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ABSTRACT 

 
This paper studies a financial market populated by adaptive traders. Learning is modeled 
following Camerer and Ho (1999). A call market and a Walrasian tatonnement are 
compared in an environment in which both institutions have the same Nash and 
competitive equilibrium outcomes. When traders learn via a belief-based model, 
equilibrium is discovered in both types of markets. In contrast, when traders learn via a 
reinforcement-based model, convergence to equilibrium is achieved in the Walrasian 
tatonnement but not in the call market. This paper suggests that market mechanisms can 
be designed to foster traders' learning of equilibrium strategies. 
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The risk of transacting with a more or less informed investor is inherent to trading in 

financial markets. This so-called adverse selection risk gives rise to a variety of 

interesting questions.1 Do financial market prices reveal investors’ private information? 

Do investors design their trading strategies to mitigate adverse selection risk? Does 

market organization influence traders’ strategies and in turn market efficiency? While 

these questions have been extensively studied using perfectly rational traders, less 

attention has been devoted to the case in which traders are boundedly rational.2 This 

paper addresses these issues in the context of financial markets populated by boundedly 

rational traders. 

Starting with Simon (1955), numerous academic studies document the 

attractiveness of bounded rationality to model decision making.3 One way to incorporate 

bounded rationality is to represent agents as adaptive organisms, that is, organisms who 

learn from and make choices according to their past experience. Camerer (2003) provides 

experimental evidence suggesting that learning models generate more accurate 

predictions, and hence shed more light on behavior in games than models based on 

perfect rationality. With respect to financial markets, this research raises questions about 

price formation in markets populated by adaptive traders. Do adaptive informed traders 

learn to base their orders on their information? Can adaptive uninformed traders learn to 

mitigate adverse selection risk? Does market organization affect learning? 

                                                 
1 See Grossman (1977) and Hellwig (1980) for seminal contributions to the study of adverse selection risk 
in financial markets. 
2 For studies on financial markets with perfectly rational investors, see Grossman and Stiglitz (1980), 
Glosten and Milgrom (1985), and Kyle (1985) on informational efficiency, Biais, Bossaerts, and Spatt 
(2003) on trading strategies that mitigate adverse selection, and Madhavan (1992), Pagano and Roell 
(1996), and Cespa (2004) on market design. 
3 See, for example, Conlisk (1996) for a survey on bounded rationality and Camerer (1995) for a survey on 
individual decision making. 
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To examine these questions, I rely on Camerer and Ho’s (1999) Experience 

Weighted Attraction (EWA) learning model. This model captures the dual nature of 

adaptive learning, that is, the law of actual effect and the law of simulated effect. The law 

of actual effect asserts that chosen actions that are successful will be chosen more often 

than those that are not successful. This law is at the core of reinforcement learning (see, 

for example, Roth and Erev (1995)). The law of simulated effect states that unchosen 

actions that would have been successful will also be chosen more often. This law is at the 

core of belief-based learning (see, for example, Fudenberg and Levine (1998)). Using the 

EWA model is useful to understanding how the nature of learning affects convergence to 

equilibrium. 

The financial market I consider is in the spirit of Radner (1979). Specifically, the 

financial market is a pure exchange economy in which agents can trade a risky asset and 

some traders (the insiders) know the future value of the asset. In order to identify the 

impact of market design on equilibrium learning, I analyze two market institutions, 

namely, a call market and a Walrasian tatonnement. These trading architectures are 

comparable since they both lead to one uniform-price multilateral transaction per trading 

period. In addition, given the economic environment considered in the present paper, 

these two institutions have the same fully revealing Perfect Bayesian Equilibrium 

outcome, and this equilibrium corresponds to the unique competitive Rational 

Expectation Equilibrium (REE). The idea is to study whether market design influences 

learning of equilibrium in a context in which it does not affect competitive and strategic 

equilibrium outcomes. 
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I study the model described above using computer-based simulations of four 

treatments that vary according to the type of learning (law of actual effect alone versus 

laws of actual and simulated effects jointly) and the market mechanism (call market 

versus Walrasian tatonnement). Each treatment includes 1,000 independent trials and 

each trial includes 200 successive trading periods or runs. The precise parameters used 

and the learning process are detailed below in Section III. 

The results for the call market indicate that if agents rely only on the law of actual 

effect to adapt their behavior, the system does not converge to the perfectly rational 

equilibrium benchmark, whereas if agents rely on both the law of actual effect and the 

law of simulated effect, the market converges towards equilibrium. The rationale is as 

follows. During the initial runs, insiders have not adopted yet their dominant strategy, 

which is to reveal their information. This implies that uninformed traders are subject to 

strategic uncertainty.4 As a result, uninformed traders learn not to play their equilibrium 

action. Once insiders have discovered their equilibrium strategy, if agents only reinforce 

actions that have been successful in the past (law of actual effect only), uninformed 

traders are unlikely to choose their equilibrium strategy, whereas if agents also use the 

law of simulated effect, uninformed traders are able to discover the best response to the 

insiders’ behavior. 

The results for the Walrasian tatonnement show that the market converges 

towards equilibrium regardless of whether traders use the law of actual effect alone or 

whether they use the law of actual effect together with the law of simulated effect. This 

result obtains for two reasons. First, the Walrasian tatonnement isolates traders from the 

consequences of strategic uncertainty. Since this market institution is a price-driven 
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mechanism, traders know the potential transaction price before transacting. Uninformed 

traders can thus learn not to trade at out-of-equilibrium prices. Uninformed traders’ 

equilibrium strategy in the call market is in contrast to submit a market order, in which 

case these agents cannot specify the prices at which they are willing to transact, and 

hence they are hurt by strategic uncertainty. Second, the Walrasian tatonnement presents 

information to traders in a simple way: when a potential price is announced, they only 

need to decide whether they want to trade. This reduces the complexity of the decision 

problem faced by traders relative to the call market, where traders have to decide whether 

they want to trade at each potential price. 

The present paper is related to studies on pre-trade transparency by Pagano and 

Roell (1996), Bloomfield and O’Hara (1999), and Flood, Huisman, Koedijk, and Mahieu 

(1999), among others. It complements this literature by showing that transparency can 

have beneficial consequences for the ability of boundedly rational traders to design 

efficient strategies. In particular, this paper suggests that appropriately designed market 

structure can overcome the consequences of traders’ adaptive behavior. This might help 

explain why stock exchanges that open with a call market, such as the Paris Bourse, the 

Milan Borsa, the Madrid Bolsa, and the Toronto Stock Exchange, organize a pre-opening 

period. This pre-opening period can help traders determine what the opening transaction 

price will be, thereby eliminating the price uncertainty inherent to call market 

mechanisms. 

The rest of the paper is organized as follows. Section I discusses the literatures on 

equilibrium learning and learning in auctions and markets. Section II describes the 

economic environment and the market structures of interest in this study, along with the 

                                                                                                                                                 
4 For a discussion of strategic uncertainty, see Crawford (1997). 

 5



perfectly rational theoretical outcomes. Section III presents the learning model and the 

simulation procedures. The baseline simulation results are given in Section IV, and 

robustness checks are offered in Section V. Section VI concludes. 

 

I. Related Literature 

Gode and Sunder (1993, 1997) show in their seminal contributions that in a 

setting with private values and zero-intelligence traders, market rules act as a partial 

substitute for individual rationality. The result in this paper that some market institutions 

can foster learning is related to this idea. However, in the present framework institutional 

features such as the price-driven nature of the Walrasian tatonnement help agents learn 

equilibrium, whereas in the framework of Gode and Sunder (1993, 1997) agents’ 

behavior does not evolve and market institutions only constrain behavior. 

The literature on equilibrium learning consists of two branches. One strand of the 

literature examines the various types of learning models and their convergence towards 

equilibrium. For example, Bray (1982), Bray and Savin (1986), and Marcet and Sargent 

(1989) focus on least-square learning and its theoretical convergence towards REE, Roth 

and Erev (1995) and Mookherjee and Sopher (1994) study reinforcement learning and its 

convergence to Nash equilibrium, and Milgrom and Roberts (1990) and Fudenberg and 

Levine (1998) study belief-based learning and its convergence to Nash equilibrium. The 

other strand of the literature focuses on mechanism design with bounded rationality. In 

this second strand, the idea is to design economic institutions that lead to an equilibrium 

with socially desirable outcomes and then to verify that equilibrium obtains when agents 

suffer from bounded rationality (see, for example, Walker (1984), Jordan (1986), and 
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Cabrales (1999)). The present paper contributes to this second strand of the literature by 

considering financial market design with asymmetric information. 

The present paper is also related to the studies of Andreoni and Miller (1995), 

Arifovic and Ledyard (2003), Routledge (1999), and Feltovich (2003). Andreoni and 

Miller (1995) simulate the behavior of genetic algorithms in various auction institutions, 

and Arifovic and Ledyard (2003) simulate adaptive learning in various private-value call 

markets using evolutionary adaptation. The present paper also investigates the impact of 

economic institutions on equilibrium discovery. However, it is different from these 

studies in that it considers a market setting, common values, and individual learning.5

Routledge (1999) identifies conditions under which genetic algorithms converge 

to the REE in a common-value asymmetric information environment. Feltovich (2003) 

studies agents’ learning of equilibrium bids in a common-value auction and finds that 

when bidders learn using reinforcement, they learn to reduce adverse selection risk very 

slowly. My results in a market setting are consistent with Feltovitch’s findings in an 

auction setting. The present paper also complements these last two studies by showing 

that the design of market institutions can influence equilibrium discovery. In particular, 

my result that the sequential nature of the Walrasian tatonnement fosters learning is in 

line with the conjecture of Ausubel (2004) and the results of Parkes (1999), as the present 

analysis shows that with asymmetric information, convergence to equilibrium is achieved 

if market institutions mitigate strategic uncertainty. 

The approach used in the present paper is also related to that of Chan, LeBaron, 

Lo, and Poggio (2001), who propose an agent-based model of financial markets with 

                                                 
5 As noted by Camerer and Ho (1999), the attractiveness of individual learning models is that their 
parameters have sounded psychological underpinnings. 
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asymmetric information. There are two main differences, however, between Chan et al. 

(2001) and the present paper. First, I endow traders with various learning abilities 

whereas Chan et al. (2001) rely on evolutionary dynamics for the adaptation of trading 

strategies. Second, I study the impact of market design whereas they focus on the 

influence of heterogeneous preferences. 

The result that uninformed traders’ behavior, when they use only the law of actual 

effect, converges towards an action that protects them from strategic uncertainty echoes 

the findings of Noe, Rebello, and Wang (2003). They use genetic algorithms to study the 

design of financing contracts and show that financing contracts that minimize strategic 

uncertainty tend to emerge and dominate other forms of financing. Consistent with their 

analysis, in a framework in which the financial contract is given, I conclude that strategic 

uncertainty is an important determinant of traders’ behavior and I study its implications 

for the design of financial markets. 

 In addition, my result that Walrasian tatonnement fosters learning is in line with 

the experimental evidence on sequential auctions (Kagel, Harstad, and Levin (1987), and 

Kagel and Levin (2001)) and on sequential markets (Pouget (2006)). In this last paper, 

experimental subjects confronted with similar environments and market institutions are 

able to discover equilibrium in a Walrasian tatonnement but not in a call market. The 

present analysis suggests that this might be due to the fact that individuals in 

experimental financial markets rely mainly on the law of actual effect to adapt their 

behavior. Studying how various market institutions influence the discovery of optimal 

strategies is a first step towards the optimal design of financial markets under bounded 

rationality. 
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II. Market Settings and Equilibrium with Perfect Rationality 

I consider a market for one financial asset. The asset’s common value v is a 

random variable that can take n different values with equal probability. Assume that there 

are bi+si risk-neutral insiders, where bi denotes informed buyers and si denotes informed 

sellers, and bu+su risk-neutral uninformed traders, where bu denotes uninformed buyers 

and su denotes uninformed sellers. Assume that bi+si = bu+su. The insiders know the 

realization of v. In order to generate explicit gains from trade, assume that the asset is 

worth more for buyers than for sellers. In particular, buyers’ valuation for the asset is v+x 

and sellers’ valuation is v-x.6 Agents have no asset or cash endowment and no budget 

constraint, and short sales are allowed. There is only one (multilateral) transaction before 

complete resolution of uncertainty. 

Trading can be organized either as a call market or as a Walrasian tatonnement. In 

the call market, agents submit limit orders to trade one unit of the asset.7 The individual 

orders are combined to compute aggregate supply and demand curves. Transactions occur 

at the price that maximizes trading volume. If several prices satisfy this condition trading 

occurs at the price that minimizes aggregate excess demand. If several prices still satisfy 

this condition, the price is randomly chosen among the admissible potential prices. If 

there is an order imbalance at the transaction price, random rationing is imposed.8

                                                 
6 In order to guarantee that the fully revealing equilibrium price is unique, x is assumed to be strictly 
smaller than the minimum price variation. 
7 This reduction in the size of the action space simplifies both the game-theoretical analysis of the game 
and the burden imposed on the learning process. 
8 Random rationing proceeds as follows. Consider, for example, the case in which there is one more buyer 
than the number of sellers at the transaction price. In order for the market to clear, one buyer is randomly 
chosen (where each buyer has equal probability of being chosen) and excluded from the transaction. The 
same logic applies when the gap between the numbers of buyers and sellers is larger, and when there are 
more sellers than buyers (in which case some sellers are excluded from the transaction). 
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In the Walrasian tatonnement, a first tentative price is announced (equal to the 

unconditional expectation of the asset’s common value). At this price, traders submit 

market orders to trade one unit of the asset. If the aggregate supply equals the aggregate 

demand, a transaction occurs. Otherwise, a new tentative price is announced, where the 

tentative price is increased if demand exceeds supply and the tentative price is decreased 

if supply exceeds demand. If the market has not cleared after the tenth announcement, the 

tatonnement process is stopped. Finally, if, after this last price announcement, there is an 

order imbalance, random rationing is imposed. 

When traders are perfectly rational (i.e., maximize their expected utility and 

formulate rational expectations), the present framework is a particular case of the setting 

analyzed by Radner (1979). As a result, there exists a unique Rational Expectations 

Equilibrium (REE). In equilibrium, insiders’ information is fully incorporated in prices.  

The REE is based on the premise that traders are price takers. Since they have only one 

occasion to trade and profit from their information, informed buyers buy when the price 

is smaller than or equal to their asset valuation and informed sellers sell when the price is 

greater than or equal to their asset valuation. This behavior induces prices to incorporate 

insiders’ information. Because insiders’ information is perfectly reflected in prices, 

transacting is individually rational for uninformed traders. In equilibrium in the call 

market, uninformed buyers submit a quasi-market order to buy (i.e., a buying limit order 

with a limit price equal to the highest potential asset value), and uninformed sellers 

submit a quasi-market order to sell. In equilibrium in the Walrasian tatonnement, 

uninformed agents propose to trade only at prices that correspond to revealing levels. 
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Following Pouget (2006), one can show that when traders are perfectly rational, 

the revealing REE is also a Perfect Bayesian Equilibrium. This result holds because 

traders can only exchange one unit of the asset, which prevents them from having market 

impact. In the Walrasian tatonnement, this result is also a consequence of the fact that the 

price adjustment depends only on the sign of the excess demand. 

The above discussion implies that, whether one considers price-taking or strategic 

behavior, a revealing equilibrium exists. Following Pouget (2006), one can show that all 

the gains from trade are exploited at equilibrium. This equilibrium analysis also implies 

that because the equilibrium is fully revealing, informed and uninformed traders should 

earn the same gains from trade (i.e., x per trader). 

 

III. Simulation Setting and Learning Process 

A. Simulation Setting 9

Each simulation contains 1,000 trials. In turn, each trial contains 200 runs. Each 

run represents one trading session. The common value of the asset is independently 

drawn from run to run, using the same distribution for all runs. Similarly, each trial 

represents an independent observation. Agents’ behavior however is not independent 

across runs: Agents learn from what happened in previous runs and adapt their behavior 

accordingly (as is explained below in Section III.B.). 

The number n of potential states of the world is set to two, with the common 

value v equal to three or seven. Potential transaction prices range from one to nine with 

                                                 
9 This setting is chosen to match the experimental design in Pouget (2006), which facilitates comparison 
between the simulation results, and the behavior observed in the laboratory. One difference between the 
present setting and Pouget (2006) is that, here, agents are assigned a precise role as buyer or seller. This 
feature reduces the computational complexity imposed on the learning process.  
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increments of one. There are eight traders, where bi=si=bu=su=2. The private value x 

equals one-half. 

Given this setting, in the call market, traders have to choose a limit price out of 

nine potential prices. Traders therefore have nine potential actions. For each action, an 

attraction and a choice probability are determined by the learning process described 

below. In the Walrasian tatonnement, a tentative price is announced and then buyers 

(sellers) have to choose whether to buy (sell) the asset or not. Because there are nine 

potential prices and at each price an agent can trade or do nothing, traders have 18 

potential actions. As indicated above, in each run the first price to be announced is the 

expected value of the asset, i.e., five. Given that a price has been announced, the 

attraction and the probability of the two potential actions, trading and doing nothing, are 

determined using the learning process described below. 

B. Learning Process 

The adaptive learning model considered in this paper is taken from Camerer and 

Ho (1999). Their so-called Experience Weighted Attraction (EWA) model encompasses 

reinforcement- and belief-based types of learning, that is, this framework captures both 

the law of actual effect and the law of simulated effect. The law of actual effect asserts 

that the likelihood to choose an action is adjusted only if this action has been selected in 

the previous run: If the action has been successful (unsuccessful), the likelihood that it 

will be selected in the next run increases (decreases). The law of simulated effect asserts 

that the likelihood to choose actions that have not been selected in the previous run is 

adjusted: If the action had been successful (unsuccessful) in the previous run, the 

likelihood that it will be selected in the next run increases (decrease). 
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The logic of the EWA learning process is that agents make their choices 

according to the various actions’ attractions. For a given agent, these attractions 

(represented by the function A) correspond to the propensity to choose the various actions. 

Attractions depend on an agent’s experience with the game (represented by the function 

N) and on past earnings, i.e., profits or losses realized or potentially realized by the 

various actions. More specifically, experience N and attractions A are governed by the 

two equations 

( ) ( ) 11 +−⋅= tNtN ρ      (1) 

( ) ( ) ( ) ( ) ( )( )[ ] ( )( )
( )tN

taataaItAtNtA i
j

iii
j

i
j

ij
i

−⋅⋅−++−⋅−⋅= ,,111 πδδφ   (2) 

The first equation updates N(t), the measure of an agent’s experience with the 

game after period t has taken place. The parameter ρ depreciates the previous-period 

experience measure. The second equation updates ( )tA j
i , the attraction of each potential 

action , j=1,…,J, of player I after period t has taken place. In the present analysis, δ, 

which controls the nature of learning, is the most important parameter. When δ=0, agents 

employ actual effect learning, that is, agent i reinforces only a

j
ia

i(t), the action chosen in the 

previous run t, according to the payoff ( ) ( )( )tata iii −,π  generated by this action, where a-i(t) 

represents the actions chosen by player i’s opponents in period t. Indeed, the attraction 

adjustment is driven by the indicator function ( )( )taI i., , which takes the value of one 

when its two arguments are equal (i.e., when , the action to be reinforced, is equal to 

a

j
ia

i(t), the action chosen in the previous run), and zero otherwise. When δ>0, agents also 

reinforce the actions not chosen in the previous run, in which case δ measures how much 

the payoffs from these actions influence the attractions. This situation corresponds to 
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simulated effect learning. In particular, when δ=1, actions’ payoffs or potential payoffs 

equally affect attractions whether or not these actions were chosen in the previous run. 

The parameter Ф controls the depreciation of previous attractions. To close the system, 

the initial values N(0) and  need to be specified. ( )0j
iA

Attractions are transformed into choice probabilities according to the following 

logit model: 

( )
( )

( )∑
=

⋅

⋅

=+ J

k

j
i

tk
iA

tj
iA

e

e
tP

1

1
λ

λ

.     (3) 

The parameter λ represents the sensitivity of players to attractions. These choice 

probabilities are used to build a cumulative distribution function Fi(.). To determine a 

trader’s actual choice, a random variable u, uniformly drawn between zero and one, is 

compared to this cumulative distribution function. Action j, 1<j<J, is chosen if Fi(j-

1)<u<Fi(j); Action 1 is chosen if 0<u<Fi(j), and action J if Fi(J-1)<u<1. Camerer and Ho 

(1999) include a more extensive description of this learning model. 

The baseline setting is as follows: δ is set to zero or one depending on the 

treatment, ρ=0, Ф=1, λ=1, N(0)=1, and ( )0j
iA =1. This last parameter choice implies that 

at the beginning of each trial, each action is equally likely to be chosen. These simulation 

parameters are consistent with the parameters estimated by Camerer and Ho (1999) using 

data gathered from several experimental studies. Also, this choice of parameter values 

has the advantage of simplicity: Attractions represent cumulated past payoffs when only 

actual effect learning is used (i.e., when δ=0) and cumulated past potential payoffs when 
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simulated effect learning is also used (i.e., when δ=1). Indeed, in the baseline setting, the 

learning model described in equations (1) and (2) boils down to10

( ) ( ) ( ) ( )( )[ ] ( )( )taataaItAtA i
j

iii
j

i
j

i
j

i −⋅⋅−++−= ,,11 πδδ .    (4) 

To model their learning process, informed traders are endowed with different sets 

of attractions  depending on the asset’s value. One set, ( )vtA j
i , ( )3, =vtAj

i , corresponds to 

the case in which the value is low, and the other set, ( )7, =vtAj
i , corresponds to the case in 

which the value is high. When the value is low (high), informed traders use the 

corresponding set of attractions to randomly determine their action. Despite their adaptive 

behavior, this allows the informed traders to potentially display different behaviors 

according to the underlying state of the world. In the simulations, only one set of 

attractions is updated at the beginning of each run. The attractions that are updated are the 

ones used in the previous run. Because they do not know the underlying state of the 

world, uninformed traders have only one set of attractions, and these attractions are 

updated at the beginning of each round. 

In the Walrasian tatonnement, when δ>0 the learning model updates only the 

attractions of unchosen actions corresponding to the actual transaction price. For example, 

if the transaction price is six, the learning model updates the attractions of “trading” or 

“not trading” at a price of six, but does not update the attractions of “trading” or “not 

trading” at the other prices.11

                                                 
10 To test the sensitivity of the results to the choice of parameter values, I perform various robustness 
simulations that change one parameter value at a time. The results are reported in Section V below and are 
similar to those obtained in the baseline case. Simulations with δ=½ are not reported but yield results 
qualitatively similar to the case in which δ=1, except that learning is slower. 
11 Doing so would require that traders be endowed with elaborate expectations concerning what would have 
happened if other prices had been reached. Since the focus of this paper is on adaptive learning, such 
expectations are out of the scope of the present analysis. 
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To effect the highest level of control on the results, all the randomly generated 

variables are held constant across simulations with different δ (including the variables 

used to generate the asset value v and the traders’ actions). However, note that the actions 

themselves will not be the same across trials since the cumulative distribution function 

Fi(.) evolves endogenously with the learning process. In addition, the realizations of v 

and those of the rationing process are identical across simulations with different market 

structures. 

 

IV. Main Results 

A. Market Data 

The results for the call market and the Walrasian tatonnement, along with the 

equilibrium benchmark, are depicted in Figures 1, 2, 3, and 4. Figure 1 graphs 

informational efficiency, as measured by the absolute difference between the price and 

the asset value v. Figure 2 plots allocative efficiency, as measured by the gains from trade 

extracted. Figures 3 and 4 show the gains from trade extracted by informed and 

uninformed traders, respectively. For each figure, Panels A and B correspond to 

simulations with δ=0 and δ=1, respectively. The variables of interest are averaged across 

the 1,000 independent trials, giving the evolution of the variables of interest over 200 

successive runs. However, in order to limit the amount of data provided in each graph, 

the figures only present the averages computed over 10 successive runs. For example, the 

first diamond in Panel A of Figure 1 represents the average absolute difference between 

the price and the asset value in the call market with δ=0 computed using runs 1 through 

10, the second diamond represents the average absolute difference computed using runs 
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11 through 20, etc. Visual inspection of these figures suggests that i) simulated effect 

learning is necessary for traders to discover the REE in the call market, whereas ii) with 

actual effect learning only, traders are able to learn and play the REE in the Walrasian 

tatonnement. 

[INSERT FIGURES 1, 2, 3, AND 4 ABOUT HERE] 

To confirm these graphical evidence, Tables I, II, III, and IV present results of 

statistical tests related to price efficiency, allocative efficiency, and gains from trade 

extracted by informed and by uninformed traders, respectively. These tables only include 

every 20th run. Panels A present the variable of interest averaged across 1,000 trials. 

Standard deviations across trials are also provided. In these panels, there are two 

comparisons of interest. First, one can look at the difference between what happens when 

δ=0 and when δ=1 both in the call market and in the Walrasian tatonnement. This enables 

one to compare learning when traders use only the law of actual effect to learning when 

traders use both the law of actual effect and the law of simulated effect. Second, one can 

look at the difference between what happens in the call market and in the Walrasian 

tatonnement under the various learning models. This sheds some light on the role of 

market design when traders exhibit adaptive behavior. These comparisons are performed 

using t-tests that are reported in Panels B of Tables I, II, III, and IV. 

[INSERT TABLES I, II, III, AND IV ABOUT HERE] 

In the call market, when traders use only the law of actual effects (δ=0), the 

market does not converge to the REE, as indicated by the fact that the informational 

efficiency, gains from trade, and profits of uninformed traders are far from the REE 

levels (see the column corresponding to the call market with δ=0 in Panel A of Tables I, 
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II, and IV). In addition, Panel A of Table III shows that insiders’ profits decrease over 

time. This is because uninformed traders are learning to avoid loss-making actions 

instead of playing according to the equilibrium. This behavior reduces the liquidity of the 

market and prevents insiders from extracting all the gains from trade. When traders use 

the law of actual effect and the law of simulated effect (δ=1), the market discovers 

equilibrium. This is indicated by the fact that the average informational efficiency, gains 

from trade, and profits of both informed and uninformed traders converge to the REE 

(and end up being not statistically significantly different from this level; see the column 

corresponding to the call market with δ=1 in Panel A of Tables I, II, III, and IV). These 

results are confirmed by the first column of Panel B in Tables I, II, III, and IV, which 

shows that the variables of interest are significantly closer to the REE when δ=1 than 

when δ=0.12

In the Walrasian tatonnement, Tables I through IV suggest that, whether traders 

use only the law of actual effect or both the law of actual effect and the law of simulated 

effect, the market converges to the REE. This is illustrated in the two columns of Panels 

A that correspond to the Walrasian tatonnement with δ=0 and with δ=1. Indeed, these 

columns indicate that the average informational efficiency, gains from trade, and profits 

of both informed and uninformed traders converge toward the REE under both 

specifications of the learning model. 13  However, it appears that when δ=1, the 

convergence is slightly stronger. This is suggested by the fact that i) when δ=1, the 

                                                 
12 Note that for Table I, a positive difference between the cases δ=0 and δ=1 indicates that when δ=0, the 
mean absolute deviation is higher (and thus the market is further away from the equilibrium) than when 
δ=1. The opposite reasoning is true for Tables II, III, and IV. 
13 This result is not surprising since, in the Walrasian tatonnement, only one action other than the chosen 
action gets updated. I argue below that the low number of potential actions to be updated in this market 
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variables of interest eventually become statistically indistinguishable from the REE levels, 

and ii) as underscored by the second column of Panels B, the market is generally 

significantly closer to the REE when δ=1 than when δ=0. 

The results reported above suggest that the Walrasian tatonnement fosters 

convergence towards the REE. To further establish this point, the last two columns of 

Panel B in Tables I through IV present t-tests of the difference in means of the variables 

of interest when trading occurs in a call market and when it occurs in a Walrasian 

tatonnement. These tests suggest that when traders use only the law of actual effect, 

appropriately choosing the market structure is crucial to ensure convergence toward the 

REE. Indeed, the third column of Panel B indicates that the average informational 

efficiency, gains from trade, and profits of both informed and uninformed traders are 

significantly closer to equilibrium in the Walrasian tatonnement than in the call market. 

When traders use both the law of actual effect and the law of simulated effect, however, 

market structure appears not to have a clear impact on equilibrium discovery. This result 

is not surprising in light of the fact that, under both market architectures, the system 

converges towards equilibrium. 

B. Individual Traders’ Choice Probabilities 

To understand the forces at work behind the results presented above, it is 

instructive to analyze agents’ choices of action. Consider first the case in which trading is 

organized as a call market. To interpret the results, it is useful to detail the perfectly 

rational equilibrium actions. In equilibrium with perfectly rational agents, informed 

buyers (sellers) submit a limit order to buy (sell) at a price lower (higher) than or equal to 

                                                                                                                                                 
structure is one reason why it converges towards equilibrium whether traders use actual effect learning 
alone or together with simulated effect learning. 
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the asset value, i.e., three or seven. Perfectly rational uninformed buyers (sellers) 

anticipate this and submit a quasi-market order to buy (sell).14

The results presented above suggest that the law of actual effect (δ=0) is not 

sufficient to induce adaptive traders to discover equilibrium. Figure 5 sheds some light on 

this issue. This figure displays the evolution of choice probabilities for four 

representative agents, namely, an informed buyer (Panel A), an informed seller (Panel B), 

an uninformed buyer (Panel C), and an uninformed seller (Panel D).15 Figure 5 indicates 

that during the initial runs, insiders have not adopted yet their dominant strategy, which is 

to reveal their information (see the first 100 runs in Figure 5, Panel A when v=3 and 

Panel B when v=7). This implies that uninformed traders are subject to strategic 

uncertainty (see Crawford (1997)). 

[INSERT FIGURE 5 ABOUT HERE] 

In the present framework, it turns out that the uninformed traders’ equilibrium 

action is not a dominant strategy, indeed, it is strictly dominated. Consistent with this 

idea, during the initial runs uninformed traders learn not to play their equilibrium action 

but instead to play an action that protects them from strategic uncertainty (see the first 

100 runs in Figure 5, Panels C and D). For an uninformed buyer, this action is to buy up 

to a price of three (which is the minimum value of the asset) and not above. For an 

uninformed seller, this action is to sell up to a price of seven (which is the maximum 

value of the asset) and not below. 

                                                 
14 Uninformed buyers (sellers) have to submit a limit price lower (higher) than or equal to the highest 
(lowest) potential value seven (three). This is what is referred to as a quasi-market order. 
15 The agents not displayed in Figure 5 exhibit the same dynamics. This is also the case for Figures 6, 7, 
and 8. 
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Consistent with the fact that their equilibrium strategy is a dominant strategy, 

insiders eventually learn to play their equilibrium action (see the last 100 runs in Figure 5, 

Panel A when v=3 and Panel B when v=7).16  However, since agents only reinforce 

actions that have been successful in the past, uninformed traders’ unchosen equilibrium 

strategy remains unlikely to be chosen. In line with this interpretation, the results show 

that by run 200, the action that protects uninformed traders from strategic uncertainty is 

chosen with a probability slightly higher than 25% while their equilibrium action is 

chosen with a probability of 13%. 

In summary, what prevents uninformed traders from discovering their equilibrium 

strategy in the call market is that, in equilibrium, they have to submit a quasi-market 

order. In a call market, the strategic uncertainty induced by insiders not choosing their 

equilibrium strategy translates into price uncertainty. Given that the price will not always 

be set at a revealing level, it is no more advantageous for uninformed traders to submit a 

quasi-market order. Since, in early runs, quasi-market orders if submitted are harmful, 

uninformed traders will learn not to choose them. Once insiders have learned to play their 

equilibrium strategy (i.e., when they reveal their information), this initial learning pattern 

prevents uninformed traders from discovering their equilibrium strategy. 

When agents rely on both the law of actual effect and the law of simulated effect 

(δ=1), for the same parameterizations as earlier, the market converges towards 

equilibrium. This phenomenon is illustrated in Figure 6. In this case, insiders quickly 

learn to play their equilibrium (dominant strategy) action, which is to reveal their 

                                                 
16 Figure 5, Panel A when v=7 and Panel B when v=3 suggest that informed traders’ learning dynamics lead 
them to try and in turn benefit from transacting at disequilibrium prices. This does not disturb price 
efficiency (see Figure 1) because, as indicated by Figure 5, at least one type of informed traders (the buyers 
or the sellers) will push prices towards the fundamental value. 
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information (see Figure 6, Panels A and B). Uninformed traders using the law of 

simulated effect are then able to quickly discover the best response to insiders’ behavior 

(see Figure 6, Panels C and D). 

[INSERT FIGURE 6 ABOUT HERE] 

Turning to the case in which trading is organized as a Walrasian tatonnement, the 

market converges to equilibrium both when agents use only the law of actual effect and 

when they use the laws of actual and simulated effects together. This result, illustrated in 

Figures 7 and 8, obtains for two reasons. First, in a Walrasian tatonnement, potential 

transaction prices are announced before transactions occur. This implies that there is no 

price uncertainty and that agents are less subject to strategic uncertainty. As indicated by 

Figure 7, Panels C and D, even when agents use only the law of actual effects, 

uninformed agents discover their equilibrium strategies because they can specify the 

prices at which they are willing to trade (i.e., the fully revealing price levels three and 

seven). It is clear from these graphs that uninformed agents are able to avoid transacting 

at intermediate prices (i.e., at prices of four, five, and six). When agents use both the laws 

of actual and simulated effects, Figure 8 shows the same phenomenon with a slight 

variation, namely, uninformed traders can afford to transact at some intermediate prices 

because they learn that when prices reach these levels, it is profitable for them to trade.17 

Second, in the Walrasian tatonnement, information is presented to traders in a simple way: 

When a potential price is announced, they only need to decide if they want to trade or not. 

                                                 
17 In Figures 7 and 8, some choice probabilities may appear anomalous. For example, in Figure 7, Panel A, 
when v=3, the probability of informed buyers buying is around 50% if the announced price is nine; such an 
action would clearly be unprofitable and the informed buyers should learn to avoid it. The anomalous 
probabilities reflect the fact that, in the Walrasian tatonnement, the learning model does not update actions 
corresponding to a price that was not the transaction price. Because some prices are almost never reached, 
the agents do not learn how to behave in these circumstances. This issue of visiting different states in the 
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This reduces the complexity of the task faced by traders relative to the call market, where 

traders have to decide whether they want to trade at each potential price. The burden 

imposed on the learning process is thus reduced, which enables traders to discover the 

appropriate behavior quickly. 

[INSERT FIGURE 7 AND 8 ABOUT HERE] 

 

V. Robustness Tests 

This section first discusses simulations that are intended to check the technical 

robustness of the results. Additional simulations that are designed to test the validity of 

the interpretations are then presented. In all these analyses, only one feature is changed at 

a time.18

A. Technical Robustness 

First, I modify the baseline environment to consider a situation in which there are 

three potential asset values instead of two. In these simulations, the asset can be worth 

three, five, or seven with equal probabilities. The objective is to determine whether 

additional complexity alters the main results. Second, the asset values of the baseline 

environment are modified. In these simulations, the asset can be worth two or eight with 

equal probabilities instead of three and seven. This test checks whether the baseline 

results hold when asset values are more extreme. Third, random gains from trade are 

introduced in the baseline environment. Instead of being constant and equal to one-half, 

traders’ private value x is independently randomly drawn across traders at the beginning 

of each run using a uniform distribution with realizations between zero and one. The 

                                                                                                                                                 
learning process is related to the more general problems of sufficient exploration in Q-learning (see, for 
example, Bertsekas and Tsitsiklis (1996)). 
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objective is to check whether this additional noise prevents convergence to equilibrium. 

Finally, I perform a series of simulations that change one parameter value at a time using 

the following values: { }2,8.1,6.1,4.1,2.1,9.0,8.0,7.0,6.0,5.0∈λ , { }95.0,90.0,85.0,80.0∈Φ , 

and { 5.0,4.0,3.0,2.0,1.0∈ }ρ . 19  All these simulations yield results that are qualitatively 

similar to the baseline results. Thus, unlike other learning models such as Brock and 

Hommes (1997), the results in this paper are not very sensitive to the learning parameters. 

B. Uninformed Traders Start Close To Equilibrium 

The objective of this subsection is to gauge the severity of the problem posed by 

strategic uncertainty when traders use actual effect learning. I modify the baseline 

environment to consider a situation in which uninformed agents’ initial choice 

probabilities are close to their equilibrium strategy. As in the baseline case, insiders are 

not initially programmed to play equilibrium. Uninformed traders are thus not isolated 

from strategic uncertainty. 

Attention is restricted to the treatment corresponding to the call market with 

δ=0.20 The initial attraction of uninformed agents’ equilibrium action is set to four while 

other actions’ attractions are left unchanged at one. Consider, for example, an uninformed 

buyer. Her initial attractions are: four for the order with a limit price of seven, and one for 

the remaining eight orders. Applying the logit transformation presented in equation (3) 

with λ=1 yields choice probabilities of 71.52% for the equilibrium order and 3.56% for 

                                                                                                                                                 
18 Some of the results discussed in this section are not reported but are available upon request. 
19 Simulations that vary the initial attraction Ai

j(0) and experience measure N(0) are not performed since it 
can be shown that in the present framework they do not affect choice probabilities. 
20 For the other three treatments, convergence towards equilibrium obtains. 
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each of the remaining eight orders. Clearly, this uninformed trader is initially likely to 

choose her equilibrium action.21

Panel A of Figure 9 uses the format of Figure 5, Panel C, and presents the 

evolution of choice probabilities for a representative uninformed buyer (the results for the 

other uninformed traders are similar). It appears that, over time, the probability of 

choosing the equilibrium action decreases while the probability of choosing the order to 

buy up to a price of three increases. This is in line with the result that uninformed agents 

learn not to play equilibrium during the initial runs, that is, when insiders do not reveal 

their information. This result also confirms the later finding that uninformed traders learn 

to protect themselves from strategic uncertainty. Overall, this subsection shows that 

strategic uncertainty impedes equilibrium discovery in the call market since, even when 

they start close to equilibrium, uninformed traders are not able to learn equilibrium. 

[INSERT FIGURE 9 ABOUT HERE] 

C. All Traders Play Equilibrium Except One Uninformed Agent 

This subsection studies a case in which there is no strategic uncertainty. In 

particular, I modify the baseline environment to consider a situation in which all traders 

play equilibrium except for one uninformed buyer who learns according to the EWA 

model specified in equation (3).22 This uninformed buyer therefore faces no strategic 

uncertainty. 

                                                 
21 In the call market, in equilibrium with perfect rationality, uninformed buyers assign a probability of one 
to the order with a limit price of seven and a null probability to the other orders. 
22 The results are similar for the case in which all the traders play equilibrium except for one uninformed 
seller. 
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Attention is restricted to the treatment corresponding to the call market with 

δ=0. 23  Panel B of Figure 9 presents the evolution of choice probabilities for the 

uninformed buyer who faces no strategic uncertainty. This figure shows that this 

uninformed buyer is able to discover the equilibrium strategy. Indeed, starting from the 

40th run, the three orders that offer to buy at prices of seven, eight, or nine are chosen 

around 90% of the time. Note that when all the other traders play equilibrium, buying up 

to a price of eight or nine yields the same payoff as buying up to a price of seven. This is 

because the uninformed buyer’s action does not affect the transaction price which equals 

three or seven depending on the asset value. This result confirms that the reason 

uninformed traders do not discover equilibrium in the baseline simulation in the call 

market is that they are learning to cope with the noise created by other traders not playing 

their equilibrium strategies. This result also suggests that the Walrasian tatonnement is 

able to effectively protect traders from strategic uncertainty. 

 

VI. Conclusion 

This paper studies the role of market institutions in the discovery of equilibrium 

when traders adaptively adjust their strategies. In a Radner (1979) type financial market 

with asymmetric information, I simulate traders’ behavior using Camerer and Ho’s (1999) 

Experience Weighted Attraction learning model, and I compare the performance of a call 

market and a Walrasian tatonnement. The environment is such that both institutions have 

the same (competitive and game-theoretical) equilibrium outcomes. This framework is 

used to show how market design affects learning in a context in which it does not affect 

equilibrium. The main result of the paper suggests that when traders reinforce only the 

                                                 
23 For the other three treatments, convergence towards equilibrium obtains. 
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actions that have successfully been chosen in the past, two characteristics of market 

design are jointly sufficient to ensure convergence to equilibrium: Market institutions 

should mitigate strategic uncertainty and be computationally simple. These characteristics 

are present in the Walrasian tatonnement but not in the call market, where traders submit 

limit orders. 

Could a call market replicate the advantages of the Walrasian tatonnement? A 

promising direction for call market design is to allow traders to post stop orders in 

addition to limit orders, as the use of stop orders could allow traders to eliminate the risk 

of transacting at out-of-equilibrium prices.24,25 However, one problem with this design is 

that introducing stop orders significantly increases the computational complexity faced 

by traders. This design thus captures one important aspect of the Walrasian tatonnement 

(the reduction of strategic uncertainty), but at the expense of another important 

characteristic (computational simplicity). A more extensive investigation of call market 

design is left for future research. 

It would also be interesting to generalize the approach proposed in the present 

paper to other market mechanisms. An interesting avenue for future work would be to 

examine the performance of dealer markets to understand how features such as 

centralization and transparency affect the ability of adaptive traders to discover 

equilibrium. One could also study the comparative ability of dealer and auction markets 

                                                 
24 A buying (selling) stop order is an order to buy (sell) at prices at and above (below) a particular threshold. 
25 In the present paper, uninformed buyers’ equilibrium strategy is less exposed to strategic uncertainty if 
they can offer to buy one unit of the asset at prices of three and seven but not at other prices. This demand 
schedule can be implemented with the following menu of orders: a limit order to buy at or below three, a 
stop order to sell at or below two, a limit order to buy at or below seven, and a stop order to sell at or below 
six (all these orders being valid for one unit). 
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to induce equilibrium learning. Overall, this line of research would contribute to the 

optimal design of financial markets populated by boundedly rational traders. 
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Table I 
Informational efficiency of prices 

Informational efficiency is measured by the absolute deviation between prices and the 
common value of the asset. This table only includes every 20th run. Panel A presents the 
absolute deviation averaged across 1,000 trials. Standard deviations across trials are also 
provided. The means that are not statistically significantly different from the equilibrium 
level are indicated by an asterisk. Panel B presents the t-statistics for difference in means 
tests applied to data in Panel A. CM and WT stand for call market and Walrasian 
tatonnement, respectively. 

 

Runs
20
40
60 *
80 *

100
120 *
140 * *
160 * *
180 * *
200 * *

Runs
20
40
60
80

100
120
140
160
180
200

Call market Walrasian tatonnement delta =0 delta =1

2.05

18.97
19.15
23.05
23.15
23.45
24.77
23.98
24.1327.28

26.42
26.31

11.68
10.89
9.52
3.80

10.59
4.72
7.70

34.53
32.80
30.22
29.58
29.75

Panel B: t -statistics

delta =0 vs. delta =1 delta =0 vs. delta =1 CM vs. WT CM vs. WT
25.44
36.57 -6.42

-6.08

Equilibrium

Panel A: Mean absolute deviation between price and value
Call market Walrasian tatonnement

delta =0 delta =1 delta =0 delta =1

0.00
0.00

Av. St. Dev. Av. St. Dev. Av. St. Dev. Av. St. Dev.

0.00
0.07

0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00

0.00
0.00

0.70
0.60
0.28
0.37
0.08
0.17
0.03
0.06

0.30
0.15

0.41
0.23
0.08
0.08
0.01
0.02
0.00
0.00

0.06
0.01

0.84
0.70
0.54
0.43
0.47
0.31
0.34
0.30

0.07
0.00

0.81
0.55
0.26
0.15
0.17
0.07
0.09
0.06

0.00
0.00

0.86
0.35
0.19
0.00
0.07
0.00
0.00
0.00

1.11
1.24

0.52
0.09
0.01
0.00
0.01
0.00
0.00
0.00

0.93
1.03

1.09
0.95
0.92
0.77
1.09
0.77
0.77
0.96

1.04
0.72
0.72
0.83

1.64
1.26
1.04
0.80

3.16

-1.00
1.34

5.90

-0.58
-2.93
-1.00

5.94
-1.34

24.10
25.75

-7.16
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Table II 
Allocative efficiency 

Gains from trade extracted are measured by the sum of traders’ profits. This table only 
includes every 20th run. Panel A presents the mean and standard deviation across 1,000 
trials of the gains from trade extracted. The means that are not significantly different 
from the equilibrium level are indicated by an asterisk. Panel B presents the t-statistics 
for difference in means tests applied to data in Panel A. CM and WT stand for call market 
and Walrasian tatonnement, respectively. 

 

Runs
20
40
60
80 *

100 *
120 *
140 * *
160 * *
180 * *
200 * *

Runs
20
40
60
80

100
120
140
160
180
200 -83.47 1.34-3.66 -78.59

-78.10 0.00-6.64 -65.57

4.00
2.78 1.00 3.51 1.04 4.00
2.22 0.65 2.50 1.05

3.38 1.00 3.74 0.92

2.32
2.26
2.00
1.96
1.96
1.95
1.85

3.61
3.64
3.81

0.90 3.91
4.00

0.44 4.00
0.90 3.99 0.17 4.00
0.70 3.98 0.21

1.86 4.00 0.03
1.78
1.77

0.70
0.88
0.79
0.81
0.85
0.80
0.81
0.81
0.90
0.84

3.09
3.83
3.98
4.00
4.00
4.00
4.00
4.00
4.00
4.00

0.63
0.48
0.18
0.04
0.00
0.00
0.00
0.00
0.00
0.00

4.00
3.78 0.81 4.00 0.06 4.00
3.86 0.58 4.00
3.90 0.49 4.00 0.00 4.00
3.97 0.26 4.00 0.07 4.00

-25.92 15.28-7.05 3.32

Panel B: t -statistics

delta =0 vs. delta =1 delta =0 vs. delta =1 CM vs. WT CM vs. WT

-49.56 8.69-16.08 -12.35
-77.28 7.97-8.39 -34.19

Av. St. Dev.Av. St. Dev. Av. St. Dev. Equilibrium

Panel A: Gains from trade extracted 
Call market Walrasian tatonnement

delta =0 delta =1 delta =0 delta =1
Av. St. Dev.

-79.63 6.49
-76.04 2.42

-9.22
-12.07

-43.16
-42.81

-80.97 2.60
-83.94 1.00

-7.49
-8.64

-55.24
-53.15

-83.35 1.00-7.36 -63.54

Call market Walrasian tatonnement delta =0 delta =1
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Table III 
Surplus of informed traders 

The surplus of informed traders is measured by the sum of informed traders’ profits. This 
table only includes every 20th run. Panel A presents the mean and standard deviation 
across 1,000 trials of the gains from trade extracted by informed traders. The means that 
are not significantly different from the equilibrium level are indicated by an asterisk. 
Panel B presents the t-statistics for difference in means tests applied to data in Panel A. 
CM and WT stand for call market and Walrasian tatonnement, respectively. 

 

Runs
20
40 *
60 *
80 *

100 * *
120 * *
140 * *
160 * * *
180 * * *
200 * * *

Runs
20
40
60
80

100
120
140
160
180
200 -0.78 -10.95 -1.15-11.12

0.47 -16.87 0.00-17.17

Panel A: Gains from trade extracted by informed traders
Call market Walrasian tatonnement

delta =0 delta =1 delta =0 delta =1
Av. St. Dev. Av. St. Dev. Av. St. Dev. Av. St. Dev. Equilibrium
1.81 1.58 1.85 1.08 1.77 1.03 1.54 0.90 2.00
1.55 1.25 1.97 0.25 1.77 1.17 1.99 0.90 2.00
1.53 1.20 2.00 0.25 1.93 0.67 1.89 0.48 2.00
1.37 1.08 2.00 0.00 1.96 0.59 2.07 0.46 2.00
1.48 1.22 2.00 0.00 1.94 0.53 2.00 0.09 2.00
1.35 1.06 2.00 0.00 1.95 0.41 2.01 0.15 2.00
1.29 1.10 2.00 0.00 1.93 0.45 2.00 0.03 2.00
1.38 1.18 2.00 0.00 1.98 0.37 2.00 0.05 2.00
1.34 1.21 2.00 0.00 2.00 0.27 2.00 0.00 2.00
1.53 1.32 2.00 0.00 2.00

Panel B: t -statistics
Call market Walrasian tatonnement delta =0 delta =1

2.00 0.20 2.00 0.10

delta =0 vs. delta =1 delta =0 vs. delta =1 CM vs. WT CM vs. WT
5.42 0.62 7.03-0.68

-4.89 -3.92 -0.78-10.33
1.52 -9.28 6.53-12.26

-4.38 -15.20 -4.52-18.43
-3.32 -11.12 0.19-13.57
-3.98 -16.90 -1.07-19.59
-4.81 -17.23 -1.00-20.53
-1.49 -15.54 -1.00-16.70
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Table IV 
Surplus of uninformed traders 

The surplus of uninformed traders is measured by the sum of uninformed traders’ profits. 
This table only includes every 20th run. Panel A presents the mean and standard deviation 
across 1,000 trials of the gains from trade extracted by uninformed traders. The means 
that are not significantly different from the equilibrium level are indicated by an asterisk. 
Panel B presents the t-statistics for difference in means tests applied to data in Panel A. 
CM and WT stand for call market and Walrasian tatonnement, respectively. 

 

Runs
20
40
60
80 *

100 *
120 *
140 * *
160 * *
180 * *
200 * *

Runs
20
40
60
80

100
120
140
160
180
200

Panel A: Gains from trade extracted by uninformed traders
Call market Walrasian tatonnement

delta =0 delta =1 delta =0 delta =1
Av. St. Dev. Av. St. Dev. Av. St. Dev. Av. St. Dev. Equilibrium
0.51 1.47 1.24 1.26 0.44 1.01 0.96 0.93 2.00
0.70 1.29 1.86 0.47 1.01 1.39 1.52 1.24 2.00
0.47 1.18 1.98 0.33 1.45 1.03 1.85 0.51 2.00
0.59 1.04 2.00 0.04 1.65 0.91 1.84 0.76 2.00
0.48 1.25 2.00 0.00 1.69 0.81 1.99 0.15 2.00
0.61 1.07 2.00 0.00 1.86 0.56 1.98 0.23 2.00
0.56 1.09 2.00 0.00 1.84 0.61 2.00 0.09 2.00
0.48 1.23 2.00 0.00 1.88 0.58 2.00 0.08 2.00
0.43 1.24 2.00 0.00 1.89 0.52 2.00 0.00 2.00
0.24 1.37 2.00 0.00 2.00

Panel B: t -statistics
Call market Walrasian tatonnement delta =0 delta =1

1.97 0.32 1.99 0.17

delta =0 vs. delta =1 delta =0 vs. delta =1 CM vs. WT CM vs. WT
-11.86 -11.76 1.12 5.65
-26.69 -8.64 -5.17 8.08
-38.71 -11.03 -19.68 6.57
-42.79 -5.05 -24.26 6.53
-38.55 -11.28 -25.75 2.60
-41.11 -6.22 -32.77 3.06
-41.63 -7.90 -32.38 1.00
-38.99 -6.38 -32.50 1.00
-40.09 -6.39 -34.41 0.00
-40.73 -2.25 -38.96 1.25
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Panel A: Law of Actual Effect only (δ=0) 
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Panel B: Law of Actual Effect and Law of Simulated Effect (δ=1) 
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0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200

Runs
 

Figure 1. Price efficiency in the baseline simulations. Price efficiency is measured by 
the absolute deviation between the price and the common value of the asset. For each run, 
this absolute deviation is averaged across 1,000 trials. Figure 1 only presents averages 
computed over 10 successive runs. Grey diamonds correspond to the call market and 
black squares to the Walrasian tatonnement. The equilibrium benchmark is represented 
by circles. 
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Panel A: Law of Actual Effect only (δ=0) 
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Panel B: Law of Actual Effect and Law of Simulated Effect (δ=1) 

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200

Runs
 

Figure 2. Allocative efficiency in the baseline simulations. Allocative Efficiency is 
measured by the gains from trade extracted. For each run, these gains from trade are 
averaged across 1,000 trials. Figure 2 only presents averages computed over 10 
successive runs. Grey diamonds correspond to the call market and black squares to the 
Walrasian tatonnement. The equilibrium benchmark is represented by circles. 
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Panel A: Law of Actual Effect only (δ=0) 
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Panel B: Law of Actual Effect and Law of Simulated Effect (δ=1) 
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Figure 3: Informed traders’ gains from trade in the baseline simulations. For each 
run, informed gains from trade are averaged across 1,000 trials. Figure 3 only presents 
averages computed over 10 successive runs. Grey diamonds correspond to the call market 
and black squares to the Walrasian tatonnement. The equilibrium benchmark is 
represented by circles. 
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Panel A: Law of Actual Effect only (δ=0) 
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Panel B: Law of Actual Effect and Law of Simulated Effect (δ=1) 
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Figure 4. Uninformed traders’ gains from trade in the baseline simulations. For each 
run, uninformed gains from trade are averaged across 1,000 trials. Figure 4 only presents 
averages computed over 10 successive runs. Grey diamonds correspond to the call market 
and black squares to the Walrasian tatonnement. The equilibrium benchmark is 
represented by circles. 
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Panel C: Uninformed Buyer    Panel D: Uninformed Seller 
 
Figure 5. Evolution of choice probabilities in the call market when δ=0 in the 
baseline simulations. For each run, the data are averaged across 1,000 trials. Figure 5 
only presents averages computed over 20 successive runs. Agents can chose one out of 
nine orders with limit price ranging from one to nine. For informed agents, Figure 5 plots 
choice probabilities conditional on whether the value of the asset is three or seven. The 
data correspond to a representative agent in each category. Equilibrium actions are 
indicated in dark gray. 
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Panel C: Uninformed Buyer    Panel D: Uninformed Seller 
 
Figure 6. Evolution of choice probabilities in the call market when δ=1 in the 
baseline simulations. For each run, the data are averaged across 1,000 trials. Figure 6 
only presents averages computed over 20 successive runs. Agents can chose one out of 
nine orders with limit price ranging from one to nine. For informed agents, Figure 6 plots 
choice probabilities conditional on whether the value of the asset is three or seven. The 
data correspond to a representative agent in each category. Equilibrium actions are 
indicated in dark gray. 
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  Panel C: Uninformed Buyer    Panel D: Uninformed Seller  
 
Figure 7. Evolution of choice probabilities in the Walrasian tatonnement when δ=0 
in the baseline simulations. For each run, the data are averaged across 1,000 trials. 
Figure 7 only presents averages computed over 20 successive runs. Figure 7 indicates the 
evolution of the probability that agents choose to trade conditional on one of the nine 
potential prices being announced. The complementary probability of choosing the 
alternative action, that is, doing nothing, is not shown in Figure 7. For informed agents, 
Figure 7 plots the choice probabilities conditional on whether the value of the asset is 
three or seven. The data correspond to a representative agent in each category. 
Probabilities that are equal to one in equilibrium are indicated in dark gray (other 
probabilities are equal to zero in equilibrium). 
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Figure 8. Evolution of choice probabilities in the Walrasian tatonnement when δ=1 
in the baseline simulations. For each run, the data are averaged across 1,000 trials. 
Figure 8 only presents averages computed over 20 successive runs. Figure 7 indicates the 
evolution of the probability that agents choose to trade conditional on one of the nine 
potential prices being announced. The complementary probability of choosing the 
alternative action, that is, doing nothing, is not shown in Figure 8. For informed agents, 
Figure 8 plots the choice probabilities conditional on whether the value of the asset is 
three or seven. The data correspond to a representative agent in each category. 
Probabilities that are equal to one in equilibrium are indicated in dark gray (other 
probabilities are equal to zero in equilibrium). 
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Figure 9. Evolution of uninformed buyers’ choice probabilities when δ=0 in the call 
market in various robustness simulations. For each run, the data are averaged across 
1,000 trials. Figure 9 only presents averages computed over 20 successive runs. Figure 9 
displays the evolution of choice probabilities for a representative uninformed buyer when 
δ=0. Equilibrium actions are indicated in dark gray. Panel A corresponds to the case in 
which uninformed traders start close to equilibrium; Panel B to the case in which all 
traders except the representative uninformed buyer play equilibrium. 
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