Intertemporal Depletion of Resource Sites by Spatially
Distributed Users

By GERARD GAUDET, MICHEL MOREAUX, AND STEPHEN W. SALANT*

Mineral deposits and other exhaustible re-
sources are scattered around the globe—as are
their users. Yet the theory for analyzing deple-
tion of such resources assumes that all resource
sites and all users are located in the same place.
When applying the theory, therefore, one is
forced to disregard what often seems to be an
important real-world consideration. Our pur-
pose here is to generalize Harold Hotelling’s
(1931) theory of exhaustible resources to ac-
commodate situations in which resource sites
and their users are spatially distributed.

Our analysis has many applications. It can be
applied to a conventional exhaustible resource
like oil. Alternatively, it can be applied to an
unconventional exhaustible resource like scarce
landfill space.' Shipments of solid waste to
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' When a city transports solid waste to a particular land-
fill, the reader should envision the landfill as instead ex-
tracting the displaced volume of space and shipping it to
that city. Space in existing landfills can be augmented either
by expanding old ones or creating new ones. However,
because these activities are costly, the theory of exhaustible
resources is still applicable, as noted by Ni-Bin Chang and
Richard E. Schuler (1990), F. Dunbar and M. Berkman
(1990), Mark J. Ready and Richard C. Ready (1995), and
many others. All of these papers use the Hotelling (1931)
model to analyze landfill depletion but none takes account
of the spatial dimension of the trash trade.
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landfills in other states or countries have become a
prominent public policy issue (Eduardo Ley et
al., 2000). Finally, our analysis can be applied
in situations where the “space” reflects not geo-
graphical location but characteristics of the re-
source (e.g., the sulfur content, hardness, and so
forth, of coal) which users find distinctive.”
Only two theoretical papers in resource eco-
nomics have introduced spatial considerations.?
Jean-Jacques Laffont and Michel Moreaux
(1986) studied the extraction of resources from
sites located along a line segment with all users
at one end. Charles Kolstad (1994) was the first
to consider spatially distributed users. In his
formulation, consumers are distributed uni-
formly along a line segment with resource sites
at each end. Kolstad’s approach, although inno-
vative, requires that the set of users be parti-

2 Our generalization may have other important applica-
tions as well. Recently, the standard Hotelling model was
used to determine how intensively different antibiotics
should be used when the usage of each “depletes” its effec-
tiveness in killing a single type of bacteria [see Gardner
Brown and David F. Layton (1996) and Brown and Ra-
manan Laxminarayan (2001)]. To be more relevant, this
important work needs to be generalized to the case of
“multiple types of bacteria.” But this involves precisely the
generalization developed here.

3 There have been several complex computerized models
that do take account of spatial dimensions, although they are
too large to shed much light on the general principles
underlying the socially efficient allocation. For example,
William D. Nordhaus (1973) introduced spatial consider-
ations into his study of the socially efficient exploitation of
the world’s energy resources. More recently, Ujjayant
Chakravorty et al. (1997) simulated an energy model in
which the distance between the final users and the resources
refers to product space rather than actual distance. Re-
sources and users are assumed to share one location but
various resources (oil, coal, natural gas, or solar energy) can
satisfy different end uses (electricity, heating, transporta-
tion) after a conversion cost is paid, which depends on the
particular resource and end use. These costs of conversion
play the same role as the cost of transporting the resource to
the user in the spatial interpretation: for example, one must
go to “greater lengths” to convert coal to transportation than
to convert oil to transportation but can convert either re-
source to heating with equal ease.
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tioned between the two sites at every instant.
This formulation does not generalize to other
spatial configurations and hence is of little use
in applications.

Unlike Kolstad, we focus not on resource
sites but on the final users (we call them “cit-
ies”). This change in perspective simplifies the
problem and permits us to analyze the general
case where cities and the resource sites they
utilize can be located anywhere. We extend our
analysis to take into account that extraction may
involve “setup costs” before it can begin.*

We show that three basic principles of social
efficiency must hold whether or not there are
setup costs: each city (1) never uses more than
one site at any given time; (2) always uses that
site, among those that are set up, with the lowest
full marginal cost (defined as including not only
the per-unit cost of extraction and transport but
also the imputed per unit cost of having one less
unit of the resource); and (3) never reduces its
usage when it switches sites.

In addition to these basic principles, three
characteristics of the optimal allocation are par-
ticularly striking. First, in the absence of setup
costs, the per-unit cost of the successive sites
used by any given city must form an increasing
sequence—the multicity generalization of the
one-city result of Orris C. Herfindahl (1967).
Second, if one site can serve each of two cities
more cheaply than another site but one city can
switch to the other site at a smaller increase in
cost, then efficiency requires that this city be the
first to switch to the more costly site—an ap-
plication of the principle of comparative advan-
tage.” As a timely illustration, recall that New
York City plans to ship its solid waste to Vir-
ginia now that its local facility, Fresh Kills, is

“1In the nonspatial context, account of setup costs has
been taken by Murray C. Kemp and Ngo Van Long (1984)
and John M. Hartwick et al. (1986). Martin L. Weitzman
(1976) also proposed a method for solving the problem of
minimizing the present discounted cost of supplying a fixed
flow of a depletable resource from many deposits, when the
average cost of extraction from a deposit depends on how
much has already been taken out of it. A positive setup cost
with constant marginal cost of extraction can be viewed as
a special case of such a cost configuration.

5 Ujjayant Chakravorty and Darrell L. Krulce (1994)
deserve credit for being the first to demonstrate an analo-
gous result in a nonspatial example with two resources and
two end uses under one assumed ordering of costs.
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closing. This plan seems on its face inefficient
because there are landfills in New Jersey with
spare capacity. Our analysis shows when such a
plan can be efficient. Finally, in the presence of
setup costs, social efficiency may require that a
site that is partially drawn down be abandoned
by every city temporarily before some city re-
turns to it. This last result requires at least three
resource sites and hence cannot arise in Kol-
stad’s two-site configuration with a mine at each
end of a line segment.

In the next section, we describe the general
problem when many users and many sites of the
resource are arbitrarily distributed in the plane.
In Section II, we apply these conditions to de-
scribe the optimal intertemporal and spatial al-
location when there are no setup costs. In
Section III, we extend the discussion to the case
with setup costs. Section IV suggests several
extensions and concludes the paper.

I. The General Problem

There are n resource sites and m cities lo-
cated anywhere in the plane. The cities can be
considered as m different potential users of the
finite volume of resources available at each of
the n sites. The stock of resources available at
these sites can be thought of as stocks of fossil
fuels, minerals, or landfill space.

Assume that the marginal cost of extracting
resources from site 7 and transporting it to city
k is constant and denote it c,;. Further assume,
to eliminate even the possibility of indetermi-
nacies over time, that for any city no two sites
have the same marginal cost. The setup cost of
site i will be denoted F; = 0. Given that we will
focus on the optimization problem of a social
planner, all these costs are to be interpreted as
social costs, and hence are inclusive of any
external costs generated by the setting up, ex-
traction, and transportation of the resource from
the site to the city.

We will denote by S,(#) the remaining re-
source stock at site 7 at time ¢ and by S? > 0 the
given initial reserves at that site.® The quantity

¢ The initial reserves at a site may be infinite, in which
case it should be interpreted as a spatially located “back-
stop,” for example, solar energy as a backstop alternative to
fossil fuel exploitation or incineration as a backstop alter-
native to landfilling.
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of the resource allocated to city & from site i at
date ¢ will be denoted ¢,,(#) = 0. The total
quantity of the resource consumed by city & at
date ¢ is therefore g., (1) = 27— q,(¢) and the
total quantity consumed by all cities from site 7
is q;.(t) = Z'— | q.4(?). The total utility derived
by city k from its resource consumption at date
tis Up(q..(t)). Total utility is assumed to be a
strictly increasing, strictly concave function
with U,(0) = 0 and U}(0) finite.” The social
rate of discount will be denoted » and 7, will
denote the date at which the setup cost is in-
curred for site i.

To allocate the resource stocks over cities and
over time in an efficient manner, the planner will:

T

max e D | Uilgu (1)
k=1

{qi (O}, 7, T o

- E ciuqu (1)

i=1

dt— >, e '"F,,
i=1

subject to

M S == 2 qu

k=1

i=1,..,n

7 In the case of landfills, the utility function represents
costs saved by not having to rely entirely on recycling (or
source reduction). Assume the waste stream of city &
(denoted w,) cannot be reduced. Instead it must be either
(1) recycled or (2) landfilled somewhere. Denote the total
cost of recycling at rate z as Cx(z), where this function
is strictly increasing and strictly convex with C,(0) = 0
and Cjy(w,) finite and strictly positive. As a simplifica-
tion to eliminate corner solutions, assume C%(0) = 0.
Then we can interpret U,(q..(?)) as the recycling costs
saved by landfilling at rate q.,(f) = wy, so that recycling
occurs at the reduced rate w, — q..(t) : Uu(q..(t)) =
Cr(wy) — Cr(w, — q.(2)). This utility function is
defined for ¢.,(¢) € [0, w,] but given our assumption
that C%(0) = 0, the planner will always confine himself
to g.,(t) € [0, w;). Note that for this interval the utility
function satisfies the properties assumed throughout: it is
strictly increasing, strictly concave, passes through the
origin and has a finite, strictly positive first derivative at
zero. In the optimal allocation, the planner recycles city
k’s waste to the point where the marginal cost of recy-
cling additional waste equals the full marginal cost of
landfilling it at the least costly of the n sites. For further
discussion and the generalization that incorporates source
reduction, see Gaudet et al. (1999).
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) qu()=0, gut)=0 Vi<m,
S.(0)=28°  S(T)=0,
i=1,..,n k=1, ..., m

Call this problem P. It can be decomposed
into two subproblems. Subproblem P/ consists
in solving problem P for given 7, = 0’s. Sub-
problem P2 then consists in solving

max J(7,, Ty, o, Ty)

7=0

where J(7,, 75, ..., T,) is the optimal value of
the program generated by P/. Given the station-
arity of the exogenous functions, it is optimal to
incur at least one setup cost at date 0 as long as
it is optimal ever to use some resource site. Hence
7; = 0 for one or more values of i, i = 1, ..., n.

The current value Hamiltonian associated
with Problem P/ is:

B) H= 2 | Ulg(t)

k=1

- E Lew + A(D)]gu(D) |.

i=1

It measures the total social value derived by all
the cities from consuming the resource at date ¢,
net of all the associated costs, including the total
imputed value of the resource being depleted.
The variable A,(¢) denotes the imputed value of
a unit of resource at site i at time z.

Problem P/ requires that fori = 1, ..., n and
k =1, ..., m the following conditions be sat-
isfied for all + = 7;:

“4) qu(t) = 0,
Ui(q () — ey = Ai(1) = 0,
[U(q () = ci = Xi(0)]qu(t) = O
(5) A (1) = \e.

In addition, at the terminal date 7, the following
transversality conditions must hold:
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(6) H(')|r: 0
(7 A(T1)S(T) =0, A(T) = 0,
S/(T) =0, i=1, .,n.

The economic interpretation of these neces-
sary conditions merits discussion. Condition (4)
is necessary to maximize at each date the Ham-
iltonian associated with problem P/. If city k is
using site i at date ¢, then condition (4) requires
that the marginal utility derived from using site
i be equal to the full marginal cost of doing so.
This “full marginal cost” includes not only the
costs of extracting the resource from site ;i and
transporting it to city k, but also the imputed
cost [A/(#)] of depleting an extra unit of the
resource at site i. This imputed cost takes ac-
count of the net utility forgone in not being able
to consume that marginal unit of the resource at
a future date—perhaps at a different city. Con-
dition (4) also says that if the full marginal cost
of city k using site 7 at date 7 strictly exceeds the
marginal benefit, city k£ should not use that site
[¢,(t) = 0] at that date.

Condition (5) is nothing but the Hotelling
rule of nonrenewable resource exhaustion (Ho-
telling, 1931) applied to each resource site i,
i =1, .., n. It says that the shadow value
assigned to the marginal unit of the resource
remaining at the site must grow at the discount
rate r.

The terminal conditions (6) and (7) serve to
determine the optimal values of 7, the date at
which all the resource sites are exhausted, and
of the A,(7T)’s. Condition (6) requires that the
value of the Hamiltonian (H)—which measures
the total surplus net of the opportunity cost of
the resource being depleted—be zero at the
terminal date 7. If instead it were strictly pos-
itive, then the depletion program could be im-
proved upon by delaying somewhat the terminal
date.® By substitution for the A,(7)’s from (4),
one verifies that, because marginal cost is inde-
pendent of the remaining resource stock and the
utility functions are strictly concave, condition
(6) implies that no resource site be operating at
a positive rate at the terminal date [i.e., ¢,.(7) =

8 Because we assume U,(0) to be finite for all k =
1, ..., m, then T will necessarily be finite.

SEPTEMBER 2001

0 forall i = 1, ..., n]. Condition (7) says that
the value of the remaining reserves must be zero
at the terminal date 7. Again, in that marginal
cost at any date ¢ is independent of the remain-
ing reserves, this will require that all sites be
exhausted at the terminal date, with A7) > 0
being determined by the condition that S,(7) =
0 be satisfied.

Three basic results follow directly from con-
ditions (4) and (5). First, it is never optimal for
a city to use more than one site over any inter-
val of time.” For suppose city k were using
simultaneously both site i and site j over some
interval At > 0 ending at time ¢. Since this
means that g,(¢) > 0 and ¢,,(¢) > 0 over that
interval, conditions (4) and (5) imply that
[U4(g(D), — cule " = [U(qu(t — At) —
cale T and [Uig(t) — cple =
[Ui(gu(t — A1) — c;Je” "~ 29, Subtracting
the second of these equations from the first, we
find that they imply c; — ¢y = (¢ —
cjk)e’A’ . But this is impossible because, by as-
sumption, 7 is positive and ¢, # ¢, for all i # ;.

Second, among all the resource sites that are
already set up, each city will, at any given date,
use only the one with lowest full marginal cost.
This result follows given that maximization of
H at each ¢ with respect to g,,(¢) requires that,
for each k£, we maximize

Hy=Ui(qi (1) = 2 [ew + A (0]gu (),
i=1

with respect to g,,(¢), subject to 27_ q;.(?) =
q.,(t) = 0. This maximization can be achieved
by first maximizing H, over ¢;(f) = 0 subject
to some specified ¢.,(¢) and then maximizing
over all ¢g.,(#) = 0. Given the linearity of the
full total cost and the linearity of the constraint,
which implies that the sites are perfect substi-
tutes in use, the first maximization always re-
quires that for all ¢ and for all &, ¢,,(¢) be set to
zero except for the one for which the full mar-
ginal cost ¢;; + A,(¢) is smallest among all the
sites that are set up.

° This result is a consequence of our assumption of linear
technologies. If sites were instead capacity constrained or
had strictly convex cost functions, then it could be efficient
for the same city to use more than one site over an interval
of time.
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Third, when a city switches from one re-
source site to another, its consumption of the
resource does not jump down. Indeed, as we
have just shown, if city k& switches from site i to
site j at some date 7, then it must be the case that
¢ + A(T7) = ¢y + A(77). Otherwise, the
city would be switching to a site with a strictly
larger full marginal cost, in violation of the
previous result. Intuitively, the planner would
assign a different site to a given city only if one
became available with a (weakly) cheaper full
marginal cost. It follows from condition (4) that
Ui(gui(t7)) = Uj(g.(77)). By the concavity
of the utility function, this means that g.,(7")
= g (1 ).

The solution to problem P2 will determine the
optimal setup dates for each resource site. We
leave the discussion of the necessary conditions
for problem P2 to Section III, where we discuss
the consequences of allowing for setup costs. The
case where there are no setup costs, to which we
now turn, is equivalent to a situation where all
sites are already set up at # = 0. In that case, those
necessary conditions are trivially satisfied.

II. No Setup Costs

If the cost of setting up sites is negligible
(F; = 0), then it is optimal to set up every site
at the outset and we can focus on P/. In the
absence of setup costs, the objective function in
P1 is strictly concave in the rates of shipment
from site i to city k and any program satisfying
both the equation of motion [equation (1)] and
conditions (5)—(7) must be optimal.

The following algorithm can be used to solve
the entire set of first-order conditions itera-
tively: (1) assign to each site an initial multiplier
and let each multiplier subsequently grow at the
exogenous rate of interest; (2) for each of the m
cities, assemble the set of the » full marginal
costs available at each date and assign to that
city at that date the site with the smallest full
marginal cost; (3) assume that each city uses the
designated site to the point where the marginal
benefit from additional usage equals the full
marginal cost; (4) determine the cumulative us-
age of each site over time and across cities and
compare the cumulative usage to the initial re-
serves of that site; (5) if, for each site, cumula-
tive usage exactly matches the initial stock, then
the optimum has been identified; (6) otherwise,
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the multipliers must be revised and the process
repeated. A gradient algorithm will converge to
the unique solution. It is straightforward to ver-
ify that every first-order condition will then be
satisfied.

In the optimal program, resources with dif-
ferent marginal costs may be utilized at the
same time. As Kolstad (1994) points out, this
contrasts with the one-city case where no site
with a higher per-unit cost is utilized until every
site with a lower per-unit cost is exhausted
(Herfindahl, 1967).

A. The Generalized Herfindahl Principle

Clearly, no aggregate statement about the or-
der of extraction can be made in the multicity
case. However, Herfindahl’s insight continues
to apply at the city level. That is, each city will
use resource sites in the order of their marginal
costs. Hence, if city k ever uses sites i and j and
Cjx > Ciy then it must complete its usage of site
i before it begins its usage of site j. The proof
mirrors that in the one-city case. There are two
logical possibilities: either A; = A; or A; > A
In the former case, the full marginal cost of
using site 7 is always smaller for city & than the
corresponding cost of using site j and city &
would never use site j, contradicting the hy-
pothesis that city k& eventually uses both sites.
Hence, A; > A;. If city k uses one site and then
the other, there will come a date (¢,), defined by
e+ ey o= Ne™ + ¢y, when city k is
indifferent between the two sites. Subsequent to
that date, city £ must use site j because its full
marginal cost (the left-hand side above) is smaller;
prior to that date, city £ must use site i because its
full marginal cost (the right-hand side above) is
smaller. It may not be optimal for some city to use
one or more of the n sites. However, those sites
utilized by any given city must be utilized in order
of the marginal cost of serving that city.

B. The Principle of Comparative Advantage

The generalized Herfindahl principle requires
that if sites 7 and j serve cities 4 and B even-
tually and site i can serve each city at a smaller
cost, then each city will use the cheaper site
(site 7) first. The principle is, therefore, consis-
tent with (1) both cities switching from site i to site
J at the same time or, alternatively, (2) either of the
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FIGURE 1. CITY 4 SWITCHES TO A MORE COSTLY SITE BEFORE THE CURRENT ONE IS EXHAUSTED

two cities being the first to switch from site i to
site /.

The principle of comparative advantage sup-
plements the generalized Herfindahl principle
by further restricting what can be optimal. It
determines which city is the first to switch to the
higher-cost site. Suppose 0 < ¢;; — ¢;y <
¢;p — ¢;p so that social costs increase more if
city B (rather than city 4) uses a unit from site
j instead of site 7. Then site j has a comparative
advantage in serving city A, even if it has no
absolute advantage. In such cases, it is efficient
for city A to switch to site j, even though city B
remains with site i. To verify this, let 7, denote

the date when city A switches from site 7 to site J.
At that date, (\; — A)¢"™ = ¢;; — ¢,,. But because
Ciy = Ciy < Cip — Cyp, city B will still utilize site
i because it has a smaller full marginal cost than
site j, even though city 4 is switching to site j. The
situation is depicted in Figure 1.

That it is optimal for city 4 to utilize the more
costly site, even though space remains in the
less costly one may still seem counterintuitive.
We conclude, therefore, by verifying directly
that this assignment cannot be improved upon.

At g,

) ciy T Nje™=ci + Ne™,
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and city 4 begins using site j instead of site 7. At
tp > ty,

9) cigt Ne = cjp+ Ae',

site i is completely depleted, and city B begins
using site j. Therefore, for t € [z, t5], city 4
is using site j while resources are still available
at site i and ¢;; < ¢;4.

Transferring a unit of consumption from site
jtositeiatt € [t,, tp] results in a cost saving
of e”"(c;4 — ¢;4) > 0. However, because site
i will be exhausted by city B at ¢, this transfer
must be offset by a similar transfer from site i to
site j by city B at some date (z + Ar) € [¢, t,].
This last transfer will result in a cost increase of
e "UTA9(c,; — c¢;5). Hence, the resulting
overall cost saving, in fresent value terms, is
eirt[(CjA —cy) — e ¢ — ¢p)l, which is
nonpositive.”~ Therefore the program cannot be
improved upon by such a transfer and it is
indeed optimal for city A to switch to the higher-
cost resource site j before the lower cost site 7 is
fully used up.

III. Extension to the Case of Setup Costs

Readying resource sites before they can be
extracted is often a costly undertaking. To
broaden the applicability of our analysis, we
now take account of setup costs. The analysis is
more complex because we must derive and ex-
amine the conditions that hold when problem
P2 is solved.

Let M,(7,) C {1, 2,.., m} denote the
subset of cities that switch to site i when it is set
up at 7, and let 2(k) € {1, 2, ..., n}, h(k) #
i, denote the resource site used by city & just
before switching to site i. Then the following
conditions must be satisfied at 7;:

2 Gk(Qh(k)k(T;)) + rF;

Mi

(10)

=2 Gulgu(r)))

M;

1% Replacing the cost differences in the text by differ-
ences in shadow values (appropriately discounted) using
conditions (8) and (9), we can rewrite the cost saving as
e (e — " IBTAN (N, — X)) = 0.
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and

> Gi(@nw (7)) e (T7)

M;

)

= E Glrc(qik(T:r))q.ik(T:)a

i

where Gi(q;) = Ulqi) — Ulg:i)qi Be-
cause when site 7 is used by city &k, Uj(g;.) =
¢, + N, we can rewrite this as G,(q,;) =
Udlg) — (i + Neg;. Hence, it is the
gross utility that city &k obtains from consuming
¢ units of the resource from site i net of the
full cost (including the imputed cost) of extract-
ing and transporting it from site i.""

Condition (10) is a first-order condition. It
implies that it is optimal to delay setting up site
i if the interest saved by postponing the setup
cost is strictly greater than the loss in net con-
sumer surplus from having to use the old sites a
little longer. In making this calculation, the
planner must take into account the loss in con-
sumer surplus at every city that would have
switched to site 7 if it were opened at 7,.

Condition (11) is a second-order condition.
Because Gi(q;x) = —Uj(qi)q;; and, by the
necessary conditions to problem PI, U7(q;.)q i
= X\, = rA,, this condition is best rewritten as

1

(12) > Mo (T @i (77)

M;

= /\i(T;—) Z qik(T;—)'

M;

It says that the imputed value of the total quan-
tity of the resource being consumed just after
the switch to site / must be no greater than the

' Condition (11) must hold in order for the Hessian of
J(7y, T5, ..., T,) to be locally negative semidefinite. Con-
dition (10) must hold in order for the derivatives of J(7,,
T,y ... , T,) With respect to 7,, i = 1, ..., n, to be zero.
Notice that the first-order condition for the corner case at
7; = 0 can be obtained by replacing the first term on the
left-hand side of condition (10) by zero and its equality sign
by a weak inequality sign, indicating that the right-hand side
is at least as large as the left-hand side. That is, if it is
optimal to open site i at # = 0, then the net benefit from
opening it must be at least as large as the interest that would
be saved by delaying its opening.
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total imputed value of that consumed just before
the switch.

With only one city and many resource sites,
the conclusions of Hartwick et al. (1986) apply
immediately. As in the case without setup costs,
the city must exploit the resource sites in strict
sequence: each site must be exhausted before
going on to the next. However, unlike the case
without setup costs, sites need not be exploited
in order of their marginal costs; it may be op-
timal, for example, to postpone usage of a site
with the lowest marginal cost if opening it in-
volves relatively high setup costs.

It is easy to see that opening sites in order of
their marginal costs is no longer necessary for
an optimum in the presence of setup costs. For
suppose the lone city is city & and that it
switches at 7; from site i to site j, which re-
quires that a setup cost of ; > 0 be incurred at
that date. Then, remembering that it never uses
more than one site, we deduce from the first-
order condition (10), which must hold at 7;, that
qjk(fr ) > qu(T;): the city’s resource con-
sumption jumps up. The second-order condition
(11), which must also hold at 7;, can be written

Ni(7) = AT ) qu(T))
= M(1)(qu (7)) = qul(7)).

Because the right-hand side is strictly positive,
so must be the left-hand side, and hence A(7;) >
A (’T ). Now the city’s consumption path must
also satisfy, at all ¢, the first-order condition (4),
and, as a result, Cik. + A (7 ) < clk + A (7).
This does not require ¢ 2 e

In the case of many cmes and many resource
sites with setup costs, the three basic results
established in Section I still hold: each city
never uses more than one site at any given time,
always uses the one with the lowest full mar-
ginal cost among all those that are set up, and
never reduces its usage when it switches sites.
But they admit a very remarkable possibility as
well. Not only can it be optimal for a city to

12 Recall that in the one-city case with no setup cost, the
first-order condition (4) implies c¢;; + A7) = c¢; +
Ai(7)), which requires ¢ > c,k because A; (T) > A7) by
condition (12). In this case ; is the date at whlch the city
switches from site i to site j ‘at zero setup cost because all
the sites are assumed already set up at the outset.
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exploit a high marginal cost site before a low
marginal cost one (because of the presence of
fixed costs) or to abandon a low marginal cost
site in favor of a higher cost one while the low
cost one is still available (because there are
other cities using the sites whose behavior has
an impact on their full marginal cost) but a city
may well abandon a site and come back to it at
a later date. In optimizing, the planner may thus
appear to vacillate.

Clearly, this requires that the city switch from
a higher-cost site to a lower-cost site when it
abandons the site originally and then from a
lower-cost site to a higher-cost site when it
resumes usage of the abandoned site. This can
never happen in the case of a single city with or
without setup costs because, in all such cases, a
site must be fully depleted before it is aban-
doned and there can be no point in returning to
it. Nor can this ever occur with multiple cities in
the absence of setup costs. For, although it is
possible for a city to switch to a higher-cost site
while a lower-cost site is still available, it is
never optimal to refurn to the low-cost site
because transitions for any given city must al-
ways be to sites with higher marginal costs. The
possibility requires both multiple cities and
setup costs. As we have discussed, when there
are multiple cities it is sometimes optimal for a
city to abandon a site, even though that site is
not fully depleted. When there are also setup
costs, the site that city abandons may be a
high-cost site, which has been exploited before
a low-cost one has been set up. Once the lower
cost site is set up, however, the city must switch
to it because it would be, among the sites set up,
the one with the lowest full marginal cost. Once
that site is exhausted, however, a return by that
city to the abandoned site would be a standard
transition to a site of higher marginal cost.

This counterintuitive result is best understood
with the help of an example. Assume there are
two cities (cities 4 and B) and three resource
sites (sites 1, 2, and 3). For the sake of the
discussion, we may assume that the cost of
transporting a unit of the resource from a par-
ticular site is strictly proportional to the distance
from the site to the city and that, other than the
setup cost, this is the only cost. Assume that
sites 1 and 2 have no setup cost (F, = F; = 0)
but that site 3 has a very large setup cost (5 >
0). Site 2 is small, whereas sites 1 and 3 are
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FIGURE 2. WITH SETUP COSTS, SITE 1 IS ABANDONED AND LEFT COMPLETELY IDLE UNTIL CITY A RETURNS TO EXHAUST IT

larger. Site 1 is closer to city 4 than it is to city
B (¢,4 < c,p) and it is closer to city 4 than is
site 2 (¢4 < ¢54)- Site 3 is located at city 4
(¢34 = 0), whereas city B is equidistant from
sites 2 and 3 (c,5 = C3p)-

Now pick the shadow values of the resource
stocks such that A, > A5 > A, ¢y < A5 — Ay
and ¢;5 — ¢, > A;. We then have ¢, ;, + A, >
iyt A >c3 tAyandez + A > cpp +
Ay > ¢35 + A5. The resulting time paths of
marginal utility at each city are depicted in
Figure 2.

Given the fact that sites 1 and 2 are already
set up and that site 3 has a very large setup cost,
at first city 4 uses site 1 and city B uses site 2.
Site 2 is relatively small and is exhausted by

city B at some date 75, whereas site 1 still has
some reserves left. However, because the cost
of transporting the resource from site 1 to city B
is very high, it becomes optimal to set up site 3,
even though this means incurring a setup cost of
F5. Once set up, it becomes advantageous to
have city 4 switch to site 3 as well, given that
the full marginal cost of site 3 to city 4 is
smaller than that of site 1 (¢;, + A(73) >
¢34 T A5(73)). Because A5(f) and A, (¢) both
grow at the same constant rate and Ay > A, ¢34
+ A5(7) will eventually cross ¢, , + A, (¢) from
below at, say, date #’. It therefore becomes
optimal for city A to return to site 1 at ¢’
because beyond that date ¢, , + A (7) < ¢34 +

A5(2).
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Along each path just described, resource con-
sumption is given by equalizing marginal utility
at each city to the full marginal cost of the site
being used, calculated using the shadow values
picked initially. The necessary condition (4) is
therefore satisfied. So is the necessary condition
(5), by having the shadow values grow at the
same constant rate of discount. The switching
date 75 is chosen to satisfy the necessary con-
dition (10). As for the second-order condition
(12), which requires that the imputed value of
the total resource stock being consumed not
jump up when a switch occurs, it may be written

(A3(73) = A1 (75))q34(73)
+ (A3(735) = A (75))g35(75)
= M (13)(q14(75) = q34(73))
+ A (73)(q25(73) = q35(75)).

Notice that, although it constrains the A,’s, the
fact that Ay(13) — A,(13) > 0 and Ay(75) —
A,(75) < 0 does not prevent the condition from
being satisfied. Hence, it is possible to set the
multipliers and F; so that the necessary condi-
tions are all satisfied and then to choose initial
stocks so that the usages required in this exam-
ple are exactly available.

IV. Conclusion

We have generalized the standard model of
nonrenewable resource depletion to the com-
mon situation where reserves and users are lo-
cated arbitrarily over space and transport costs
are nonnegligible. As we have shown, a variety
of new phenomena can arise. Although every
city will use resources in the order of its mar-
ginal costs, it may be socially optimal for some
cities to abandon a nearby resource site in pref-
erence for a more distant and more costly site,
even though other cities continue to exploit the
nearby site. Even though the distant site would
have no absolute advantage in serving either
city, it must always have a comparative advan-
tage in serving one of them. This puts New
York City’s plan to ship its waste to Virginia,
even though a closer site has capacity in New
Jersey, in a new light: the plan is not, on its face,
inefficient. We also show that, in the pres-

SEPTEMBER 2001

ence of setup costs, it may be socially optimal
for every user patronizing a particular site to
abandon it, even though reserves remain—and
then for some users to return to it after a delay.
This “vacillation result” has no counterpart ei-
ther in models that ignore spatial considerations
entirely or, alternatively, in those that restrict
the location of mines to the ends of a line
segment.

Our analysis has many applications—to con-
ventional resources like oil, to unconventional re-
sources like scarce landfill space (see Ley et al.,
2000), and to resources whose characteristics can
be envisioned as “close to” or “far from” what
heterogeneous consumers regard as ideal. Our
generalization will permit many applications to be
addressed without having to ignore what is often
an important feature of the problem.
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