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Abstract

This paper examines an informed principal-agent game with ex post participation

constraints for the agent. It shows that the players do not lose by communicating in

turn among themselves rather than simultaneously if and only if the principal com-

municates first. It then considers every Bayesian incentive compatible allocation rules

that assign nonnegative payoffs for one player in a bilateral asymmetric information

framework. It provides necessary and sufficient conditions for sequential communica-

tion to be as efficient as simultaneous communication in implementing these allocation

rules when the player with unbounded payoffs moves first.

Key words: asymmetric information, principal-agent, implementation, contract the-

ory.

JEL codes: D23, D82.
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1 Introduction

Consider two agents. They have to select a decision through a mechanism. Preferences

are private information. Side-payments are allowed. One of the two agents has limited

liability. Which mechanism should they use? According to the Revelation Principal, no

mechanism Pareto dominates (in term of ex ante payoffs) a direct revelation mechanism.

It prescribes that the agents simultaneously send a message (about preferences) to an

arbitrator who then selects a decision (with a side-payment). This paper investigates

whether simultaneous communication can be replaced by sequential communication (in

which agents communicate in turn among themselves) in direct revelation mechanisms and

what such a sequential mechanism look like.

The agents might be the members of an organization who decide on a project size. Or

two firms, a producer and a retailer, that contract on production levels and prices. In those

examples, the agents are free to quit the organization or to exit the contract, anytime (e.g.

by going bankrupt). They are protected by limited liability. Payoffs must therefore be

non-negative to insure participation.1 Furthermore, by defining who decides first on what,

the hierarchical structure in organizations, or the assignment of decision rights in contracts

specifies a particular sequence of moves. This paper rationalizes the use of a sequential

decision-making process. It also say something about its design.

With simultaneous communication, the allocations implemented (decisions and side-

payments) must be Bayesian incentive compatible (BIC) for both agents. In contrast,

with sequential communication, they must satisfy the stronger dominant strategy incentive

compatible (DSIC) condition for the agent who communicates last. The paper provides

necessary and sufficient conditions for which the DSIC condition for the agent who has

limited liability can be obtained for free (in term of expected payoffs). Since, as argued

by Crémer and Riordan [1], the DSIC condition has simpler informational and computa-

tional requirements, a sequential mechanism is particularly appropriate for dealing with

less informed or rationally bounded agents.

The first part of the paper focuses on the allocations implemented if one player, the
1See Sappington [8] for a discussion on the limited liability assumption in the principal-agent model.
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“principal”, makes a take-it-or-leave-it contract offer to the other player, the “agent”,

whose outside option is nil. It shows that simultaneous communication can be replaced by

sequential communication if and only if the principal communicates first. This result also

holds if the principal has bounded payoffs.

The second part considers all allocation rules that are BIC for both partners and satisfy

the ex post participation constraints for one.2 It provides necessary and sufficient conditions

for which the stronger DSIC condition for the ex post participation constrained partner

can be obtained for free. It therefore yields sufficient conditions for the use of sequential

mechanisms in place of simultaneous mechanisms while leaving the two partners’ expected

utility unchanged.

The first part builds on Maskin and Tirole [5]. They show that the principal does

not lose by revealing her type before the agent does, thereby imposing the stronger DSIC

condition on the agent.3 These authors impose individual rationality at the interim stage

but not ex post. Here I take the argument one step further by showing that (i) the result

also holds when participation is an issue ex post, and (ii) in this case, the sequence of

communication matters: the principal can communicate first but not last. In other words,

imposing the DSIC condition in place of the BIC condition on the principal reduces her ex

ante payoffs.

The second part is related to literature on the implementation of Bayesian mechanisms

with quasi-linear preferences. Mookherjee and Reichelstein [7] show that, under sufficient

conditions, the BIC constraints can be replaced by the DSIC constraints for all agents

while leaving unchanged every agent’s expected payoff. Yet this requires alterations to

side-payments which affects payoffs. The present paper shows that, on the one hand, some

agent’s payoffs might be negative. The DSIC condition might therefore not be compatible

with ex post participation constraints.4 On the other hand, with only two players, one
2I.e. not necessarily the ones that emerge from an ex ante negotiation with extreme bargaining powers.
3To be precise, Maskin and Tirole show that, in their adverse selection model but with quasi-linear

preferences, the informed principal does not loose by revealing her type to the agent at the contracting

stage, thereby moving incentive compatibility constraints from the interim to the ex post stage (Proposition

11 in their paper).
4Proposition 1 shows that this is indeed the case for the allocation implemented in the informed principal-
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being ex post participation constrained, BIC for all can be replaced by BIC for one agent

and DSIC for the other.5

Crémer and Riordan [1] show that, under sufficient conditions, BIC for all can be

replaced by BIC for one agent and DSIC for the others. However, they do not address

the participation or individual rationality issue.6 Here, I show that (i) this result might

also hold with two agents when participation is an issue ex post for one agent; and (ii) it

matters who is DSIC constrained and who is BIC constrained.

2 Model and definitions

Take two agents, hereafter called “players”, a principal P (“she”) and an agent A (“he”).

Each player i = P,A has preferences ui(y, θi) over a common decision y ∈ Y ⊆ R and

private information θi ∈ [θi, θ̄i] ≡ Θi, with θi < θ̄i. θi is referred as i’s type. It is common-

knowledge that θP and θA are independently distributed according to the density fi(θi) > 0

for every θi ∈ Θi and cumulative Fi(θi) for i = P,A. The function ui is assumed thrice

continuously differentiable, concave in y, and increasing in θi. I make the assumption

of increasing marginal utility with θi for every i = P, A, known as the “single-crossing

property”.7

(A1) ∂2ui
∂y∂θi

> 0.

Players perform transfers among themselves. The net transfer (possibly negative) from

the principal to the agent is denoted t. An allocation is a vector (y, t). The principal P and

the agent A’s payoffs with the allocation (y, t) in state (θP , θA) ∈ ΘP×ΘA are, respectively:

UP (y, t, θP ) ≡ uP (y, θP )− t,

agent game.
5Proposition 2 provides the conditions for which BIC for all can be replaced by BIC for one partner and

DSIC for the other.
6In particular, they focus on the Bayesian implementation of the first-best levels of public good which

might not be compatible with the agents’ participation condition (see, e.g., Example 23.E.1. in Mas-Colell

et al. [4]).
7This condition ensures that a solution derived by recognizing only the “local” incentive constraints will

also be globally incentive compatible.
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and,

UA(y, t, θA) ≡ uA(y, θA) + t.

A state of nature is a vector θ = (θP , θA) ∈ ΘP × ΘA ≡ Θ. The first component of θ is

the principal’s private information while the second is the agent’s one. The (total) surplus

or profit in state θ is:

π(y, θ) = UP (y, t, θP ) + UA(y, t, θA) = uP (y, θP ) + uA(y, θA). (1)

It is assumed to be non-negative, strictly concave and increasing up to its maximum y∗(θ) ∈
Y defined by the only value satisfying ∂π

∂y
(y∗(θ),θ) = 0. Given the above assumptions, the

profit π and the marginal profit ∂π
∂y

are both increasing with θi for i = P, A.

Examples of such functions include firm’s profits, production costs, revenues from mar-

keting a product, as well as utility functions (e.g. benefits from consuming a level of public

good y). For instance, uP (y, θP ) might stand for the revenue from marketing y units with

a demand level θP (e.g. uP (y, θP ) = (θP − y)y) or a price θP (then uP (y, θP ) = θP y) while

uA(y, θA) = −c(y, θA) where c is a production cost function with marginal cost decreasing

with θA.

Three stages can be defined to evaluate player’s payoffs: ex ante, before players have

received any private information; interim, when each player i has received his or her pri-

vate information θi but does not know the other’s information; ex post, when the state

θ is public. The corresponding ex ante, interim and ex post payoffs are, respectively,

Eθ[Ui(y(θi, θj), t(θi, θj), θi)], Eθj [Ui(y(θi, θj), t(θi, θj), θi)], and Ui(y(θi, θj), t(θi, θj), θi) for

i = P,A, j 6= i.8

An allocation rule {y(θ), t(θ)} is a menu of allocations (y(θ), t(θ)) contingent on each

state of nature θ ∈ Θ.

Definition 1 The allocation rule {y(θ), t(θ)} is Bayesian incentive-compatible (BIC) for

i if

θi ∈ arg max
θ̃i

Eθj

[
Ui(y(θ̃i, θj), t(θ̃i, θj), θi)

]

8The terminology is similar to Holmström and Maskin [3]. Eθj (Eθ) denotes the expectation operator

over θj (θ).
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for every θi ∈ Θi, θj ∈ Θj, and for j 6= i.

Definition 2 The allocation rule {y(θ), t(θ)} is dominant strategy incentive-compatible

(DSIC) for i if

θi ∈ arg max
θ̃i

Ui(y(θ̃i, θj), t(θ̃i, θj), θi)

for every θi ∈ Θi, θj ∈ Θj, and for j 6= i.

The conditions in Definition 1 (Definition 2) are the standard incentive-compatible con-

straints that allocation rules must satisfy in any direct revelation mechanism in a Bayesian

(dominant) strategy equilibrium. Bayesian incentive-compatibility (dominant strategy

incentive-compatibility) requires that truthful reporting of private information maximizes

the player’s interim (ex post) payoff. Of course, dominant strategy incentive-compatibility

is a stronger requirement in the sense that any DSIC allocation rule is BIC for i but the

reverse is not necessarily true.

In the rest of the paper I will often use the following equivalent formulations of Bayesian

incentive-compatibility and dominant strategy incentive compatibility.

Lemma 1 The allocation rule {y(θ), t(θ)} is BIC for i if and only if:

(i) Eθj [y(., θj)] is non-decreasing,

(ii) Eθj [Ui(y(θi, θj), t(θi, θj), θi)] =

∫ θi

θi

Eθj

[
∂ui

∂θi
(y(x, θj), x)dx

]

︸ ︷︷ ︸
(a)

+Eθj [Ui(y(θi, θj), t(θi, θj), θi)]︸ ︷︷ ︸
(b)

,

for every θi ∈ Θi, θj ∈ Θj, and for j 6= i.

Lemma 2 The allocation rule {y(θ), t(θ)} is DSIC for i if and only if:

(i) y(., θj) is non-decreasing,

(ii) Ui(y(θi, θj), t(θi, θj), θi) =
∫ θi

θi

∂ui

∂θi
(y(x, θj), x)dx

︸ ︷︷ ︸
(a)

+Ui(y(θi, θj), t(θi, θj), θi)︸ ︷︷ ︸
(b)

,
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for every θi ∈ Θi, θj ∈ Θj, and for j 6= i.

Lemmata 1 and 2 set out well-known results in mechanism design, mostly due to Mirrless

[6], in the context of the present model. Formal proofs can be found in Fudenberg and Tirole

[2] and Mas-Colell et al. [4]. Although the second conditions in the above lemma appear

somewhat complex, they have a straightforward interpretation. Condition (ii) in Lemma

1 (Lemma 2) breaks down i’s interim (ex post) payoff into two terms. The second term

(b) is i’s interim (ex post) payoff when of type θi. The first term (a) is the incremental

interim (ex post) benefit of a higher type θi > θi. Condition (ii) stipulates that i must

receive exactly the incremental benefit of reporting truthfully θi.

Definition 3 The allocation rule {y(θ), t(θ)} satisfies ex post participation (or limited

liability) for i if and only if i’s ex post payoffs are non-negative, i.e. Ui(y(θ), t(θ), θi) ≥
0 for every θ ∈ Θ.

A limited-liability incentive rule is an allocation rule that is BIC for both players and

satisfies ex post participation for the agent. This paper examines the equivalent imple-

mentation of incentive allocation rules with sequential communication in the sense defined

below.

Definition 4 A limited-liability incentive rule can equivalently be implemented in a se-

quential mechanism (or with sequential communication) in which i communicates first if

there exists an allocation rule which is:

(i) BIC for i,

(ii) DSIC for j 6= i,

(iii) It satisfies the agent’s ex-post participation constraints,

(iv) It yields the same ex ante payoff to both players as does the limited-liability incentive

rule.

To be equivalently implemented in a sequential mechanism, a limited-liability incentive rule

must satisfy the stronger requirement of dominant strategy incentive-compatibility for one
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player. The sequence of communication determines the identity of this player. Once i has

communicated her or his type honestly, j 6= i selects her or his reporting strategy under

perfect information. Therefore, j’s incentive-compatible constraints must be satisfied ex

post in every state of nature, i.e., in dominant strategy.

I first focus on specific limited-liability incentive rules: those that are implemented in

the informed principal-agent game defined in the next section. I consider all limited-liability

incentive rules in Section 4.

3 Sequential communication in the informed principal-agent

game

Consider the following benchmark game. Suppose that the principal makes an ex ante

take-it-or-leave-it limited-liability incentive rule offer {y(θ), t(θ)} to the agent. If it is

refused, each player gets zero. If it is accepted, the game proceeds. Each player i privately

observes θi. Players simultaneously send direct messages θ̂i which select a single allocation

(y(θ̂P , θ̂A), t(θ̂P , θ̂A)) in the limited-liability incentive rule.

The limited-liability incentive rules implemented in a Perfect Bayesian Nash Equilib-

rium of the benchmark game, denoted {yP (θ), tP (θ)}, are those that maximize the princi-

pal’s ex ante payoff. Although several transfer rules {tP (θ)} can be a solution, the decision

rule {yP (θ)} is unique and easy to characterize under some assumptions. To do that, we

need first to find out the agent’s ex ante payoff. From (ii) in Lemma 1, taking expectation

with respect to θA yields Eθ [UA(y(θP , θA), t(θP , θA), θA)] =

Eθ

[∫ θA

θA

∂uA

∂θA
(y(θP , x), x)dx

]
+ Eθ [UA(y(θP , θA), t(θP , θA), θA)] .

Integrating by parts the expectation with respect to θA in the first term yields

Eθ [UA(y(θP , θA), t(θP , θA), θA)] =

Eθ

[
1− FA(θA)

fA(θA)
∂uA

∂θA
(y(θP , θA), θA)

]

︸ ︷︷ ︸
(a)

+Eθ [UA(y(θP , θA), t(θP , θA), θA)]︸ ︷︷ ︸
(b)

.
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The agent’s ex ante payoff is broken down into two terms. The first term (a) is his ex-

pected informational rent. It is the minimal amount that provides him with incentives to

communicate truthfully. The second term (b) is the agent of type θA’s interim payoff. The

principal sets this term equal to zero to maximize her ex ante payoff while satisfying the

BIC and ex post participation constraints. Therefore, the agent’s ex ante payoff is just (a).

To simplify the notation, denote rA(y, θA) ≡ 1− FA(θA)
fA(θA)

∂uA
∂θA

(y, θA) so that the agent’s ex

ante payoff becomes Eθ[rA(y(θP , θA), θA)]. Due to (1), the principal’s ex ante payoff is

Eθ[π(y(θP , θA), (θP , θA))− rA(y(θP , θA), θA)]. (2)

The decision rule implemented {yP (θ)} maximizes (2). Under some assumptions (specified

later), it is uniquely defined by the following first order conditions:

∂π

∂y
(yP (θP , θA), (θP , θA))− ∂rA

∂y
(yP (θP , θA), θA) = 0, (3)

for all (θP , θA) ∈ Θ. The decision scheme {yP (θ)} solves a trade-off between maximizing

the total surplus and minimizing the agent’s informational rent. As a consequence, except

“at the top” (for the agent), decisions are distorted downward: yP (θP , θA) < y∗(θP , θA)

for all (θP , θA) such that θA 6= θ̄A. The second-order conditions are satisfied under the

following assumption.

(A2) ∂3uA

∂y2∂θA
≥ 0.

Totally differentiating (3) with respect to θA shows that the requirement of yP (θP , .) non-

decreasing holds under the following supplementary assumptions.9

(A3) ∂3uA

∂y∂2θA
≤ 0.

(A4) d
dθA

[
1− FA(θA)

fA(θA)

]
≤ 0.

9Both assumptions imply that ∂2rA
∂y∂θA

(yP (θP , θA), θA) ≤ 0 for every (θP , θA) ∈ Θ which ensures that

yP (θP , .) is increasing for all θP . (A1) and (A2) and the concavity of π(., θ) imply that yP (., θA) is increasing.
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Assumption (A4) states that the “hazard rate” fA(θA)
1− FA(θA) is non-decreasing. It is satisfied

for instance if the density fA is non-decreasing. Assumptions (A1) to (A4) are standard in

mechanism design (e.g. Fudenberg and Tirole [2], Chapter 7). Armed with those assump-

tions, we set out a first result.

Proposition 1 Under assumptions (A1) to (A4), the limited-liability incentive rule imple-

mented in the informed principal-agent game is equivalently implementable in a sequential

mechanism if and only if the principal communicates first.

Proof (If part) Consider the following transfer scheme:

t̃(θP , θA) = −uA(yP (θP , θA), θA) +
∫ θA

θA

∂uA

∂θA
(yP (θP , x), x)dx. (4)

It yields UA(yP (θP , θA), t̃(θP , θA), θA) =
∫ θA

θA

∂uA
∂θA

(yP (θP , x), x)dx. First, since it is non-

negative for every θ ∈ Θ, then the ex post participation constraints hold. Second, by

construction it satisfies condition (ii) in Lemma 2. Moreover, since yP (θP , .) is non-

decreasing for every θP ∈ ΘP , then condition (i) in Lemma 2 is also satisfied and, there-

fore, the agent’s DSIC constraints hold. The above transfer scheme yields to the principal

EθA
[UP (yP (θP , θA), t̃(θP , θA), θP )] = EθA

[π(yP (θP , θA), (θP , θA)) − rA(yP (θP , θA), θA)] at

the interim stage. Since yP (θP , θA) maximizes π(y(θP , θA), (θP , θA))−rA(y(θP , θA), θA) for

every (θP , θA) ∈ Θ, then θP maximizes EθA
[π(yP (θ̂P , θA), (θP , θA)) − rA(yP (θ̂P , θA), θA)]

with respect to θ̂P and, therefore, the allocation rule {yP (θ), t̃(θ)} is BIC for the principal.

(Only if part) First, I show that any allocation rule that equivalently implements

{yP (θ), tP (θ)} must assign zero ex post payoffs to the agent of type θA. Suppose it is

not the case. Suppose that an allocation rule that equivalently implements {yP (θ), tP (θ)}
assigns a strictly positive ex post payoff to the agent in say state (θ′P , θA). Then, due to

the ex post participation constraints, the agent of type θA’s interim payoff is also strictly

positive. Using the definition of the BIC conditions for the agent in Lemma 1, applying

the expectation operator on θA and integrating by parts as before, shows that the agent’s

ex ante payoff is then strictly higher than Eθ[rA(y(θ), θA)]. Therefore, ex ante, the princi-

pal obtains strictly less than the maximal value of Eθ[π(y(θ), θ) − rA(y(θ), θA)] obtained
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with simultaneous communication which contradicts that the allocation rule equivalently

implements {yP (θ), tP (θ)}.
Second, I show that any limited-liability incentive rule that yields zero ex post payoffs

to the agent of type θA violates the principal’s DSIC constraints. Since the agent gets

nothing in states (θP , θA) for every θP ∈ ΘP , the principal obtains the surplus, namely

π(yP (θP , θA), (θP , θA)), in those states. Since yP (θP , θA) < y∗(θP , θA) for every θP ∈ ΘP ,

then there exists a type θ̂P > θP such that π(yP (θ̂P , θA), (θP , θA)) > π(yP (θP , θA), (θP , θA))

for any θP ∈ ΘP , which implies that the principal prefers to send the message θ̂P rather

than revealing truthfully θP .10 ¤

Proposition 1 posits that, in the context of an informed principal-agent game with

an agent ex post participation constrained, there is no loss of efficiency if communication

occurs sequentially if and only if the principal communicates first.

In the principal-agent model, the principal gets the ex ante surplus net of the agent’s

expected informational rent. One way to achieve this ex ante payoff while satisfying the

agent’s DSIC and ex post participation constraints is to assign to the agent his ex post

incremental gain of reporting truthfully his type (the term (a) of part (ii) in Lemma 2).

With such an allocation rule, the principal obtains the total surplus net of the agent’s

informational rent not only at the ex ante but also at the interim stage. When sending

the message θ̂P , the principal selects a subset of decisions {yP (θ̂P , θA)}θA∈ΘA
in the set

{yP (θ)}. She would obviously select the one that maximizes her interim payoff when of

type θP which is {yP (θP , θA)}θA∈ΘA
. She therefore reports truthfully her type θP . In other

words, the allocation rule is BIC for the principal.

On the other hand, to satisfy the agent’s BIC and ex post participation constraints, the

limited-liability incentive rule must assign to the agent the incremental gain of reporting

truthfully his type at the interim stage, i.e., the term (a) of part (ii) in Lemma 1. The

principal gets the surplus net of this rent. She therefore obtains all the surplus when the

agent’s type is θA. Since decisions are distorted downward (and assuming that the agent
10Notice that the argument holds for a measurable set around θA.
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reports truthfully θA), she prefers to report a higher type ex post.11 Hence, the incentive

allocation rule cannot be BIC for the agent, DSIC for the principal while assigning non-

negative payoffs to the agent.

For example, suppose that uP (y, θP ) = (θP − y)y and uA(y, θA) = −(α − θA)y with

θP + θA > α > θ̄A. Suppose further that θA is uniformly distributed in ΘA. Then

π(y, θ) = (θP + θA − α − y)y is maximized at y∗(θP , θA) = 1
2(θP + θA − α). The prin-

cipal’s maximization objective in (2) is (θP + 2θA − α − θ̄A − y)y. It is maximized at

yP (θP , θA) = 1
2(θP + 2θA − α− θ̄A), which is strictly lower than y∗(θP , θA), except “at the

top” θ̄A. To achieve the principal’s ex ante payoff in the benchmark game while satisfying

the agent’s BIC and ex post participation constraints, the agent of type θA’s ex post payoffs

must be nil. It implies that the principal must obtain all surplus when the agent is of type

θA whatever her type is. If she communicates last, the principal chooses θ̂P that maxi-

mizes is ex post payoff π(yP (θ̂P , θA), (θP , θA)) = 1
4(2θP − θ̂P −α + θ̄A)(θ̂P + 2θA−α− θ̄A).

Therefore, she reports θ̂P = θP + θ̄A − θA > θP for every θP ∈ ΘP .

As a next step, I further investigate the informed principal-agent game, imposing non-

negative payoffs for the principal as well. It is easy to show that, if uA is concave in θA,

then the allocation rule {yP (θ), t̃(θ)} (which is defined in (3) and (4)) assigns non-negative

ex post payoffs to the principal. Indeed, the principal obtains in state θ:

UP (yP (θ), t̃(θ), θP ) = π(yP (θ), θ)−
∫ θA

θA

∂uA

∂θA
(yP (θP , x), x)dx. (5)

Since π(yP (θP , θA), (θP , θA)) ≥ 0 for every θP ∈ Θ, all we have to show is that the right-

hand term in (5) is non-decreasing in θA. Differentiate (5) with respect to θA and use the

envelope theorem to compute:

∂π

∂θA
(yP (θ), θ)− ∂uA

∂θA
(yP (θ), θA)−

∫ θA

θA

∂2uA

∂θ2
A

(yP (θP , x), x)dx.

Since ∂π
∂θA

(yP (θ), θ) = ∂uA
∂θA

(yP (θ), θA), then the above term is non-negative under the

assumption ∂2uA

∂θ2
A

(yP (θ), θA) ≤ 0 for all θ ∈ Θ.

11If her type is say θ′P < θ̄P , she prefers to report θ′′P > θ′P (ideally θ′′P such that yP (θ′′P , θA) = y∗(θ′P , θA)

if it exists) in order to maximize the surplus which is also her payoff.
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Corollary 1 Suppose uA(y, .) is concave for any y ∈ Y, then Proposition 1 also holds when

the principal’s ex post payoffs are constrained to be non-negative.

Corollary 1 provides a clear link between communication order and bargaining power

when both players are treated similarly regarding ex post participation. It states that

sequential communication performs as well as simultaneous communication if and only if

the player who has bargaining power (the principal) moves first.

4 Equivalent implementation of limited-liability incentive rules

with sequential communication

In this section I examine the equivalent implementation of any limited-liability incentive

rule12, i.e. not only the one implemented in the principal-agent game. Indeed other limited-

liability incentive rules might be considered. For instance, a regulator might want to imple-

ment the ex post efficient decisions {y∗(θ)} with a specific divide of the (maximal) ex ante

surplus Eθ[π(y∗(θ), θ)]. Suppose that this can be done with simultaneous communication.

Is it possible to rely on a (more decentralized) sequential mechanism?

Notice that, in this section, the “principal” refers to the player with unbounded ex post

payoffs. She is privately informed and does necessarily have all the bargaining power.

It is useful to show that the DSIC condition combined with the ex post participation con-

straints imposes specific lower bounds on the agent’s payoff. From (ii) in Lemma 2, taking

expectation with respect to θA yields, for all θP ∈ ΘP , EθA
[UA(y(θP , θA), t(θP , θA), θA)] =

EθA

[∫ θA

θA

∂uA

∂θA
(y(θP , x), x)dx

]
+ UA(y(θP , θA), t(θP , θA), θA).

Integrating by parts the expectation with respect to θA in the first term yields, for all

θP ∈ ΘP ,

EθA
[UA(y(θP , θA), t(θP , θA), θA)] = EθA

[rA(y(θP , θA), θA)] + UA(y(θP , θA), t(θP , θA), θA).

12Recall that limited-liability incentive are allocation rules that are BIC for both players and satisfy ex

post participation for the agent.
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The ex post participation constraints require the second right-hand term to be non-negative,

therefore, for all θP ∈ ΘP ,

EθA
[UA(y(θP , θA), t(θP , θA), θA)] ≥ EθA

[rA(y(θP , θA), θA)]. (6)

The conditions (6) set lower bounds on the agent’s shares of the surplus once θP is public

information (e.g. after that the principal has truthfully revealed her type θP when com-

municating first). Since the total surplus is divided among the two players (see (1)), these

conditions set upper bounds on the principal’s interim payoffs, i.e., for all θP ∈ ΘP ,

EθA
[UP (y(θP , θA), t(θP , θA), θP )] ≤ EθA

[π(y(θP , θA), (θP , θA))− rA(y(θP , θA), θA)] (7)

Notice that, in the principal-agent game, (7) is binding for each θP . That is precisely

why the principal has an incentive to select the subset of decisions {yP (θP , θA)}θA∈ΘA
that

maximizes her interim payoffs, i.e. the right-hand side of (7), by communicating truthfully

her type θP . Yet it might not bind for other divides of the surplus.

It turns out that the above conditions (7) combined with condition (i) of Lemma 2 is not

only necessary but also sufficient for the equivalent implementation of an limited-liability

incentive rule when the principal moves first.13

Proposition 2 Under assumption (A1), a limited-liability incentive rule {y(θ), t(θ)} can

be equivalently implemented in a sequential mechanism in which the player with unbounded

ex post payoffs communicates first if and only if her interim payoff when of type θP does

not exceed EθA
[π(y(θP , θA), (θP , θA))− rA(y(θP , θA), θA)] and y(θP , .) is non-decreasing for

all θP ∈ ΘP .

Proof (If part) Consider a limited-liability incentive rule {y(θ), t(θ)} that satisfies

Proposition 2’s conditions. Consider further the following transfer scheme for every θ ∈ Θ:

t′(θP , θA) = −uA(y(θP , θA), θA) +
∫ θA

θA

∂uA

∂θA
(y(θP , x), x)dx + γ(θP ),

with

γ(θP ) ≡ EθA
[π(y(θP , θA), (θP , θA))− rA(y(θP , θA), θA)− UP (y(θP , θA), t(θP , θA), θP )].

13I thank an anonymous referee for pointing out an error in a previous version of the paper.
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First, I show that {y(θ), t′(θ)} is BIC for the principal. Apply the expectation operator

over θA and use (1) to compute EθA
[UP (y(θP , θA), t′(θP , θA), θP )] =

EθA

[
π(y(θP , θA), (θP , θA))−

∫ θA

θA

∂uA

∂θA
(y(θP , x), x)dx

]
− γ(θP ).

Integrating by parts yields

EθA
[UP (y(θP , θA), t′(θP , θA), θP )] = EθA

[π(y(θP , θA), (θP , θA))−rA(y(θP , θA), θA)]−γ(θP ).

Substitute for γ(θP ) and the last relationship simplifies to:

EθA
[UP (y(θP , θA), t′(θP , θA), θP )] = EθA

[UP (y(θP , θA), t(θP , θA), θP )]. (8)

Therefore, since {y(θ), t(θ)} is BIC for the principal, so is {y(θ), t′(θ)}.
Second, I show that {y(θ), t′(θ)} is DSIC for the agent. The agent obtains ex post in

each state θ a payoff ∫ θA

θA

∂uA

∂θA
(y(θP , x), x)dx + γ(θP ), (9)

which satisfies condition (ii) in Lemma 2 with γ(θP ) = UA(y(θP , θA), t(θP , θA), θA) for

all θP ∈ ΘP . Moreover, since y(θP , .) is non-decreasing by assumption, it also satisfies

condition (i) in Lemma 2.

Third, the agent’s ex post payoff in (9) is non-negative for all θ ∈ Θ because γ(θP ) is

non-negative for all θP ∈ ΘP by assumption (see (7)).

Lastly, (8) shows that {y(θ), t′(θ)} yields the same interim payoff and, therefore, same

the ex ante payoff as the limited-liability incentive rule {y(θ), t(θ)} to the principal. Fur-

thermore, (8) combined with (1) yields for every θP ∈ ΘP :

EθA
[UA(y(θP , θA), t′(θP , θA), θA)] = EθA

[UA(y(θP , θA), t(θP , θA), θA)].

Applying the expectation operator over θP shows that {y(θ), t′(θ)} yields the same ex ante

payoff to the agent than {y(θ), t(θ)}.
(Only if part) The necessary conditions follow from condition (i) in Lemma 2 and the

implication of condition (ii) in Lemma 2 established in (6) and then (7). ¤
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The upper bounds (7) on the principal’s interim payoffs might be an issue if the principal

has outside options at the interim stage. All sequential mechanisms (that equivalently

implement a limited-liability incentive rule) might fail to assign to the principal an interim

payoff higher than the benefits from the outside options for some types θP . In contrast,

with simultaneous communication, the agent’s BIC constraints are in expectation over θP

and, therefore, do not bound the agent’s share of the surplus for any type θP .

I now close the paper with an example in which the conditions (7) might be a problem.

Assume that y is a level of pollution which yields a benefit uP (y, θP ) to the producer but

causes an environmental damage −uA(y, θA) to an agent (e.g. the local population). The

producer compensates the agent for the environmental damage with a transfer t(θP , θA)

contingent to the benefit of pollution θP and its cost θA (both are private information). A

regulator wants to implement the ex post efficient levels of pollution {y∗(θP , θA)} under the

“polluter pays principle” which obliges the producer to pay for the environmental damages.

This principle forces the agent’s ex post payoffs to be non-negative. Furthermore, suppose

that the producer has an outside option to produce elsewhere with a benefit denoted uP (θP ).

The regulator wants also to avoid this delocalization. The ex post efficient levels might

be implementable with a direct revelation mechanism (while satisfying the polluter pays

principle and the producer’s interim participation constraints) but not with a sequential

mechanism if uP (θP ) > EθA
[π(y∗(θP , θA), (θP , θA)) − rA(y∗(θP , θA), θA)] for a measurable

set of types θP . That is if the producer’s outside option sometimes exceeds the total surplus

net of the agent’s informational rent at the interim stage.
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