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2the population is aptured so that the size of the population never hangesabruptly although the time derivative of the population size may be disontin-uous. Numerous examples of suh poliies have been given in the pioneeringwork of Clark and Munro (1975) (see also Clark (1976)) for �sheries. Thewell-known harvesting poliy of Faustmann (1849) (see also Johansson andLöfgren (1985)) for a balaned forest also belongs to this type: only the treeshaving reahed the optimal felling age are ut. Although for eah tree ohortthe poliy is an abrupt one, for the forest as a whole suh a poliy is a smoothone.At the other extreme of the spetrum an impulse poliy onsists in har-vesting some signi�ant part of the population at some points in time whileleaving the population to evolve in its natural environment between any twoonseutive harvest dates. An example is again Faustmann's optimal uttingpoliy but now for single, even-aged, forest stands.At an aggregate level, optimal impulse poliies are quite rare for two mainreasons. The �rst is that renewable resoures are generally sattered all overthe world with spei� harateristis so that synhronized impulse harvestingof so many soures is unlikely. The seond reason is that an aggregate impulsepoliy would indue hikes in the prie path, thus opening the door for arbi-trage opportunities when stokpiling osts are high. The arbitrage possibilitystems from the very fat that stokpiling osts are nil for the resoures leftunexploited. As a result, the prie hikes may be arbitraged by moderatelyhanging the harvest date at a low opportunity ost. However at a miro levelsuh impulse poliies may be optimal, that is, pro�t maximizing strategies.We propose in this paper a model of renewable resoure management basedon the impulse ontrol framework (f. Vind (1967), Léonard and Long (1998)or Seierstaed and Sydsaeter (1987)). This model generalizes previous disrete-time models and ontains, as a limit, the lassial ontinuous-time singularontrol model. We adopt very weak assumptions on the growth funtion andon the pro�t funtion whih is allowed to depend on both the urrent stok andthe size of the harvest. In partiular, we do not impose any type of onavity.We haraterize the solution to this problem by reduing it to two oupledoptimization problems with two variable eah. We are then able to disussunder whih onditions the optimal trajetory exhibits yles or not.Cyles in deterministi models may our for various reasons. The pres-ene of state variables in addition to the state of the resoure is a well-doumented reason, both for disrete-time and ontinuous-time models: seefor instane Benhabib and Nishimura (1985), Wirl (1995) and Feihtinger andSorger (1996). The fous of the present paper is on one-dimensional models,where the existene of yles results from other phenomena than �hidden�variables.In disrete-time, one-dimensional models, yles our when optimal tra-jetories are not stationary. Benhabib and Nishimura (1985) have shown thatsuh yles our under the assumption of onavity and submodularity of thepro�t funtion, plus additional tehnial assumptions. Olson and Roy (1996)show that onavity and supermodularity of that funtion implies the absene



3of yles. On the other hand, Dawid and Kopel (1997; 1999) showed that astritly onvex gain funtion depending only on the apture may lead to op-timal ylial solutions. In the literature on one-dimensional ontinuous-timeontrol models, yles may also appear. Indeed, Lewis and Shmalensee (1977;1979) found that yles an be optimal in presene of inreasing returns tosale, stok e�ets and modest re-entry osts. Liski et al. (2001) demonstratedthe ourrene of yles in a model with inreasing returns to sale and modestadjustment osts, in the absene of stok e�ets.Finally, note that in ontinuous-time models, the relevane of impulse on-trol has been pointed out early in the literature, see Clark (1976, p. 58) whereit is suggested that optimal poliies may onsist in one impulse followed bya ontinuous, smooth ontrol. Early empirial evidene in the �sheries setorwas provided by Hannesson (1975). On the other hand, the utting poliy ofFaustmann's is based on an impulse ontrol with yles.We show that the onditions for the existene of ylial solutions involvea lose ombination of the growth funtion and the ost funtion, therebyemphasizing that the onvexity of the ost funtion, or its dependene on thestok level, are not the only issues worth onsidering. We then disuss howa Clark-like steady-state solution emerges as a limit of small and frequentharvest operations in our model. We also show that we an reprodue andgeneralize Dawid and Kopel's results, although the latter were obtained witha disrete-time model and without stok e�ets.The artile is strutured as follows. We present the impulse ontrol problemin setion 2, we haraterize the type of solution in setion 3 and the optimalyle in setion 4. We then establish the link to Clark's ontinuous ontrolsolution and to Dawid and Kopel's disrete ontrol model in setion 5. Thelast setion is devoted to the onlusion.2 The impulse ontrol model2.1 The ModelThe resoure dynamisWe onsider a renewable resoure, for whih dynamis, in the absene of anyharvest, is given by:
ẋ(t) = F (x(t)) , t ≥ 0, (1)where x(t) is the size of the population at time t and F , stationary throughtime, is the growth rate funtion. The funtion F is assumed to satisfy thefollowing onditions.Assumption 1 There exist numbers xsup and xs, 0 < xs < xsup ≤ +∞,suh that the funtion F : (0, xsup) → R is positive over the interval (0, xs)and negative over the interval (xs, xsup), with F (0) = F (xs) = 0, where

limx↓0 F (x) = F (0), and limx↑xsup
F (x) = −∞. The funtion F is measurable



4and bounded above. It is assumed that the di�erential equation (1) admits aunique solution for every initial stok x0 ∈ (0, xsup).The population level xs is the standard long-run arrying apaity of theenvironment to whih, absent any ath, the population is onverging for any
x0 suh that 0 < x0 < xsup. Note that the assumptions on F are very weak,speially the monotoniity assumptions. For instane, F is not neessarilyonave, and may have several loal maxima. Continuity over (0, xsup) is notrequired either, as long as (1) admits a unique solution.The harvesting proessWe are interested in the optimal exploitation of this resoure by a disreteharvest proess, i.e. within the framework of impulse ontrol models.1Aordingly, we de�ne an impulse exploitation poliy IP := {(ti, Ii), i =
1, 2, . . .} as a sequene of harvesting dates ti and instantaneous harvests Ii,one for eah date. The sequene of dates may be empty, �nite or in�nite. Itis suh that 0 ≤ t1, and ti ≤ ti+1, i = 1, 2, . . . and limi→+∞ ti = +∞. Byonvention, we shall assume that if the sequene is �nite with n ≥ 0 values,then ti = +∞ for all i > n.The sequene of harvests must satisfy:

Ii ≥ 0 and xi − Ii ≥ 0 , (2)where
xi = lim

t↑ti

x(t) , with x1 = x0 given if t1 = 0, (3)and suh that the following onstraints hold:
ẋ(t) = F (x(t)) for ti < t < ti+1 with x(ti) = xi − Ii, i = 1, 2, . . . (4)

ẋ(t) = F (x(t)) for 0 < t < t1 with x(0) = x0 if t1 > 0. (5)In other words: xi is the size of the population just before the harvesting date
ti, and xi − Ii its size just after that same date. If t1 = 0, the population x1 issupposed to be inherited from the past, and denoted by x0. Harvests annotbe negative nor exeed the population size. The onditions (2)�(5) de�ne theset of feasible IPs, denoted by Fx0.1 Impulse ontrol poliies in in�nite horizon onsist in an unbounded sequene of deisions.For the disussion of impulse ontrol models, see for example Léonard and Long (1998),Seierstaed and Sydsaeter (1987).



5The harvester's pro�tsMonetary pro�ts generated by any harvest depend upon the size of the athand the size of the population at the athing time. We assume that the pro�tfuntion is stationary through time so that whatever ti, Ii and xi, the urrentpro�ts at time ti amount to π(xi, Ii).2 The pro�t funtion is assumed to havethe following standard properties.Assumption 2 The funtion π(x, I) is de�ned on the domain D := {(x, I),
x ∈ (0, xsup), I ∈ [0, x]}. It is of lass C1, positive and bounded, and suh that
π(x, 0) = 0, ∀x ∈ (0, xsup). The derivative πI(x, I) := (∂π/∂I)(x, I) admits a�nite limit when I ↓ 0 for all x ∈ (0, xsup).Pro�ts are disounted using a onstant instantaneous disount rate, de-noted by r, r > 0.The manager's problem is to hoose some poliy maximizing the sum ofthe disounted pro�ts, that is to solve the problem (P):(P) supIP∈Fx0

Π(IP) :=

∞
∑

i=1

e−rti π(xi, Ii) .The funtion Π is assumed to be well de�ned over the whole set Fx0.3Approximation of a ontinuous ontrolThe lassial modeling of a ontrolled renewable resoure involves the modi�eddynamis
ẋ(t) = F (x(t)) − h(t) ,where h(t) is the rate of harvest at time t. The harvester's pro�t is some in-stantaneous pro�t funtion p(x, h) depending on the urrent stok and the rateof extration. It is possible to approximate the trajetories of a ontinuouslyontrolled system by an impulse-ontrolled one. For instane, by hoosing theimpulses so that the two trajetories are periodially synhronized, say, every

δt units of time. When the period δt tends to 0, the distane between trajeto-ries should go to 0. The gain of suh a �miro-impulse� poliy an be estimatedas follows:4 during the interval [t0, t0 + δt], the resoure under the dynamis(1) goes from x to x + δtF (x) + o(δt). The ontrolled resoure goes from xto x + δt(F (x) − h(t0)) + o(δt). The disrepany is orreted with an impulseof I = δt × h(t0). Aording to Assumption 2, we have π(x, 0) = 0 for all x,2 Thus we assume that the resoure stok per se is not generating any surplus �ow as inHartman (1976), Smith (1977) and Berk (1981) to quote a few pioneering works along thisway. This e�et an be negleted for a wide spetrum of renewable resoures. For example,most �sheries do not generate suh surplus.3 Observe that we formulate our problem with a �sup� and not a �max� beause we areinterested in the possibility that the maximum is not reahed inside the set Fx0 .4 We do not pursue here the task of formally proving these laims, sine this is not essentialfor the rest of the analysis.



6whih implies that πx(x, 0) = 0 also for all x. Therefore, the impulse generatesa gain of:
π(x + δt × F (x), δt × h(t0)) = (δt × h(t0)) πI(x, 0) + o(δt) .In the limit, the gain obtained by the series of impulses is the same as theontinuously aumulated gain with pro�t funtion p(x, h) = hπI(x, 0). Thisfuntion is of the spei� form used in the singular ontrol model of Clark. Weome bak to this property in Setion 5.1.2.2 The Dynami Programming PrinipleWe use the Dynami Programming approah to solve the problem. The fol-lowing theorem insures the existene of a unique value for the problem.Theorem 1 The value funtion

v(x) = supIP∈Fx

Π(IP) (6)is the unique solution of the following variational equation:
v(x) = sup

t≥0
0≤y≤φ(t,x)

e−rt [π(φ(t, x), φ(t, x) − y) + v(y)] , (7)where φ(t, x) is the trajetory of the system at time t, solution of the dynamis(1) with x(0) = x.For a standard proof of this dynami programming result, see (Davis, 1993,Theorem (54.19), page 236).3 Redution to Cylial PoliiesIn this setion we investigate the impulse ontrol model and propose an ap-proah for haraterizing its solutions. Our approah is to determine the stru-ture of solutions under the quite general assumptions of the previous setion.The prie to pay for this generality is that our results do not guarantee theuniqueness of solutions, whih must be examined on a ase-by-ase basis.Our line of argument will be the following. First of all, the Dynami Pro-gramming priniple implies that, under any optimal poliy for Problem (P),if the stok reahes some level already attained in the past, the ation hosenin the past (to harvest or not to harvest) should still be optimal. This merefat ombined with the positive growth of the stok's natural dynamis tendsto selet poliies that are ylial in the sense that they let the stok growto some level, harvest it down so some other level, and repeat. However, itmay still be that under the optimal poliy, the stok never reahes twie thesame level. We show that when the gain funtion has a ertain submodularity



7property, suh trajetories annot be optimal. Optimal poliies are thereforeessentially ylial. Moreover, joining the optimal yle must be done with atmost one harvest.The optimization problem is then redued to �nding: a) what is the optimalyle; b) what is the optimal way to reah the optimal yle from a given initialstok. Finding the optimal yle is a relatively simple optimization problemwhih we all the �Auxiliary Problem�. But the solution to this problem mayorrespond to degenerate yles, whih we interpret as ontinuous harvestingpoliies à la Clark. We show in the next setion that the submodularity as-sumption is again the key to determine whether the optimal yle is a trueyle or a degenerate one.We proeed now with the de�nitions and the preise statements of thesepriniples.3.1 Cylial Poliies and the Auxiliary ProblemCylial poliies A ylial poliy has two omponents: a yle whih is har-aterized by two values x and x̄ with x < x̄, or equivalently by an interval
[x, x̄]; and a transitory part whih desribes how the trajetory evolves fromthe initial stok to the yle. The transitory part onsists in a �nite (possiblyempty) sequene of harvests, suh that, after the last harvest, the remainingpopulation is less than x̄. We �rst onentrate on the yle.Hene, a yle has two main parameters, whih are suh that 0 ≤ x < x̄ ≤
xs.5 When in its ylial part, a poliy ats as follows: a) let the populationgrow to x̄; b) harvest x̄ − x; and repeat. Suh a poliy applies only to initialpopulations x0 ≤ x̄. In other words, the transitory part an be dispensed withonly for suh an initial population.Gain under a ylial poliy We will denote by G(x, x̄, x0) the value of dis-ounted pro�ts in a poliy without the transitory part, applied to an initialpopulation of x0. The omplete de�nition of the funtion G involves severalases, orresponding to the limit ases for x̄ and x.It is onvenient to de�ne the funtion τ(x, y) as the time neessary for thedynamis to go from value x to y, x ≤ y. It turns out that for all 0 < x ≤ y <
xs:

τ(x, y) =

∫ y

x

1

F (u)
du. (8)Sine, by Assumption 1, F (xs) = 0, the integral de�ning τ(x, y) is singularwhen y = xs. The limit when y → xs may therefore be �nite or in�nite,depending on the funtion F . Another feature of Assumption 1 is that F (0) =

0. Consequently, if x(0) = 0, a solution to the dynamis (1) is x(t) = 0 for all
t ≥ 0. This implies the onvention that τ(0, y) = +∞ if y > 0, and τ(0, 0) = 0.65 Sine x̄ represents the population level until whih the resoure grows before harvesting,there is no point in onsidering x̄ > xs sine the population annot grow to suh a level.6 This onvention does not mean that limx↓0 τ(x, y) = +∞ in every situation.



8 The value of the total pro�t funtion G an be expressed as:i) If 0 ≤ x < x̄ ≤ xs:
G(x, x̄, x0) := π(x̄, x̄ − x)

e−rτ(x0,x̄)

1 − e−rτ(x,x̄)
. (9)The onvention is that: if x = 0, the term exp(−rτ(x, x̄)) should be replaedby 0. Likewise, exp(−rτ(x, x̄)) and exp(−rτ(x0, x̄)) are 0 if x̄ = xs and

limy→xs
τ(x, y) = +∞.ii) For x = x̄, Assumption 2 allows to de�ne G by ontinuity as:

G(x, x, x0) = πI(x, 0)
F (x)

r
e−rτ(x0,x) . (10)For the ases x = x̄, the value G is not that of a well-de�ned impulse ontrolpoliy. As we have seen in Setion 2.1, this value is that of a ontinuous har-vesting poliy, whih an be seen as a degenerate impulse poliy. The harvestrate of this ontinuous poliy is onstant and equal to F (x).Finally, by using the fat that τ(x, y) de�ned in (8) is also de�ned for

y ≤ x, expressions (9) and (10) provide values for the funtion G when x0 > x̄as well. Of ourse, these situations do not orrespond to an implementableharvesting poliy, and the funtion loses its eonomi meaning. In subsetion3.3 we will study the transitory part of a ylial poliy for whih the ase
x0 > x̄ has an eonomi meaning.The auxiliary problemHaving de�ned the funtion G(x, x̄, x0) for all 0 ≤ x ≤ x̄ ≤ xs and all 0 ≤
x0 ≤ xs, we now de�ne the auxiliary problem (AP):(AP) : max

x, x̄; 0≤x≤x̄≤xs

G(x, x̄, x0).Under Assumption 2 it turns out that G is lower semi-ontinuous as afuntion of (x, x̄). The problem (AP) has therefore always a solution. For thepurpose of the disussion to ome, it is important to distinguish the ase wherethe solution is suh that x = x̄, from the ase where x 6= x̄. We all the �rstsituation a �degenerate yle solution�, and the seond one a �non-degeneratesolution�.3.2 Submodularity and Optimal TrajetoriesIn this paragraph, we introdue a submodularity assumption on the pro�tfuntion π. Consider the following assumption.Assumption 3 The funtion π is suh that:
π(a, a − c) + π(b, b − d) ≤ π(a, a − d) + π(b, b − c) (11)for every d ≤ c ≤ b ≤ a.



9Assumption 3 means that the pro�t generated by a big harvest in a largepopulation, π(a, a−d), augmented by the pro�t resulting from a small harvestin a medium sized population, π(b, b − c), is greater than the sum of pro�tsgenerated by twomedium sized harvests, the �rst in a large population, π(a, a−
c), and the seond in a medium sized population, π(b, b − d).If Assumption 2 holds as well, then in partiular π(b, 0) = 0 and letting
c = b in (11), we have for all d ≤ b ≤ a:

π(a, a − b) + π(b, b − d) ≤ π(a, a − d) . (12)In other words, one big harvest, π(a, a−d), is better than two medium harvests,
π(a, a − b) and π(b, b − d), reduing the population to the same level, i.e. d.As far as the harvest is sold in a ompetitive market, the pro�t funtionis given as π(x, I) = pI − c(x, I), where p is the prie and c(x, I) is the ostfuntion. Then the above disussion translates in terms of osts (however As-sumption 3 is a more general assumption linking together revenue and osts).Condition (11) redues to the following property:

c(a, a − d) + c(b, b − c) ≤ c(a, a − c) + c(b, b − d) .The ost of a big harvest in a large population augmented by the ost of asmall harvest in a medium population lower than the sum of the osts of twomedium-sized harvests starting from the same large population a. Likewise,(12) beomes: c(a, a − d) ≤ c(a, a − b) + c(b, b − d). The ost of a big harvestis lower than the ost of two harvests starting and ending with the samepopulation sizes, respetively a and d.In some situations, we shall refer to a �strit� Assumption 3, meaning that:
π(a, a − c) + π(b, b − d) < π(a, a − d) + π(b, b − c) (13)for every d < c < b < a.The following properties are well-known or easy to hek.Lemma 1 Assume that π satis�es Assumption 3. Then:i) Let g(x, y) = π(x, x − y) be de�ned for 0 ≤ y ≤ x ≤ xsup. Then g issubmodular on this domain.7ii) If π has seond-order derivatives, then inside the domain D,

πxI + πII ≥ 0 .Conversely, this ondition implies Assumption 3.
iii) If π(x, I) = R(I), then R is onvex. Conversely, if R is onvex, Assump-tion 3 holds.7 A funtion g(x, y) is submodular if for all a, b, c, d:

g(min(a, b), min(c, d)) + g(max(a, b), max(c, d)) ≤ g(a, c) + g(b, d) .



10 Assumption 3 is weaker than both onvexity of π with respet to harvest(whih is equivalent to πII ≥ 0) or supermodularity of π (whih is equivalentto πxI ≥ 0). The ondition πxI +πII ≥ 0 may hold if either of these propertiesholds, but does not imply them: it just implies that one of them loally holds.Condition (12), with strit inequality, is lassially required to insure theexistene of optimal impulse ontrol poliies (see for instane Davis (1993)).But Assumption 3 annot be redued to ondition (12), even under the re-quirement that π(x, 0) = 0. Indeed, onsider for instane the ase where
π(x, I) = R(I) for some funtion R. Then Assumption 3 says that R is onvex(Lemma 1 iii)) whereas (12) says that R should be superadditive. It is knownthat some funtions R with R(0) = 0 are superadditive without being onvex.These onditions are therefore not equivalent.3.3 Equivalene between (P) and (AP)Now we are going to show the prinipal relation between problems (P) and(AP). The results of this setion are partly based on the property that solutionsto Problem (AP) turn out not to depend on x0, as stated in Lemma 5, seeAppendix A.3. Consequently, we an talk of solutions (x∗, x̄∗) to the auxiliaryproblem (AP) independently of x0. We then make the following assumption:Assumption 4 The problem (AP) has a unique solution, denoted with (x∗, x̄∗),whih is suh that x∗ < x̄∗.The transitory problemUnder Assumption 4, let us de�ne the following optimization problem (TP),whih formalizes the �Transitory Problem�. The transitory part of a ylialpoliy onsists in a) letting the stok grow until some value x; b) harvestingfrom x down to y for y ≤ x̄∗; ) applying the yle with the harvesting interval
[x∗, x̄∗] from then on. The question is how to hoose the quantities x and y.The answer is given by the solutions of the following optimization problem:(TP) : max

x,y;
0≤y≤x≤xs

x0≤x; y≤x̄∗

e−rτ(x0,x) [π(x, x − y) + G(x∗, x̄∗, y)] .The following theorem haraterizes the solutions to the problem (P).Theorem 2 Assume that Assumptions 1�4 hold. Let (x∗(x0), y
∗(x0)) solvethe maximization problem (TP). Then the value funtion of (P) is:

v(x0) =















G(x∗, x̄∗, x0) if x0 < x̄∗

e−rτ(x0,x∗(x0))
[

π(x∗(x0), x
∗(x0) − y∗(x0))

+ G(x∗, x̄∗, y∗(x0))
]

if xs ≥ x0 ≥ x̄∗.

(14)



11Moreover there exists a solution of (P) whih is ylial and given by:
t1 = τ(x0, x̄

∗), and ti = t1+(i−1)τ(x∗, x̄∗), xi = x̄∗, Ii = x̄∗−x∗, i ≥ 1,if x0 < x̄∗, and
t1 = τ(x0, x

∗(x0)), t2 = τ(y∗(x0), x̄
∗), ti = t2 + (i − 2)τ(x∗, x̄∗), i ≥ 2,

x1 = x∗(x0), I1 = x∗(x0) − y∗(x0), xi = x̄∗, Ii = x̄∗ − x∗, i ≥ 2,if x0 ≥ x̄∗.The proof of this result is given in Appendix A.3. The theorem states that anyoptimal ylial poliy has a yle part with an harvesting interval [x∗, x̄∗].It also desribes the nature of the transitory part of optimal ylial poliies.In the ase x0 < x̄∗, there is no transitory part, and the yle is joined fromthe start. In the ase x0 ≥ x̄∗, the transitory part onsists in letting the stokgrow until x∗(x0), harvest it down to y∗(x0), then join the yle. The typialform of optimal trajetories is illustrated in Figure 1.stok
time

(A)

(B)x̄∗

x
(B)
0

x∗

x∗(x0)

x
(A)
0

y∗(x0)Fig. 1 Shape of the optimal trajetory, for x0 > x̄∗ (ase (A)), and x0 ≤ x̄∗ (ase (B))We an now state the following relation between problems (P) and (AP),the proof of whih is provided in Appendix A.4.Theorem 3 Let Assumptions 1�3 hold. Then:
i) If Assumption 4 holds as well, then (P) has a solution whih is ylial.

ii) If (P) has a solution, then (P) has a solution whih is ylial, and thereexists a solution to problem (AP) when 0 ≤ x < x̄ ≤ xs.
iii) If the solution of (AP) is on the boundary x = x̄ = x∗, then (P) has nosolution.



12 We have therefore shown that there exists a ylial solution to our prob-lem (P) if, and only if, the solution to the auxiliary problem (AP) is non-degenerate. In other words, the existene or not of ylial solutions to (P)hinges on the fat that Assumption 4 holds or not. This question is addressedin the next setion. Statement iii) of Theorem 3 results from the fat that, inthis ase, there is no poliy in the set Fx0 whih realizes the �sup� in Problem(P). However, the supremum does exist, and it an be shown that this valuean be approahed by a sequene of ylial solutions.We an ome bak to the interpretation of our entral Assumption 3, inrelation with the presene of yles. Initiating the harvesting proess is ostly.Hene, yles are optimal if resoure managers an take advantage of someform of eonomies of sale: ondition (12). This is the ase, for instane, if therevenue funtion is onvex, whih is a onsequene of Assumption 3 (Lemma 1
iii)) in the ase of stok-independent osts. In addition, when π is linear in
I, harvests and resoure stoks are omplementary (Lemma 1 ii)) and hene,any additional harvest, and resulting pro�ts, an only be obtained by waitingand letting the resoure reover, whih omes at a ost.In ontrast to usual assumptions on the strit onvexity of the pro�t fun-tion, Assumption 3 is more general as it overs the ase of objetive funtionswith multiple variables. It applies to onvex-onave pro�t funtions and isindependent of any partiular form of the dynamis F (·).4 Optimal CylesWe investigate now the problem of loating the solutions to Problem (AP). Wehave seen that solutions always exist, but they may be loated in the interior,or on any of the boundaries x = 0, x̄ = xs or the set x = x̄.It turns out that ensuring the uniqueness of the solution is not an easy task,even with restritive yet standard assumptions, as we argue in setion 4.4. Wetherefore limit our disussion to onditions related to the submodularity As-sumption 3. We begin in setion 4.1 with neessary onditions for the existeneof interior solutions and their interpretation. We study the ase of stritly sub-modular funtions in setion 4.2, and the ase of funtions both submodularand supermodular in setion 4.3.4.1 Interior solutionsNeessary onditions for interior solutions to exist are given by the �rst orderonditions of the auxiliary problem, whih we provide as:Lemma 2 If (x, x̄) is a solution to the auxiliary problem (AP) with 0 < x <
x̄ < xs (interior solution), then the �rst order onditions are given by:

πI =
r

F (x)

e−rτ(x,x̄)

1 − e−rτ(x,x̄)
π(x̄, x̄ − x) , (15)
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πx + πI =

r

F (x̄)

1

1 − e−rτ(x,x̄)
π(x̄, x̄ − x) . (16)By rearranging these onditions, we obtain the equivalent:

πI

F (x)

r
=

e−rτ(x,x̄)

1 − e−rτ(x,x̄)
π(x̄, x̄ − x) , (17)

dπ

dx
= πx + πI = πI

F (x)

F (x̄)e−rτ(x,x̄)
. (18)The �rst ondition states that, at the optimum, the marginal gain from har-vesting the resoure, weighted with the growth potential at the new resourestok as ompared to the disount rate, should equal the value of the remain-ing resoure,8 outome of a maximized rotational harvest stream. The seondondition states that the marginal gain derived from the stok e�et is equal tothe marginal gain from harvesting augmented by a orreting fator, whih de-pends on the growth di�erential at the lower and upper limit of the rotationalyles, the latter being disounted over time. More preisely, the greater thisgrowth di�erential, the greater the marginal gain due to the resoure stok.4.2 Strit submodularity of the gain funtionIn this setion, we show that Assumption 3 in the strit sense, together withsome tehnial assumptions, is su�ient to exlude degenerate yle solutionsto Problem (AP).Going bak to the de�nitions of Setion 3.1, we have (see (10)):

Gd(x) := G(x, x, x0) =
1

r
πI(x, 0)F (x)e−rτ(x0,x) ,where the hoie of x0 has no impat on the solution of the optimizationproblem, as we have seen. We an now state the result:Proposition 1 Assume that all maxima xm of the funtion Gd(x) are suhthat 0 < xm < xs. If the funtion π has seond-order derivatives and satis�esAssumption 3 in the strit sense (13), then all solutions to Problem (AP) arenon-degenerate.The proof is deferred to Appendix A.5.8 Whih is alled the site value in the forest eonomis literature.



144.3 Exat modularityWe now turn to the ase where Assumption 3 holds with equality in Equa-tion (11), whih amounts to require that the funtion π(x, x− y) be both sub-and supermodular. Using Lemma 1, it is not di�ult to see that if π admitsseond-order derivatives, and given that π(x, 0) = 0, then it must be of theform:
π(x̄, x̄ − x) =

∫ x̄

x

γ(x) dx (19)for some integrable funtion γ(·) whih is atually: γ(x) = πI(x, 0). We shallprove that, under moderate onditions, the problem (AP) does not admitnon-degenerate solutions for suh ost funtions. In other words, solutionsorrespond neessarily to degenerate yles.In order to state this result formally, it is onvenient to be sure that thereis only one solution to the problem. For this reason, we add here several as-sumptions. We do not express them in terms of the primitives of the model,in order to keep them weaker than assumptions that would be put diretlyon the primitives. Indeed, although apparently restritive, these assumptionsappear to be satis�ed in the examples we have studied using primitives fromthe literature.Proposition 2 Assume that the funtion Gd(·) is of lass C1, and is inreas-ing, then dereasing for x ∈ (0, xs), with an unique maximum at xm. Assumethat G does not have a maximum at x = 0, nor at x̄ = xs. Then the solutionof Problem (AP) is unique and given by x = x̄ = xm.The proof is deferred to Appendix A.6.4.4 An example of multiple interior solutions to Problem (AP)We provide in this setion an example in whih the data of the optimizationproblem satisfy usual assumptions (multipliative separability, monotoniity,onvexity), in whih Property 3 holds, and yet Problem (AP) has two distintinterior solutions. It is onstruted as follows. The standard logisti funtion
F (x) = x(1 − x) is hosen as the growth funtion. It is onave. The gainfuntion is hosen as π(x, I) = a(x̄) × I, with, for some onstant A > 0,

a(x) = 1 + min

{

x

100
, A × (x −

2

3
)

}

.It an be easily veri�ed that π satis�es Assumption 3, sine the funtion a isstritly inreasing. Finally, set r = 0.01. Numerial investigation then revealsthat the funtion G(x, x̄, x0) orresponding to this data has two loal maxima:one with x̄ < 2/3 and one with x̄ > 2/3. The loal optimality of the �rst oneresults from the ombination of a large growth rate with a small gain per yle.Cyles are short for this solution. The seond loal optimum results from the



15ombination of a smaller growth rate with a larger gain at eah harvest. Thetwo loal maxima an be given the same value by setting the onstant A toapproximately 1.23.5 Links between Impulse Control Models and Other ControlModels5.1 Comparison with Clark's ModelWe may now establish a �rst link between our general impulse ontrol modeland the ontinuous ontrol model, as proposed by Clark (1976).Consider a solution of problem (AP) on the boundary x = x̄. The maxi-mization problem beomes:
max

0≤x≤xs

G(x, x, x0),where G is given by (10). The �rst order ondition for this problem is:
πIx(x, 0)F (x) + πI(x, 0)[F ′(x) − r] = 0 . (20)This ondition oinides with the well-known marginal produtivity rule ofresoure exploitation when πI(x, 0) is the instantaneous pro�t funtion (see forexample Clark (1976) or Clark and Munro (1975)). A solution to Equation (20)determines the steady state of the following Clark-like singular optimal ontrolproblem: (CP) max

h(·)

∫ ∞

0

e−rt πI(x(t), 0) h(t) dt ,

ẋ = F (x) − h,for x0 given and 0 ≤ h(t) ≤ hmax for all t. This means that the onditions ofa Clark-like steady state solution an also be triggered by the impulse ontrolmodel that we propose.5.2 Comparison with Dawid and Kopel's modelIn this setion, we show that Dawid and Kopel's model (1997) an be embeddedwithin ours, through a judiious hoie of the dynamis, the ost funtion andthe disount rate. Then, we explain the orrespondene between the results ofDawid and Kopel (1997) and ours.



165.2.1 Growth funtion and time span assoiated to the growthThe model of Dawid and Kopel is in disrete time. The population dynamishas the form:
xt+1 = f(xt) − ut = min[1, (1 + λ)xt] − utwith xt, ut ≥ 0 ∀t ≥ 0. We proeed by reproduing this behavior for our model.When no harvesting takes plae, we must have: ẋ(t) = F (x(t)). Suppose:

F (x) = Ax if x < xs = 1 and F (x) = 1 − x if x ≥ 1.It an be veri�ed that this funtion satis�es Assumption 1.9 Integrating thedi�erential equation, we �nd that the stok evolves aording to the followingfuntion:
x(t) = φ(t, x0) = min(x0e

At, 1) .In order to reprodue the dynamis of Dawid and Kopel's disrete-time model,we �x a time duration ∆, and set: xt+1 = φ(∆, xt). The dynamis are equiva-lent when f(xt) = φ(∆, xt) for all xt, whih is the ase when:
(1 + λ)xt = xte

A∆.We dedue how the marginal growth fator A must be de�ned in terms ofDawid and Kopel's fator 1 + λ:
A =

log(1 + λ)

∆
.5.2.2 Disounted bene�tsFor the undisounted gains π, the orrespondene with Dawid and Kopel'smodel is made by setting π(x, I) = R(I). Note that for this partiular form ofthe gain funtion, Condition (11) is equivalent to the onvexity of R, aordingto Lemma 1 iii).Next, the orrespondene for disounting rates in both models is establishedas follows. The disrete-time disount fator being δ and the ontinuous-timedisount rate being r, we should have: δt = e−rt∆, that is: log δ = −r∆.Finally, Dawid and Kopel's introdue a threshold quantity a de�ned as:

a = −
log δ

log(1 + λ)
=

r∆

A∆
=

r

A
.We proeed with the de�nition of the funtion G whih is the basis of theauxiliary problem (AP). Two ases must be onsidered: degenerate yles ornon-degenerate solutions.9 The value of F (x) for x > 1 is arbitrarily hosen to that end.



17Non-Degenerate: where x < x̄. In this ase,
G(x, x̄, x0) =

R(x̄ − x)(x0

x̄
)

r
A

1 − (x

x̄
)

r
A

=
R(x̄ − x)(x0

x̄
)a

1 − (x

x̄
)a

.This expression holds even when x̄ = xs = 1 and x = 0.Degenerate yles: where x = x̄. Given that π(x, I) = R(I), we have limI→0 πI(x, I) =
R′(0), whene:

G(x, x, x0) = R′(0)
Ax

r

(x0

x

)
r
A

= R′(0)
xa

0

a
x1−a.5.2.3 Relations with the Results by Dawid and KopelDawid and Kopel de�ne the elastiity of gains as the funtion:

ε(x) =
R′(x)x

R(x)
.Through the analysis of the funtion G, the results of Dawid and Kopel anbe reprodued, modulo the fat that deision instants are onstrained in theseresults, and not for our model. For instane, if the elastiity of gains ε(x) islarger than a for all x, it is optimal to defer harvesting until the resourereahes its maximal value. Dawid and Kopel obtain the same onlusion withthe elastiity of gains averaged over the evolution of the population during oneperiod. Inversely, when ε is smaller than a, immediate harvesting is optimal.Other results of Dawid and Kopel address the question of whether immedi-ate extintion is optimal or not. These results are reprodued by our analysisas well.6 ConlusionWe have proposed an impulse ontrol framework for the management of re-newable resoures whih is general enough to inlude onave and onvex gainfuntions, as well as stok dependent ost funtions. The optimal managementof the resoure is expressed as optimization problem (P), the solution of whihis shown to satisfy the dynami programming priniple. By introduing thelass of �ylial poliies�, we have redued the solution of Problem (P) tothe sequential solution of two stati optimization problems with two variableseah, whih we an solve. With the help of the Auxiliary Problem, we ande�ne the optimal yle. With the Transitory Problem, we an desribe theevolution from the initial stok to the yle.Central to our solution framework is the submodularity ondition, whih isneessary for the existene of yles. This ondition is more general than thestrit onvexity of the pro�t funtion, as it also overs the ase of objetivefuntions with multiple variables. Thus, the existene of eonomies of sale isonly one possible ondition for the ourrene of yles, whih depends on the



18more omplex interation between disounted gains, (stok dependent) ostfuntions and the population growth dynamis.We have shown that our impulse ontrol model an generate ylial solu-tions and �degenerate� ylial solutions whih orrespond to a smooth steadystate solution. The eonomi and biologial onsequenes of these two typesof equilibria might be very di�erent, espeially if threshold values exist. Forexample, the ylial solution may temporarily deplete the population under-neath the level that would be desirable for the maintenane of the food-hain.These onsequenes are not taken into aount in our model.Our impulse ontrol model an generate the steady state solution thatClark desribed for his one state variable model with a onave growth fun-tion. We an also repliate the ylial poliies desribed by Dawid and Kopelin a disrete-time framework with a quasi-linear growth funtion. This allowsus to laim that our model is a �meta-model�. The link between these modelsan be expressed through their responsiveness to the submodularity ondition.Reent bioeonomi models have strengthened the importane of uner-tainty, for example linked to weather onditions or to the availability of stoks.Further researh ould inlude suh unertainty and also onsider the man-ager's risk aversion in a similar impulse ontrol framework. Eonometri ap-pliations ould help to hek whether ontinuous or impulsive representationsof the harvest deisions are more appropriate in pratie, and how to speifygrowth and ost funtions. Depending on the funtional forms hosen, theoptimal harvesting poliies an then be de�ned within the above framework.ReferenesJ. Benhabib and K. Nishimura. Competitive equilibrium yles. Journal ofEonomi Theory, 35:284�306, 1985.P. Berk. Optimal management of renewable resoures with growing demandand stok externalities. J. Environ. Eon. Manage., 8:105�117, 1981.C.W. Clark. Mathematial Bioeonomis, The Optimal Management of Re-newable Resoures. Wiley-Intersiene, 1976.C.W. Clark and G.R. Munro. The eonomis of �shing and modern apitaltheory: A simpli�ed approah. J. Environ. Eon. Manage., 2:92�106, 1975.M. H. A. Davis. Markov Models and Optimization. Prentie Hall, 1993.H. Dawid and M. Kopel. On the eonomially optimal exploitation of a re-newable resoure: The ase of a onvex environment and a onvex returnfuntion. J. Eon. Theory 76, pages 272�297, 1997.H. Dawid and M. Kopel. On optimal yles in dynami programming modelswith onvex return funtion. Eon. Theory 13, pages 309�327, 1999.M. Faustmann. Berehnung des Werthes, wehen Waldboden, sowie nohniht haubare Holzbestände für Waldwirtshaft besitzen. Allgemeine Forst-und Jagd-Zeitung, 25:441�455, 1849.
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i < j and: xj − Ij ≤ xi − Ii ≤ xj ≤ xi, that is, overlapping harvests. Denote with a = xi,
b = xj , c = xi − Ii and d = xj − Ij . Let ℓ = j − i and δt = tj − ti. Consider the followingtwo modi�ations of the referene poliy ICP:Poliy A (opy a piee of trajetory from c to b):for k < j, tA

k
= tk , IA

k
= Ik;for k = j, tAj = tj , IA

j = b − c;for k > j, tA
k

= tk−ℓ + δt, IA
k

= Ik−ℓ.Poliy B (remove the piee of trajetory from c to b):for k < i, tB
k

= tk , IB
k

= Ik;for k = i, tB
k

= tk , IB
k

= a − d;for k > i, tB
k

= tk+ℓ − δt, IB
k

= Ik+ℓ.



20These poliies an be visualized in Figure 2, whih represents the evolution of the populationunder eah of the three poliies. The triangle represents the rest of the trajetory, whihis the same for all three poliies, exept for a shift in time. The retangle represents anarbitrary piee of trajetory, whih an possibly exit the range [b, c].10The result is:Lemma 3 Consider an impulse ontrol poliy ICP whih is suh that there exists i and jwith i < j and: xj − Ij ≤ xi − Ii ≤ xj ≤ xi. Then:
i) If Assumption 3 holds in the strit sense (13), then one of poliies A or B onstrutedabove yields stritly larger pro�ts than ICP.

ii) If Assumption 3 holds with equality in (11) and if ICP is optimal, then poliies A andB are optimal as well.Proof The disounted pro�ts G assoiated with the original poliy ICP an be written as:
G = V0 + Ri π(a, a − c) + Ri V1 + Rj π(b, b − d) + Rj Vdwhere Ri and Rj are the disounts:

Ri = e−rti Rj = e−rtj ,and where V0, V1 and Vd are the urrent-value gains assoiated with the �rst part of thetrajetory, and the piees of the trajetory, respetively, in the intervals (ti, tj) and (tj , +∞):
V0 =

i−1
X

k=1

e−rtk π(xk, Ik) V1 =

j−1
X

k=i+1

e−r(tk−ti) π(xk, Ik)

Vd =
∞

X

k=j+1

e−r(tk−tj) π(xk , Ik) .The total disounted gains assoiated with poliies A and B are:
GA = V0 + Ri π(a, a − c) + Ri V1 + Rj π(b, b − c) + Rj V1

+ Rj ρ π(b, b − d) + Rj ρ Vd

GB = V0 + Ri π(a, a − d) + Ri Vd ,with ρ = Rj/Ri = exp(−r(tj − ti)). Aordingly, modi�ations in pro�ts implied by swith-ing from the original poliy to either A or B are:
G − GA = Rj (π(b, b − d) − π(b, b − c) + Vd − ρπ(b, b − d) − V1 − ρVd)

G − GB = Ri (π(a, a − c) − π(a, a − d) + V1 + ρπ(b, b − d) + ρVd − Vd) .As a onsequene, we have the following identity:
π(a, a − c) + π(b, b − d) − π(a, a − d) − π(b, b − c) =

1

Rj

(G − GA) +
1

Ri

(G − GB) .Under Assumption 3, the left-hand side is negative. If the inequality in (11) is strit, it iseven stritly negative. This implies that one at least of GA or GB is stritly larger than G.If equality holds (11) and the poliy ICP is assumed to be optimal, then GA = GB = Gand poliies A and B are optimal as well.Consequenes of Lemma 3 on the optimality of poliies an be stated as:Corollary 1 Consider an impulse ontrol poliy ICP whih is suh that there exists i and
j with i < j and: xj − Ij ≤ xi − Ii ≤ xj ≤ xi. If Assumption 3 holds in the strit sense(13), then ICP annot be optimal.10 The situation where b = c is allowed, in whih ase the piee of trajetory may be empty.In that ase, there is a double harvest at the same instant in time.
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tAj
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tAi
tBi

tj tAj+ℓ
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d
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b
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a

Fig. 2 The original poliy and its modi�ations A and BA.2 Dynami Programming and TrajetoriesIn this appendix, we propose a tehnial result whih is useful in a variety of situations.This omparison of trajetories is similar to Lemma 3 but it is provided by the appliationof the Dynami Programming priniple of Theorem 1.Before stating the result, we need some preliminary explanations. Assume that a poliy
P is suh that xi+1 ≥ xi. Let δt = τ(xi − Ii, xi). Consider the following modi�ations ofthe referene poliy P :Poliy A (remove the harvesting at ti)for k < i, tA

k
= tk, IA

k
= Ik;for k ≥ i, tA

k
= tk−1 − δt, IA

k
= Ik−1.Poliy B (opy one the harvesting ourring at ti)for k ≤ i, tB

k
= tk , IB

k
= Ik;for k > i, tB

k
= tk+1 + δt, IB

k
= Ik+1.Poliy C (reprodue in�nitely the harvesting ourring at ti)for k < i, tC

k
= tk , IC

k
= Ik;for k ≥ i, tC

k
= ti + (k − i)δt, IC

k
= Ii.Assume now that the poliy P is suh that xi+1 ∈ (x(t+i−1), xi], where by onvention,

t−1 = 0 in the ase i = 1. In that ase, there exists a time T = ti − τ(xi+1, xi) suh that
x(T ) = xi+1. As above, let δt = τ(xi − Ii, xi) and de�ne the poliies A, B and C exatly asabove.These poliies are illustrated in Figure 3 a) in the �rst ase, and b) in the seond one.We an now state the result:Lemma 4 Consider an impulse ontrol poliy P whih is suh that either xi ∈ (x(t+i ), xi+1]or xi+1 ∈ (x(t+i−1), xi] for some i. Then, the gain of poliy P is smaller than that of poliies
A or C onstruted above.Proof Assume �rst that poliy P is suh that xi ∈ (x(t+i ), xi+1], whih implies xi+1 ≥ xi.Let GP , GA, GB and GC be the total pro�ts for poliies P, A, B and C. Denote with V0 the
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xi

xi+1
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Fig. 3 The original poliy ICP and its modi�ations A, B and C. The triangle representsthe remainder of the trajetory, whih is ommon to ICP, A and B, up to a shift in time.urrent-value gains assoiated with the part of the trajetory before ti (whih is ommonto all these poliies) and let Gπ = V0 + e−rtiG̃π for poliies π ∈ { P, A, B, C }. It is easyto see that
G̃P = π(xi, xi − Ii) + e−rδtG̃A

G̃B = π(xi, xi − Ii) + e−rδtG̃P

G̃C = π(xi, xi − Ii) + e−rδtG̃C .Consequently, we have the identity: G̃P − G̃B = e−rδt(G̃A − G̃P ). This implies that G̃P ≤
max(G̃A, G̃B). Next, if we have G̃P ≤ G̃B , then we have G̃B ≤ π(xi, xi − Ii) + e−rδtG̃B sothat:

G̃B ≤
π(xi, xi − Ii)

1 − e−rδt
= G̃C .This proves the statement.Consider now the ase xi+1 ∈ (x(t+i−1), xi]. As argued above, the time T = ti −

τ(xi+1, xi) is suh that x(T ) = xi+1. Let G̃i be the urrent-value gains of the di�erentpoliies at time t = T . It is lear that:
G̃P = e−r(ti−T )π(xi, xi − Ii) + e−rδtG̃A

G̃B = e−r(ti−T )π(xi, xi − Ii) + e−rδtG̃P

G̃C = e−r(ti−T )π(xi, xi − Ii) + e−rδtG̃C .As a result, we have the same identity: G̃P − G̃B = e−rδt(G̃A − G̃P ), and the rest of theprevious reasoning applies.A.3 Proof of Theorem 2The proof is separated into two ases. If x0 is �small enough�, the proof is provided bytrajetory omparison arguments. For the ase of �large� x0, the proof onsists in embeddingthe optimization problems (AP) and (TP) into a more general optimization problem, thensolving this more general problem. The solution turns out to be provided by (AP) and (TP),and satisfy the dynami programming equation.Throughout the rest of this setion, Assumptions 1 and 2 hold, so that the funtion Gis well de�ned, and Assumption 4 is assumed to hold as well, so that the optimal values for(AP), x∗ and x̄∗, are well de�ned.



23Let w(·) be de�ned, as in (14), as:
w(x) =

8

<

:

G(x∗, x̄∗, x) if x < x̄∗

e−rτ(x,x∗(x)) [π(x∗(x), x∗(x) − y∗(x)) + G(x∗, x̄∗, y∗(x))] if xsup ≥ x ≥ x̄∗(21)where (x∗(x), y∗(x)) is any solution of the problem (TP) with initial population x0 = x.The following result will be useful for the proof. Consider problem (AP). Its solutiondoes not depend on the initial stok value x0:Lemma 5 Assume that (x∗, x̄∗) solves (AP) for some value of xs > x0 > 0. Then it solves(AP) for every value of x0.Proof The result follows from the fat that for all x0, x1:
G(x, x̄, x0) = e−rτ(x0,x1) G(x, x̄, x1) .Therefore the two funtions are proportional, with a proportionality fator whih is stritlypositive if 0 < x0 < xs and 0 < x1 < xs. The problems (AP) for x0 and (AP) for x1 havetherefore the same solutions. If x1 = 0, or if x1 = xs and limy↑xs

τ(x, y) = +∞, then G = 0and any (x∗, x̄∗) maximizes it.A.3.1 Proof for x0 < x̄∗Lemma 6 If Assumptions 3 and 4 hold, then the funtion w(x0) solves the dynamiprogramming equation (7) for all x0 < x̄∗.Aording to Theorem 1, the value funtion of problem (P) veri�es:
v(x) = max

t≥0
0≤y≤φ(t,x)

e−rt [π(φ(t, x), φ(t, x) − y) + v(y)] (22)
= max



max
0≤y≤x

[π(x, x − y) + v(y)] , (23)
max
x̄,y;

x<x̄≤xs
0≤y≤x̄

e−rτ(x,x̄) [π(x̄, x̄ − y) + v(y)]

ff

. (24)This breakdown is obtained by separating the ase t = 0 (expression (23)) from the ase
t > 0, and performing the hange of variable t = τ(x, x̄) in (24). This hange of variablemaps the time interval t ∈ (0, +∞) to the interval on populations x̄ ∈ (x, xs) or x̄ ∈ (x, xs],depending on whether τ(x, y) diverges or not when x ↓ 0.We must show that the funtion w(x), de�ned in (21), is a solution of Equation (22).By assumption, x < x̄∗. Replaing v(y) by its value in (22), the right-hand side an bewritten as M = max{M1, M2, M3} where:

M1 = max
0≤y≤x

[π(x, x − y) + G(x∗, x̄∗, y)] , (25)
M2 = max

x<x̄≤xs
0≤y<x̄∗

e−rτ(x,x̄) [π(x̄, x̄ − y) + G(x∗, x̄∗, y)] , (26)
M3 = max

x<x̄≤xs
x̄∗≤y≤x̄

e−rτ(x,x̄)

»

π(x̄, x̄ − y) (27)
+e−rτ(y,x∗(y)) [π(x∗(y), x∗(y) − y∗(y)) + G(x∗, x̄∗, y∗(y))]

–

.We reognize in the term (26) the problem (TP). We prove �rst that this is the largest ofthe three. Consider, for some y = y0, the value in brakets in (27). It orresponds to a poliy



24P with two harvests x̄ → y0 and x∗(y0) → y∗(y0). Two ases may happen, aording towhih of x̄ and x∗(y0) is the largest.Case x̄ ≥ x∗(y0): in this ase, these two harvests are overlapping (sine y∗(y0) < x̄∗ ≤ y0), inwhih ase Lemma 3 applies. The poliy P is dominated by at least one of two modi�ations.If the dominating poliy is the one exluding the seond harvest, then its value is presentin (26) when y has the value y∗(y0). If the dominating poliy is the one with an additionalharvest, then it is obvious (see for instane the proof of Lemma 4) that the poliy witha ylial harvesting with interval [x̄∗, y] is even better. But this poliy provides a gainequal to π(x̄, x̄− y) + e−τ(y,x̄∗)G(y, x̄∗, y) ≤ π(x̄, x̄− y) + e−τ(y,x̄∗)G(x∗, x̄∗, y). Poliy P istherefore again dominated by some poliy represented in (26).Case x̄ < x∗(y0): in this ase, Lemma 4 applies, and poliy P is dominated by at leastone of two modi�ations. Either the dominating poliy is the modi�ation �A� without aseond harvest: its gain is one of the values in (26). Or the dominating poliy is the one witha ylial harvesting. The reasoning above then applies and there is a value in (26) whihdominates the value in (27). We have shown that (27) is smaller than (26).Next, we show that (25) is dominated by (26). Eah y in (25) orresponds to some poliy
Py for whih the two �rst harvests are x → y and x̄∗ → x. Sine x is smaller than x̄∗, weare one more in the situation of Lemma 4. The poliy Py is therefore dominated: either bythe poliy A whih onsists in diretly applying the yle with interval [x∗, x̄∗], or by theylial poliy with interval [y, x]. This one is in turn dominated by the ylial poliy Aaording to Assumption 4. In both ases, Py is dominated by C. Sine the gain assoiatedwith C is present in (26) (with x̄ = x̄∗ and y = x∗), the term in (25) is dominated by theterm in (26).At this stage, we have proved that (26) dominates the two other terms, so that:

M = max
x<x̄≤xs
0≤y<x̄∗

e−rτ(x,x̄) [π(x̄, x̄ − y) + G(x∗, x̄∗, y)] .It now remains to be proved that the maximum in the right-hand side is reahed at x̄ = x̄∗and y = x∗. Eah value of the right-hand side is the gain of some poliy P for whih the two�rst harvests are x1 = x̄ and x2 = x̄∗. Whether x̄ < x̄∗ or x̄ > x̄∗, the appliation of Lemma 4implies that P is dominated: either by poliy �A� whih has the value G(x∗, x̄∗, x), or bypoliy �C� whih has the value G(y, x̄, x) < G(x∗, x̄∗, x) by Assumption 4 and Lemma 5.The value of M is readily seen to be e−rτ(x,x̄∗)G(x∗, x̄∗, x̄∗) = G(x∗, x̄∗, x) = w(x).The funtion w solves the Bellman equation for x < x̄∗.
A.3.2 Proof for x0 ≥ x̄∗Lemma 7 If Assumptions 3 and 4 hold, then the funtion w(x0) solves the dynamiprogramming equation for all xs ≥ x0 ≥ x̄∗.



25Proof Replaing v(y) by its value in (22), the right-hand side, say M ′, an be written asthe maximum of the four terms:
max

0≤y<x̄∗
[π(x0, x0 − y) + G(x∗, x̄∗, y)] , (28)

max
x̄∗≤y≤x0

»

π(x0, x0 − y) (29)
+ e−rτ(y,x∗(y)) [π(x∗(y), x∗(y) − y∗(y)) + G(x∗, x̄∗, y∗(y))]

–

,

max
x0<x̄≤xs
0≤y<x̄∗

e−rτ(x0,x̄) [π(x̄, x̄ − y) + G(x∗, x̄∗, y)] , (30)
max

x0<x̄≤xs
x̄∗≤y≤x̄

e−rτ(x0,x̄)

»

π(x̄, x̄ − y) (31)
+ e−rτ(y,x∗(y)) [π(x∗(y), x∗(y) − y∗(y)) + G(x∗, x̄∗, y∗(y))]

–

.Following the reasoning in proof of Lemma 6, the terms (29) and (31) are respetivelydominated by (28) and (30). There remains:
M ′ = max



max
0≤y≤x̄∗

[π(x0, x0 − y) + G(x∗, x̄∗, y)] ,

max
x0<x̄≤xs
0≤y≤x̄∗

e−rτ(x0,x̄) [π(x̄, x̄ − y) + G(x∗, x̄∗, y)]

ff

= max
x0≤x̄≤xs
0≤y≤x̄∗

e−rτ(x0,x̄) [π(x̄, x̄ − y) + G(x∗, x̄∗, y)] .This is the de�nition of Problem (TP). The solution is therefore (x∗(x0), y∗(x0)), whihonludes the proof.A.4 Proof of Theorem 3The statement i) of Theorem 3 is a diret onsequene of Theorem 2.For statement ii), we need the following result, whih is a orollary of Assumption 3and Lemma 3.Lemma 8 If Assumption 3 holds, then for every solution to problem (P) whih is notylial, there exists a ylial solution with the same value.Proof It is �rst neessary to haraterize what a non-ylial solution may be. From thede�nition of ylial poliies in Setion 3.1, it an be seen by inspetion (see also Figure 1)that the set of possible values for the population x(t) is made of at most two intervalsinluded in [0, xs], and that every single value a) is either reahed one only, b) or is reahedan in�nite number of times aording to a periodi sequene s1, s1 +T, s1 +2T, . . . for some
T > 0, ) or is 0. A solution whih is not ylial would therefore: i) either reah populationvalues in more than three disjoint intervals, ii) or reah some value v 6= 0 a number of timeswhih is neither 1 nor in�nity, iii) or reah some value v 6= 0 aording to a sequene ofinstants whih is not periodi.The �rst step is to exlude non-ylial solutions to (P) whih are suh that x(s) = x(t)for some s < t. For suh a poliy (A), onsider the smallest suh t. Let (B) be the poliywhih onsists in performing the same harvests as (A) up to time t, next applying theoptimal ylial poliy with initial population x(t) but shifted in time by t units. The values



26reahed by poliy (B) are reahed either one or an in�nite number of times at periodiintervals. As a onsequene of Theorem 1, the value funtion of poliy (B) is the same as(A). Therefore, a poliy whih is suh that ii) or iii) an be replaed by a ylial one.The seond step is to eliminate poliies of type i). For suh poliies, there exists some
i < j and a sequene of values a > b ≥ c > d, suh that for some i, xi = a, Ii = a − c, and
xj = b, Ij = b− d. Aording to Lemma 3, suh a poliy annot be optimal if Assumption 3stritly holds. In the other ase, the poliy an be replaed with another poliy with thesame total pro�t but with one less harvest. If this poliy is not ylial, an indution isapplied to onstrut a ylial poliy whih produes the same pro�t as the original one.Aording to this lemma, we know that we an restrit our attention to ylial solutionsof (P). Suh solutions are haraterized by Theorem 2. Their ylial part is given by anharvesting interval [x∗, x̄∗] whih is neessarily an interior solution of (AP).Finally, statement iii) is a onsequene of statement ii): if (P) had a solution, thesolution of (AP) would be a non-degenerate solution.A.5 Proof of Proposition 1Proof First, observe that the identity π(x, 0) = 0 implies that for all x, πx(x, 0) = 0 and
πxx(x, 0) = 0. Taking this into aount and developing G in a neighborhood of the point
x = x̄ = x using a Taylor series, we obtain:

G(x + h, x + k, x0) ∼= G(x, x, x0) +
F (x)

r
e−rτ(x0,x)B(x, h, k), (32)where, introduing ǫ = h − k,

B(x, h, k) =
ǫ

2

»

πII(x, 0) −
r − F ′(x)

F (x)
πI(x, 0)

–

+ h

»

r − F ′(x)

F (x)
πI(x, 0) + πxI(x, 0)

–

.Any maximum xm of the funtion G(x, x, x0) satis�es the �st-order ondition B(xm, h, h) =
0 for su�iently small values of h. Therefore,

0 =
r − F ′(xm)

F (xm)
πI(xm, 0) + πxI(xm, 0) .Consequently,

B(xm, h, k) =
ǫ

2

»

πII(xm, 0) −
r − F ′(xm)

F (xm)
πI(xm, 0)

–

=
ǫ

2
(πII + πxI)(xm, 0) .From Lemma 1 ii), adapted to the strit inequality in (13), we know that (πII+πxI)(xm, 0) >

0. Therefore, for any small deviations h and ǫ > 0 towards the interior of the domain,
B(xm, h, h − ε) > 0, and we onlude that there are values of G(x, x̄, x0) whih are largerthan G(xm, xm, x0). The solution to (AP) thus annot be suh that x = x̄, so that theoptimal yle is non-degenerate.A.6 Proof of Proposition 2First of all, we an rule out solutions of (AP) with x = 0, or x̄ = xs, by assumption.



27Next, we rule out interior solutions. Aording to Lemma 2, speialized to integral gainfuntions, an interior solution 0 < x < x̄ < xs should satisfy the system of equations:
γ(x) =

r

F (x)

e−rτ(x,x̄)

1 − e−rτ(x,x̄)

Z x̄

x

γ(u) du (33)
γ(x̄) =

r

F (x̄)

1

1 − e−rτ(x,x̄)

Z x̄

x

γ(u) du . (34)Here, the onstant x0 is still arbitrary. It is easily seen that the system of equations (33)�(34)is equivalent to (35)�(36), where:
γ(x)F (x)e−rτ(x0,x) = γ(x̄)F (x̄)e−rτ(x0,x̄) (35)

γ(x)F (x) − r

Z x

x0

γ(u) du = γ(x̄)F (x̄) − r

Z x̄

x0

γ(u) du . (36)Condition (35) is in turn equivalent to Gd(x) = Gd(x̄), while (36) an be written as ϕ(x) =
ϕ(x̄), with the de�nition:

ϕ(x) =
1

r
γ(x)F (x) −

Z x

x0

γ(u) du .It is onvenient here to pik as x0 the value xm provided by the hypothesis. For this hoie, wehave Gd(xm) = ϕ(xm) = γ(xm)F (xm)/r. We now prove that x < xm, then ϕ(x) < Gd(x)and if x > xm, then ϕ(x) > Gd(x). Indeed, di�erentiation of ϕ readily gives:
ϕ′(x) = G′

d(x) erτ(xm,x) .The value of e−rτ(xm,x) is positive and larger than 1 if xm > x, and is smaller than 1 if
xm < x. But aording to the hypothesis, G′

d
(x) ≥ 0 if xm > x and G′

d
(x) ≤ 0 if xm < x.All these fats �nally imply that ϕ′(x) ≤ G′

d
(x) for all x. This in turn implies the propertystated above.But then for any x < x̄ suh that Gd(x) = Gd(x̄), the hypothesis implies x < xm < x̄.Therefore, we have:

ϕ(x) > Gd(x) = Gd(x̄) > ϕ(x̄) ,whih exludes the possibility that ϕ(x) = ϕ(x̄). We have therefore proved that no interiorsolution exists.There remain the solutions on the boundary x = x̄. Again appealing to the hypothesis,the maximum on this boundary, and therefore the global maximum, is x = x̄ = xm. Thisonludes the proof.


