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Abstract

The odds-ratio measure is widely used in Health and Social sur-

veys where the aim is to compare the odds of a certain event between

a population at risk and a population not at risk. It can be defined

using logistic regression through an estimating equation that allows

a generalization to continuous risk variable. Data from surveys need

to be analyzed in a proper way by taking into account the survey

weights. Because the odds-ratio is a complex parameter, the analyst

has to circumvent some difficulties when estimating confidence inter-

vals. The present paper suggests a nonparametric approach that can
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take advantage of some auxiliary information in order to improve on

the precision of the odds-ratio estimator. The approach consists in

B-spline modelling which can handle the nonlinear structure of the

parameter in a flexible way and is easy to implement. The variance

estimation issue is solved through a linearization approach and confi-

dence intervals are derived. Two small illustrations are discussed.

Keywords: B-spline functions, estimating equation, influence function, lin-
earization, logistic regression, survey data.

1 Introduction

In health and social surveys, the odds ratio is used to quantify the association
between the levels of a response variable Y and a risk variable X. For an
infinite population, let p = P (Y = 1|X) and the logistic regression

logit(p) = log
p

1− p
= b0 + b1x

where x is the value taken by X. It implies that p = exp(b0 + b1x)(1 +
exp(b0 + b1x))

−1. The odds ratio is defined (see [1]) as:

odds(Y = 1|X = x+ 1)

odds(Y = 1|X = x)
= exp b1, (1.1)

where odds(Y = 1|X = x+ 1) = P (Y = 1|X = x+ 1)/P (Y = 0|X = x+ 1).
In the finite population context of sample surveys, we are interested in

the maximum likelihood estimator β1 of the infinite population parameter b1
based on the data values of the finite population (see [2]). This finite popula-
tion parameter β1 is the solution of a finite population estimating equation.
Given β1, we consider the finite population odds ratio OR = exp β1 as our
parameter of interest. Then, the method suggested in [2] can be used to
estimate β1 and OR with survey data. In the context of surveys, [9] and
[8] give details and examples of estimating an odds ratio but without taking
into account auxiliary information. Concerning auxiliary information, [9],
p. 169-170, advocate the use of weighted odds ratios and [11] suggest using
poststratification information to estimate parameters of interest obtained as
solutions of estimating equations. In the present paper, we propose to study
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the estimation of the odds ratio parameter when auxiliary information is
available. Results are derived from [7] who use auxiliary information to esti-
mate nonlinear parameters through nonparametric methods. The solutions
of estimating equations are particular nonlinear parameters but [7] give few
details for such estimators.

In Section 2, we propose a B-spline nonparametric estimator for the odds-
ratio. In Section 3, we use linearization to derive the asymptotic variance of
the estimator under broad assumptions. We also suggest a variance estimator
and give asymptotic normal confidence intervals. In Section 4, we illustrate
our approach on two real data sets and conclude in Section 5 with a short
discussion.

2 Odds ratio estimation in surveys using B-

spline regression

2.1 Finite population parameter definition

The finite population parameters β0 and β1 are defined as the maximum like-
lihood estimators of the regression parameters b0 and b1. Let β = (β0, β1)

′,
where ′ denotes the transpose, let yi be the value taken by Y and xi the value
taken by X for the i-th individual from the finite population U = {1, . . . , N}.
The finite population parameter β maximizes the finite population likelihood:

L(y1, . . . , yN ;β) =
∏

i∈U

pyii (1− pi)
1−yi .

Under the logistic regression model, the maximum likelihood estimator β

satisfies:

∑

i∈U

xi(yi − µ(x′
iβ)) = 0 (2.1)

with xi = (1 xi)
′ and µ(x′

iβ) = exp(x′
iβ)(1+exp(x′

iβ))
−1 or

∑
i∈U ti(β) = 0

with ti(β) = xi(yi−µ(x′
iβ)). Equation (2.1) is also called the score equation

and ti(β) the score function. The finite population parameter β is defined
as an implicit solution of the estimating equation (2.1) and we use iterative
methods such as the Newton-Raphson algorithm to compute it.
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2.2 Estimation at the sample level using B-spline non-

parametric models

In order to estimate the parameter OR= exp β1, we first estimate the regres-
sion coefficient β by β̂ = (β̂0, β̂1)

′ and then derive the estimator ÔR = exp β̂1.
For a sample s selected from the population U according to a sample design
p(·) , we denote by πi > 0 the probability of unit i to be selected in the
sample and πij > 0 the joint probability of units i and j to be selected in the
sample with πii = πi. We look for an estimator of β and of OR taking the
auxiliary variable Z, with values z1, . . . , zN , into account.

The regression coefficient β is a nonlinear finite population function of
totals defined by the implicit equation (2.1). The functional method by [3],
extended to the nonparametric case by [7], is used to build a nonparametric
estimator of β. Let M =

∑
i∈U δyi be the finite measure assigning the unit

mass to each yi, i ∈ U , and zero elsewhere, where δyi is the Dirac function
at yi, δyi(y) = 1 for y = yi and zero elsewhere. Consider also the functional
T defined by

T (M ;β) =
∑

i∈U

xi(yi − µ(x′
iβ)) =

∑

i∈U

ti(β). (2.2)

Then, the regression coefficient β is the solution of the implicit equation

T (M ;β) = 0. (2.3)

The measure M may be estimated by using the Horvitz-Thompson weights
di = 1/πi or the linear calibration weights [3]. The functional method al-
lows us to use nonparametric weights for estimating the logistic regression
coefficient. Remark that the method is general and may be applied for any
parameter β defined as a solution of estimating equations.
[6] suggests using nonparametric weights based on B-spline regression to
estimate totals for variables which are related nonlinearly to the auxiliary
information and [7] suggest penalized B-spline regression to estimate totals
or nonlinear parameters such as a Gini index. The B-splines functions [5]
are known for their flexibility to model nonlinear trend in the data and by
their numerical stability and ease of implementation. Let B1, . . . , Bq, where
q = m +K denote the B-spline functions of degree m and with K interior
knots. Then, the B-spline nonparametric weights [6] are given by:

wb
is = di

(∑

k∈U

b(zk)

)′(∑

k∈s

dkb(zk)b
′(zk)

)−1

b(zi), (2.4)
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where b(zi) = (B1(zi), . . . , Bq(zi))
′. The weights wb

is depend only on the
auxiliary variable and are similar to calibration weights [4]. They allow to
estimate exactly the population size N,

∑
i∈s w

b
is = N, and the total of the

auxiliary variable Z,
∑

i∈s w
b
iszi =

∑
i∈U zi. We use here wb

is to estimate the
logistic regression coefficient and the odds ratio efficiently. More exactly, we
estimate M by M̂ =

∑
i∈s w

b
isδyi . Plugging M̂ into the functional expression

of β given by (2.3) yields the B-spline nonparametric estimator β̂ of β:

T (M̂ ; β̂) = 0, (2.5)

which means that β̂ is the solution of the implicit equation
∑

i∈s w
b
isxi(yi −

µ(x′
iβ̂)) = 0.

An iterative Newton-Raphson method is used to compute β̂. Consider for
that the derivative of the functional T given in (2.2) with respect to β :

∂T

∂β
= −

∑

i∈U

ν(x′
iβ)xix

′
i = X′Λ(β)X := J(β), (2.6)

with X = (x′
i)i∈U and Λ(β) = −diag(ν(x′

iβ)) with ν(x′
iβ) = µ(x′

iβ)(1 −
µ(x′

iβ)). The 2 × 2 matrix X′Λ(β)X is invertible and J(β) is definite neg-
ative. From (2.6), the matrix J(β) is unknown and may be estimated by
using the nonparametric weights wb

is:

Ĵw(β) = −
∑

i∈s

wb
isν(x

′
iβ)xix

′
i = X′

sΛ̂(β)Xs, (2.7)

where Λ̂(β) = −diag(wb
isν(x

′
iβ))i∈s and Xs = (x′

i)i∈s. Then, the r-th step of
the Newton-Raphson algorithm is:

β̂r = β̂r−1
− Ĵw(β̂r−1

)T (M̂ ; β̂r−1
), (2.8)

where β̂r−1
is the value of β̂ obtained at the (r − 1)-th step. Ĵw(β̂r−1

)

is the value of Ĵw(β) and T (M̂ ; β̂r−1
) the value of T (M̂ ;β) evaluated at

β = β̂r−1
. Iterating to convergence produces the nonparametric estimator β̂

and the estimated Jacobian matrix Ĵw(β̂). The odds ratio is estimated by

ÔR = exp(β̂1) and Ĵw(β̂) is used in Section 3 to estimate the variance of β̂.
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3 Variance estimation and confidence inter-

vals

3.1 Asymptotic variance of the B-spline estimator of

OR

The coefficient β of the logistic regression defined in (2.1) is a nonlinear func-
tion of totals and the nonparametric weights wb

is add even more nonlinearity.

We approximate β̂ in (2.5) by a linear estimator in two steps: we first treat
the nonlinearity due to β, and second the nonlinearity due to the nonpara-
metric estimation. This procedure is different from [3]. From the implicit

function theorem, there exists a unique functional T̃ such that

T̃ (M) = β and T̃ (M̂) = β̂. (3.1)

The functional T̃ is Fréchet differentiable with respect to M . The derivative
of T̃ with respect to M , called the influence function, is defined by

IT̃ (M, ξ) = lim
λ→0

T̃ (M + λδξ)− T̃ (M)

λ
,

where δξ is the Dirac function at ξ. Under the assumptions given in [7], we
obtain the following first-order expansion:

T̃ (M̂) = T̃ (M) +
∑

i∈s

wb
isIT̃ (M, yi)−

∑

i∈U

IT̃ (M, yi) + op(n
−1/2). (3.2)

For i ∈ U , IT̃ (M, yi) = ui is called the linearized variable of T̃ (M) = β

and equals:

ui = −

(
∂T

∂β

)−1

IT (M, yi;β) = − (X′Λ(β)X)
−1

xi(yi − µ(x′
iβ))

= −J−1(β) · ti(β). (3.3)

The linearized variable ui = (ui,0, ui,1)
′ is a two-dimensional vector de-

pending on the unknown parameter β and on totals contained in the ma-
trix J(β). The second component ui,1 of ui is the linearized variable of
β1. Note that with a binary variable X, the odds ratio is given by OR =
(N00N11)/(N01N10) where N00, N01, N10, and N11 are the population counts
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associated with the contingency table. In this case, the linearized variable of
β1 has the expression:

ui,1 =
1{xi=0,yi=0}

N00

+
1{xi=1,yi=1}

N11

−
1{xi=1,yi=0}

N10

−
1{xi=0,yi=1}

N01

(3.4)

and the same expression is obtained from (3.3) after some algebra.
Relation (3.2) may be written as:

β̂ − β ≃
∑

i∈s

wb
isui −

∑

i∈U

ui, (3.5)

namely, the B-spline nonparametric regression estimator β̂ is approximated
by the weighted estimator

∑
i∈s w

b
isui of the finite population total of the

linearized variable ui. In the following, the aim is to derive the asymptotic
variance of β̂.

Note that using the weights di instead of wb
is in (3.5) implies that the

asymptotic variance is given by:

Var

(∑

i∈s

diui

)
=

∑

i∈U

∑

j∈U

(πij − πiπj)didjuiu
′
j

= J−1(β) Var(t̂d(β))J
−1(β), (3.6)

where Var(t̂d(β)) is the variance of t̂d(β) =
∑

i∈s diti(β) with ti(β) = xi(yi−
µ(x′

iβ)):

Var(t̂d(β)) = Var

(∑

i∈s

diti(β)

)
=
∑

i∈U

∑

j∈U

(πij − πiπj)didjti(β)t
′
j(β). (3.7)

Note that [2] gives the same asymptotic expression for the variance.
For B-spline basis functions formed by step functions on intervals between

knots (m = 1), the weights wb
is yield the post-stratified estimator of β [11].

Linear calibration weights lead to the case treated by [3]. Consider now
the general case of nonparametric weights wb

is given in (2.4), then the right
hand side of (3.5) is a nonparametric estimator for the total of the linearized
variable ui and a supplementary linearization step is needed. It can be
written as a generalized regression estimator (GREG):

∑

i∈s

wb
isui −

∑

i∈U

ui =
∑

i∈s

di(ui − θ̂
′

ub(zi))−
∑

i∈U

(ui − θ̂
′

ub(zi)),
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where θ̂u = (
∑

i∈s dib(zi)b
′(zi))

−1(
∑

i∈s dib(zi)u
′
i). In order to derive the

asymptotic variance of the nonparametric estimator of β, we assume that
||xi|| < C for all i ∈ U with C a positive constant independent of i and
N , and || · || is the Euclidian norm. Then, the linearized variable verifies
N ||ui|| = O(1) uniformly in i, because

N ||ui|| ≤ ||NJ−1(β)||2 ||xi|| |yi − µ(x′
iβ))| = O(1).

where the matrix norm || · ||2 is defined by ||A||2
2
= tr(A′A).

Under the assumptions of Theorem 7 in [7] on the B-splines functions
and the sampling design, the nonparametric estimator

∑
i∈s w

b
isui is asymp-

totically equivalent to

∑

i∈s

wb
isui −

∑

i∈U

ui ≃
∑

i∈s

di(ui − θ̃
′

ub(zi))−
∑

i∈U

(ui − θ̃
′

ub(zi)), (3.8)

where θ̃u = (
∑

i∈U b(zi)b
′(zi))

−1
∑

i∈U b(zi)u
′
i. This states that the B-spline

nonparametric estimator of
∑

i∈U ui is asymptotically equivalent to the gen-
eralized difference estimator. We interpret this result as fitting a nonpara-
metric model on the linearized variable ui taking into account the auxiliary
information zi. Nonparametric models are a good choice when the linearized
variable obtained from the first linearization step does not depend linearly
on zi, as it is the case in the logistic regression, which implies a second
linearization step.

Putting together (3.5) and (3.8), we can approximate the variance of β̂

by the Horvitz-Thompson variance of the residuals ui − θ̃
′

ub(zi),

AV(β̂) =
∑

i∈U

∑

j∈U

(πij − πiπj)didj

(
ui − θ̃

′

ub(zi)
)(

uj − θ̃
′

ub(zj)
)′
. (3.9)

The B-spline nonparametric fitting allows large flexibility and implies that

the residuals ui− θ̃
′

ub(zi) have a smaller dispersion than with a linear fitting
regression.

We write the asymptotic variance in (3.9) in a matrix form similar to
(3.6). We have:

ui − θ̃
′

ub(zi) = −J−1(β)
(
ti(β)− θ̃

′

tb(zi)
)
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with θ̃t = (
∑

i∈U b(zi)b
′(zi))

−1
∑

i∈U b(zi)t
′
i(β) and ti the score functions.

Then, the asymptotic variance of β̂ becomes:

AV(β̂) = J−1(β) Var(êd(β))J
−1(β) (3.10)

where êd(β) =
∑

i∈s diei(β) is the Horvitz-Thompson estimator of the resid-

ual ei(β) = ti(β)− θ̃
′

tb(zi) of ti(β) using B-spline nonparametric estimation
and Var(êd(β)) is obtained as in (3.7). Result given in (3.10) shows that
improving the estimation of β is equivalent to improving the estimation of
the score functions ti = xi(yi − µ(x′

iβ)).

3.2 Variance estimation and confidence interval for the

odds ratio

The linearized variable ui is unknown and is estimated by:

ûi = −Ĵ−1

w (β̂)xi(yi − µ(x′
iβ̂)) = −Ĵ−1

w (β̂) t̂i

where the matrix Ĵw is computed according to (2.7) and t̂i is the estimation

of ti(β) with β = β̂. Assuming that all πij > 0, the asymptotic variance

AV(β̂) given in (3.9) or (3.10) is estimated by the Horvitz-Thompson variance
estimator with ui replaced by ûi:

V̂ (β̂) =
∑

i∈s

∑

j∈s

πij − πiπj

πij

didjûiû
′
j = Ĵ−1

w (β̂) V̂ht(êd(β̂)) Ĵ
−1

w (β̂)(3.11)

where V̂ht(êd) is the Horvitz-Thompson variance estimator of êd(β̂) =∑
i∈s diêi(β̂) with êi(β̂) = t̂i−θ̂

′

t̂b(zi) and θ̂t̂ = (
∑

i∈s dib(zi)b
′(zi))

−1
∑

i∈s dib(zi)t̂
′
i.

The variance estimator of β̂1 is obtained from (3.11) as:

V̂ (β̂1) = Ĵ−1

w (β̂) V̂ht(êd,2(β̂)) Ĵ
−1

w (β̂),

where êd,2(β̂) is the second component of êd(β̂) so that, under regularity
conditions, the (1− α)% normal interval for OR is:

CI1−α(OR) =

[
exp

(
β̂1 − zα/2

(
V̂ (β̂1)

)1/2)
, exp

(
β̂1 + zα/2

(
V̂ (β̂1)

)1/2)]
,

where zα/2 is the upper α/2-quantile of aN (0, 1) variable. It is not symmetric
around the estimated odds ratio but provides more accurate coverage rates
of the true population value for a specified α [8]).
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4 Two small illustrations

The aim of using auxiliary information in our context is to gain in terms of
variance. In order to ensure that it is so on some real examples, we consider
below two data sets as if they were two finite populations of interest. Given
that all data are known, it is possible to calculate (and not estimate) and
compare the variances or asymptotic variances of the estimators we are in-
terested in. More precisely, we compare the asymptotic variances of different
estimators of the odds ratio in the simple case of one binary risk variable
using two data sets. As previously mentioned, in this context, the odds ratio
is a simple function of four counts. We focus on the simple random sam-
pling without replacement and compare three estimators. The first one is
the Horvitz-Thompson estimator which does not use the auxiliary variable
and whose asymptotic variance is given by (3.6). The second estimator is
the generalized regression estimator which takes the auxiliary variable into
account through a linear model, fitting the linearized variable against the
auxiliary variable. The third estimator is the B-spline calibration estimator
with an asymptotic variance given by (3.10). In order to gain efficiency, the
auxiliary variable has to be related to the linearized variable. In the context
of one binary factor, the linearized variable is given by (3.4) and takes four
different values, which depend on the values of the variables X and Y . In
order to be related to the linearized variable, the auxiliary variable has to
be related to the product of the two variables X and Y , which is a strong
property. Moreover, because ui,1, X, and Y are discrete, using auxiliary
information does not necessarily lead to an important gain in efficiency as
illustrated by the first health survey example. The gain in efficiency however
is significant in some other cases. In the second example using labor survey
data, the gain in using the B-splines calibration estimator compared to the
Horvitz-Thompson estimator is significant because the auxiliary variable is
related to the variable Y but also to the factor X; X and Y being related to
one another, too.

4.1 Example from the California Health Interview Sur-

vey

The data set comes from the Center for Health Policy Research at the Uni-
versity of California. It was extracted from the adult survey data file of the
California Health Interview Survey in 2009 and consists of 11074 adults. The
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response dummy variable equals one if the person is currently insured; the
binary factor equals one if the person is currently a smoker. The auxiliary
variable is age and we consider people who are less than 60 years old. The
data are presented in detail in [10].

We compare the Horvitz-Thompson, the generalized regression, and the
B-splines calibration estimators in terms of asympotic variance. In order
to calculate the B-splines functions, we use the SAS procedure transreg and
take K = 15 knots and B-splines of degree m = 3. The gain in using the gen-
eralized regression estimator compared to the Horvitz-Thompson estimator
is only 0.01%. It is 1.5% when using B-splines instead of the generalized re-
gression. When changing the number of knots and the degree of the B-spline
functions, the results remain similar and the gain remains under 2%. In this
example, there is no gain in using auxiliary information even with flexible B-
splines, because the auxiliary variable is not related enough to the linearized
variable. The linearized variable takes negative values for smokers without
insurance and non smokers with insurance, positive values for smokers with
insurance and non smokers without insurance. Age is not a good predic-
tor for this variable, because we expect to find sufficient people of any age in
each of the four categories (smokers/non smokers × insurance/no insurance).
Incorporating this auxiliary information brings no gain.

4.2 Example from the French Labor Survey

We consider 14621 wage-earners under 50 years of age, from the French labour
force survey. The initial data set consists of monthly wages in 2000 and 1999.
A dummy variable W00 equals one if the monthly wage in 2000 exceeds 1500
euros and zero otherwise. The same for W99 in 1999. The population is
divided in lower and upper education groups. The value of the categorical
factor DIP equals one for people with a university degree and zero other-
wise. W00 corresponds to the binary response variable Y while the diploma
variable DIP corresponds to the risk variableX. The variable W99 is the aux-
iliary variable Z. In this context, the odds ratio is a simple function of four
counts. We focus on the simple random sampling without replacement and
compare three estimators. The first one is the Horvitz-Thompson estimator
which does not use the auxiliary variable and whose asymptotic variance is
given by (3.6). The second estimator is the generalized regression estima-
tor which takes the auxiliary variable into account through a linear model,
fitting the linearized variable against the auxiliary variable. The third es-
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timator is the B-spline calibration estimator with an asymptotic variance
given by (3.10).

To compare the Horvitz-Thompson estimator with the generalized regres-
sion estimator and the B-splines calibration estimator, we first calculate the
gain in terms of asymptotic variance. We consider K = 15 knots and the
degree m = 3. The gain in using the generalized estimator compared to
the Horvitz-Thompson estimator is 20%. It is 33% when using B-splines.
The result is almost independent of the number of knots and, of the degree
of B-spline functions. When the total number of knots varies from 5 to 50
and the degree varies from 1 to 5, the gain is between 32% and 34%. The
nonlinear link between the linearized variable of a complex parameter with
the auxiliary variable explains the gain in using a nonparametric estimator
compared to an estimator based on a linear model [7]. For the odds ratio
with one binary factor, the linearized variable is discrete and the linear model
does not fit the data.

5 Discussion

In the presence of one auxiliary variable known for all the population units, a
B-splines approach is easy to implement and can improve on the precision of
the Horvitz-Thompson estimator for an odds-ratio parameter if the auxiliary
variable is well related with the variable of interest. It is possible to take into
account more than one auxiliary variable by using some generalized additive
model and consider some B-splines estimator as proposed above for each of
the additive components. The theory however needs further development.
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