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Introduction(English version)

Election is one of the basic principles of democracy where people get to choose their
leaders. Election is the pillar of any democratic country, since democracy is defined as
the government by the people, for the people which denotes that people are the source
of democracy and the absolute sovereignty belongs to them. In this sense, elections are
held so that people can choose their representatives who will represent different interests,
policies, etc, ... formulated for the welfare of the people. Another way to sum it up, the
important reason for an election is to make sure that people have the opportunity to
participate in political affair indirectly.

There are three main party systems: one-party, two-party and multiparty system1.
A one-party system is a type of electoral system in which one political party takes over
power and does not allow other parties to run their candidates for election. Vietnam is
an example of nations in which one party controls the government. A two-party system
has only two political parties that have the possibility of winning an election. The United
States is a classical example with a two-party system. However, a multiparty system is
also popular. In such a political system, multiple political parties compete for national
election, and all have the capacity to gain control of government offices, separately or
in coalition. France is one of the nations with a multiparty system with at least fifteen
political parties. In 2019, the dominating political parties in France are “En Marche”
(centrist and liberal), the “Rassemblement National” (right-wing populist/nationalist),
“La France Insoumise” (left-wing and relatively socialist-leaning), “Les Républicains”
(conservative), and the Socialist Party (left-wing).

Recently, a lot of authors in political economy concentrate on building models and
understanding the drivers of the outcome of a two-party electoral system (Beauguitte
and Colange (2013), Ansolabehere and Leblanc (2008)). Besides, multiparty system have
also attracted attention. France is an example of a nation that has used a multiparty
system effectively in its democracy. There are at least fifteen political parties in France.
Based on result of the French departmental election in 2015, we aggregate these political
parties into three main political parties: Left, Right and Extreme Right. In this mul-
tiparty system, the outcomes of the election consists of vectors whose components are
the percentages or proportions of votes per party. Their sum is therefore constrained to
be constant, equal to 1 for proportions, 100 for percentages. This type of data is called

1https://en.wikipedia.org/wiki/Multi-party_system
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6 CHAPTER 0. INTRODUCTION

compositional data (CODA).

The outcome of an election can be influenced by the campaign strategies of candi-
dates, demographic factors such as age, domain of activity, rate of unemployment, and
so on. In an interview with Time magazine, a group of Obama senior campaign advisers
revealed an enormous data effort to support fundraising, micro-targeting TV ads and
modeling of swing-state voters. Therefore, it is interesting to investigate in the French
multiparty system. In this thesis, we study the French departmental election in 2015
with the following questions. Firstly, we would like to understand the drivers of the
outcome of an election or how to predict the outcome of an election. The election cost is
usually very expensive. In terms of decision-making, the outcome of an election involves
uncertainty. Forecasts of election results can cut down risks for decision-makers and
thus smoother decision-making. Forecasting the outcome of an event can be of use for
experts in several different areas, for example financial strategists, political strategists,
policy makers and so on. In order to predict the outcome of election, the most important
thing is to define a model with some core factors which have an impact on the outcome.
Secondly, some papers reveal that electoral data exibit heavy tail behavior (see Nguyen
et al. (2019)). The question is how to treat these data and which model will better
fit these data. Thirdly, the electoral data in French departmental election are observed
at some spatial scale. Thus, it is interesting to study how the decisions in voting are
influenced by their neighbors decisions.

This thesis concentrates on applications of compositional data analysis regression
models which led me to generalize these models in several directions. At first, we were
interested in exploring the 2015 French departmental election. Our attention focuses
on the behavior of the electors and the relation between votes and demographic and
social factors such as age, education levels, domain of activities, unemployment rate and
so on. Besides, the outcome of the election in France is observed at the departmental
as well as the canton levels. To go beyond the application of classical compositional
regression models, we consider the fact, documented in the literature, that electoral
data may exhibit heavy tail behaviors and also spatial autocorrelation. Therefore, it is
complicated to analyze these data with classical methods due to the constraints and the
spatial correlation issue. At the beginning of my manuscript, I present the principles
of compositional data analysis. I build a regression model that could be considered to
explain the outcome of an election and to clarify its relations with the socio-economic
factors. Furthermore, this model allows to forecast the outcome of an election and the
winning party. In order to eliminate the heavy tail problem, a proposal found in the
literature is to replace the Gaussian distribution by the Student distribution. However,
since there is not a unique way of using the multivariate Student distribution in a
multivariate regression model, we first need to study the properties of two competing
models: the uncorrelated Student (UT) and the Independent Student (IT) models. We
also provide some supplemental material for the R implementation of the estimation of
these models. For the departmental election data, we compare the results between the
Gaussian and the Student (IT) models. In order to choose one model, we carry out a
test based on the Mahalanobis distance. The Kolmogorov–Smirnov test tells us that we
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do not reject the IT model and do reject the Normal model. Thereby, we use this IT
model to predict the vote share to see the impact of socio-economic factors. Finally, we
take into account possible spatial autocorrelation in compositional data. We show how
to use multivariate versions of the classical spatial autoregressive model for areal data
used in spatial econometrics in the coordinate space after a proper transformation of our
vectors of proportions.

Description of issues

My thesis will address the four following issues:

Issue 1: Our CODA regression model contains variables which are both of the classical
and of the compositional type. One of the challenges in this type of model is to pro-
vide sensible interpretations of the results. An interpretation in the log-ratio space is
mathematically easy but not natural to answer practical questions. On the other hand,
an interpretation in the simplex space is complex because of its constrained nature. We
look at how CODA regression models can improve our practical understanding of the
electoral results.

Issue 2: Distributions with heavy tails are distributions which allow extreme values
more often. Because of its inability to model heavy tails, the classical multivariate
Gaussian model is limited. This is a reason for turning attention to a more flexible
family of distributions as the multivariate Student distribution. In one dimension, the
generalized Student distribution contains the Gaussian models as a limit when the shape
parameter is large. However, the difficulty in higher dimensions is that, there is not a
unique way of using the multivariate Student distribution (see Johnson and Kotz (1972),
Kotz and Nadarajah (2004)). Two options are described in Kelejian and Prucha (1985)
for the case of univariate regression when using the multivariate Student distribution to
define a univariate regression model. Furthermore, the property of equivalence between
independence and uncorrelatedness for components of a Gaussian vector are not satisfied
anymore for a multivariate Student vector. This motivates us to investigate further the
multivariate Student regression models.

Issue 3: It is mentioned in the literature that electoral data often exhibit heavy tails
behavior. In order to verify which model fits better our electoral data, we propose a test
based on the Mahalanobis distance. The merit of this approach is that the Mahalanobis
distance is a one-dimensional variable while the original observations are multidimen-
sional variables. Moreover, its approximate distribution is known under the Gaussian
model and under the Student model. Therefore, an approach is to test whether the
squared Mahalanibis distances follow the Chi-square distribution for testing the normal-
ity and follow the Fisher distribution for testing the Student distribution.

Issue 4: A problem using conventional statistical methods in electoral analysis is that
the assumption of statistical independence across statistical units may be questionable
for units which are indeed geographical areas. Such type of data usually exhibit spatial
autocorrelation. Since electoral data also have the compositional nature, we need to



8 CHAPTER 0. INTRODUCTION

study a spatial model which can adapted to this particular feature.

Contributions

Among papers concentrating on the relationship between socio-economic variables and
election results, Beauguitte and Colange (2013) study a linear regression at three lev-
els of aggregation (polling stations, cities and electoral districts) in France and show
that the socio-economic variables are significant in France. Kavanagh et al. (2006) use
geographically weighted regression, which produces parameter estimates for each data
point, i.e. for each electoral division. On the other hand in the statistical literature,
people have developed CODA regression models where the dependent and independent
variables may be compositional variables (see Mert et al. (2018) for a review). Morais
(2017) studies the impact of media investments on brand’s market shares with a CODA
regression model. Trinh and Morais (2017) use a CODA regression model to highlight
the nutrition transition and to explain it according to household characteristics. Honaker
et al. (2002), Katz and King (1999) use a statistical model for multiparty electoral data
assuming that the territorial units yield independent observations. We first propose a
statistical model for studying the multiparty system using compositional data analysis
(CODA) with departmental level data. The dependent vector is the vector of vote shares
for the French departmental election in 2015. The explanatory variables include some
compositional and classical socio-economic variables such as proportions in age groups,
diploma groups, domain of activity, rate of unemployment, and so on. We present sev-
eral exploratory plots to study the impact of explanatory variables of a classical type
and compositional type and show the relationships between coefficients in the simplex
space and in the coordinate space.

For modeling multivariate possibly heavy tailed data, at first we recall the multi-
variate Normal distribution and present a nice complete summary for two options of the
multivariate Student distribution. We then compare the multivariate Normal model (N)
with two versions of the multivariate Student model: the independent multivariate Stu-
dent (IT) and the uncorrelated (UT) multivariate Student. The UT regression model is
first introduced by Zellner (1976) for the case of univariate regression. Other references
in that case include Singh (1988) and Kelejian and Prucha (1985). The IT univariate
regression model is studied in Fraser (1979) and Kelejian and Prucha (1985). In the
multivariate case, the UT model is studied in Sutradhar and Ali (1986), with a method
of moments estimation approach. The multivariate IT model is found for example in
Prucha and Kelejian (1984) and Katz and King (1999). We then prove that the maximum
likelihood estimator of the variance-covariance matrix in the multivariate UT model is
asymptotically biased and propose an unbiased version. For the IT model, we propose
an iterative reweighted least squares algorithm to compute the maximum likelihood esti-
mators. We present a simulation study to compare the bias and root mean square error
of the ensuing estimators of the regression coefficients and variance-covariance matrix
under several scenarios of the potential data generating process, mispecified or not. We
propose a graphical tool based on the Mahalanobis distance to guide the choice between
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the competing models. We illustrate an application in finance about a series of daily
close share prices of IBM and MSFT in the period 2007-2018.

After clarifying the multivariate Student distribution, we present two applications
inspired by the following papers. In the political economy literature, for the case of fully
contested elections, Katz and King (1999) combine log-ratio transformations classically
used in compositional data analysis with an IT type of multivariate Student regression
model to define the additive logistic Student distribution and find that it is superior to
previous models for multiparty voting data. In the finance literature, several authors
Platen and Rendek (2008), Fung and Seneta (2010)) advocate the use of the Student dis-
tribution to model log returns of financial assets. In our case, we compare the Gaussian
and the Student IT model for the French departmental election data for canton level.

Spatial models have been considered for studying election outcomes. Kelejian and
Prucha (2004) introduce a series-type instrumental variable (IV) estimator of the pa-
rameters of a spatial first order autoregressive model with first order autoregressive
disturbances. Then via Monte Carlo techniques, Kelejian et al. (2004) give small sample
results relating to their suggested estimator, the maximum likelihood (ML) estimator,
and other IV estimators for univariate model. Sutter (2005) examines the spatial au-
toregressive relationship between county-level voting outcomes in the 2000 Presidential
election in the US. Mansley and Demšar (2015) explores geographic variability in rela-
tionships between the turnout at the London mayoral election and socio-demographic
variables at a detailed spatial level. His analysis is approached through geographically
weighted regression (GWR), which enables the investigation of local variations in vot-
ing patterns. On the other hand, some spatial model for compositional data have been
developped. Tjelmeland and Lund (2003) consider a Bayesian framework for CODA re-
gression, discuss appropriate prior distributions and define efficient Markov chain Monte
Carlo algorithms. Pirzamanbein (2015) constructs a hierarchical model for spatial com-
positional data using a Gaussian Markov Random Field (GMRF) with Dirichlet ob-
servations. Pawlowsky-Glahn et al. (2015) uses the additive-logratio transformation of
generalized compositions to deal with the spatial covariance structure in a geostatisti-
cal fashion. We study whether one can introduce spatial autocorrelation in IT models
from a spatial econometrics point of view, i.e. using simultaneous spatial autoregressive
(LAG) model.

Data

The electoral data used in my thesis are collected from the Cartelec website2 and the
INSEE website3. For more detail, we collect from the Cartelec website vote shares data of
the 2015 French departmental election for 95 departments in France and for 207 cantons
of Occitanie region in France and we download corresponding socio-economic data (for
2014) from the INSEE website. Moreover, two databases have been used in my thesis:
one for the departmental level and one for the canton level. Both databases contain:

2https://www.data.gouv.fr/fr/datasets/elections-departementales-2015-resultats-par-bureaux-de-
vote/

3https://www.insee.fr/fr/statistiques
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1. Vote shares: the outcome of the French departmental election where the number
of vote per party are aggregated into three big parties which are Left (L), Right
(R), and Extreme Right (XR).

2. Age: the age of voters. It has three components Age_1840 for people from 18
to 40 years old, Age_4064 for people from 40 to 65 years old, and Age_65 for
elderly.

3. Diploma: the educational level of voters. It also has three components: <BAC
for people with at most some secondary education, BAC for people with at least
some secondary education and at most a high school diploma, and SUP for people
with a university diploma.

4. Employment with five categories: AZ (agriculture, fisheries), BE (manufac-
turing industry, mining industry and others), FZ (construction), GU (business,
transport and services) and OQ (public administration, teaching, human health).

5. Unemployment rate: the unemployment rate (unemp).

6. Employment evolution: the mean annual growth rate of employment (emp_evol).

7. Owner: the proportion of people who own assets (owner).

8. Income: the proportion of people who pay income tax (income).

9. Foreign: the proportion of foreigners (foreign).

Structure of the thesis

Most of this thesis is written in English, except for the introduction, the summaries of
the four chapters and the conclusion which are in French. This thesis is partitioned into
five chapters.

Chapter 1 is a general presentation of compositional data analysis. It presents
the definitions of composition and subcomposition, the principles of compositional data
analysis, some operations such as perturbation and powering in the simplex. Because of
constraints inherent to compositonal data, classical statistical methods cannot be used
directly in the simplex. Therefore, some log-ratio transformations are usually applied.
The chapter also introduces the Normal distribution for random compositions and the
CODA regression model.

Chapter 2 is an illustration of compositional data regression model with the Normal
distribution in the simplex. This chapter presents the CODA regression models both in
the simplex space and in the ilr coodinates space. It illustrates the relationship between
parameters of these models in the two spaces. We analyze how the predicted values in
these models vary with the predictors. We also propose new graphical tools to explore
the impact of some socio-economic variables on election results with the departmental
level data.
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Chapter 3 is about the comparison between the multivariate Normal distribution
and the multivariate Student distribution and its application in financial assets returns
data. We recall the multivariate Normal distribution and clarify two versions of the
multivariate Student distribution. We construct a simulation to compare the bias, the
root mean squared error and covariance matrix of estimators of the regression coefficients
under different scenarios of the potential data-generating process (DGP). A test based
on the Mahalanobis distance is proposed to select a model.

Chapter 4 is about the multivariate Student distribution and its application in
political economy. Some researchers show that the electoral data often exhibit the heavy
tails behavior. Using Chapter 3, we propose to replace the Gaussian distribution by the
Student distribution. Thus defining the Student distribution in the simplex. We apply
the test developped in Chapter 3 to choose between the Normal and the Student models.

Chapter 5 develops a spatial LAG regression model for compositional data then
rewrite this model in the coordinate space which include both spatial correlation and
correlations across equations. In order to estimate this model, we adopt instrumental
variable (IV) estimator of the parameters of a spatial autoregressive model in a multi-
variate setting as in Kelejian and Prucha (2004). We present a simulation to compare the
relative root mean square error(RRMSE) of parameters estimate under several data gen-
erating processes (DGP) between the spatial two-stages least square (S2SLS) and spatial
three-stages least squre (S3SLS). An example in political economy are also illustrated.
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Introduction (version française)

L’élection est l’un des principes de base de la démocratie selon laquelle les citoyens
doivent choisir leurs dirigeants. L’élection est le pilier de tout pays démocratique, puisque
la démocratie est définie comme le gouvernement par le peuple, ce qui signifie que le
peuple est la source de la démocratie et que la souveraineté absolue leur appartient. En
ce sens, des élections sont organisées pour que les gens puissent choisir leurs représentants
qui représenteront différents intérêts, politiques, etc., formulés pour le bien-être de la
population. Autrement dit, la principale raison d’une élection est de s’assurer que les
gens ont la possibilité de participer indirectement aux affaires politiques.

Il existe trois principaux systèmes de parti: le système à parti unique, à deux partis
et multipartis 4. Un système à parti unique est un type de système électoral dans lequel
un parti politique prend le pouvoir et ne permet pas aux autres partis de présenter leurs
candidats aux élections. Le Vietnam est un exemple de pays dans lequel un parti con-
trôle le gouvernement. Un système à deux partis ne compte que deux partis politiques
susceptibles de remporter des élections. Les États-Unis sont un exemple classique avec
un système à deux partis. Cependant, un système multipartite est également populaire.
Dans un tel système politique, plusieurs partis politiques se disputent les élections na-
tionales et ont tous la capacité de prendre le contrôle des bureaux du gouvernement,
séparément ou en coalition. La France est l’un des pays du multipartisme qui a plus de
quinze partis politiques. En 2019, les partis politiques dominants en France sont “En
Marche” (centristes et libéraux), le “Rassemblement National” (populiste / nationaliste
de droite), “La France Insoumise” (de gauche et relativement socialiste), “Les Républi-
cains” (conservateur) et le Parti socialiste (de gauche).

Récemment, de nombreux auteurs en économie politique se sont concentrés sur la
construction de modèles et sur la compréhension des facteurs déterminants du résultat
d’un système électoral à deux partis (Beauguitte and Colange (2013), Ansolabehere and
Leblanc (2008)). Par ailleurs, le système multipartite a également attiré l’attention.
La France est un exemple de nation qui a utilisé efficacement le système multipartite
dans sa démocratie. Il y a au moins quinze partis politiques en France. Sur la base des
résultats des élections départementales françaises de 2015, nous regroupons ces partis
politiques en trois principaux partis politiques: gauche, droite et extrême droite. Dans
ce système multipartite, les résultats de l’élection se composent de vecteurs dont les
composantes sont les pourcentages ou les proportions de votes par parti. Leur somme

4https://en.wikipedia.org/wiki/Multi-party_system
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est donc contrainte à être constante, égale à 1 pour les proportions, à 100 pour les
pourcentages. Ce type de données est appelé données de composition (CODA).

Le résultat d’une élection peut être influencé par les stratégies de campagne des
candidats, des facteurs démographiques tels que l’âge, le domaine d’activité, le taux de
chômage, etc. Dans un entretien avec le magazine Time, un groupe de conseillers de cam-
pagne d’Obama a révélé un effort considérable en matière de données pour soutenir la
collecte de fonds, les annonces télévisées de micro-ciblage et la modélisation des électeurs
des états pivots. Il est donc intéressant de s’intéresser au système multipartite français.
Dans cette thèse, nous étudions l’élection départementale française en 2015 avec les ques-
tions suivantes. Premièrement, nous aimerions comprendre les facteurs qui déterminent
le résultat d’une élection ou comment prédire le résultat d’une élection. Le coût des
élections est généralement très coûteux. En terme de prise de décision, le résultat d’une
élection implique une incertitude. Les prévisions des résultats des élections peuvent ré-
duire les risques pour les décideurs et donc faciliter la prise de décision. La prévision
des résultats d’un événement peut être utile pour les experts de plusieurs domaines, tels
que les stratèges financiers, les stratèges politiques, les décideurs, etc. Afin de prédire le
résultat de l’élection, le plus important est de définir un modèle avec certains facteurs es-
sentiels ayant une incidence sur le résultat. Deuxièmement, certains documents révèlent
que les données électorales révèlent un comportement extrêmement lourd (voir Nguyen
et al. (2019)). La question est de savoir comment traiter ces données et quel modèle
conviendra le mieux à ces données. Troisièmement, les données électorales des élections
départementales françaises sont observées à une certaine échelle spatiale. Il est donc
intéressant d’étudier comment les décisions de vote sont influencées par les décisions de
leurs voisins. Cette thèse se concentre sur des généralisations des modèles de régression
d’analyse de données compositionnelles dans plusieurs directions. Au début, nous nous
sommes intéressés à l’exploration des élections départementales françaises de 2015. Notre
attention se concentre sur le comportement des électeurs et la relation entre les votes et
les facteurs démographiques et sociaux tels que l’âge, le niveau d’éducation, le domaine
d’activité, le taux de chômage, etc. En outre, l’issue des élections en France s’observe
aux niveaux départemental et cantonal. Pour aller au-delà de l’application des modèles
classiques de régression compositionnelle, nous considérons le fait, documenté dans la
littérature, que les données électorales peuvent présenter des comportements extrêmes
ainsi qu’une autocorrélation spatiale. Il est donc compliqué d’analyser ces données avec
des méthodes classiques en raison des contraintes et du problème de corrélation spatiale.
Au début de mon manuscrit, je présente les principes de l’analyse des données composi-
tionnelles. Je construis un modèle de régression qui pourrait être envisagé pour expliquer
le résultat d’une élection et clarifier ses relations avec les facteurs socio-économiques. De
plus, ce modèle permet de prévoir le résultat d’une élection et du parti vainqueur. Afin
d’éliminer le problème de la queue lourde, une proposition trouvée dans la littérature
est de remplacer la distribution gaussienne par la distribution de Student. Toutefois,
comme il n’existe pas de manière unique d’utiliser la distribution multivariée de Student
dans un modèle de régression multivariée, nous devons d’abord étudier les propriétés de
deux modèles concurrents: les modèles de Student non corrélé (UT) et de Student in-
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dépendant (IT). Nous fournissons également des éléments supplémentaires pour la mise
en œuvre R de l’estimation de ces modèles. Pour les données électorales départemen-
tales, nous comparons les résultats entre les modèles Gaussien et Student (IT). Afin de
choisir un modèle, nous effectuons un test basé sur la distance de Mahalanobis. Le test
de Kolmogorov – Smirnov nous indique que nous ne rejetons pas le modèle IT et que
nous rejetons le modèle Normal. Ainsi, nous utilisons ce modèle IT pour prédire la part
de vote et voir l’impact des facteurs socio-économiques. Enfin, nous prenons en compte
une possible autocorrélation spatiale dans les données de composition. Nous montrons
comment utiliser des versions multivariées du modèle classique autorégressif spatial pour
les données surfaciques utilisées en économétrie spatiale dans l’espace de coordonnées
après une transformation appropriée de nos vecteurs de proportions.

Description des problèmes

Ma thèse portera sur les quatre problèmes suivants:

Problème 1: Notre modèle de régression CODA contient des variables qui sont à la
fois du type classique et du type compositionnel. L’un des défis de ce type de modèle est
de fournir des interprétations judicieuses des résultats. Une interprétation dans l’espace
log-ratio est mathématiquement facile mais pas naturel pour répondre à des questions
pratiques. D’autre part, une interprétation dans l’espace du simplexe est complexe en
raison de sa nature contrainte. Nous examinons comment les modèles de régression
CODA peuvent améliorer notre compréhension pratique des résultats électoraux.

Problème 2: Les distributions avec des queues épaisses sont des distributions qui per-
mettent plus souvent des valeurs extrêmes. En raison de son incapacité à modéliser des
queues lourdes, le modèle gaussien classique à plusieurs variables est limité. C’est une
raison pour attirer l’attention sur une famille de distributions plus flexible, comme la dis-
tribution multivariée de Student. En une dimension, la distribution de Student général-
isée contient les modèles gaussiens en tant que limite lorsque le paramètre de forme est
grand. Cependant, la difficulté dans les dimensions supérieures est qu’il n’existe pas
de manière unique de définir la distribution multivariée de Student (voir Johnson and
Kotz (1972), Kotz and Nadarajah (2004)). Deux options sont décrites dans Kelejian
and Prucha (1985) dans le cas de la régression (à variable dépendante) univariée lors de
l’utilisation de la distribution multivariée de Student. De plus, la propriété d’équivalence
entre indépendance et décorrélation pour les composantes d’un vecteur Gaussien n’est
plus satisfaite pour un vecteur de Student multivarié. Cela nous incite à approfondir
nos recherches sur les modèles de régression multivariés de Student.

Problème 3: Il est mentionné dans la littérature que les données électorales montrent
souvent un comportement à queue lourde. Afin de trouver le modèle qui correspond le
mieux à nos données électorales, nous proposons un test basé sur la distance de Maha-
lanobis. Le mérite de cette approche est que la distance de Mahalanobis est une variable
unidimensionnelle alors que les observations originales sont des variables multidimension-
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nelles. De plus, la distribution de cette distance au carré est connue approximativement
sous le modèle gaussien et sous le modèle de Student. Par conséquent, une approche
consiste à tester si les distances carrées de Mahalanobis suivent la distribution du chi
carré pour tester la normalité et suivent la distribution de Fisher pour tester la distri-
bution de Student.

Problème 4: L’utilisation des méthodes statistiques classiques en analyse électorale
pose un problème: l’hypothèse d’une indépendance statistique entre les unités statis-
tiques peut être remise en question puisque les unités sont des zones géographiques. Ce
type de données présente généralement une autocorrélation spatiale. Étant donné que
les données électorales ont également un caractère compositionnel, nous devons étudier
un modèle spatial pouvant être adapté à cette caractéristique particulière.

Contributions

Parmi les articles se concentrant sur la relation entre les variables socio-économiques et
les résultats des élections, Beauguitte and Colange (2013) étudient une régression linéaire
à trois niveaux d’agrégation (bureaux de vote, villes et districts électoraux) en France
et montrent que les variables socio-économiques sont significatives. Kavanagh et al.
(2006) utilisent une régression pondérée géographiquement, qui produit des estimations
de paramètres pour chaque point de données, c’est-à-dire pour chaque circonscription
électorale. D’autre part, dans la littérature statistique, les gens ont développé des mod-
èles de régression CODA dans lesquels les variables dépendantes et indépendantes peu-
vent être des variables de composition (voir Mert et al. (2018) pour une revue). Morais
(2017) étudie l’impact des investissements des médias sur les parts de marché de la
marque à l’aide d’un modèle de régression CODA. Trinh and Morais (2017) utilisent
un modèle de régression CODA pour mettre en évidence la transition nutritionnelle et
l’expliquer en fonction des caractéristiques du ménage. Honaker et al. (2002), Katz and
King (1999) utilisent un modèle statistique pour les données électorales multipartites en
supposant que les unités territoriales produisent des observations indépendantes. Nous
proposons d’abord un modèle statistique pour l’étude du système multipartite utilisant
l’analyse de données compositionnelles (CODA) avec des données de niveau départe-
mental. Les variables dépendantes sont les vecteurs des parts de vote pour l’élection
départementale française de 2015. Les variables explicatives incluent certaines vari-
ables socio-économiques classiques et de composition telles que les proportions dans les
groupes d’âge, les groupes de diplômes, le domaine d’activité, le taux de chômage, etc.
Nous présentons plusieurs graphiques exploratoires pour étudier l’impact de variables
explicatives de types classique et compositionnel et pour montrer les relations entre les
coefficients dans l’espace du simplexe et dans l’espace des coordonnées.

Pour modéliser des données multivariées, nous rappelons tout d’abord la distribution
multivariée Normale et présentons un résumé complet et synthétique pour deux options
de la distribution multivariée de Student. Nous comparons ensuite le modèle multivarié
Normal (N) avec deux versions du modèle de Student multivarié: le Student multivarié
indépendant (IT) et le Student multivarié non corrélé (UT). Le modèle de régression
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UT est introduit pour la première fois par Zellner (1976) dans le cas de la régression
univariée. Singh (1988), Kelejian and Prucha (1985) sont d’autres références. Le modèle
de régression univarié en IT est étudié dans Fraser (1979) et Kelejian and Prucha (1985).
Dans le cas multivarié, le modèle UT est étudié dans Sutradhar and Ali (1986), avec
une méthode d’estimation par moments. Le modèle multivarié IT se trouve par exemple
dans Prucha and Kelejian (1984) et Katz and King (1999). Nous prouvons ensuite que
l’estimateur du maximum de vraisemblance de la matrice de variance-covariance dans le
modèle multivarié UT est asymptotiquement biaisé et proposons une version non biaisée.
Pour le modèle informatique, nous proposons un algorithme des moindres carrés itératif
repondéré pour calculer les estimateurs du maximum de vraisemblance. Nous présentons
une étude de simulation visant à comparer le biais et l’erreur quadratique moyenne des
estimateurs des coefficients de régression et de la matrice de variance-covariance selon
plusieurs scénarios du processus de génération de données, bien spécifiés ou non. Nous
proposons un outil graphique basé sur la distance de Mahalanobis pour guider le choix
de l’utilisateur entre les modèles concurrents. Nous illustrons une application dans la
finance sur une série de prix de clôture quotidiens des actions d’IBM et de MSFT au
cours de la période 2007-2018. Nous illustrons une application dans la finance sur une
série de prix de clôture quotidiens des actions d’IBM et de MSFT au cours de la période
2007-2018.

Après avoir clarifié la distribution multivariée de Student, nous présentons deux ap-
plications inspirées des articles suivants. Dans la littérature en économie politique, Katz
and King (1999) combinent des transformations log-ratio classiquement utilisées dans
l’analyse de composition avec un modèle de régression multivarié de type Student pour
définir la distribution additive de Student. Ils montrent que ce modèle est supérieur aux
modèles précédents pour les données de vote à plusieurs partis. Dans la littérature finan-
cière, plusieurs auteurs, Platen and Rendek (2008), Fung and Seneta (2010)), préconisent
l’utilisation de la distribution de Student pour modéliser les rendements en journal des
actifs financiers. Dans notre cas, nous comparons le modèle de régression gaussien et
Student aux données électorales départementales françaises au niveau cantonal.

Des modèles spatiaux ont été envisagés pour étudier les résultats des élections. Kele-
jian and Prucha (2004) introduisent un estimateur de type variable instrumentale (IV)
des paramètres d’un modèle spatial autorégressif du premier ordre avec perturbations
autorégressives du premier ordre. Ensuite, via les techniques de Monte Carlo, Kelejian
et al. (2004) donne de résultats de petits échantillonnage relatifs à l’estimateur suggéré,
à l’estimateur de maximum de vraisemblance (ML) et à d’autres estimateurs IV pour
le modèle univarié. Sutter (2005) examine la relation autorégressive spatiale entre les
résultats du vote au niveau du comté lors de l’élection présidentielle de 2000. Mansley
and Demšar (2015) explorent la variabilité géographique des relations entre le taux de
participation à l’élection du maire de Londres et les variables sociodémographiques à un
niveau spatial détaillé. Son analyse est abordée à travers une régression géographique-
ment pondérée (GWR), qui permet d’enquêter sur les variations locales des habitudes
de vote. D’autre part, certains modèles spatiaux pour les données de composition ont
été développés. Tjelmeland et Lund (2003) examinent un cadre Bayésien pour la ré-
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gression de CODA, discutent des distributions antérieures appropriées et définissent
des algorithmes efficaces de Monte Carlo utilisant une châıne de Markov. Pirzaman-
bein (2015) construit un modèle hiérarchique pour les données de composition spatiale
en utilisant un champ aléatoire markovien gaussien (GMRF) avec des observations de
Dirichlet. Pawlowsky-Glahn et al. (2015) utilisent la transformation additive-logratio
de compositions généralisées pour traiter la structure de covariance spatiale de manière
géostatistique. Nous prévoyons d’étudier la possibilité d’introduire une autocorrélation
spatiale dans les modèles de regression du point de vue de l’économétrie spatiale, c’est-
à-dire en utilisant un modèle autorégressif spatial (LAG) simultané.

Les données

Les données utilisées dans ma thèse proviennent du site Web de Cartelec et du site Web
de l’Insee. Pour plus de détails, nous collectons sur le site Cartelec5 les données de
proportions de vote sur l’élection départementales françaises de 2015 concernant 95 dé-
partements en France et 207 cantons de la région Occitanie en France, et nous téléchar-
geons les données socio-économiques correspondantes (pour 2014) sur le site Web de
l’INSEE6. De plus, deux bases de données ont été utilisées dans ma thèse: une au niveau
départemental et une au niveau cantonal. Les deux bases de données contiennent:

1. Parts de vote: résultat des élections départementales françaises où le nombre de
voix par parti est agrégé en trois grands partis, à gauche (L), à droite (R) et à
l’extrême droite (XR).

2. Age: l’âge des électeurs. Il a trois composantes Age_1840 pour les personnes âgées
de 18 à 40 ans, Age_4064 pour les personnes âgées de 40 à 65 ans et Age_65 pour
les personnes âgées de plus de 65 ans.

3. Diplôme: le niveau d’éducation des électeurs. Il comporte également trois com-
posantes: <BAC pour les personnes ayant au maximum une éducation secondaire,
BAC pour les personnes ayant au moins une éducation secondaire et au plus un
diplôme de lycée, et SUP pour les personnes ayant un diplôme universitaire.

4. Emploi en cinq catégories: AZ (agriculture, pêche), BE (industrie manufacturière,
industries minières et autres), FZ (construction), GU (entreprises, transports et
services) et OQ (administration publique, enseignement, santé humaine).

5. Taux de chômage: le taux de chômage (unemp).

6. Evolution de l’emploi: le taux de croissance annuel moyen de l’emploi (emp_evol).

7. Propriétaire: la proportion de personnes qui possèdent des actifs (propriétaire).

8. Revenu: la proportion de personnes qui paient l’impôt sur le revenu (revenu).

5https://www.data.gouv.fr/fr/datasets/elections-departementales-2015-resultats-par-bureaux-de-
vote/

6https://www.insee.fr/fr/statistiques
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9. Étranger: la proportion d’étrangers (étrangers).

Structure de la thèse

La majeure partie de cette thèse est rédigée en anglais, excepté pour l’introduction, les
résumés des quatre chapitres et la conclusion qui sont traduits en français. Cette thèse
est divisée en cinq chapitres.

Le chapitre 1 est une présentation générale de l’analyse des données de composi-
tion. Il présente les définitions de la composition et de la sous-composition, les principes
de l’analyse des données de composition, certaines opérations telles que la perturbation
et l’alimentation du simplexe. À cause de contraintes inhérentes aux données de com-
position, les méthodes statistiques classiques ne peuvent pas être utilisées directement
dans le simplexe. Par conséquent, certaines transformations de log-ratio sont générale-
ment appliquées. Le chapitre présente également les distributions normales pour les
compositions aléatoires et le modèle de régression CODA.

Le chapitre 2 illustre le modèle de régression de données compositionnelles avec
la distribution normale dans le simplexe. Ce chapitre présente les modèles de régres-
sion CODA dans l’espace du simplexe et dans l’espace des coordonnées. Il illustre la
relation entre les paramètres de ces modèles dans les deux espaces. Nous analysons
comment les valeurs prédites dans ces modèles varient avec les prédicteurs. Nous pro-
posons également de nouveaux outils graphiques pour explorer l’impact de certaines
variables socio-économiques sur les résultats des élections avec les données au niveau
départemental.

Le chapitre 3 traite de la comparaison entre la distribution multivariée Normale
et la distribution multivariée de Student et son application dans les données de retour
des actifs financiers. Nous rappelons la distribution multivariée Normale et clarifions
deux versions de la distribution multivariée de Student. Nous construisons une simula-
tion pour comparer le biais, la matrice d’erreur quadratique moyenne et la covariance
des estimateurs des coefficients de régression selon différents scénarios de processus de
génération de données (DGP). Un test basé sur la distance de Mahalanobis est proposé
pour sélectionner un modèle.

Le chapitre 4 traite de la distribution multivariée de Student et de son appli-
cation en économie politique. Certains chercheurs ont montré que les données élec-
torales présentent souvent un comportement à queues lourdes. En utilisant le chapitre
3, nous proposons de remplacer la distribution gaussienne par la distribution de Student.
Définissant ainsi la distribution de Student dans le simplexe. Nous appliquons le test
développé au chapitre 3 pour choisir entre les modèles Normal et Student.

Le chapitre 5 développe un modèle de régression spatiale des LAG dans le simplexe.
Afin d’estimer ce modèle, nous adoptons un estimateur de variable instrumentale (IV)
des paramètres d’un modèle autorégressif spatial dans un contexte multivarié, comme
dans Kelejian and Prucha (2004). Nous présentons une simulation visant à comparer
l’erreur quadratique moyenne relative (RRMSE) de l’estimation de paramètres dans le
cadre de plusieurs processus de génération de données (DGP) entre les moindres carrés
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à deux étages spatial (S2SLS) et les moindres carrés à trois étages spatial ( S3SLS). Un
exemple d’économie politique est également illustré.



Chapter 1

General compositional data
analysis

Abstract

Compositional data are vectors with non negative components and whose sum is a con-
stant. In practice, there are many areas which involve compositional data. In archae-
ology, the compositional analysis of raw materials (clays, lithic materials used to make
stone tool, etc.) is used to understand the histories of trade and exchange in ancient
economies. A challenge is how to identify or distinguish different places which are far
from the original points. Besides, in sedimentology, specimens of sediments are separated
into three components: sand, silt and clay. It is interesting to study the dependence of
specimens of sediments on water depth. In household budget survey, people investigate
how households spend their budget in housing, foodstuff, services and others. Is there
any difference between men and women? In political economy, it is interesting to study
vote shares of an electoral party. In France, the electoral system contains at least fifteen
electoral parties. The above data are compositional data.

This chapter introduces some concepts, principles and operations of compositional
data analysis. Because the classical statistical methods cannot be used directly for
compositional data, log-ratio transformations are used and we present them here. We
also recall the possible distributions on the simplex: Dirichlet and Normal distributions.
Finally, we present the CODA general regression model, which may contain both classical
explanatory variables and compositional explanatory variables.

Résumé

Les données de composition sont des vecteurs de composantes non négatives et dont
la somme est une constante. En pratique, de nombreux domaines impliquent des don-
nées de composition. En archéologie, l’analyse de la composition des matières premières
(argiles, matériaux lithiques utilisés pour fabriquer des outils en pierre, etc.) est util-
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isée pour comprendre l’histoire du commerce et des échanges dans les économies an-
ciennes. Un défi consiste à identifier ou à distinguer différents endroits éloignés des
points d’origine. Par ailleurs, en sédimentologie, les échantillons de sédiments sont sé-
parés en trois composants: le sable, le limon et l’argile. Il est intéressant d’étudier la
dépendance des échantillons de sédiments sur la profondeur de l’eau. Dans l’enquête
sur le budget des ménages, les gens étudient comment leur budget est utilisé pour le
logement, l’alimentation, les services, etc. Y a-t-il une différence entre les hommes et les
femmes? En économie politique, il est intéressant d’étudier les parts de vote d’un parti
électoral. En France, le système électoral comprend au moins quinze partis électoraux.
Les données ci-dessus sont des données de composition.

Ce chapitre présente quelques concepts, principes et opérations utiles pour l’analyse
de données compositionnelles. En outre, les transformations log-ratio sont présentées
car les méthodes statistiques classiques ne peuvent pas être utilisées directement pour
les données de composition. On introduit également les distributions possibles sur le
simplexe: loi de Dirichlet et Logistique Normale. Enfin, nous présentons le modèle de
régression général CODA, qui peut contenir à la fois des variables explicatives classiques
et des variables explicatives de composition.

1.1 Concepts of compositional data analysis

1.1.1 Composition, subcomposition

A composition x is a vector of D non-negative parts of some whole which carries relative
information. A composition only representing a subset of the possible components is
called a subcomposition.
Each composition x has a unique representer in the so-called simplex space SD defined
by:

SD = {x = (x1, ..., xD)′ : xd > 0, d = 1, ..., D;
D
∑

d=1

xd = 1}

The simplex of D = 3 parts can be presented with a ternary diagram, where the three
components are projected in barycentric coordinates. The simplex of D = 4 parts can be
represented by a tetrahedron, where each possible 3-part subcomposition is represented
on one side of the tetrahedron.

1.1.2 Principles of compositional data analysis

The statistical methods in compositional data analysis must satisfy the following prin-
ciples (see Aitchison (2011), Pawlowsky-Glahn et al. (2015)):

Scale invariance

Any meaningful function f of a compositional vector x must be homogeneous of degree
0 (scale invariant). It means that if a composition is scaled by a constant, e.g. changing
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Figure 1.1: Vote shares (Left, Right, Extreme Right) in the French 95 departments
(black points) with the geometric mean of vote shares as the red triangle on the left hand
side. The tetrahedron describes the household expenditures on House, Food, Service and
Others on the right hand side.

from parts per unit to percentages, the information carried is completely equivalent.

f(λx) = f(x)

The traditional way to select a representative of the equivalence class is to normalize
the vector in such a way that the components sum to a given constant k by using the
closure operation. For x = (x1, . . . , xD), a vector of D components, its closure is defined
as

C(x) =

(

kx1
∑D

d=1 xd

, . . . ,
kxD

∑D
d=1 xd

)

For example, the vectors a = [2, 5, 10], b = [2/7, 5/7, 10/7], and c = [2/17, 5/17, 10/17]
represent the same composition, the ratios between their components are the same.
Therefore, any meaningful function of a compositional vector can be expressed in terms
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of ratios of its components (any group invariant function can be expressed as a function
of any maximal invariant)

Subcompositional coherence

This principle states that inferences about subcompositions should be coherent whether
they are based on the subcomposition or the full composition. Analyses concerning a
subset of parts must not depend on other non-involved parts. Subcompositional coher-
ence contains two main things:
- The ratios between any parts in the subcomposition are equal to the corresponding
ratios in the original composition.
- Distances between two compositions must be higher than, or equal to, the distance
between their subcompositions.

Permutation invariance

Permutation invariance means that when we change the order of parts of a composition,
it will give the same results.

1.1.3 Operations on the simplex

Aitchison (1986) introduced a set of operations in SD. For x, y, z ∈ SD,

1. The perturbation of x and y is the compositional sum of x and y

x ⊕ y = C(x1y1, ..., xDyD)

where C(x) is the closure operation.
If z = x⊕y, z ∈ SD, then z1/z2

x1/x2
= y1/y2 represents the relative change in percentage

between the first and second components.

2. The powering is the compositional scalar multiplication

λ ⊙ x = C(xλ
1 , ..., xλ

D), λ is a scalar, x ∈ SD

For example, x ⊙ x = C(x2
1, . . . , x2

D) = 2 ⊙ x

3. For B ∈ R
D×D, the compositional matrix product B⊡x corresponds to the matrix

product in the real vector space

B ⊡ x = C
(

D
∏

d=1

xb1d

d , · · · ,
D
∏

d=1

xbDd

d

)T

From the definition of perturbation and powering, we can deduct the Aitchison mean
for x1, . . . , xn ∈ SD,

1
n

⊙ (x1 ⊕ . . . ⊕ xn) = C((x11 . . . x1n)1/n, . . . , (xD1 . . . xDn)1/n)
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Therefore, the mean for compositions z ∈ SD is a vector of geometric means of each
component

g(z1, . . . , zn) = n
√

z1 . . . zn

Besides, one can define the Aitchison geometry, i.e the compositional inner product and
the compositional distance.

1. The compositional inner product (C-inner product) of x and y in SD is defined by

〈x, y〉c =
1
D

D−1
∑

i=1

D
∑

j=i+1

log
xi

xj
· log

yi

yj
=

D
∑

i=1

log
xi

g(x)
· log

yi

g(y)

where g(x) = D
√

x1x2...xD is the geometric mean of the components of x.

2. The compositional distance (C-distance) between x and y in SD is derived from
the inner product

dc(x, y) = ‖x ⊖ y‖c

=





1
D

D−1
∑

i=1

D
∑

j=i+1

(

log
xi

xj
− log

yi

yj

)2




1/2

=

(

D
∑

i=1

(

log
xi

g(x)
− log

yi

g(y)

)2
)1/2

where ‖x‖c =
√

〈x, x〉c denotes the compositional-norm (C-norm) of composition
x.

1.1.4 The log-ratio transformations

Classical statistical methods cannot be used directly in the simplex because the con-
straints that the components are positive and sum up to 1 are not compatible with
their usual distributional assumptions. To overcome this difficulty, one way out is to
use a log-ratio transformation from the simplex space SD to the Euclidean space R

D−1.
The classical transformations are alr (additive log-ratio transformation), clr (centered
log-ratio transformation), and ilr (isometric log-ratio transformation) (see Egozcue et al.
(2012)). The coordinates in the clr transformed vector are linearly dependent, and the
coordinates in the alr transformed vector are not compatible with the geometry (dis-
tance between the components in the simplex space is different from distance between
the coordinates in the Euclidean space). For these reasons people generally use one of
the ilr transformation.
The Additive Log-Ratio transformation (alr) is defined by

alr(x) = (ln(x1/xD), . . . , ln(xD−1/xD))
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The Centered Log-Ratio transformation (clr) is defined by

clr(x) =
(

ln
(

xd

g(x)

))

where g(x) = D
√

x1, . . . , xD, d = 1, . . . , D

The additive log-ratio transformation is possibly questionable because the distances
between points in the coordinate space are not the same for different reference levels xD.
A way to avoid the problem of choosing a reference level is to divide by the geometric
mean, leading to the centered log-ratio transformation. However, the disadvantage of
this is that the covariance matrix of clr coordinates is singular. To avoid the drawback
of alr and clr transformations, an alternative set of transformations is known as ilr
transformations.
The Isometric Log-Ratio transformation (ilr) is associated to a contrast matrix VD is
given by

ilr(x) = x∗ = [〈x, e1〉, . . . 〈x, eD−1〉] = VT
Dln(x)

where x is a column vecteur of RD
+ and the logarithm of x is understood componentwise,

VT
D is a D × (D − 1) transposed contrast matrix associated to a given C-orthonormal

basis (e1, . . . , eD−1) of SD by

VD = clr(e1, . . . , eD−1).

For the ilr transformation, we have the following properties:

1. ilr(x ⊕ y) = ilr(x) + ilr(y) = x∗ + y∗

2. ilr(α ⊙ x) = α · ilr(x) = α · x∗

3. 〈x, y〉c = 〈ilr(x, ilr(y)〉

4. ‖x‖c = ‖ilr(x)‖

5. dc(x, y) = d(ilr(x), ilr(y))

Sequential binary partition

There are several ways to define C-orthonormal bases in the simplex. The main criterion
to choose a C-orthonormal bases is to reinforce the interpretability of the representation
in the ilr coordinates space. The C-orthonormal bases may be linked to a sequential
binary partition (SBP) of the parts of the compositional vector.

A sequential binary partition is created with D −1 steps (see Pawlowsky-Glahn et al.
(2015)). In a first step, SBP consists of dividing the composition into two groups of parts
which are indicated by +1 and −1. In further steps, each previously obtained group of
parts is repeatedly subdivided into two groups until all groups are made of a single part.
Therefore, we get a (D − 1) × D sign matrix S = (Sdv), d = 1, . . . , (D − 1), v = 1, . . . , D
with +1, −1, 0 (0 corresponds to parts which are not included in the partition). The
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Table 1.1: Example of a sequential binary partition (SBP) of parts in S3 to build a
C-orthonormal basis.

Steps x1 x2 x3 #+ #−

1 +1 −1 −1 1 2
2 0 +1 −1 1 1

Table 1.2: Example of the clr-transformed vectors of the C-orthonormal basis associated
with the SBP.

Steps x1 x2 x3

1 +1
1

√

1·2
1+2 −1

2

√

1·2
1+2 −1

2

√

1·2
1+2

2 0 +1
1

√

1·1
1+1 −1

1

√

1·1
1+1

matrix S is used to build the (D − 1) × D matrix ΦΦΦ of the clr-transformed vectors of the
C-orthonormal basis e1, . . . , eD−1 associated with the sequential binary partition. The
Φdv, d = 1, . . . , (D − 1), v = 1, . . . , D entry of ΦΦΦ is defined by:

Φdv = 0 if Sdv = 0

Φdv = +
1

#+
d

√

√

√

√

#+
d · #−

d

#+
d + #−

d

if Sdv > 0

Φdv = − 1
#−

d

√

√

√

√

#+
d · #−

d

#+
d + #−

d

if Sdv < 0

(1.1)

where #+
d and #−

d are the number of parts in the dth raw of S coded by +1 and −1,
respectively. Thus, clr(ed) = ΦΦΦd = [Φd1, . . . , ΦdD]. The D × (D − 1) contrast matrix V
is the transposed matrix ΦΦΦ.

We illustrate the way to build the SBP for a compostition x ∈ SD, D = 3 in Table
1.1. We can build the SBP with two steps as in Table 1.1. After defining the SBP, we
build the (D−1)×D matrix ΦΦΦ of the clr-transformed vectors of the C-orthonormal basis
e1, . . . , eD−1 associated with the sequential binary partition by using (1.1) as in Table
1.2

An example of contrast matrix

The following D × (D − 1) matrix VD defined by Egozcue et al (2003) [10] is an example
of contrast matrix for D = 3

V3 =





+2/
√

6 0
−1/

√
6 +1/

√
2

−1/
√

6 −1/
√

2
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This particular matrix defines the following ilr coordinates

ilr1(x) =
1√
6

(2 ln x1 − ln x2 − ln x3) =
2√
6

ln
x1√
x2x3

ilr2(x) =
1√
2

(ln x2 − ln x3) =
1√
2

ln
x2

x3

The first ilr coordinate contains information about the relative importance of the first
component x1 with respect to the geometric mean of the second and the third compo-
nents g =

√
x2x3. The second ilr coordinate contains information about the relative

importance of the second component x2 with respect to the third component x3. The
inverse ilr transformation is given by:

x = ilr−1(x∗) = C(exp(VDx∗T ))

where the exponential of vector x is understood componentwise. In fact, the contrast
matrix is the transposed of matrix ΦΦΦ which is illustrated in Table 1.2.

Properties of contrast matrices

Note that such a contrast matrix VD of size D×(D−1) satisfies the following properties:

1. VDVT
D = GD = ID − 1

D 1D×D where ID ia a D × D identity matrix , 1D×D is a
D × D matrix of ones.

2. VT
DVD = ID−1 where ID−1 is the (D − 1) × (D − 1) identity matrix.

3. VT
DjD = 0 where jD is a D × 1 column vector of ones.

4. jT
DVD = 0 where jD is a D × 1 column vector of ones.

1.2 Distributions for random compositions

Distribution of simplex value random variables can be found in the literature. The main
ones are Dirichlet, Aitchison, Logistic Normal and Student. Initially, people introduced
the Dirichlet distribution as a distribution on the simplex. However, it is restrictive
because of complete subcompositional independence. It implies the fact that all its
subcompositions must be independent for each possible partition of the composition.
Therefore, it is impossible to model any dependent structure for compositional data
using the Dirichlet distribution. On the contrary, the Normal distribution on the simplex
imply no constraint of complete subcompositional independence.
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Table 1.3: Notations
Variable Notation Coordinates

Dependent Yi = (Yi1, ..., YiL) ilr(Yi) = Y∗
i

Independent compositional X(q)
i = (X(q)

1i , ..., X
(q)
Dqi) ilr(X(q)

i ) = X(q)∗
i

Independent classical Zi

General notations
L Number of components of dependent variable
Dq Number of components of covariate X(q)

i, j = 1, . . . , n Index of observations
l, m = 1, . . . , L Index of components of compositional data
q = 1, . . . , Q Index of independent compositional variables
k = 1, . . . , K Index of independent classical variables

1.2.1 The normal distribution on the simplex

The additive logistic-normal distribution (also called Normal on the simplex) was in-
troduced in Aitchison and Shen (1980). A random composition x follows the Normal
distribution NS(µµµ,ΣΣΣ) on the simplex SD with the mean vector µµµ and variance matrix
ΣΣΣ if the coordinates x∗ = ilr(x) of the random composition x follow the multivariate
normal distribution with the density function

f∗(x∗) =
1

(2π)(D−1)/2|ΣΣΣ|1/2
exp

[

−1
2

(x∗ − µµµ∗)ΣΣΣ∗−1(x∗ − µµµ∗)t
]

where µµµ∗ and ΣΣΣ∗ are the mean of the random ilr-coordinates and their covariance matrix,
respectively. Therefore, if x follows a normal distribution on the simplex SD, then it is
equivalent to say that ilr(x) follows a normal distribution on R

D−1. The logistic normal
distribution can be estimated by the OLS method with the packages “compositions ”
and “robCompositions” in R.

1.3 The CODA regression models

1.3.1 Notations

In this work, we will use the notations defined in Table 1.3.

1.3.2 The CODA regression models: expression in the simplex space
and in the coordinates space.

Let Yi ∈ SL denote the compositional response value of the ith observation, and X(q)
i ∈

SDq , q = 1, . . . , Q, denote the value of the qth compositional covariate for the ith
observation, Zik, k = 1, . . . , K denote the kth classical covariate of the ith observation,
B = (bld), l = 1, . . . , L, d = 1, . . . , D, is a parameter matrix such that jT

LB = 0D,
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BjD = 0L (see Kynčlová et al. (2015)), where jL is a L × 1 column vector of ones, and
jT
L is the transposed of jL.

The CODA regression model in the simplex

The linear CODA regression model in the simplex is defined by

Yi = b0

Q
⊕

q=1

B(q)
⊡ X(q)

i

K
⊕

k=1

Zki ⊙ ck ⊕ ǫǫǫi, i = 1, . . . , n (1.2)

where b0, B(1), . . . , B(Q), c1, . . . , cK are the parameters. The distributional assumption
is that ǫǫǫi ∈ SL follows the multivariate normal distribution on the simplex.

The CODA regression model in the ilr coordinate space

The CODA regression model in the ilr coordinate space is defined by

ilr(Yi) = b0
∗ +

Q
∑

q=1

ilr(X(q)
i )B∗(q) +

K
∑

k=1

Zkic∗

k + ilr(ǫǫǫi) (1.3)

where ilr(Yi), ilr(X(q)
i ) are the ilr coordinates of Yi, X(q)

i (q = 1, . . . , Q) respectively;
b0

∗, B∗
q , c∗

k are the parameters , and ilr(ǫǫǫi) are the residuals on the ilr coordinate space.
The distributional assumption is that ilr(ǫǫǫ) follows the multivariate normal distribution
with zero mean and covariance matrix ΣΣΣ∗.

Thereby, if a random composition x follows a Normal distribution on the simplex
SD, then it is equivalent to say that x∗ follows a Normal distribution on R

D−1.



Chapter 2

Abstract

Many papers focus on studying the two-party electoral system. However, more and more
interest is given to the exploration of the multiparty system nowadays. There are at least
fifteen political parties in France. In order to illustrate our method, we concentrate on
the outcome of the departmental election in France and we aggregate the outcome of the
election into three large groups of parties which are Left, Right, and Extreme Right. The
proportions of votes for these three parties and for each department form a vector called
composition (mathematically, a vector belonging to a simplex). Therefore, the electoral
outcome data in the 2015 French departmental election has the following properties: the
vectors have positive components which sum up to 1 for each statistical unit (department
here). According to the definition of compositions, it is thus equivalent to say that the
vectors of proportions of votes by party on a given department are compositional data.
The objective of this chapter is to use CODA regression models to generalize political
economy models to more than two parties and to study the impact of the characteristics
of the territorial units on the outcome of the election. The models are fitted on French
electoral data of the 2015 departmental elections with departmental level data. In the
political economy literature, such regression models are generally restricted to the case
of two political parties. In the statistical literature, there are regression models adapted
to share vectors including CODA models (for COmpositional Data Analysis), but also
Dirichlet models, Student models and others. In this chapter, we propose a CODA
regression model for analyzing how the geographic electoral result depends on the socio-
economic characteristic of the departments in France. This model will contain both
compositional explanatory variables and classical explanatory variables. Besides, the
classical statistical methods cannot be used directly for compositional data. Some log-
ratio transformations will be carried out. We use the ilr transformation in the coordinate
space in this thesis. We first build a CODA regression model in coordinate space and
then rewrite this model in the simplex. We apply the maximum likelihood estimation
to fit this model. However, the interpretation of parameters in regression model is quite
complex. We show how to use instead the vote share predictions to understand the
impact of socio-economic factors using some graphical techniques.

31



32 CHAPTER 2. LOGISTIC NORMAL FOR POLITICAL ECONOMY



Résumé

De nombreux articles portent sur l’étude du système électoral à deux partis. Cependant,
on s’intéresse de plus en plus à l’exploration du système multipartite. Il y a au moins
quinze partis politiques en France. Afin d’illustrer notre méthode, nous nous concen-
trons sur le résultat de l’élection départementale en France et nous agrégons le résultat
de l’élection en trois grands groupes de partis qui sont la gauche, la droite et l’extrême
droite. Les proportions de votes pour ces trois partis et pour chaque département for-
ment un vecteur appelé composition (mathématiquement, un vecteur appartenant à un
simplex). Par conséquent, les données sur les résultats des élections de 2015 dans les
départements français ont les propriétés suivantes: les vecteurs ont des composantes
positives qui totalisent 1 pour chaque unité statistique (département ici). Selon la défi-
nition des compositions, il est donc équivalent de dire que les vecteurs de proportions de
votes par parti sur un département donné sont des données de composition. L’objectif
de ce chapitre est d’utiliser les modèles de régression CODA pour généraliser les modèles
d’économie politique à plus de deux partis et d’étudier l’impact des caractéristiques des
unités territoriales sur le résultat des élections. Les modèles sont adaptés aux données
électorales françaises des élections départementales de 2015 avec des données au niveau
départemental. Dans la littérature sur l’économie politique, de tels modèles de régression
sont généralement limités au cas de deux partis politiques. Dans la littérature statis-
tique, il existe des modèles de régression adaptés au partage de vecteurs, notamment les
modèles CODA (pour l’analyse des données de substitution), mais également les mod-
èles de Dirichlet, les modèles de Student et autres. Dans ce chapitre, nous proposons
un modèle de régression CODA pour analyser la manière dont le résultat électoral géo-
graphique dépend des caractéristiques socio-économiques des départements en France.
Ce modèle contiendra à la fois des variables explicatives de composition et des variables
explicatives classiques. De plus, les méthodes statistiques classiques ne peuvent pas être
utilisées directement pour les données de composition. Certaines transformations de log-
ratio seront effectuées. Nous utilisons la transformation ilr dans l’espace de coordonnées
dans cette thèse. Nous construisons d’abord un modèle de régression CODA dans un es-
pace de coordonnées, puis nous réécrivons ce modèle dans le simplexe. Nous appliquons
l’estimation du maximum de vraisemblance pour correspondre à ce modèle. Cependant,
l’interprétation des paramètres dans le modèle de régression est assez complexe. Nous
montrons comment utiliser plutôt les prévisions de partage des voix pour comprendre
l’impact des facteurs socio-économiques à l’aide de certaines techniques graphiques.
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Analyzing the impacts of
socio-economic factors on French
departmental elections with
CODA methods12

Abstract
The proportions of votes by party on a given subdivision of a territory form a vector
called composition (mathematically, a vector belonging to a simplex). It is interesting
to model these proportions and study the impact of the characteristics of the territorial
units on the outcome of the elections. In the political economy literature, such regres-
sion models are generally restricted to the case of two political parties. In the statistical
literature, there are regression models adapted to share vectors including CODA models
(for COmpositional Data Analysis), but also Dirichlet models, Student models and oth-
ers. Our goal is to use CODA regression models to generalize political economy models
to more than two parties. The models are fitted on French electoral data of the 2015
departmental elections.

Keywords
political economy, compositional regression models, vote shares, departmental election,
Gaussian distribution

Résumé
Les proportions de votes par parti forment un vecteur de données dites de composi-
tion (mathématiquement, un vecteur appartenant à un simplexe) sur une subdivision de
territoire. Il est intéressant de modéliser ces proportions en étudiant l’impact des carac-
téristiques des unités territoriales sur l’issue des élections. Dans la littérature d’économie
politique, il existe des modèles de régression qui sont restreints généralement au cas de
deux partis politiques. Dans la littérature statistique, il existe des modèles de régression
adaptés à des vecteurs de parts dont les modèles CODA (pour “COmpositional Data
Analysis”), mais aussi les modèles de Dirichlet et d’autres. Notre objectif est d’utiliser les

1Submitted to Journal of Applied Statistics
2Joint work with T. Laurent, C. Thomas-Agnan and A. Ruiz-Gazen
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modèles de régression de type CODA pour généraliser les modèles d’économie politique
à plus de deux partis. Les modèles sont ajustés sur des données électorales françaises
des élections départementales de 2015.

Mots-clés.
économie politique, modéles de régression pour données de composition, proportions de
vote, élection départmental.

2.1 Introduction

Recently, models for elections focus on analyzing impacts of socio-economic factors for
two-party systems using classical regression models( see Lewis and Linzer (2005)). In
this paper, we propose a statistical model for studying the multiparty system using
compositional data analysis (CODA) with departmental level data. The dependent
variable will be the vector of votes shares for the French departmental election in 2015.
The explanatory variables include some compositional and continuous socio-economic
variables.

Among papers concentrating on the relationship between socio-economic variables
and election results, Beauguitte and Colange (2013) study a linear regression at three lev-
els of aggregation (polling stations, cities and electoral districts) and show that the socio-
economic variables are significant.Kavanagh et al. (2006) use geographically weighted re-
gression, which produces parameter estimates for each data point, i.e. for each electoral
division. On the other hand in the statistical literature, people have developped CODA
regression models where the dependent and independent variables may be compositional
variables (see Mert et al. (2018) for a review). Morais (2017) study the impact of media
investments on brand’s market shares with a CODA regression model. Trinh and Morais
(2017) use a CODA regression model to highlight the nutrition transition and to explain
it according to household characteristics. Honaker et al. (2002), Katz and King (1999)
use a statistical model for multiparty electoral data assuming that the territorial units
yield independent observations.

Vote share data of the 2015 French departmental election for 95 departments in
France are collected from the Cartelec website 3 and corresponding socio-economic data
(for 2014) have been downloaded from the INSEE website 4. Table 2.1 summarizes our
data set. In Section 2.2, we present the data set. Subsection 2.3.1 (resp: 2.3.2) recalls
the principles of compositional data analysis (resp: of compositional regression models).
In subsection 2.3.3, we implement the CODA model on the election data set and present
several plots to explore the impact of explanatory variables of a classical type illustrated
by the case of unemployment rate as well as variables of a compositional type illustrated
by the diploma variable.

3https://www.data.gouv.fr/fr/datasets/elections-departementales-2015-resultats-par-bureaux-de-
vote/

4https://www.insee.fr/fr/statistiques
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Table 2.1: Description for departmental level data

Variable name Description Averages

Vote share Left(L), Right(R), Extreme Right(XR) 0.370, 0.388, 0.242
Age Age_1840, Age_4064, Age_65. 0.313, 0.432, 0.255
Diploma <BAC, BAC, SUP. 0.591, 0.16, 0.239
Employment AZ, BE, FZ, GU, OQ 0.031, 0.099, 0.049,

0.439, 0.382

unemp The unemployment rate 0.117
employ_evol Mean annual growth rate of employment -0.145

(2009-2014)
owner The proportion of people who own assets 0.616
income The proportion of people who pay income tax 0.552
foreign The proportion of foreigners 0.050

2.2 Data

The database in this chapter contains the vote shares and all socio-economics charateris-
tics for 95 departments in France. These data are illustrated on Table 2.2. Employment
has five categories: AZ (agriculture, fisheries), BE (manufacturing industry, mining in-
dustry and others), FZ (construction), GU (business, transport and services) and OQ
(public administration, teaching, human health). Diploma has three levels: <BAC for
people with at most some secondary education, BAC for people with at least some
secondary education and at most a high school diploma, and SUP for people with a
university diploma. The Age variable has three levels: Age_1840 for people from 18
to 40 years old, Age_4064 for people from 40 to 64 years old, and Age_65 for elderly.
For the vote share variable, the Cartelec website provides a very detailed information.
The list of political parties which present candidates at that election is higher than 15.
However, at the end of the election, it is common to present the results by grouping the
political parties into three main components : Left, Right and Extreme-Right5. The
third column in Table 2.1 indicates the geometric means for compositional variables and
the averages for classical variables.

From the CODA point of view, when compositional data have three components,
they can be represented in a ternary diagram. For instance, the vote shares of the 95
departments for the Left and Right wings and the Extreme Right party are the blue
points in Figure 2.1. The red triangle corresponding to the Aube department on Figure
2.1 shows that its vote shares of the Left wing, the Right wing and the Extreme Right
party are respectively 17.4%, 54.6%, and 28%. Figure 2.2 illustrates the positions of the
French departments on the ternary diagram whose components correspond to the three
levels of the diploma variable, and the red triangle figures the geometric mean (adapted
mean for compositional data) of all departments.

5for more details, see https://fr.wikipedia.org/wiki/Elections_départementales_francaises_de_2015
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Figure 2.1: Vote shares in the 95 departments (blue points) with the Aube department
as the red triangle

2.3 Compositional data analysis approach

In order to analyze the impacts of the socio-economic factors on the election results, a
CODA regression model is proposed where the dependent variable is a compositional
variable (vote shares) and the independent variables are compositional or classical vari-
ables or a mixture of both. This model is based on the log-ratio transformation approach.

2.3.1 Principles of compositional data analysis

A composition x is a vector of D parts of some whole which carries relative information.
A D-composition x lies in the so-called simplex space SD defined by:

SD = {x = (x1, ..., xD)′ : xj > 0, j = 1, ..., D;
D
∑

j=1

xj = 1}

The simplex SD can be equipped with the Aitchison inner product (Aitchison (1985) and
Pawlowsky-Glahn et al. (2015)) in order to define distances. Classical regression models
cannot be used directly in the simplex because the constraints that the components are
positive and sum up to 1 are not compatible with their usual distributional assump-
tions. To overcome this difficulty, one way out is to use a log-ratio transformation from
the simplex space SD to the Euclidean space R

D−1. The classical transformations are
alr (additive log-ratio transformation), clr (centered log-ratio transformation), and ilr
(isometric log-ratio transformation). The coordinates in the clr transformed vector are
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Figure 2.2: Components of Diploma in the 95 departments (blue points) and their
geometric mean (red triangle)

linearly dependent, and the coordinates in the alr transformed vector are not compatible
with the geometry (distance between the components in the simplex space is different
from distance between the coordinates in the Euclidean space). For these reasons people
generally use one of the ilr transformation for compositional regression models.
An isometric log-ratio transformation (ilr) is defined by:

ilr(x) = VT
Dln(x)

where the logarithm of x is understood componentwise, VT
D is a transposed contrast ma-

trix Pawlowsky-Glahn et al. (2015) associated to a given orthonormal basis (e1, · · · , eD−1)
of SD by

VD = clr(e1, · · · , eD−1).

Note that such a contrast matrix VD of size D × (D − 1) satisfies the following
property:

1. VDVT
D = ID − 1

D 1D×D where ID is the D × D identity matrix, 1D×D is a D × D
matrix of ones.

2. VT
DVD = ID−1 where ID−1 is the identity matrix with dimension (D − 1).

3. VT
DjD = 0D−1 where jD is a D × 1 column vectors of ones.
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The following D × (D − 1) matrix VD defined by Egozcue et al. (2003) is an example
of contrast matrix for D = 3

V3 =





2/
√

6 0
−1/

√
6 1/

√
2

−1/
√

6 −1/
√

2





This particular matrix defines the following ilr coordinates

ilr1(x) =
1√
6

(2 log x1 − ln x2 − log x3) =
2√
6

log
x1√
x2x3

ilr2(x) =
1√
2

(log x2 − log x3) =
1√
2

log
x2

x3

The first ilr coordinate contains information about the relative importance of the first
component x1 with respect to the geometric mean of the second and the third compo-
nents g =

√
x2x3. The second ilr coordinate contains information about the relative

importance of the second component x2 with respect to the third component x3. In our
case, the first ilr coordinate opposes the Left wing to the group of the Right wing and
the Extreme Right party and the second opposes the Right wing to the Extreme Right
party. The inverse ilr transformation is given by:

x = ilr−1(x∗) = C(exp(VDx∗)) for x∗ ∈ RD−1

where the exponential of vector x is understood componentwise and

C(x) =



x1/
D
∑

j=1

xj , · · · , xD/
D
∑

j=1

xj



 is the closure operation.

The vector space structure of the simplex SD is defined by the perturbation and powering
operations:

x ⊕ y = C(x1y1, . . . , xDyD), x, y ∈ SD

λ ⊙ x = C(xλ
1 , . . . , xλ

D), λ is a scalar, x ∈ SD.

The compositional inner product (C-inner product) of x and y in SD is defined by

〈x, y〉c =
1
D

D−1
∑

i=1

D
∑

j=i+1

log
xi

xj
· log

yi

yj
=

D
∑

i=1

log
xi

g(x)
· log

yi

g(y)

where g(x) = D
√

x1x2...xD is the geometric mean of the components.
The compositional distance (C−distance) between x and y in SD is derived from the
inner product

dc(x, y) =





1
D

D−1
∑

i=1

D
∑

j=i+1

(

log
xi

xj
− log

yi

yj

)2




1/2

=

(

D
∑

i=1

(

log
xi

g(x)
− log

yi

g(y)

)2
)1/2
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Table 2.2: Notations.
Variable Notation Coordinates

Dependent Yi = (Yi1, . . . , YiL) ilr(Yi) = Y∗
i

Compositional explanatory X(q)
i = (X(q)

i1 , . . . , X
(q)
iDq

) ilr(X(q)
ip ) = X(q)∗

ip

Classical explanatory Zki

General notations
L Number of components of the

dependent variable

i = 1, . . . , n Index of observations (n = 95 )
q = 1, . . . , Q Index of compositional explanatory

variables (Q = 3)
p = 1, . . . , Dq Index of the coordinates for the

compositional explanatory variables
k = 1, . . . , K Index of classical explanatory

variables (K = 5)

The expected value E⊕Y of a simplex-valued random composition Y ∈ SD (see Pawlowsky-
Glahn et al. (2015)) is defined by

argminz∈SDE(d2
c(Y, z))

and it is equal to

E
⊕Y = C(exp(E log Y)) = clr−1(E clr(Y)) = ilr−1(E ilr(Y)) = ilr−1(EY∗)

where Y∗ = ilr(Y).

2.3.2 Compositional regression models

The notations used in this paper are summarized in Table 2.2
We now describe the CODA regression model. Yi ∈ SL denotes the compositional

response value of the ith observation, and X(q)
i ∈ SDq , q = 1, . . . , Q, denotes the value

of the qth compositional covariate for the ith observation, where Y ∈ SL and X(q) ∈
SDq , q = 1, . . . , Q, Zki, k = 1, . . . , K, denotes the kth classical covariate of the ith
observation. Let ⊡ be the compositional matrix product, which corresponds to the
matrix product in the coordinate space through the ilr transformation

B ⊡ x = C




D
∏

j=1

x
b1j

j , · · · ,
D
∏

j=1

x
bLj

j





T

where x ∈ SD and B = ((bij)), i = 1, . . . , L, j = 1, . . . , D, is a parameter matrix such
that the column vectors belong to SD, jT

LB = 0D, BjD = 0L, where jL is a L×1 column
vector of ones, and jT

L is the transposed of jL.
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Let us first introduce the CODA regression model in the ilr coordinate space as
follows:

ilr(Yi) = b0
∗ +

Q
∑

q=1

ilr(X(q)
i )B∗

q +
K
∑

k=1

Zkic∗

k + ilr(ǫǫǫi) (2.1)

where ilr(Yi), ilr(X(q)
i ) are the ilr coordinates of Yi, X(q)

i (q = 1, . . . , Q) respectively;
b0

∗, B∗
q , c∗

k are the parameters in the coordinate space, and ilr(ǫǫǫi) are the residuals.
The distributional assumption is that ilr(ǫǫǫ) follows the multivariate normal distribution
with zero mean and covariance matrix ΣΣΣ.
This regression model can be written in the simplex as

Yi = b0

Q
⊕

q=1

Bq ⊡ X(q)
i

K
⊕

k=1

Zki ⊙ ck ⊕ ǫǫǫi, i = 1, . . . , n (2.2)

where b0, B1, . . . , BQ, c1, . . . , cK are the parameters satisfying b0 ∈ SL, Bq ∈ SDq , q =
1, . . . , Q, ck ∈ SL, k = 1, . . . , K, jT

LBq = 0Dq , BqjDq = 0L, The distributional as-
sumption is that ǫǫǫi ∈ SL follows the normal distribution on the simplex (see Aitchison
(1985)).

It is classical to estimate model (2.1) using OLS thus assuming the independence
between the ilr coordinates. Chen et al. (2017) give different formulas relating the
parameters in the simplex to the parameters in the coordinate space. Following Chen
et al. (2017) (Property 2.1 and Property 2.3(3)), and Van den Boogaart and Tolosana-
Delgado (2013), in model (2.1)-(2.2), the relationship between the parameters in the
simplex and their counterpart in coordinate space is given by















b0 = exp(VLb∗
0) = ilr−1(b∗

0)

Bq = VLB∗
qVT

Dq

ck = exp(VLc∗

k) = ilr−1(c∗

k)

(2.3)

where VL and VDq , q = 1, . . . , Q are contrast matrices associated to the selected ilr
transformations.

2.3.3 Impact of compositional and classical explanatory variables

Because the interpretation of the parameters of these models is not so straightforward
(see Morais et al. (2017)), we rather concentrate on illustrating graphically the relation-
ship between the predicted vote shares and the explanatory variables. The prediction of
the dependent variable for the above models are given by:

Ŷi = b̂0

Q
⊕

q=1

B̂q ⊡ X(q)
i

K
⊕

k=1

Zki ⊙ ĉk i = 1, ..., n (2.4)



2.3. COMPOSITIONAL DATA ANALYSIS APPROACH 43

where b̂0, B̂q and ĉk are the estimated parameters. We can rewrite (2.4) as

Ŷi = C


b̂0 ·




Q
∏

q=1

X(q)
i

B̂q



 ·
(

K
∏

k=1

ĉZki

k

)



 i = 1, ..., n (2.5)

In order to illustrate these formulas, we will focus on graphing the predicted values of
the dependent variable as a function of one specific variable of interest: two cases must
be considered depending on whether the specific variable is classical or compositional.
In both cases, we will create a grid of potential values of the specific explanatory and
fix the other explanatory variables at the values they take for one selected point of the
dataset (we repeat for several selected points). For the sake of simplicity let us take
L = 3.

For the case when the specific variable is a classical covariate Zki, from (2.5) there
exists b̂0 ∈ SL (this term contains the impacts of all other explanatory but is constant
when Zki alone varies) such that

Ŷi = b̂0

⊕

Zki ⊙ ĉ = C
(

b̂01ĉZki

1 , · · · , b̂0LĉZki

L

)

With T = b̂01ĉZki

1 + · · · + b̂0LĉZki

L , we get

Ŷi1 =
b̂01ĉZki

1

T
; Ŷi2 =

b̂02ĉZki

2

T
; · · · ; ŶiL =

b̂0LĉZki

L

T
.

Now for the case when the specific variable is a compositional variable X(q)
i , let us

take for the sake of simplicity Dq = 3. As before, from (2.5), there exists b̂0 ∈ SL

(this term contains the impacts of all other explanatory but is constant when X
(q)
i alone

varies) such that

Ŷi = b̂0

⊕

X(q)
i

B̂q

= C(b̂01X
(q)
i1

b̂
(q)
11

X
(q)
i2

b̂
(q)
12

X
(q)
i3

b̂
(q)
13

, b̂02X
(q)
i1

b̂
(q)
21

X
(q)
i2

b̂
(q)
22

X
(q)
i3

b̂
(q)
23

,

b̂03X
(q)
i1

b̂
(q)
31

X
(q)
i2

b̂
(q)
32

X
(q)
i3

b̂
(q)
33 )

We now fit a CODA regression model describing the impacts of socio-economic factors
on vote shares in the 2015 French departmental election.
After including all explanatory variables from our data set in the regression model, and
eliminating one by one the variables which are not significant, we obtain the results in
Table 2.3. This model shows that the age of people, the proportion of people who own
assets, the proportion of foreigners do not have any impact on the vote shares. However,
the levels of education, the working areas, the unemployment rate and the proportion of
people who pay income tax really affect the result of the French departmental election
in 2015.
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Table 2.3: Regression with compositional and classical variables.
Dependent variable:

y_ilr[, 1] y_ilr[, 2]

Diplome_ilr1 −2.06(0.54)∗∗∗ −1.51(0.46)∗∗

Diplome_ilr2 −1.28(0.80) −2.07(0.67)∗∗

Employ_ilr1 −0.05(0.30) −2.12(0.34)
Employ_ilr2 +0.12(0.37) −2.62(0.46)∗∗

Employ_ilr3 +0.30(0.30) −2.12(0.34)
Employ_ilr4 +0.13(0.11) −2.62(0.46).

unemp −7.65(3.16)∗ −2.12(0.34)∗∗∗

income +2.04(1.37) −2.62(0.46)∗∗∗

Constant −2.32(1.15)∗ −4.80(0.97)∗∗∗

R2 0.30 0.62
Adjusted R2 0.23 0.59
Residual Std. Error (df = 86) 0.30 0.26
F Statistic (df = 8; 86) 4.602∗∗∗ 17.85∗∗∗

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

In order to illustrate the impact of unemployment on the predicted shares, we choose
three departments Ariège, Cantal and Bas-Rhin with different characteristics: Ariège has
the maximum Left wing share, Cantal the maximum Right wing share and Bas-Rhin
has the minimum Left wing share. We fix the values of the covariates at the values of
each of the three departments and create a grid of fictive values of unemployment rates.

Figure 2.3 shows the predictions of vote shares in these departments Ariège, Cantal
and Bas-Rhin as a function of unemployment rate (its minimum and maximum in the
data base are figured by the dotted vertical lines). We first of all see the non linear nature
of the relationship, and the fact that they differ from one department to the other. Note
that the predicted shares using this model satisfy the constraint of unit sum and it clearly
shows on the graph. In all cases, when the unemployment rate increases up to a given
threshold of around 15%, the Left wing and the Extreme Right party gain votes at the
expense of the Right wing. However, if unemployment keeps increasing beyond 15%, the
Left wing starts loosing votes while the Right wing keeps decreasing and the Extreme
Right keeps increasing. Overall, we can say that as unemployment rate varies, the Left
wing proportion is more stable than the other two parties and that the other two parties
affect each other like interconnecting pipes. Even though the three departments curves
have the same general shape, we note differences: the maximum of the Left wing share
is the highest in Ariège and lowest in Bas-Rhin; it is striking that the point at which
the Left wing share and the Right wing share are equal is obtained at approximately the
same value of unemployment rate in the three department but corresponds to different
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values of the common Left wing- Right wing share; this value is lower than the maximum
Left wing share in Ariège whereas it is slightly higher in Bas-Rhin. A major difference
between the three departments is revealed when one looks at the highest of the three
predictions: in Ariège, all realistic scenarios (between two vertical lines) result in a
victory of the Left wing, in Cantal, all three parties may win depending on the value of
unemployment and finally in Bas-Rhin there is no scenario leading to a victory of the
Left wing . To represent this differently, we plot on Figure 2.4 a ternary diagram showing
the curve of predicted shares as a function of unemployment rates together with a small
square figuring the observed position of the given department in the triangle and a small
diamond the corresponding prediction on the curve. The curve, a line in the simplex, is
colored according to the value of unemployment rate. The Cantal department is better
predicted than the Ariège and Bas-Rhin departments. We also note that the maximum
predicted proportion for the Left wing is lower in the Bas-Rhin than in the other two
departments. Finally, the triangle is divided in three parts with respect to the highest
shares to highlight the winning party as in Figure 2.3.
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Figure 2.3: The vote share prediction curves in three departments: Ariège, Cantal, Bas-
Rhin respectively (the grey dotted line show the minimum and the maximum observed
unemployment rates)

Let us now turn attention to the case of a compositional explanatory variable impact.
Figure 2.5 presents the vote share predictions according to the Diploma variable in the
same three departments (Ariège, Cantal and Bas-Rhin). The principle is the same: all
explanatory variables are fixed to the value of the given department except Diploma.
We create of grid in the Diploma triangle and compute the predicted shares at each
point of this grid. However, since it is impossible to plot a function from the simplex
to the simplex, we choose to summarize the predicted shares by the winning party (cor-
responding to the highest share) and color the triangle in the Diploma space according
to the winning party color. The observed shares are also figured by black points in this
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Figure 2.4: The vote share prediction ternary diagrams for fixed covariates given by three
departments: Ariège, Cantal, Bas-Rhin respectively as a function of the unemployment
rate. The green squares show the observed vote share of these departments and the
green triangles on the red curve the corresponding predictions.

ternary diagram thus showing the realistic values. This figure shows that there is a large
proportion of fictive situations (in terms of diploma proportions) where the Left party
would win.
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Figure 2.5: Predictions of vote shares according to Diploma for fixed covariates given by
the departments Ariège (left plot), Cantal (middle plot) and Bas-Rhin (right plot)

2.4 Conclusion

The above analysis demonstrates that the CODA regression models can be useful in
the context of political economy. We analyze how the predicted values in these models
vary with the predictors and propose new graphical tools to explore the impact of some
socio-economic variables on election results. Our future perspectives are to introduce
the geographical dimension in the model and to use the Student distribution (Katz
and King (1999)) instead of the normal distribution. At last, we plan to compute the
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elasticities as in Morais et al. (2017) to characterize the impacts of the covariates in a
more quantitative way.
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Chapter 3

Abstract

In the previous chapter, we build a multivariate Normal regression model to study the
impact of socio-economic factors on the outcome of an election. However, political data
often exhibit heavy tail behavior. Katz and King Katz and King (1999) propose to
replace the multivariate Normal distribution by the multivariate Student distribution.
The multivariate Student distribution is a useful and popular distribution and provides
a robust estimation procedure. This distribution is highly appreciated for heavy tails
data, especially with data in finance and in political economy. There are several ways
to define the multivariate Student distribution: the independent multivariate Student
distribution (IT) and the uncorrelated multivariate Student (UT) distribution. The IT
distribution considers that the components of the random vector are independent with
the same marginal Student distribution while the UT distribution postulates a joint
multivariate Student distribution for the vector of interest with uncorrelated vectors of
individuals. In order to model multivariate, possibly heavy-tailed data, we compare the
multivariate normal model (N) with two versions of the multivariate Student model.
After recalling some facts about these distributions and models, known but scattered
in the literature and fixed degree of freedom, we prove that the maximum likelihood
estimator of the covariance matrix in the UT model is asymptotically biased and pro-
pose an unbiased version. We provide implementation details for an iterative reweighted
algorithm to compute the maximum likelihood estimators of the parameters of the IT
model. We present a simulation study to compare the bias and root mean squared
error of the ensuing estimators of the regression coefficients and covariance matrix un-
der several scenarios of the potential data-generating process, misspecified or not. The
UT model is simpler to fit than the IT model but the single realization assumption is
a limitation. Therefore, in this chapter we propose a graphical tool and a test based
on the Mahalanobis distance to guide the choice between the gaussian N and the IT
Student models. The advantage of this approach is that it is simple based on a one
dimensional variable whereas the original observations have a multidimensional nature.
We also present an application to model vectors of financial assets returns.
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Résumé

Dans le chapitre précédent, nous construisons un modèle de régression normal à plusieurs
variables pour étudier l’impact des facteurs socioéconomiques sur le résultat d’une élec-
tion. Cependant, les données politiques montrent souvent un comportement de queue
lourde. Katz et King Katz and King (1999) proposent de remplacer la distribution
multivariée de Normal par la distribution multivariée de Student. La distribution mul-
tivariée de Student est une distribution utile et populaire qui fournit une procédure
d’estimation robuste. Cette distribution est très appréciée pour les données sur les
queues lourdes, en particulier pour les les données en finance et en économie politique.
Il existe plusieurs façons de définir la distribution de Student multivariée: la distribu-
tion de Student multivariée indépendante et la distribution de Student multivariée non
corrélée. La distribution IT considère que les composants du vecteur aléatoire sont in-
dépendants avec la même distribution de Student marginale, tandis que la distribution
UT postule une distribution de Student commune à plusieurs variables pour le vecteur
d’intérêt avec des vecteurs d’individus non corrélés. Afin de modéliser des données mul-
tivariées, éventuellement lourdes, nous comparons le modèle normal multivarié (N) à
deux versions du modèle de Student multivarié. Après avoir rappelé quelques faits sur
ces distributions et modèles, connus mais éparpillés dans la littérature et à degré de
liberté fixe, nous montrons que l’estimateur du maximum de vraisemblance de la ma-
trice de covariance dans le modèle UT est asymptotiquement biaisé et proposons une
version non biaisée. Nous fournissons des détails de mise en œuvre pour un algorithme
itératif repondéré permettant de calculer les estimateurs de vraisemblance maximale des
paramètres du modèle IT. Nous présentons une étude de simulation pour comparer le
biais et l’erreur quadratique moyenne fondamentale des estimateurs des coefficients de
régression et de la matrice de covariance résultants dans plusieurs scénarios du processus
potentiel de génération de données, mal spécifié ou non. Le modèle UT est plus simple
à adapter que le modèle informatique, mais l’hypothèse de réalisation unique est une
limitation. Dans ce chapitre, nous proposons donc un outil graphique et un test basés
sur la distance de Mahalanobis pour guider le choix entre les modèles Gaussien N et
Student IT. L’avantage de cette approche est qu’elle est simple, basée sur une variable
unidimensionnelle, alors que les observations originales ont un caractère multidimension-
nel. Nous présentons également une application permettant de modéliser les vecteurs
des rendements des actifs financiers.
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Multivariate Student versus
Multivariate Gaussian Regression
Models with Application to
Finance12

Abstract
To model multivariate, possibly heavy-tailed data, we compare the multivariate nor-
mal model (N) with two versions of the multivariate Student model: the independent
multivariate Student (IT) and the uncorrelated multivariate Student (UT). After re-
calling some facts about these distributions and models, known but scattered in the
literature, we prove that the maximum likelihood estimator of the covariance matrix in
the UT model is asymptotically biased and propose an unbiased version. We provide
implementation details for an iterative reweighted algorithm to compute the maximum
likelihood estimators of the parameters of the IT model. We present a simulation
study to compare the bias and root mean squared error of the ensuing estimators of
the regression coefficients and covariance matrix under several scenarios of the potential
data-generating process, misspecified or not. We propose a graphical tool and a test
based on the Mahalanobis distance to guide the choice between the competing models.
We also present an application to model vectors of financial assets returns.

Keywords
multivariate regression models; heavy-tailed data; Mahalanobis distances; maximum
likelihood estimator; independent multivariate Student distribution; uncorrelated mul-
tivariate Student distribution

3.1 Introduction

Many applications involving models for multivariate data underline the limitations of
the classical multivariate Gaussian model, mainly due to its inability to model heavy

1Published to Journal of Risk and Financial Management
2Joint work with A. Ruiz-Gazen, C. Thomas-Agnan and T. Laurent
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tails. It is then natural to turn attention to a more flexible family of distributions, for
example the multivariate Student distribution.

In one dimension, the generalized Student distribution encompasses the Gaussian
distribution as a limit when the number of degrees of freedom or shape parameter tends
to infinity, allowing for heavier tails when the shape parameter is small. As we will
see, a first difficulty in higher dimensions is that there are several kinds of multivariate
Student distributions; see for example Johnson and Kotz (1972) and more recently Kotz
and Nadarajah (2004). A nice summary of the properties of the multivariate Student
distribution that we will use later on in this paper, and its comparison with the Gaussian
multivariate, can be found in Roth (2012).

Before going further, let us mention that it is not so easy to have a clear overview
of the results in terms of Student regression models for at least three reasons. The first
reason is that this topic is scattered, with some papers in the statistical literature and
others in the econometrics literature, sometimes without cross-referencing. The second
reason is that the word “multivariate” is sometimes misleading since, as we will see,
the multivariate Student is used to define a univariate regression model. At last, the
distinction between models UT and IT (see below) is not always clearly announced in
the papers. Other miscellaneous reasons are that some authors just fit the distribution
without covariates and finally that some authors consider the degrees of freedom as
fixed, whereas others estimate it. Our first purpose here is to lead the reader through
this literature and gather the results concerning the maximum likelihood estimators of
the parameters in the multivariate UT and IT models with a common notation. In
the present paper, we consider a multivariate dependent vector and a linear regression
model with different assumptions on the error term distribution. The most common
and convenient assumption is the Gaussian distribution. For a Gaussian vector, the
assumption of independent coordinates is equivalent to the assumption of uncorrelated
coordinates. Such an equivalence is no longer true when considering a multivariate
Student distribution. We thus consider two cases: uncorrelated (UT) on the one hand
and independent Student (IT) error vectors on the other hand.

The purpose of this paper is to contribute to the UT and IT models as well as to
their comparisons. First of all, for the UT model, we extend to the multivariate case the
results of Zellner (1976) for the derivation of the maximum likelihood estimators and
Zellner’s formula (Zellner (1976)) for the bias of the covariance matrix estimator, and
we prove that it does not vanish asymptotically. For the multivariate IT model, in the
same spirit as Lange and Sinsheimer (1993), we provide details for the implementation
of an iterative reweighted algorithm to compute the maximum likelihood estimators of
the parameters. We devise a simulation study to measure the impact of misspecification
on the bias, variance, and mean squared error of these different parameters’ estimates
under several data-generating processes (Gaussian, UT ,and IT) and try to answer the
question: what are the consequences of a wrong specification? Finally we introduce a
new procedure for model selection based on the knowledge of the distribution of the
Mahalanobis distances under the different data-generating processes (DGP).

One application attracted our attention in the finance literature. The work in Platen
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and Rendek (2008) identified the Student distribution with between three and five de-
grees of freedom, with a concentration around four, as the typical distribution for mod-
eling the distribution of log-returns of world stock indices. They embedded the Stu-
dent t in the class of generalized hyperbolic distributions, itself a subclass of the nor-
mal/independent family. For bivariate returns, the work in Fung and Seneta (2010)
compared a multivariate Student IT model with an alternative model obtained by a
more complex mixing representation from the point of view of asymptotic tail depen-
dence. The work in Huber and Ronchetti (2009) insisted on the fact that the choice of
distribution matters when optimizing the portfolio. They found that the Student UT
model performs the best in the class of symmetric generalized hyperbolic distributions.
The work in Kan and Zhou (2017) advocated using a multivariate IT model for fitting
the joint distribution of stock returns for a few fixed values of the degrees of freedom
parameter and showed that this model outperforms the multivariate Gaussian.

In Section 3.2, after recalling the univariate results, we extend the results of Zellner
(1976) for the derivation of the maximum likelihood estimators and its properties in
the UT model and propose an iterative implementation for the IT model. We present
the results of the simulation study in Section 3.3 and of the model selection strategy in
Section 3.4 using a toy example and a dataset from finance. Section 3.5 summarizes the
findings and gives recommendations.

3.2 Multivariate Regression Models
3.2.1 Literature Review

In order to define a Student regression model, even in the univariate case (single depen-
dent variable), one needs to use the multivariate Student distribution to describe the
joint distribution of the vector of observations for the set of statistical units. There are
mainly two options, which were described in Kelejian and Prucha (1985) for the case of
univariate regression. Indeed, the property of the equivalence between the independence
and uncorrelatedness for components of a Gaussian vector are not satisfied anymore
for a multivariate Student vector. One option, which we will call the IT model (for
independent t-distribution) in the sequel, considers that the components of the random
disturbance vector of the regression model are independent with the same marginal Stu-
dent distribution. The second option, which we will call the UT model (for uncorrelated
t-distribution), postulates a joint multivariate Student distribution for the vector of dis-
turbances. Note that in both models, the marginal distribution of each component still
is Student univariate.

The work in Zellner (1976) introduced a univariate Student regression model of
the type UT with known degrees of freedom and studied the corresponding maximum
likelihood and Bayesian estimators (with some adapted priors). The work in Singh
(1988) considered the case of univariate Student regression with the UT model and with
unknown degrees of freedom and derived an estimator of the degrees of freedom and
subsequent estimators of the other parameters. However, Fernandez and Steel (1999)
showed that this estimator was not consistent. Using one possible representation of the



56 CHAPTER 3. MULTIVARIATE STUDENT REGRESSION MODELS

multivariate Student distribution, Lange and Sinsheimer (1993) embedded univariate
Student regression with the UT model in a larger family of regression models (with
normal/independent error distributions) and developed EM algorithms to compute their
maximum likelihood estimates, as in Dempster (1980).

In the framework of the spherical error distribution, which includes the Student
error model as a special case, the work in Fraser and Ng (1980) proved an extension
to the multivariate case of Zellner’s result stating that inference about the parameters
corresponds closely to that under normal theory. Motivated by a financial application,
the work in Sutradhar and Ali (1986) used a multivariate UT Student regression model
with moment estimators instead of maximum likelihood and allowing the degrees of
freedom to be unknown.

The univariate IT model was introduced in Fraser (1979) and compared to the UT
model in Kelejian and Prucha (1985).

Concerning multivariate IT Student distributions, there was first a collection of re-
sults or applications for the case without regressors. The work in McNeil et al. (2005)
used a representation of the multivariate IT Student distribution to derive an algorithm
of the EM type for computing the maximum likelihood parameter estimators. They
used the framework of normal mixture distributions in which the Student distribution
can be expressed as a combination of a Gaussian random variable and an inverse gamma
random variable. More recently, the work in Dogru et al. (2018) proposed a more ro-
bust extension, replacing maximum likelihood by a kind of M-estimation method based
on the minimization of a q-entropy criterion. For the multivariate Student IT model,
the work in Prucha and Kelejian (1984) derived the normal equations for the maximum
likelihood estimators and their asymptotic properties with known degrees of freedom in
a framework that encompasses our multivariate Student regression case. The work in
Lange et al. (1989) illustrated this multivariate IT model on several examples. The work
in Lange and Sinsheimer (1993) considered the framework of normal/independent error
distributions (same as normal variance mixtures) and derived the EM algorithm for the
maximum likelihood estimators in a model with covariates. The works in Liu and Rubin
(1995) and Liu (1997) developed extensions of the EM algorithm for the multivariate
IT model with known or unknown degrees of freedom, with or without covariates and
with or without missing data. The work in Katz and King (1999) fit a multivariate IT
distribution to multiparty electoral data. The work in Fernandez and Steel (1999) at-
tracted attention to the fact that maximum likelihood inference can encounter problems
of unbounded likelihood when the number of degrees of freedom is considered unknown
and has to be estimated. Before engaging in the use of the multivariate Student distri-
bution, it is wise to read Hofert (2013), which explained some traps to be avoided. One
difficulty indeed is to be aware that some authors parametrize the multivariate Student
distribution using the covariance matrix, while others use the scatter matrix, sometimes
with the same notation for either one.

We consider the following version of the Student p-multivariate distribution denoted
by Tp(µµµ,ΣΣΣ, ν) with µµµ being the p-vector of means, ΣΣΣ being the p × p covariance matrix,
and ν > 2 the degrees of freedom. It is defined, for a p-vector z, by the probability
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density function:

p(z|µµµ,ΣΣΣ, ν) =
f(ν)

det(ΣΣΣ)1/2

[

1 +
1

ν − 2
(z − µµµ)TΣΣΣ−1(z − µµµ)

]−(ν+p)/2

, (3.1)

where T denotes the transpose operator, f(ν) =
Γ[(ν + p)/2]

Γ(ν/2)(ν − 2)p/2πp/2
and Γ is the usual

Gamma function.
Note that the assumption ν > 2 implies the existence of the first two moments of

the distribution and that the above density function is parametrized in terms of the
covariance matrix. In most of the literature on multivariate Student distributions, the
density is rather parametrized as a function of the scatter matrix ((ν − 2)/ν)ΣΣΣ. Us-
ing the covariance matrix parametrization facilitates the comparison with the Gaussian
distribution. We first recall some results in the univariate regression context.

3.2.2 Univariate Regression Case Reminder

In the univariate regression case and for a sample of size n, we have a one-dimensional
dependent variable Y i, i = 1, . . . , n, whose values are stacked in a vector Y , and K
explanatory variables defining a n × (K + 1) design matrix X including the constant.

The regression model is written as Y = Xβββ + ǫǫǫ, where βββ = (β0, . . . , βK)T is a
(K + 1)-dimensional vector of parameters and the error term ǫǫǫ = (ǫ1, . . . , ǫn)T is an
n-dimensional vector. If we consider that the design matrix is fixed with rank K + 1 or
look at the distribution of ǫǫǫ conditional on X , the usual assumptions are the following.
The errors ǫi, i = 1, . . . , n, are independent and identically distributed (i.i.d.) with
expectation zero and equal variance σ2. In this context, it is well known that the least
squares estimator of βββ is equal to:

β̂̂β̂β = (X T X )−1X T Y (3.2)

while the classical σ2 estimator is σ̂2 = ǫ̂ǫǫT ǫ̂ǫǫ/(n − K − 1) where ǫ̂ǫǫ = Y − X β̂ββ. These
estimators are unbiased. In the case of a Gaussian error distribution, the estimator β̂̂β̂β
coincides with the maximum likelihood estimator of βββ, while the maximum likelihood
estimator of σ2 is equal to σ̂2 multiplied by (n − K − 1)/n and is only asymptotically
unbiased. In the Gaussian case, there is an equivalence between the ǫi being independent
or uncorrelated. However, this property is no longer true for a Student distribution.
This means that one should distinguish the case of uncorrelated errors from the case
of independent errors. The case where the errors ǫi, i = 1, . . . , n, follow a joint n-
dimensional Student distribution with diagonal covariance matrix and equal variance
is called the UT model, and its coordinates are uncorrelated, but not independent.
Interestingly, the maximum likelihood method for the UT model with known degrees of
freedom leads to the least squares estimator (3.2) of βββ (see Zellner (1976)). This property
is true for more general distributions as long as the likelihood is a decreasing function
of ǫǫǫTǫǫǫ. Concerning the error variance, the maximum likelihood estimator is (n − K −
1)ν σ̂2/(n(ν − 2)) and is biased even asymptotically Zellner (1976). For the independent
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case, we assume that the errors ǫi, i = 1, . . . , n, are i.i.d. with a Student univariate
distribution and known degrees of freedom. The maximum likelihood estimators belong
to the class of M-estimators, which are studied in detail in Chapter 7 of Huber and
Ronchetti (2009). These estimators are defined through implicit equations and can be
computed using an iterative reweighted algorithm.

In what follows, we consider the case of a multivariate dependent variable and propose
to gather and complete the results from the literature. As we will see, the results
derived in the multivariate case are very similar to their univariate counterpart. In
particular, the maximum likelihood estimator of the error covariance matrix is biased
for the uncorrelated Student model, while there is a need to define an iterative algorithm
for the independent Student model.

3.2.3 The Multivariate Regression Model

Let us consider a sample of size n, and for i = 1, . . . , n, let us denote the L-dimensional
dependent vector by:

Y i = (yi1, . . . , yiL)T .

For K explanatory variables, the design matrix is of size L × (K + 1)L and is given
by:

X i = IL ⊗ xT
i

for i = 1, . . . , n, with the (K + 1)-vector xi = (1, xi1, . . . , xiK)T , IL the identity matrix
with dimension L, and ⊗ the usual Kronecker product. The parameter of interest is a
(K + 1)L vector given by:

βββ = (βββT
1 , . . . ,βββT

L)T ,

where βββj = (β0j , . . . , βKj)T , for j = 1, . . . , L, and the L-vector of errors is denoted by:

ǫǫǫi = (ǫi1, . . . , ǫiL)T

for i = 1, . . . , n. We consider the linear model:

Y i = X iβββ + ǫǫǫi (3.3)

with E(ǫǫǫi) = 0 and i = 1, . . . , n. Using matrix notations, we can write Model (3.3) as:

Y = Xβββ + ǫǫǫ (3.4)

with the nL-vectors:
Y = (YT

1 , . . . , YT
n )T ,

ǫǫǫ = (ǫǫǫT
1 , . . . , ǫǫǫT

n )T

and the nL × (K + 1)L matrix:

X = (X T
1 , . . . , X T

n )T .

In what follows, we make different assumptions on the distribution of ǫǫǫ and recall
(for Gaussian and IT) or derive (for UT) the maximum likelihood estimators of the
parameter βββ and of the covariance matrix of ǫǫǫ.
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3.2.4 Multivariate Normal Error Vector

Let us first consider Model (3.4) with independent and identically distributed error
vectors ǫǫǫi, i = 1, . . . , n, following a multivariate normal distribution NL(0,ΣΣΣ) with an
L-vector of means equal to zero and an L×L covariance matrix ΣΣΣ. This model is denoted
by N , and the subscript N is used to denote the error terms ǫǫǫNi, i = 1, . . . , n, and the
parameters βββN and ΣΣΣN of the model. The maximum likelihood estimators of βββN and
ΣΣΣN are:

β̂̂β̂βN = (X T X )−1X T Y , (3.5)

Σ̂̂Σ̂ΣN =
∑n

i=1 ǫ̂̂ǫ̂ǫNiǫ̂̂ǫ̂ǫ
T
Ni

n
, (3.6)

where ǫ̂̂ǫ̂ǫNi = Y i − X iβ̂̂β̂βN (see, e.g., Theorem 8.4 from Seber (2009)).
The estimator β̂̂β̂βN is an unbiased estimator of βββN while the bias of Σ̂̂Σ̂ΣN is equal to

−((K +1)/n)ΣΣΣN and tends to zero when n tends to infinity (see, e.g., Theorems 8.1 and
8.2 from Seber (2009)).

For data such as financial data, it is well known that the Gaussian distribution
does not fit the error term well. Student distributions are known to be more appropriate
because they have heavier tails than the Gaussian. As for the univariate case, for Student
distributions, the independence of coordinates is not equivalent to their uncorrelatedness,
and we consider below two types of Student distributions for the error term. In Section
3.2.5, the error vector ǫǫǫ is assumed to follow a Student distribution with nL dimensions
and a particular block diagonal covariance matrix. More precisely, we assume that
the error vectors ǫǫǫi, i = 1, . . . , n, are identically distributed and uncorrelated but are
not independent. In Section 3.2.6, however, we consider independent and identically
distributed error vectors ǫǫǫi, i = 1, . . . , n, with an L-dimensional Student distribution.

3.2.5 Uncorrelated Multivariate Student (UT) Error Vector

Let us consider Model (3.4) with uncorrelated and identically distributed error vec-
tors ǫǫǫi, i = 1, . . . , n, such that the vector ǫǫǫ follows a multivariate Student distribution
TnL(0,ΩΩΩ, ν) with known degrees of freedom ν > 2 and covariance matrix ΩΩΩ = In ⊗ Σ.
The L×L matrix Σ is the common covariance matrix of the ǫǫǫi, i = 1, . . . , n. This model is
denoted by UT, and the subscript UT is used to denote the error terms ǫǫǫUT i, i = 1, . . . , n,
and the parameters βββUT , ΩΩΩUT , and ΣΣΣUT of the model. This model generalizes the model
proposed by Zellner (1976) to the case of multivariate ǫǫǫis. We derive the maximum like-
lihood estimators of βββUT and ΣΣΣUT in Proposition 1 and give the bias of the covariance
estimator in Proposition 2. The proofs of the propositions are given in the Appendix.

Proposition 1. The maximum likelihood estimators of βββUT and ΣΣΣUT are given by:

β̂ββUT =
(

X T X
)−1

X T Y ,

Σ̂ΣΣUT =
ν

ν − 2

∑n
i=1 ǫ̂ǫǫUT iǫ̂ǫǫ

T
UT i

n
,

(3.7)
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where ǫ̂̂ǫ̂ǫUT i = Yi − X iβ̂ββUT .

The next proposition gives the bias of the maximum likelihood estimators and gen-
eralizes Zellner’s result (Zellner (1976), p. 402) to the multivariate UT model. The max-
imum likelihood estimator of βββUT coincides with the least squares and with the method
of moment estimators and is unbiased. This is no longer the case for the maximum like-
lihood estimator of ΣΣΣUT , which is biased even asymptotically. This gives an example of
a maximum likelihood estimator that is not asymptotically unbiased in a context where
the random variables are not independent. It illustrates that the independence assump-
tion is crucial to derive the usual properties of the maximum likelihood estimators. Note
that the method of moments estimator is a consistent estimator of ΣUT (see Sutradhar
and Ali (1986)).

Proposition 2. The estimator β̂ββUT is unbiased for βββUT . The estimator Σ̂ΣΣUT is biased
for ΣΣΣUT even asymptotically. More precisely,

E(Σ̂ΣΣUT ) =
n − K

n

ν

ν − 2
ΣΣΣUT

A consequence of Proposition 2 is that an asymptotically unbiased estimator of ΣΣΣUT

is given by Σ̃ΣΣUT =
n
∑

i=1

ǫ̂ǫǫUT iǫ̂ǫǫ
T
UT i/n.

3.2.6 Independent Multivariate Student (IT) Error Vector

Let us consider Model (3.4) using the notations of Section 3.2.3 with i.i.d. ǫǫǫi, i = 1, . . . , n,
following a Student distribution with L dimensions and known degrees of freedom ν >
2. We denote this model by IT and the parameters of the model by βββIT and ΣΣΣIT .
The IT model is a particular case of Prucha and Kelejian (1984) where the B matrix in
Expression (2.1) in Prucha and Kelejian (1984) is equal to zero.

Following Prucha and Kelejian (1984), we derive the maximum likelihood estimators
for the IT model.

Proposition 3. The maximum likelihood estimators of βββIT and ΣΣΣIT in the IT regression
model satisfy the following implicit equations:

β̂ββIT =

(

n
∑

i=1

ŵIT iX
T
i Σ̂ΣΣ

−1

IT X i

)−1 n
∑

i=1

ŵIT iX
T
i Σ̂ΣΣ

−1

IT Y i

Σ̂ΣΣIT =
1
n

n
∑

i=1

ŵIT iǫ̂ǫǫIT iǫ̂ǫǫ
T
IT i

(3.8)

with: ǫ̂̂ǫ̂ǫIT i = Yi − X iβ̂ββIT and ŵIT i =
ν + L

ν − 2 + ǫ̂ǫǫT
IT iΣ̂ΣΣ

−1

IT ǫ̂ǫǫIT i

.
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These estimators are consistent estimators of βββIT and ΣΣΣIT (see Theorem 3.2 in
Prucha and Kelejian (1984)). In order to compute them, we propose to implement the
following iterative reweighted algorithm in the same spirit as in Huber and Ronchetti
(2009) for the univariate case (see also Lange et al. (1989)).

Step 0: Let:

β̂ββ
(0)

IT = (X T X )−1X T Y

ǫ̂ǫǫ
(0)
IT = Y − X β̂ββ

(0)

IT

Σ̂ΣΣ
(0)

IT =
1
n

n
∑

i=1

ǫ̂ǫǫ
(0)
IT iǫ̂ǫǫ

(0)T
IT i

Step k → Step (k + 1), k > 0:

ŵ
(k+1)
IT i =

ν + L

ν − 2 + ǫ̂ǫǫ
(k)
IT iΣ̂ΣΣ

(k)−1

IT ǫ̂ǫǫ
(k)
IT i

β̂ββ
(k+1)

IT =

(

n
∑

i=1

ŵ
(k+1)
IT i X T

i Σ̂ΣΣ
(k)−1

IT X i

)−1 n
∑

i=1

ŵ
(k+1)
IT i X T

i Σ̂ΣΣ
(k)−1

IT Y i

ǫ̂ǫǫ
(k+1)
IT = Y − X β̂ββ

(k+1)

IT

Σ̂ΣΣ
(k+1)

IT =
1
n

n
∑

i=1

ŵ
(k+1)
IT i ǫ̂ǫǫ

(k+1)
IT i ǫ̂ǫǫ

(k+1)T
IT i

The process is iterated until convergence. Note that this algorithm is given in detail
in Section 7.8 of Huber and Ronchetti (2009) for a general class of univariate regression
M-estimators. It is also sometimes called IRLS for iteratively-reweighted least squares
and can be seen as a particular case of the EM algorithm (see Lange et al. (1989)).

Table 3.2.6 gathers the likelihoods and thus summarizes the three models of interest.

Table 3.1: Distribution of the error vector ǫǫǫ in the Gaussian, UT, and IT models.
Model Distribution

N(ǫǫǫ1, . . . , ǫǫǫn) NnL(0, In ⊗ ΣΣΣN ) =
n
∏

i=1

NL(0,ΣΣΣN )

UT(ǫǫǫ1, . . . , ǫǫǫn) TnL(0, In ⊗ ΣΣΣUT , ν)

IT(ǫǫǫ1, . . . , ǫǫǫn)
n
∏

i=1

TL(0,ΣΣΣIT , ν)
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3.3 Simulation Study

3.3.1 Design

This study aims at comparing the properties of the estimators of βββ and ΣΣΣ as defined
in the previous section for the multivariate Gaussian (N), the uncorrelated multivariate
Student (UT), and the independent multivariate Student (IT) error distributions, under
several scenarios for the DGP. Note that for the UT model, we used the asymptotically
unbiased estimator Σ̃ΣΣUT to estimate ΣΣΣUT . We considered a variety of degrees of freedom
νDGP for the Student IT and UT models with a focus on values between three and
five. We used the function rmvt from the R package mvnfast to simulate the Student
distributions. For a sample size n = 1000 and a number of replications N = 10,000,
we simulated an explanatory variable X following a Gaussian distribution N (45, 10).
The parameter vector βββ and the covariance matrix ΣΣΣ are respectively chosen to be:

βββ =











β01

β11

β02

β12











=











2
3
4

−3











; ΣΣΣ =

[

σ2
1 ρσ1σ2

ρσ1σ2 σ2
2

]

=

[

2 0.5
0.5 1

]

.

Note that similar results are obtained with other choices of parameters.
For each DGP, we calculate a number of Monte Carlo performance measures of the

estimators proposed in Section 3.2. The performances are measured by the Monte Carlo
relative bias (RB) and the mean squared error (MSE), which are defined for an estimator
θ̂ of a parameter θ by:

Bias(θ̂) =
1
N

n
∑

i=1

θ̂(i) − θ

RB(θ̂) = 100
Bias(θ̂)

θ

MSE(θ̂) =
1
N

N
∑

i=1

(

θ̂(i) − θ
)2

.

(3.9)

We also compute a relative root mean squared error (RRMSE) with respect to a
baseline estimator θ̃ as:

RRMSE(θ̂) =

(

MSE(θ̂)
MSE(θ̃)

)1/2

.

In our case, the baseline estimator is the maximum likelihood estimator (MLE)
corresponding to the DGP. For example, in Table 3.2, the RRMSE of the β̂ββIT for the
Gaussian DGP is the ratio of the MSE of β̂ββIT with the degrees of freedom νMLE and
the MSE of β̂ββN . Note that if θ̂ = θ̃, then the RRMSE of θ̂ is equal to one.
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Table 3.2: Relative bias and relative root mean squared error of the estimators of βββ
(β̂ββN , β̂ββUT , β̂ββIT ) for the corresponding DGP (Gaussian, UT, and IT).

DGP N UT (νDGP = 3) IT (νDGP = 3)

Methods Estimators RB (%) RRMSE RB (%) RRMSE RB (%) RRMSE

β̂ββN , β̂ββUT

β̂01 −0.07 1.00 −0.06 1.00 −0.09 1.48

β̂02 0.00 1.00 0.00 1.00 0.00 1.48

β̂11 −0.02 1.00 −0.01 1.00 −0.07 1.46

β̂12 −0.00 1.00 −0.00 1.00 −0.00 1.46

β̂ββIT (νMLE = 3)

β̂01 −0.09 1.04 −0.09 1.09 −0.03 1.00

β̂02 0.00 1.04 0.00 1.09 0.00 1.00

β̂11 −0.04 1.07 −0.02 1.08 −0.03 1.00

β̂12 −0.00 1.07 −0.00 1.08 −0.00 1.00

3.3.2 Estimators of the β Parameters

Table 3.3 reports the bias and the MSE of the Gaussian MLE estimator β̂ββN , the UT
MLE estimator β̂ββUT (νDGP = 3), and the IT MLE estimator β̂ββIT (νDGP = 3) when the
model is well specified, i.e., under the corresponding DGP. The bias and MSE of the
estimators of βββ are small and comparable under the Gaussian and the UT DGP, but
smaller for the IT DGP. Note that, in our implementation, the results of the algorithm
for the IT estimators are very similar to those obtained using the function heavyLm
from the R package heavy.

Table 3.3: Bias and MSE of the maximum likelihood estimators of βββ for the correspond-
ing DGP (Gaussian, UT, and IT).

DGP N UT (νDGP = 3) IT (νDGP = 3)

Estimators Bias MSE Bias MSE Bias MSE

β̂01 −1.39 × 10−3 4.57 × 10−2 −1.27 × 10−3 3.72 × 10−2 6.65 × 10−4 1.99 × 10−2

β̂02 2.41 × 10−5 2.18 × 10−5 1.47 × 10−5 1.76 × 10−5 9.90 × 10−6 9.50 × 10−6

β̂11 −6.62 × 10−4 2.16 × 10−2 3.23 × 10−4 2.05 × 10−2 −1.02 × 10−3 9.84 × 10−3

β̂12 1.87 × 10−5 1.02 × 10−5 3.90 × 10−6 9.60 × 10−6 2.14 × 10−5 4.70 × 10−6

In Table 3.2, we start considering misspecifications and report the corresponding
relative values RB and RRMSE of the same estimators and the same DGP as in Table
3.3 with all possible combinations of DGP and estimation methods. The results indicate
that the RB of β̂ββ are all very small. If the DGP is Gaussian and the estimator is IT, the
RRMSE of coordinates of β̂ββ is about 1.09. However, if the DGP is IT and the estimator
is Gaussian, the RRMSE of coordinates of β̂ββ is higher (from 1.46–1.48). Hence for the
Gaussian DGP, we do not loose too much efficiency using the IT estimator β̂ββIT with
three degrees of freedom. Inversely, we loose much more efficiency when using β̂ββN for
the IT DGP with three degrees of freedom.

In order to consider more degrees of freedom (3, 4, and 5), we now drop the bias
and focus on the RRMSE. Table 3.4 indicates that the RRMSE of β̂̂β̂β is very similar
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and close to one, with a maximum of 1.09, except for the case of the N estimator
under the IT DGP, where it can reach 1.48. The work in Maronna (1976) provided
theoretical asymptotic efficiencies of the Student versus the Gaussian estimators, the

ratio of asymptotic variances being equal to
(ν − 2)(ν + L + 2)

ν(ν + L)
. The values obtained in

Table 3.2 are very similar to these asymptotic values.

Table 3.4: The root relative mean squared errors of β̂̂β̂β.

Methods
DGP N UT IT

RRMSE νDGP = 3 νDGP = 4 νDGP = 5 νDGP = 3 νDGP = 4 νDGP = 5

N

β̂01 1.00 1.00 1.00 1.00 1.48 1.22 1.14

β̂02 1.00 1.00 1.00 1.00 1.48 1.23 1.14

β̂11 1.00 1.00 1.00 1.00 1.46 1.22 1.13

β̂12 1.00 1.00 1.00 1.00 1.46 1.22 1.13

IT (νMLE = 3)

β̂01 1.04 1.09 1.09 1.08 1.00 1.00 1.01

β̂02 1.04 1.09 1.09 1.08 1.00 1.00 1.01

β̂11 1.07 1.08 1.10 1.08 1.00 1.00 1.01

β̂12 1.07 1.08 1.09 1.09 1.00 1.00 1.01

IT (νMLE = 4)

β̂01 1.02 1.07 1.06 1.06 1.00 1.00 1.00

β̂02 1.01 1.06 1.06 1.05 1.00 1.00 1.00

β̂11 1.04 1.06 1.07 1.06 1.00 1.00 1.00

β̂12 1.04 1.05 1.07 1.06 1.00 1.00 1.00

IT (νMLE = 5)

β̂01 1.00 1.05 1.05 1.04 1.01 1.00 1.00

β̂02 1.00 1.05 1.05 1.04 1.01 1.00 1.00

β̂11 1.03 1.04 1.05 1.05 1.01 1.00 1.00

β̂12 1.03 1.04 1.05 1.05 1.01 1.00 1.00

Figure 3.1 shows the performances in terms of RRMSE of the IT estimators β̂IT
12

under different DGP as a function of the degrees of freedom of the IT estimator (νMLE).
The considered DGP are the Gaussian, UT, and IT DGP with the degrees of freedom
νDGP = 3 (respectively, νDGP = 4, νDGP = 5) on the left (respectively, middle, right)
plot. Overall, the RRMSE of β̂IT

12 for the IT DGP has a down trend and then an up
trend, while for the Gaussian and the UT DGP, the RRMSE are decreasing when νMLE

increases. The maximum RRMSE of β̂IT
12 is around 1.09 under the UT DGP and is around

1.08 under the Gaussian DGP. It decreases then to one when νMLE increases to twenty
under the Gaussian and the UT DGP; thus, the risk under misspecification is not very
high. The curve is U-shaped under the IT DGP with a minimum when νMLE = νDGP.
The worst performance is when νDGP is small and νMLE is large. The RRMSE of β̂IT

12

with νDGP = 4 is similar than the one with νDGP = 5.

3.3.3 Estimators of the Variance Parameters

Table 3.5 reports the biases and the MSE of ρ̂, σ̂2
1, σ̂2

2 for the Gaussian DGP, the UT
(νDGP = 3) DGP, and the IT (νDGP = 3) DGP. The bias and the MSE of ρ̂ are very
similar and small for all cases. The MSE of the Gaussian estimators σ̂2

1 and σ̂2
2 are small
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Figure 3.1: The RRMSE of the IT estimator of β̂12 for the UT DGP in solid line, for
the IT DGP in dashed line, and for the Gaussian DGP in dotted line with νDGP = 3
(respectively, νDGP = 4, νDGP = 5) on the left (respectively, middle, right) plot.

under the Gaussian DGP, but they are higher under the UT and IT DGP. The biases
and MSE of the IT estimator σ̂2

1 and σ̂2
2 are small under the IT DGP, but high under the

Gaussian and the UT DGP. Besides, Table 3.5 also indicates that there is no method
that estimates the variances well under the UT DGP.

Table 3.5: The bias and the MSE of ρ̂, σ̂2
1, σ̂2

2.

Methods
DGP N UT (νDGP = 3) IT (νDGP = 3)

Bias MSE Bias MSE Bias MSE

N
ρ̂ −4.85 × 10−4 9.46 × 10−4 −2.08 × 10−4 7.68 × 10−4 −3.99 × 10−3 1.17 × 10−2

σ̂2
1 −3.89 × 10−3 8.33 × 10−3 −1.05 × 10−1 58 6.94 × 10−3 3.17

σ̂2
2 −1.75 × 10−3 2.01 × 10−3 −5.17 × 10−2 14.93 −1.77 × 10−2 2.85 × 10−1

IT
ρ̂ −1.70 × 10−4 8.94 × 10−4 −2.18 × 10−4 9.05 × 10−4 −2.03 × 10−4 1.07 × 10−3

νMLE = 3
σ̂2

1 2.00 4.06 1.80 244.87 −1.43 × 10−2 1.54 × 10−2

σ̂2
2 1.00 1.02 0.91 64.75 −7.30 × 10−3 3.94 × 10−3

As before, we now consider misspecified cases and focus on relative bias in Table
3.6. We observe that the relative bias for ρ̂ is negligible in all situations. The RB for σ̂2

1

and σ̂2
2 are also quite small (less than around 5%) when using the Gaussian estimator

for all DGP. This is also true when using the IT estimator for the IT DGP with the
same degrees of freedom νMLE = νDGP . There are some biases for σ̂2

1 and σ̂2
2 if the

DGP is Gaussian or UT and the estimator is IT. For this estimator, the relative bias
of σ̂2

1, σ̂2
2 is around 100% for the Gaussian DGP, 96% for the UT DGP with νDGP = 5

and νMLE = 3, and 22% for the UT DGP with νDGP = 5 and νMLE = 5. The RB for
σ̂2

1 and σ̂2
2 are also quite high (up to 50%) for the IT estimator when the DGP is IT
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with νMLE 6= νDGP . To summarize, in terms of the RB of the variance estimators, the
Gaussian estimator yields better results than the IT estimator.

Table 3.6: The RB of ρ̂, σ̂2
1, σ̂2

2 with ν = 3, 4, 5.

Methods
DGP N UT IT

RB (%) νDGP = 3 νDGP = 4 νDGP = 5 νDGP = 3 νDGP = 4 νDGP = 5

N
ρ̂ −0.14 −0.06 −0.06 −0.06 −1.13 −0.24 0.02

σ̂2
1 −0.21 −5.23 −3.34 −2.31 0.35 −0.08 −0.12

σ̂2
2 −0.18 −5.17 −3.33 −2.20 −1.77 −0.30 −0.09

IT, νMLE = 3
ρ̂ −0.05 −0.06 −0.06 −0.06 −0.06 −0.04 −0.02

σ̂2
1 99.99 90.25 93.89 95.80 −0.72 32.79 50.12

σ̂2
2 100.05 90.60 93.90 96.03 −0.73 32.79 50.13

IT, νMLE = 4
ρ̂ −0.05 −0.06 −0.06 −0.06 −0.06 −0.04 −0.01

σ̂2
1 42.62 35.80 38.32 39.68 −24.66 −0.24 11.18

σ̂2
2 42.66 36.01 38.34 39.85 −24.67 −0.23 11.19

IT, νMLE = 5
ρ̂ −0.06 −0.06 −0.06 −0.06 −0.06 −0.04 −0.00

σ̂2
1 24.71 18.85 21.03 22.23 −31.75 −10.13 −0.14

σ̂2
2 24.74 19.02 21.04 22.38 −31.76 −10.13 −0.14

Finally, Table 3.7 presents the RRMSE in the same cases. It shows that the RRMSE
of ρ̂ varies from 0.94–1.09 for all DGP except for the case of the IT DGP with the
Gaussian estimator, which ranges between 1.42 and 3.21. Besides, if the DGP is Gaussian
and the estimator is IT or if the DGP is IT and the estimator is Gaussian, the RRMSE
of σ̂2

1 and σ̂2
2 are high in particular for νDGP = 3 or νMLE = 3: we loose a lot of efficiency

in these misspecified cases. To conclude, we have seen from Table 3.6 that the RB of
σ̂2

1 and σ̂2
2 are smaller for the Gaussian estimator than for the IT estimator. However,

in terms of RRMSE, there is no clear advantage in using the Gaussian estimator with
respect to the IT estimator.

It should be noted that for ν ≤ 4, the Student distribution has no fourth-order
moment, which may explain the fact that the covariance estimators have large MSE.

Table 3.7: The RRMSE of ρ̂, σ̂2
1, σ̂2

2 in the Gaussian DGP, the UT DGP (νDGP = 3, 4, 5),
and the IT DGP (νDGP = 3, 4, 5).

Methods
DGP N UT IT

RRMSE νDGP = 3 νDGP = 4 νDGP = 5 νDGP = 3 νDGP = 4 νDGP = 5

N
ρ̂ 1.00 1.00 1.00 1.00 3.21 1.91 1.42

σ̂2
1 1.00 1.00 1.00 1.00 14.33 2.65 1.64

σ̂2
2 1.00 1.00 1.00 1.00 8.50 2.24 1.78

IT, νMLE = 3
ρ̂ 0.97 1.09 1.09 1.09 1.00 1.00 1.01

σ̂2
1 22.07 2.05 2.11 2.16 1.00 5.89 9.18

σ̂2
2 22.45 2.08 2.11 2.16 1.00 5.77 9.13

IT, νMLE = 4
ρ̂ 0.95 1.06 1.06 1.06 1.01 1.00 1.00

σ̂2
1 9.49 1.46 1.47 1.48 4.04 1.00 2.31

σ̂2
2 9.65 1.48 1.47 1.48 4.00 1.00 2.30

IT, νMLE = 5
ρ̂ 0.94 1.05 1.05 1.05 1.01 1.00 1.00

σ̂2
1 5.58 1.27 1.27 1.28 5.16 1.99 1.00

σ̂2
2 5.68 1.28 1.28 1.27 5.10 1.95 1.00
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In order to allow the reproducibility of the empirical analyses contained in the present
and the following sections, some Supplementary Material is available at the following
link: http://www.thibault.laurent.free.fr/code/jrfm/.

3.4 Selection between the Gaussian and IT Models

In this section, we propose a methodology to select a model between the Gaussian and
independent Student models and to select the degrees of freedom for the Student in a
short list of possibilities. Following the warnings of Fernandez and Steel (1999) and the
empirical results of Katz and King (1999), Platen and Rendek (2008), and Kan and Zhou
(2017), we decided to focus on a small selection of degrees of freedom and fit our models
without estimating this parameter, considering that a second step of model selection
will make the choice. Indeed, there is a limited number of interesting values, which are
between three and eight (for larger values, the distribution gets close to being Gaussian).
The work in Lange et al. (1989), p.883, proposed the likelihood ratio test for the uni-
variate case. In what follows, we use the fact that the distribution of the Mahalanobis
distances is known under the two DGP, which allows building a Kolmogorov–Smirnov
test and using Q-Q plots. Unfortunately, this technique does not apply to the UT model
for which the n observations are a single realization of the multivariate distribution.
One advantage of this approach is that the Mahalanobis distance is a one-dimensional
variable, whereas the original observations have L dimensions.

3.4.1 Distributions of Mahalanobis Distances

For an L-dimensional random vector Y, with mean µµµ, and covariance matrix ΣΣΣ, the
squared Mahalanobis distance is defined by:

d2 = (Y − µµµ)TΣΣΣ−1(Y − µµµ)

If Y1, . . . Yn is a sample of size n from the L-dimensional Gaussian distribution
NL(µµµN ,ΣΣΣN ), the squared Mahalanobis distance of observation i, denoted by d2

Ni, follows
a χ2

L distribution. If µµµN and ΣΣΣN are unknown, then the squared Mahalanobis distance
of observation i can be estimated by:

d̂2
Ni = (Yi − µ̂µµN )T Σ̂ΣΣ

−1

N (Yi − µ̂µµN )

where µ̂µµN = Ȳ =
1
n

n
∑

i=1

Yi and Σ̂ΣΣN is the sample covariance matrix. The work in

Gnanadesikan and Kettenring (1972) (see also Bilodeau and Brenner (2008)) proved
that this square distance follows a Beta distribution, up to a multiplicative constant:

n

(n − 1)2
(Yi − µ̂µµN )T Σ̂ΣΣ

−1

N (Yi − µ̂µµN ) ∼ Beta

(

L

2
,
n − L − 1

2

)
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where L is the dimension of Y. For large n, this Beta distribution can be approximated
by the chi-square distribution d2

Ni ∼ χ2
L. According to Gnanadesikan and Kettenring

(1972) (p. 172), n = 25 already provides a sufficiently large sample for this approxima-
tion, which is the case in all our examples below.
If we now assume that Y1, . . . , Yn is a sample of size n from the L-dimensional Student
distribution Yi ∼ T(µµµIT ,ΣΣΣIT , ν), then the squared Mahalanobis distance of observation
i, denoted by d2

IT i and properly scaled, follows a Fisher distribution (see Roth (2012)):

1
L

ν

ν − 2
d2

IT i ∼ F(L, ν)

If µµµIT and ΣΣΣIT are unknown, then the squared Mahalanobis distance of observation
i can be estimated by:

d̂2
IT i = (Yi − µ̂µµIT )T Σ̂ΣΣ

−1

IT (Yi − µ̂µµIT ),

where µ̂µµIT and Σ̂ΣΣIT are the MLE of µµµIT and ΣΣΣIT . Note that in the IT model, µ̂µµIT is
no longer equal to Ȳ. Up to our knowledge, there is no result about the distribution of
d̂2

IT i.
In the elliptical distribution family, the distribution of Mahalanobis distances char-

acterizes the distribution of the observations. Thus, in order to test the normality of
the data, we can test whether the Mahalanobis distances follow a chi-square distribu-
tion. Similarly, testing the Student distribution is equivalent to testing whether the
Mahalanobis distances follow the Fisher distribution. There are two difficulties with the
approach. The first one is that the estimated Mahalanobis distances are not a sample
from the chi-square (respectively, the Fisher) distribution because there is dependence
due to the estimation of the parameters. The second one is that, in our case, we not only
estimate µµµ and ΣΣΣ, but we are in a regression framework where µµµ is linear combination
of regressors, and we indeed estimate its coefficients. In what follows, we will ignore
these two difficulties and consider that, for large n, the distributions of the estimated
Mahalanobis distances behave as if µµµ and ΣΣΣ were known.

We propose to implement several Kolmogorov–Smirnov tests in order to test different
null hypothesis: Gaussian, Student with three degrees of freedom, and Student with
four degrees of freedom. As an exploratory tool, we also propose drawing Q-Q plots
of the Mahalanobis distances with respect to the chi-square and the Fisher distribution
(see Small (1978)).

3.4.2 Examples

This section illustrates some applications of the proposed methodology for selecting a
model. We use a real dataset from finance and three simulated datasets with the same
DGP as in Section 3.3.

The real dataset is the daily closing share price of IBM and MSFT, which are im-
ported from Yahoo Finance from 3 January 2007–27 September 2018 using the quantmod
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package in R. It contains n = 2955 observations. Let St, t = 1, . . . , n be the daily share
price of IBM and MSFT and Yt be the log-price increment (return) (see Fung and Seneta
(2010)) over a day period, then:

Yt = log St − log St−1.

The three other datasets are simulated using the same model as in Section 3.3 with
the Gaussian DGP, the IT DGP with νDGP = 3, and the IT DGP with νDGP = 4 and
with sample size n = 1000. Figure 3.2 (respectively, Figure 3.3) displays the scatterplots
of the financial data (respectively, the three toy data).

We compute the Gaussian and the IT estimators as in Section 3.3. We then calculate
the squared Mahalanobis distances of the residuals and use a Kolmogorov–Smirnov test
for deciding between the models. For the financial data, we have no predictor. We test
the Gaussian (respectively the Student with three degrees of freedom, the Student with
four degrees of freedom) null hypothesis. When testing one of the null hypotheses, we use
the estimator corresponding to the null. Moreover, when the null hypothesis is Student,
we use the corresponding degrees of freedom for computing the maximum likelihood
estimator. We do reject the null hypothesis if the p-value is smaller than α = 5%. Note
that we could adjust the level of α by taking into account multiple testing.
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Figure 3.2: Financial data: scatterplot of returns .

Table 3.8 shows the p-values of these tests. For the simulated data, at the 5% level,
we do not reject the Gaussian assumption when the DGP is Gaussian. Similarly, we
do not reject the Student distribution with three (respectively, four) degrees of freedom
when the DGP is the IT with degrees of freedom νDGP = 3 (respectively, νDGP = 4).
For the financial data, we do not reject the Student distribution with three degrees of
freedom, but we do reject the Gaussian distribution and the Student distribution with
four degrees of freedom.
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Residuals in y1
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Residuals in y1
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Residuals in y1
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Figure 3.3: Toy data: scatterplots of residuals in the Gaussian DGP (respectively, the
IT DGP with νDGP = 3, the IT DGP with νDGP = 4) on the first row (respectively, the
second row, the third row).
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Table 3.8: All datasets: the p-values of the Mahalanobis distances tests with the null
hypothesis and the corresponding estimators.

Hypothesis H0 Toy DGP
Financial Data

Methods N IT, νDGP = 3 IT, νDGP = 4

N 0.546 2.2 × 10−16 2.2 × 10−16 2.2 × 10−16

IT, νMLE = 3 2.2 × 10−16 0.405 0.033 0.882

IT, νMLE = 4 2.2 × 10−16 0.023 0.303 0.049

Figures 3.4 shows the Q-Q plots comparing the empirical quantiles of the Maha-
lanobis distances for the normal (respectively, the IT (νMLE = 3), the IT (νMLE = 4))
estimators on the horizontal axis to the theoretical quantiles of the Mahalanobis dis-
tances for the normal (respectively, the IT (νMLE = 3), the IT (νMLE = 4)) on the
vertical axis for the financial data. These Q-Q plots are coherent with the results of the
tests in Table 3.8. The IT model with three degrees of freedom fits our financial data
well.
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Figure 3.4: Financial data: Q-Q plots of the Mahalanobis distances for the normal, IT
(νMLE = 3), and IT (νMLE = 4) estimators.

Figure 3.5 displays the Q-Q plots for the toy DGP: the Gaussian DGP in the first
column, the IT DGP with νDGP = 3 in the second column, and the IT DGP with
νDGP = 4 in the third column. The first row compares the empirical quantiles to the
normal case quantiles, the second to the Student case quantiles with νDGP = 3, and
the third row to Student case quantiles with νDGP = 4. The Q-Q plots on the diagonal
confirm that the fit is good when the model is correct. The other Q-Q plots outside the
diagonal correctly reveal a clear deviation from the hypothesized model.

To summarize the findings of this study, let us first say that there may be an abusive
use of the Gaussian distribution in applications due to its simplicity. We have seen that
considering the Student distribution instead is just slightly more complex, but feasible,
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and that one can test this choice. Concerning the two Student models, we have seen
that the UT model is simpler to fit than the IT model, but has limitations due to the
fact that it assumes a single realization, which restricts the properties of the maximum
likelihood estimators and prevents the use of tests against the other two models.
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Figure 3.5: Toy data: Q-Q plots of the Mahalanobis distances of the residuals for the
normal (respectively, the IT with νDGP = 3, the IT with νDGP = 4) case empirical
quantiles against the normal (respectively, the IT with νMLE = 3, the IT with νMLE = 4)
case theoretical quantiles in the first row (respectively, the second row, the third row).

3.5 Conclusions

We have compared three different models: the multivariate Gaussian model and two
different multivariate Student models (uncorrelated or independent). We have derived
some theoretical properties of the Student UT model and proposed a simple iterative
reweighted algorithm to compute the maximum likelihood estimators in the IT model.
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Our simulations show that using a multivariate Student IT model instead of a multivari-
ate Gaussian model for heavy tail data is simple and can be viewed as a safeguard against
misspecification in the sense that there is more to loose if the DGP is Student and one
uses a Gaussian model than in the reverse situation. Finally, we have proposed some
graphical tools and a test to choose between the Gaussian and the IT models. The IT
model fits our finance dataset quite well. There is still work to do in the direction of
improving the model selection procedure to overcome the fact that the parameters are
estimated and hence the hypothetical distribution is only approximate. Let us mention
that it is also possible to adapt our algorithm for the IT model to the case of missing
data. We intend to work in the direction of allowing different degrees of freedom for
each coordinate. It may be also relevant to consider an alternative estimation method by
generalizing the one proposed in Kent et al. (1994) to the multivariate regression case.
Finally, another perspective is to consider multivariate errors-in-variables models, which
allow incorporating measurement errors in the response and the explanatory variables.
A possible approach is proposed in Croux et al. (2010).
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Chapter 4

Abstract

Political economists are interested by the impact of the characteristics of the geograph-
ical units on the outcome of an election. Because vote shares data often exhibit heavy
tail behavior, a proposal found in the literature is to replace the Gaussian distribution
by the Student distribution. In the previous chapter, we have seen two versions of the
multivariate Student distribution the UT and the IT model. Because the restrictions
imposed by the UT version (observations are a single realization) of multivariate distri-
bution has consequences on the properties of the maximum likelihood estimators and
prevent the use of tests, we will focus on the multivariate Independent Student (IT)
distribution in this chapter. The classical CODA regression model assumes that a set of
log ratios of the compositional vector follows a Normal distribution in coordinate space,
thus defining the logistic normal distribution in the simplex. We describe how to adapt
it to replace the normal distribution by the multivariate Independent Student error dis-
tribution thus defining the logistic Student distribution. We first recall facts about the
multivariate Student distribution and the multivariate Normal distribution for the error
term. We concentrate on building a CODA regression model using multivariate Student
distributed error vectors with fixed degree of freedom. We compare this model to the
multivariate Gaussian model. These models are fitted on French electoral data of the
2015 departmental elections for canton level data. Besides, in order to choose the best
model, we apply the method of Chapter 3 for selecting between the Gaussian and the
Student models based on the Mahalanobis distance. Finally, we present the impact of
socio-economics factors using graphs of the predicted values of the dependent variable as
a function of one specific variable of interest: two cases must be considered depending
on whether the specific variable is classical or compositional.
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Résumé

Les économistes politiques s’intéressent à l’impact des caractéristiques des unités géo-
graphiques sur le résultat d’une élection. Étant donné que les données sur les votes
partagés présentent souvent un comportement à queue lourde, une proposition trouvée
dans la littérature consiste à remplacer la distribution Gaussienne par la distribution
de Student. Dans le chapitre précédent, nous avons vu deux versions de la distribution
multivariée de Student, le modèle UT et IT. Comme les restrictions imposées par la ver-
sion UT (les observations forment une unique réalisation) de la distribution multivariée
ayant des conséquences sur les propriétés des estimateurs du maximum de vraisemblance
et empêchant l’utilisation de tests, nous allons nous concentrer sur la distribution mul-
tivariée de Student indépendant (IT) dans ce chapitre. Le modèle de régression CODA
classique suppose qu’un ensemble de log-ratios du vecteur de composition suit une dis-
tribution Normale dans un espace de coordonnées, définissant ainsi la distribution logis-
tique normale dans le simplexe. Nous décrivons comment l’adapter pour remplacer la
distribution Normale par la distribution d’erreur multivariée des Student indépendants,
définissant ainsi la distribution logistique de Student. Nous rappelons d’abord des faits
sur la distribution multivariée de Student et la distribution multivariée Normale pour
le terme d’erreur. Nous nous concentrons sur la construction d’un modèle de régression
CODA utilisant des vecteurs d’erreur distribués de Student multivariés à degré de lib-
erté fixe. Nous comparons ce modèle au modèle multivarié Gaussien. Ces modèles sont
adaptés aux données électorales Françaises des élections départementales de 2015 pour
les données cantonales. De plus, afin de choisir le meilleur modèle, nous appliquons la
méthode du chapitre 3 pour choisir entre le modèle Gaussien et le modèle Student en
fonction de la distance de Mahalanobis. Enfin, nous présentons l’impact des facteurs
socio-économiques en utilisant des graphiques des valeurs prédites de la variable dépen-
dante en fonction d’une variable d’intérêt spécifique: deux cas doivent être considérés
selon que la variable spécifique est classique ou compositionnelle.
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Logistic Student distribution on
the simplex with application to
Political economy1

Abstract
In a multiparty election, the vote shares form a composition vector (mathematically,
a vector belonging to a simplex). Political economists are interested by the impact of
the characteristics of the geographical units on the outcome of an election. Because
vote shares data often exhibit heavy tail behavior, we propose to use the Student error
distribution instead of the Normal error distribution. We describe how to adapt the
regression models for compositional data to the multivariate Student error distribution.
For a Gaussian errors vector, the assumption of independent coordinates is equivalent
to the assumption of correlated coordinates. However, this equivalence is no longer true
when considering a multivariate Student distribution, which leads to two ways of us-
ing the multivariate Student distribution in the framework of a regression model: the
multivariate independent Student (IT) distribution and the multivariate uncorrelated
Student (UT) distribution. In this paper, we will concentrate on the IT distribution
with fixed degrees of freedom. The Gaussian and Student models are then fitted on
French electoral data of the 2015 departmental elections at the canton level and we use
a method based on the Mahalanobis distance for model selection.

Keywords
compositional regression models, heavy tail distribution, independent multivariate Stu-
dent distribution, logistic Student distribution, maximum likelihood estimator.

4.1 Introduction

Many authors in political economy concentrate on building models to understand the
drivers of the outcome of a two-party electoral system (Beauguitte and Colange (2013),
Ansolabehere and Leblanc (2008)). The outcome of an election can be influenced by
the campaign strategies of the candidates and demographic factors such as age distribu-
tion, domain of activity distribution, rate of unemployment, and so on. In an interview

1Joint work with T. Laurent
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with Time magazine, a group of Obama senior campaign advisers argue that there is
an enormous data effort to support fundraising, micro-targeting TV ads and modeling
of swing-state voters. In this work, we are interested in exploring the impact of the
characteristics of the demographic and social factors on the outcome of the 2015 French
departmental election for canton level data. The outcome of an election in a multi-
party system consist of vectors whose components are proportions of votes per party.
In what follows, our attention focuses on the relationships between votes shares and
socio-economics factors such as age distribution, education levels distribution, domain
of activity distribution, unemployment rate and so on, using a CODA (COmpositional
Data Analysis) regression model.

Among papers concentrating on the relationship between socio-economic variables
and election outcomes, Beauguitte and Colange (2013) carry out a linear regression
model at three aggregation levels (polling stations, cities, and electoral districts) in
France and show that the socio-economic variables are significant. Kavanagh et al. (2006)
use geographically weighted regression, which produces a set of parameters estimates for
each data point, i.e. for each electoral division. In the statistical literature, there are
regression models adapted to share vectors including CODA models, but also Dirichlet
models for example. These models, where the dependent and independent variables may
be compositional variables (see Mert et al. (2018)). Honaker et al. (2002) and Katz and
King (1999) assume that the territorial units yield independent observations. For ex-
ample, Morais (2017) studies the impact of media investments on brand’s market shares
with a CODA regression model. Nguyen et al. (2018) propose a CODA multivariate re-
gression model based on the normal distribution to study the impact of socio-economic
factors on the 2015 French departmental election at the departmental level. However,
election data often exhibit heavy tail behavior (see Katz and King (1999)). In order
to cope with this heavy tail problem, a proposal found in the literature is to replace
the Gaussian distribution by the Student distribution. There are two ways of using the
Student distribution in a regression framework: the independent Student (IT) and the
uncorrelated Student (UT) (see Kelejian and Prucha (1985)). Nguyen et al. (2019) show
that the UT model is simpler to fit than the IT model, but the assumption of a single
realization is a limitation which restricts the properties of the maximum likelihood es-
timators and prevents the use of tests against other models. Thus, we will concentrate
here on the multivariate IT model and compare it to the multivariate Gaussian model
in this chapter.

Section 4.2 describes the French departmental election data. Section 4.3 presents
the considered multivariate regression models (multivariate Normal error vector and
multivariate Independent Student (IT) error vector). In section 4.4, we recall the CODA
principles and then build a CODA regression model using the independent multivariate
Student distribution (IT) with known degrees of freedom for the error vector. As in
Nguyen et al (2019), we perform a test based on the Mahalanobis distance to select
between the multivariate Gaussian and the multivariate Student models in Section 4.5.
Section 4.6 uses the vote shares predictions to investigate the relationships between the
socio-economic factors and the outcome of this election.
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Table 4.1: Data description

Variable name Description Averages

Vote share Left(L), Right(R), Extreme Right(XR) 0.45, 0.29, 0.26
Age Age_1840, Age_4064, Age_65. 0.29, 0.43, 0.28
Diploma SUP, <BAC, BAC. 0.25, 0.57, 0.18
Employment AZ, BE, FZ, GU, OQ 0.04, 0.08, 0.06, 0.43, 0.39

unemp The unemployment rate 0.13
nbvoter Number of voter 17908
employ_evol Mean annual growth rate of employment 0.39

(2009-2014)
owner The proportion of people who own assets 0.63
income The proportion of people who pay income tax 0.51
foreign The proportion of foreigners 0.0048

4.2 Data

The Occitanie region has 283 cantons. However, some cantons in this region have at least
one vote share (for one of three political parties) equal to zero. Eliminating these cantons
results in a dataset with 207 cantons in Occitanie. Vote share data of the 2015 French
departmental election with 207 cantons of Occitanie region in France are collected from
the Cartelec website2. Corresponding socio-economic data (for 2014) are downloaded
from the INSEE website3. Table 4.1 summarizes our data set.

Employment has five categories: AZ (agriculture, fisheries), BE (manufacturing industry,
mining industry and others), FZ (construction), GU (business, transport and services)
and OQ (public administration, teaching, human health). Diploma has three levels:
<BAC for people with at most some secondary education, BAC for people with at least
some secondary education and at most a high school diploma, and SUP for people with
a university diploma. The Age variable has three levels: Age_1840 for people from 18 to
40 years old, Age_4064 for people from 40 to 64 years old, and Age_65 for elderly. For
the vote share variable, the Cartelec website provides very detailed information. The
number of political parties which present candidates at that election is higher than 15.
For simplicity reasons, we aggregate the political parties into three main components:
Left, Right and Extreme-Right4. Note that the averages in the last column of Table 4.1
are geometric means by component for the compositional variables.

2https://www.data.gouv.fr/fr/datasets/elections-departementales-2015-resultats-par-bureaux-de-
vote/

3https://www.insee.fr/fr/statistiques
4for more details, see https://fr.wikipedia.org/wiki/Elections_départementales_francaises_de_2015
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When compositional data have three components, they can be represented in a
ternary diagram. For instance, the black points in Figure 4.1 show the vote shares
of the 207 cantons for the Left and Right wings and the Extreme Right party. For com-
positional data, the correct way of defining the mean of a set of compositional vectors
is through the vector of the geometric means of each component (see Pawlowsky-Glahn
et al. (2015)). On Figure 4.1, the red triangle, corresponding to the geometric mean
of vote shares, shows that average vote shares of the Left wing, the Right wing and
the Extreme Right party are 45%, 29%, and 26% respectively. Figure 4.2 illustrates
the positions of cantons in the Occitanie region on the ternary diagram: the compo-
nents correspond to the three levels of the age variable, and the red triangle figures the
geometric means of all cantons in the Occitanie region.
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Figure 4.1: Vote shares for 207 cantons in the Occitanie region (black points) and their
geometric mean of (red triangle).
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4.3 The multivariate regression models

In this section, we recall some classical facts about the multivariate Gaussian and the
multivariate Student regression models. We consider a linear model

Yi = Xiβββ + ǫǫǫi (4.1)

where Y is a n × L matrix of an L dimensional dependent variable, X is a n × (K + 1)
matrix whose columns correspond to K explanatory variables, βββ is the parameter matrix
of size (K + 1) × L and ǫǫǫ is the error matrix of size n × L.

4.3.1 Multivariate Normal error vector

Let us first consider model (4.1) with independent and identically distributed error
vectors ǫǫǫi, i = 1, . . . , n, following a multivariate normal distribution NL(0,ΣΣΣ) with an
L-vector of means equal to zero and an L×L covariance matrix ΣΣΣ. This model is denoted
by N and the subscript N is used to denote the error terms ǫǫǫNi, i = 1, . . . , n and the
parameters βββN and ΣΣΣN of the model. The maximum likelihood estimators of βββN and
ΣΣΣN are given by

β̂̂β̂βN = (XT X)−1XT Y, (4.2)

Σ̂̂Σ̂ΣN =
∑n

i=1 ǫ̂̂ǫ̂ǫNiǫ̂̂ǫ̂ǫ
T
Ni

n
, (4.3)

where ǫ̂̂ǫ̂ǫNi = Yi − Xiβ̂̂β̂βN (see e.g. Theorem 8.4 from Seber (2009)).

4.3.2 Multivariate Independent Student error vector

Let us denote the L dimensional dependent vector for the ith canton by:

Y i = (Yi1, . . . , YiL)T .

For K explanatory variables, the design matrix is of size L × (K + 1)L and is given by:

X i = IL ⊗ XT
i

for i = 1, . . . , n, with the (K +1)-vector Xi = (1, Xi1, . . . , XiK)T , IL the identity matrix
with dimension L and ⊗ the usual Kronecker product. The parameter of interest is a
(K + 1)L vector given by:

βββ = (βββT
1 , . . . ,βββT

L)T ,

where βββj = (β0j , . . . , βKj)T , for j = 1, . . . , L and the L-vector of errors is denoted by:

ǫǫǫi = (ǫi1, . . . , ǫiL)T

for i = 1, . . . , n. Given these notations, as in Nguyen et al. (2019), model (4.1) can be
rewritten in vectorized form

Y i = X iβββ + ǫǫǫi (4.4)
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with E(ǫǫǫi) = 0 and i = 1, . . . , n. Note that Y = (YT
1 , . . . , YT

n )T is a nL vector obtained
by stacking the rows of Y , ǫǫǫ = (ǫǫǫT

1 , . . . , ǫǫǫT
n )T is a nL vector and X = (X T

1 , . . . , X T
n )T is

a nL × (K + 1)L matrix.
Let us consider model (4.4) with i.i.d. ǫǫǫi, i = 1, . . . , n, following an independent

multivariate Student (IT) distribution with L dimensions and known degrees of freedom
ν > 2 denoted by IT (µµµ,ΣΣΣ, ν). In most of the literature on multivariate Student, the
density is parametrized as a function of the scatter matrix ((ν − 2)/ν)ΣΣΣ but we rather
keep ΣΣΣ as a parameter here.
The probability density function for the L-vector ǫǫǫ is given by

p(ǫǫǫ|µµµ,ΣΣΣ, ν) =
f(ν)

det(ΣΣΣ)1/2

[

1 +
1

ν − 2
(ǫǫǫ − µµµ)TΣΣΣ−1(ǫǫǫ − µµµ)

]−(ν+p)/2

, (4.5)

where T denotes the transpose operator, f(ν) =
Γ[(ν + p)/2]

Γ(ν/2)(ν − 2)p/2πp/2
and Γ is the Euler

Gamma function. Following Prucha and Kelejian (1984), Nguyen et al. (2019) derive the
maximum likelihood estimators for the IT model. The maximum likelihood estimators
of βββ and ΣΣΣ in the IT regression model satisfy the following implicit equations:

β̂ββIT =

(

n
∑

i=1

ŵIT iX
T
i Σ̂ΣΣ

−1

IT X i

)−1 n
∑

i=1

ŵIT iX
T
i Σ̂ΣΣ

−1

IT Y i

Σ̂ΣΣIT =
1
n

n
∑

i=1

ŵIT iǫ̂ǫǫIT iǫ̂ǫǫ
T
IT i

(4.6)

with ǫ̂̂ǫ̂ǫIT i = Yi − X iβ̂ββIT and ŵIT i =
ν + L

ν − 2 + ǫ̂ǫǫT
IT iΣ̂ΣΣ

−1

IT ǫ̂ǫǫIT i

.

We use the iterative reweighted algorithm as in Nguyen et al. (2019) to estimate the
covariate parameters and variance-covariance matrix.

4.4 Compositional regression models

4.4.1 Principles of compositional data analysis

Definition and operations

A composition x is a vector of D parts of some whole which carries relative information.
A D-composition x lies in the so-called simplex space SD defined by:

SD = {x = (x1, ..., xD)′ : xj > 0, j = 1, ..., D;
D
∑

j=1

xj = 1}
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For w ∈ R
+D, let C(w) =

(

w1
∑D

j=1
wj

, · · · , wD
∑D

j=1
wj

)

be the closure operation. The

vector space structure of the simplex SD is defined by the perturbation and powering
operations:

x ⊕ y = C(x1y1, . . . , xDyD), x, y ∈ SD

λ ⊙ x = C(xλ
1 , . . . , xλ

D), λ is a scalar, x ∈ SD.

The compositional matrix product, corresponding to the matrix product in the simplex,
is defined by

B ⊡ x = C




D
∏

j=1

x
b1j

j , · · · ,
D
∏

j=1

x
bLj

j





T

where B = (blj), l = 1, . . . , L, j = 1, . . . , D, is a parameter matrix such that the column
vectors belong to SD, jT

LB = 0D, BjD = 0L, where jL is a L × 1 column vector of ones,
and jT

L is the transposed of jL.
The simplex SD can be equipped with the Aitchison inner product (Aitchison (1985)
and Pawlowsky-Glahn et al. (2015)) in order to define distances. The expected value
E

⊕Y are also defined in Pawlowsky-Glahn et al. (2015).

Log-ratio transformation

Classical regression models cannot be used directly in the simplex because the con-
straints that the components are positive and sum up to 1 are not compatible with
the usual distributional assumptions of normality. To overcome this difficulty, one way
out is to use a log-ratio transformation from the simplex space SD to the coordinate
space R

D−1. The classical transformations are alr (additive log-ratio transformation),
clr (centered log-ratio transformation), and ilr (isometric log-ratio transformation). The
coordinates in the clr transformed vector are linearly dependent, and the coordinates in
the alr transformed vector are not compatible with the geometry (distance between the
components in the simplex space is different from distance between the coordinates in
the Euclidean space). For these reasons people generally use one of the ilr transforma-
tion for compositional regression models.
An isometric log-ratio transformation ilr is defined by:

ilr(x) = VT
Dln(x)

where the logarithm of x is understood componentwise, VT
D is a transposed contrast

matrix (see Pawlowsky-Glahn et al. (2015)) associated to a given orthonormal basis
(e1, · · · , eD−1) of SD by

VD = clr(e1, · · · , eD−1),

where clr denotes the centered log-ratio transformation (see Pawlowsky-Glahn et al.
(2015)). As in Pawlowsky-Glahn et al. (2015) in our application, we use the following
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contrast matrix for D = 3

V3 =





2/
√

6 0
−1/

√
6 1/

√
2

−1/
√

6 −1/
√

2





This particular matrix defines the following ilr coordinates

ilr1(x) =
1√
6

(2 log x1 − ln x2 − log x3) =
2√
6

log
x1√
x2x3

ilr2(x) =
1√
2

(log x2 − log x3) =
1√
2

log
x2

x3

The first ilr coordinate contains information about the relative importance of the first
component x1 with respect to the geometric mean of the second and the third compo-
nents g =

√
x2x3. The second ilr coordinate contains information about the relative

importance of the second component x2 with respect to the third component x3. In our
case, the first ilr coordinate opposes the Left wing to the group of the Right wing and
the Extreme Right party and the second opposes the Right wing to the Extreme Right
party. The inverse ilr transformation is given by:

x = ilr−1(x∗) = C(exp(VDx∗)) for x∗ ∈ R
D−1

where the exponential of the vector x is understood componentwise.

4.4.2 Logistic Student regression models

Following the same construction as for the Logistic Normal distribution on the simplex
(Pawlowsky-Glahn et al. (2015)), let us first define the Logistic Student distribution on
the simplex.

Definition 1. Given a random composition Y, with sample space SD, Y is said to
follow a Student distribution on SD, or logistic Student distribution, if the vector of
random orthonormal coordinates Y∗ = ilr(Y) follows a multivariate Student distribution
IT (µµµ∗,ΣΣΣ∗, ν) on R

D−1.

A change of ilr transformation would result in a different mean µµµ∗ and a different
variance matrix ΣΣΣ∗ but their relationship with the former parameters remains the same
as for the logistic Normal distribution (the argument of the proof of Theorem 6.19 in
Pawlowsky-Glahn et al. (2015) simply goes through).

We use the notations defined in Table 4.2. Let Yi be the compositional response
value of the ith observation, Yi ∈ SL, and X(q)

i , q = 1, . . . , Q, denotes the value of

the qth compositional covariate for the ith observation, X(q)
i ∈ SDq , q = 1, . . . , Q,

Zki, k = 1, . . . , K, denotes the kth classical covariate of the ith observation. Let us first
introduce the CODA regression model in the ilr coordinate space as follows:

ilr(Yi) = b0
∗ +

Q
∑

q=1

ilr(X(q)
i )B∗

q +
K
∑

k=1

Zkic∗

k + ilr(ǫǫǫi) (4.7)
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Table 4.2: Notations
Variable Notation Coordinates

Dependent Yi = (Yi1, . . . , YiL) ilr(Yi) = Y∗
i

Compositional explanatory X(q)
i = (X(q)

i1 , . . . , X
(q)
iDq

) ilr(X(q)
ip ) = X(q)∗

ip

Classical explanatory Zki

General notations
L Number of components of the

dependent variable

i = 1, . . . , n Index of observations (n = 95 )
q = 1, . . . , Q Index of compositional explanatory

variables (Q = 3)
p = 1, . . . , Dq Index of the coordinates for the

compositional explanatory variables
k = 1, . . . , K Index of classical explanatory

variables (K = 5)

where ilr(Yi), ilr(X(q)
i ) are the ilr coordinates of Yi, X(q)

i (q = 1, . . . , Q) respectively,

ilr(Yi) ∈ R
L−1, ilr(X(q)

i ) ∈ R
Dq−1; b0

∗, B∗
q , c∗

k are the parameters in the coordinate
space, and ilr(ǫǫǫi) are the residuals in the coordinate space, ilr(ǫǫǫi) ∈ R

L−1. The distri-
butional assumption is ilr(ǫǫǫ) follows either the multivariate gaussian (N) distribution
with zero mean and covariance matrix ΣΣΣN or the independent multivariate Student (IT)
distribution with zero mean and covariance matrix ΣΣΣIT .
Denoting by

⊕

the addition in the simplex (see Pawlowsky-Glahn et al. (2015)), this
regression model (4.7) can be written in the simplex as

Yi = b0

Q
⊕

q=1

Bq ⊡ X(q)
i

K
⊕

k=1

Zki ⊙ ck ⊕ ǫǫǫi, i = 1, . . . , n (4.8)

where b0, B1, . . . , BQ, c1, . . . , cK are the parameters satisfying b0 ∈ SL, Bq ∈ SDq , q =
1, . . . , Q, ck ∈ SL, k = 1, . . . , K, jT

LBq = 0Dq , BqjDq = 0L. The distributional assump-
tion is that ǫǫǫi ∈ SL follows either the multivariate logistic Gaussian (N) distribution
(see Aitchison (1985)) or the independent multivariate logistic Student (IT) distribution
defined by (4.5).

4.4.3 Application to political economy

We now fit a CODA regression model describing the impacts of socio-economic factors
on vote shares in the 2015 French departmental election using the data described in
Section 4.2. We estimate the parameters of model (4.7) using the Multivariate Normal
and the Independent Student distribution for the error vector. This is equivalent to
estimate the parameters of model (4.8) with a Logistic Normal and a Logistic Student
distribution.
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We first estimate the models using all the explanatory variables described in Table
4.1. Then we remove the variables employ_evol, owner and foreign which are not signifi-
cant and we estimate the models again with the remaining variables. Table 4.3 shows the
estimated parameters for both the Gaussian model and the Independent Student model
with ν = 4. The population size (nbvoter) may be used to take into account the fact
that cantons are not comparable in size either through the mean or the variance or both
(we choose to include it in the mean value here). The distribution of education level, of
age, the employment sector, the unemployment rate and the proportion of people who
pay income tax really have a significant impact on the result of the French departmental
election in 2015. Table 4.3 also shows that for both models, when the ratio of people
between the level 18-40 and the level >40 increases, the ratio of vote shares between
Left and [Right+Extreme Right] decreases and the ratio of vote shares between Right
and Extreme Right increases. However, when the ratio of people between the level 40-64
and the level >64 increases, the ratio of vote shares between Right and Extreme Right
will decrease. Besides, we see that when the ratio of people who pay income tax goes
up, the ratio between Left and [Right+Extreme Right] will go up faster than the ratio
between Right and Extreme Right. When the unemployment rate increases, the ratio
between Right and Extreme Right increases.

Table 4.3: Multivariate Gaussian and Student regression models with compositional and
classical explanatory variables

Gaussian model Student model, ν = 4
y_ilr[, 1] y_ilr[, 2] y_ilr[, 1] y_ilr[, 2]

Constant −3.69(0.89)∗∗∗ −2.66(0.45)∗∗∗ −4.00(1.33)∗∗∗ −2.70(0.68)∗∗∗

diplome_ilr1 −1.27(0.50)∗∗ −0.29(0.25) −1.40(0.75)∗ −0.35(0.38)
diplome_ilr2 −0.03(0.61) −0.90(0.30) +0.54(0.90) −0.86(0.46)∗

employ_ilr1 −0.18(0.14) −0.13(0.07)∗ −0.21(0.20) −0.18(0.10)∗

employ_ilr2 +0.49(0.16)∗∗∗ −0.03(0.08) +0.38(0.24) +0.09(0.12)
employ_ilr3 −0.21(0.11)∗ +0.01(0.06) −0.18(0.17) −0.05(0.09)
employ_ilr4 +0.21(0.06)∗∗∗ +0.01(0.03) +0.14(0.09) +0.02(0.05)
age_ilr1 −1.14(0.37)∗∗∗ +1.00(0.18)∗∗∗ −0.81(0.55) +1.13(0.28)∗∗∗

age_ilr2 +0.48(0.30) −1.33(1.15)∗∗∗ +0.44(0.46) −1.41(0.23)∗∗∗

unemp −0.05(2.27) +9.70(1.14)∗∗∗ +1.80(3.37) +9.58(1.73)∗∗∗

income +4.30(0.89)∗∗∗ +1.14(0.06)∗∗∗ +4.10(1.34)∗∗∗ +0.95(0.68)
nbvoter +2e-06(5e-06) +1e-05(2e-05)∗∗∗ −6e-07(3e-03) +1e-05(2e-03)∗∗∗

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

4.5 Model selection

Table 4.3 shows similar results for the Gaussian and Student models for certain covari-
ates. Nguyen et al. (2019) propose a methodology to select between the Gaussian and
independent Student models based on the Mahalanobis distance. We now apply this
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Hypothesis H0 P-value
N 0.03

IT, νMLE = 3 0.63
IT, νMLE = 4 0.72

Table 4.4: The p-values of the Mahalanobis distances tests with the null hypothesis and
the corresponding estimators.

method to select between the two models.
For an L-dimensional random vector Y, with mean µµµ, and covariance matrix ΣΣΣ, the
squared Mahalanobis distance is defined by:

d2 = (Y − µµµ)TΣΣΣ−1(Y − µµµ)

According to Nguyen et al. (2019), we can test whether the Mahalanobis distances
follow a chi-square distribution for testing the normality of the data and whether the
Mahalanobis distances follow the Fisher distribution for testing the Student distribution
of the data. As in Nguyen et al. (2019), we perform some Kolmogorov−Smirnov tests in
order to test different null hypothesis: Gaussian, Independent Student with three and
four degrees of freedom. We also produce Q-Q plots of the Mahalanobis distances with
respect to the chi-square and the Fisher distribution. Note that we use the estimator
corresponding to the null hypothesis when testing each null hypotheses. We do reject
the null hypothesis if the p-value is smaller than α = 5%.

●●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●
●●●●●●●●●●
●●●●●●●●●
●●●●●●●●●
●●●●●●●●
●●●●●●●●
●●●●●●●●
●●●●●●●
●●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●
●●●●●
●●●●●
●●●●●
●●●●
●●●●
●●●●

●●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●
●●
●●
●●●

●●
●●●●

●●●
●

●
●

●
●

●
●

●
●

●
●

●

●

0 2 4 6 8 10

0
2

4
6

8
1
0

Normal empirical quantile

N
T

Q

●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●
●●●●●●●●●●●●●
●●●●●●●●●●●●
●●●●●●●●●●
●●●●●●●●●
●●●●●●●●
●●●●●●●
●●●●●●
●●●●●●

●●●●●
●●●●●
●●●●

●●●●
●●●

●●●
●●●

●●●
●●●
●●
●●
●●
●●
●●
●●
●●
●●
●
●
●
●

●
●
●
●

●
●
●

●
●

●

●

●

●

●

●

●

●

●

0 2 4 6 8 10

0
2

4
6

8
1
0

IT (ν_MLE = 3) empirical quantile

T
T

Q
 (

 ν
_

D
G

P
 =

 3
)

●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●
●●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●
●●●●●●●●
●●●●●●●
●●●●●●●
●●●●●●
●●●●●
●●●●●

●●●●
●●●●
●●●●
●●●

●●●
●●●
●●●
●●
●●
●●
●●
●●
●●
●●
● ●●

●
●
●
●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

0 2 4 6 8 10

0
2

4
6

8
1
0

IT (ν_MLE = 4) empirical quantile

T
T

Q
 (

ν
_

D
G

P
 =

 4
)

Figure 4.3: Q-Q plots of the Mahalanobis distances for the normal, IT (νMLE = 3), and
IT (νMLE = 4) estimators

Table 4.4 shows the p-values of three tests. We do reject the Gaussian distribution
and we do not reject the Student distribution with three degrees or four degrees of
freedom. Figure 4.3 illustrates the Q-Q plots comparing the empirical quantiles of the
Mahalanobis distances for the normal (respectively, the IT (νMLE = 3), the IT (νMLE =
4)) estimators on the horizontal axis to the theoretical quantiles of the Mahalanobis
distances for the normal (respectively, the IT (νMLE = 3), the IT (νMLE = 4)) on the
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Figure 4.4: Scatterplots of residuals for the normal, IT (νMLE = 3), and IT (νMLE = 4)
estimators

vertical axis. These Q-Q plots are coherent with the results of the tests in Table 4.4.
The IT model with three or four degrees of freedom fits our data.

4.6 Vote shares predictions

The interpretation of the regression model parameters in the simplex is not so straight-
forward (see Morais et al. (2017)). Thus, in this section, we focus on illustrating graph-
ically the relationship between the predicted vote shares and the explanatory variables
to understand the impact of the socio-economic factors on the outcome of the election
in France.

As in Nguyen et al. (2018), the prediction of the dependent variable for the above
models for the ith canton is given by:

Ŷi = b̂0

Q
⊕

q=1

B̂q ⊡ X(q)
i

K
⊕

k=1

Zki ⊙ ĉk i = 1, ..., n (4.9)

where b̂0, B̂q and ĉk are the estimated parameters.
As in Nguyen et al. (2018), we now focus on graphing the predicted values of the

dependent variable as a function of one specific variable of interest: two cases must be
considered depending on whether the specific variable is classical or compositional. In
both cases, we create a grid of potential values of the specific explanatory and fix the
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other explanatory variables at the values they take for one selected point of the dataset
(we repeat for several selected points). For the sake of simplicity let us take L = 3.
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Right

[0;0.04]
[0.04;0.11]
[0.11;0.21]
[0.21;0.32]
[0.32;0.44]
[0.44;0.57]
[0.57;0.71]
[0.71;0.84]
[0.84;0.98]

18−40 40−64

+65
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XR

[0;0.01]
[0.01;0.02]
[0.02;0.06]
[0.06;0.11]
[0.11;0.2]
[0.2;0.33]
[0.33;0.51]
[0.51;0.75]
[0.75;0.99]

18−40 40−64
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Figure 4.5: The vote share prediction (the green dotted rectangular show the position
of observed age of three parties)

We now illustrate the impact of a compositional variable (Age) and a classical vari-
able (unemployment rate) on the vote shares. We fix the values of covariates at their
means except Age (resp. unemployment rate) and create a grid of fictive values of Age
(resp. of unemployment rate) in order to predict the vote share according to Age (resp.
unemployment rate). Then we compute the predicted shares at each of these grid points.
Figure 4.5 illustrates the vote share predictions according to the Age variable. It shows
that the people aged more than 64 vote for the Left wing, a part of the youngest people
and a part of the oldest people vote for the Right wing and people from 40 to 64 years
old vote for the Extreme Right party. On Figure 4.6, we color the triangle according to
the winning party (the party with the highest proportion of votes. The Figure shows
that the Left wing is the winning party because the observed points for Age (inside the
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Election results (2015)
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Figure 4.6: The vote share prediction (the green dotted rectangular show the position
of observed age)

dotted green region) fall in the Left wing region (red part). For a classical variable -
unemployment rate, Figure 4.7 shows the vote share prediction on the ilr coordinate
space (on the left hand side) and the vote share prediction in the simplex (on the right
hand side) according to unemployment rate. We see that these vote share predictions
are neither mototone nor linear. Moreover, the vote share of Extreme Right party will
go up whereas the vote share of the Left wing and the vote share of the Right wing will
go down when the unemployment rate increases.

4.7 Conclusion

We have presented a CODA regression model with the independent multivariate Student
distribution and it fits the election data quite well. This model seems to be useful for
modeling heavy tailed data. We have performed Kolmogorov–Smirnov tests to select
the final model. We have also illustrated the impact of compositional and classical
explanatory variables on the outcome of the election by graphical techniques.
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Figure 4.7: Predictions of vote shares on the Euclidean space (on the left) and on the
simplex (on the right)



Chapter 5

Abstract

The outcome of an election in a multiparty system is a vector called composition with
positive components which sum up to a constant. Besides, the vote shares are observed
at a regional unit level (in our application, it is the canton level in the Occitanie region in
France). These data exhibit at the same time the characteristics of compositional data as
well as the characteristics of spatial data. Thus, the challenge is to build a multivariate
regression model to accomodate these two aspects. For the compositional data issue, we
build a multivariate regression model in which the dependent variable is a compositional
variable and the explanatory variables may contain compositional and classical variables
(or both of them). For the spatial issue, some authors use geostatistical approaches
whereas others use rather an approach for areal data known as simultaneous spatial
autocorrelation models in spatial econometrics.

We combine the compositional regression model with a multivariate spatial econo-
metric approach in coordinate space. In what follows, after recalling some principles of
compositional data, we introduce a new operation to write our model in the simplex. We
then develop a simultaneous spatial autoregressive model for compositional data which
allow for both spatial correlation and correlations across equations. The explanatory
variables in this model are classical variables. In order to estimate the parameters, we
adopt an instrumental variable (IV) method for spatial autoregressive model in a mul-
tivariate setting as in Kelejian and Prucha (2004). We devise a simulation to compare
the relative root mean square error (RRMSE) of the parameters estimates under several
data generating processes (DGP) for the two-stages least square (2SLS) and three-stages
least squares (3SLS). We illustrate this approach with an example in political economy.
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Résumé

Le résultat d’une élection dans un système multipartite est un vecteur appelé composition
avec des composantes positives dont la somme est une constante. De plus, les parts de
vote sont observées au niveau de l’unité régionale (dans notre application, il s’agit du
niveau du canton dans la région Occitanie en France). Ces données présentent à la
fois les caractéristiques des données de composition et celles des données spatiales. Le
défi consiste donc à élaborer un modèle de régression multivarié pour tenir compte de
ces deux aspects. Pour le problème des données de composition, nous construisons un
modèle de régression multivarié dans lequel la variable dépendante est une variable de
composition et les variables explicatives peuvent contenir des variables de composition
et des variables classiques (ou les deux). Pour la question spatiale, certains auteurs
utilisent l’approche géostatistique, tandis que d’autres utilisent plutôt une approche
pour les données surfaciques, appelée modèles d’autocorrélation spatiale simultanée en
économétrie spatiale. Nous combinons le modèle de régression compositionnelle avec une
approche économétrique spatiale multivariée dans un espace de coordonnées. Dans ce qui
suit, après avoir rappelé quelques principes de données de composition, nous introduisons
une nouvelle opération pour écrire notre modèle dans le simplexe. Nous développons
ensuite un modèle autorégressif spatial simultané pour les données de composition qui
permet à la fois de prendre en compte la corrélation spatiale et les corrélations entre
équations. Les variables explicatives de ce modèle sont des variables classiques. Afin
d’estimer les paramètres, nous adoptons une méthode de variable instrumentale (IV)
pour le modèle spatial autorégressif dans un contexte multivarié comme dans Kelejian
et Prucha (2004). Nous concevons une simulation pour comparer la racine carré de
l’erreur quadratique moyenne relative (RRMSE) des estimations de paramètres sous
plusieurs processus de génération de données (DGP) pour les moindres carrés à deux
étages (2SLS) et les moindres carrés à trois étages. (3SLS). Nous illustrons cette approche
avec un exemple en économie politique.
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A spatial autoregressive model for
compositional data12

Abstract. In an election, the vote shares by party on a given subdivision of a territory
form a vector with positive components adding up to 1 called a composition. Using a
conventional multiple linear regression model to explain this vector by some factors is not
adapted for at least two reasons. The first one is the existence of the constraint on the
sum of the components and the second one is the assumption of statistical independence
across territorial units which may be questionable due to potential spatial autocorre-
lation. We develop a simultaneous spatial autoregressive model for compositional data
which allows for both spatial correlation and correlations across equations. We propose
an estimation method based on two-stage and three-stage least squares. We illustrate
the method with simulations and with a data set from the 2015 French departmental
election.

Keywords. multivariate spatial autocorrelation, spatial weight matrix, three-stage
least squares, two-stage least squares, simplex, electoral data.

5.1 Introduction

Some data present simultaneously the characteristics of compositional data (vectors
with positive components adding up to a constant and conveying relative information)
as well as the characteristics of spatial data (presence of spatial heterogeneity and spatial
dependence). For example, land cover data contain information about different land use
shares and the statistical unit is a subdivision of a territory; among the many papers
that treat this type of data see Leininger et al. Leininger et al. (2013), Overmars et
al. Overmars et al. (2003), Yoshida and Tsutsumi Yoshida and Tsutsumi (2018) and
Pirzamanbein et al. Pirzamanbein et al. (2015). Another instance is in geochemistry
where data consist of composition of mineral deposits into chemical elements at different
locations in geographical space, see for example Rubio et al. Rubio et al. (2016) who
study sediments in an artic lake or Filzmoser et al. Filzmoser et al. (2010) who examine
the Kola moss layer composition data from the R package StatDa. This is also the
case in political economy for electoral data containing the vote shares by party in a

1Submitted to Spatial Statistics
2Joint work with A. Ruiz-Gazen, C. Thomas-Agnan and T. Laurent

99



100 CHAPTER 5. SPATIAL COMPOSITIONAL MODELS

multiparty election for a list of administrative subdivisions of a territory as in Katz and
King Katz and King (1999) or for data about turnout rates as in Borghesi and Bouchaud
Borghesi and Bouchaud (2010). Other examples include the distribution of temperature
data at weather stations as in Salazar et al. Salazar et al. (2015), the distribution of
benthic macroinvertebrates at sampling stations in the Delaware Bay in Billheimer at
al. Billheimer et al. (1997).

The challenge for modelling such data is to accomodate at the same time their
compositional and spatial nature. Concerning the spatial aspect, some authors use a
geostatistical approach whereas others use rather an approach for areal data known as
simultaneous spatial autocorrelation models in spatial econometrics (see LeSage and Pace
LeSage and Pace (2009)). For the geostatistical approach, let us mention Pawlowsky and
Burger Pawlowsky and Burger (1992), Pawlowsky et al. Pawlowsky-Glahn and Egozcue
(2016), Rubio et al. Rubio et al. (2016), Martins et al. Martins et al. (2016), Billheimer
et al. Billheimer et al. (1997). Given the nature of our application, areal data rather
than point data, we concentrate here on the spatial econometrics approach. Note that
the compositional vector being the dependent variable, we will need spatial economet-
rics models for multivariate dependent variable as in Kelejian and Prucha Kelejian and
Prucha (2004). We develop a simultaneous spatial autoregressive model for composi-
tional data which allows for both spatial correlation and correlations across equations.
We propose an estimation method based on two-stage (S2SLS) and three-stage (S3SLS)
least squares.

In Section 2, we first recall some classical facts adapted to work with compositional
data. We then introduce a new operation which will be necessary later to write our model
in a simplex fashion and study its properties. In Section 3, we recall facts about the
definition and estimation of simultaneous autoregressive models for multivariate output
spatial data and combine with the tools of Section 2 to define our model for spatio-
compositional data. Section 4 presents some simulations to evaluate the quality of the
S2SLSL and S3SLS methods in the multivariate case. Sections 5 presents an application
to election results with the question of the impact of socio-economic variables on parties
vote shares with a data set from the 2015 French departmental election. Section 6
concludes.

5.2 Definitions and notations in compositional data anal-
ysis

A D-composition u is a vector of D parts of some whole which carries relative information
and therefore can be represented in the so-called simplex space SD defined by:

SD =

{

u = (u1, . . . , uD)′ : um > 0, m = 1, ..., D;
D
∑

m=1

um = 1

}
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For any vector w ∈ R
+D, the closure operation is defined by

C(w) =

(

w1
∑D

m=1 wm

, · · · ,
wD

∑D
m=1 wm

)

.

Let us recall the usual operations used to define a vector structure on the simplex space.

1. ⊕ is the perturbation operation, corresponding to the addition in R
D:

u ⊕ v = C(u1v1, . . . , uDvD), u, v ∈ SD

2. ⊙ is the power transformation, corresponding to the scalar multiplication in R
D:

λ ⊙ u = C(uλ
1 , . . . , uλ

D), λ is a scalar, u ∈ SD

Moreover, the compositional product of a matrix by a vector denoted by ⊡ is defined as
follows

B ⊡ u = C
(

D
∏

m=1

ub1m
m , · · · ,

D
∏

m=1

ubDm
m

)T

where u ∈ SD, B = (blm) with l = 1, . . . D, m = 1, . . . , D is a D × D matrix and T is
the transposition operator.

The simplex SD can also be equipped with the compositional/Aitchison inner product
(see Aitchison Aitchison (1985) and Pawlowsky-Glahn et al. Pawlowsky-Glahn et al.
(2015)) in order to define distances. The expected value of a simplex valued random
variable Y, denoted by E

⊕Y, is defined in Pawlowsky-Glahn et al. Pawlowsky-Glahn
et al. (2015).

The analysis of compositional data makes use of log-ratio transformations which
map the simplex SD to R

q (where most often q = D − 1) because of their degree 0
homogeneneity (scale invariance). The classical ones are the additive log-ratio (alr), the
centered log-ratio (clr) and the isometric log-ratio (ilr) transformations. In this paper,
we will mainly use some ilr transformations. Because it is needed to define the ilr, let
us first recall the definition of the clr transformation of a vector u ∈ SD

clr(u) =
(

ln
um

g(u)

)

m=1,...,D

with g(u) = D
√

u1 · u2 · · · uD.

Let VD be a D × (D − 1) contrast matrix (Pawlowsky-Glahn et al. Pawlowsky-Glahn
et al. (2015)) associated to a given orthonormal basis (e1, · · · , eD−1) of SD by

VD = clr(e1, · · · , eD−1),

where clr is understood componentwise. For each such matrix VD, an isometric log-ratio
transformation (ilr) is then defined by:

u∗ = ilr(u) = VT
Dln(u) = ln(u)VD
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where the logarithm of u ∈ SD is understood componentwise.
Since our data will be made of samples of composition vectors, we will store them

in a n × D matrix Y = (Yil), (i = 1, . . . , n, l = 1, . . . , D) and each row of this matrix,
denoted by Yi., is a compositional vector of SD. Y.l, l = 1, . . . , D will denote the lth

column of Y and we have

Y = (YT
1., . . . , YT

n.)
T = (Y.1, . . . , Y.D).

Let us define an extension of the ilr transformation of a matrix Y by

ilr(Y) = ln(Y)VD =







ilr(Y1.)
...

ilr(Yn.)







Note that ilr(Y) is a n × (D − 1) matrix.

In spatial econometrics models, spatial weight matrices are used to specify the neigh-
borhood structure. For n spatial locations, the elements wij of the n × n matrix W are
measures of proximity between locations i and j. See for example Bivand et al. Bivand
et al. (2008) for different specifications. These matrices determine a covariance model
for the data vector and play a role similar to the spatial variogram in geostatistics. For
such a matrix and a given data vector Z of size n, the lagged vector WZ contains aver-
ages of the values of the variable Z in neighboring locations when W is row normalized.
In our case, we need to apply such an operation to each column of the data matrix Y
and we wish that the application of this process to each column of Y results in a matrix
in the same space as the original one (SD)n. As usual in compositional data analysis
we use the principle of working in coordinates (log-transformed data) and inverting the
transformation to go back to the simplex. We thus define the following operation.

Definition 2. Let W be a n × n matrix. The operation ·△ is a map from the cartesian
product of simplex spaces (SD)n to itself defined by

ilr(W ·△Y) = Wilr(Y) = W ln(Y)VD (5.1)

where VD is a D × (D − 1) contrast matrix.

Note that (W ·△Y) ∈ (SD)n and Wilr(Y) ∈ (R(D−1))n. This operation satisfies the
following properties:

Proposition 4. Let Y be a n×D matrix such that each row, denoted by Yi., i = 1, . . . , n
is a compositional vector in SD. Let W = (Wij), (i, j = 1, . . . , n), a n × n matrix and
α ∈ R. We have

1. W ·△(α ⊙ Y) = α ⊙ (W ·△Y).

2. ilr(W ·△(α ⊙ Y)) = αWilr(Y) = α ilr(W ·△Y).
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3. (W ·△Y)i. = C
(

∏n
j=1 Y

Wij

j1 ;
∏n

j=1 Y
Wij

j2 ; . . . ;
∏n

j=1 Y
Wij

jD

)

, for i = 1, . . . , n, where

(W ·△Y)i. denotes the ith row of W ·△Y.

4. Let Y1, Y2 ∈ (SD)n, then W ·△(Y1 ⊕ Y2) = (W ·△Y1) ⊕ (W ·△Y2).

5.3 Multivariate LAG regression model

The principle of compositional regression models is to use a transformation to send the
data from the simplex to some coordinate space and to postulate a gaussian regression
model in the coordinate space as in Egozcue et al. Egozcue et al. (2012). The model
can then be transferred back to the simplex by inverse transformation. In our case,
the model in coordinate space must be a multivariate regression model because we have
several response variables. For simplicity, we concentrate on the so-called LAG model
which includes endogenous lagged variables on the right hand side of the model equa-
tions. An extension to a Durbin model would be immediate (LeSage and Pace LeSage
and Pace (2009)). Since our model will be postulated in the coordinate space we choose
to star all variables and parameters in the coordinate space Subsection 3.1, despite the
fact that this section is not specific to compositional data and that we remain in the
coordinate space for the whole of Subsection 3.1.

5.3.1 Model in coordinate space

We consider a sample of size n and assume that we have M endogenous variables, hence
M linear regression equations (M will be D − 1 in Section 3.2). For a n × M matrix
A, we will use the same notation as in Section 2, A = (A.1, . . . , A.M ) = (AT

1., . . . , AT
n.)

T

with A.l being the lth column of A and Ai. being the ith row of A.
Let Y∗ be a n×M matrix of dependent variables and X be a n×K matrix of explanatory
variables. We will allow for using a different set of explanatory variables in each equation.
For this reason, we denote by SY∗

l , SX
l , SWY∗

l the sets of indices of the variables which
appear in the lth equation for Y∗, X, WY∗ respectively. Accordingly Y∗

SY∗

l

, XSX

l
,

Y∗

SWY∗

l

will denote the columns of Y∗, X, WY∗ which appear in the lth equation. Let

ΓΓΓ∗ = (Γ∗

ml) and R∗ = (R∗

ml), ( m, l = 1, . . . , M) be M × M matrices of parameters. R∗

contains the parameters associated to the lagged endogenous variables on the right hand
side of the model equation. As in the simultaneous equations literature in econometrics,
each endogenous variable may also appear in each model equation so that ΓΓΓ∗ contains
the corresponding parameters. Finally βββ∗ is a K × M matrix of parameters for the
explanatory variables. ǫǫǫǫǫǫǫǫǫ∗ denotes a n × M error matrix. As in Kelejian and Prucha
Kelejian and Prucha (2004), we consider the following model

Y∗

.l =
∑

m∈SY∗

l

Γ∗

mlY
∗

.m + XSX

l
βββ∗

SX

l

+
∑

m∈SWY∗

l

R∗

mlWY∗

.m + ǫǫǫ∗

.l (5.2)
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Note that model (5.2) is written for each column of Y∗ i.e. for each component of
the composition dependent vector but the M equations are linked by the covariance
structure of the errors. Indeed, we assume that the errors are centered E(ǫǫǫ∗) = 0 and
that E(ǫǫǫ∗

i.ǫǫǫ
∗
j.) = ΣΣΣ∗ if i = j and 0 if i 6= j (individuals are independent but components

of a given individual have a covariance structure). Kelejian and Prucha Kelejian and
Prucha (2004) suggest and study the properties of a Spatial Two Stage Least Square
(S2SLS) procedure as well as a Spatial Three Stage Least Square (S3SLS) procedure
to estimate model (5.2). Following their suggestion, we consider H a subset of linearly
independent columns of the n×3K matrix (X, WX, W2X). Let PH = H(HT H)−1HT

denote the projection matrix onto the space generated by the columns of H. For the
lth equation, we group the variables and parameters of the right hand side into a single
vector Z.l of variables and a single vector δδδ∗

.l of parameters:

Z.l =
[

Y∗

SY∗

l

; XSX

l
; WY∗

SWY∗

l

]

;δδδ∗

l = [ΓΓΓ∗

.l; β∗

l ; R∗

.l, ]

The S2SLS estimation method for this model then proceeds as follows for each equation
(i.e. each component) separately :

1. Perform a univariate regression of each column of Z on H and compute the fitted
values Z̃.l:

Z̃.l = PHZ.l =
[

PHY∗

SY∗

l

, XSX

l
, PHWY∗

SWY∗

l

]

.

2. Perform a univariate regression of Y∗

.l on Z̃.l:

δ̃δδ
∗

l = (Z̃T
.l Z̃.l)−1Z̃T

.l Y
∗

.l.

At the end of step 2, we can calculate the residuals by

ǫ̃ǫǫ∗

.l = Y∗

.l − Ŷ∗

.l = Y∗

.l − Z.lδ̃δδ
∗

l ,

and get an estimate of the covariance matrix ΣΣΣ∗ with

Σ̃ΣΣ
∗

ml =
ǫ̃ǫǫ∗T

.mǫ̃ǫǫ∗

.l

n
.

Until now, the covariance structure between equations has not been taken into account
and the Three Stage Least Square (S3SLS) method is supposed to correct for this. To
write the expression of the S3SLS estimator, we need to vectorize Y∗ (by stacking the
columns of Y) resulting in y∗ = vec(Y∗) and write the explanatory matrices as follows

Z =







Z.1 . . . 0

0
. . . 0

0 . . . Z.M






, Z̃ =







PHZ.1 . . . 0

0
. . . 0

0 . . . PHZ.M






.
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We then get a corrected estimator δ̂δδ
∗

of δδδ∗

δ̂δδ
∗

= (Z̃T (Σ̃ΣΣ
∗−1 ⊗ In)Z)−1Z̃T (Σ̃ΣΣ

∗−1 ⊗ In)y∗. (5.3)

It is known that if the matrix R∗ is not diagonal, the S2SLS δ̃δδ
∗

and S3SLS δ̂δδ
∗

estimators
are identical (see Greene Greene (1997) page 488).

In the application of Section 5, we consider a slightly more general model in which
we include compositional variables among the explanatory (see for example Filzmoser et
al. Filzmoser et al. (2018)). The additional complexity is the same as for a non-spatial
model hence for the sake of simplicity we did not consider this extra layer in this section.

5.3.2 Writing the LAG regression model in the simplex space

Starting now with a sample of compositional vectors Y in SD, and given an ilr trnas-
formation, we postulate a model like (5.2) for the ilr transformed coordinates of Y.
Applying the ilr inverse transformation to each of the equations of model (5.2) with
M = D − 1 and using Proposition 1, we easily get that the system of equations (5.2) is
equivalent to the system

Yi. = RT
⊡ (W ·△Y)i.

K
⊕

k=1

Xik ⊙ βββk ⊕ ΓΓΓT
⊡ Yi. ⊕ ǫǫǫi. (5.4)

where the model is now written at the individual level for all components simultaneously
whereas in (5.2) it was at the component level for all individuals simultaneously. One
can write relationships between parameters in coordinate space and parameters in the
simplex. The classical relationship between βββ and βββ∗ remains the same (see for example
Filzmoser et al. Filzmoser et al. (2018))

βββk = ilr−1(βββ∗

k) = exp(VDβββ∗

k).

Considering RT
⊡(W ·△Y)i. and ΓΓΓT

⊡Yi. as compositional explanatory, the relationships
between R and R∗ and between Γ and Γ∗ are as follows (see Chen et al. Chen et al.
(2017))

R = VDR∗VT
D and Γ = VDΓ∗VT

D.

5.4 Simulation

A simulation study of the performance of the S2SLS and S3SLS methods can be found in
Das et al. Das et al. (2003) but it is restricted to the case of a single dependent variable.
For this reason, we now investigate by simulation the properties of the estimators βββ∗,
R∗ and ΣΣΣ∗ of the S2SLS and S3SLS methods in the multivariate spatial autoregressive
model. We consider the n = 283 cantons of the Occitanie region in France with a
neighborhood structure based on 10 nearest neighbors.
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For a number of replications N = 1000, we simulate three explanatory variables
X1, X2 and X3 following the Gaussian distributions N (0, 9), N (0, 6) and N (0, 9) re-
spectively. When simulating the two dependent variables, we include all explanatory
variables X1, X2 and X3 in each of the two equations.

The parameter βββ∗, the covariance matrix ΣΣΣ∗ and the matrix R∗ are respectively
assigned the following values

βββ∗ =











β∗
01 β∗

02

β∗
11 β∗

12

β∗
21 β∗

22

β∗
31 β∗

32











=











+3 −3
+2 −3
+1 −2
−1 +3











; ΣΣΣ∗

d̄
=

[

0.7 0.093
0.093 0.1

]

; R∗

d̄
=

[

0.5 0.6
0.4 0.3

]

Alternative diagonal matrices for ΣΣΣ∗ and R∗ are also considered

ΣΣΣ∗

d =

[

0.7 0
0 0.1

]

; R∗

d =

[

0.5 0
0 0.3

]

We consider four data generating processes (DGP) respectively denoted by ΣΣΣ∗

d̄
R∗

d̄
,

ΣΣΣ∗

d̄
R∗

d, ΣΣΣ∗

dR∗

d̄
and ΣΣΣ∗

dR∗

d according to the choice of matrices ΣΣΣ∗ and R∗. For each DGP,
we calculate a Monte Carlo performance measure of the estimators proposed in Section
5.3. The performance is measured by the relative root mean squared error (RRMSE),
which is defined for an estimator θ̂ of a parameter θ by:

RRMSE(θ̂) =
RMSE(θ̂)

|θ| with RMSE(θ̂) =

√

√

√

√

1
N

N
∑

i=1

(

θ̂(i) − θ
)2

.

Table 5.1 presents the relative root mean square error for the S2SLS method and
S3SLS methods for all DGPs. We did not report the relative bias in Table 5.1 because
its value is quite similar to the relative root mean square error showing that the bias
dominates the error. The percentage of error is generally very small with a maximum
of 10% for the variance parameters and values less than 1% for the other parameters.
For all DGPs, the largest differences between the estimates occur for the estimation of
the intercepts and for the estimation of the R∗ matrix and these differences are small in
all cases. Concerning the βββ and R estimates, only the S2SLS results are reported since
S3SLS yields exactly the same results for the first two DGPs as proved by the theory.
Concerning the variance estimates, note that there is no difference in its computation
for the S2SLS and S3SLS. Finally, if we compare the three estimates in the case of DGP
ΣΣΣ∗

dR∗

d, we can see that the results are quite close showing that S2SLS is a practical
alternative to maximum likelihood in the framework of this model.
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Table 5.1: The RRMSE (in %) for all DGPs and parameters

Parameters
RRMSE(%)

ΣΣΣ∗

d̄
R∗

d̄
ΣΣΣ∗

dR∗

d̄
ΣΣΣ∗

d̄
R∗

d ΣΣΣ∗

dR∗

d

S2SLS S2SLS S2SLS S3SLS S2SLS S3SLS MLE

β∗
01 0.16 0.11 0.50 0.33 0.47 0.46 0.41

β∗
11 0.18 0.15 0.21 0.21 0.18 0.18 0.18

β∗
21 0.03 0.03 0.03 0.03 0.04 0.04 0.04

β∗
31 0.88 0.87 0.86 0.86 0.86 0.86 0.86

β∗
02 0.29 0.32 0.05 0.08 0.08 0.08 0.08

β∗
12 0.12 0.14 0.11 0.11 0.14 0.14 0.14

β∗
22 0.00 0.00 0.02 0.02 0.02 0.02 0.02

β∗
32 0.02 0.03 0.04 0.04 0.00 0.00 0.00

R∗
11 0.17 0.21 0.76 0.64 0.68 0.67 0.64

R∗
12 0.40 0.39 - - - - -

R∗
21 0.41 0.37 - - - - -

R∗
22 0.42 0.58 0.63 0.67 0.83 0.83 0.82

σ2∗
11 9.46 9.12 9.43 9.43 9.09 9.09 10.37

σ2∗
12 2.27 - 1.67 1.67 - - -

σ2∗
21 2.27 - 1.67 1.67 - - -

σ2∗
22 9.11 9.38 9.18 9.18 9.16 9.16 7.62

5.5 Application to political economics

Vote share data of the 2015 French departmental election of the Occitanie region in
France are collected from the Cartelec website3. Corresponding socio-economic data
(for 2014) are downloaded from the INSEE website4. The number of political parties
presenting candidates at that election is higher than 15. However for simplicity reasons,
we have aggregated them into three main components: Left, Right and Extreme-Right5.
The dependent variable is thus a compositional variable which contains the vote shares
of Left, Right and Extreme Right party. Cantons with at least one missing value on one
of the components of the dependent vector have been eliminated resulting in n = 207
cantons in the final dataset. We use the following contrast matrix for D = 3, built using
balances (see Pawlowsky-Glahn et al. Pawlowsky-Glahn et al. (2015) page 40)

V3 =





2/
√

6 0
−1/

√
6 1/

√
2

−1/
√

6 −1/
√

2



 .

3https://www.data.gouv.fr/fr/datasets/elections-departementales-2015-resultats-par-bureaux-de-
vote/

4https://www.insee.fr/fr/statistiques
5for more details, see https://fr.wikipedia.org/wiki/Elections_départementales_francaises_de_2015
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Table 5.2: Data description.

Variable name Description

Vote share Left(L), Right(R), Extreme Right(XR)
Diploma SUP, <BAC, BAC
Employment AZ, BE, FZ, GU, OQ
Age Age_1840, Age_4064, Age_65

unemp Unemployment rate
nbvoter Number of voters
income Proportion of people who pay income tax

This particular matrix defines the following ilr coordinates

ilr1(x) =
1√
6

(2 log x1 − ln x2 − log x3) =
2√
6

log
x1√
x2x3

ilr2(x) =
1√
2

(log x2 − log x3) =
1√
2

log
x2

x3
.

With this choice, the first ilr coordinate opposes the Left wing to the geometric mean
of the Right wing and the Extreme Right party and the second opposes the Right wing
to the Extreme Right party.
Our explanatory variables, presented in Table 5.2, include both compositional and clas-
sical variables. For the three compositional variables, Diploma, Employment and Age,
the contrast matrices have been built using balances as for the dependent variable.
The categories of these variables are as follows

• Employment has five levels: AZ (agriculture, fisheries), BE (manufacturing indus-
try, mining industry and others), FZ (construction), GU (business, transport and
services) and OQ (public administration, teaching, human health),

• Diploma has three levels: <BAC for people with at most some secondary educa-
tion, BAC for people with at least some secondary education and at most a high
school diploma, and SUP for people with a university diploma,

• Age has three levels: Age_1840 for people from 18 to 40 years old, Age_4064 for
people from 40 to 64 years old, and Age_65 for elderly.

An additional variable measuring the number of voters in each canton has been included
to take into account a potential size effect.

This data set has been analyzed in Nguyen and Laurent Nguyen and Laurent (2019)
without taking into account the spatial structure. We use model (5.2) in the coordinate
space with ΓΓΓ∗ = 0. Indeed, the reason for including spatially lagged dependent variable
in the equations is for taking into account the spatial dependence and this justifies terms
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Table 5.3: Multivariate independent and spatial regression models with compositional
and classical explanatory variables

Independence model Spatial dependence model
y_ilr[, 1] y_ilr[, 2] y_ilr[, 1] y_ilr[, 2]

Constant −3.69(0.89)∗∗∗ −2.66(0.45)∗∗∗ − 2.06( 0.89)∗∗ −1.34(0.14)∗∗∗

diplome_ilr1 −1.27(0.50)∗∗ −0.29(0.25) −0.56(0.46) −0.63(0.17)∗∗∗

diplome_ilr2 −0.03(0.61) −0.90(0.30) −0.02(0.53) −0.54(0.45)
employ_ilr1 −0.18(0.14) −0.13(0.07)∗ −0.13(0.12) −0.11(0.24)
employ_ilr2 +0.49(0.16)∗∗∗ −0.03(0.08) +0.38(0.14)∗∗∗ +0.02(0.27)
employ_ilr3 −0.21(0.11)∗ +0.01(0.06) −0.24(0.10)∗∗ −0.08(0.06)
employ_ilr4 +0.21(0.06)∗∗∗ +0.01(0.03) +0.09(0.05)∗ −0.04(0.07)
age_ilr1 −1.14(0.37)∗∗∗ +1.00(0.18)∗∗∗ −0.57(0.39) +0.33(0.05)∗∗∗

age_ilr2 +0.48(0.30) −1.33(1.15)∗∗∗ +0.51(0.31) −0.67(0.03)∗∗∗

unemp −0.05(2.27) +9.70(1.14)∗∗∗ −0.34(2.88) +1.43(0.20)∗∗∗

income +4.30(0.89)∗∗∗ +1.14(0.06)∗∗∗ +2.69(0.84)∗∗∗ +0.70(0.16)∗∗∗

nbvoter +2e-06(5e-06) +1e-05(2e-05)∗∗∗ −6e-06(4e-06) +1e-05(1.47)

R1 - - +0.99(0.43)∗∗ +0.11(0.07)
R2 - - −0.09(0.00)∗∗∗ +0.70(0.09)∗∗∗

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

such as
∑

m∈SWY∗

l
R∗

mlWY∗
.m in model (5.2). But in our case, there is no economic reason

for introducing terms such as
∑

m∈SY∗

l
Γ∗

mlY
∗
.m on the right hand side of the equations

in the coordinate space. In order to estimate the parameters in model (5.2), we carry
out the S2SLS and the S3SLS methods from Section 5.3.

First of all, looking at the size effect, the number of voters is not significant in the
spatial model whereas it was in the non-spatial one (indeed there is some heterogeneity
in the distribution of the number of voters at the canton level). The spatial dependence
parameters (elements of the matrix R∗) are significant showing that a spatial dependence
phenomenon is present in this data. The sign and significance of most βββ parameters are
very comparable, except in two cases (the diploma and age variables) for which the
significance changes from one ilr of Y to the other. Finally, we can say that this spatial
LAG model would be necessary if we were to evaluate spillover effects across cantons
(see LeSage and Pace LeSage and Pace (2009)).

5.6 Conclusion

Motivated by an example in political economics, we develop a simultaneous spatial au-
toregressive model for compositional data combining the simultaneous systems of spa-
tially interrelated cross sectional equations of Kelejian and Prucha Kelejian and Prucha
(2004) and the compositional regression models (see Filzmoser et al. Filzmoser et al.
(2018)). We propose an implementation using spatial two-stage and three-stage methods
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which are easy to implement.
There are several directions we could consider to go further in this framework. We

could first of all consider alternative estimation methods. For example partial least
squares procedures for the Spatial LAG model have been proposed in Wang et al. Wang
et al. (2019) but for a single dependent variable. Similarly and with the same restriction,
Spatial regression trees are developed for the LAG model in Wagner and Zeileis Wagner
and Zeileis (2019). In a different direction, the aggregation of political parties in three
blocks could be reconsidered. On the one hand, this aggregation avoids the zero problem
due to the absence of some parties in some cantons but on the other hand it results in
an information loss: imputation methods could be used to solve this as in Palarea and
Martin-Fernandez Palarea-Albaladejo and Martín-Fernández (2015).
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Conclusion (English version)

The objective of this thesis is to investigate the outcome of an election and the
impacts of the socio-economics factors on the vote shares in the multiparty system from
a mathematical point of view.

The vote shares of the departmental election in France in 2015 form a vector called
composition. Thus, the classical regression model cannot be used directly to model
these vote shares because of contraints of compositional data. In Chapter 2, we present
a regression model in which the dependent variable is a compositional variable and the
set of explanatory variables contains both classical variables and compositional vari-
ables. We analyze the impacts of socio-economic factors on the outcome of the election
through predicting the vote shares according to either a classical explanatory variable
or a compositional explanatory variable. Some graphical techniques are also presented.
However, it would be more appreciated to interpret the coefficients of regression model
on the simplex.

Furthermore, some authors show that electoral data often exhibit heavy tail behav-
ior. Thus, we propose to replace the Normal distribution by the Student distribution.
However, there are two versions of the Student distribution: the uncorrelated Student
(UT) distribution and the independent Student (IT) distribution. In Chapter 3, we
present a complete summary for the Student distributions which includes the univariate
and multivariate Student, the IT and the UT distribution with fixed degrees of freedom.
We prove that the maximum likelihood estimator of the covariance matrix in the UT
model is asymptotically biased. We also provide an iterative reweighted algorithm to
compute the maximum likelihood estimator of parameter of the IT model. A simulation
is provided and some Kolmogorov–Smirnov tests based on the Mahalanobis distance are
carried out to select the right model. However, this does not work for the UT model
because of a single realization of n observation of the multivariate distribution.

In Chapter 4, we apply the multivariate Student (IT) regression model to our political
economy data. We then compare this model to the multivariate Normal regression model.
We also apply the Kolmogorov–Smirnov tests based on the Mahalanobis distance which
is proposed in chapter 3 to select a better model.

Finally, we investigate the assumption of statistical independence across territorial
units which may be questionable due to potential spatial autocorrelation for composi-
tional data. We develop a simultaneous spatial autoregressive model for compositional
data which allows for both spatial correlation and correlations across equations by using
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two-stage and three-stage least squares methods. We present a simulation study to il-
lustrate these methods. An application to a data set from the 2015 French departmental
election are also showed.

There is still work to continue in the direction of overcoming the problem of zeros
in vote shares. This problem is already present for the departmental French elections
at the canton level when aggregating the electoral parties in three categories. It would
have been even more serious when considering the original political parties with no
aggregation. Besides, another direction consists in considering the multivariate Student
distribution for a spatial model.



Conclusion (version française)

L’objectif de cette thèse est d’étudier le résultat d’élections et l’impact des facteurs
socio-économiques sur les parts de vote dans le système multipartite d’un point de vue
mathématique.

Les votes de l’élection départementale en France en 2015 forment un vecteur appelé
composition. Ainsi, le modèle de régression classique ne peut pas être utilisé directement
pour modéliser ces parts de vote en raison de contraintes de données de composition. Au
chapitre 2, nous présentons un modèle de régression dans lequel la variable dépendante
est une variable de composition et les variables explicatives contiennent à la fois des
variables classiques et des variables de composition. Nous analysons les impacts des
facteurs socio-économiques sur l’issue de l’élection en prédisant les parts de vote en
fonction d’une variable explicative classique ou d’une variable explicative de composition.
Quelques techniques graphiques sont également présentées. Néanmoins, il serait plus
judicieux d’interpréter les coefficients du modèle de régression sur le simplexe.

Par ailleurs, certains auteurs montrent que les données électorales présentent souvent
un comportement extrême. Nous proposons donc de remplacer la distribution Normale
par la distribution de Student. Cependant, il existe deux versions de la distribution Stu-
dent: la distribution Student non corrélée (UT) et la distribution independetn Student
(IT). Dans la troisième partie, nous présentons un résumé complet de la distribution Stu-
dent, comprenant les distributions Student univariée et multivariée, IT et UT à degrés
de liberté fixes. Nous prouvons que l’estimateur de maximum de vraisemblance de la
matrice de covariance dans le modèle UT est asymptotiquement biaisé. Nous fournissons
également un algorithme itératif repondéré pour calculer l’estimateur du maximum de
vraisemblance du paramètre du modèle IT. Une simulation est fournie et certains tests
de Kolmogorov – Smirnov basés sur la distance de Mahalanobis sont effectués pour sélec-
tionner le bon modèle. Cependant, cela ne fonctionne pas pour le modèle UT en raison
d’une seule réalisation de n observations de la distribution multivariée.

Enfin, nous étudions l’hypothèse d’indépendance statistique entre unités territoriales,
qui peut être mise en doute du fait de l’autocorrélation spatiale potentielle des données
de composition. Nous développons un modèle autorégressif spatial simultané pour les
données de composition qui permet à la fois la corrélation spatiale et les corrélations entre
équations en utilisant des méthodes de moindres carrés à deux étages et à trois étages.
Nous présentons une étude de simulation pour illustrer ces méthodes. Une application
à un ensemble de données de l’élection départementale française de 2015 est également
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présentée.
Il reste encore du travail à faire pour surmonter le problème des zéros dans les parts

de vote. Ce problème est déjà présent pour les élections départementales françaises au
niveau cantonal lorsque l’on regroupe les partis électoraux en trois catégories. Cela aurait
été encore plus grave si l’on considérait les partis politiques d’origine sans agrégation.
En outre, une autre direction consiste à examiner la distribution multivariée de Student
pour le modèle spatial.



Appendix A

Appendix for Chapter 3

Proof of Proposition 1. Using Expression (3.1), the joint density function of ǫ̂̂ǫ̂ǫUT is:

p(ǫǫǫUT |0,ΩΩΩUT , ν) =
f(ν)

det(In ⊗ ΣΣΣUT )1/2

[

1 +
1

ν − 2
ǫǫǫT

UT (In ⊗ ΣΣΣUT )−1ǫǫǫUT

]−
ν+nL

2

=
f(ν)

det(ΣΣΣUT )n/2

[

1 +
1

ν − 2
ǫǫǫT

UT (In ⊗ ΣΣΣUT )−1ǫǫǫUT

]−
ν+nL

2

=
f(ν)

det(ΣΣΣUT )n/2

[

1 +
1

ν − 2

n
∑

i=1

ǫǫǫT
UT iΣΣΣ

−1
UTǫǫǫUT i

]−
ν+nL

2

Therefore, the logarithm of p(ǫǫǫUT |0,ΩΩΩUT , ν) is:

log p(ǫǫǫUT |0,ΩΩΩUT , ν) = log f(ν) − n

2
logΣΣΣUT − ν + nL

2
log

[

1 +
1

ν − 2

n
∑

i=1

ǫǫǫT
UT iΣΣΣ

−1
UTǫǫǫUT i

]

.

(A.1)

In order to maximize log p(p(ǫǫǫUT |0,ΩΩΩUT , ν)) as a function of βββUT , we follow the same
argument as in Theorem 8.4 from Seber (2009) for the Gaussian case and obtain that
the minimum of

∑n
i=1 ǫǫǫT

UT iΣΣΣ
−1
UTǫǫǫUT i is obtained for:

β̂ββUT =
(

X T X
)−1

X T Y .

Besides, taking the partial derivative of (A.1) as a function of ΣΣΣUT , we obtain:

∂ log(p(ǫǫǫUT |0,ΩΩΩUT , ν))
∂ΣΣΣUT

= −nΣΣΣ−1
UT

2
− (ν + nL)

2
∂ log(ν − 2 +

∑n
i=1 ǫǫǫT

UT iΣΣΣ
−1
UTǫǫǫUT i)

∂ΣΣΣUT

= −nΣΣΣ−1
UT

2
− (ν + nL)

2
∂(ν − 2 +

∑n
i=1 ǫǫǫT

UT iΣΣΣ
−1
UTǫǫǫUT i)/∂ΣΣΣUT

ν − 2 +
∑n

i=1 ǫǫǫT
UT iΣΣΣ

−1
UTǫǫǫUT i

.

Let:
wUT =

1
ν − 2 +

∑n
i=1 ǫǫǫT

UT iΣΣΣ
−1
UTǫǫǫUT i

. (A.2)
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We have:

∂ log(p(ǫǫǫUT |0,ΩΩΩUT , ν))
∂ΣΣΣUT

= −nΣΣΣ−1
UT

2
− (ν + nL) wUT

2
∂(ν − 2 +

n
∑

i=1

ǫǫǫT
UT iΣΣΣ

−1
UTǫǫǫUT i)/∂ΣΣΣUT

= −nΣΣΣ−1
UT

2
+

(ν + nL) wUT

2

n
∑

i=1

ΣΣΣ−1
UTǫǫǫUT iǫǫǫ

T
UT iΣΣΣ

−1
UT

Solving
∂ log(p(ǫǫǫUT |0,ΩΩΩUT , ν))

∂ΣΣΣUT
= 0 and letting E =

∑n
i=1 ǫǫǫUT iǫǫǫ

T
UT i, we have:

ΣΣΣ−1
UT =

ν + nL

n
wUT

n
∑

i=1

ΣΣΣ−1
UTǫǫǫUT iǫǫǫ

T
UT iΣΣΣ

−1
UT

ΣΣΣUTΣΣΣ−1
UTΣΣΣUT =

ν + nL

n
wUT

n
∑

i=1

ΣΣΣUTΣΣΣ−1
UTǫǫǫUT iǫǫǫ

T
UT iΣΣΣ

−1
UTΣΣΣUT

ΣΣΣUT = (ν + nL) wUT
E
n

(A.3)

The expression of wUT in (A.3) can be simplified by noting that:

ΣΣΣ−1
UT = n((ν + nL)wUT )−1E−1

n
∑

i=1

ǫǫǫT
UT iΣΣΣ

−1
UTǫǫǫUT i = n((ν + nL)wUT )−1

n
∑

i=1

ǫǫǫT
UT iE

−1ǫǫǫUT i

=
n

(ν + nL)wUT
tr

(

n
∑

i=1

ǫǫǫUT iǫǫǫ
T
UT iE

−1

)

n
∑

i=1

ǫǫǫT
UT iΣΣΣ

−1
UTǫǫǫUT i =

nL

(ν + nL)wUT
. (A.4)

Replacing the expression of
∑n

i=1 ǫǫǫT
UT iΣΣΣ

−1
UTǫǫǫUT i from (A.4) into wUT , we get:

wUT =
ν

(ν − 2)(ν + nL)
.

Finally,

Σ̂ΣΣUT =
ν

ν − 2

∑n
i=1 ǫ̂ǫǫUT iǫ̂ǫǫ

T
UT i

n
.

Proof of Proposition 2. The property E(β̂ββUT ) = βββUT is immediate. In order to facilitate
the derivation of the proof for Σ̂ΣΣUT , we write Model (3.4) as:

Y = XB + εεε (A.5)
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where:

Y =







y11 y12 · · · y1L
...

...
...

...
yn1 yn2 · · · ynL






, X =







1 x11 · · · x1K
...

...
...

...
1 xn1 · · · xnK






, B =













β01 β0L

β11 β1L
...

...
βK1 βKL













εεε =







ε11 ε12 · · · ε1L
...

...
...

...
ǫn1 εn2 · · · εnL






, B̂UT = (XT X)−1XT Y and ε̂εεUT = Y − XB̂UT .

Let E = ε̂εεT
UT ε̂εεUT and M = In − X(XT X)−1XT . We have MXB = 0, and following

Seber (2009), Theorem 8.2,

E = (Y − XB̂UT )T (Y − XB̂UT ) = (MY)T MY = YT MY

= (Y − XB)T M(Y − XB) = εεεT Mεεε =
∑

h

∑

i

MhiεεεhεεεT
i .

Since E(εεεhεεεT
i ) =

{

ΣΣΣ if h = i
0 otherwise

, for h, i = 1, . . . , n , E(E) =
∑

h Mhh ΣΣΣ =

tr(M)ΣΣΣ = (n − K)ΣΣΣ and:

E(Σ̂ΣΣUT ) = E

(

ν

ν − 2
E
n

)

=
ν

ν − 2
E(E)

n
=

ν

ν − 2
n − K

n
ΣΣΣUT .
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Appendix B

Appendix for Chapter 5

Proof of Proposition 4. Let Y ∈ SD, W be a n × n matrix, α be a scalar, and let
(W ·△Y)i. denotes the ith row of W ·△Y, i, j = 1, . . . , n, l, m = 1, . . . , D.
1. ilr(W ·△(α ⊙ Y)) = ilr(W ·△Yα) = αW lnT (Y)VD = αWilr(Y) = α ilr(W ·△Y).
2. We have

ilr(W ·△(α ⊙ Y)) = ilr(W ·△Yα) = αilr(W ·△Y)

then
ilr−1(ilr(W ·△(α ⊙ Y))) = ilr−1(αilr(W ·△Y)) = α ⊙ (W ·△Y)

Thus,
W ·△(α ⊙ Y) = α ⊙ (W ·△Y).

3. We have

(W ·△Y)i. = ilr−1(ilr((W ·△Y)i.))

= ilr−1(Wilr(Y))i.

= C(exp(Wilr(Y)VT
D)i.)

where

(Wilr(Y)VT
D)i. =






ln

n
∏

j=1





Yj1
∏D

l=1 Y
1/D

jl





Wij

; ln
n
∏

j=1





Yj2
∏D

l=1 Y
1/D

jl





Wij

; . . . ; ln
n
∏

j=1





YjD
∏D

l=1 Y
1/D

jl





Wij






.

Thus,

(W ·△Y)i. = C







n
∏

j=1





Yj1
∏L

l=1 Y
1/D

jl





Wij

;
n
∏

j=1





Yj2
∏L

l=1 Y
1/D

jl





Wij

; . . . ;
n
∏

j=1





YjD
∏L

l=1 Y
1/D

jl





Wij







= C




n
∏

j=1

Y
Wij

j1 ;
n
∏

j=1

Y
Wij

j2 ; . . . ;
n
∏

j=1

Y
Wij

jD
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4. Let Y1, Y2 ∈ (SD)n, and let Y∗
1 = ilr(Y1), Y∗

2 = ilr(Y2), then

ilr−1(W ·△(Y1 ⊕ Y2)∗) = ilr−1(W(Y∗

1 + Y∗

2))

= ilr−1(WY∗

1 + WY∗

2)

= ilr−1(Wilr(Y1) + Wilr(Y2))

= W(ilr−1(ilr(Y1) + ilr(Y2)))

= W(ilr−1(ilr(Y1))) + W(ilr−1(ilr(Y2)))

= (W ·△Y1) ⊕ (W ·△Y2)

Thus,
W ·△(Y1 ⊕ Y2) = (W ·△Y1) ⊕ (W ·△Y2)
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