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Abstract

We consider a complete market which rules out arbitrage. In the Black–Scholes model with local volatility the

pricing of American option yields a parabolic obstacle problem. This paper is devoted to local regularity results of

the exercise boundary for an American option on one underlying asset. We give an energy and a density criterion to

characterise the subsets of the exercise boundary which are Hölder continuous with exponent 1

2
. As an illustration

we apply these results to the generalised Black–Scholes model where the volatility and the interest rate do not

depend on time. In this case we prove that the exercise boundary of the American put and call options are Hölder

continuous with exponent 1

2
.
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1. Introduction

We consider a complete market which rules out arbitrage (i.e. the market rules out the possibility to
make an instantaneous risk-free benefit).

In this market we consider a probability space (Ω,F ,P), (Wt)t≥0 the standard Brownian motion under
the risk neutral probability P, (Ft)t≥0 the P-completion of the natural filtration of (Wt)t≥0, (St)t≥0 a
one-dimensional price process and r the short rate of interest (to be quite general from a mathematical
point of view, we assume here that r depends on the time t and also on the price St of the asset. Also see
[6] for such kind of model). In the Black–Scholes model with local volatility (see [11,5]), we assume that
St satisfies the following stochastic differential equation

dSt = r(St, t)St dt+ σ(St, t)St dWt , ∀t ∈ [0, T ] . (1.1)

Here σ is called the local volatility.
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An American option is the right to sell (or buy) during a period of time a share of a specific common
stock, called the underlying asset, at a prescribed price P 0. Here P 0 depends on the price of this asset
St and the time t. Given a positive time T , called the maturity, the American option allows to make the
following pay-off if one sells (respectively buys) an asset at any time t ∈ [0, T ]:

φ(St, t) := max{0, P 0(St, t) − St} , (resp. φ(St, t) := max{0, St − P 0(St, t)}) . (1.2)

Let us denote by (Sx,t
s )s∈[t,T ] the process solution of (1.1) with initial condition Sx,t

t = x. For a value
of the risky asset equal to x at time t the price of the American option at time t is given by the following
optimal stopping time problem:

Π(x, t) := sup
τ∈Θ[t,T ]

E

[

exp

(

−
∫ τ

t

r(Sx,t
s , s)ds

)

φ(Sx,t
τ , τ)

]

(1.3)

where Θ[t,T ] is the set of all Ft-stopping time τ with value in [t, T ]. The rigorous financial interpretation
of the American option pricing as an optimal stopping problem has been proven by A. Bensoussan (see
[3]) and I. Karatzas (see [18]). The first formulation of the pricing of American option in terms of optimal
stopping problem is a prior work of H.P. Mc Kean in [22].

Let us define for (x, t) ∈ R × [0, T ]

u(x, t) := Π(ex, T − t) − φ(ex, T − t)

where Π is the price of the American option given by (1.3) and φ is the pay-off given by (1.2). In [4]
(Théorème 4.1) A. Bensoussan and J.–L. Lions proved that the function u is the solution in R × [0, T ]
in a variational sense of:







Lu = f 1l{u>0},

u ≥ 0,
(1.4)

with initial condition u(·, 0) = 0. Here 1l{u>0} denotes the characteristic function of the set {u > 0} :=
{(x, t)∈QR(P0) : u(x, t)>0} and the parabolic operator L is defined by

Lu := a(·, ·) ∂
2u

∂x2
+ b(·, ·) ∂u

∂x
+ c(·, ·)u− ∂u

∂t
,

with a(x, t) :=
σ2

2
(ex, T − t), b(x, t) := r(ex, T − t) − σ2

2
(ex, T − t), c(x, t) := −r(ex, T − t)

and −f(x, t) := (Lψ)(x, t) where ψ(x, t) := φ(ex, T − t) .
(1.5)

Their assumptions are stronger than Assumption (1.6) but they provide rigorously the link between
American option pricing and parabolic obstacle problem. This work was taken further by P. Jaillet,
D. Lamberton and B. Lapeyre, still in a variational interpretation but with stronger assumption than
what we make here. More recently this link has been justified in the framework of viscosity solutions
under Assumptions (1.6): by S. Villeneuve in [25] for the classical Black–Scholes model and by G. Rapuch
in [23] for the Black–Scholes model with local volatility. The proof that the stochastic formulation (1.3)
is actually a solution almost everywhere of (1.4) is still open. However the author believes that one could
follow up the proof of Theorem 2.1 in [7] in the viscosity framework. For this purpose we need a Harnack
inequality and Schauder interior estimates for viscosity solutions.

We are interested in local qualitative properties of the solution of the one-dimensional parabolic obstacle
problem. Namely, for given P0 = (x0, t0) ∈ R

2 and R > 0 we look at the regularity in the open parabolic
cylinder,

QR(P0) := { (x, t) ∈ R
2 : |x− x0| < R and |t− t0| < R2 } ,
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of the solutions in

W 2,1;1
x,t (QR(P0)) :=

{

u ∈ L1(QR(P0)) :

(

∂u

∂x
,
∂2u

∂x2
,
∂u

∂t

)

∈ (L1(QR(P0)))
3

}

of the one-dimensional parabolic obstacle problem (1.4)
Our main assumption is the following, concerning the uniform parabolicity (i.e. the completeness of the

market) and non-degeneracy of the operator and also the regularity of the coefficients and the function
f :










there exists a constant δ0 > 0 such that for any (x, t) ∈ QR(P0) , a(x, t) ≥ δ0 and f(x, t) ≥ δ0 ,

a, b, c and f belong to Hα(QR(P0)) for some α ∈ (0, 1) ,

(1.6)
where

Hα(QR(P0)) :=
{

f ∈ C0 ∩ L∞(QR(P0)) : sup
(x,t),(y,s)∈QR(P0)

(x,t)6=(y,s)

|f(x, t) − f(y, s)|
( |x− y|2 + |t− s| )α/2

<∞
}

.

The regularity assumptions on the coefficients (i.e. on r and σ) are not too restrictive and they are usually
admitted for local volatility models.

By [16], under Assumption (1.6), the equation (1.4) has a unique solution for suitable initial datum
and boundary conditions. From standard regularity theory for parabolic equations (see [21,14,19]), it is
known that u is continuous. The set {u = 0} is then closed in QR(P0). In the theory of obstacle problem
the sets {u = 0} and Γ := QR(P0) ∩ ∂{u = 0} are respectively called the coincidence set and the free
boundary of the parabolic obstacle problem (1.4). In financial mathematics the sets {u = 0} = {Π = φ}
and Γ its boundary are respectively called the exercise region and the optimal exercise boundary. The set
{Π > φ} is called the continuation region.

We first need to define some local qualitative properties of a curve. Consider a curve in R
2 defined by

the equation x = g(t) for some function g. For every time t1 < t2 we define the Hölder space

C 1
2 (t1, t2) :=

{

g ∈ C0(t1, t2) : sup
t∈(t1,t2)

|g(t)| + sup
t,s∈(t1,t2)

t6=s

|g(t) − g(s)|
|t− s| 12

<∞
}

.

We need the notion of C 1
2 -graph, C 1

2 -subgraph and C 1
2 -uppergraph: let P0 ∈ R

2 and R > 0. Consider a
subset A ⊂ QR(P0) and P1 = (x1, t1) ∈ A.

(i) We say that A is locally a C 1
2 -graph near P1 if there exists ρ > 0 and g ∈ C 1

2 (t1 − ρ2, t1 + ρ2) such
that Qρ(P1) ⊂ QR(P0) and A ∩Qρ(P1) = {(x, t) ∈ Qρ(P1) : x = g(t)}.

(ii) We say that A is locally near P1 a C 1
2 -subgraph (respectively a C 1

2 -uppergraph) if there exists ρ > 0

and g ∈ C 1
2 (t1−ρ2, t1 +ρ2) such that Qρ(P1) ⊂ QR(P0) and A∩Qρ(P1) = {(x, t) ∈ Qρ(P1) : x ≤ g(t)}

(resp. A ∩Qρ(P1) = {(x, t) ∈ Qρ(P1) : x ≥ g(t)}).
Under Assumption (1.6) if we consider a solution of (1.4) we can give a density characterisation of all

point P1 = (x1, t1) ∈ Γ. This criterion is based on the density θ(P1) of the coincidence set {u = 0} at the
point P1 ∈ Γ:

θ(P1) := lim inf
r→0

|{u = 0} ∩Qr(P1)|
|Qr(P1)|

and the lower density θ−(P1) of {u = 0} at P1 ∈ Γ, defined by
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θ−(P1) := lim inf
r→0

|{u = 0} ∩Q−
r (P1)|

|Q−
r (P1)|

,

with Q−
r (P1) := { (x, t) ∈ R

2 : |x− x1| < r and 0 < t1 − t < r2 }.
(i) If θ−(P1) 6= 0 we say that P1 is a regular point. We denote by R the set of regular points.
(ii) If θ−(P1) = 0 we say that P1 is a singular point. We denote by S the set of singular points.
Furthermore we define the set S0 of the singular points such that θ(P1) = 0.

We recall in Proposition 2.2 an energy criteria to characterise these points of Γ.

It is proved (see Proposition 5.8 in [7]) that for almost every time there is no point of S \ S0. Namely,
the set I := {t ∈ [−R2, R2] : ∃x ∈ [−R,R], (x, t) ∈ Γ \ (R ∪ S0)} has zero Lebesgue measure. The main
result of this paper deals with the regularity of S0 and R.

Theorem 1.1 (Regularity property of R and S0) Under Assumption (1.6),

(i) the set of regular points, R, is locally a C
1
2 -graph. Furthermore around points of R the coincidence

set is locally described by a C
1
2 -subgraph or by a C

1
2 -uppergraph,

(ii) the set S0 is locally contained in a C
1
2 -graph.

Remark 1.2 This result is local and is not true up to the maturity. There is a large literature on the
study of the regularity of Γ close to the maturity (see [20,2]). F. Charretour and R. Viswanathan were

the first to notice that the exercise boundary cannot be C 1
2 up to the maturity.

This question of the regularity of the free boundary is crucial in financial mathematics and in particular
in the numerical computation of Γ. As an illustration in [12], N. El Karoui proved in the framework of
optimal theory that

Π(x, t) = E

[

exp

(

−
∫ τ∗

t

r(Sx,t
s , s)ds

)

φ(Sx,t
τ∗ , τ∗)

]

where τ∗ := {inf τ ≥ t : Π(Sτ , τ) = φ(Sτ , τ)} .

So the knowledge of the exercise boundary gives the best strategy for the owner of the option. Unfortu-
nately we cannot give an explicit formula to describe the free boundary, even in the constant coefficients
case. However, a better understanding of the behaviour of the free boundary is a crucial question in
financial markets. This problem also appear in [1], where Y. Achdou solves a calibration problem. It is an
inverse problem where he evaluates the volatility σ by the knowledge of the price of American options on
the financial market. He needs regularity of the exercise boundary to control his numerical computations.

P. Van Moerbeke studied in [24], call options in the classical Black–Scholes model. He subsequently
proved that the exercise boundary has a continuous time derivative except at the maturity. In [15],
A. Friedman considered the case where the variable coefficients depend on time and space and are con-
tinuously differentiable. He proved under assumptions on the change of sign of the initial data that the
exercise boundary consists of a finite number of curves t→ si(t) piecewise monotone and continuous. He

also proved that dsi(t)
dt exists and is continuous in every t-interval where si is strictly monotone. The proof

of these results need to differentiate the equation with respect to x and to apply the maximum principle
to ux. This proof cannot apply to parabolic operator with Hölder coefficients.

Recently in [8], L. Caffarelli, A. Petrosyan and H. Shahgholian considered the case of the parabolic
potential problem (i.e. with constant coefficients in any dimension and without any sign assumptions on
the solution). They give an energy and a density criterion to classify the points of the free boundary
in two sets: the regular points and the singular points. Their density criterion is similar to the density
characterisation given above and the energy criterion is similar to the one given in Proposition 2.2. They
prove that around regular points the free boundary in C∞. Their proof apply to the variable coefficients
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case if the coefficients are Lipchitz (in this case the regular set is Lipschitz. But this has not been done)
and they do not study the set of singular points. However their method has been extended in [7] by
J. Dolbeault, R. Monneau and the author in the variable coefficients case with Hölder continuity. They
give an energy and a density criterion to characterise the region of the free boundary such that the time
derivative of the solution is continuous. They study the set of singular points in order to prove that the
time derivative of the solution is continuous almost everywhere. For the convenience of the reader all the
results and notation of [7] we will use in the proofs are recalled in Section 2. Section 3 is consecrated to
the proof of the main theorem. We study the regular case in Section 3.1 and the singular case in Section
3.2. In Section 4 we illustrate our result by classifying the possible shapes of the continuation region and
the regularity of the optimal exercise boundary in the Black-Scholes model with homogeneous diffusion
(case where σ and r do not depend on time) with generic pay-off functions. In Section 5 we apply our
results to the American put and call options in this model.

Notation. We will use ut, ux and uxx respectively for ∂u
∂t , ∂u

∂x and ∂2u
∂x2 . For any domain D ⊂ R

2, we

define W 2,1;q
x,t (D) :=

{

u ∈ Lq(D) : (ux, uxx, ut) ∈ (Lq(D))3
}

. And we will write u ∈ W 2,1;q
x,t;loc(D) if u ∈

W 2,1;q
x,t (K) for all compact K ⊂⊂ D. The heat operator will be abbreviated to H , Hu := uxx − ut.

2. Known results

Under Assumption (1.6) the solutions of (1.4) are bounded in W 2,1;∞
x,t (QR′(P0)) for all R′ < R (see

Theorem 2.1 in [7]). The theory we develope here and in [7] lies on the founding idea of L. Caffarelli (see
[9]). The idea is to use blow-up sequences, which are kinds of zooms, and to look at the “infinite zoom”.
Namely consider (Pn = (xn, tn))n∈N a sequence of point of Γ, r > 0 and (εn)n∈N a sequence converging
to 0. The blow-up sequence (uεn

Pn
)n∈N associated to a function u : Qr(0) −→ R is the sequence defined by

uεn

Pn
(x, t) = ε−2

n u

(

xn + εnx

√

a(Pn)

f(Pn)
, tn + ε2nt

1

f(Pn)

)

∀n ∈ N, ∀(x, t) ∈ Qr/εn
(0) .

Notice that the parabolic scaling (x, t) 7→ (λx, λ2t) transforms the parabolic cylinder Qλ(0) into the
parabolic cylinder Q1(0).

Due to W 2,1;∞
x,t a priori regularity estimates, up to the extraction of a subsequence, blow-up sequences

uniformly converge on every compact to a function u0 ∈ W 2,1;∞
x,t;loc(R

2). We recall Lemma 2.6 in [7] (see
also Lemma 5.1 in [8]):

Lemma 2.1 (Non-degeneracy lemma) Under Assumption (1.6), consider a solution u of (1.4) in
QR(P0). Let R′ ∈ (0, R), P1 ∈ {u > 0} be such that Q−

r (P1) ⊂ QR′(P0) for some r > 0 small enough.
There exist two positive constants C̄ and r̄ > 0 such that if Qr̄(P1) ∩ {u = 0} 6= ∅:

r ≤ r̄ =⇒ sup
Q−

r (P1)

u ≥ C̄ r2 .

The constants C̄ and r̄ only depend on R′ and the parabolic operator L.

The non-degeneracy lemma was first proved by L. Caffarelli in [9] for the elliptic obstacle problem. Its
proof lies on the maximum principle.

More precisely (see proof of Proposition 3.2, Proposition 3.3 and Proposition 2.9 in [7]) u0 is solution
in R

2 of the following global parabolic obstacle problem:
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∂2u0

∂x2
(x, t) − ∂u0

∂t
(x, t) = 1l{u0>0}(x, t)

u0(x, t) ≥ 0
a.e. (x, t) ∈ R

2

and 0 ∈ ∂{u0 > 0}. Furthermore

lim
n→∞

1l{uεn
Pn

=0} = 1l{u0=0} a.e. in R
2 . (2.1)

Moreover if we consider a blow-up sequence in a fixed point P1 (i.e. Pn ≡ P1), the blow-up limit is one
of the following functions

u0
+(x, t) :=

1

2
(max{0, x})2,

u0
−(x, t) :=

1

2
(max{0,−x})2

and u0
m(x, t) :=











mt+
1 +m

2
x2 if t < 0 ,

max

{

0, t Um

( |x|√
t

)}

if t ≥ 0 ,
(2.2)

where m ∈ [−1, 0] and Um is explicitly given in [7] (see Theorem 3.9 in [7] see also Lemma 6.3 in [8]).
The crucial difficulty in this characterisation of blow-up limits in fixed points is to prove their scale-

invariance. For this purpose, in [26], G. Weiss introduced a monotonicity formula for the elliptic obstacle
problem. For the parabolic obstacle problem we define the energy as follows:

Let Qr(P1) ⊂ QR(P0) ⊂ R
2. With P1 = (x1, t1), and a, f the functions involved respectively in the

definition of the operator L and in Equation (1.4). Consider a nonnegative cut-off function ψ ∈ C∞(R)

such that ψ ≡ 1 on
(

− 1
2

√

f(P1)

a(P1)
, 1

2

√

f(P1)

a(P1)

)

and ψ ≡ 0 on
(

−∞,
√

f(P1)

a(P1)

]

∪
[√

f(P1)

a(P1)
,∞
)

and define ψr(x) :=

ψ(r x) and the function v (which depends on u, P1 and r) for all (x, t) ∈ R × (−r2 f(P1), r
2 f(P1)) by

v(x, t) := u

(

x1 + x
√

a(P1)

f(P1)
, t1 +

t

f(P1)

)

· ψr(x) if |x| ≤ r
√

f(P1)

a(P1)
, v ≡ 0 otherwise . (2.3)

For all t ∈ (−r2 f(P1), 0), define

Eu,P1(τ, r) :=

∫

R

{[

1

−τ

( ∣

∣

∣

∣

∂v

∂x

∣

∣

∣

∣

2

+ 2 v

)

− v2

τ2

]

G

}

(x, τ) dx −
∫ 0

τ

1

s2

∫

R

{(Hv − 1) (Lv)G} (x, s) dx ds ,

with Hv := vxx − vt, Lv := −2 v + x · vx + 2 t vt and G(x, t) := (2π(−t))− 1
2 exp

(

−x2/(−4t)
)

. For this
energy we have (Proposition 3.4, Lemma 3.7 and Proposition 4.1 in [7]):

Proposition 2.2 (Monotonicity formula) Let Qr(P1) ⊂ QR(P0). Under Assumption (1.6), if u is a
solution of (1.4) and v defined in (2.3), then for a given r > 0 the function τ 7→ Eu,P1(τ, r) is a non-
increasing function, which is bounded from below and bounded in W 1,∞(−1, 0). Furthermore for r > 0
and a given τ0 < 0, P 7→ Eu,P (τ0, r) is continuous. And if (uεn

P1
)n∈N is a blow-up sequence associated to u

in a fixed point P1 and u0
P1

a blow-up limit of (uεn

P1
)n∈N then

∀r > 0 Eu,P1(ε
2
nτ, r) = Euεn

P1
,0(τ, εnr) → Eu0,0(τ, 0) ∈ {

√
2

2
,
√

2} . (2.4)

Moreover if, for r > 0, limτ→0 Eu,P1(τ, r) =
√

2
2 , then P1 is regular. And if, for r > 0, limτ→0 Eu,P1(τ, r) =√

2, then P1 is singular.

As a consequence : S is a closed set, and R = Γ \ S is open in Γ (Lemma 4.2 in [7]).
Remark 2.3 This energy characterisation of the sets R and S gives a criterion to apply Theorem 1.1 (i).
It is sufficient to prove that limτ→0 Eu,P1(τ, r) <

√
2. It can be interesting for practical financial applica-

tions. The derivative with respect to the initial condition, ux, is known as the Delta in Greeks formulae
and can be computed numerically with Monte-Carlo methods. See also [13] for a recent approach of the
calculus of Delta using Malliavin calculus.
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For a further inspection of the singular set J. Dolbeault, R. Monneau and the author introduce in [7] a
monotonicity formula for singular points for the parabolic obstacle problem. Consequently they prove the
uniqueness of blow-up limit in singular points. Namely, that under Assumption (1.6), if u is a solution of
(1.4) and (Pn)n∈N a sequence of singular points, then there exists a unique m ∈ [−1, 0] such that for any
sequence, (εn)n∈N, converging to 0, the whole blow-up sequence, (uεn

Pn
)n∈N, locally uniformly converges

to u0
m, where u0

m is defined in (2.2) (see Proposition 5.5 and Lemmata 5.6 and 5.7 in [7]).
The main theorem of [7] (see Corollaries 6.4 and 6.7 in [7]) is the following:

Theorem 2.4 (Continuity of the time derivative) Under Assumption (1.6) consider a solution u
of (1.4). If P1 ∈ R ∪ S0 then

lim
P→P1

∂u

∂t
(P ) = 0 .

3. Proof of the main theorems

In Section 3.1 we study the regularity of the regular set. We first prove the uniqueness of blow-up limit
in regular points. Then we prove a uniform holderian born on regular points. These two results lead to
our statement. In Section 3.2, as the uniqueness of blow-up limit in singular points is a result of [7] (see
above), we just have to prove a uniform holderian bound on singular points to conclude.

3.1. Proof of Theorem 1.1 (i)

Lemma 3.1 (Uniqueness of blow-up limits in regular points) Under Assumption (1.6), consider
a solution of (1.4). If P1 ∈ R then there exists a unique γ ∈ {+,−} such that for any sequence (εn)n∈N

converging to 0, the whole blow-up sequence (uεn

P1
)n∈N in the fixed point P1 locally uniformly converges to

u0
γ, where u0

+ and u0
− are defined in (2.2).

Proof. By the energetic characterisation of R (Proposition 2.2), up to the extraction of a subsequence
(uεn

P1
)n∈N converges to u0

+ or u0
−. Assume by contradiction that there are two subsequences (εn′)n′∈N and

(εn′′)n′′∈N such that (u
εn′

P1
)n′∈N converges to u0

+ and (u
εn′′

P1
)n′′∈N converges to u0

−. We have u0
+ (1, 0) = 1

2

and u0
− (1, 0) = 0. By continuity of ε 7→ uε

P1
, this implies that there exists another subsequence (ε̃n)n∈N

such that limn→∞ uε̃n

P1
(1, 0) = 1

4 . But this property is satisfied neither by u0
+ nor by u0

−, however P1 ∈ R.
We obtain thus a contradiction. �

Definition 3.2 (R+ and R−) Let P1 ∈ R. The set of points such that the blow-up limit in P1 is u0
+ is

denoted R+. The set of points such that the blow-up limit in P1 is u0
− is denoted R−.

For any δ > 0, if not empty, let us define the closed set:

Rδ = {P ∈ R, dist(P,S) ≥ δ} .

Lemma 3.3 For any δ > 0, Rδ is locally contained in a C
1
2 -graph. More precisely, for any δ > 0, there

exists a constant M(δ) > 0 such that,

sup
(x,t)∈Rδ

sup
(x′,t′)∈Rδ

(x′,t′)6=(x,t)

|x′ − x|
√

|t′ − t|
≤M(δ) .
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Proof. Assume by contradiction that there are two sequences of points (Pn = (xn, tn))n∈N and (P ′
n =

(x′n, t
′
n))n∈N in Rδ converging to a point P∞ ∈ Rδ , such that

lim
n→∞

|x′n − xn|
√

|t′n − tn|
= +∞ .

The blow-up sequence (uεn

Pn
)n∈N with εn :=

√

(x′n − xn)2 + |t′n − tn| converges, up to the extraction of

a subsequence, to a function u0. Define rn > 0 such that Qrn
(xn + εnx, tn + ε2nt) ⊂ {u > 0}, we have:

d

dt
uεn

Pn
(x, t) =

du

dt
(xn + εnx, tn + ε2nt) .

By Schauder interior estimates ut is bounded in Hα, and the corresponding bound is uniform under
scaling (also see Theorem 2.1 in [7]) so we can pass to the limit in ut. The right term converges to 0
because of the continuity of the time derivative (Theorem 2.4) applied to (xn + εnx, tn + ε2nt) which tends
to P∞ ∈ R. Therefore u0

t ≡ 0.
The sequence of generic term

νn :=

(

xn − x′n
εn

,
tn − t′n
ε2n

)

∈ ∂Q1(0) ∩ ∂{uεn

Pn
= 0}

converges to a point ν = (xν , tν) ∈ ∂Q1(0). By non-degeneracy lemma (Lemma 2.1) there exists a positive
constant C̄ such that for all r > 0 small enough

C̄ r2 ≤ sup
Qr(νn)

uεn

Pn
→ sup

Qr(ν)

u0 .

So ν belongs to ∂{u0 = 0}.
To summarise 0 ∈ ∂{u0 = 0} by non-degeneracy lemma (Lemma 2.1), ν ∈ ∂{u0 = 0} by the above

demonstration, u0
x ≡ 0 on Γ because u is non-negative and u0

t ≡ 0 by Theorem 2.4. This implies that

u0(x, t) =
1

2
(max{0,−x})2 +

1

2
(max{0, x− xν})2 if xν > 0 ,

u0(x, t) =
1

2
(max{0, x})2 +

1

2
(max{0, x+ xν})2 if xν < 0 .

(3.1)

We will prove with an energy argument that this cannot be true.
The point P∞ is in Rδ . So by the energy characterisation of the regular points (Proposition 2.2)

lim
τ→0
τ<0

Eu,P∞
(τ, r) =

√
2

2
∀r > 0 .

Hence, for a given r > 0, as τ 7→ Eu,P (τ, r) is continuous (Proposition 2.2) for any δ > 0, we can find
τ0 < 0 such that

Eu,P∞
(τ, r) ≤

√
2

2
+
δ

4
∀τ ∈ (τ0, 0), ∀r > 0 . (3.2)

But by (3.1) we know explicitly u0 and we compute directly for all τ < 0

Eu0,0(τ, 0) =

√
2

2
+ η(τ)

where η(τ) is positive and only depend on τ . By scale-invariance of Eu,P (Proposition 2.2)

lim
n→∞

Eu,Pn
(ε2nτ, r) = lim

n→∞
Euεn

Pn
,0(τ, εnr) = Eu0,0(τ, 0) =

√
2

2
+ η(τ) .
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So for any δ > 0 and τ0 given in (3.2) there exists N ∈ N such that n > N implies

∀r > 0, Eu,Pn
(ε2nτ, r) ≥

√
2

2
+ η(τ) − δ

2
and τ0 < ε2nτ < 0 . (3.3)

However, P 7→ Eu,P (τ0, r) is continuous for given τ0 and r > 0 (Proposition 2.2). So for any δ > 0 there
exists N ∈ N such that n > N implies

Eu,Pn
(τ0, r) ≤ Eu,P∞

(τ0, r) +
δ

4
∀r > 0 . (3.4)

Combining (3.3) and (3.4) and because τ 7→ Eu,Pn
(τ, r) is non-increasing (Proposition 2.2) we have

√
2

2
+ η(τ) − δ

2
≤ Eu,Pn

(ε2nτ, r) ≤ Eu,Pn
(τ0, r) ≤ Eu,P∞

(τ0, r) +
δ

4
≤

√
2

2
+
δ

2
∀r > 0 .

Which is a contradiction if we choose δ < η(τ). �

We now prove

Lemma 3.4 R+ and R− are open subsets of Γ.

We first need

Lemma 3.5 If P1 = (x1, t1) belongs to R+ (resp. R−) then for any η ∈ (0, 1), there exists ρ such that
u ≡ 0 (resp. u > 0) in (x1 − ρ, x1 − ηρ)× (t1 − ρ2, t1 + ρ2) and u > 0 (resp. u ≡ 0) in (x1 + ηρ, x1 + ρ)×
(t1 − ρ2, t1 + ρ2).

Proof. By symmetry, we can assume that P1 = (x1, t1) ∈ R+. The blow-up sequence in the fixed point P1,

(uεn

P1
)n∈N, converges to 1

2 (max{0, x})2. The result is achieved thanks to (2.1) which states that 1l{uεn

P1
> 0}

converges to 1l{u0
P1
> 0}. �

Proof of Lemma 3.4. By symmetry, we can assume that P1 = (x1, t1) ∈ R+. As R is open, there
exists δ > 0 and r > 0 such that P1 and Γ ∩ Qr(P1) are contained in Rδ . By Lemma 3.5, for any
η ∈ (0, 1), there exists ρ such that u ≡ 0 in (x1 − ρ, x1 − ηρ) × (t1 − ρ2, t1 + ρ2) and u is positive in
(x1 + ηρ, x1 + ρ) × (t1 − ρ2, t1 + ρ2).

x 

{u = 0} {u > 0}

x1 − ηρ x1 + ηρ

Qρ(P1)

Qr(P1) Rδ

P1

Generic drawing for the proof of Theorem 1.1

By Lemma 3.3, Γ∩Qρ(P1) is contained in a C
1
2 -graph. This implies that for any t ∈ (t1 − ρ2, t1 + ρ2),

there exists a point P = (g(t), t) ∈ R such that u(x, t) = 0 if x < g(t) and u(x, t) > 0 if x > g(t) in
Qρ(P1). Finally let (uεn

P )n∈N be a blow-up sequence in the fixed point P with εn ∈ {(x, t) : x = g(t)}.

9



The blow-up limit is necessarily 1
2 (max{0, x})2. So P ∈ R+. So for any t ∈ (t1 − ρ2, t1 + ρ2) all the points

are in R+. �

Theorem 1.1 (i) is a direct consequence of Lemma 3.3 and the topological property of R. More precisely,

locally around a point of R+ all the points are in R+ and the free boundary is locally C 1
2 . So around

points of R+ the free boundary is locally a C 1
2 -subgraph. Respectively around points of R−, the free

boundary is locally a C 1
2 -uppergraph.

3.2. Proof of Theorem 1.1 (ii)

Assume by contradiction that there are two sequences of points (Pn = (xn, tn))n∈N and (P ′
n =

(x′n, t
′
n))n∈N in S0 converging to a point P∞ such that

lim
n→∞

|x′n − xn|
√

|t′n − tn|
= +∞ . (3.5)

Recall that a consequence of the monotonicity formula (Theorem 2.2), S0 is closed. So P∞ belongs to
S0. We define εn :=

√

(x′n − xn)2 + |t′n − tn|. By uniqueness of the limit of the blow-up sequence in
singular points, (uεn

Pn
)n∈N if (Pn)n∈N ∈ SN

0 (see Section 2), the blow-up sequence (uεn

Pn
)n∈N converges to

u0(x, t) = 1
2x

2. The sequence of generic term

νn :=

(

x′n − xn

εn
,
t′n − tn
ε2n

)

∂{uεn

Pn
= 0} ∩ ∂Q1(0)

converges to ν = (xν , tν). Because of (3.5), |xν |√
|tnu|

= ∞ so ν belongs to {{−1, 0}∪1, 0}. By non-degeneracy

lemma (Lemma 2.1), 0 and ν belong to ∂{u0 = 0}, which is a contradiction with u0(x, t) = 1
2x

2.

4. Applications to homogeneous diffusion

Let us apply our results to the Black–Scholes model with homogeneous diffusion (case where σ and r
do not depend on time). In this case the link between the stochastic formulation (1.3) and the obstacle
problem has been proved in [1] (Theorem 2.2).

Theorem 4.1 (Exercise boundary in the Black-Scholes model) In the generalised Black–Scholes
model where σ and r do not depend on time, consider the price Π of the American option given by (1.3)
with a finite maturity T > 0. Assume σ ∈ L∞(R × [0, T ]) is such that x dσ

dx is bounded in L∞(R × [0, T ])

and the pay-off φ depends only on St, satisfies |φ(x)| ≤M eM |x|, where M > 0. If

σ2

2
x2 ∂

2φ

∂x2
+

(

r − σ2

2

)

x
∂φ

∂x
+ rφ < 0

then for all ε > 0 and [α, β] ⊂ R there exists N ∈ N, t̃ ∈ [0, T − ε], 2N reals {x−i ≤ x+
i }i∈{1,...,N} in [α, β]

and 2N graphs of class C 1
2 ([0, t̃ ]), (g−i ≤ g+

i )i∈{1,...,N}, such that for every i ∈ {1, . . . , N}

{Π = φ} ∩ ([x−i , x
+
i ] × [0, t̃ ]) = {(x, t) : g−i (t) ≤ x ≤ g+

i (t)} .
Moreover if for a given i ∈ {1, . . . , N} there exists t̄ ∈ [0, T − ε] such that g−i ( t̄ ) = g+

i ( t̄ ) then there
exists δ ∈ [0, T − ε− t̄ ] such that {Π = φ} ∩ ([x−i , x

+
i ] × [0, t̄ ]) is the straight line g−i ( t̄ ) × [ t̄− δ, t̄ ].
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St

α

T − ε

x+
1

{Π = φ}

T
t

x−
i

St

x+

i

T − ε

{Π = φ}

T
t

x−
i x+

i

St

T − ε {Π = φ}

t
T

t̄

t̄ − δ

St

x−
N

T − ε

β

{Π = φ}

T
t

We first prove a slightly different lemma which bring us back to the framework of the Section 3.

Lemma 4.2 Under Assumption (1.6), consider a solution of (1.4). If u is non-decreasing then for all
ε > 0 and [α, β] ⊂ R there exists N ∈ N, t̃ ∈ [ε, T ], 2N reals {x−i ≤ x+

i }i∈{1,...,N} in [α, β] and 2N graphs

of class C 1
2 ([ε, t̃ ]), {g−i , g+

i }i∈{1,...,N}, such that for every i ∈ {1, . . . , N}

{u = 0} ∩ ([x−i , x
+
i ] × [ε, t̃]) = {(x, t) : g−i (t) ≤ x ≤ g+

i (t)} .

Moreover if there exists t̄ ∈ [ε, T ] such that g−i ( t̄ ) = g+
i ( t̄ ) then there exists δ ∈ [0, T − t̄ ] such that

{u = 0} ∩ ([x−i , x
+
i ] × [ t̄, T ]) is the straight line g−i ( t̄ ) × [ t̄, t̄+ δ].

We first precise some properties of the exercise boundary around points of S0 and R.

Lemma 4.3 Under Assumption (1.6), consider a solution of (1.4).
(i) If P1 = (x1, t1) ∈ R+ (resp. R−) then there exists ρ > 0 such that u > 0 in (x1 − ρ, x1) × {t = t1}
(resp. (x1, x1 + ρ) × {t = t1}) and u ≡ 0 in (x1, x1 + ρ) × {t = t1} (resp. (x1 − ρ, x1) × {t = t1}).

(ii) If P1 = (x1, t1) ∈ S0 then there exists ρ > 0 such that u > 0 in ((x1 − ρ, x1) ∪ (x1, x1 + ρ))×{t = t1}.
Furthermore for any time t ∈ (0, T ) there is a finite number of points of (R ∪ S0) × {t}.
Proof. (i) By symmetry we can assume P1 ∈ R+. Assume by contradiction that there exists (Pn =
(xn, t1))n∈N converging to P1 ∈ R+ such that u(Pn) = 0. The blow-up sequence (uεn

P1
)n∈N with εn := xn

converges to 1
2 (max{0, x})2. But uεn

P1
(1, 0) = 0 implies u0(1, 0) = 0. Which contradicts P1 ∈ R+.

(ii) Assume by contradiction that there exists (Pn = (xn, t1))n∈N converging to P1 ∈ S0 such that
u(Pn) = 0. The blow-up sequence (uεn

P1
)n∈N with εn := xn converges to 1

2x
2. But uεn

P1
(1, 0) = 0 implies

u0(1, 0) = 0. Which contradicts P1 ∈ S0. �

Proof of Lemma 4.2. First recall that if u is non-increasing the free boundary only contains regular points
and points of S0 (see Section 1). In t = ε consider a point Pi = (xi, ε) of Γ.

If Pi belongs to S0: by Lemma 4.3 (ii), there exists r such that u is positive in (xi − r, xi + r) × [ε, T ].
In this case we pose t̃ = ε, x−i = xi

+ = xi. And there exists δ such that {u = 0}∩ ([x−i , x
+
i ]× [ε, T ]) is the

straight line xi × [ε, ε+ δ].

If Pi belongs to R: by symmetry consider Pi ∈ R−. By Theorem 1.1, Γ is a C 1
2 -uppergraph locally

around Pi. We can extend this property at CΓ(Pi), the connected component of Γ which contains Pi.

Denote P ∗ = (x∗, t∗) := inft{P ∈ CΓ(Pi) : P /∈ R−}. If t∗ = T , CΓ(Pi) is a C 1
2 -uppergraph. If not:

thanks to Lemma 3.5, P ∗ cannot belong to R+. So P ∗ belongs to S0. We set here xi = x−i . The set

CΓ(Pi) is a graph of class C 1
2 ([0, t∗]), let us denote it g−i .

Let us now deal with the other branch of the connected component of {u = 0}. By Lemma 4.3, there
is only a finite number of point of R∪S0 in {t = ε}. Define x+

i := supx>x−

i
{(x, t) : (x, t) ∈ {u = 0}}. By

definition of x+
i , u = 0 in [x−i , x

+
i ] × {t = ε}. By Lemma 4.3 (i), (x+

i , ε) is a point of R+. The previous

argument gives the existence of a graph, g+
i of class C

1
2 ([0, t∗2]) with t∗2 ∈ [ε, T ].
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If we cannot extend the C 1
2 regularity of the graph up to t = T it means that one at least of the two

connected component of Γ defined above contains a point of S0. By symmetry we can assume that t∗ ≤ t∗2.
Assume by contradiction that the two curves do not meet in (g−i (t∗), t∗). Then there exists P̄ = (x̄, t∗) in
the connected component of Γ which contains (x+

i , ε) such that u ≡ 0 in [x̃, x̄]. But this is a contradiction
with Lemma 4.3 (ii). �

Proof of Theorem 4.1. In the generalised Black–Scholes model where σ and r do not depend on time,
u(x, t) = Π(ex, T − t)−φ(ex) is non-decreasing in time on [0, T ] (see Proposition 5 in [23]) and is solution
almost everywhere in R× [0, T ] of (1.4) with initial condition u(·, 0) = 0. The Assumption (1.6) is satisfied
with a, b, c and f given from σ, r and φ by (1.5). In [17], J. Harrison and S. Pliska proved the equivalence
between the completeness of the market and σ > 0. Theorem 4.1 is so a direct consequence of Lemma
4.2. �

5. Application to American vanilla options

The two most classical pay-off functions are the put (i.e. φ(St, t) = max{0,K − St}) and the call (i.e.
φ(St, t) = max{0, St−K}) where the fixed price K is called the strike. Our results apply to these pay-off.

Theorem 5.1 (Exercise boundary for American vanilla options are regular) In the generalised
Black–Scholes model where σ and r do not depend on time. Assume σ ∈ L∞(R × [0, T ]) is such that x dσ

dx
is bounded in L∞(R × [0, T ]). Then

(i) If the underlying asset is solution of (1.1), the exercise boundary of an American put is a C 1
2 -subgraph

in time for all t < T .
(ii) If the underlying asset is solution of dSt = (r(St)− δ)St dt+ σ(St)St dWt, the exercise boundary of

an American call is a C 1
2 -uppergraph in time for all t < T .

Proof. The coefficients a, b and c defined from r and σ as in (1.5) are in Hα(R × [0, T ]). The market is
complete, so a > 0.

The price of the option Π is non-increasing in time. Due to the shape of the pay-off (see figure below)
the exercise boundary is non-decreasing in time for the American put and non-increasing for the American
call.

continuation regionexercise

region

optimal exercise point

St

Π

optimal exercise point

continuations region

region

exercise

St

Π

American put American call

In particular the exercise boundary is a graph in time. For the American put, from (1.5) we compute
f(x, t)1l{Π>φ}(x, t) = rK1l{Π>φ}1l{t>s(t)} = rK1l{Π>φ} because s in non-decreasing and limt→T s(t) = K.

So we can consider the obstacle f̃ = rK in (1.4), f̃ is regular and non-degenerate. For the American
call, from (1.5) we compute f(x, t) = rmin{K, rK

δ }1l{Π>φ}1l{x>K} = rmin{K, rK
δ }1l{Π>φ} for t ≤ T − ε
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because s in non-decreasing and limt→T s(t) = min{K, rK
δ } (see [10]). So we can consider the obstacle

f̃ = rmin{K, rK
δ } in (1.4) for t ≤ T − ε, f̃ is regular and non-degenerate.

For the American put: let P1 = (x1, t1) ∈ [0, T ) be a point of the exercise boundary. There exists r > 0
such that Π = φ in [x1 − r, x1]×{t = t1}. But Π is non-increasing in time so there exists δ > 0 such that
Π = φ in [x1 − r, x1] × {t1, T}. So for r small enough

|{Π > φ} ∩Qr(P1)|
|Qr(P1)|

⊃ |[x1 − r, x1] × [t1, t1 + r2]|
|Qr(P1)|

=
1

4

So the density of {Π > φ} in P1 is non-zero and P1 is not in S0. As u is non-increasing in time there is
no point of S \ S0 so the exercise boundary of the American put is only made of point of R+. Hence the

exercise boundary is a C 1
2 -subgraph in time for all t < T .

Similarly for the American call: for r small enough {Π > φ} ∩ Qr(P1) ⊃ [x1, x1 + r] × [t1, t1 + r2]. So
there is no point of S0. Hence the exercise boundary of the American call is made of point of R−, and is
a C 1

2 -uppergraph in time for all t < T .
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