prove Theorem 7.2.1.

Proof of Theorem 7.2.1. Let 0 < p <∞, let f ∈ Lp(Ω,T , µ) ∩ Lp(Ω,T , ω1dµ) ∩ Lp(Ω,T , ω2dµ),

f 6≡ 0, and let ν be the measure defined by ν = |f |p
‖f‖p

Lp(Ω,T ,µ)

µ. Then ν(Ω) = 1. We apply twice

Lemma 7.2.4 with ϕ1 = Φ, f1 = ω1, ϕ2 = Ψ and f2 = ω2. Then Φ ◦ ω1 ∈ L1(Ω,T , ν), Ψ ◦ ω2 ∈
L1(Ω,T , ν) and it follows from (7.2.3), Cauchy-Schwarz’s inequality and (7.2.11) that

1 =

 ∫
Ω

1
1
2 dν

2

6

 ∫
Ω

Φ
1
2 (ω1(x))Ψ

1
2 (ω2(x))dν(x)

2

6
∫
Ω

Φ(ω1(x))dν(x)

∫
Ω

Ψ(ω2(x))dν(x)

6 Φ

 ∫
Ω

ω1(x)dν(x)

Ψ

 ∫
Ω

ω2(x)dν(x)



= Φ


∫
Ω

|f |pω1dµ

‖f‖pLp(Ω,T ,µ)

Ψ


∫
Ω

|f |pω2dµ

‖f‖pLp(Ω,T ,µ)

 .

Hence (7.2.4).

The proof of Theorem 7.2.2 relies on the following lemma.

Lemma 7.2.6. Let m ∈ [0,∞), 0 < M 6 ∞ and p ∈ [1,∞). Let f : (m,∞) −→ (0,M) be a

nonincreasing function such that f(m) = M. Define the function ϕp on (m,∞) by

∀t > m, ϕp(t) =
f(t)

tp
. (7.2.13)

If f is convex on (m,∞) then ϕp is convex on (m,∞) and
1

ϕ−1
p

is concave and increasing on
(
0, Mmp

)
,

where we have used the notation M
mp = +∞ if m = 0 and/or M = +∞. Furthermore, lim

t↘0

1
ϕ−1(t) = 0.

Remark 7.2.7. If 0 < p < 1 then the conclusion of Lemma 7.2.6 may be false. Indeed, let q0 ∈ (p, 1)

and set q = 1
q0
> 1. We then choose f(t) = 1

tq0−p
, t > 0. Then f and ϕp are obviously convex and

decreasing on (0,∞). But for any t > 0, 1
ϕ−1
p (t)

= tq. So that ϕp is not concave on (0,∞) since q > 1.
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Remark 7.2.8. Let f : (m,∞) −→ (0,∞) be an application, where m ∈ R. Assume that f is convex

on (m,∞) and that lim
t→∞

f(t) = 0. If f is nonincreasing on (m,∞) then it is in fact decreasing on

(m,∞). Indeed, if f is not decreasing on (m,∞) then f(t) = f(a) > 0 for any t ∈ (a, b), for some

interval (a, b) ⊂ (m,∞). Since lim
t→∞

f(t) = 0, we necessarily have b < ∞. Then f ′ ≡ 0 on (a, b)

and, by hypothesis lim
t→∞

f(t) = 0, this implies that f ′(t0) < 0, for some t0 ∈ (b,∞). This contradicts

hypothesis f is convex.

Proof of Lemma 7.2.6. Let ϕp be defined by (7.2.13). Note that ϕp : (m,∞) −→
(
0, Mmp

)
being

bijective, continuous and decreasing, it follows that ϕ−1
p :

(
0, Mmp

)
−→ (m,∞) is well-defined, conti-

nuous and decreasing. So 1
ϕ−1
p

:
(
0, Mmp

)
−→

(
0, 1

m

)
is continuous and increasing, where we have used

the notation 1
m = +∞ if m = 0. The product of two positive and convex functions with the same

monotonicity being convex, it follows that the function t 7−→ f(t)
tp is convex and so ϕp is convex.

Moreover, hypothesis lim
t↗∞

ϕ(t) = 0 implies that lim
t↘0

1
ϕ−1(t) = 0. Since f is convex, according to the

basic properties on convex functions we recalled in the beginning of this section, there exists a se-

quence (an)n∈N ⊂ (m,∞) such that f is C1 and f ′ is nondecreasing relatively to (m,∞) \ N , with

N =
∞⋃
n=1
{an}. Now, we proceed to the proof in 3 steps.

Step 1. Set for every t ∈ (m,∞) \ N ,

h(t) = −(f ′(t)t− pf(t)) and g(t) =
h(t)

tp−1
. (7.2.14)

Then g is nonincreasing and nonnegative on (m,∞) \ N .
Indeed, let s, t ∈ (m,∞) \ N be such that s < t. Since f is convex, it follows from the discussion at

the beginning of this section that f(t)− f(s) 6 f ′(t)(t− s). Using this estimate, p > 1 and again the

fact that f is nonincreasing and f ′ is nondecreasing relatively to (m,∞) \ N , we obtain that

h(t)− h(s) = p(f(t)− f(s))− (t− s)f ′(t)− s(f ′(t)− f ′(s))

6 f(t)− f(s)− f ′(t)(t− s) 6 0.

Consequently, h is is nonincreasing. Since it is nonnegative (because f is nonnegative and nonincrea-

sing), it follows that g is also nonincreasing and nonnegative relatively to (m,∞) \ N .

Step 2. We claim that, for any t > m, ϕp(t) =

∫ 1/t

0

g

(
1

s

)
ds.

Indeed, by (7.2.13)–(7.2.14), we have for every σ ∈ (m,∞) \ N ,

−ϕ′p(σ) = −f
′(σ)σp − pf(σ)σp−1

σ2p
= −f

′(σ)σ − pf(σ)

σp+1
=
h(σ)

σp−1

1

σ2
=
g(σ)

σ2
.

Then for any ε > 0, ϕ′p ∈ L1(m+ ε,∞) and so ϕp(t) =

∫ ∞
t

g(σ)

σ2
dσ, which yields the desired result,

by using the change of variables σ = 1
s .

Step 3. Conclusion.

Let ψ be defined on
(
0, Mmp

)
by ψ(t) = 1

ϕ−1
p (t)

. Thus by Step 2, we have for any t ∈
(
0, 1

m

)
,

ψ−1(t) = ϕp

(
1

t

)
=

t∫
0

g

(
1

s

)
ds.
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Then ψ−1 is absolutely continuous and for almost every t ∈
(
0, 1

m

)
,
(
ψ−1

)′
(t) = g

(
1
t

)
> 0. Since g

is nonincreasing relatively to (m,∞) \ N (Step 1), it follows that ψ−1 is increasing and convex on(
0, 1

m

)
. By Lemma 7.2.3, ψ

def
= 1

ϕ−1
p

is increasing and concave on
(
0, Mmp

)
. Hence the result.

Proof of Theorem 7.2.2. Let ϕ be defined on (m,∞) by (7.2.10). By (7.2.5)–(7.2.6), ω2 is invertible

on (ω2(m),∞) and ϕ : (m,∞) −→ (0, ω1(m)) is a bijective and decreasing function. Then definition

of Φ and Ψ makes sense.

Proof of 1–2. Assertion 1 is a direct consequence of Lemma 7.2.6 applied to f = mω1 and assertion 2

comes from (7.2.6) and Lemma 7.2.3.

Proof of 3. By (7.2.10) and definition of Φ, Φ−1
(

1
t

)
= ϕ(t) 6 ω1(t), for any t > m. Since ϕ and ω1

are both decreasing, this implies that

∀t ∈ (0, ω1(m)), Φ(t) =
1

ϕ−1(t)
>

1

ω−1
1 (t)

.

With the above estimate, we obtain that

∀t > m, Φ(ω1(t))Ψ(ω2(t)) = Φ(ω1(t))t >
t

ω−1
1 (ω1(t))

= 1.

Hence (7.2.9). This concludes the proof.

We now give an example where the assumptions of Theorem 7.2.1 are satisfied. The weight functions

ω1, ω2 are of a particular form that arises naturally in applications : While ω1 tends to zero exponen-

tially at ∞, ω2 grows as a polynomial function. This is a case that may not be covered by Hölder’s

inequality. In the sequel, we compute explicitly the functions Φ and Ψ for which the generalized

interpolation inequality holds.

Example 7.2.9. Let Ω = RN \ B(0, 1) and A > 1. We consider the weights defined on Ω by

ω1(x) = e−A|x| and ω2(x) = |x|2. We define the interpolating functions Ψ(t) =
√
t (t > 0) and

∀t ∈ [0, eA−2], Φ(t) =


0, if t = 0,

2A

A− ln t
, if 0 < t 6 eA−2.

The hypotheses of Theorem 2.1 are satisfied since the weights ω1 and ω2 and the interpolation functions

Φ and Ψ defined as above, satisfy the pointwise inequality (7.2.3) as it is immediate to check. Indeed,

for any x ∈ Ω,

Φ(ω1(x))Ψ(ω2(x)) =
2A|x|

A+A|x|
=

2|x|
1 + |x|

> 1,

since |x| > 1. Moreover, a straightforward calculation shows that Φ is concave on [0, eA−2]. As a

consequence of Theorem 2.1 we obtain the following functional generalized interpolation inequality.

Let f ∈ L2(Ω;C) \ {0} be such that | . |f( . ) ∈ L2(Ω;C). Then,

‖f‖L2(Ω) 6 2

√√√√∫
Ω

|f(x)|2|x|2dx
A

A+ ln

 1

‖f‖2L2(Ω)

∫
Ω

|f(x)|2e−A|x|dx

 . (7.2.15)
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In the same way, we have

‖u‖`2(N) 6 2

√√√√ ∞∑
n=1

n2|un|2
A

A− ln

(
1

‖u‖2`2(N)

∞∑
n=1

e−An|un|2
) , (7.2.16)

for any u = (un)n∈N ∈ `2(N;C) \ {0} such that (nun)n∈N ∈ `2(N;C). Note that one always has for

any A > 1,

0 <
1

‖f‖2L2(Ω)

∫
Ω

|f(x)|2e−A|x|dx 6 e−A 6 eA−2

and

0 <
1

‖u‖2`2(N)

∞∑
n=1

e−An|un|2 6 e−A 6 eA−2,

(since e−A 6 eA−2 ⇐⇒ A > 1) so the above quantities takes their values in the domain of concavity

of Φ. It follows that estimates (7.2.15) and (7.2.16) always make sense.

7.3 Optimality

It this section, we discuss the notion of optimality for the pairs of functions (Φ,Ψ) satisfying the

interpolation inequalities above. We will also give sufficient conditions guaranteeing the pair is optimal.

Throughout this section, for simplicity, we assume that Ω = (m,∞) (for some m ∈ R) and that

dµ = dx is the Lebesgue’s measure. Before introducing the definition of optimality, we need the

following lemma.

Lemma 7.3.1. Let m ∈ R and let ω1, ω2, Φ and Ψ satisfy (7.2.5) − (7.2.9). Let δ ∈ (0, ω1(m)] be

such that Φ(δ) = 1
Ψ(ω2(m)) , if Ψ (ω2(m)) > 0 and let δ = +∞, if Ψ (ω2(m)) = 0. We define

∀t ∈ (0, δ), HΦ,Ψ(t) =
1

Ψ−1

(
1

Φ(t)

) . (7.3.1)

Then HΦ,Ψ is a positive, increasing and continuous function on (0, δ) and lim
t↘0
HΦ,Ψ(t) = 0. Further-

more,

∀t ∈ (0, δ), 0 <
1

ω2 ◦ ω−1
1 (t)

6 HΦ,Ψ(t). (7.3.2)

Finally,

H−1
Φ,Ψ(t) = Φ−1

(
1

Ψ
(

1
t

)) , (7.3.3)

for any t ∈ (0,HΦ,Ψ(δ)) .

Remark 7.3.2. Note that such a δ ∈ (0, ω1(m)] exists because of the continuity of Φ.
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Assuming for the moment that Lemma 7.3.1 holds (we shall return to its proof later), the following

definition makes sense.

Definition 7.3.3. Let m ∈ R and ω1, ω2, Φ and Ψ satisfy (7.2.5)–(7.2.9). We say that (Φ, Ψ) is an

optimal pair for the weights (ω1, ω2) if the function HΦ,Ψ defined by (7.3.1) satisfies

HΦ,Ψ
0
≈

1

ω2 ◦ ω−1
1

. (7.3.4)

Here and in the sequel, by HΦ,Ψ
0
≈

1

ω2 ◦ ω−1
1

we mean that there exist two constants C > 0 and

ε ∈ (0, δ) such that

∀t ∈ (0, ε),
1

ω2 ◦ ω−1
1 (t)

6 HΦ,Ψ(t) 6
C

ω2 ◦ ω−1
1 (t)

, (7.3.5)

where δ > 0 is given in Lemma 7.3.1.

In view of (7.3.2) when (7.3.4) holds, the function HΦ,Ψ(t) goes to 0 as t↘ 0 as rapidly as possible.

The pair (Φ,Ψ) is then optimal in that sense. As we shall see in applications, this will yield the

optimal decay rate for the energy of solutions of damped wave-like equations.

Remark 7.3.4. It is important to note that the notion of optimal pair (Φ,Ψ) depends on the weights

(ω1, ω2). On the other hand, given two weights ω1 and ω2 satisfying (7.2.5)–(7.2.6) and a pair (Φ,Ψ)

satisfying (7.2.8)–(7.2.9), if Φ−1
(

1
Ψ◦ω2

)
is convex then the pair (Φ,Ψ) is necessarily optimal with

respect to the weights ω̃1 and ω2, where we have chosen ω̃1(t) = Φ−1
(

1
Ψ(ω2(t))

)
. Indeed, (7.2.5)–

(7.2.8) hold for (ω̃1, ω2,Φ,Ψ). Moreover,

Φ(ω̃1(t))Ψ(ω2(t)) =
1

Ψ(ω2(t))
Ψ(ω2(t)) = 1,

and (7.2.9) is fulfilled. Finally, a straightforward calculation gives

HΦ,Ψ(t)
def
=

1

Ψ−1

(
1

Φ(t)

) =
1

ω2 ◦ ω̃1
−1

(t)
.

Hence (7.3.4).

Now we give a sufficient condition for the pair (Φ,Ψ) to be optimal.

Proposition 7.3.5. Let m ∈ R and let ω1 and ω2 be satisfying (7.2.5)− (7.2.6). Let 1 6 p <∞, and

set

∀t > ω2(m), Ψp(t) =
(
ω−1

2 (t)
) 1
p , (7.3.6)

and

∀t ∈ (0, ω1(m)), Φp(t) =
1(

ω−1
1 (t)

) 1
p

, (7.3.7)

together with Φp(0) = 0.

If
1(

ω−1
1

) 1
p

is concave on (0, ω1(m)) then (Φp,Ψp) constitutes an optimal pair for the weights (ω1, ω2).
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On the other hand, the following Proposition guarantees that, once we have an optimal pair (Φ,Ψ) it is

easy to build other optimal pairs. Of course, in practice, when applying the interpolation inequalities

to obtain decay rates for evolution equations, it is irrelevant whether one uses an optimal pair or

another since all of them, by definition, yield the same decay rates.

Proposition 7.3.6. Let m ∈ R and let ω1, ω2, Φ and Ψ be satisfying (7.2.5)−(7.2.7). Let 0 < p <∞,
let (0, δ) be the interval of definition of HΦ,Ψ and let (0, δp) be the interval of definition of HΦp,Ψp

(see Lemma 7.3.1). Then

∀t ∈ (0, inf{δ, δp}), HΦ,Ψ(t) = HΦp,Ψp(t).

In particular, if (Φ,Ψ) is an optimal pair for the weights (ω1, ω2), then the same holds for (Φp,Ψp).

Remark 7.3.7. In other words, Proposition 7.3.6 means that, from the point of view of the decay of

HΦ,Ψ, the inequalities 1 6 Φ(ω1)Ψ(ω2) and 1 6 Φp(ω1)Ψp(ω2), yield the same result.

Proof of Lemma 7.3.1. Let Φ and Ψ be any functions satisfying (7.2.8)–(7.2.9) and δ > 0 be defined

as in Lemma 7.3.1. It follows from (7.2.5)–(7.2.9) and definition of δ that

∀t ∈ (0, ω1(m)), 1 6 Φ(t)Ψ
(
ω2 ◦ ω−1

1 (t)
)

and ∀t ∈ (0, δ), 0 < Φ(t) <
1

Ψ(ω2(m))
6 +∞.

We then have

∀t ∈ (0, δ), 0 6 Ψ(ω2(m)) <
1

Φ(t)
6 Ψ

(
ω2 ◦ ω−1

1 (t)
)
.

Since Ψ−1 is increasing on (Ψ(ω2(m)),∞), this gives

∀t ∈ (0, δ), 0 < Ψ−1

(
1

Φ(t)

)
def
=

1

HΦ,Ψ(t)
6 ω2 ◦ ω−1

1 (t),

which yields (7.3.2). Properties of HΦ,Ψ follows easily from (7.2.7)–(7.2.8).

Proof of Proposition 7.3.6. Let s ∈ HΦ,Ψ((0, δ)) ∩HΦp,Ψp((0, δp)). Then we have,

HΦp,Ψp(t) = s ⇐⇒ 1

(Ψp)
−1

(
1

Φp(t)

) = s ⇐⇒ (Ψp)
−1

(
1

Φp(t)

)
=

1

s

⇐⇒ 1

Φp(t)
= Ψp

(
1

s

)
⇐⇒ 1

Φ(t)
= Ψ

(
1

s

)
⇐⇒ HΦ,Ψ(t) = s.

Hence the result.

Proof of Proposition 7.3.5. Assume that hypotheses of Proposition 7.3.5 are satisfied. It follows

from Lemma 7.2.3 and (7.2.6) that Ψp satisfies (7.2.8). By (7.2.5) and the fact that 1

(ω−1
1 )

1
p

is concave

on (0, ω1(m)), the function Φp defined as in (7.3.7) satisfies (7.2.7). By (7.3.6) and (7.3.7), (7.2.9) and

(7.3.4) are verified. Indeed, by Proposition 7.3.6,

HΦp,Ψp(t) = HΦpp,Ψ
p
p
(t) =

1

(Ψp
p)−1

(
1

Φpp(t)

)
=

1

(Ψp
p)−1(ω−1

1 (t))
=

1

(ω−1
2 )−1(ω−1

1 (t))
=

1

ω2 ◦ ω−1
1 (t)

.
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This concludes the proof.

Remark 7.3.8. Note that the hypothesis p > 1 in Proposition 7.3.5 is made to ensure that
(
ω−1

2

) 1
p

is a concave function. So it follows from the above proof that, if 0 < p < 1 is such that
(
ω−1

2

) 1
p is

concave, then the conclusion of Proposition 7.3.5 still holds.

Remark 7.3.9. Proposition 7.3.6 shows the non uniqueness of the optimal pairs (Φ,Ψ). One may

give other examples. Let m ∈ R and let ω1 and ω2 be satisfying (7.2.5)–(7.2.6). Following the proof of

Proposition 7.3.5, we can show that if 1
ω2◦ω−1

1

is concave then the functions Ψ = Id and Φ = 1
ω2◦ω−1

1

are an optimal pair of functions.

7.4 Application to the stabilization on the wave equation with
Dirichlet boundary condition

In this section, we give some applications of Section 7.2. We recover and extend the results of Ammari,

Henrot and Tucsnak [6], Ammari and Tucsnak [7] and Jaffard, Tucsnak and Zuazua [110]. We will

detail the first example (Subsection 7.4.2) and we will indicate how we proceed for the others equations

(for conciseness of the paper, we will not detail the proof, the method being very technical). We

apply our interpolation inequality to the stabilization of a wave equation with a damping control

concentrated on an interior point (Subsection 7.4.2) and to the stabilization of a Bernoulli–Euler

beam with a damping control concentrated in an interior point (Subsection 7.5.2).

7.4.1 Explanation of the method

To set the context, we introduce some notations and refer to Ammari and Tucsnak [8] for more details.

We consider u the solution of the following equation.
utt +Au+BB?ut = 0, (t, x) ∈ (0,∞)× I,

u(0, x) = u0(x), x ∈ I,

ut(0, x) = u1(x), x ∈ I,

(7.4.1.1)

where A is a linear unbounded self-adjoint operator, B ∈ L(U ;D(A
1
2 )?), (U, ‖ . ‖U ) is a complex

Hilbert space, D(A
1
2 ) = D(A)

‖ . ‖ 1
2 , ‖u‖ 1

2
=
√
〈Au, u〉, D(A

1
2 )? is the topological dual of the space

D(A
1
2 ), I = (0, L) is an interval of R and where the initial data (u0, u1) are chosen in a Banach space

V × L2(I), in which equation (7.4.1.1) is well set. The associated energy E of u is given by

∀t > 0, E(u(t)) =
1

2

(
‖ut(t)‖2L2(I) + ‖A 1

2u(t)‖2L2(I)

)
, (7.4.1.2)

and satisfies

∀t > s > 0, E(u(t))− E(u(s)) = −
t∫

s

‖(B?u)t(σ)‖2Udσ 6 0. (7.4.1.3)
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Typically, V × L2(I) = D(A
1
2 )× L2(I) is the space for which the energy is well-defined and U = R.

But we need more regularity and we choose (u0, u1) ∈ D(A), where

A =

(
0 Id
−A −BB?

)
.

Denote by (an)n>0 the sequence of the Fourier’s coefficient of u0 and by (bn)n>0 the u1 one. We also

consider v the solution of 
vtt +Av = 0, (t, x) ∈ (0,∞)× I,

v(0, x) = u0(x), x ∈ I,

vt(0, x) = u1(x), x ∈ I.

(7.4.1.4)

Depending of the spaces V and D(A) we have chosen, we obtain for (u0, u1) ∈ D(A)× V,

‖(u0, u1)‖2D(A) =

∞∑
n=0

np(a2
n + b2n)ω2(n),

E(u(0))
def
=

1

2
‖(u0, u1)‖2V×L2(I) =

1

2

∞∑
n=0

np(a2
n + b2n),

for some weight ω2 satisfying (7.2.6) and some p ∈ [0,∞). Roughly speaking, in our examples, this

comes from the expansion of u0 and u1 in Fourier’s series and Parseval’s identity.

First, we show that there exist a time T > 0, two constants C > 0 and C1 > 0 and a weight ω1

satisfying (7.2.5), such that for any initial data (u0, u1) ∈ V × L2(I),

T∫
0

‖(B?u)t(t)‖2Udt > C

T∫
0

‖(B?v)t(t)‖2Udt > C1

∞∑
n=0

np(a2
n + b2n)ω1(n), (7.4.1.5)

where the last estimate comes from Ingham’s inequality (Ingham [109]). For a complete example, see

Lemmas 7.4.3.10 and 7.4.3.11.

Second, we define the weak energy E− and the strong energy E+ as follow.

E+(0) =

∞∑
n=0

np(a2
n + b2n)ω2(n), (7.4.1.6)

E(0) =

∞∑
n=0

np(a2
n + b2n), (7.4.1.7)

E−(0) =

∞∑
n=0

np(a2
n + b2n)ω1(n). (7.4.1.8)

Third, we show that there exist two functions Φ and Ψ satisfying (7.2.7) and (7.2.8). From Theo-

rem 7.2.1, we have (7.2.4). Typically, we choose Φ(t) = 1
ϕ−1(t) and Ψ(t) = ω−1

2 (t), where ϕ(t) = ω1(t)
tp

with p ∈ {0, 2, 4}. From (7.2.4) and (7.4.1.6)–(7.4.1.8), we deduce that

E−(0) > E(0)Φ−1

 1

Ψ
(
E+(0)
E(0)

)
 = E(0)H−1

Φ,Ψ

(
E(0)

E+(0)

)
, (7.4.1.9)



134 Stabilization of Damped Equations

where H−1
Φ,Ψ is defined by (7.3.3). Putting together (7.4.1.3), (7.4.1.5) and (7.4.1.9), we obtain

E(T ) 6 E(0)− C1E(0)H−1
Φ,Ψ

(
E(0)

E+(0)

)
. (7.4.1.10)

See Lemma 7.4.3.12 for a complete example.

Fourth, we use (7.4.1.10), the semigroup property and the method of Ammari and Tucsnak [8] to

show that

∀t > 0, E(t) 6 CHΦ,Ψ

(
1

t+ 1

)
‖(u0, u1)‖2D(A). (7.4.1.11)

Their proof is based on an interpolation method. See Theorem 7.4.3.5 for a complete example.

7.4.2 Notations for the wave equation (7.4.2.1) with Dirichlet boundary
condition and known results

We consider a wave equation with a damping control concentrated on an interior point a ∈ (0, 1) with

homogenous Dirichlet boundary condition,
utt − uxx + δaut(t, a) = 0, (t, x) ∈ (0,∞)× (0, 1),

u(0, x) = u0(x), ut(0, x) = u1(x), x ∈ (0, 1),

u(t, 0) = u(t, 1) = 0 t ∈ [0,∞).

(7.4.2.1)

Let V1 = H1
0 (0, 1). A direct calculation gives that for any u ∈ V1, ‖u‖L2(0,1) 6 ‖ux‖L2(0,1), so we may

endow V1 of the norm ‖u‖V1
= ‖ux‖L2(0,1), for any u ∈ V1. Let X1 = V1 × L2(0, 1),

Y1 =
(
H1

0 (0, 1) ∩H2(0, a) ∩H2(a, 1)
)
×H1

0 (0, 1), D(A1) = H1
0 (0, 1) ∩H2(0, 1), A1 = − d2

dx2
,

D(A1) =

{
(u, v) ∈ Y1;

du

dx
(a+)− du

dx
(a−) = v(a)

}
,

with

‖(u, v)‖2D(A1) = ‖(u, v)‖2Y1
= ‖u‖2H2(0,a) + ‖u‖2H2(a,1) + ‖v‖2H1

0 (0,1),

and let A1 =

(
0 Id
−A1 −δa

)
. We define the energy E1 for u solution of equation (7.4.2.1) by

∀t > 0, E1(u(t)) =
1

2

(
‖ut(t)‖2L2(0,1) + ‖ux(t)‖2L2(0,1)

)
=

1

2
‖(u(t), ut(t))‖2X1

. (7.4.2.2)

Well-posedness and regularity results

Let a ∈ (0, 1). We recall that for any (u0, u1) ∈ X1, there exists a unique solution (u, ut) ∈
C([0,∞);X1) of (7.4.2.1). Moreover, u( . , a) ∈ H1

loc([0,∞)). Thus equation (7.4.2.1) makes sense

in L2
loc([0,∞);H−1(0, 1)). In addition, u satisfies the following energy estimate.

∀t > s > 0, E1(u(t))− E1(u(s)) = −
t∫
s

|ut(σ, a)|2dσ 6 0. (7.4.2.3)
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If furthermore (u0, u1) ∈ D(A1) then (u, ut) ∈ C([0,∞);D(A1)). Finally, A1 is m–dissipative with

domain dense in X1 so that A1 generates a semigroup of contractions (S1(t))t>0 on X1 and on

D(A1), which means that

∀(u0, u1) ∈ X1, ‖(u(t), ut(t))‖X1
6 ‖(u0, u1)‖X1

,

∀(u0, u1) ∈ D(A1), ‖(u(t), ut(t))‖D(A1) 6 ‖(u0, u1)‖D(A1), (7.4.2.4)

for any t > 0. For more details, see for example Theorem 1.1 and Lemma 2.1 of Tucsnak [175] and

Proposition 2.1 of Ammari and Tucsnak [8]. We also recall that E1(u(t))
t−→∞−−−−→ 0, or equivalently

lim
t→∞

(
‖u(t)‖V1

+ ‖ut(t)‖L2(0,1)

)
= 0,

if and only if

a 6∈ Q. (7.4.2.5)

And if furthermore a satisfies (7.4.2.5) and if (u0, u1) ∈ D(A1) then we have the estimate

∀t > 0, ‖(u(t), ut(t))‖X1 6 ‖S1(t)‖L(D(A1);X1)‖(u0, u1)‖D(A1),

with lim
t→∞

‖S1(t)‖L(D(A1);X1) = 0 (Proposition 1.1 of Tucsnak [175]). Finally, it follows from (7.4.2.2)–

(7.4.2.3) that

∀t > s > 0, ‖(u(t), ut(t))‖X1
6 ‖(u(s), ut(s))‖X1

. (7.4.2.6)

Our goal is to describe the decay rate of E1(u(t)) as t −→ ∞, for any a ∈ (0, 1) as soon as

E1(u(t))
t−→∞−−−−→ 0, when the lack of observability occurs. By (7.4.2.5), this means that a 6∈ Q.

Known decay

Now, we show that our method allows us to recover the known results (Jaffard, Tucsnak and Zua-

zua [110]). We recall the definition of an irrational algebraic number.

Definition 7.4.2.1. Let d ∈ N, d > 2. An irrational number a is said to be algebraic of degree

d if there exists a minimal polynomial function P of degree d with rational coefficients such that

P (a) = 0. P is minimal in the sense that if Q is a polynomial function with rational coefficients such

that Q(a) = 0 then degQ > degP.

If a is an irrational algebraic number of degree d then it follows from Liouville’s Theorem that there

exists a positive constant C = C(d) such that for any (m,n) ∈ Z × N,
∣∣a− m

n

∣∣ > C
nd
. This implies

that there exists a positive constant c1 = c1(d) such that

∀n ∈ N, | sin(nπa)| > c1
nd−1

and

∣∣∣∣sin((n+
1

2

)
πa

)∣∣∣∣ > c1
(2n+ 1)d−1

. (7.4.2.7)

Notation 7.4.2.2. We denote by S the set of all irrational numbers a ∈ (0, 1) such that if [0, a1, . . . , an, . . .]

is the expansion of a as a continued fraction, then (an)n∈N is bounded.

Let us notice that S is obviously infinite and not countable and by classical results on Diophantine

approximation (see Cassals [56], p.120), λ(S) = 0, where λ is the Lebesgue’s measure. Moreover, by
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Euler–Lagrange’s Theorem (see Lang [126], p.57), S contains the set of algebraic irrational numbers

a ∈ (0, 1) of degree 2. According to a classical result (see Tucsnak [175] and the references therein), if

a ∈ S then estimates (7.4.2.7) hold with d = 2. Finally, for any ε > 0, there exist two λ–measurable

sets Iε ⊂ (0, 1) and Jε ⊂ (0, 1) and a constant c2 = c2(ε) > 0 such that λ(Iε) = λ(Jε) = 1 and such

that for any a ∈ Iε and any b ∈ Jε,

∀n ∈ N, | sin(nπa)| > c2
n1+ε

and

∣∣∣∣sin((n+
1

2

)
πb

)∣∣∣∣ > c2
(2n+ 1)1+ε

. (7.4.2.8)

Let us notice that by Roth’s Theorem (see Cassals [56], p.104), Iε and Jε contain all algebraic irrational

numbers of (0, 1). The following result is due to Jaffard, Tucsnak and Zuazua [110] (Theorem 3.3).

Proposition 7.4.2.3 ([110]). Let S be defined in Notation 7.4.2.2 and let for any t > 0, ω2(t) = t2.

We have the following result.

1. Let a ∈ S and set for any t > 0, ω1(t) = c1
t , where c1 is given by (7.4.2.7) with d = 2. Then

there exists a constant C = C(a) > 0 such that for any initial data (u0, u1) ∈ D(A1), the

corresponding solution u of (7.4.2.1) verifies

E1(u(t)) 6
C

(t+ 1)
‖(u0, u1)‖2D(A1), (7.4.2.9)

for any t > 0. Furthermore, time decay in (7.4.2.9) is optimal in the sense of Definition 7.3.3.

2. Let ε > 0 and set for any t > 0, ω1(t) = c2
t1+ε , where c2 is given by (7.4.2.8). For almost

every a ∈ (0, 1) ∩ Qc, there exists a constant C = C(a, ε) > 0 such that for any initial data

(u0, u1) ∈ D(A1), the corresponding solution u of (7.4.2.1) verifies

E1(u(t)) 6
C

(t+ 1)
1

1+ε

‖(u0, u1)‖2D(A1), (7.4.2.10)

for any t > 0. Furthermore, time decay in (7.4.2.10) is optimal in the sense of Definition 7.3.3.

7.4.3 New results

Before stating the main results, let us make the following definition.

Definition 7.4.3.1. We say that the functions (ω1, ω2,Φ,Ψ) are an admissible quadruplet if the

following assertions hold.

1. The quadruplet (ω1, ω2,Φ,Ψ) satisfies (7.2.5)–(7.2.8) on (0,∞) and (7.2.9) holds on (1,∞).

2. One of the two following conditions is satisfied.

(a) The function t 7−→ 1

t
H−1

Φ,Ψ(t) is nondecreasing on (0, 1), where H−1
Φ,Ψ defined by (7.3.3) has

to verify HΦ,Ψ((0, δ)) ⊃ (0, 1).

(b) For any t > 0, Φ(t) = C1t
1
p and Ψ(t) = C2t

1
q for some p > 1, q > 1 and constants

C1, C2 > 0. In particular, we have for any t > 0, HΦ,Ψ(t) =
(
C1C

−1
2

)q
t
q
p .

In our applications, the weight ω1 comes from an oscillating function and it is not clear that it satisfies

(7.2.5). So we precise how we obtain such a weight.
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Lemma 7.4.3.2. Let −∞ < a < b 6 ∞ and let ε : [a, b) −→ (0,∞) be a continuous function such

that lim inf
t↗b

ε(t) = 0. Then there exists a convex function ϕ ∈ C1
b([a, b);R) such that 0 < ϕ 6 ε and

ϕ′ < 0 on [a, b).

Proof. Firstly, we note that we can find a positive function ε̃ ∈ C1([a, b);R) such that 0 < ε̃ 6 ε

and ε̃ ′ < 0 on [a, b). So it is enough to consider ε to be such a function. Secondly, up to a bijective

transformation conserving the convexity, we may assume that [a, b) = [0, 1). Set

∀t ∈ [0, 1), f(t) = max{ε′(s); 0 6 s 6 t}.

Define ϕ by

∀t ∈ [0, 1), ϕ(t) = −
1∫
t

f(s)ds and ϕ(1) = 0.

Since f is monotone and ε′ is continuous, it follows that f ∈ Cb([0, 1);R). Then ϕ is well-defined,

ϕ ∈ Cb([0, 1];R) ∩ C1
b([0, 1);R) and ϕ′ = f on [0, 1). Clearly, ϕ > 0 and ϕ′ < 0 on [0, 1). In addition,

ϕ′ is nondecreasing so that ϕ is convex. Finally, for any σ ∈ [0, 1), ϕ′(σ) > ε′(σ). Integrating this

expression on (t, 1), for any t ∈ [0, 1), and using that ϕ(1) = ε(1) = 0, we get ϕ(t) 6 ε(t). This

concludes the proof.

Let (un)n∈N ⊂ (0,∞) be such that lim inf
n→∞

un = 0. Let ε ∈ C([0,∞);R) be such that 0 < ε(n) 6 un,

for any n ∈ N. Let ϕ ∈ C([0,∞);R) be a decreasing and convex function such that for any t > 0,

0 < ϕ(t) 6 ε(t) (which exists by Lemma 7.4.3.2) and consider C ⊂ [1,∞) × [0,∞) the closure

of the convex envelope of the set {(n, un); n ∈ N}. Finally, fix arbitrarily t > 1. Then the set

Ct
def
= C ∩ ({t} × R) is nonempty, closed and Lemma 7.4.3.2 ensures that for any st ∈ R such that

(t, st) ∈ Ct,

0 < ϕ(t) 6 st.

So by compactness, we may define the function ω1 as

∀t > 1, ω1(t) = min{st; (t, st) ∈ Ct} (7.4.3.1)

and extend ω1 as a decreasing, continuous and convex way on [0, 1]. From the above discussion,

Lemma 7.4.3.2 and Remark 7.2.8, ω1 satisfies (7.2.5) with m = 0. This justifies the following definition.

Definition 7.4.3.3. Let (un)n∈N ⊂ (0,∞) such that lim inf
n→∞

un = 0. The function ω1 defined on [0,∞)

by (7.4.3.1) is called the lower convex envelope of the sequence (un)n∈N.

In some sense, ω1 is the “nearest” convex and decreasing function of (un)n∈N satisfying 0 < ω1(n) 6

un, for any n ∈ N. It will be useful to consider the weights ω1 and ω2 defined as following. Let

a ∈ (0, 1) ∩Qc.

ω1 is the lower convex envelope of the sequence (sin2(nπa))n∈N, (7.4.3.2)

∀t > 0, ω2(t) = t2. (7.4.3.3)

The following lemma shows that such definition for weights is consistent with the notion of admissible

quadruplet.



138 Stabilization of Damped Equations

Proposition 7.4.3.4. Let (un)n∈N ⊂ (0,∞) be such that lim inf
n→∞

un = 0, let ω1 be its lower convex

envelope (Definition 7.4.3.2), let p > 1, let α ∈ [0, 1] and set for any t > 0, ω2(t) = (t + α)p. Define

for any t > αp, Ψ(t) = t
1
p − α and for any t > 0,

ϕ(t) =
ω1(t)

tp
and Φ(t) =

1

ϕ−1(t)
.

Then the quadruplet (ω1, ω2,Φ,Ψ) is admissible and for any t > 0,

HΦ,Ψ(t) =
1

(ϕ−1(t) + α)
p .

Proof. By definition of ω1, ω2 and Ψ, (7.2.5), (7.2.6) and (7.2.8) are satisfied. By Lemma 7.2.6 applied

to f = ω1 and with m = 0 and M = ω(0), it follows that Φ satisfies (7.2.7). Moreover, we easily

check that Φ > 1
ω−1 on (0, ω1(1)]. As a consequence, (7.2.9) holds on [1,∞), so that condition 1 of

Definition 7.4.3.1 is fulfilled. Finally, by Lemma 7.3.1 we have

∀t ∈
(
0, α−p

)
, H̃(t)

def
=

1

t
H−1

Φ,Ψ(t) =
(

1− αt
1
p

)−p
ω1

(
t−

1
p − α

)
,

∀t > 0, HΦ,Ψ(t) =
1

(ϕ−1(t) + α)
p ,

where we used the notation α−p = +∞ if α = 0. It is clear that H̃ is increasing on (0, α−p) ⊃ (0, 1),

so that (2a) of Definition 7.4.3.1 holds and (ω1, ω2,Φ,Ψ) is an admissible quadruplet.

The main results are the following.

Theorem 7.4.3.5. Let a ∈ (0, 1) ∩ Qc and let ω1 and ω2 be defined by (7.4.3.2) − (7.4.3.3). Let Φ

and Ψ be two functions such that the quadruplet (ω1, ω2,Φ,Ψ) is admissible (Definition 7.4.3.1). Let

HΦ,Ψ be defined by (7.3.1). Then there exists a constant C = C(a) > 0 such that for any initial data

(u0, u1) ∈ D(A1), the corresponding solution u of (7.4.2.1) verifies

∀t > 0, E1(u(t)) 6 CHΦ,Ψ

(
1

t+ 1

)
‖(u0, u1)‖2D(A1), (7.4.3.4)

if Φ and Ψ satisfy the hypothesis (2a) of Definition 7.4.3.1 and

∀t > 0, E1(u(t)) 6
C

(t+ 1)
q
p

‖(u0, u1)‖2D(A1), (7.4.3.5)

if for any t > 0, Φ(t) = C1t
1
p and Ψ(t) = C2t

1
q for some p ∈ [1,∞), q ∈ [1,∞) and constants

C1, C2 > 0 (case (2b) of Definition 7.4.3.1).

Remark 7.4.3.6. At the light of estimate (7.4.3.4), it is clear that we would like to find some functions

Φ and Ψ such that HΦ,Ψ(t) goes to 0 as t ↘ 0 as rapidly as possible. This justifies Definition 7.3.3.

Moreover, Proposition 7.4.3.4 ensures that there exists a quadruplet of functions (ω1, ω2,Φ,Ψ) which

is admissible.

Concerning the explicit decay, the results are the following.
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Theorem 7.4.3.7. Let a ∈ (0, 1) ∩Qc and let ω1 be defined by (7.4.3.2). We set

∀t > 0, ϕ(t) =
ω1(t)

t2
.

Then there exists a constant C = C(a) > 0 such that for any initial data (u0, u1) ∈ D(A1), the

corresponding solution u of (7.4.2.1) satisfies

∀t > 0, ‖(u(t), ut(t))‖V1×L2(0,1) 6
C

ϕ−1
(

1
t+1

)‖(u0, u1)‖D(A1).

Remark 7.4.3.8. By Theorem 7.4.3.7, we are able to give the explicit decay of the energy for any

a ∈ (0, 1)∩Qc. This completes the lack, since the decay was known for almost every a ∈ (0, 1) (Jaffard,

Tucsnak and Zuazua [110], Theorem 3.3).

Remark 7.4.3.9. It follows from Theorem 7.4.3.7 and Proposition 7.4.3.4 that for any (u0, u1) ∈
D(A1), the corresponding solution u of (7.4.2.1) satisfies

‖(u(t), ut(t))‖V1×L2(0,1) 6 CΦ

(
1

t+ 1

)
‖(u0, u1)‖D(A1).

for any t > 0. In other words, decay of the energy directly depends on the behavior of the interpolation

function Φ near 0.

Proof of Theorem 7.4.3.7. The result comes from Proposition 7.4.3.4 (applied with (un)n∈N =

(sin2(nπa))n∈N, p = 2 and α = 0) and from (7.4.3.4) of Theorem 7.4.3.5.

Proof of Proposition 7.4.2.3. Let S be defined in Notation 7.4.2.2.

Case of 1. Let a ∈ S and let c1 be the constant in (7.4.2.7) with d = 2.

Case of 2. Let ε > 0, let Iε ⊂ (0, 1) be the set introduced after the Notation 7.4.2.2, let c2 be the

constant in (7.4.2.8) and let a ∈ Iε.
Preliminary. Let ν > 0 and ` ∈ {1, 2}. We define on (0,∞) the following functions.

ω1(t) =
c2`

t2(1+ν)
, Ψ(t) = t

1
2 , Φ(t) = 2

(
t

c2`

) 1
2(1+ν)

.

Let ω2 be defined by (7.4.3.3) and let HΦ,Ψ be the corresponding functions given by (7.3.1). Then

∀t > 0, HΦ,Ψ(t) = 4

(
t

c2`

) 1
1+ν

.

Furthermore for any t > 0, Φ(ω1(t))Ψ(ω2(t)) > 1 and HΦ,Ψ(t) = C
ω2◦ω−1

1 (t)
.

Proof of 1. Let ν = 0 and ` = 1. The result follows by applying (7.4.3.5) of Theorem 7.4.3.5.

Proof of 2. Let ν = ε and ` = 2. The result follows by applying (7.4.3.5) of Theorem 7.4.3.5. This

concludes the proof.

Before proving Theorem 7.4.3.5, we need several results. Let us decompose the solution u as following.

For u solution of (7.4.2.1) with initial data (u0, u1) ∈ X1, we write

u(t, x) = v(t, x) + w(t, x), (7.4.3.6)
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for (t, x) ∈ [0,∞)× (0, 1), where v is the unique solution of
vtt − vxx = 0, (t, x) ∈ (0,∞)× (0, 1),

v(0, x) = u0(x), x ∈ (0, 1),

vt(0, x) = u1(x), x ∈ (0, 1),

v(t, 0) = v(t, 1) = 0, t ∈ [0,∞).

(7.4.3.7)

Then we have the well-known result (see for example Lemmas 4.1 and 5.3 of Ammari and Tucsnak [8]

for the proof).

Lemma 7.4.3.10. Let a ∈ (0, 1) and let T = 10. Then there exists a constant C1 = C1(a) > 0

satisfying the following property. For any initial data (u0, u1) ∈ X1, the corresponding solutions u and

v of (7.4.2.1) and (7.4.3.7) satisfy

C1

T∫
0

v2
t (t, a)dt 6

T∫
0

u2
t (t, a)dt 6 4

T∫
0

v2
t (t, a)dt.

Now, we decompose u0 ∈ V1 and u1 ∈ L2(0, 1) as

u0(x) =

∞∑
n=0

an sin(nπx), u1(x) = π

∞∑
n=0

nbn sin(nπx). (7.4.3.8)

We then have

‖u0‖2L2(0,1) =
1

2

∞∑
n=0

a2
n, ‖u0

x‖2L2(0,1) =
π2

2

∞∑
n=0

n2a2
n, ‖u1‖2L2(0,1) =

π2

2

∞∑
n=0

n2b2n. (7.4.3.9)

It follows that the solution v of (7.4.3.7) is defined by

∀(t, x) ∈ R× (0, 1), v(t, x) =

∞∑
n=0

{(an cos(nπt) + bn sin(nπt)) sin(nπx)} . (7.4.3.10)

If furthermore (u0, u1) ∈ D(A1)× V1 then

‖u0
xx‖2L2(0,a) + ‖u0

xx‖2L2(a,1) =
π4

2

∞∑
n=0

n4a2
n, ‖u1

x‖2L2(0,1) =
π4

2

∞∑
n=0

n4b2n. (7.4.3.11)

We have the following simple result.

Lemma 7.4.3.11. Let a ∈ (0, 1), let T = 10, let (u0, u1) ∈ X1 and let (an)n∈N ∈ `2(N) and (bn)n∈N ∈
`2(N) be given by (7.4.3.8). Then

T∫
0

v2
t (t, a)dt > π2

∞∑
n=0

n2(a2
n + b2n) sin2(nπa), (7.4.3.12)

where v is the solution of (7.4.3.7) given by (7.4.3.10).
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Proof. Using (7.4.3.10), we have

T∫
0

v2
t (t, a)dt > π2

2∫
0

( ∞∑
n=0

sin(nπa)(−nan sin(nπt) + nbn cos(nπt))

)2

dt

= π2
∞∑
n=0

sin2(nπa)(n2a2
n + n2b2n),

where the last line comes from Parseval’s identity. Hence (7.4.3.12).

Lemma 7.4.3.12. Let a ∈ (0, 1) ∩Qc, let T = 10, let ω1 be given by (7.4.3.2) and let ω2 be given by

(7.4.3.3). Let Φ and Ψ be two functions such that the quadruplet (ω1, ω2,Φ,Ψ) satisfies hypothesis 1

of Definition 7.4.3.1 and such that HΦ,Ψ((0, δ)) ⊃ (0, 1). Then there exists a constant C2 = C2(a) > 0

such that for any initial data (u0, u1) ∈ D(A1),

‖(u0, u1)‖2X1
− ‖(u(T ), ut(T ))‖2X1

> C2‖(u0, u1)‖2X1
H−1

Φ,Ψ

(
‖(u0, u1)‖2X1

‖(u0, u1)‖2D(A1)

)
, (7.4.3.13)

where u is the solution of (7.4.2.1), and where H−1
Φ,Ψ is defined by (7.3.3).

Proof. By Proposition 7.4.3.4, Φ and Ψ exist. We decompose u0 and u1 as in (7.4.3.8). We write

E−(0) =
π2

2

∞∑
n=0

n2(a2
n + b2n)ω1(n), (7.4.3.14)

where ω1 verifies 1 of Definition 7.4.3.1. By (7.4.2.3) and Lemmas 7.4.3.10 and 7.4.3.11, there exists

a constant C2 = C2(a) > 0 such that

‖(u0, u1)‖2X1
− ‖(u(T ), ut(T ))‖2X1

> C2E−(0). (7.4.3.15)

Assume further that (u0, u1) ∈ D(A1)× V1. We define

E+(0) =
π4

4

∞∑
n=0

n4(a2
n + b2n). (7.4.3.16)

Putting together (7.4.3.16) and (7.4.3.11), we have that for any initial data (u0, u1) ∈ D(A1)× V1,

E+(0) =
1

2

(
‖u0

xx‖2L2(0,a) + ‖u0
xx‖2L2(a,1) + ‖u1

x‖2L2(0,1)

)
.

These estimates imply that

E+(0) 6 ‖(u0, u1)‖2D(A1). (7.4.3.17)

Recall that by (7.4.2.2) and (7.4.3.9),

E(0) =
π2

4

∞∑
n=0

n2(a2
n + b2n)

def
=

1

2
‖(u0, u1)‖2X1

, (7.4.3.18)
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where we have set E(0) = E1(u(0)). Let u = (un)n∈N ∈ `1(N;R) be defined by

∀n ∈ N, un = n2(a2
n + b2n).

Then it follows from Theorem 7.2.1 (applied to the function f = u, with p = 1, the discrete measure

on P(N) and the weights ω1 and ω2), (7.4.3.14) and (7.4.3.16)–(7.4.3.18) that

1 6 Φ

(
E−(0)

‖(u0, u1)‖2X1

)
Ψ

(
‖(u0, u1)‖2D(A1)

‖(u0, u1)‖2X1

)
,

which yields

E−(0) > ‖(u0, u1)‖2X1
Φ−1

 1

Ψ

(
‖(u0, u1)‖2D(A1)

‖(u0, u1)‖2X1

)
 .

Then for any (u0, u1) ∈ D(A1)× V1,

E−(0) > ‖(u0, u1)‖2X1
H−1

Φ,Ψ

(
‖(u0, u1)‖2X1

‖(u0, u1)‖2D(A1)

)
. (7.4.3.19)

From (7.4.3.15) and (7.4.3.19), it follows that (7.4.3.13) holds for any (u0, u1) ∈ D(A1) × V1. By

continuity of H−1
Φ,Ψ and by density of D(A1)×V1 in Y1 (which contains D(A1) and has the same norm

of D(A1)), it follows that (7.4.3.13) holds for any (u0, u1) ∈ D(A1). Hence the result.

Proof of Theorem 7.4.3.5. We follow the proof of Theorem 2.4 of Ammari and Tucsnak [8]. Let

T = 10. By Lemma 7.4.3.12, we have that

‖(u(T ), ut(T ))‖2X1
6 ‖(u0, u1)‖2X1

− C2‖(u0, u1)‖2X1
H−1

Φ,Ψ

(
‖(u0, u1)‖2X1

‖(u0, u1)‖2D(A1)

)
.

This estimate remains valid in successive intervals [`T, (` + 1)T ]. So with (7.4.2.4), (7.4.2.6) and the

fact that H−1
Φ,Ψ is increasing (Lemma 7.3.1), we obtain that

‖(u((`+ 1)T ), ut((`+ 1)T ))‖2X1
6‖(u(`T ), ut(`T ))‖2X1

−C2‖(u(`T ), ut(`T ))‖2X1
H−1

Φ,Ψ

(
‖(u((`+ 1)T ), ut((`+ 1)T ))‖2X1

‖(u0, u1)‖2D(A1)

)
,

(7.4.3.20)

for every ` ∈ N ∪ {0}.

Case 1. The functions Φ and Ψ satisfy hypothesis (2a) of Definition 7.4.3.1.

Our expression (7.4.3.20) is the same that (4.16) in Ammari and Tucsnak [8] (with X × V = X1,

‖ . ‖Y1×Y2 = ‖ . ‖D(A1), G = H−1
Φ,Ψ and θ = 1

2 ). The rest of the proof follows as in [8] (where (2a) of

Definition 7.4.3.1 is used). Then (7.4.3.4) follows.

Case 2. The functions Φ and Ψ satisfy hypothesis (2b) of Definition 7.4.3.1.
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It follows that for any t > 0, H−1
Φ,Ψ(t) = C3t

p
q . Using again (7.4.2.6) and the definition of H−1

Φ,Ψ,

(7.4.3.20) becomes

‖(u((`+ 1)T ), ut((`+ 1)T ))‖2X1
6 ‖(u(`T ), ut(`T ))‖2X1

−C4

‖(u((`+ 1)T ), ut((`+ 1)T ))‖2
p+q
q

X1

‖(u0, u1‖2
p
q

D(A1)

,
(7.4.3.21)

for every ` ∈ N ∪ {0}. Our expression (7.4.3.21) is the same that (4.23) in Ammari and Tucsnak [8]

(with X × V = X1, ‖ . ‖Y1×Y2
= ‖ . ‖D(A1) and θ = q

p+q ). The rest of the proof follows as in [8].

Remark 7.4.3.13. We are not able to apply directly Theorem 2.4 of Ammari and Tucsnak [8].

Indeed, in their theorem, the assumption (2.8) is

2∫
0

v2
t (t, a)dt > C‖(u0, u1)‖2V1×L2(0,1)G

(
‖(u0, u1)‖2L2(0,1)×H−1(0,1)

‖(u0, u1)‖2V1×L2(0,1)

)
,

(where G = H−1
Φ,Ψ) and we can only show the weaker estimate (by the inequalities of interpolation)

2∫
0

v2
t (t, a)dt > C‖(u0, u1)‖2V1×L2(0,1)G

(
‖(u0, u1)‖2V1×L2(0,1)

‖(u0, u1)‖2D(A1)

)
.

7.5 Others applications

7.5.1 Wave equation with mixed boundary condition

We consider a wave equation with a damping control concentrated on an interior point a ∈ (0, 1) with

a homogenous Dirichlet boundary condition at the left end and a homogenous Neumann boundary

condition at the right end,
utt − uxx + δaut(t, a) = 0, (t, x) ∈ (0,∞)× (0, 1),

u(0, x) = u0(x), ut(0, x) = u1(x), x ∈ (0, 1),

u(t, 0) = ux(t, 1) = 0, t ∈ [0,∞).

(7.5.1.1)

Notations for the wave equation (7.5.1.1) with homogenous mixed Dirichlet and Neu-

mann boundary condition

Let V2 =
{
u ∈ H1(0, 1); u(0) = 0

}
. A direct calculation gives that for any u ∈ V2, ‖u‖L2(0,1) 6

‖ux‖L2(0,1), so we may endow V2 of the norm ‖u‖V2
= ‖ux‖L2(0,1), for any u ∈ V2. Let X2 =

V2 × L2(0, 1),

Y2 =

{
u ∈ V2 ∩H2(0, a) ∩H2(a, 1);

du

dx
(1) = 0

}
× V2,

D(A2) =

{
u ∈ V2 ∩H2(0, 1);

du

dx
(1) = 0

}
, A2 = − d2

dx2
,

D(A2) =

{
(u, v) ∈ Y2;

du

dx
(a+)− du

dx
(a−) = v(a)

}
,
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with

‖(u, v)‖2D(A2) = ‖(u, v)‖2Y2
= ‖u‖2H2(0,a) + ‖u‖2H2(a,1) + ‖v‖2H1(0,1),

and let A2 =

(
0 Id
−A2 −δa

)
. We define the energy E2 for u solution of equation (7.5.1.1) by

(7.4.2.2).

Well-posedness and regularity results

Let a ∈ (0, 1). We recall that for any (u0, u1) ∈ X2, there exists a unique solution (u, ut) ∈
C([0,∞);X2) of (7.5.1.1). Moreover, u( . , a) ∈ H1

loc([0,∞)). Thus equation (7.5.1.1) makes sense

in L2
loc([0,∞);H−1(0, 1)). In addition, u satisfies the following energy estimate.

∀t > s > 0, E2(u(t))− E2(u(s)) = −
t∫
s

|ut(σ, a)|2dσ 6 0. (7.5.1.2)

If furthermore (u0, u1) ∈ D(A2) then (u, ut) ∈ C([0,∞);D(A2)). Finally, A2 is m–dissipative with

domain dense in X2 so that A2 generates a semigroup of contractions (S2(t))t>0 on X2 and on

D(A2), which means that

∀(u0, u1) ∈ X2, ‖(u(t), ut(t))‖X2 6 ‖(u0, u1)‖X2 ,

∀(u0, u1) ∈ D(A2), ‖(u(t), ut(t))‖D(A2) 6 ‖(u0, u1)‖D(A2),

for any t > 0. For more details, see Proposition 1.1 and Section 3 p.223 of Ammari, Henrot and

Tucsnak [6]. We also recall that E2(u(t))
t−→∞−−−−→ 0, or equivalently

lim
t→∞

(
‖u(t)‖V2

+ ‖ut(t)‖L2(0,1)

)
= 0

if and only if

∀(p, q) ∈ N× N, a 6= 2p

2q − 1
, (7.5.1.3)

And if furthermore a satisfies (7.5.1.3) and if (u0, u1) ∈ D(A2) then we have the estimate

∀t > 0, ‖(u(t), ut(t))‖X2 6 ‖S2(t)‖L(D(A2);X2)‖(u0, u1)‖D(A2),

with lim
t→∞

‖S2(t)‖L(D(A2);X2) = 0 (Proposition 3.1 of Ammari, Henrot and Tucsnak [6]). Finally,
∃ω > 0, ∃C = C(ω) > 0 such that ∀(u0, u1) ∈ X2,

∀t > 0, E2(u(t)) 6 Ce−ωtE2(u(0))

if and only if

a =
2p− 1

q
, for some (p, q) ∈ N× N. (7.5.1.4)

See Theorem 1.2 of Ammari, Henrot and Tucsnak [6]. It follows from (7.4.2.2) and (7.5.1.2) that

∀t > s > 0, ‖(u(t), ut(t))‖X2
6 ‖(u(s), ut(s))‖X2

.

We are concerned by the decay rate of the energy E2(u(t)) when it is not exponentially stable. In

particular, by (7.5.1.3) and (7.5.1.4) this implies that a 6∈ Q.

The main results are the following.
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Theorem 7.5.1.1. Let a ∈ (0, 1) ∩Qc and let ω1 be the lower convex envelope of the sequence(
sin2

((
n+

1

2

)
πa

))
n∈N

(Definition 7.4.3.3). Let ω2 be defined on [0,∞) by ω2(t) =
(
t+ 1

2

)2
. Let Φ and Ψ be two functions

such that the quadruplet (ω1, ω2,Φ,Ψ) is admissible (Definition 7.4.3.1). Let HΦ,Ψ be defined by (7.3.1).

Then there exists a constant C = C(a) > 0 such that for any initial data (u0, u1) ∈ D(A2), the

corresponding solution u of (7.5.1.1) verifies

∀t > 0, E2(u(t)) 6 CHΦ,Ψ

(
1

t+ 1

)
‖(u0, u1)‖2D(A2),

if Φ and Ψ satisfy the hypothesis (2a) of Definition 7.4.3.1 and

∀t > 0, E2(u(t)) 6
C

(t+ 1)
q
p

‖(u0, u1)‖2D(A2), (7.5.1.5)

if for any t > 0, Φ(t) = C1t
1
p and Ψ(t) = C2t

1
q for some p ∈ [1,∞), q ∈ [1,∞) and constants

C1, C2 > 0 (case (2b) of Definition 7.4.3.1).

Proof. We write u0(x) =
∞∑
n=0

an sin
((
n+ 1

2

)
πx
)

and u1(x) = π
∞∑
n=0

(
n+ 1

2

)
bn sin

((
n+ 1

2

)
πx
)

and

we consider the solution v of (7.4.3.7) satisfying the same boundary condition as u. We follow the

method as for (7.4.2.1). Then from Ingham’s inequality (Ingham [109]) and the results of Ammari,

Henrot and Tucsnak [6] (Lemma 4.2 of [6] ; see also Lemma 2.5 of [6] and Lemma 4.1 of [8]), we obtain

for T = 10,

T∫
0

u2
t (t, a)dt > C(a)

T∫
0

v2
t (t, a)dt > C(a)π2

∞∑
n=0

(
n+

1

2

)2

(a2
n + b2n) sin2

((
(n+

1

2

)
πa

)
.

Then we define

E+(0) =
π4

4

∞∑
n=0

(
n+

1

2

)4

(a2
n + b2n) =

π4

4

∞∑
n=0

(
n+

1

2

)2

(a2
n + b2n)ω2(n),

E(0) =
π2

4

∞∑
n=0

(
n+

1

2

)2

(a2
n + b2n)

def
=

1

2
‖(u0, u1)‖2X2

,

E−(0) =
π2

2

∞∑
n=0

(
n+

1

2

)2

(a2
n + b2n)ω1(n).

The result follows from the discussion at the beginning of Section 7.4.

Using Theorem 7.5.1.1 and Proposition 7.4.3.4 (applied with (un)n∈N =
(
sin2

((
n+ 1

2

)
πa
))
n∈N , p = 2

and α = 1
2

)
, we obtain the following result.

Theorem 7.5.1.2. Let a ∈ (0, 1) ∩Qc and let ω1 and ω2 be defined as in Theorem 7.5.1.1. We set

∀t > 0, ϕ(t) =
ω1(t)

t2
.
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Then there exists a constant C = C(a) > 0 such that for any initial data (u0, u1) ∈ D(A2), the

corresponding solution u of (7.5.1.1) satisfies

∀t > 0, ‖(u(t), ut(t))‖V2×L2(0,1) 6
C

ϕ−1
(

1
t+1

)‖(u0, u1)‖D(A2).

Remark 7.5.1.3. By Theorem 7.5.1.2, we are able to give the explicit decay of the energy for any

a ∈ (0, 1) ∩ Qc. This completes the lack, since the decay was known for almost every a ∈ (0, 1), as

stated in Theorem 1.4 of Ammari, Henrot and Tucsnak [6]. In addition, with help of (7.5.1.5) of

Theorem 7.5.1.1, our method allows us to recover the results of that Theorem 1.4.

7.5.2 Bernoulli–Euler beam with a pointwise interior damping control

We consider a Bernoulli–Euler beam with a damping control concentrated in an interior point a ∈
(0, 1), 

utt + uxxxx + δaut(t, a) = 0, (t, x) ∈ (0,∞)× (0, 1),

u(0, x) = u0(x), ut(0, x) = u1(x), x ∈ (0, 1),

u(t, 0) = u(t, 1) = uxx(t, 0) = uxx(t, 1) = 0, t ∈ [0,∞).

(7.5.2.1)

We also could have chosen the boundary condition

∀t > 0, u(t, 0) = ux(t, 1) = uxx(t, 0) = uxxx(t, 1) = 0,

as in Ammari and Tucsnak [7]. But for conciseness of the paper, we do not consider this case.

Notations for the Bernoulli–Euler beam equation (7.5.2.1)

Let V3 = H1
0 (0, 1) ∩ H2(0, 1). By Cauchy–Schwarz’s inequality, we have ‖u‖L2(0,1) 6 ‖ux‖L2(0,1) 6

‖uxx‖L2(0,1), for any u ∈ V3. So we may endow V3 of the norm ‖u‖V3 = ‖uxx‖L2(0,1), for any u ∈ V3.

Let X3 = V3 × L2(0, 1),

Y3 =

{
u ∈ H1

0 (0, 1) ∩H2(0, 1) ∩H4(0, a) ∩H4(a, 1);
d2u

dx2
(0) =

d2u

dx2
(1) = 0

}
× V3,

D(A3) =

{
u ∈ H1

0 (0, 1) ∩H4(0, 1);
d2u

dx2
(0) =

d2u

dx2
(1) = 0

}
, A3 =

d4

dx4
,

D(A3) =

{
(u, v) ∈ Y3;

d2u

dx2
(a+) =

d2u

dx2
(a−) and

d3u

dx3
(a+)− d3u

dx3
(a−) = −v(a)

}
,

with

‖(u, v)‖2D(A3) = ‖(u, v)‖2Y3
= ‖u‖2H4(0,a) + ‖u‖2H4(a,1) + ‖v‖2H2(0,1),

and let A3 =

(
0 Id
−A3 −δa

)
. We define the energy E3 for u solution of equation (7.5.2.1) by

∀t > 0, E3(u(t)) =
1

2

(
‖ut(t)‖2L2(0,1) + ‖uxx(t)‖2L2(0,1)

)
=

1

2
‖(u(t), ut(t))‖2X3

. (7.5.2.2)

Well-posedness and regularity results

We recall that for any (u0, u1) ∈ X3, there exists a unique solution (u, ut) ∈ C([0,∞);X3) of (7.5.2.1).
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Moreover, u( . , a) ∈ H1
loc([0,∞)) and thus equation (7.5.2.1) makes sense in L2

loc([0,∞);H−2). In

addition, u satisfies the following energy estimate.

∀t > s > 0, E3(u(t))− E3(u(s)) = −
t∫
s

|ut(σ, a)|2dσ 6 0. (7.5.2.3)

If furthermore (u0, u1) ∈ D(A3) then (u, ut) ∈ C([0,∞);D(A3)). Finally, A3 is m–dissipative with

domain dense in X3 so that A3 generates a semigroup of contractions (S3(t))t>0 on X3 and on

D(A3), which means that

∀(u0, u1) ∈ X3, ‖(u(t), ut(t))‖X3 6 ‖(u0, u1)‖X3 ,

∀(u0, u1) ∈ D(A3), ‖(u(t), ut(t))‖D(A3) 6 ‖(u0, u1)‖D(A3),

for any t > 0. For more details, see for example Proposition 2.1 of Ammari and Tucsnak [8] ; Section 2

p.1161, Proposition 2.1 and Section 5 p.1173–1174 of Ammari and Tucsnak [7]. We also recall that

E3(u(t))
t−→∞−−−−→ 0, or equivalently

lim
t→∞

(
‖u(t)‖V3

+ ‖ut(t)‖L2(0,1)

)
= 0

if and only if

a 6∈ Q. (7.5.2.4)

And if furthermore a satisfies (7.5.2.4) and if (u0, u1) ∈ D(A3) then we have the estimate

∀t > 0, ‖(u(t), ut(t))‖X3
6 ‖S3(t)‖L(D(A3);X3)‖(u0, u1)‖D(A3),

with lim
t→∞

‖S3(t)‖L(D(A3);X3) = 0 (Proposition 2.1 and Section 5 p.1174 of Ammari and Tucsnak [7]).

Finally, it follows from (7.5.2.2)–(7.5.2.3) that the following holds.

∀t > s > 0, ‖(u(t), ut(t))‖X3
6 ‖(u(s), ut(s))‖X3

.

The goal is to establish the decay rate of E3(u(t)) as t −→ ∞, for any a ∈ (0, 1) as soon as

E3(u(t))
t−→∞−−−−→ 0, when the lack of observability occurs. In particular, by (7.5.2.4), this implies

that a 6∈ Q.

Theorem 7.5.2.1. Let a ∈ (0, 1)∩Qc, let ω1 be the lower convex envelope of the sequence (sin2(nπa))n∈N

(Definition 7.4.3.3) and let ω2 be defined on [0,∞) by ω2(t) = t4. Let Φ and Ψ be two functions such

that the quadruplet (ω1, ω2,Φ,Ψ) is admissible (see Definition 7.4.3.1) and let HΦ,Ψ be defined by

(7.3.1). Then there exists a constant C = C(a) > 0 such that for any initial data (u0, u1) ∈ D(A3),

the corresponding solution u of (7.5.2.1) verifies

∀t > 0, E3(u(t)) 6 CHΦ,Ψ

(
1

t+ 1

)
‖(u0, u1)‖2D(A3),

if Φ and Ψ satisfy the hypothesis (2a) of Definition 7.4.3.1 and

∀t > 0, E3(u(t)) 6
C

(t+ 1)
q
p

‖(u0, u1)‖2D(A3), (7.5.2.5)

if for any t > 0, Φ(t) = C1t
1
p and Ψ(t) = C2t

1
q for some p ∈ [1,∞), q ∈ [1,∞) and constants

C1, C2 > 0 (case (2b) of Definition 7.4.3.1).
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Proof. We write u0(x) =
∞∑
n=0

an sin(nπx) and u1(x) = π2
∞∑
n=0

n2bn sin(nπx) and we consider the

solution v of vtt+vxxxx = 0, satisfying the same boundary condition and having the same initial data

as u. We follow the method as for (7.4.2.1). From Ingham’s inequality (Ingham [109]) and Lemmas 3.3

and 5.1 of Ammari and Tucsnak [7] (see also Lemmas 4.1 and 5.7 of Ammari and Tucsnak [8]), we

obtain for T = 10,

T∫
0

u2
t (t, a)dt > C(a)

T∫
0

v2
t (t, a)dt > C(a)

∞∑
n=0

n4(a2
n + b2n) sin2(nπa).

Then we define

E+(0) =
π8

4

∞∑
n=0

n8(a2
n + b2n) =

π8

4

∞∑
n=0

n4(a2
n + b2n)ω2(n),

E(0) =
π4

4

∞∑
n=0

n4(a2
n + b2n)

def
=

1

2
‖(u0, u1)‖2X3

,

E−(0) =
π4

2

∞∑
n=0

n4(a2
n + b2n)ω1(n).

The result follows from the discussion at the beginning of Section 7.4.

Using Theorem 7.5.2.1 and Proposition 7.4.3.4 (applied with (un)n∈N = (sin2(nπa))n∈N, p = 4 and

α = 0), we obtain the following result.

Theorem 7.5.2.2. Let a ∈ (0, 1) ∩Qc and let ω1 and ω2 be defined as in Theorem 7.5.2.1. We set

∀t > 0, ϕ(t) =
ω1(t)

t4
.

Then there exists a constant C = C(a) > 0 such that for any initial data (u0, u1) ∈ D(A3), the

solution u of (7.5.2.1) satisfies

∀t > 0, ‖(u(t), ut(t))‖V3×L2(0,1) 6
C(

ϕ−1
(

1
t+1

))2 ‖(u
0, u1)‖D(A3).

Remark 7.5.2.3. By Theorem 7.5.2.2, we are able to give the explicit decay of the energy for any

a ∈ (0, 1)∩Qc. This completes the lack, since the decay was known for almost every a ∈ (0, 1) (Ammari

and Tucsnak [7], Theorem 2.2). In addition, with help of (7.5.2.5) of Theorem 7.5.2.1, our method

allows us to recover the decay of Theorem 2.2 in Ammari and Tucsnak [7].
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Chapitre 8

On damped second-order gradient
systems

with Jérôme Bolte∗ and Mohamed Ali Jendoubi†

Abstract

Using small deformations of the total energy, as introduced in [97], we establish that damped second order
gradient systems

u′′(t) + γu′(t) +∇G(u(t)) = 0,

may be viewed as quasi-gradient systems. In order to study the asymptotic behavior of these systems, we prove
that any (nontrivial) desingularizing function appearing in KL inequality satisfies ϕ(s) > c

√
s whenever the

original function is definable and C2. Variants to this result are given. These facts are used in turn to prove that
a desingularizing function of the potential G also desingularizes the total energy and its deformed versions. Our
approach brings forward several results interesting for their own sake : we provide an asymptotic alternative
for quasi-gradient systems, either a trajectory converges, or its norm tends to infinity. The convergence rates
are also analyzed by an original method based on a one-dimensional worst-case gradient system.

We conclude by establishing the convergence of solutions of damped second order systems in various cases

including the definable case. The real-analytic case is recovered and some results concerning convex functions

are also derived.

8.1 Introduction

8.1.1 A global view on previous results

In this paper, we develop some new tools for the asymptotic behavior as t goes to infinity of solutions

u : R+ −→ RN of the following second order system

u′′(t) + γu′(t) +∇G(u(t)) = 0, t ∈ R+. (8.1.1.1)
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Here, γ > 0 is a positive real number which can be seen as a damping coefficient, N > 1 is an integer

and G ∈ C2(RN ) is a real-valued function. In Mechanics, (8.1.1.1) models, among other problems,

the motion of an object subject to a force deriving from a potential G (e.g. gravity) and to a viscous

friction force −γu′. In particular, the above may be seen as a qualitative model for the motion of a

material point subject to gravity, constrained to evolve on the graph of G and subject to a damping

force, further insights and results on this view may be found in [13, 50]. This type of dynamical system

has been the subject of several works in various fields and along different perspectives, one can quote

for instance [14] for Nonsmooth Mechanics, [48, 37] for recent advances in Optimization and [150] for

pioneer works on the topic, partial differential equations and related aspects [100, 114, 18].

The aim of this work is to provide a deeper understanding of the asymptotic behavior of such a system

and of the mechanisms behind the stabilization of trajectories at infinity (making each bounded orbit

approach some specific critical point). Such behaviors have been widely investigated for gradient

systems,

u′(t) +∇G(u(t)) = 0,

for a long time now. The first decisive steps were made by  Lojasiewicz for analytic functions through

the introduction of the so-called gradient inequality [134, 133]. Many other works followed among

which two important contributions : [49] for convex functions and [124] for definable functions. Sur-

prisingly the asymptotic behavior of the companion dynamics (8.1.1.1) has only been “recently” ana-

lyzed. The motivation for studying (8.1.1.1) seems to come from three distinct fields PDEs, Mechanics

and Optimization. Out of the convex realm [135, 4], the seminal paper is probably [97]. Like many

of the works on gradient systems the main assumption, borrowed from  Lojasiewicz original contri-

butions, is the analyticity of the function – or more precisely the fact that the function satisfies the

 Lojasiewicz inequality. This work paved the way for many developments : convergence rates studies

[99], extension to partial differential equations [160, 112, 111, 98, 106, 100, 66, 85, 84, 101, 18], use of

various kind of dampings [64, 65] (see also [52, 102, 88, 113]). Despite the huge amount of subsequent

works, some deep questions remained somehow unanswered ; in particular it is not clear to see :

– What are the exact connections between gradient systems and damped second-order gradient

systems ?

– Within these relationships, how central is the role of the properties/geometry of the potential

function G ?

Before trying to provide some answers, we recall some fundamental notions related to these questions ;

they will also constitute the main ingredients in our analysis of (8.1.1.1).

Quasi-gradient fields. The notion is natural and simple : a vector field V is called quasi-gradient

for a function L if it has the same singular point (as ∇L) and if the angle α between the field V

and the gradient ∇L remains acute and bounded away from π/2. Proper definitions are recalled in

Section 8.3.1. Of course, such systems have a behavior which is very similar to those of gradient

systems (see Theorem 8.3.1.2). We refer to [19] and the references therein for further geometrical

insights on the topic.

Liapunov functions for damped second order gradient systems. The most striking common

point between (8.1.1.1) and gradient systems is that of a “natural” Liapunov function. In our case, it
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is given by the total energy, sum of the potential energy and the kinetic energy,

ET (u, v) = G(u) +
1

2
‖v‖2.

The above is a Liapunov function in the phase space, more concretely

d

dt
ET (u(t), u′(t)) =

d

dt

(1

2
|u′(t)|2 +G(u(t))

)
= −γ‖u′(t)‖2.

Contrary to what happens for classical gradient systems the vector field associated with (8.1.1.1) is

not strictly Lyapunov for ET : it obviously degenerates on the subspace [v = 0] (or [u′ = 0]). The use

of ET is however at the heart of most results attached to this dynamical system.

KL functions. A KL function is a function whose values can be reparametrized in the neighborhood

of each of its critical point so that the resulting functions become sharp( 1). More formally, G is

called KL on the slice of level lines [0 < G < r0]
def
=
{
u ∈ RN ; 0 < G(u) < r0

}
, if there exists

ϕ ∈ C0
(
[0, r0)

)
∩ C1(0, r0) concave such that ϕ(0) = 0, ϕ′ > 0 and

‖∇(ϕ ◦G)(u)‖ > 1, ∀u ∈ [0 < G < r0].

Proper definitions and local versions can be found in the next section. The above definition originates

in [40] and is based on the fundamental work of Kurdyka [124], where it was introduced in the

framework of o-minimal structure( 2) as a generalization of the famous  Lojasiewicz inequality.

KL functions are central in the analysis of gradient systems, the readers are referred to [40] and the

references therein.

Desingularizing functions. The function appearing above, namely ϕ, is called a desingularizing

function : the faster ϕ′ tends to infinity at 0, the flatter is G around critical points. As opposed

to the  Lojasiewicz gradient inequality, this behavior, in the o-minimal world, is not necessarily of a

“power-type”. Highly degenerate functions can be met, like for instance G(u) = exp
(
−1/p2(u)

)
where

p : RN −→ R is any real polynomial function. This class of functions belongs to the log-exp structure,

an o-minimal class that contains semi-algebraic sets and the graph of the exponential function [182].

Finally, observe that if it is obvious that ϕ might have an arbitrarily brutal behavior at 0, it is also

pretty clear that the smoothness of G is related to a lower-control of the behavior of ϕ, for instance

we must have ϕ′(0) =∞ – which is not the case in general in the nonsmooth world (see e.g. [39]).

8.1.2 Main results

Several auxiliary theorems were necessary to establish our main result, we believe they are interesting

for their own sake. Here they are :

– An asymptotic alternative for quasi-gradient systems : either a trajectory converges or it escapes

to infinity,

– A general convergence rate result for the solutions of the gradient systems that brings forward

a worst-case gradient dynamical system in dimension one,

1. That is, the norms of its gradient remain bounded away from zero.
2. A far reaching concept that generalizes semi-algebraic or (globally) subanalytic classes of sets and functions.
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– Lower bounds for desingularizing functions of C2 KL functions.

We are now in position to describe the strategy we followed in that paper for the asymptotic study

of the damped second order gradient system (8.1.1.1). Our method was naturally inspired by the

Liapunov function provided in [97].

1. First we show that ET can be slightly and “semi-algebraically” (respectively, definably) deformed

into a smooth function Edef
T , so that the gradient of the new energy ∇Edef

T makes an uniformly

acute angle with the vector field associated with (8.1.1.1) – this property only holds on bounded

sets of the phase space. The system (8.1.1.1) appears therefore as a quasi-gradient system for

Edef
T .

2. In a second step we establish/verify that the solutions of the quasi-gradient systems converge

whenever they originate from a KL function.

We also provide rates of convergence and we explain how they may be naturally and systema-

tically derived from a one-dimensional worst-case gradient dynamics.

At this stage it is possible to proceed abstractly to the proof of the convergence of solutions to

(8.1.1.1) in several cases. For instance the definable case : we simply have to use the fact that

Edef
T is definable whenever G is, so it is a KL function and the conclusion follows.

Although direct and fast, this approach has an important drawback from a conceptual viewpoint

since it relies on a desingularizing function attached to an auxiliary function Edef
T whose meaning

is unclear. Whatever perspectives we may adopt (Mechanics, Optimization, PDEs), an important

question is indeed to understand what happens when G is KL and how the desingularizing

function of G actually impacts the convergence of solutions to (8.1.1.1).

3. We answer to this question in the following way.

(a) We prove that desingularizing functions of C2 definable functions have a lower bound.

Roughly speaking, we prove that for nontrivial critical points the desingularizing function

has the property ϕ(s) > c
√
s
(

or equivalently( 3) ϕ′(s) > c′√
s

)
.

(b) We establish that if ϕ is definable and desingularizing for G at u then it is desingularizing

for both ET and Edef
T at (u, 0).

4. We conclude by combining previous results to obtain in particular the convergence of solutions

to (8.1.1.1) under definability assumptions. We also provide convergence rates that depend on

the desingularizing function of G, i.e. on the geometry of the potential.

We would like to point out and emphasize two facts that we think are of interest. First the property

ϕ(s) > c
√
s (see Lemma 8.2.2.1 below) is a new result and despite its “intuitive” aspect the proof is

nontrivial. We believe it has an interest in its own sake.

More related to our work is the fact that (in the definable case and in many other relevant cases)

our results show that the desingularizing function of G is conditioning the asymptotic behavior of

solutions of the system. Within an Optimization perspective this means that the “complexity”, or at

least the convergence rate, of the dynamical system is entirely embodied in G when G is smooth. From

a mechanical viewpoint, stabilization at infinity is determined by the conditioning of G provided the

3. Recall that ϕ is definable.
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latter is smooth enough ; in other words the intuition that for large time behaviors, the potential has

a predominant effect on the system is correct – a fact which is of course related to the dissipation of

the kinetic energy at a “constant rate”.

Notation. The finite-dimensional space RN (N > 1) is endowed with the canonical scalar product

〈 . , . 〉 whose norm is denoted by ‖ . ‖. The product space RN × RN is endowed with the natural

product metric which we still denote by 〈 . , . 〉. We also define for any u ∈ RN and r > 0, B(u, r) =

{u ∈ RN ; ‖u − u‖ < r}. When S is a subset of RN its interior is denoted by intS and its closure by

S. If F : RN −→ R is a differentiable function, its gradient is denoted by ∇F. When F is a twice

differentiable function, its Hessian is denoted by ∇2F. The set of critical points of F is defined by

critF =
{
u ∈ RN ;∇F (u) = 0

}
.

This paper is organized as follows. In Section 8.2, we provide a lower bound for desingularizing function

of C2 functions under various assumptions, like definability (Proposition 8.2.1.3 and Lemma 8.2.2.1).

In Section 8.3, we recall the behavior of a first order system having a quasi-gradient structure for

some KL function and we provide an asymptotic alternative (Theorem 8.3.1.2). In Theorem 8.3.2.4,

the convergence rate of any solution to a first order system having a quasi-gradient structure is proved

to be better than that of a one-dimensional worst-case gradient dynamics (various known results are

recovered in a transparent way). Finally, we establish that any function which desingularizes G in

(8.1.1.1) also desingularizes the total energy and various relevant deformation of the latter (Proposi-

tion 8.3.3.3). In Section 8.4, we study the asymptotic behavior of solutions to (8.1.1.1) (Theorem 8.4.1)

while in Section 8.5, we describe several consequences of our main results. Appendix (p.199) provides,

for the comfort of the reader, some elementary facts on o-minimal structures.

8.2 Structural results : lower bounds for desingularizing func-
tions of C2 functions

To keep the reading smooth and easy, we will not formally define here o-minimal structure. The

definition is postponed in Appendix (p.199). Let us however recall, at this stage, that the simplest o-

minimal structure (containing the graph of the real product) is given by the class of real semi-algebraic

sets and functions. A semi-algebraic set is the finite union of sets of the form{
u ∈ RN ; p(u) = 0, pi(u) < 0,∀i ∈ I

}
, (8.2.1)

where I is a finite set and p, {pi}i∈I are real polynomial functions.

Let us recall a fundamental concept for dissipative dynamical systems of gradient type.

Definition 8.2.1 (Kurdyka- Lojasiewicz property and desingularizing function).

Let G : RN −→ R be a differentiable function.

(i) We shall say that G has the KL property at u ∈ RN if there exist r0 > 0, η > 0 and

ϕ ∈ C([0, r0);R+) such that

1. ϕ(0) = 0, ϕ ∈ C1((0, r0);R+) concave and ϕ′ positive on (0, r0),
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2. u ∈ B(u, η) =⇒ |G(u)−G(u)| < r0 ; and for each u ∈ B
(
u, η
)
, such that G(u) 6= G(u),∥∥∇(ϕ ◦ |G( . )−G(u)|)(u)

∥∥ > 1. (8.2.2)

Such a function ϕ is called a desingularizing function of G at u on B(u, η).

(ii) The function G is called a KL function if it has the KL property at each of its points.

The following result is due to  Lojasiewicz in its real-analytic version (see e.g. [133, 134]), it was

generalized to o-minimal structures and considerably simplified by Kurdyka in [124] (see Appendix

p.199).

Theorem 8.2.2 (Kurdyka- Lojasiewicz inequality [124]( 4)). Let O be an o-minimal structure

and let G ∈ C1(RN ;R) be a definable function. Then G is a KL function.

Remark 8.2.3. (a) Theorem 8.2.2 is of course trivial when u 6∈ critG – take indeed, ϕ(s) = cs where

c = 1+ε
‖∇G(u)‖ and ε > 0.

(b) Restrictions of real-analytic functions to compact sets included in their (open) domain belong to

the o-minimal structure of globally analytic sets [82]. They are therefore KL functions (see indeed

Example A.2). In some o-minimal structures there are nontrivial functions for which all derivatives

vanish on some nonempty set, like G(u) = exp(−1/f2(u)) where f 6= 0 is any smooth semi-algebraic

function achieving the value 0( 5) (see also Example A.2). For these cases, ϕ is not of power-type –

as it is the case when G is semi-algebraic or real-analytic. Other types of functions satisfying the KL

property in various contexts are provided in [12] (see also Corollary 8.5.5).

(c) Desingularizing functions of definable functions can be chosen to be definable, strictly concave and

Ck (where k is arbitrary).

The following trivial notion is quite convenient.

Definition 8.2.4 (Trivial critical points). A critical point u of a differentiable function G : RN −→
R is called trivial if u ∈ int critG. It is nontrivial otherwise. Observe that u is nontrivial if, and only

if, there exists un
n→∞−−−−→ u such that G(un) 6= G(u), for any n ∈ N.

When u is a trivial critical point of G, any concave function ϕ ∈ C0
(
[0, r0)

)
∩ C1(0, r0) such that

ϕ′ > 0 and ϕ(0) = 0 is desingularizing at u.

An immediate consequence of the KL inequality is a local and strong version of Sard’s theorem.

Remark 8.2.5 (Local finiteness of critical values). Let G ∈ C1(RN ;R) and u ∈ RN . Assume

that G satisfies the KL property at u on B(u, η). Then

u ∈ B(u, η) and ∇G(u) = 0 =⇒ G(u) = G(u).

The simplest functions we can think of with respect to the behavior of the solutions to (8.1.1.1) are

given by functions with linear gradients, that is quadratic forms

G(u) =
1

2
〈Au, u〉, u ∈ RN , where A ∈MN (R), AT = A.

4. See comments in Appendix A.
5. This function is definable in the log-exp structure of Wilkie [182].
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When A 6= 0, it is easy to establish directly that ϕ(s) =
√

1
|λ|s (where λ is a nonzero eigenvalue

with smallest absolute value) provides a desingularizing function. In the subsections to come, we show

that the best we can hope in general for a desingularizing function ϕ attached to a C2 function G is

precisely a quantitative behavior of square-root type.

8.2.1 Lower bounds for desingularizing functions of potentials having a
simple critical point structure

Our first assumption, formally stated below, asserts that points having critical value must be critical

points. The assumption is rather strong in general but it will be complemented in the next section by

a far more general result for definable functions.
Let u ∈ critG.

There exists η > 0 such that for any u ∈ B(u, η),(
G(u) = G(u) =⇒ u ∈ critG

)
.

(8.2.1.1)

Example 8.2.1.1. (a) When N = 1 and G ∈ C1 is KL then assumption (8.2.1.1) holds.
[If the result does not hold then there exists a sequence (xn)n∈N such that xn

n−→∞−−−−→ u and

G(xn) = G(u), (8.2.1.2)

G′(xn) 6= 0, (8.2.1.3)

for any n ∈ N. Without loss of generality, we may assume that (xn)n∈N is monotone, say decreasing. From

(8.2.1.2)–(8.2.1.3) and Rolle’s Theorem, there exists a sequence (un)n∈N such that xn+1 < un < xn, G
′(un) =

0, G(un) 6= G(u), for any n ∈ N. Thus G(un) are critical values distinct from G(u) such that G(un) −→ G(u);

this contradicts the local finiteness of critical values – see Remark 8.2.5.]

(b) Of course, the result in (a) cannot be extended to higher dimensions. Consider for instance

G : R2 −→ R, G(u1, u2) = u2
1 − u2

2,

which is obviously KL. One has ∇G(u) = 0 if, and only if, u = 0, yet G(t,−t) = 0 for any t in R.
(c) If G is convex, (8.2.1.1) holds globally, i.e., with η = ∞. [This follows directly from the well-known

fact that G(u) = minG if, and only if, ∇G(u) = 0.]

Lemma 8.2.1.2 (Comparing values growth with gradients growth).

Let G ∈ C1,1
loc (RN ;R) and u ∈ critG. Assume there exists ε > 0 such that

u ∈ B(u, 2ε) and G(u) = G(u) =⇒ u ∈ critG,

in other words (8.2.1.1) holds (with η = 2ε). Then there exists c > 0 such that

|G(u)−G(u)| > c‖∇G(u)‖2, (8.2.1.4)

for any u ∈ B(u, ε).

Proof. Working if necessary with G̃(u) = G(u) − G(u), we may assume, without loss of generality,

that G(u) = 0. Let us proceed in two steps.
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Step 1. Let H ∈ C1,1
(
B(u, 2ε);R

)
with u ∈ critH and assume further that H > 0. We claim that

there exists c > 0 such that

∀u ∈ B(u, ε), H(u) > c‖∇H(u)‖2. (8.2.1.5)

Denote by L2 the Lipschitz constant of ∇H on B(u, 2ε), let L1 = max
u∈B(u,2ε)

‖∇H(u)‖ and set L =

L1 + L2. Since, (
L1 = 0 or L2 = 0

)
=⇒ ∇H|B(u,ε) ≡ 0 =⇒ (8.2.1.5),

we may assume that L2 > 0 and L1 > 0. Let u ∈ B(u, ε). We have for any v ∈ B(0, 2ε),

H(v)−H(u) =

∫ 1

0

〈∇H
(
(1− t)u+ tv

)
, v − u〉dt

=

∫ 1

0

〈∇H
(
(1− t)u+ tv

)
−∇H(u), v − u〉dt+ 〈∇H(u), v − u〉,

so that for any v ∈ B(0, 2ε),∣∣∣H(v)−H(u)− 〈∇H(u), v − u〉
∣∣∣ 6 L2

2
‖v − u‖2. (8.2.1.6)

Note that
∥∥(u− ε

L∇H(u)
)
− u
∥∥ 6 ‖u− u‖+ ε

L‖∇H(u)‖ < ε+ εL1

L < 2ε. By convexity, we infer that[
u, u− ε

L∇H(u)
]
⊂ B(u, 2ε). It follows that v = u − ε

L∇H(u) is an admissible choice in (8.2.1.6).

Without loss of generality, we may assume that ε 6 1. This leads to

0 6 H(v) 6 H(u)− ε

2L
‖∇H(u)‖2.

Whence the claim.

Step 2. Define for any u ∈ B(u, 2ε), H(u) = |G(u)|. Since
(
G(u) = 0 =⇒ ∇G(u) = 0

)
, we easily

deduce that H ∈ C1
b

(
B(u, 2ε);R

)
and for any u ∈ B(u, 2ε), ∇H(u) = sign

(
G(u)

)
∇G(u). Denote by

L2 the Lipschitz constant of ∇G on B(u, 2ε). We claim that,

‖∇H(u)−∇H(v)‖ 6 L2‖u− v‖, (8.2.1.7)

for any (u, v) ∈ B(u, 2ε)×B(u, 2ε). Let (u, v) ∈ B(u, 2ε)×B(u, 2ε). Estimate (8.2.1.7) being clear if

G(u)G(v) > 0, we may assume that G(u)G(v) < 0. By the Mean Value Theorem and the assumptions

on G, it follows that there exists t ∈ (0, 1) such that for w = (1− t)u+ tv, G(w) = 0 and ∇G(w) = 0.

We then infer,

‖∇H(u)−∇H(v)‖ = ‖∇G(u) +∇G(v)‖ 6 ‖∇G(u)‖+ ‖∇G(v)‖

= ‖∇G(u)−∇G(w)‖+ ‖∇G(w)−∇G(v)‖

6 L2‖u− w‖+ L2‖w − v‖ = L2‖u− v‖.

Hence (8.2.1.7). It follows that H ∈ C1,1
(
B(u, 2ε);R

)
and H satisfies the assumptions of Step 1.

Applying (8.2.1.5) to H, we get (8.2.1.4). This concludes the proof.
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Proposition 8.2.1.3 (Lower bound for desingularizing functions). Let G ∈ C1,1
loc (RN ;R) and

let u be a nontrivial critical point, i.e. u ∈ critG \ int critG. Assume that G satisfies the KL property

at u and that assumption (8.2.1.1) holds at u.

Then there exists β > 0 such that for any desingularizing function ϕ of G at u,

ϕ′(s) >
β√
s
, (8.2.1.8)

for any small positive s.

Proof. We may assume G(u) = 0. Combining (8.2.2) and (8.2.1.4), we deduce that ϕ′(|G(u)|) >
1

‖∇G(u)‖ >
β√
|G(u)|

, for any u ∈ B(u, ε) such that G(u) 6= G(u) (Remark 8.2.5). Changing G into

−G if necessary, there is no loss of generality to assume that there exists un such that un −→ u

with G(un) > 0 (recall u is a nontrivial critical point). Since G is continuous, this implies by a

connectedness argument that for some ρ there exists r > 0 such that
∣∣G(B(u, ρ)

)∣∣ ⊃ (0, r). Using the

parametrization s ∈ (0, r) we conclude that ϕ′(s) > β√
s
, for any s sufficiently small.

8.2.2 Lower bounds for desingularizing functions of definable C2 functions

This part makes a strong use of definability arguments (these are recalled in the last section).

Lemma 8.2.2.1 (Lower bounds for desingularizing functions of C2 definable functions).

Let G : Ω −→ R be a C2 definable function on an open subset Ω 3 0 of RN . We assume that 0 is a

nontrivial critical point( 6) and that G(0) = 0.

Since G is definable it has the KL property( 7) that is, there exist η, r0 > 0 and ϕ : [0, r0) −→ R as in

Definition 8.2.1 such that

‖∇
(
ϕ ◦ |G|

)
(u)‖ > 1, (8.2.2.1)

for any u in B(0, η) such that G(u) 6= 0.

Then there exists c > 0 such that

ϕ′(s) >
c√
s
, (8.2.2.2)

so that ϕ(s) > 2c
√
s, for any small s > 0.

Proof. Let us outline the ideas of the proof : after a simple reduction step, we show that the squared

norm of a/the smallest gradient on a level line increases at most linearly with the function values. In

the second step, we show that this estimate is naturally linked to the increasing rate of ϕ itself and

to property (8.2.2.2). Let ϕ : [0, r0) −→ R be any desingularizing function of G at 0 on B(0, η), as in

Definition 8.2.1.

Changing G in −G if necessary, we may assume by Definition 8.2.4, without loss of generality, that

there exists a sequence (un)n such that un
n→∞−−−−→ 0 and G(un) > 0, for any n ∈ N. Let us proceed

6. Equivalently, we assume that there exists un
n→∞−−−−→ 0 such that G(un) 6= 0.

7. See Theorem 8.2.2.



158 On damped second-order gradient systems

with the proof in three steps.

Step 1. We first modify the function G as follows. Let ρ ∈ C2(RN ; [0, 1]) be a semi-algebraic function

such that {
supp ρ ⊂ B(0, η) ⊂ Ω,

ρ(x) = 1, if x ∈ B
(
0, η2

)
.

Let us define Ĝ on RN by

Ĝ(u) =

ρ(u)G(u) + dist
(
u,B

(
0, η2

))3
, if u ∈ Ω,

0, if u ∈ RN \ Ω.

It follows that Ĝ ∈ C2(RN ;R), leaves the set of desingularizing functions at 0 unchanged, has compact

lower level sets and is definable in the same structure (recall Definition A.1 (iii)). Finally, we obviously

have,

un
n→∞−−−−→ 0 with Ĝ(un) > 0, ∀n ∈ N. (8.2.2.3)

Without loss of generality, we may assume that η 6 1 and r0 6
η3

8 . Let u ∈ RN \B(0, η). One has,

Ĝ(u) = dist
(
u,B

(
0,
η

2

))3

=
(
‖u‖ − η

2

)3

>
η3

8
> r0.

It follows that,

inf
u∈B(0,η)∩[Ĝ=r]

‖∇Ĝ(u)‖ = min
u∈[Ĝ=r]

‖∇Ĝ(u)‖, ∀r ∈ (0, r0). (8.2.2.4)

Step 2. For r > 0, we introduce

(Pr) ψ(r) = min

{
1

2
‖∇Ĝ(u)‖2; u ∈ RN , Ĝ(u) = r

}
.

Since the set of critical values of a definable function is finite and since the level sets are compact,

we may choose, if necessary, r0 so that ψ > 0 on (0, r0) (the fact that 0 is a nontrivial critical point

excludes the case when ψ vanishes around 0). If we denote by S(r) the nonempty compact set of

solutions to (Pr), one easily sees that

S : (0, r0)⇒ RN ,

is a definable point-to-set mapping – this follows by a straightforward use of quantifier elimination

(i.e., by the use of Definition A.1). Using the Definable Selection Lemma (Lemma A.4), one obtains

a definable curve u : (0, r0) −→ RN such that u(r) ∈ S(r), for any r ∈ (0, r0). Finally, using the

Monotonicity Lemma (Lemma A.3) repeatedly on the coordinates ui of u, one can shrink r0 so that

u is actually in C1((0, r0);RN ).

Fix now r in (0, r0). Since r is noncritical the problem (Pr) is qualified and we can apply Lagrange’s

Theorem for constrained problems. This yields the existence of a real multiplier λ(r) such that

∇2Ĝ(u(r))∇Ĝ(u(r))− λ(r)∇Ĝ(u(r)) = 0, (8.2.2.5)
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with of course Ĝ(u(r)) = r.

Note that for any r ∈ (0, r0), ∇Ĝ(u(r)) 6= 0 (as seen at the beginning of this step) so that λ(r) is

an actual eigenvalue of ∇2Ĝ(u(r)). Since Ĝ is C2, the curve ∇2Ĝ(u(r)) is bounded in the space of

matrices MN (R). Since eigenvalues depend continuously on operators, one deduces from the previous

remarks that there exists λ > 0 such that

|λ(r)| 6 λ, ∀r ∈ (0, r0).

Multiplying (8.2.2.5) by u′(r) gives 〈∇2Ĝ(u(r))∇Ĝ(u(r)), u′(r)〉 = λ(r)〈∇Ĝ(u(r)), u′(r)〉, which is

nothing else than

1

2

d

dr
‖∇Ĝ(u(r))‖2 = λ(r)

d

dr
Ĝ(u(r)).

Since Ĝ(u(r)) = r, one has

1

2

d

dr
‖∇Ĝ(u(r))‖2 = λ(r),

so after integration on [s, r] ⊂ (0, r0), one obtains∣∣∣‖∇Ĝ(u(r))‖2 − ‖∇Ĝ(u(s))‖2
∣∣∣ = 2

∣∣∣∣∫ r

s

λ(τ)dτ

∣∣∣∣ 6 2λ|r − s| r,s→0−−−−→ 0. (8.2.2.6)

It follows that
(
‖∇Ĝ(u(r))‖2

)
s>0

is a Cauchy’s family, so that the limit ` of ‖∇Ĝ(u(s))‖2 as s

goes to zero exists in [0,∞). We recall that by assumption (8.2.2.3), un
n→∞−−−−→ 0, Ĝ(un) > 0 and

∇Ĝ(un)
n→∞−−−−→ 0. Now, setting rn = Ĝ(un), one has by definition of u(rn), ‖∇Ĝ(un)‖ > ‖∇Ĝ(u(rn))‖.

This implies that ` = 0 and as a consequence (8.2.2.6) yields

1

2
‖∇Ĝ(u(r))‖2 =

∫ r

0

λ(τ)dτ 6 λr, (8.2.2.7)

in other words

ψ(r) 6 λr, ∀r ∈ (0, r0). (8.2.2.8)

Step 3. Let us now conclude. By KL inequality one has for any r ∈ (0, r0),

ϕ′(r) >
1

‖∇Ĝ(u)‖
, ∀u ∈ B(0, η) ∩ [G = r]. (8.2.2.9)

As a consequence, we can use (8.2.2.4) in (8.2.2.9) and the linear estimate (8.2.2.8) above to conclude

as follows :

ϕ′(r) >
1

inf
{
‖∇Ĝ(u)‖; u ∈ B(0, η) ∩ [Ĝ = r]

}
=

1

min
{
‖∇Ĝ(u)‖; u ∈ [Ĝ = r]

}
>

1√
2ψ(r)

>
c√
r
,
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for any r ∈ (0, r0), with c =
(√

2λ
)−1

. Hence (8.2.2.2).

Remark 8.2.6. (a) Note that if G 6∈ C2 then (8.2.2.2) does not hold. Indeed, take G(u) = u
3
2 and

ϕ(s) = s
2
3 as a (semi-algebraic) counter-example.

(b) When we omit the assumption that 0 is a nontrivial critical point, i.e. 0 ∈ int critG, then G

vanishes in a neighborhood of 0. In that case, the result is not true in general since any concave

increasing function adequately regular is desingularizing for G. However a function ϕ(s) = c
√
s can

still be chosen as a desingularizing function.

Hence, for an arbitrary C2 definable function, we can always assume that for any critical point, the

corresponding desingularizing function satisfies ϕ′(s) > c 1√
s

(locally for some positive constant c).

8.3 Damped second order gradient systems

8.3.1 Quasi-gradient structure and KL inequalities

Definition 8.3.1.1. Let Γ be a nonempty closed subset of RN and let F : RN −→ RN be a locally

Lipschitz continuous mapping.

(i) We say that the first order system

u′(t) + F
(
u(t)

)
= 0, t ∈ R+, (8.3.1.1)

has a quasi-gradient structure for E on Γ, if there exist a differentiable function E : RN −→ R
and αΓ = α > 0 such that

(angle condition)
〈
∇E(u), F (u)

〉
> α ‖∇E(u)‖ ‖F (u)‖, for any u ∈ Γ, (8.3.1.2)

(rest-points equivalence) critE ∩ Γ = F−1({0}) ∩ Γ. (8.3.1.3)

(ii) Equivalently a vector field F having the above properties is said to be quasi-gradient for E

on Γ.

The following result involves classical material and ideas, yet, the fact that an asymptotic alternative

can be derived in this setting does not seem to be well-known (see however [12] in a discrete context).

Theorem 8.3.1.2 (Asymptotic alternative for quasi-gradient fields). Let F : RN −→ RN be a

locally Lipschitz mapping that defines a quasi-gradient vector field for E on RN , for some differentiable

function E : RN −→ R. Assume further that the function E is KL. Let u be any solution to (8.3.1.1).

Then,

(i ) either ‖u(t)‖ t→∞−−−→∞,
(ii ) or u converges to a singular point u∞ of F as t −→∞.

When (ii ) holds then u′ ∈ L1
(
(0,∞);RN

)
and u′(t)

t→∞−−−→ 0. Moreover, we have the following estimate,

‖u(t)− u∞‖ 6
1

α
ϕ
(
E(u(t))− E(u∞)

)
, (8.3.1.4)

where ϕ is a desingularizing function of E at u∞ and α is the constant in (8.3.1.2).
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Proof. We assume that (i) does not hold, so there exist u∞ ∈ RN and a sequence sn ↗∞ such that

u(sn)
n−→∞−−−−→ u∞. Note that by continuity of E, one has E

(
u(sn)

) n−→∞−−−−→ E(u∞). Observe also that

from equation (8.3.1.1) and the angle condition (8.3.1.2), one has for any t > 0,

d

dt

(
E ◦ u

)
(t) =

〈
∇E

(
u(t)

)
, u′(t)

〉
= −

〈
∇E

(
u(t)

)
, F
(
u(t)

)〉
6 −α‖∇E(u(t))‖ ‖F (u(t))‖, (8.3.1.5)

and thus the mapping t 7−→ E(u(t)) is nonincreasing, which implies

lim
t→∞

E(u(t)) = E(u∞).

Note that if E(u(t)) = E(u∞) for some t, one would have d
dt

(
E ◦u

)
(t) = 0 for any t > t, which would

in turn imply, by (8.3.1.5), that ‖∇E(u(t))‖ ‖F (u(t))‖ = 0, for any such t. In view of the rest point

equivalence (8.3.1.3), this would mean that F (u(t)) = 0, hence by uniqueness of solution curves, that

u(t) = u∞ for any t > 0. We can thus assume without loss of generality that

E(u(t)) > E(u∞), ∀t > 0. (8.3.1.6)

Let t0 > 0 be such that u(t0) ∈ B
(
u∞,

η
2

)
and ϕ

(
E
(
u(t0)

)
− E(u∞)

)
∈
(
0, ηα2

)
, where α > 0 is the

constant in (8.3.1.2) [in view of our preliminary comments and of the continuity of E such a t0 exists].

By continuity of u, there exists τ > 0 such that for any t ∈ [t0, t0 + τ), u(t) ∈ B(u∞, η). So we may

define T ∈ (t0,∞] as

T = sup
{
t > t0 ; ∀s ∈ [t0, t), u(s) ∈ B(u∞, η)

}
.

By (8.3.1.5), the Kurdyka- Lojasiewicz inequality (8.2.2) and equation (8.3.1.1), we have for any t ∈
(t0, T ),

− d

dt

(
ϕ ◦

(
E
(
u( . )

)
− E

(
u∞
)))

(t)

=− ϕ′
(
E
(
u(t)

)
− E(u∞)

) d

dt

(
E ◦ u

)
(t)

> α ϕ′
(
E
(
u(t)

)
− E(u∞)

) ∥∥∇E(u(t)
)∥∥ ∥∥F (u(t)

)∥∥
= α

∥∥F (u(t)
)∥∥ ∥∥∇(ϕ ◦ (E( . )− E(u∞)

)(
u(t)

)∥∥
> α‖u′(t)‖. (8.3.1.7)

It follows from the above estimate that

‖u(t)− u(t0)‖ 6
t∫

t0

‖u′(s)‖ds 6
ϕ
(
E
(
u(t0)

)
− E(u∞)

)
α

<
η

2
, (8.3.1.8)

for any t ∈ (t0, T ). We claim that T =∞. Indeed, otherwise T <∞ and (8.3.1.8) applies with t = T.

Hence,

‖u(T )− u∞‖ 6 ‖u(T )− u(t0)‖+ ‖u(t0)− u∞‖ < η.
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Then u(T ) ∈ B(u∞, η), which contradicts the definition of T. As a consequence the curve u′ belongs

to L1
(
(t0,∞);RN

)
by (8.3.1.8) and the curve u converges to u∞ by Cauchy’s criterion. Finally since

0 must be a cluster point of u′
(
recall indeed

∫∞
0
‖u′(t)‖dt < ∞ and u′ is uniformly continuous by

(8.3.1.1)
)
, one must have F (u∞) = 0. The announced estimate follows readily from (8.3.1.8) and the

fact that T =∞.

Corollary 8.3.1.3. Let F : RN −→ RN be locally Lipschitz continuous and assume that for any R > 0

the mapping F defines a quasi-gradient vector field for some differentiable function ER : RN −→ R
on B(0, R). Assume further that each of the functions ER is KL.

Let u be any bounded solution to (8.3.1.1). Then u converges to a singular point u∞ of F, u′ is

integrable and converges to 0. In particular, if we take R > sup
{
‖u(t)‖; t ∈ [0,∞)

}
, we have the

following estimate,

‖u(t)− u∞‖ 6
1

αR
ϕ
(
ER(u(t))− ER(u∞)

)
, (8.3.1.9)

where ϕ is a desingularizing function of ER at u∞ and αR is the constant in (8.3.1.2), for the ball

B(0, R).

Proof. Take R > sup
{
‖u(t)‖; t ∈ [0,∞)

}
and observe that the previous proof may be reproduced as

it is : just replace E by ER.

8.3.2 Convergence rate of quasi-gradient systems and worst-case dynamics

To simplify our presentation we consider first a proper gradient system :

u′(t) +∇E(u(t)) = 0, (8.3.2.1)

where E : RN −→ R is a twice continuously differentiable KL function. We assume that u is bounded

so, by virtue of our previous considerations, the curve converges to some critical point u∞ of E.

Observe that if u∞ is a trivial critical point, one actually has u(0) = u∞ and the asymptotic study is

trivial.

We thus assume u∞ to be nontrivial, and we denote by ϕ a desingularizing function of E at u∞. We

set

ψ = ϕ−1,

whose domain is denoted by [0, a), (with a ∈ (0,∞]) and we consider the one-dimensional worst-case

gradient dynamics (see [38]) :

ν′(t) + ψ′(ν(t)) = 0, ν(0) = ν0 ∈ (0, a). (8.3.2.2)

We shall assume that

ϕ′(s) >
c√
s
, on (0, r0), (8.3.2.3)
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which implies that solutions ν to (8.3.2.2) are globally defined on [0,∞) and satisfy lim
t↗∞

ν(t) = 0 with

ν(t) > ν0e
−c0t, for any t > 0 (and for some c0 > 0). Uniqueness holds by concavity of ϕ. Finally, note

that if E is a C2 definable function then ϕ can be chosen to be C2, strictly concave and satisfying

(8.3.2.3) (Remark 8.2.3 (c) and Lemma 8.2.2.1).

Radial functions and worst-case dynamics. A full justification of the terminology “worst-case

dynamics” is to be given further, but at this stage one can observe that E could be taken of the form

Erad(u) = ϕ−1(‖u− u∞‖), with u ∈ B(u∞, η) (η > 0),

provided that ϕ−1 is smooth enough. In that case ϕ is clearly desingularizing and the solutions of the

gradient system (8.3.2.1) are radial in the sense that they are of the form( 8)

u(t) = u∞ + ν(t)
u0 − u∞
‖u0 − u∞‖

, (8.3.2.4)

where ν is a solution to (8.3.2.2). In this case, the dynamics (8.3.2.2) exactly measures the convergence

rates for (8.3.2.1), since one has for any t > 0 and any u0 such that ν(0) = ‖u0 − u∞‖,

Erad(u(t)) = ψ(ν(t)), (8.3.2.5)

‖u(t)− u∞‖ = ν(t). (8.3.2.6)

We are about to see that this behavior in terms of convergence rate is actually the worst we can

expect.

Remark 8.3.2.1. (a) As can be seen below, the worst-case gradient system is introduced to measure

the rate of convergence of solutions for large t. Since nontrivial solutions to (8.3.2.2) have the same

asymptotic behavior (they are, indeed, all of the form ν1(t) = ν(t+ t0) where t0 is some real number),

the choice of the initial condition ν(0) in (0, a) can be made arbitrarily.

(b) The above rewrites ν′(t)ϕ′
(
ϕ−1(ν(t))

)
= −1. Thus if µ denotes an antiderivative of ϕ′ ◦ ϕ−1, one

has ν(t) = µ−1(−t+ a0) (where a0 is a constant), for any t > 0 large enough.

(c) In general, the explicit integration of such a system depends on the integrability properties of ψ

and on the fact that ϕ′ ◦ ϕ−1 admits an antiderivative in a closed form.

For instance if ϕ(s) = ( sc )θ, with c > 0 and θ ∈
(
0, 1

2

)
, then ψ(s) = cs

1
θ and

ν′(t) +
c

θ
ν(t)

1−θ
θ = 0, ν(0) ∈ (0, a).

Thus by integration

d

dt
ν1− 1−θ

θ (t) =
d

dt
ν
−1+2θ
θ (t) = c1,

with c1 > 0. As a consequence,

ν(t) =
(
c2 + c1t

)− θ
1−2θ ,

with c2 > 0. When θ = 1
2 one easily sees that ν(t) = ν(0) exp (−2ct) .

8. Just use the formula in (8.3.2.1).
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Theorem 8.3.2.2 (The worst-case rate and worst-case one-dimensional gradient dyna-

mics).

Let E ∈ C2(RN ;R) be a KL function, let u be a bounded solution to (8.3.2.1) and let u∞ ∈ critE

satisfying u(t)
t→∞−−−→ u∞ (such a u∞ exists by Theorem 8.3.1.2). Then for any t large enough,

E(u(t))− E(u∞) 6 ψ(ν(t)), (8.3.2.7)

and

‖u(t)− u∞‖ 6 ν(t), (8.3.2.8)

where ν is a solution to (8.3.2.2).

Proof. Without loss of generality, we may assume that E(u∞) = 0. From the previous results, we

know that for any t > t0, we have u(t) ∈ B(u∞, η) and E(u(t)) ∈ (0, r0), so that the KL inequality

gives (see Theorem 8.3.1.2 and (8.3.1.7)) :

d

dt

(
ϕ ◦ E(u)

)
(t) > ‖u′(t)‖.

Set z(t) = E(u(t)). Since d
dt (E ◦ u)(t) = −‖u′(t)‖2, one has − d

dt (ϕ ◦ z)(t) >
√
−z′(t), or equivalently

ϕ′
(
z(t)

)2
z′(t) 6 −1.

Consider now the worst-case gradient system with initial condition ν(t0) = ϕ
(
E(u(t0))

)
and set

za(t) = ψ(ν(t)) = ϕ−1(ν(t)), for t > t0. The system (8.3.2.2) becomes ϕ′(za(t))z′a(t) + 1
ϕ′(za(t)) = 0,

i.e., ϕ′(za(t))2z′a(t) = −1. If µ is an antiderivative of ϕ′
2

on (0, r0), it is an increasing function and

one has

d

dt
(µ ◦ z)(t) = ϕ′

(
z(t)

)2
z′(t) 6 −1 = ϕ′

(
za(t)

)2
z′a(t) =

d

dt
(µ ◦ za)(t),

and µ(z(t0)) = µ(za(t0)). As a consequence, µ(z(t)) 6 µ(za(t)), hence z(t) 6 za(t) for any t > t0,

which is exactly (8.3.2.7). Using (8.3.1.4), we conclude by observing that

‖u(t)− u∞‖ 6 ϕ(E(u(t))) 6 ϕ(za(t)) = ν(t).

The theorem is proved.

Remark 8.3.2.3. Observe that in the case of a desingularizing function of power type (see Re-

mark 8.3.2.1 (c)), we recover well-known estimates [99].

Theorem 8.3.2.4 (The worst-case one-dimensional gradient dynamics for quasi-gradient

systems).

Let F : RN −→ RN be a locally Lipschitz continuous mapping that defines a quasi-gradient vector

field for some function E ∈ C2(RN ;R) on B(0, R), for any R > 0. Assume further that the function

E is KL and that for any R > 0, there exists a positive constant b > 0 such that

‖∇E(u)‖ 6 b‖F (u)‖, (8.3.2.9)



J. Differential Equations 259(7) (2015) 3115–3143 165

for any u ∈ B(0, R). Assume further that for a given initial data u0 ∈ RN the solution u to (8.3.1.1)

converges to some rest point u∞. Denote by ϕ some desingularizing function for E at u∞.

Then there exist some constants c, d > 0, t0 ∈ R such that

‖u(t)− u∞‖ 6 dν (ct+ t0) , (8.3.2.10)

where ν is a solution to (8.3.2.2).

Proof. Combining the techniques used in Theorems 8.3.1.2 and 8.3.2.2, the proof is almost identical

to that of Theorem 8.3.2.2. Without loss of generality, we may assume that E(u∞) = 0. We simply

need to check the following inequality which is itself a consequence of the assumption (8.3.2.9) applied

with R = sup
t>0
‖u(t)‖.

− d

dt
(E ◦ u)(t) = −〈u′(t),∇E(u(t))〉

6 ‖F (u(t))‖ ‖∇E(u(t))‖

6 b ‖F (u(t))‖2

6 b ‖u′(t)‖2.

From (8.3.1.7) one has − d
dt (ϕ◦E)(u(t)) > α‖u′(t)‖, for any t sufficiently large. Setting z(t) = E(u(t)),

one obtains − d
dt (ϕ◦z)(t) >

α√
b

√
−z′(t). The conclusion follows as before by using a reparametrization

of (8.3.2.2).

Remark 8.3.2.5. Assumption (8.3.2.9) is of course necessary and simply means that the vector field

F drives solutions to their rest points at least “as fast as ∇E” (see also [67]).

8.3.3 Damped second order systems are quasi-gradient systems

As announced earlier our approach to the asymptotic behavior of damped second order gradient

system is based on the observation that (8.1.1.1) can be written as a system having a quasi-gradient

structure. For G ∈ C2(RN ;R), let us define F : RN × RN −→ RN by

F(u, v) =
(
− v, γv +∇G(u)

)
.

Then (8.1.1.1) is equivalent to

U ′(t) + F
(
U(t)

)
= 0, t ∈ R+, with U = (u, v). (8.3.3.1)

As explained in the introduction the total energy function ET (u, v) = G(u) + 1
2‖v‖

2 (sum of the

potential energy and the kinetic energy) is a Liapunov function for our dynamical system (8.1.1.1).

Formally

〈∇ET (u, v),F(u, v)
〉

= γ‖v‖2.

From the above we see, that the damped system (8.1.1.1) is not quasi-gradient for ET since one

obviously has a degeneracy phenomenon〈
∇ET (u, v),F(u, v)

〉
= 0 whenever v = 0, (8.3.3.2)
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where in general ∇ET (u, v) 6= 0 and F(u, v) 6= 0.

The idea that follows consists in continuously deforming the level sets of ET , through a family of

functions :

Eλ : RN × RN −→ R with E0 = ET (λ denotes here a positive parameter),

so that the angle formed between each of the gradients of the resulting functions Eλ, λ > 0 and the

vector F remains far away from π/2. In other words we seek for functions making F a quasi-gradient

vector field.

Proposition 8.3.3.1 (The second order gradient systems are quasi-gradient systems). Let

G ∈ C2(RN ;R) and let γ > 0. For λ > 0, define Eλ ∈ C1(RN × RN ;R) by

Eλ(u, v) =

(
1

2
‖v‖2 +G(u)

)
+ λ〈∇G(u), v〉.

For any R > 0, there exists λ0 > 0 satisfying the following property. For any λ ∈ (0, λ0], there exists

α > 0 such that 〈
∇Eλ(u, v),F(u, v)

〉
> α ‖∇Eλ(u, v)‖ ‖F(u, v)‖, (8.3.3.3)

for any (u, v) ∈ B(0, R)× RN . Furthermore,

crit Eλ ∩
(
B(0, R)× RN

)
= F−1({0}) ∩

(
B(0, R)× RN

)
, (8.3.3.4)

for any λ ∈ [0, λ0].

Proof. For each (u, v) ∈ RN × RN , we have ∇Eλ(u, v) =
(
∇G(u) + λ∇2G(u)v, v + λ∇G(u)

)
. Let

R > 0 be given and let M = max
{
‖∇2G(u)‖; u ∈ B(0, R)

}
. Choose λ0 > 0 small enough to have

γ −
(
M +

γ2

2

)
λ0 > 0.

Let λ ∈ (0, λ0]. Then for any (u, v) ∈ B(0, R)× RN , we obtain by Young’s inequality,〈
∇Eλ(u, v),F(u, v)

〉
= γ‖v‖2 − λ 〈∇2G(u)v, v〉+ λ 〈∇G(u), γv〉+ λ ‖∇G(u)‖2

>

(
γ −Mλ0 −

λ0

2
γ2

)
‖v‖2 +

λ

2
‖∇G(u)‖2

> α0 (‖v‖2 + ‖∇G(u)‖2), (8.3.3.5)

where α0 = min
{
γ −

(
M + γ2

2

)
λ0,

λ
2

}
> 0. Moreover,

‖∇Eλ(u, v)‖ ‖F(u, v)‖ 6 1

2
‖∇Eλ(u, v)‖2 +

1

2
‖F(u, v)‖2 6 C(‖v‖2 + ‖∇G(u)‖2). (8.3.3.6)

Combining (8.3.3.6) with (8.3.3.5), we deduce that the angle condition (8.3.3.3) is satisfied with

α = α0

C . Finally, the rest point equivalence (8.3.3.4) follows from (8.3.3.5).

Remark 8.3.3.2. Note that for λ = 0, we recover the total energy ET (u, v) = E0(u, v) = 1
2‖v‖

2+G(u).



J. Differential Equations 259(7) (2015) 3115–3143 167

The following result is of primary importance : roughly speaking it shows that functions which desin-

gularize the potential G at some critical point u, also desingularize the energy function ET and more

generally the family of deformed functions Eλ at the corresponding critical point (u, 0). This result

implies in turn that the decay rate of the energy is essentially conditioned by the geometry of G as

one might expect from a mechanical or an intuitive perspective.

In the proposition below one needs the kinetic energy to be desingularized by ϕ. This explains our

main assumption.

Proposition 8.3.3.3 (Desingularizing functions of the energy). Let G ∈ C2(RN ;R), u ∈ critG

and assume that there exists a desingularizing function ϕ ∈ C1
(
(0, r0);R+

)
of G at u on B(u, η) such

that ϕ′(s) > c√
s
, for any s ∈ (0, r0).

Then there exist λ1 > 0, η1 > 0 and c > 0 such that∥∥∥∥∇(ϕ ◦ 1

2
|Eλ( . , . )− Eλ(u, 0)|

)
(u, v)

∥∥∥∥ > c, (8.3.3.7)

for any λ ∈ [0, λ1] and any (u, v) ∈ B(u, η1)×B(0, η1) such that Eλ(u, v) 6= Eλ(u, 0).

Proof. By standard translation arguments, we may assume without loss of generality that G(u) = 0

and u = 0. Then Eλ(0, 0) = 0 and (8.3.3.7) consists in showing that for some constant c > 0,

ϕ′
(

1

2
|Eλ(u, v)|

)
>

c

‖∇Eλ(u, v)‖
,

for any λ ∈ [0, λ1] and any (u, v) ∈ B(0, η1)×B(0, η1) such that Eλ(u, v) 6= 0. Recall that 0 ∈ critG.

Let M = max
{
‖∇2G(u)‖; u ∈ B(0, η)

}
and define λ1 = min

{
1
4 ,

1
2(M2+1)

}
. We have,

‖∇Eλ(u, v)‖2 = ‖∇G(u) + λ∇2G(u)v‖2 + ‖v + λ∇G(u)‖2

> ‖∇G(u)‖2 + ‖v‖2 − λ1(M2 + 1)‖v‖2 − 2λ1‖∇G(u)‖2

>
1

2

(
‖v‖2 + ‖∇G(u)‖2

)
, (8.3.3.8)

and in particular,

‖∇G(u)‖ 6 2‖∇Eλ(u, v)‖, (8.3.3.9)

for any λ ∈ [0, λ1] and any (u, v) ∈ RN × RN . Let now (λ, u, v) ∈ [0, λ1]×B(0, η)× RN be such that

Eλ(u, v) 6= 0. Since ϕ′ is nonincreasing, we have

ϕ′
(

1

2
|Eλ(u, v)|

)
> ϕ′

(
1

2
|Eλ(u, v)− Eλ(u, 0)|+ 1

2
|Eλ(u, 0)|

)
> ϕ′

(
max

{
|Eλ(u, v)− Eλ(u, 0)|, |Eλ(u, 0)|

})
. (8.3.3.10)

Let us first find a lower bound on ϕ′(|Eλ(u, 0)|). Observe that necessarily Eλ(u, 0) = G(u) 6= 0. In

particular, ∇G(u) 6= 0 (Remark 8.2.5). We then have by (8.2.2) and (8.3.3.9), ∇Eλ(u, v) 6= 0 and

ϕ′
(
|Eλ(u, 0)|

)
= ϕ′

(
|G(u)|

)
>

1

‖∇G(u)‖
>

1

2‖∇Eλ(u, v)‖
, (8.3.3.11)
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for any λ ∈ [0, λ1] and any (u, v) ∈ B(0, η)× RN such that Eλ(u, 0) 6= 0.

Let us now estimate ϕ′(|Eλ(u, v) − Eλ(u, 0)|) in (8.3.3.10) under the assumption Eλ(u, v) 6= Eλ(u, 0).

Cauchy-Schwarz’ inequality implies that for any λ ∈ [0, λ1],

|Eλ(u, v)− Eλ(u, 0)| 6 1

2

(
‖v‖2 + λ1‖v‖2 + λ1‖∇G(u)‖2

)
. (8.3.3.12)

Combining (8.3.3.12) with (8.3.3.8), we deduce that for any λ ∈ [0, λ1] and any (u, v) ∈ RN × RN ,

|Eλ(u, v)− Eλ(u, 0)| 6 (1 + λ1)‖∇Eλ(u, v)‖2. (8.3.3.13)

By continuity of ∇G, there exists η1 ∈ (0, η) such that

sup
{

(1 + λ1)‖∇Eλ(u, v)‖2; (λ, u, v) ∈ [0, λ1]×B(0, η1)×B(0, η1)
}
< r0.

Using successively the fact that ϕ′ is nonincreasing and ϕ′(s) > c√
s
, it follows from (8.3.3.13) that if

(u, v) ∈ B(0, η1)×B(0, η1) with Eλ(u, v) 6= Eλ(u, 0) then ∇Eλ(u, v) 6= 0 and

ϕ′
(
|Eλ(u, v)− Eλ(u, 0)|

)
> ϕ′

(
(1 + λ1)‖∇Eλ(u, v)‖2

)
>

c1
‖∇Eλ(u, v)‖

, (8.3.3.14)

where c1 > 0 is a constant. Finally, inequalities (8.3.3.11) and (8.3.3.14) together with (8.3.3.10) yield

the existence of a constant c > 0 such that for any λ ∈ [0, λ1] and any (u, v) ∈ B(0, η1) × B(0, η1)

such that Eλ(u, v) 6= 0, there holds ∇Eλ(u, v) 6= 0 and ϕ′
(

1
2 |Eλ(u, v)|

)
‖∇Eλ(u, v)‖ > c, which is the

desired result.

8.4 Convergence results

Before providing our last results, we would like to recall to the reader that a bounded trajectory of

(8.1.1.1) may not converge to a single critical point ; finite-dimensional counterexamples for N = 2

are provided in [14, 114], in each case the trajectory of (8.1.1.1) ends up circling indefinitely around

a disk.

We now proceed to establish a central result whose specialization to various settings will provide us

with several extensions of Haraux-Jendoubi’s initial work [97].

Theorem 8.4.1. Let G ∈ C2(RN ;R) and (u0, u
′
0) ∈ RN × RN be a set of initial conditions for

(8.1.1.1). Denote by u ∈ C2
(
[0,∞);RN ) the unique regular solution to (8.1.1.1) with initial data

(u0, u
′
0). Assume that the following holds.

1. (The trajectory is bounded) sup
t>0
‖u(t)‖ <∞.

2. (Convergence to a critical point) G is a KL function. Each desingularizing function ϕ

of G satisfies

ϕ′(s) >
β√
s
, (8.4.1)

for any s ∈ (0, η0), where β and η0 are positive constants (see Definition 8.2.1).
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Then,

(i) u′ and u′′ belong to L1
(
(0,∞);RN

)
and in particular u converges to a single limit u∞ in critG.

(ii) When u converges to u∞, we denote by ϕ the desingularizing function of G at u∞. One has the

following estimate

‖u(t)− u∞‖ 6 cν(t),

where ν is the solution of the worst-case gradient system

ν′(t) + (ϕ−1)′(ν(t)) = 0, ν(0) > 0.

Proof of Theorem 8.4.1. Let G ∈ C2(RN ;R), let (u0, u
′
0) ∈ RN × RN , let u ∈ C2

(
[0,∞);RN ) and

let u ∈ RN . Set U(t) =
(
u(t), u′(t)

)
, U0 = (u0, u

′
0) and U = (u, 0). Let F and let Eλ be defined as

in Subsection 8.3.1 and Proposition 8.3.3.1, respectively. Note that if u 6∈ critG then U 6∈ crit Eλ and

ϕ(t) = ct desingularizes Eλ at U, for any λ > 0
(
Remark 8.2.3 (a) and (8.3.3.4)

)
. Otherwise, u ∈ critG

and we shall apply Proposition 8.3.3.3. Since supt>0 ‖u(t)‖ < ∞, u′′(t) + γu′(t) = A(t) where A is

bounded. Thus, u′(t) = u′(0)e−γt +
∫ t

0
exp(−γ(t − s))A(s)ds, and by a straightforward calculation,

supt>0 ‖u′(t)‖ < ∞. It follows that supt>0 ‖U(t)‖ < ∞. Let R = supt>0 ‖U(t)‖. Let λ0 > 0 and

0 < λ1 < λ0 be given by Propositions 8.3.3.1 and 8.3.3.3, respectively. Let us fix 0 < λ? < λ1 and

let α > 0 be given by Proposition 8.3.3.1 for such Eλ? and R. By Proposition 8.3.3.1, the first order

system

U ′(t) + F
(
U(t)

)
= 0, t ∈ R+, (8.4.2)

has a quasi-gradient structure for Eλ? on B(0, R) (Definition 8.3.1.1). Finally, since G has the KL

property at u, Eλ? also has the KL property at U (Proposition 8.3.3.3). It follows that Theorem 8.3.1.2

applies to U, from which (i) follows.

The estimate part of the proof of (ii) will follow from Theorem 8.3.2.4, if we establish that for any

R > 0, there exists b > 0 such that for any (u, v) ∈ B(0, R)×B(0, R),

‖∇Eλ?(u, v)‖ 6 b‖F(u, v)‖.

First we observe that for each R > 0 and for any (u, v) ∈ B(0, R)×B(0, R), there exists k1 > 0 such

that

‖∇Eλ?(u, v)‖2 6 k1

(
‖∇G(u)‖2 + ‖v‖2

)
. (8.4.3)

This follows trivially by Cauchy-Schwarz’ inequality and the fact that ∇2G is continuous hence boun-

ded on bounded sets. Fix σ > 0 and recall the inequality 2ab 6 σ2a2 + b2

σ2 for all real numbers a, b.

By Cauchy-Schwarz’ inequality and the previous inequality

‖F(u, v)‖2 = ‖v‖2 + ‖γv +∇G(u)‖2

> (1 + γ2)‖v‖2 + ‖∇G(u)‖2 − 2‖γv‖‖∇G(u)‖

> (1 + γ2)‖v‖2 + ‖∇G(u)‖2 − σ2‖γv‖2 − 1

σ2
‖∇G(u)‖2

= (1− (σ2 − 1)γ2)‖v‖2 +

(
1− 1

σ2

)
‖∇G(u)‖2.
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Choosing σ > 1 so that 1 − (σ2 − 1)γ2 > 0 yields k2 > 0 such that ‖F(u, v)‖2 > k2

(
‖∇G(u)‖2 +

‖v‖2
)
, for any u, v in RN . Combining this last inequality with (8.4.3), we obtain ‖∇Eλ?(u, v)‖2 6

k1

k2
‖F(u, v)‖2, for any (u, v) ∈ B(0, R)×B(0, R). Hence the result.

Remark 8.4.2. (a) As announced previously convergence rates depend directly on the geometry of

G through ϕ.

(b) The fact that the length of the velocity curve u′ is finite suggests that highly oscillatory phenomena

are unlikely.

8.5 Consequences

In the following corollaries, the mapping R+ 3 t 7−→ u(t) is a solution curve of (8.1.1.1).

Corollary 8.5.1 (Convergence theorem for real-analytic functions [97]). Assume that G :

RN −→ R is real-analytic and let u be a bounded solution to (8.1.1.1). Then we have the following

result.

(i) (u, u′) has a finite length. In particular u converges to a critical point u∞.

(ii) When u converges to u∞, we denote by ϕ(s) = csθ
(
with c > 0 and θ ∈

(
0, 1

2

])
the desingu-

larizing function of G at u∞ – the quantity θ is the  Lojasiewicz exponent associated with u∞.

One has the following estimates.

(a) ‖u(t)− u∞‖ 6 ct−
θ

1−2θ , with c > 0, when θ ∈
(
0, 1

2

)
.

(b) ‖u(t)− u∞‖ 6 c′′ exp(−c′t), with c′, c′′ > 0, when θ = 1
2 .

Proof. The proof follows directly from the original  Lojasiewicz inequality [134, 133] and the fact that

desingularizing functions for real-analytic functions are indeed of the form ϕ(s) = csθ with θ ∈ (0, 1
2 ].

Hence (8.2.1.8) holds and Theorem 8.4.1 applies, see also Remark 8.3.2.1 (c).

Corollary 8.5.2 (Convergence theorem for definable functions). Let O be an o-minimal struc-

ture that contains the collection of semi-algebraic sets. Assume G : RN −→ R is C2 and definable in

O. Let u be a bounded solution to (8.1.1.1). Then we have the following result.

(i) u′ and u′′ belong to L1
(
(0,∞);RN

)
and in particular u converges to a single limit u∞ in critG.

(ii) When u converges to u∞ we denote by ϕ the desingularizing function of G at u∞. One has

the following estimate

‖u(t)− u∞‖ 6 cν(t),

where ν is a solution of the worst-case gradient system

ν′(t) + (ϕ−1)′(ν(t)) = 0, ν(0) > 0.

Proof.G is a KL function by Kurdyka’s version of the  Lojasiewicz inequality. The fact that ϕ′(s) > c√
s

comes from Lemma 8.2.2.1. So, Theorem 8.4.1 applies.

Corollary 8.5.3 (Convergence theorem for the one-dimensional case [96]). Let G ∈ C2(R;R)

and let u be a bounded solution to (8.1.1.1). Then u converges to a single point and we have the same

type of rate of convergence as in the previous corollary.
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Proof. We proceed as in [183]. Argue by contradiction and assume that ω(u0, u
′
0), the ω-limit set of

(u0, u
′
0), is not a singleton. Since ω(u0, u

′
0) is connected in R, it is an interval and has a nonempty

interior. Take u in the interior of ω(u0, u
′
0) The  Lojasiewicz inequality trivially holds at u for G ≡ 0

with ϕ(s) =
√
s (recall u is interior). Apply then Theorem 8.4.1.

Remark 8.5.4. In the one-dimensional case, convergence can be obtained with much more general

forms of damping, see [51].

Corollary 8.5.5 (Convergence theorem for convex functions satisfying growth conditions).

Let G ∈ C2(RN ;R) be a convex function such that

argminG
def
=
{
u ∈ RN ;G(u) = minG

}
,

is nonempty (note that argminG = critG). Assume further that, for each minimizer x∗, there exists

η > 0, such that G satisfies

∀u ∈ B(x∗, η), G(u) > minG+ cdist(u, argminG)r, (8.5.1)

with r > 1 and c > 0. Then the solution curve t 7−→ (u(t), u′(t)) has a finite length. In particular u

converges to a minimizer u∞ of G as t goes to ∞.

Proof. A general result of Alvarez [4] ensures that u is bounded (and even converges). On the other

hand it has been shown in [40] that functions satisfying the growth assumption (8.5.1), also satisfy

the  Lojasiewicz inequality with desingularizing functions of the form s 7−→ c′s1−1/r with c′ > 0.

Combining the previous arguments, the conclusion follows readily.

Remark 8.5.6. An alternative and more general approach to establish that trajectories have a finite

length has been developed for convex functions in [135, 71].

Acknowledgements. We are grateful to the referees for their very careful reading and their construc-

tive input.
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Chapitre 9

Mass concentration phenomena for
the L2-critical nonlinear
Schrödinger equation

with Ana Vargas∗

Abstract

In this paper, we show that any solution of the nonlinear Schrödinger equation iut + ∆u ± |u|
4
N u = 0,

which blows up in finite time, satisfies a mass concentration phenomena near the blow-up time. Our proof

is essentially based on the Bourgain’s one [42], which has established this result in the bidimensional spatial

case, and on a generalization of Strichartz’s inequality, where the bidimensional spatial case was proved by

Moyua, Vargas and Vega [139]. We also generalize to higher dimensions the results in Keraani [119] and Merle

and Vega [137].

9.1 Introduction and main results

Let γ ∈ R \ {0} and let 0 6 α 6 4
N . It is well-known that for any u0 ∈ L2(RN ), there exists a unique

maximal solution

u ∈ C((−Tmin, Tmax);L2(RN )) ∩ L
4(α+2)
Nα

loc ((−Tmin, Tmax);Lα+2(RN )),

of i
∂u

∂t
+ ∆u+ γ|u|αu = 0, (t, x) ∈ (−Tmin, Tmax)× RN ,

u(0) = u0, in RN ,
(9.1.1)
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satisfying the conservation of charge, that is for any t ∈ (−Tmin, Tmax), ‖u(t)‖L2(RN ) = ‖u0‖L2(RN ).

The solution u also satisfies the following Duhamel’s formula

∀t ∈ (−Tmin, Tmax), u(t) = T (t)u0 + iγ

t∫
0

(T (t− s){|u|αu})(s)ds, (9.1.2)

where we design by (T (t))t∈R the group of isometries (eit∆)t∈R generated by i∆ on L2(RN ;C). Moreo-

ver u is maximal in the following sense. If α < 4
N then Tmax = Tmin =∞, if α = 4

N and if Tmax <∞
then

‖u‖
L

2(N+2)
N ((0,Tmax);L

2(N+2)
N (RN ))

=∞,

and if α = 4
N and Tmin < ∞ then ‖u‖

L
2(N+2)
N ((−Tmin,0);L

2(N+2)
N (RN ))

= ∞ (see Cazenave and Weiss-

ler [60] and Tsutsumi [172], also Cazenave [57], Corollary 4.6.5 and Section 4.7). Now, assume that

α = 4
N . It is well-known that if ‖u0‖L2 is small enough then Tmax = Tmin = ∞, whereas if γ > 0

then there exists some u0 ∈ L2(RN ) such that Tmax <∞ and Tmin <∞. For example, it is sufficient

to choose u0 = λϕ, where ϕ ∈ H1(RN ) ∩ L2(|x|2; dx), ϕ 6≡ 0, and where λ > 0 is large enough

(Glassey [92], Vlasov, Petrischev and Talanov [180], Cazenave and Weissler [60]).

In the case γ > 0, when blow-up in finite time occurs, a mass concentration phenomena was ob-

served near the blow-up time (see Theorem 2 in Merle and Tsutsumi [136] and Theorem 6.6.7 in

Cazenave [57]), under the conditions that u0 ∈ H1(RN ) is spherically symmetric, N > 2 and γ > 0.

Theorem 6.6.7 in Cazenave [57] asserts that if Tmax < ∞ for a solution u of equation (9.1.4) below,

then for any ε ∈
(
0, 1

2

)
,

lim inf
t↗Tmax

∫
B(0,(Tmax−t)

1
2
−ε)

|u(t, x)|2dx > ‖Q‖2L2(RN ), (9.1.3)

where Q is the ground state, i.e. the unique positive solution of −∆Q + Q = |Q| 4
NQ (see Merle

and Tsutsumi [136], Tsutsumi [172]). The proof uses the conservation of energy and the compactness

property of radially symmetric functions lying in H1(RN ). The spherical symmetry assumption was

relaxed by Nawa [140] ; see also Hmidi and Keraani [105]. Later, it was proved that for data in Hs,

for some s < 1, (9.1.3) holds. This was proved by Colliander, Raynor, Sulem and Wright [68] for

dimension 2, and extended by Tzirakis [176] to dimension 1 and by Visan and Zhang [178] to general

dimension.

In Bourgain [42], a mass concentration phenomena, estimate (9.1.5) below, is obtained for any u0 ∈
L2(R2), γ 6= 0, but in spatial dimension N = 2. Consider solutions of the following critical nonlinear

Schrödinger equation,i
∂u

∂t
+ ∆u+ γ|u| 4

N u = 0, (t, x) ∈ (−Tmin, Tmax)× RN ,

u(0) = u0, in RN ,
(9.1.4)

where γ ∈ R \ {0} is a given parameter. Bourgain showed, in the case N = 2 (see Theorem 1 in [42]),

that if u ∈ C((−Tmin, Tmax);L2(R2)) is a solution of (9.1.4) with initial data u0 ∈ L2(R2) which
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blows-up in finite time Tmax <∞, then

lim sup
t↗Tmax

sup
c∈RN

∫
B(c,C(Tmax−t)

1
2 )

|u(t, x)|2dx > ε, (9.1.5)

where the constants C and ε depend continuously and only on ‖u0‖L2 and |γ|. The proof is based on

a refinement of Strichartz’s inequality for N = 2, due to Moyua, Vargas and Vega (see Theorem 4.2

and Lemma 4.4 in [139]).

Very recently, Keraani [119] showed for N ∈ {1, 2} that there is some δ0 > 0, such that, under the

same assumptions, if in addition ‖u0‖L2 <
√

2δ0 then for any λ(t) > 0 such that λ(t)
t↗Tmax−−−−−→∞,

lim inf
t↗Tmax

sup
c∈RN

∫
B(c,λ(t)(Tmax−t)

1
2 )

|u(t, x)|2dx > δ2
0 . (9.1.6)

Keraani’s proof uses a linear profile decomposition that was shown in dimension N = 2 by Merle

and Vega [137] and in dimension N = 1 by Carles and Keraani [54] (see Theorem 9.5.4 below for the

precise statement). The proofs of the decompositions are based on the above mentioned refinement

of Strichartz’s inequality by Moyua, Vargas and Vega and another one for the case N = 1 observed

by Carles and Keraani [54]. In this paper, we generalize the refinement of Strichartz’s inequality (see

Theorem 9.1.4 below) in order to establish the higher dimensional versions of all these results. Our

proofs (namely, those of Theorem 9.1.2 and Lemma 9.3.3) rely on the restriction theorems for parabo-

loids proved by Tao [166]. There is another minor technical point, because the Strichartz’s exponent
2N+4
N , is not a natural number when the dimension N > 3, except N = 4. We have to deal with this

little inconvenience which did not appeared in N ∈ {1, 2}.

This paper is organized as follows. At the end of this section, we state the main results (Theorems 9.1.1

and 9.1.4) and give some notations which will be used throughout this paper. Section 9.2 is devo-

ted to the proof of the refinement of Strichartz’s inequality (Theorems 9.1.2–9.1.4). In Section 9.3,

we establish some preliminary results in order to prove a mass concentration result in Section 9.4

(Proposition 9.4.1). We prove Theorem 9.1.1 in Section 9.4. Finally, Section 9.5 is devoted to the

generalization to higher dimensions of the results by Keraani [119] and Merle and Vega [137].

Throughout this paper, we use the following notation. For 1 6 p 6 ∞, p′ denotes the conjugate of

p defined by 1
p + 1

p′ = 1; Lp(RN ) = Lp(RN ;C) is the usual Lebesgue space. The Laplacian in RN

is written ∆ =
N∑
j=1

∂2

∂x2
j

and ∂u
∂t = ut is the time derivative of the complex-valued function u. For

c ∈ RN and R ∈ (0,∞), we denote by B(c,R) = {x ∈ RN ; |x − c| < R} the open ball of RN of

center c and radius R. We design by C the set of half–closed cubes in RN . So τ ∈ C if and only

if there exist (a1, . . . , aN ) ∈ RN and R > 0 such that τ =
N∏
j=1

[aj , aj + R). The length of a side of

τ ∈ C is written `(τ) = R. Given A ⊂ RN , we denote by |A| its Lebesgue measure. Let j, k ∈ N with

j < k. Then we denote [[j, k]] = [j, k] ∩ N. We denote by F the Fourier transform in RN defined by 1

1. with this definition of the Fourier transform, ‖Fu‖L2 = ‖F−1u‖L2 = ‖u‖L2 , F−1F = FF−1 = IdL2 , F(u ∗ v) =
FuFv and F−1(u ∗ v) = F−1uF−1v.
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û(ξ) = Fu(ξ) =

∫
RN

e−2iπx.ξu(x)dx, and by F−1 its inverse given by F−1u(x) =

∫
RN

e2iπξ.xu(ξ)dξ.

C are auxiliary positive constants and C(a1, a2, . . . , an) indicates that the constant C depends only

on positive parameters a1, a2, . . . , an and that the dependence is continuous.

Finally, we recall the Strichartz’s estimates (Stein–Tomas Theorem) (see Stein [162], Strichartz [164]

and Tomas [170]). Let I ⊆ R be an interval, let t0 ∈ I and let γ ∈ C. Set for any t ∈ I,

Φu(t) = iγ

∫ t

t0

(T (t− s){|u| 4
N u})(s)ds. Then we have

‖T ( . )u0‖
L

2(N+2)
N (R×RN )

6 C0‖u0‖L2(RN ), (9.1.7)

‖Φu‖
L

2(N+2)
N (I×RN )

6 C1‖u‖
N+4
N

L
2(N+2)
N (I×RN )

, (9.1.8)

where C0 = C0(N) > 0 and C1 = C1(N, |γ|) > 0. For more details, see Ginibre and Velo [91]

(Lemma 3.1) and Cazenave and Weissler [60] (Lemma 3.1), also Cazenave [57] (Theorem 2.3.3). The

main results of this paper are the following.

Theorem 9.1.1. Let γ ∈ R \ {0}, let u0 ∈ L2(RN ) \ {0} and let

u ∈ C((−Tmin, Tmax);L2(RN )) ∩ L
2(N+2)
N

loc ((−Tmin, Tmax);L
2(N+2)
N (RN ))

be the maximal solution of (9.1.4) such that u(0) = u0. There exists ε = ε(‖u0‖L2 , N, |γ|) > 0 satisfying

the following property. If Tmax <∞ then

lim sup
t↗Tmax

sup
c∈RN

∫
B(c,(Tmax−t)

1
2 )

|u(t, x)|2dx > ε,

and if Tmin <∞ then

lim sup
t↘−Tmin

sup
c∈RN

∫
B(c,(Tmin+t)

1
2 )

|u(t, x)|2dx > ε.

By keeping track of the constants through the proofs, it can be shown that ε = C(N, |γ|)‖u0‖−mL2 for

some m > 0 (this was pointed out by Colliander). Notice that no hypothesis on the attractivity on

the nonlinearity (that is on the γ’s sign), on the spatial dimension N and on the smoothness on the

initial data u0 are made.

For each j ∈ Z, we break up RN into dyadic cubes τ jk =
N∏
m=1

[km2−j , (km + 1)2−j), where k =

(k1, . . . , kN ) ∈ ZN with `(τ jk) = 2−j . Define f jk(x) = f1τjk
(x). Let 1 6 p <∞ and let 1 6 q <∞. We

define the space

Xp,q =
{
f ∈ Lploc(RN ); ‖f‖Xp,q <∞

}
,

where

‖f‖Xp,q =

∑
j∈Z

2j
N
2

2−p
p q

∑
k∈ZN

‖f jk‖
q
Lp(RN )

 1
q

.
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Then (Xp,q, ‖ . ‖Xp,q ) is a Banach space and the set of functions f ∈ L∞(RN ) with compact support

is dense in Xp,q for the norm ‖ . ‖Xp,q .

We prove the following improvement of Strichartz’s (Stein–Tomas’s) inequality.

Theorem 9.1.2. Let q = 2(N+2)
N and 1 < p < 2 be such that 1

p′ >
N+3
N+1

1
q . For every function g such

that g ∈ Xp,q or ĝ ∈ Xp,q, we have

‖T ( . )g‖Lq(RN+1) 6 C min
{
‖g‖Xp,q , ‖ĝ‖Xp,q

}
, (9.1.9)

where C = C(N, p).

Theorem 9.1.3. Let q > 2 and let 1 < p < 2. Then there exists µ ∈
(

0, 1
p

)
such that for every

function f ∈ L2(RN ), we have

‖f‖Xp,q 6 C

[
sup

(j,k)∈Z×ZN
2j

N
2 (2−p)

∫
τjk

|f(x)|pdx

]µ
‖f‖1−µp

L2(RN )
6 C‖f‖L2(RN ), (9.1.10)

where C = C(p, q) and µ = µ(p, q). In particular, L2(RN ) ↪→ Xp,q. Moreover, L2(RN ) 6= Xp,q.

As a corollary we obtain the following improvement of Strichartz’s (Stein–Tomas’s) inequality.

Theorem 9.1.4. Let q = 2(N+2)
N and let p < 2 be such that 1

p′ >
N+3
N+1

1
q . Then, there exists µ ∈

(
0, 1

p

)
such that for every function g ∈ L2(RN ), we have

‖T ( . )g‖Lq(RN+1) 6 C

[
sup

(j,k)∈Z×ZN
2j

N
2 (2−p)

∫
τjk

|ĝ(ξ)|pdξ

]µ
‖g‖1−µp

L2(RN )
6 C‖g‖L2(RN ), (9.1.11)

where C = C(N, p) and µ = µ(N, p).

Remark 9.1.5 (See Bourgain [42], p.262–263). By Hölder’s inequality, if 1 < p < 2 then for any

(j, k) ∈ Z× ZN ,[
2j

N
2 (2−p)

∫
τjk

|ĝ(ξ)|pdξ

]1/p

6

[
2j

N
2

∫
τjk

|ĝ(ξ)|dξ

]θ
‖ĝ‖1−θ

L2(RN )
6 ‖g‖θB0

2,∞
‖ĝ‖1−θ

L2(RN )
,

for some 0 < θ < 1. Therefore, it follows from our Strichartz’s refinement, Theorem 9.1.4, that the

following holds.

∀M > 0, ∃η > 0 such that if ‖u0‖L2 6M and ‖u0‖B0
2,∞

< η then Tmax = Tmin =∞,

where u is the corresponding solution of (9.1.4). Furthermore, u ∈ L
2(N+2)
N (R;L

2(N+2)
N (RN )) and there

exists a scattering state in L2(RN ). The same result holds if the condition ‖u0‖B0
2,∞

< η is replaced

by

sup
(j,k)∈Z×ZN

2j
N
2 (2−p)

∫
τjk

|u0(x)|pdx < η′,

for a suitable η′.

Very recently, Rogers and Vargas [154] have proved, for the non–elliptic cubic Schrödinger equation

i∂tu+∂2
x1
u−∂2

x2
u+γ|u|2u = 0 in dimension 2, some results analogous to Theorems 9.1.1, 9.1.2, 9.1.3

and 9.1.4.
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9.2 Strichartz’s refinement

We recall that T (t)g = Kt ∗ g, where Kt(x) = (4πit)−
N
2 ei

|x|2
4t and that K̂t(ξ) = e−i4π

2|ξ|2t. Using that

for any g ∈ L2(RN ), T (t)g = F−1(K̂tĝ) we have,

(T (t)g)(x) =

∫
RN

e2iπ(x.ξ−2πt|ξ|2)ĝ(ξ)dξ. (9.2.1)

Let S =
{

(τ, ξ) ∈ R× RN ; τ = −2π|ξ|2
}
, let dσ(|ξ|2, ξ) = dξ and let f be defined on S by f(τ, ξ) =

f(−2π|ξ|2, ξ) = ĝ(ξ). Then,

(T (t)g)(x) =

∫
RN

f(−2π|ξ|2, ξ)e2iπ(x.ξ−2πt|ξ|2)dξ

=

∫∫
S

f(τ, ξ)e2iπ(tτ+x.ξ)dσ(τ, ξ) = F−1(fdσ)(t, x).

(9.2.2)

Our main tool will be the following bilinear restriction estimate proved by Tao [166]. We adapt the

statements to our notation using the equivalence (9.2.2).

Theorem 9.2.1 (Theorem 1.1 in [166]). Let Q, Q′ be cubes of sidelength 1 in RN such that

min{d(x, y); x ∈ Q, y ∈ Q′} ∼ 1

and let f̂ , ĝ functions respectively supported in Q and Q′. Then for any r > N+3
N+1 and p > 2, we have

‖T ( . )fT ( . )g‖Lr(RN+1) 6 C‖f̂‖Lp(Q)‖ĝ‖Lp(Q′),

with a constant C independent of f, g, Q and Q′.

By interpolation with the trivial estimate

‖T ( . )fT ( . )g‖L∞(RN+1) 6 C‖f̂‖L1(Q)‖ĝ‖L1(Q′) 6 C‖f̂‖Lp(Q)‖ĝ‖Lp(Q′),

for any p > 1, one obtains the following result.

Theorem 9.2.2 ([166]). Let Q, Q′ be cubes of sidelength 1 in RN such that

min{d(x, y); x ∈ Q, y ∈ Q′} ∼ 1

and f̂ , ĝ functions respectively supported in Q and Q′. Then for any r > N+3
N+1 and for all p such that

2
p′ >

N+3
N+1

1
r , we have

‖T ( . )fT ( . )g‖Lr(RN+1) 6 C‖f̂‖Lp(RN )‖ĝ‖Lp(RN ),

with a constant C independent of f, g, Q and Q′.

By rescaling and taking r = N+2
N , we obtain the following.
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Corollary 9.2.3. Let τ, τ ′ be cubes of sidelength 2−j such that

min{d(x, y); x ∈ τ, y ∈ τ ′} ∼ 2−j

and f̂ , ĝ functions respectively supported in τ and τ ′. Then for r = N+2
N and for any p such that

2
p′ >

N+3
N+1

1
r , we have

‖T ( . )fT ( . )g‖Lr(RN+1) 6 C2jN
2−p
p ‖f̂‖Lp(RN )‖ĝ‖Lp(RN ),

with a constant C independent of f, g, τ and τ ′.

We will need to use the orthogonality of functions with disjoint support. More precisely, the following

lemma, a proof of which can be found, for instance, in Tao, Vargas, Vega [168], Lemma 6.1.

Lemma 9.2.4. Let (Rk)k∈Z be a collection of rectangles in frequency space and c > 0, such that the

dilates (1 + c)Rk are almost disjoint (i.e.
∑
k 1(1+c)Rk 6 C), and suppose that (fk)k∈Z is a collection

of functions whose Fourier transforms are supported on Rk. Then for all 1 6 p 6∞, we have

‖
∑
k∈Z

fk‖Lp(RN ) 6 C(N, c)

(∑
k∈Z
‖fk‖p

∗

Lp(RN )

) 1
p∗

,

where p∗ = min(p, p′).

Proof of Theorem 9.1.2. We set r = q
2 = N+2

N . We first consider the case where ĝ ∈ Xp,q. We can

assume that the support of ĝ is contained in the unit square. The general result follows by scaling and

density. For each j ∈ Z, we decompose RN into dyadic cubes τ jk of sidelength 2−j . Given a dyadic

cube τ jk we will say that it is the “parent” of the 2N dyadic cubes of sidelength 2−j−1 contained in

it. We write τ jk ∼ τ jk′ if τ jk , τ jk′ are not adjacent but have adjacent parents. For each j > 0, write

g =
∑
gjk where ĝjk(ξ) = ĝ1τjk

(ξ). Denote by Γ the diagonal of RN × RN , Γ = {(x, x); x ∈ RN}. We

have the following decomposition (of Whitney type) of RN × RN \ Γ (see Figure 9.1),

(RN × RN ) \ Γ =
⋃
j

⋃
k,k′; τjk∼τ

j

k′

τ jk × τ
j
k′ .

Thus,

T (t)g(x) T (t)g(x) =

∫
RN

∫
RN

e2iπ(x.ξ−2πt|ξ|2)ĝ(ξ)e2iπ(x.η−2πt|η|2)ĝ(η)dξdη

=
∑
j

∑
k

∑
k′;τjk∼τ

j

k′

∫ ∫
τjk×τ

j

k′

e2iπ(x.ξ−2πt|ξ|2)ĝ(ξ)e2iπ(x.η−2πt|η|2)ĝ(η)dξdη

=
∑
j

∑
k

∑
k′;τjk∼τ

j

k′

T (t)gjk T (t)gjk′

(see also Tao, Vargas and Vega [168]). Thus,

‖T ( . )g‖2L2r(RN+1) = ‖T ( . )gT ( . )g‖Lr(RN+1) = ‖
∑
j

∑
k,k′:
τ
j
k
∼τj
k′

T ( . )gjkT ( . )gjk′‖Lr(RN+1).
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Figure 9.1 – RN × RN

For each k = (k1, k2, . . . , kN ), the support of the (N + 1)-dimensional Fourier transform of T ( . )gjk
is contained in the set τ̃ jk = {(−2π|ξ|2, ξ); ξ ∈ τ jk}. Hence the support of the Fourier transform of

T ( . )gjkT ( . )gjk′ is contained in τ̃ jk + τ̃ jk′ = {(−2π(|ξ|2 + |ξ′|2), ξ + ξ′); ξ ∈ τ jk , ξ′ ∈ τ
j
k′}. Using the

identity |ξ|2 + |ξ′|2 = 1
2 |ξ+ ξ′|2 + 1

2 |ξ− ξ
′|2 we see that τ̃ jk + τ̃ jk′ is contained in the set Hj,k = {(a, b) ∈

RN × R : |a− 2−j+1k| 6 C2−j , 2−2j 6 −|a|2 − b
π 6 3N2−2j}. Note that,∑

j

∑
k

∑
k′; τjk∼τ

j

k′

1Hj,k 6 C(N).

Hence, the functions T ( . )gjkT ( . )gjk′ are almost orthogonal in L2(RN+1). A similar orthogonality

condition was the key in the proof of the L4–boundedness of the Bochner–Riesz multipliers given by

Córdoba [69], see also Tao, Vargas and Vega [168], and implicitly appears in Bourgain [41], Moyua,

Vargas and Vega [138, 139]. But we need something more, since we are not working in L2 and we

want to apply Lemma 9.2.4. For M = 2[ln(N + 1)], we decompose each τkj into dyadic subcubes of

sidelength 2−j−M . Consequently, we have a corresponding decomposition of τ jk × τ
j
k′ and of RN ×RN ,

as follows : set D the family of multi-indices (m,m′, `) ∈ ZN × ZN × Z, so that, there exists some

τ `−Mk and τ `−Mk′ with τ `m ⊂ τ `−Mk , τ `m′ ⊂ τ
`−M
k′ and τ `−Mk ∼ τ `−Mk′ (j = `−M). Then,

(RN × RN ) \ Γ =
⋃
D
τ `m × τ `m′ .

Hence,

‖T ( . )g‖2L2r(RN+1) = ‖T ( . )gT ( . )g‖Lr(RN+1) = ‖
∑
D
T ( . )g`mT ( . )g`m′‖Lr(RN+1).

Notice that if (m,m′, `) ∈ D, then the distance between τ `m and τ `m′ is bigger than 2−`+M > N2−`,

and smaller than
√
N2−`+M . We claim that there are rectangles Rm,m′,`, and c = c(N), so that

τ̃ `m× τ̃ `m′ ⊂ Rm,m′,` and
∑
D 1(1+c)Rm,m′,`

6 C(N). We postpone the proof of this claim to the end of
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the proof. Assuming that it holds, and by Lemma 9.2.4, since r < 2, we have

‖
∑
D
T ( . )g`mT ( . )g`m′‖Lr(RN+1) 6 C(N)

[∑
D
‖T ( . ) g`mT ( . )g`m′‖rLr(RN+1)

] 1
r

.

Now use Corollary 9.2.3 to estimate[∑
D
‖T ( . ) g`mT ( . )g`m′‖rLr(RN+1)

] 1
r

6 C(N, p)

∑
`

∑
m

∑
m′;(m,m′,`)∈D

2`Nr
2−p
p ‖ĝ`m‖rLp(RN )‖ĝ

`
m′‖rLp(RN )

 1
r

.

Now, for each (m, `) there are at most 4N2MN indices m′ such that (m,m′, `) ∈ D. Hence,∑
`

∑
m

∑
m′;(m,m′,`)∈D

2`Nr
2−p
p ‖ĝ`m‖rLp(RN )‖ĝ

`
m′‖rLp(RN )

 1
r

6 C(N)

[∑
`

∑
m

2`Nr
2−p
p ‖ĝ`m‖2rLp(RN )

] 1
r

.

Figure 9.2 – Hm,m′,` ⊂ Rm,m′,`

We still have to justify the claim. Assume, for the sake of simplicity that

τ `m × τ `m′ ⊂ {(x1, x2, . . . , xN ) ∈ RN ; ∀j ∈ [[1, N ]], xj > 0}.

Then τ̃ `m × τ̃ `m′ is contained on a set Hm,m′,` = {(a, b) ∈ RN × R; a = (m + m′)2−` + v, v =

(v1, v2, · · · , vN ), 0 6 vi 6 2−`+1, 2−2`+2M 6 −|a|2 − b
π 6 3N2−2`+2M}. Consider the paraboloid

defined by −|a|2 − b
π = 2−2`+2M . Take Πm,m′,` to be the tangent hyperplane to this paraboloid at

the point of coordinates (a0, b0), with a0 = (m + m′)2−`, b0 = −π|a0|2 − 2−2`+2M (and passing

through that point). Consider also the point (a1, b1) with a1 = a0 + (2−`+1, 2−`+1, . . . , 2−`+1) and

b1 = −π|a1|2 − 3N2−2`+2M . Then, the rectangle Rm,m′,` is defined as the only rectangle having a

face contained in that hyperplane and the points (a0, b0), and (a1, b1) as opposite vertices. Due to the
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convexity of paraboloids, it follows that Hm,m′,` ⊂ Rm,m′,` (see Figure 9.2). Moreover, one can also

see that, for small c = c(N), (1+c)Rm,m′,` ⊂ {(a, b); a = (m+m′)2−`+v, v = (v1, v2, . . . , vN ), |vi| 6
C(N)2−`+1, C ′(N)2−2`+2M 6 −|a|2 − b

π 6 C
′′(N)2−2`+2M}. Therefore, we have

∑
D 1(1+c)Rm,m′,`

6

C(N). Hence (9.1.9) in the case ĝ ∈ Xp,q. Now, assume g ∈ Xp,q. By density, it is sufficient to

prove (9.1.9) for g ∈ L2(RN ). By a straightforward calculation and the above result, we obtain that

‖T ( . )g‖Lq(RN+1) = ‖T ( . )
(
F−1g

)
‖Lq(RN+1) 6 C(N, p)‖g‖Xp,q . Hence (9.1.9).

Proof of Theorem 9.1.3. Notice first, that the second inequality follows from Hölder’s. By homoge-

neity, we can assume that ‖f‖L2(RN ) = 1. Then, it suffices to show that for any function f ∈ L2(RN )

such that ‖f‖L2(RN ) = 1,

∑
j

∑
k

2j
N
2

2−p
p q

(∫
τjk

|f |p
) q
p

6 C(p, q)

sup
j,k

2j
N
2

2−p
p

(∫
τjk

|f |p
) 1
p


α ,

where α = µpq and where µ has to be determined. Take α and β such that 2
q < β < 1, β > p

2 and

α+ qβ = q. Then,

∑
j

∑
k

2j
N
2

2−p
p q

(∫
τjk

|f |p
) q
p

6

∑
j

∑
k

2j
N
2

2−p
p βq

(∫
τjk

|f |p
)β qp sup

j,k

2j
N
2

2−p
p

(∫
τjk

|f |p
) 1
p

α .
We set µ = α

pq = 1−β
p ∈

(
0, 1

p

)
. Hence, it is enough to show

∑
j

∑
k

2j
N
2

2−p
p βq

(∫
τjk

|f |p
)β qp

6 C(p, q).

We split the sum,

∑
j

∑
k

2j
N
2

2−p
p βq

(∫
τjk

|f |p
)β qp

6 C
∑
j

∑
k

2j
N
2

2−p
p βq

(∫
τjk∩{|f |>2jN/2}

|f |p
)β qp

+ C
∑
j

∑
k

2j
N
2

2−p
p βq

(∫
τjk∩{|f |62jN/2}

|f |p
)β qp

not
= C(A+B),

where C = C(p, q). We study the first term. Set for each j ∈ Z, f j = f1{|f |>2jN/2}. Then,

A =
∑
j

∑
k

(
2j

N
2 (2−p)

∫
τjk

|f j |p
)β qp

.
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Since βq > 2, we also have β qp > 1. Then,

A 6

∑
j

∑
k

2j
N
2 (2−p)

∫
τjk

|f j |p
β qp

=

∑
j

2j
N
2 (2−p)

∫
RN
|f j |p

β qp

6

∫
RN
|f |p

∑
{j; |f |>2jN/2}

2j
N
2 (2−p)

β qp

.

Since 2− p > 0, we can sum the series and obtain

A 6 C

(∫
RN
|f |p|f |(2−p)

)β qp
6 C

(∫
RN
|f |2

)β qp
6 C,

by our assumption that ‖f‖L2 = 1. We now estimate B. Set for any j ∈ Z, fj = f1{|f |62jN/2}. Then,

B =
∑
j

∑
k

2j
N
2

2−p
p βq

(∫
τjk

|fj |p
)β qp

We use Hölder’s inequality with exponents βq
p and βq

βq−p . We obtain,

B 6
∑
j

∑
k

2j
N
2

2−p
p βq

∫
τjk

|fj |βq
(
|τ jk |

βq−p
βq

)β qp
=
∑
j

∑
k

2j
N
2

2−p
p βq

∫
τjk

|fj |βq
(

2−jN
βq−p
βq

)β qp
=
∑
j

∑
k

2jN(1−β q2 )

∫
τjk

|fj |βq =
∑
j

2jN(1−β q2 )

∫
RN
|fj |βq

6
∫
RN
|f |βq

∑
{j; |f |62jN/2}

2jN(1−β q2 ).

Since 1− β q2 < 0, we sum the series to obtain

B 6 C
∫
RN
|f |βq|f |(2−βq) 6 C

∫
RN
|f |2 6 C,

since ‖f‖L2 = 1.

We give an example to show that L2(RN ) 6= Xp,q. Let

f(x) =
1

|x|N2 | ln |x|| 12
1

(0, 12 )
N .

Then for any 1 6 p < 2 and any q > 2, f ∈ Xp,q but f 6∈ L2(RN ).

9.3 Preliminary results

In this and next section, we follow Bourgain’s arguments ([42]). We have to modify them in the proof

of Lemma 9.3.3, because the Strichartz’s exponent is not, in general, a natural number.
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Lemma 9.3.1. Let f ∈ L2(RN )\{0}. Then for any ε > 0, such that ‖T (·)f‖
L

2(N+2)
N (R×RN )

> ε, there

exist N0 ∈ N with N0 6 C(‖f‖L2 , N, ε), (An)16n6N0
⊂ (0,∞) and (fn)16n6N0

⊂ L2(RN ) satisfying

the following properties.

1. ∀n ∈ [[1, N0]], supp f̂n ⊂ τn, where τn ∈ C with `(τn) 6 C‖f‖cL2(RN )ε
−νAn, and where the

constants C, c and ν are positive and depend only on N.

2. ∀n ∈ [[1, N0]], |f̂n| < A
−N2
n .

3. ‖T ( . )f −
N0∑
n=1

T ( . )fn‖
L

2(N+2)
N (R×RN )

< ε.

4. ‖f‖2L2(RN ) =
N0∑
n=1
‖fn‖2L2(RN ) + ‖f −

N0∑
n=1

fn‖2L2(RN ).

The proof relies on the following lemma.

Lemma 9.3.2. Let g ∈ L2(RN ) and let ε > 0 be such that ‖T ( . )g‖
L

2(N+2)
N (R×RN )

> ε. Then there

exist h ∈ L2(RN ) and A > 0 satisfying the following properties.

1. supp ĥ ⊂ τ, where τ ∈ C with `(τ) 6 C‖g‖cL2(RN )ε
−νA, and where the constants C, c and ν

depend only on N.

2. |ĥ| 6 A−N2 and ‖h‖2L2(RN ) > C‖g‖
−a
L2(RN )

εb, where the constants C, a and b depend only on N.

3. ‖g − h‖2L2(RN ) = ‖g‖2L2(RN ) − ‖h‖
2
L2(RN ).

Proof. We distinguish 3 cases.

Case 1. supp ĝ ⊂ [−1, 1]N . Then the function h will also satisfy supp ĥ ⊂ τ ⊂ [−1, 1]N .

Let ε > 0 and let g be as in Lemma 9.3.2 such that supp ĝ ⊂ [−1, 1]N . It follows from Theorem 9.1.4

that

ε 6 ‖T ( . )g‖
L

2(N+2)
N (R×RN )

6 C‖g‖1−µp
L2(RN )

[
sup

(j,k)∈Z×ZN
2j

N
2 (2−p)

∫
τjk

|ĝ(ξ)|pdξ

]µ
.

So there exist j ∈ Z and τ ∈ C, with τ ⊂ [−1, 1]N and `(τ) = 2−j , such that∫
τ

|ĝ(ξ)|pdξ > C(‖g‖µp−1
L2(RN )

ε)
1
µ 2−j

N
2 (2−p). (9.3.1)

Let M =
(

(C‖g‖µ(p−2)−1

L2(RN )
ε)

1
µ 2−j

N
2 (2−p)−1

) 1
p−2

, where C is the constant in (9.3.1). Then by Planche-

rel’s Theorem,∫
τ∩{|ĝ|>M}

|ĝ(ξ)|pdξ = Mp−2

∫
τ∩{|ĝ|>M}

|ĝ(ξ)|pM2−pdξ

6Mp−2

∫
|ĝ|p|ĝ|2−pdξ = Mp−2‖g‖2L2(RN ). (9.3.2)
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It follows from (9.3.1)–(9.3.2) that∫
τ∩{|ĝ|<M}

|ĝ(ξ)|pdξ =

∫
τ

|ĝ(ξ)|pdξ −
∫

τ∩{|ĝ|>M}

|ĝ(ξ)|pdξ

> (C‖g‖µp−1
L2(RN )

ε)
1
µ 2−j

N
2 (2−p) −Mp−2‖g‖2L2(RN )

> Cε
1
µ 2−j

N
2 (2−p)‖g‖−

1−µp
µ

L2(RN )
.

By Hölder’s inequality and the above estimate, we get

Cε
1
µ 2−j

N
2 (2−p)‖g‖−

1−µp
µ

L2(RN )
6

∫
τ∩{|ĝ|<M}

|ĝ(ξ)|pdξ 6

 ∫
τ∩{|ĝ|<M}

|ĝ(ξ)|2dξ


p
2

|τ |
2−p

2 .

Since |τ | = 2−jN , we then obtain, ∫
τ∩{|ĝ|<M}

|ĝ(ξ)|2dξ > C‖g‖−
2(1−µp)
µp

L2(RN )
ε

2
µp . (9.3.3)

Let h ∈ L2(RN ) be such that ĥ = ĝ1τ∩{|ĝ|<M} and let A = M−
2
N . Then supp ĥ ⊂ τ ⊂ [−1, 1]N with

`(τ) = 2−j = C‖g‖
2µ(2−p)+2
Nµ(2−p)

L2(RN )
ε−

2
Nµ(2−p)A. So we have 1, and 2 follows from (9.3.3). Since ĥ and ĝ − ĥ

have disjoint supports, 3 follows.

Case 2. supp ĝ ⊂ [−M,M ]N for some M > 0. Then h will also satisfy supp ĥ ⊂ τ ⊂ [−M,M ]N .

Let ε > 0 and let g be as in the Lemma 9.3.2 such that supp ĝ ⊂ [−M,M ]N for some M > 0. Let

g′ ∈ L2(RN ) be such that ĝ′(ξ) = M
N
2 ĝ(Mξ). Then supp ĝ′ ⊂ [−1, 1]N and so we may apply the

Case 1 to g′. Thus there exist h′ ∈ L2(RN ), τ ′ ∈ C and A′ > 0 satisfying 1–3. We define h ∈ L2(RN )

by ĥ(ξ) = M−
N
2 ĥ′

(
ξ
M

)
. Then ‖g‖L2(RN ) = ‖g′‖L2(RN ) and ‖h‖L2(RN ) = ‖h′‖L2(RN ). In particular,

second part of 2 holds for g and h. Setting τ = Mτ ′, it follows that supp ĥ ⊂ τ ⊂ [−M,M ]N and

`(τ) = M`(τ ′) 6 C‖g‖q
L2(RN )

ενMA′. So h satisfies 1 with A = MA′. Finally, |ĥ| < M−
N
2 A′

−N2 =

A−
N
2 , which implies 2. Finally, 3 follows from the similar identity for ĝ′ and ĥ′.

Case 3. General case.

Let ε > 0 and let g be as in the Lemma 9.3.2. For M > 0, we define uM ∈ L2(RN ) by ûM = ĝ1[−M,M ]N .

It follows from Strichartz’s estimate (9.1.7) and Plancherel’s Theorem that

‖T ( . )(uM − g)‖
L

2(N+2)
N (R×RN )

6 C‖uM − g‖L2(RN ) = C‖ûM − ĝ‖L2(RN )
M−→∞−−−−−→ 0.

Then there exists M0 > 0 such that

‖T ( . )uM0
‖
L

2(N+2)
N (R×RN )

>
ε

2
.

Setting g0 = uM0
, we apply the Case 2 to g0, obtaining h. Since ‖g0‖L2(RN ) 6 ‖g‖L2(RN ), Properties 1

and 2 are clear for g and h. Also, Property 3 holds for g and h, again because the disjointness of

supports. This achieves the proof of the lemma.
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Proof of Lemma 9.3.1. Let f ∈ L2(RN ) \ {0} and let ε > 0 be such that

‖T ( . )f‖
L

2(N+2)
N (R×RN )

> ε.

We apply Lemma 9.3.2 to f. Let h ∈ L2(RN ), τ ∈ C, A > 0, a = a(N) > 0, b = b(N) > 0, c = c(N) > 0

and ν = ν(N) > 0 be given by Lemma 9.3.2. We set f1 = h, τ1 = τ and A1 = A. By Lemma 9.3.2,

we have

`(τ1) 6 C‖f‖cL2ε−νA1, (9.3.4)

‖f − f1‖2L2 = ‖f‖2L2 − ‖f1‖2L2 , ‖f − f1‖−aL2 > ‖f‖−aL2 and ‖f1‖2L2 > C‖f‖−aL2 ε
b. (9.3.5)

Now, we may assume that

‖T ( . )f − T ( . )f1‖
L

2(N+2)
N (R×RN )

> ε,

otherwise we set N0 = 1 and the proof is finished. So we may apply Lemma 9.3.2 to g = f − f1. Let

h ∈ L2(RN ), let τ ∈ C and let A > 0 be given by Lemma 9.3.2. We set f2 = h, τ2 = τ and A2 = A.

By Lemma 9.3.2 and (9.3.5), we have

`(τ2) 6 C‖f − f1‖cL2ε−νA2 6 C‖f‖cL2ε−νA2, (9.3.6)

‖f − (f1 + f2)‖2L2 = ‖f − f1‖2L2 − ‖f2‖2L2 = ‖f‖2L2 − (‖f1‖2L2 + ‖f2‖2L2), (9.3.7)

‖f2‖2L2 > C‖f − f1‖−aL2 ε
b > C‖f‖−aL2 ε

b. (9.3.8)

We repeat the process as long as

‖T ( . )f −
k−1∑
j=1

T ( . )fj‖
L

2(N+2)
N (R×RN )

> ε,

applying Lemma 9.3.2 to g = f −
k−1∑
j=1

fj . Then, by (9.3.4)–(9.3.8), we obtain functions f1, . . . , fn

satisfying Properties 1 and 2 of Lemma 9.3.1 and

‖f −
k∑
j=1

fj‖2L2 = ‖f‖2L2 −
k∑
j=1

‖fj‖2L2 , (9.3.9)

‖fk‖2L2 > C‖f‖−aL2 ε
b, (9.3.10)

for any k ∈ [[1, n]], for some n > 2. From Strichartz’s estimate (9.1.7) and (9.3.9)–(9.3.10), we obtain

‖T ( . )f −
n∑
j=1

T ( . )fj‖2
L

2(N+2)
N (R×RN )

6 C‖f −
n∑
j=1

fj‖2L2 6 C(‖f‖2L2 − Cn‖f‖−aL2 ε
b)

n−→∞−−−−→ −∞.

So the process stops for some n 6 C(‖f‖L2 , N, ε). We set N0 = n and the proof is achieved.
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Lemma 9.3.3. Let g ∈ L2(RN ), let τ ∈ C, let A > 0 and let C0 > 0 be such that supp ĝ ⊂ τ,

`(τ) 6 C0A and |ĝ| < A−
N
2 . Let ξ0 be the center of τ. Then for any ε > 0, there exist N1 ∈ N with

N1 6 C(N,C0, ε) and (Qn)16n6N1
⊂ R× RN with

Qn =
{

(t, x) ∈ R× RN ; t ∈ In and (x− 4πtξ0) ∈ Cn
}
, (9.3.11)

where In ⊂ R is an interval with |In| =
1

A2
and Cn ∈ C with `(Cn) =

1

A
such that


∫

RN+1\
N1⋃
n=1

Qn

|(T (t))g(x)|
2(N+2)
N dtdx



N
2(N+2)

< ε.

Notice that the functions fn obtained in Lemma 9.3.1 satisfy the hypothesis of Lemma 9.3.3.

Proof of Lemma 9.3.3. We define g′ ∈ L2(RN ) by ĝ′(ξ′) = A
N
2 ĝ(ξ0 + Aξ′). Then ‖g′‖L2 = ‖g‖L2 ,

|ĝ′| < 1 and supp ĝ′ ⊂
[
−C0

2 ,
C0

2

]N
. It follows from (9.2.1) applied to g′ that

|(T (A2t)g′)(A(x− 4πtξ0))| =

∣∣∣∣∣∣∣∣
∫

(−C0
2 ,

C0
2 )

N

e2iπ(A(x−4πtξ0).ξ−2πA2t|ξ|2)ĝ′(ξ)dξ

∣∣∣∣∣∣∣∣
= A

N
2

∣∣∣∣∣∣∣∣
∫

(−C0
2 ,

C0
2 )

N

e2iπ(A(x−4πtξ0).ξ−2πA2t|ξ|2)ĝ(ξ0 +Aξ)dξ

∣∣∣∣∣∣∣∣
= A−

N
2 |(T (t)g)(x)|,

where the last identity follows from the change of variables ζ = ξ0 +Aξ. Setting{
t′ = A2t,

x′ = A(x− 4πtξ0),
(9.3.12)

we then have

|(T (t)g)(x)| = A
N
2 |(T (t′)g′)(x′)|. (9.3.13)

By (9.2.1),

|(T (t)g′)(x)| =

∣∣∣∣∣∣∣∣
∫

(−C0
2 ,

C0
2 )

N

ĝ′(ζ)e2iπ(x.ζ−2πt|ζ|2)dζ

∣∣∣∣∣∣∣∣ . (9.3.14)

By (9.2.2) (with g′ in the place of g) and Corollary 1.2 of Tao [166], we obtain

‖T ( . )g′‖Lq(R×RN ) 6 C(N, q)‖ĝ′‖Lp(RN ) = C(N, q)‖ĝ′‖
Lp
(
(−C0

2 ,
C0
2 )

N
), (9.3.15)
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for any q > 2(N+3)
(N+1) and any p > 1 such that q = N+2

N p′. Let p′ = p′(N) ∈ (1, 2) be such that

2(N + 3)

(N + 1)
<
N + 2

N
p′ <

2(N + 2)

N
.

Thus q = q(N) =
N + 2

N
p′ <

2(N + 2)

N
and it follows from (9.3.15) that and Hölder’s inequality that

‖T ( . )g′‖Lq(R×RN ) 6 C(N)‖ĝ′‖
Lp
(
(−C0

2 ,
C0
2 )

N
) 6 C(N)

∣∣∣∣(− C0

2
,
C0

2

)N ∣∣∣∣ 1
p

‖ĝ′‖
L∞

(
(−C0

2 ,
C0
2 )

N
),

so that

‖T ( . )g′‖Lq(R×RN ) 6 C(C0, N).

This estimate implies that for any λ > 0,∫
{|T ( . )g′|<λ}

|T (t′)g′(x′)|
2(N+2)
N dt′dx′

=

∫
{|T ( . )g′|<λ}

|T (t′)g′(x′)|(
2(N+2)
N −q)+qdt′dx′ 6 C(C0, N)λ

2(N+2)
N −q.

So there exists λ0 = λ0(N,C0, ε) ∈ (0, 1) small enough such that∫
{|T ( . )g′|<2λ0}

|T (t′)g′(x′)|
2(N+2)
N dt′dx′ < ε

2(N+2)
N , (9.3.16)

Since supp ĝ′ ⊂
[
−C0

2 ,
C0

2

]N
and ‖ĝ′‖L∞ 6 1, it follows from formula (9.2.1) that for any (t′, x′) ∈

R× RN and any (t′′, x′′) ∈ R× RN ,

|T (t′)g′(x′)− T (t′′)g′(x′′)| 6 C(|t′ − t′′|+ |x′ − x′′|),

where C = C(C0, N) > 1. So for such a constant, if (t′, x′) ∈ {|T ( .)g′| > 2λ0} and if (t′′, x′′) ∈ R×RN

is such that |t′ − t′′| 6 λ0

2C < 1
2 and |x′ − x′′| 6 λ0

2C < 1
2 then |T (t′′)g(x′′)| > λ0, that is (t′′, x′′) ∈

{|T ( . )g′| > λ0}. So there exist a set R and a family (Pr)r∈R = (Jr,Kr)r∈R ⊂ R×RN , where Jr ⊂ R
is a closed interval of center t′ ∈ R with |Jr| = λ0

C and Kr ∈ C of center x′ ∈ RN with `(Kr) = λ0

C

and (t′, x′) ∈ {|T ( . )g′| > 2λ0}, such that

∀(r, s) ∈ R×R with r 6= s, Int(Pr) ∩ Int(Ps) = ∅, (9.3.17)

{|T ( . )g′| > 2λ0} ⊂
⋃
r∈R

Pr ⊂ {|T ( . )g′| > λ0}, (9.3.18)

where Int(Pr) denotes the interior of the set Pr. We set N1 = #R. It follows from (9.3.17)–(9.3.18)

and Strichartz’s estimate (9.1.7) that,

N1

(
λ0

C

)N+1

=

∣∣∣∣∣⋃
r∈R

Pr

∣∣∣∣∣ 6 |{|(T ( . )g′)| > λ0}|

6 λ
− 2(N+2)

N
0 ‖T ( . )g′‖

2(N+2)
N

L
2(N+2)
N (R×RN )

6 Cλ
− 2(N+2)

N
0 ‖g‖

2(N+2)
N

L2 ,
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from which we deduce that N1 < ∞ and N1 6 C(‖g‖L2 , N,C0, ε). Actually, since our hypothesis

implies that ‖g‖L2 6 C
N/2
0 , we can write also N1 6 C(N,C0, ε). For any n ∈ [[1, N1]], let (tn, xn)

be the center of Pn, let In ⊂ R be the interval of center tn
A2 with |In| = 1

A2 , let I ′n = A2In, let

Cn ∈ C of center 1
Axn with `(Cn) = 1

A , let C ′n = ACn and let Qn be defined by (9.3.11). Then
N1⋃
n=1

Pn ⊂
N1⋃
n=1

(I ′n × C ′n), which yields with (9.3.16) and (9.3.18),

∫
RN+1\

N1⋃
n=1

(I′n×C′n)

|T (t′)g′(x′)|
2(N+2)
N dt′dx′ < ε

2(N+2)
N . (9.3.19)

By (9.3.13), ∫
RN+1\

N1⋃
n=1

Qn

|T (t)g(x)|
2(N+2)
N dtdx = AN+2

∫
RN+1\

N1⋃
n=1

Qn

|T (t′)g′(x′)|
2(N+2)
N dt′dx′

But (t, x) ∈ Qn ⇐⇒ (t′, x′) ∈ I ′n × C ′n, and so we deduce from the above estimate and (9.3.12) that∫
RN+1\

N1⋃
n=1

Qn

|T (t)g(x)|
2(N+2)
N dtdx =

∫
RN+1\

N1⋃
n=1

(I′n×C′n)

|T (t′)g(x′)|
2(N+2)
N dt′dx′. (9.3.20)

Putting together (9.3.19) and (9.3.20), we obtain the desired result.

9.4 Mass concentration

Proposition 9.4.1. Let γ ∈ R \ {0}, let u0 ∈ L2(RN ) \ {0} and let

u ∈ C((−Tmin, Tmax);L2(RN )) ∩ L
2(N+2)
N

loc ((−Tmin, Tmax);L
2(N+2)
N (RN ))

be the maximal solution of (9.1.4) such that u(0) = u0. Then there exists η0 = η0(N, |γ|) > 0 satisfying

the following properties. Let (T0, T1) ⊂ (−Tmin, Tmax) be an interval and let

η = ‖u‖
L

2(N+2)
N ((T0,T1)×RN )

. (9.4.1)

If η ∈ (0, η0] then there exist t0 ∈ (T0, T1) and c ∈ RN such that

‖u(t0)‖L2(B(c,R)) > ε, (9.4.2)

where R = min
{

(T1 − t0)
1
2 , (t0 − T0)

1
2

}
and ε = ε(‖u0‖L2 , N, η) > 0.

Proof. Let γ, u0, u and (T0, T1) be as in the Proposition 9.4.1. Let η > 0 be as in (9.4.1). By (9.1.2),

we have

∀t ∈ (−Tmin, Tmax), u(t) = T (t− T0)u(T0) + iγ

∫ t

T0

(T (t− s){|u| 4
N u})(s)ds. (9.4.3)
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Setting for any t ∈ (−Tmin, Tmax), Φu(t) = iγ
∫ t
T0

(T (t − s){|u| 4
N u})(s)ds and applying Strichartz’s

estimate (9.1.8), we get with (9.4.1)

‖Φu‖
L

2(N+2)
N ((T0,T1)×RN )

6 C1‖u‖
N+4
N

L
2(N+2)
N ((T0,T1)×RN )

= C1η
N+4
N , (9.4.4)

where C1 = C1(N, |γ|) > 1. For every a, b > 0, (a+ b)α 6 C(α)(aα+ bα), where C(α) = 1 if 0 < α 6 1

and C(α) = 2α−1 if α > 1. Let C2 be such a constant for α = 4
N . We choose η0 = η0(N, |γ|) > 0 small

enough to have

2(2C1)
4
N C2η

16
N2

0 6 1. (9.4.5)

Assume that η 6 η0. We proceed in 3 steps.

Step 1. We show that, there exist f0 ∈ L2(RN ), A > 0 and τ ∈ C of center ξ0 ∈ RN satisfying

supp f̂0 ⊂ τ, `(τ) 6 C(‖u0‖L2 , N, η)A and |f̂0| < A−
N
2 , and there exist an interval I ⊂ R and K ∈ C,

with |I| = 1

A2
and `(K) =

1

A
, such that for Q ⊂ R× RN defined by

Q =
{

(t, x) ∈ R× RN ; t ∈ I and (x− 4πtξ0) ∈ K
}
,

we have ∫∫
((T0,T1)×RN )∩Q

|u(t, x)|2|T (t− T0)f0(x)| 4
N dtdx > Cη

2(N+2)
N , (9.4.6)

where C = C(‖u0‖L2 , N, η).

To prove this claim, we apply Lemma 9.3.1 to f = u(T0) with ε0 = η
N+4
N . Note that, by (9.4.1),

(9.4.3), (9.4.4), (9.4.5) and time translation, we have that

‖T (·)u(T0)‖
L

2(N+2)
N (R×RN )

= ‖T (· − T0)u(T0)‖
L

2(N+2)
N (R×RN )

> η/2 > ε0.

It follows from Hölder’s inequality (with p = N+2
N and p′ = N+2

2 ), (9.4.3)–(9.4.4) and Lemma 9.3.1

that

T1∫∫
T0 RN

|u(t, x)|2
∣∣∣∣∣u(t, x)−

N0∑
n=1

T (t− T0)fn(x)

∣∣∣∣∣
4
N

dtdx

6 ‖u‖2
L

2(N+2)
N ((T0,T1)×RN )

‖u−
N0∑
n=1

T ( · − T0 )fn‖
4
N

L
2(N+2)
N ((T0,T1)×RN )

6 η2

(
‖T ( . )u(T0)−

N0∑
n=1

T ( . )fn‖
L

2(N+2)
N (R×RN )

+ C1‖u‖
N+4
N

L
2(N+2)
N ((T0,T1)×RN )

) 4
N

6 C
4
N
1 η2(ε0 + η

N+4
N )

4
N 6 (2C1)

4
N η

16
N2

0 η
2(N+2)
N 6

1

2C2
η

2(N+2)
N .
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The above estimate and (9.4.1) yield

η
2(N+2)
N =

T1∫∫
T0 RN

|u(t, x)|2
∣∣∣∣∣
(
u(t, x)−

N0∑
n=1

T (t− T0)fn(x)

)
+

N0∑
n=1

T (t− T0)fn(x)

∣∣∣∣∣
4
N

dtdx

6 C2

 1

2C2
η

2(N+2)
N +

T1∫∫
T0 RN

|u(t, x)|2
∣∣∣∣∣
N0∑
n=1

T (t− T0)fn(x)

∣∣∣∣∣
4
N

dtdx

 ,

which gives

T1∫∫
T0 RN

|u(t, x)|2
∣∣∣∣∣
N0∑
n=1

T (t− T0)fn(x)

∣∣∣∣∣
4
N

dtdx >
1

2C2
η

2(N+2)
N . (9.4.7)

By Lemma 9.3.1 and conservation of charge, N0 6 C(‖u0‖L2 , N, η). It follows from (9.4.7) that there

exists n0 ∈ [[1, N0]] such that

T1∫∫
T0 RN

|u(t, x)|2 |T (t− T0)fn0
(x)|

4
N dtdx > Cη

2(N+2)
N , (9.4.8)

where C = C(‖u0‖L2 , N, η). Set A = An0 , τ = τn0 and C0 = C(N)‖u0‖c(N)
L2 ε

−ν(N)
0 , where we have

used the notations of Lemma 9.3.1. Let ξ0 ∈ RN be the center of τn0
. We apply Lemma 9.3.3 to

g = fn0
and ε1 =

(
C
2

)N
4 η, where C is the constant in (9.4.8). It follows from Hölder’s inequality (with

p = N+2
N and p′ = N+2

2 ), (9.4.1) and Lemma 9.3.3 that∫∫
((T0,T1)×RN )\

N1⋃
n=1

Qn

|u(t, x)|2 |T (t− T0)fn0
(x)|

4
N dtdx

6 ‖u‖2
L

2(N+2)
N ((T0,T1)×RN )

‖T ( . )fn0‖
4
N

L
2(N+2)
N (RN+1\

N1⋃
n=1

Qn)

6 η2ε
4
N
1 =

C

2
η

2(N+2)
N .

The above estimate with (9.4.8) yield∫∫
((T0,T1)×RN )∩(

N1⋃
n=1

Qn)

|u(t, x)|2 |T (t− T0)fn0(x)|
4
N dtdx > Cη

2(N+2)
N , (9.4.9)

where C = C(‖u0‖L2 , N, η). By Lemma 9.3.3, N1 6 C(‖u0‖L2 , N, η). With (9.4.9), this implies that

there exists n1 ∈ [[1, N1]] such that∫∫
((T0,T1)×RN )∩Qn1

|u(t, x)|2 |T (t− T0)fn0(x)|
4
N dtdx > Cη

2(N+2)
N , (9.4.10)
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where C = C(‖u0‖L2 , N, η). Hence we obtain the Step 1 claim with f0 = fn0 , I = In1 , K = Cn1 and

Q = Qn1
.

Step 2. We show that
1

A
6 C(T1 − T0)

1
2 and sup

t∈R
‖T (t − T0)f0‖L∞(RN ) 6 CA

N
2 , where C =

C(‖u0‖L2 , N, η).

By (9.2.1) and Step 1, |T (t − T0)f0| 6
∫
τ

|f̂0(ξ)|dξ 6 A−
N
2

∫
τ

1dξ 6 CA
N
2 , which yields second part

of Step 2. Using this estimate, Step 1 and conservation of charge, we deduce

Cη
2(N+2)
N 6

∫∫
((T0,T1)×RN )∩Q

|u(t, x)|2|T (t− T0)f0(x)| 4
N dxdt

6 CA2

∫∫
((T0,T1)×RN )∩Q

|u(t, x)|2dxdt 6 CA2

T1∫∫
T0 RN

|u(t, x)|2dxdt

6 CA2‖u0‖2L2(T1 − T0).

Hence we obtain the Step 2 claim.

Step 3. Conclusion.

Let K ∈ C, I and Q be as in Step 1, and let η′ = Cη
2(N+2)
N , where C is the constant of (9.4.10). Let

K(t) = K + 4πtξ0 and let κ > 0 be small enough to be chosen later. It follows from Step 1, Step 2

and Hölder’s inequality (with p = N+2
N and p′ = N+2

2 ), that

η′ 6
∫∫

((T0,T1)×RN )∩Q

|u(t, x)|2 |T (t− T0)f0(x)|
4
N dxdt

6 ‖T (· − T0)f0‖
4
N

L∞

∫
I∩(T0,T1)

(∫
K(t)

|u(t, x)|2dx

)
dt

6 CA2

∫
I∩(T0,T1)

(∫
K(t)

|u(t, x)|2dx

)
dt

6 CA2

∫
I∩
(
T0+κη′

A2 ,T1−κη
′

A2

)
(∫

K(t)

|u(t, x)|2dx

)
dt

+ CA2‖u‖2
L

2(N+2)
N ((T0,T1)×RN )

(∫
I∩
[(
T0,T0+κη′

A2

)
∪
(
T1−κη

′
A2 ,T1

)]
(∫

K(t)

1 dx

)
dt

) 2
N+2

6 CA2|I| sup
t∈I∩

(
T0+κη′

A2 ,T1
κη′
A2

)
∫
K(t)

|u(t, x)|2dx+ CA2η′
N
N+2

(
κη′

A2

) 2
N+2

(
1

A2

) N
N+2

6 C sup
t∈I∩

(
T0+κη′

A2 ,T1−κη
′

A2

)
∫
K(t)

|u(t, x)|2dx+ Cκ
2

N+2 η′,

where C = C(‖u0‖L2 , N, η). For such a C, let κ > 0 be small enough to have Cκ
2

N+2 6 1
2 . Then
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κ = κ(‖u0‖L2 , N, η) and

sup
t∈I∩

(
T0+κη′

A2 ,T1−κη
′

A2

)
∫
K(t)

|u(t, x)|2dx > Cη
2(N+2)
N ,

where C = C(‖u0‖L2 , N, η). So there exists t0 ∈ I ∩
(
T0 + κη′

A2 , T1 − κη′

A2

)
such that∫

K(t0)

|u(t0, x)|2dx > Cη
2(N+2)
N , (9.4.11)

where C = C(‖u0‖L2 , N, η). Since `(K(t0)) =
1

A
, then K(t0) is contained in a ball of radius

√
N

A
.

Furthermore, T0 +
κη′

A2
< t0 < T1 −

κη′

A2
, which yields

1

A
6 C min{(T1 − t0)

1
2 , (t0 − T0)

1
2 }, (9.4.12)

where C = C(‖u0‖L2 , N, η). Using this and Step 2, it follows that K(t0) can be covered by a finite

number (which depends only on ‖u0‖L2 , N and η) of balls of radius R = min
{

(T1 − t0)
1
2 , (t0 − T0)

1
2

}
.

Then, by (9.4.11), there is some c ∈ RN such that∫
B(c,R)

|u(t0, x)|2dx > ε(‖u0‖L2 , N, η). (9.4.13)

This concludes the proof.

Proof of Theorem 9.1.1. Let γ, u0 and u be as in Theorem 9.1.1. Let η0 = η0(N, |γ|) > 0 be given

by Proposition 9.4.1. We apply Proposition 9.4.1 with η = η0. Let ε = ε(‖u0‖L2 , N, |γ|) > 0 be given

by Proposition 9.4.1. Assume that Tmax <∞. Then ‖u‖
L

2(N+2)
N ((0,Tmax);L

2(N+2)
N (RN ))

=∞ and so there

exist

0 = T1 < T2 < · · · < Tn < Tn+1 < · · · < Tmax

such that

∀n ∈ N, ‖u‖
L

2(N+2)
N ((Tn,Tn+1)×RN )

= η0.

It follows from Proposition 9.4.1 that for each n ∈ N, there exist cn ∈ RN , Rn > 0 and tn ∈ (Tn, Tn+1)

such that

Rn 6 min{(Tmax − tn)
1
2 , (Tmin + tn)

1
2 } and ‖u(tn)‖L2(B(cn,Rn)) > ε,

for every n ∈ N. The case Tmin <∞ follows in the same way. Hence we have proved the result.

9.5 Further Results

As a corollary of the previous results, we can generalize to higher dimensions the 2–dimensional results

proved by Merle and Vega [137] and the results proved by Keraani in [119] dimensions 1 and 2. We

state here the most interesting of them. We need first some notation.
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Definition 9.5.1. Let γ ∈ R \ {0}. We define δ0 as the supremum of δ such that if

‖u0‖L2 < δ,

then (9.1.4) has a global solution u ∈ C(R;L2(RN )) ∩ L
2(N+2)
N (R;L

2(N+2)
N (RN )).

We can prove the following result.

Theorem 9.5.2. Let γ ∈ R \ {0}, let u0 ∈ L2(RN ) \ {0}, such that ‖u0‖L2(RN ) <
√

2δ0, and let

u ∈ C((−Tmin, Tmax);L2(RN )) ∩ L
2(N+2)
N

loc ((−Tmin, Tmax);L
2(N+2)
N (RN ))

be the maximal solution of (9.1.4) such that u(0) = u0. Assume that Tmax <∞, and let λ(t) > 0, such

that λ(t) −→∞ as t −→ Tmax. Then there exists x(t) ∈ RN such that,

lim inf
t↗Tmax

∫
B(x(t),λ(t)(Tmax−t)

1
2 )

|u(t, x)|2dx > δ2
0 .

If Tmin <∞ and λ(t) −→∞ as t −→ −Tmin then there exists x(t) ∈ RN such that,

lim inf
t↘−Tmin

∫
B(x(t),λ(t)(Tmin+t)

1
2 )

|u(t, x)|2dx > δ2
0 .

The main ingredient in the proof of that theorem is a profile decomposition of the solutions of the

free Schrödinger equation. This decomposition was shown in the case N = 2 by Merle and Vega [137]

(see also Theorem 1.4 in [54]) and by Carles and Keraani [54] when N = 1. We generalize it to

higher dimensions thanks to the improved Strichartz estimate, Theorem 9.1.4. To describe it we need

a definition. We follow the notation of Carles and Keraani [54].

Definition 9.5.3. If Γj = (ρjn, t
j
n, ξ

j
n, x

j
n)n∈N, j = 1, 2, . . . is a family of sequences in (0,∞) × R ×

RN × RN , we say that it is an orthogonal family if for all j 6= k,

lim sup
n→∞

(
ρjn
ρkn

+
ρkn

ρjn
+
|tjn − tkn|

(ρjn)2
+

∣∣∣∣xjn − xknρjn
+
tjnξ

j
n − tknξkn
ρjn

∣∣∣∣
)

=∞.

Now, we can state the theorem about the linear profiles.

Theorem 9.5.4. Let (un)n∈N be a bounded sequence in L2(RN ). Then, there exists a subsequence

(that we name (un) for the sake of simplicity) that satisfies the following: there exists a family (φj)j∈N

of functions in L2(RN ) and a family of pairwise orthogonal sequences Γj = (ρjn, t
j
n, ξ

j
n, x

j
n)n∈N, j =

1, 2, . . . such that

T (t)un(x) =
∑̀
j=1

Hj
n(φj)(t, x) + w`n(t, x),

where

Hj
n(φ)(t, x) = T (t)

(
ei(·)

ξ
j
n
2 T (−tjn)

1

(ρjn)N/2
φ

(
· − xjn
ρjn

))
(x),

with

lim sup
n→∞

‖w`n‖
L

2(N+2)
N (R×RN )

−→ 0 as ` −→∞.
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Moreover, for every ` > 1,

‖un‖2L2(RN ) =
∑̀
j=1

‖φj‖2L2(RN ) + ‖w`n(0)‖2L2(RN ) + o(1),

as n −→∞.

A similar result has been proved for wave equations by Bahouri and Gérard [15]. To prove Theo-

rem 9.5.4 one can follow Carles and Keraani (proof of Theorem 1.4) in [54]. It is observed in that

paper (Remark 3.5) that the result follows from the refined Strichartz’s estimate, our Theorem 9.1.4,

once we overcome a technical issue, due to the fact that the Strichartz exponent 2(N+2)
N is an even

natural number when N ∈ {1, 2} (which covers the cases that the previous authors considered) but

not in higher dimensions (except N = 4). Thus, to complete the proof we only need the following

orthogonality result.

Lemma 9.5.5. For any M > 1,

‖
M∑
j=1

Hj
n(φj)‖

2(N+2)
N

L
2(N+2)
N (RN+1)

6
M∑
j=1

‖Hj
n(φj)‖

2(N+2)
N

L
2(N+2)
N (RN+1)

+ o(1) as n −→∞.

Proof. The proof if based on a well-known orthogonality property (see Gérard [89] and (3.47) in

Merle and Vega [137]) : if we have two orthogonal families Γ1 and Γ2, and two functions in L2(RN ),

φ1 and φ2, then

‖H1
n(φ1)H2

n(φ2)‖
L
N+2
N (RN+1)

= o(1) as n −→∞. (9.5.1)

When N = 1 or N = 2, 2(N+2)
N is a natural number, so we can decompose the L

2(N+2)
N norm as a

product and, using (9.5.1), we obtain directly the lemma. In the higher dimensional case, write

‖
M∑
j=1

Hj
n(φj)‖

2(N+2)
N

L
2(N+2)
N

=

∫
|
∑
j

Hj
n(φj)|2|

∑
j

Hj
n(φj)| 4

N

=

∫ ∑
j

∑
k

|Hj
n(φj)Hk

n(φk)||
∑
`

H`
n(φ`)| 4

N

=
∑
j

∫
|Hj

n(φj)|2|
∑
`

H`
n(φ`)| 4

N +
∑
j

∑
k 6=j

∫
|Hj

n(φj)Hk
n(φk)||

∑
`

H`
n(φ`)| 4

N

not
=A+B.

We estimate B using Hölder’s inequality with exponents N+2
N and N+2

2 ,∫
|Hj

n(φj)H
k
n(φk)||

∑
`

H`
n(φj)| 4

N

6‖Hj
n(φj)Hk

n(φk)‖
L
N+2
N (RN+1)

‖
M∑
`=1

H`
n(φ`)‖

4
N

L
2(N+2)
N

.

Then, we use the orthogonality (9.5.1) and obtain B = o(1).



196 Mass concentration phenomena for the critical NLS

About A, when N > 4 then 4
N 6 1 and therefore,

A 6
∑
j

∑
`

∫
|Hj

n(φj)|2|H`
n(φ`)| 4

N

=
∑
j

∫
|Hj

n(φj)|2|Hj
n(φj)| 4

N +
∑
j

∑
` 6=j

∫
|Hj

n(φj)|2|H`
n(φ`)| 4

N .

The first term of the sum is ∑
j

‖Hj
n(φj)‖

2(N+2)
N

L
2(N+2)
N

.

The second one is ∑
j

∑
` 6=j

∫
|Hj

n(φj)|2− 4
N |Hj

n(φj)H`
n(φ`)| 4

N .

We apply Hölder’s with exponents N+2
N−2 and N+2

4 and bound the last sum by∑
j

∑
j 6=`

‖Hj
n(φjn)|‖2−

4
N

L
2N+4
N

‖Hj
n(φj)H`

n(φ`)‖
4
N

L
N+2
N

which is o(1) by (9.5.1). This finishes the proof of the Lemma for N > 4.

When N = 3, then 4
N = 4

3 > 1, which complicates a bit the argument. We write

A =
∑
j

∫
|Hj

n(φj)|2|
∑
`

H`
n(φ`)||

∑
m

Hm
n (φm)| 13 6

∑
`

∑
j

∑
m

∫
|Hj

n(φj)|2|H`
n(φ`)||Hm

n (φm)| 13 .

Using a similar argument as in the previous case, we show that the above integrals are o(1) except in

the case j = ` = m. This ends the proof of the lemma for N = 3.

Proof of Theorem 9.5.2. To prove Theorem 9.5.2, one can follow the arguments given by Keraani

in [119]. Again one has to deal with the fact that 4
N is not in general a natural number. Apart

from Lemma 9.5.5, we just need an elementary inequality (see (1.10) in Gérard [89]) for the function

F (x) = |x| 4
N x :

|F (
∑̀
j=1

U j)−
∑̀
j=1

F (U j)| 6
∑
j

∑
k 6=j

|U j ||Uk| 4
N .

Then, the arguments given by Keraani generalize to higher dimensions without difficulty, and prove

Theorem 9.5.2.

Remark 9.5.6. As said in the beginning of this section, we generalize all the results of Keraani [119]

to higher dimension N. In particular, we display two of them.

1. There exists an initial data u0 ∈ L2(RN ) with ‖u0‖L2 = δ0, for which the solution u of (9.1.4)

blows-up in finite time Tmax.

2. Let u be a blow-up solution of (9.1.4) at finite time Tmax with initial data u0, such that

‖u0‖L2 <
√

2 δ0. Let (tn)n∈N be any time sequence such that tn
n→∞−−−−→ Tmax. Then there exists a

subsequence of (tn)n∈N (still denoted by (tn)n∈N), which satisfies the following properties. There
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exist ψ ∈ L2(RN ) with ‖ψ‖L2 > δ0, and a sequence (ρn, ξn, xn)n∈N ∈ (0,∞) × RN × RN such

that

lim
n→∞

ρn√
Tmax − tn

6 A,

for some A > 0, and

ρ
N
2
n e

ixξnu(tn, ρnx+ xn) ⇀ ψ in L2
w(RN ),

as n −→∞.
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Appendix

A Some elements on o-minimal structures

Some references for o-minimal structures are [70, 82, 124, 80]. We only collect in this appendix the

elements that are necessary to follow our main developments.

Definition A.1 (o-minimal structure [70, Definition 1.5]). An o-minimal structure on (R,+, . )
is a sequence of Boolean algebras( 2) O = {On}n∈N of subsets of Rn such that for each n ∈ N,

(i) if A belongs to On then A× R and R×A belong to On+1;

(ii) if Π : Rn+1 −→ Rn is the canonical projection onto Rn then for any A ∈ On+1, the set Π(A)

belongs to On;

(iii) On contains the family of real algebraic subsets of Rn, that is, every set of the form{
x ∈ Rn; p(x) = 0

}
,

where p : Rn −→ R is a real polynomial function ;

(iv) the elements of O1 are exactly the finite unions of intervals and points.

Being given an o-minimal structure O, a set A ⊂ Rn is called definable (in O) if A ∈ On. A mapping

F : D ⊂ Rn −→ Rm is said to be definable in O if its graph is definable in Ω as a subset of Rn ×Rm.
A point-to-set mapping

S : Rn ⇒ Rm,

maps each point x in Rn to a subset S(x) of Rm. The domain of S, denoted by domS, is given by

the set of elements x in Rn such that S(x) is nonempty. The graph of S is defined by

graphS =
{

(x, y) ∈ Rn × Rm; y ∈ S(x)
}
.

As previously a point-to-set mapping is called definable (in O) if its graph is definable in Rn × Rm.

Example A.2. (a) Semi-algebraic sets. The first and simplest example of o-minimal structure

is given by the class of semi-algebraic objects (see (8.2.1)). Tarski-Seidenberg principle (see [36])

asserts that linear projections of semi-algebraic sets are semi-algebraic sets, in other words item (ii)

2. Recall that a Boolean algebra is stable by finite union, finite intersection and contains the empty set and the total
space ; here ∅ ∈ On and Rn ∈ On.
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of Definition A.1 holds for the class of semi-algebraic sets. The other items of the definition are easy

to establish.

(b) Globally subanalytic sets. There exists an o-minimal structure that contains semi-algebraic

sets and sets of the form
{

(x, t) ∈ [−1, 1]n × R; f(x) = t
}
, where f : [−1, 1]n −→ R (n ∈ N) is a real

analytic function that can be extended analytically on a neighborhood of the square [−1, 1]n – these

are sometimes called restricted analytic functions. This result is essentially due to Gabrielov [87] ; sets

belonging to this structure are called globally subanalytic sets (see [81] and the references therein).

(c) Log-exp structure. There exists an o-minimal structure containing the globally subanalytic sets

and the graph of exp : R −→ R, see [81].

There are other results on o-minimal structures and the field is still very active, but the above examples

give a good idea of the power of the concept.

We now describe some stability/regularity results that we used in this paper.

Let O be an o-minimal structure on (R,+, . ).

Lemma A.3 (Monotonicity Lemma [82, Theorem 4.1]). Let f : I ⊂ R −→ R be a definable

function and k ∈ N. Then there exists a finite partition of I into p intervals I1, . . . , Ip, such that f

restricted to each nontrivial interval Ij , j ∈ {1, . . . , p}, is Ck and either strictly monotone or constant.

Observe that some Ij can be reduced to a singleton.

Lemma A.4 (Definable Selection Lemma [70]). Let S : Rn −→ Rm be a definable point-to-set

mapping. Then there exists a definable mapping F : domS −→ Rm such that

F (x) ∈ S(x), ∀x ∈ domS.

We recall the following theorem as stated in Kurdyka’s original work [124].

Theorem A.5. Let Ω be a nonempty open bounded subset of Rn and f : Ω → R a differentiable

definable function with f > 0 on Ω. Then there exist r0 > 0 and a continuous definable function

ϕ : [0, r0)→ R+ such that ϕ(0) = 0, ϕ ∈ C1(0, r0) and ϕ′ > 0 such that

‖∇ (ϕ ◦ f) (x)‖ > 1, ∀x ∈ Ω.

Remark A.6. Let us show how to recover the form of KL inequality given in Theorem 8.2.2.

We adopt the notation of Theorem 8.2.2. Fix µ > 0. Apply first, the above result to G − G(u)

(respectively, toG(u)−G) on Ω1 = B(u, µ)∩[G−G(u) > 0] (respectively, on Ω2 = B(u, µ)∩[G(u)−G >

0]). This gives ϕ1 : [0, r1) −→ R+ and ϕ2 : [0, r2) −→ R+, as in Kurdyka’s Theorem. Let us now build

a “global” ϕ as in Theorem 8.2.2. First recall that the derivative of a differentiable definable function

is definable in the same structure, see [70]. Set p(s) = (ϕ′1 − ϕ′2)(s). By definability, p is positive,

negative or null on an interval of the form (0, ε). This yields the existence of r in (0,min{r1, r2}) such

that, for instance, ϕ′1 > ϕ′2 on (0, r). Set then ϕ = ϕ1 and observe that

‖∇ (ϕ ◦ |G( · )−G(u)|) (u)‖ > 1, ∀u ∈ B(0, η) \ [G 6= G(u)],

when η is sufficiently small.
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B Some useful estimates and results about Sobolev spaces

We set N0 = N ∪ {0} and we use the convention, W 0,p(RN ) = Lp(RN ).

Lemma B.1. Let 0 < m 6 1. Then we have for any (z1, z2) ∈ C× C,∣∣∣|z1|−(1−m)z1 − |z2|−(1−m)z2

∣∣∣ 6 3|z1 − z2|m, (B.1)

where |z|−(1−m)z = 0, if z = 0.

Proof. Let 0 < m < 1 (the case m = 1 being obvious). We proceed to the proof in four steps.

Step 1 : ∀t, s > 0, |tm − sm| 6 |t− s|m.
Let for x > 1, f(x) = (x − 1)m − (xm − 1). Then f ′ > 0 on (1,∞) and so f

(
t
s

)
> f(1) = 0, for any

t > s > 0. Hence Step 1.

Step 2 : ∀a > 0, ∀θ ∈ R,
∣∣am − ameiθ

∣∣ 6 21−m
∣∣a− aeiθ

∣∣m .
We have for any θ ∈ R,

∣∣1− eiθ
∣∣1−m 6 21−m, implying

∣∣1− eiθ
∣∣ 6 21−m

∣∣1− eiθ
∣∣m , therefore Step 2.

Step 3 : ∀(z1, z2) ∈ C \ {0} × C,
∣∣∣|z2| − z1

|z1|z2

∣∣∣m 6 2m|z1 − z2|m.
We have, ∣∣∣∣|z2| −

z1

|z1|
z2

∣∣∣∣ =

∣∣∣∣(|z2| −
z1

|z1|
z1

)
+

(
z1

|z1|
z1 −

z1

|z1|
z2

)∣∣∣∣
=

∣∣∣∣(|z2| − |z1|
)

+

(
z1

|z1|
z1 −

z1

|z1|
z2

)∣∣∣∣ 6 ∣∣|z2| − |z1|
∣∣+ |z1 − z2| 6 2|z1 − z2|.

Hence Step 3.

Step 4 : Conclusion.

Let (z1, z2) ∈ C× C with z1z2 6= 0, otherwise there is nothing to prove.∣∣∣|z1|−(1−m)z1 − |z2|−(1−m)z2

∣∣∣ =

∣∣∣∣|z1|−(1−m)z1
z1

|z1|
− |z2|−(1−m)z2

z1

|z1|

∣∣∣∣
=

∣∣∣∣(|z1|m − |z2|m
)

+

(
|z2|m − |z2|m

z1

|z1|
z2

|z2|

)∣∣∣∣ Steps 1 and 2

6 |z1 − z2|m + 21−m
∣∣∣∣|z2| − |z2|

z1

|z1|
z2

|z2|

∣∣∣∣m
= |z1 − z2|m + 21−m

∣∣∣∣|z2| −
z1

|z1|
z2

∣∣∣∣m Steps 3

6 3|z1 − z2|m.

The lemma is proved.

The next lemmas are, more or less, a repetition of the unpublished book of Brezis and Cazenave [45].

Lemma B.2. Let Ω ⊆ RN be a nonempty open subset, let k,m ∈ N0 and let 1 6 p, q < ∞. Then

D(Ω) ↪→ W k,p
0 (Ω) ∩Wm,q

0 (Ω) with dense embedding. In addition, W k,p
0 (Ω) ∩Wm,q

0 (Ω) is separable

and, (
W k,p

0 (Ω) ∩Wm,q
0 (Ω)

)?
= W−k,p

′
(Ω) +W−m,q

′
(Ω) ↪→ D ′(Ω). (B.2)

Finally, if p, q > 1 then W k,p
0 (Ω)∩Wm,q

0 (Ω) and W−k,p
′
(Ω) +W−m,q

′
(Ω) are reflexive and separable.

Proof. Set X = W k,p
0 (Ω) ∩Wm,q

0 (Ω). Without loss of generality, we may assume that p 6 q. It is

clear that D(Ω) ↪→ X. The equality in (B.2) comes from the density of D(Ω) in the spaces W j,r
0 (Ω)
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and Bergh and Löfström [35] (Lemma 2.3.1 and Theorem 2.7.1). Since for any j ∈ N0 and r ∈ [1,∞),

W−j,r
′
(Ω) ↪→ D ′(Ω), we have by the equality in (B.2),

X? =
{
T ∈ D ′(Ω);T = T1 + T2, (T1, T2) ∈W−k,p

′
(Ω)×W−m,q

′
(Ω)
}
.

Let T ∈ X? be such that 〈T, ϕ〉X?,X = 0, for any ϕ ∈ D(Ω). It follows from above that for any

ϕ ∈ D(Ω), 〈T, ϕ〉D′(Ω),D(Ω) = 〈T, ϕ〉X?,X = 0. Then T = 0 in D ′(Ω), hence in X?. We deduce that

D(Ω) ↪→ X is dense (Brezis [44], Corollary 1.8) and so X? ↪→ D ′(Ω). Now, let n > k + m be large

enough to have Wn,p
0 (Ω) ↪→ X. Since this embedding is dense and Wn,p

0 (Ω) is separable, we infer that

X is separable. Finally, separability and reflexivity of the last part of the lemma present no difficulty

and follow easily from reflexivity and separability of the spaces W j,r
0 (Ω), (B.2) and Eberlein–Šmulian’s

Theorem (Brezis [44], Theorem 3.19 and Corollary 3.27).

Lemma B.3 ([45]). Let I ⊆ R be an open interval, let 1 6 p, q <∞ and let X ↪→ Y be two Banach

spaces. Then D(I;X) is dense in Lp(I;X) ∩W 1,q(I;Y ). Moreover, if Z is a Banach space such that

Z ↪→ X with dense embedding then D(I;Z) is dense in Lp(I;X) ∩W 1,q(I;Y ).

Proof. We first construct a linear extension operator to bring back to the case I = R. The first

statement then follows from the standard procedure of truncation and regularization, while the second

statement comes from the density of D(R;Z) in C1
c (R;X), for the norm of C1

b(R;X).

Lemma B.4. Let Ω ⊆ RN be an open subset. We consider below the following Hilbert space D(A).

D(A) =
{
u ∈ H1

0 (Ω); ∆u ∈ L2(Ω)
}
,

‖u‖2D(A) = ‖u‖2H1
0 (Ω) + ‖∆u‖2L2(Ω),

for any u ∈ D(A). Let X be a Banach space, let I be an open interval and let 1 < p < ∞. We have

the following results.

1) W 1,1
(
I;X

)
↪→ Cb,u

(
I;X

)
.

2) Lp(I;X) ∩W 1,p′(I;X?) ↪→ Cb

(
I;L2(Ω)

)
, if X ↪→ L2(Ω) with dense embedding.

3) Lp
(
I;D(A)

)
∩W 1,p′

(
I;L2(Ω)

)
↪→ Cb

(
I;H1

0 (Ω)
)
.

Lemma B.5. Let Ω ⊆ RN be an open subset, let I be an open interval and let 1 < p <∞. For t ∈ I
and u = u(t, x) ∈ C, let us define (formally),

M(t) =
1

2
‖u(t)‖2L2(Ω) and E(t) =

1

2
‖∇u(t)‖2L2(Ω).

Let D(A) be the Hilbert space be defined in Lemma B.4 and let X ↪→ L2(Ω) be a Banach space with

dense embedding. We then have the following results.

1) If u ∈ Lp(I;X) ∩W 1,p′(I;X?) or if u ∈W 1,1(I;L2(Ω)) then M ∈W 1,1(I;R) and,

M ′(t) =


〈
u(t), u′(t)

〉
X,X?

, if u ∈ Lp(I;X) ∩W 1,p′(I;X?),(
u(t), u′(t)

)
L2(Ω)

, if u ∈W 1,1(I;L2(Ω)),
(B.3)

for almost every t ∈ I.



Appendix 203

2) If u ∈ Lp(I;D(A)) ∩W 1,p′(I;L2(Ω)) then E ∈W 1,1(I;R) and,

E′(t) =
(
−∆u(t), u′(t)

)
L2(Ω)

, (B.4)

for almost every t ∈ I.

Proof of Lemmas B.4 and B.5. The proof of the embedding W 1,1
(
I;X

)
↪→ Cb,u

(
I;X

)
is very

standard and we omit its proof. Now, assume that X ↪→ L2(Ω) with dense embedding. For any

v ∈ L2(Ω) and ϕ ∈ X, let Φv(ϕ) = (v, ϕ)L2(Ω). Since X ↪→ L2(Ω), it is clear that Φ ∈ L
(
L2(Ω);X?

)
.

The embedding X ↪→ L2(Ω) being dense, we easily show that Φ is injective. Identifying Φv with v, it

follows that L2(Ω) ↪→ X? and for any v ∈ L2(Ω) and ϕ ∈ X,

〈v, ϕ〉X?,X = 〈v, ϕ〉L2(Ω),L2(Ω).

In particular, if v ∈ L2(Ω) then 〈v, v〉X?,X = ‖v‖2L2(Ω). We then note that M ∈ C1(I;R), E ∈ C1(I;R)

and,

M(t) = M(s) +

∫ t

s

〈
u(σ), u′(σ)

〉
X,X?

dσ, (B.5)

E(t) = E(s) +

∫ t

s

(
−∆u(σ), u′(σ)

)
L2(Ω)

dσ, (B.6)

for any t, s ∈ I, as soon as u ∈ D(I;X), for (B.5) and u ∈ D(I;D(A)), for (B.6). Applying Hölder’s

inequality in time and Young’s inequality, one obtains,

‖u(t)‖2L2(Ω) 6 ‖u(s)‖X‖u(s)‖X? + ‖u‖2Lp(I;X) + ‖u′‖2
Lp′ (I;X?)

,

‖∇u(t)‖2L2(Ω) 6 ‖u(s)‖L2(Ω)‖∆u(s)‖L2(Ω) + ‖∆u‖2Lp(I;L2) + ‖u′‖2
Lp′ (I;L2)

, (B.7)

for any t, s ∈ I. Let (In)n∈N ⊂ I be a increasing 3 sequence of open bounded intervals such that⋃
n∈N In = I. Integrating in s and applying, one more time, Hölder’s and Young’s inequalities, we

have,

|In| ‖u‖2Cb(In;L2)
6 (1 + |In|)

(
‖u‖Lp(I;X) + ‖u‖W 1,p′ (I;X?)

)2

,

for any n ∈ N. Dividing by |In|, letting n ↗ ∞ and proceeding in the same way in (B.7), we arrive

at,

‖u‖Cb(I;L2) 6 (1 + |I|− 1
2 )
(
‖u‖Lp(I;X) + ‖u‖W 1,p′ (I;X?)

)
, (B.8)

‖∇u‖Cb(I;L2) 6 (1 + |I|− 1
2 )
(
‖u‖Lp(I;D(A)) + ‖u‖W 1,p′ (I;L2)

)
, (B.9)

with the convention |I|− 1
2 = 0, if |I| =∞. Since X ↪→ X? and D(A) ↪→ L2(Ω), we prove Lemma B.4

by density with (B.8)–(B.9) (Lemma B.3). Finally, Lemma B.5 is a consequence of (B.5)–(B.6) and

Lemmas B.3–B.4.

3. in the sense of the inclusion.
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recherches, Université Pierre et Marie Curie, 2008.

[39] J. Bolte, A. Daniilidis, A. Lewis, and M. Shiota. Clarke subgradients of stratifiable functions.
SIAM J. Optim., 18(2) :556–572 (electronic), 2007.

[40] J. Bolte, A. Daniilidis, O. Ley, and L. Mazet. Characterizations of  Lojasiewicz inequalities :
subgradient flows, talweg, convexity. Trans. Amer. Math. Soc., 362(6) :3319–3363, 2010.

[41] J. Bourgain. On the restriction and multiplier problems in R3. In Geometric aspects of functional
analysis (1989–90), volume 1469 of Lecture Notes in Math., pages 179–191. Springer, Berlin,
1991.

[42] J. Bourgain. Refinements of Strichartz’ inequality and applications to 2D-NLS with critical
nonlinearity. Internat. Math. Res. Notices, (5) :253–283, 1998.
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diffusions. Ann. Inst. Henri Poincaré Probab. Stat., 50(2) :564–601, 2014.

[89] P. Gérard. Description du défaut de compacité de l’injection de Sobolev. ESAIM Control Optim.
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voisine de la variationnelle. Ann. Scuola Norm. Sup. Pisa (3), 16 :305–326, 1962.

[142] E. Nelson. Feynman integrals and the Schrödinger equation. J. Mathematical Phys., 5 :332–343,
1964.

[143] S. Nicaise. Stability and controllability of an abstract evolution equation of hyperbolic type and
concrete applications. Rend. Mat. Appl. (7), 23(1) :83–116, 2003.

[144] C. P. Niculescu and E. Persson. Convex functions, Basic theory and applications. Publications
of the Center for Nonlinear Analysis and its Applications, No. 4. Universitaria Press, 2003.



212

[145] N. Okazawa and T. Yokota. Monotonicity method for the complex Ginzburg-Landau equation,
including smoothing effect. Nonlinear Anal., 47(1) :79–88, 2001.

[146] N. Okazawa and T. Yokota. Global existence and smoothing effect for the complex Ginzburg-
Landau equation with p-Laplacian. J. Differential Equations, 182(2) :541–576, 2002.

[147] N. Okazawa and T. Yokota. Monotonicity method applied to the complex Ginzburg-Landau
and related equations. J. Math. Anal. Appl., 267(1) :247–263, 2002.

[148] L. E. Payne and H. F. Weinberger. An optimal Poincaré inequality for convex domains. Arch.
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