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Abstract

We use rich microeconomic data on performance and choices of students at college entry

to analyze interactions between the selection mechanism, eliciting college preferences through

exams, and the allocation mechanism. We set up a framework in which success probabilities

and student preferences are shown to be identified from data on their choices and their exam

grades under exclusion restrictions and support conditions. The counterfactuals we consider

balance the severity of congestion and the quality of the match between schools and students.

Moving to deferred acceptance or inverting the timing of choices and exams are shown to

increase welfare. Redistribution among students and among schools is also sizeable in all

counterfactual experiments.
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1 Introduction1

Thematching literature provides analyses of mechanisms allocating goods or relationships between

many parties in the absence of a price mechanism, and examples range from kidney exchange

and marriage to school choice (see Roth and Sotomayor, 1992, Roth, 2008). The analysis of

centralized mechanisms in school choice as a many-to-one match has been very popular in the

recent theoretical and empirical literature (for instance Abdulkadiroğlu, Agarwal and Pathak,

2017, Agarwal, 2015, Azevedo and Leshno, 2016, Budish and Cantillon, 2012, Calsamiglia, Fu and

Guell, 2018, Chen and Kesten, 2017, He, 2017, Agarwal and Somaini, 2018, among others) and

has had practical value for policy implemented in primary or high schools in various countries.

College choice adds the new dimension of elicitation of college preferences over students which

is of secondary importance in primary and high-school choice. This elicitation process costs time

and money because of congestion if application costs are low. This market friction is large when

the allocation is decentralized as in the US (Che and Koh, 2016 and Chade, Lewis and Smith,

2014) but not only. Even with centralized mechanisms, for instance, used by universities in China

(Chen and Kesten, 2017) or Turkey (Balinski and Sonmez, 1999), it is costly to organize a general

exam whose results determine students’ranking while keeping up with the quality of selection in

decentralized systems. This is why these exams are generally composed of proofs in different fields

(maths, literature etc) and at times consist of two stages. The first stage selects out students

at minimal costs while the second stage allows for a costly but more precise evaluation (Hafalir,

Hakimov, Kübler and Kurino, 2018).

In this paper, we analyze the interactions between allocation mechanisms and selection when

college choice is centralized. College preferences are not taken as granted as in the matching

literature and they are costly to elicit. We exploit an admittedly specific college choice experiment

1This is a much revised version of a previous paper entitled "College Choice and Entry Exams" by two of

the coauthors that has been circulated since 2009. We thank the co-editor and two anonymous referees for their

insighful suggestions. Useful talks and interactions with Yinghua He, Philipp Heller, Jean-Marc Robin, Bernard

Salanié and comments by participants at conferences in Brown, Bristol, Atlanta, Northwestern, Shanghai, Rio de

Janeiro, IAAE’15 and San Francisco as well as seminars at Oxford, CREST, CEMMAP, Cambridge, Amsterdam,

Barcelona, Manchester and Bern are gratefully acknowledged. This research has received financial support from

CNPq (Project 21207) and the European Research Council under the European Community’s Seventh Framework

Program FP7/2007-2013 grant agreement N◦295298. The usual disclaimer applies.
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in order to quantify some of the trade-offs that matching and selection involve. Our observational

"experiment" uses observed entry exam grades and choices between schools within a Federal

University in Brazil in 2004.

A mechanism called vestibular was in place in this University and worked as follows. During

their last high school year, students chose a single specialization field or "school"2 before taking a

two-stage exam at the end of high school. The first stage is a cost-minimizing multiple question

exam common to all fields and selects but the top-ranked students for a more in-depth and

specialized second-stage exam. Aggregating scores of both exams yields the final rankings and

admissions into each school.

This paper aims at evaluating the effects, on student allocations and their welfare, of changing

the allocation mechanism and the selection device with respect to the existing vestibular. In the

absence of experiments (Calsamiglia, Haeringer and Klijn, 2010) or quasi-experiments (Pathak

and Sonmez, 2013), estimating a structural model is key to our empirical strategy. We construct

such a model of college choice, exhibit conditions under which parameters are identified and derive

empirical counterfactual results on outcomes and welfare.

The paper makes three original contributions.

Our first contribution is to adopt a two step empirical strategy that uses first information on

performance at the two-stage exams to estimate success probabilities at each school. Second, we

estimate preference parameters from observed school choices when students play strategically by

taking into account their expected probabilities of success (Arcidiacono, 2005, Epple, Romano and

Sieg, 2006). As far as we know, the previous empirical literature does not estimate school choice

models in which students face uncertainty about their entrance exam scores. This is permitted

by our rich data on exam scores as well as on an initial measure of ability obtained a year before

the exams are taken.

Our second original contribution is to derive conditions under which expected success proba-

bilities of entry and preferences are identified from observing the distribution of grades and college

choices. Students play a “congestion”game in which choices of other students affect their own

success probabilities. We adopt specific and admittedly strong assumptions to solve this game.

The solution concept we use is a Nash equilibrium. Students have symmetric information about

2We use the terms "college" and "school" interchangeably for these fields in the following.
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random shocks on grades i.e. they know their distribution functions only and the information set

of students and econometricians is the same. We also assume that expectations are perfect in

the sense that they can be obtained by infinitely repeating the game with the same players. We

justify these assumptions in the specific context of our empirical application.

We show that the distribution of success probabilities can be obtained by resampling in our

observed sample and by using Nash equilibrium conditions. We derive from the latter, grade

thresholds for being admitted in a specific college at each exam stage and show that success

probabilities are identified. We then provide a proof of non parametric identification of preference

parameters by using, as in Matzkin (1993), exclusion restrictions and conditions that success

probabilities fully vary over the simplex. This proof of identification specifically deals with two

prevalent issues in college choice. First, data are likely to be choice-based. Second, outside options

play a much more important rôle than in school choice (Agarwal and Somaini, 2018) since the

number of candidates is well above the number of seats, by a factor of 15 in our data.

Our third original contribution is to analyze the aggregate and distributive effects on allocation

and welfare of students and schools of three different counterfactual mechanisms that play with

the trade-offs between congestion costs, the adequacy of student selection and the quality of the

resulting match. These three experiments aim at analyzing salient policy issues in the current

debates on school choice (Roth, 2018).

In the first experiment, we restrict the number of seats available at the second stage exam.

We argue that it reduces screening costs for schools at the risk of degrading selection of adequate

students. The counterfactual effect on matching quality we obtain is, however, small. In the

second experiment, students are allowed to submit a list of two choices instead of a single one

in order to get closer to a Gale-Shapley deferred acceptance mechanism. It indeed results in a

positive aggregate effect in terms of utilitarian social welfare though it also has distributive effects.

Strategic effects in the original mechanism are shown to be sizeable. Interchanging the timing of

choices and the first exam is the basis of our third counterfactual experiment. We allow students

to choose colleges after passing the first-stage exam instead of having them to choose before this

exam. This allocation mechanism is quite popular, as in Japan for instance (Hafalir et al., 2018).

As expected it has strong redistributive effects between schools and between students since it

favors more opportunistic behavior.
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Related Literature

This paper touches different strands of the matching and school choice literature.

Analyzing the matching of students to schools has a long history and a brief survey of the recent

literature in which differences between school choice, college admission and student placement are

rigorously defined is available in Sonmez and Ünver (2011). Prominently in this literature, Gale-

Shapley deferred acceptance mechanisms satisfy both properties of stability and strategy-proofness

(on the student side if students propose) if preferences are strict (e.g. Abdulkadiroğlu and Sonmez,

2003). If such a mechanism is used, the elicitation process through which schools decide on their

ranking of students has very little impact on the preference lists submitted by students. The

use of deferred acceptance mechanisms, however, could involve larger congestion costs than other

non-stable mechanisms (He and Magnac, 2018) such as deferred acceptance with a truncated list

of preferences as is the case with the mechanism we study in this paper. The truncation is severe

since the list of schools is of length one.

The seminal analysis of college admissions by Balinski and Sönmez (1999) was theoretical

albeit oriented towards the analysis of a specific mechanism. They studied the optimality of

student placement in Turkish universities in which selection and competition among students are

nationwide unlike our case. Students choose a rank-ordered list of colleges prior to writing exams

in various subjects. Student rankings are constructed using exam grades, and are allowed to differ

across colleges by weighting subjects differently. Grades in mathematics are given more weight by

math schools.

Most of the empirical litterature on matching, however, is concerned by primary or high school

choices. Abdulkadiroğlu, Pathak and Roth (2009) study the mechanisms used in the New York

high school system and focus on the trade-offs between effi ciency, strategy-proofness and stabil-

ity. This research line on primary and secondary schools questions the relative standing of the

Gale-Shapley and the Boston mechanisms (Abdulkadiroglu, Pathak, Roth and Sönmez, 2006).

Others analyze the Boston mechanism as He (2017) who uses school allocation data from Beijing

and evaluates the cost of strategizing for sophisticated and naive agents. The question of the

importance of truncated lists of preferences used in practice in deferred acceptance mechanisms

is high on the agenda in recent research about middle or high school choices (Calsamiglia et al,

2018, Fack, Grenet and He, 2017).
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School and college choice, however, differ in a number of dimensions and the questions set

out in this paper are more specific to college choice. College preferences over students depend on

their past investments in human capital and abilities and not only on priorities given by residence

and siblings. This implies in particular that colleges have strict preferences over students and the

arguments underpinning the debate between the choice of allocation mechanisms such as Deferred

Acceptance and Boston can be misleading for college choice. Furthermore, demand for colleges is

not localized and is much larger than supply.

In the most recent literature demands for colleges are estimated in Hastings, Kane and Staiger

(2009) to study how enlarging choice sets might have unintended consequences for minority stu-

dents. In Agarwal (2015), medical schools and medical residents preferences are estimated using a

two-sided school choice model. Fu (2014) estimates demand and supply equations when students

have heterogenous abilities and preferences and when college applications are costly and uncertain.

Akyol and Krishna (2017) also estimates a structural model of high school choice using Turkish

data in order to understand whether the higher standing of elite schools is due to selection or

to value added. As the allocation mechanism in place is deferred acceptance, preferences can be

directly estimated from rank-ordered lists. It is remarkable that they find that estimates of value

added are small.

To our knowledge, there is no comparative survey of college admission procedures in different

countries. There exist empirical papers about the "parallel" mechanism used in China (Chen and

Kesten, 2017 or Zhu, 2014) or descriptive analyses in Turkey (Dogan and Yuret, 2012) or in Egypt

(Selim and Salem, 2009). Abizada and Chen (2011) analyze the eligibility restrictions to college

access that gives a way of reducing costs of evaluation of students by colleges. A descriptive

analysis of the mechanism centralized at the level of the country, which has been used in Brazil

since 2010, is provided by Aygun and Bo (2017) and Machado and Szerman (2017).

The most obvious distinction between college admission procedures is their degree of central-

ization. Decentralized models of college choices, as in the United States, are studied by Chade,

Lewis and Smith (2014), Che and Koh (2017) and Hafalir et al. (2018) among others. In the

last paper, low and high ability students are shown to have different preferences over centralized

and decentralized mechanisms and a small literature about centralization is surveyed there. Con-

gestion is reduced by either making students pay an application cost or by making them choose
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only one college. In Chade et al (2014), school preferences are noisy signals of students’abilities

and college strategizing can lead to ineffi cient sorting of students. The use of waiting lists might

lead to unstable mechanisms. In Che and Koh (2017), the uncertainty of student preferences

makes schools play strategically and this leads to ineffi cient and unfair assignments because the

management of offers and acceptance of offers is uncertain and takes time.

Centralization may avoid the costs of congestion if colleges do not have to deal with all student

files. It also streamlines the competition between colleges. Yet, centralization assumes that college

preferences are adequately translated by the information revealed at a general exam (Hafalir et

al., 2018). In a decentralized system like in the US, many other elements than the SAT score

are evaluated and the selection is multidimensional. The two-stage exam set-up tries to mitigate

the reduction in selection quality. The selection mechanism used in our empirical illustration is

broadly akin to the Japanese experience in which a first stage centralized exam is followed by a

second-stage exam decentralized at the level of each university on the same day which effectively

avoids congestion (see Hafalir et al., 2018). The choice of college and the sequential exams are

also akin to the system now in place in South Korea (Avery, Lee and Roth, 2014). As a matter

of fact, these two-step revelation procedures of school preferences are rather common (job market

for PhDs, "grandes écoles" in France) although their interaction with the allocation mechanism

is seldom studied in the literature (although see Lee and Schwartz, 2017).

Last, Agarwal and Somaini (2018) developed independently after us a proof of non-parametric

identification of preferences in a school choice model. It either relies on exogenous variation in

the environment, i.e., in expected success probabilities, as in our case, or on the existence of a

special regressor, such as distance to school and quasi-linearity of preferences. Their more-in-

depth analysis of the latter case is specifically suited to school choice in primary and secondary

schools, while our results bear on college choice. It is indeed more credible there that success

probabilities continuously vary, for instance because of grades, than in the case of school choice

in which only discrete priorities matter. Conversely, a special regressor such as distance is likely

to be irrelevant in college choice. Overall the intuition for both results is based on Matzkin (1992,

1993). We investigate more in depth which preference functionals are identified when there is

exogenous variation in the environment and specifically because of the presence of outside options

and choice-based sampling.
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The paper is organized in the following way. Section 2 describes our modelling assumptions

for college choices, the formation of expectations and the conditions under which preferences are

identified. Section 3 presents the particulars of our empirical application, explains the estimation

and computation of success probabilities and the estimation procedure of preference parameters. It

also summarizes results from the estimated coeffi cients of grade and preference shifters. Section 4

details the results of the three counterfactual experiments. A Supplementary Appendix, available

upon request, gathers the details and results of our many procedures.

2 Theoretical set-up

We start by describing a framework, encompassing our empirical application, in which we provide

modelling tools and identification results. We abstract from some aspects of the empirical appli-

cation, such as the two-stage nature of exams, that do not bear on general results and are clarified

in the empirical Section 3.

The first subsection defines notation, formalizes the timing of events for students and describes

the primitives of the decision problem and the observed variables. Students are assumed to play

an imperfect information game in which information on future grades is imperfect but symmetric

and its distribution known by agents. Students have no private information and we assume that

the solution concept is Nash. In particular, observed characteristics and preference shocks of

students are common knowledge. The construction of this set-up in terms of information sets and

expectations is presented in the second subsection. We also derive the necessary conditions for a

Nash equilibrium.

The final subsection provides conditions under which student preferences are identified.

2.1 Timing for the decision maker

Firstly, we adopt a simplifying framework in which students choose, according to their preferences,

one and only one school among many within the University to apply to, as in our empirical

application. Rank-ordered lists submitted by students are thus highly truncated and more so

than in the empirical application of Agarwal and Somaini (2018) in which rank-ordered lists are

of length three. The main reason for adopting such a setting is that it does not change the list
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of identified objects. We retrun to this point after stating our identification results. It is worth

mentioning that this is akin to the identification results of Agarwal and Somaini (2018) which

are insensitive to the allocation mechanism in place provided that certain conditions are satisfied

(Definitions 1-3, pp.407-8) excluding top-trading cycles. In this sense, having rank-ordered lists

of length one is the minimal observational requirement for preferences to be identified. This also

calls to mind that observing the ranking of alternatives in multinomial choices does not enlarge

the set of identified objects but allows them to be more precisely estimated.

Second, student preferences can be monetary or non monetary and describe the consumption

value of education (Alstadsæter, 2011, Jacob, McCall and Stange, 2012) as well as its investment

value. The latter is derived from earnings that a degree from a specific school raises in the labor

market.

We omit the individual index for readability. A random variable, say D, describes school

choice and takes as realization, a specific school, j. The set of available schools is denoted by a

discrete set of indices, J , to which we add an outside option, D = ∅. We denote J = card(J ) the

number of available schools. Observed student characteristics which affect preferences (respectively

performance or grades) are denoted X (respectively Z) and variables X and Z can be overlapping.

We describe the assignment mechanism by a simple sequence of four steps. At each step,

students obtain information or make decisions.

• School capacities: Every school announces the number of seats available or its capacity,

nj.

• Choice of school: Students apply to one and only one school among available options,

j ∈ {∅} ∪ J . The outside option j = ∅ means that one forfeits the opportunity to get

into one of these schools and either chooses another university, searches for a job or any

other alternative (waiting until next year, staying at home). After that stage, students are

allocated, according to their school choices, to J sub-samples which are observed in our

empirical application. We do not observe students who choose an external option and in

this sense we have a choice-based sample.

• Exam stage: All students take a single exam or multiple exams, identical across schools,

and exam grades are aggregated into a single grade denoted m and written as a function of
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characteristics, Z, as:

m = m(Z, u; β)

in which u are random individual circumstances that affect results at these exams and β is

an unknown parameter. College preferences are formed using these heterogenous grades.

• College entry: In each subsample, defined by D = j, students are ranked according to

their values of grade m and the first nj students are accepted in school j that they have

chosen previously. This selection can be expressed using a threshold, T j, that describes the

set of successful students by the condition, m ≥ T j (as in Azevedo and Leshno, 2016). Those

who succeed receive a value, V j, describing their preferences. Those who fail, get the value

of their outside option that we normalize to 0. Individual rationality implies that j is never

chosen if V j < 0.

There could be additional decision nodes to consider if the value of outside options evolves

over time because of the selection process. Students could leave the game after taking or passing

exams because grades could give students a way to signal their ability to potential employers or

other universities. This would modify the value of the outside option after the exam stage. This

is why, in our empirical application, we select elite schools which are so attractive that almost no

students quit after taking or passing exams.

Determining choices is now easy. Define the probability of success in school D as:

PD = Pr(m(Z, u; β) ≥ TD),

in which we delay until next section the precise definition of the probability measure for ran-

dom thresholds TD since it depends on the definition of information sets and expectations. The

expected value of choosing school D at the time of the choice is given by:

EV D = PDV D,

and, as the outside option has value zero, choosing j ∈ J is described by the choice-based condition

maxk∈J (V k) > 0. Moreover, maximizing expected utility leads, for any j ∈ J , to:

D = j iff maxk∈J (V k) > 0 and ∀k ∈ J /{j};P jV j > P kV k. (1)
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We shall specify later on, values as functions V j(X, ε; ζ) in which X are observed characteristics,

ε is an unobservable preference random term and ζ are preference parameters. It is enough at this

stage to define choices as D(X, ε, ζ, {P j}j∈J ).

2.2 Expectations and Nash Equilibrium

We now state our main assumptions, formalize the timing, explain how student beliefs about

success probabilities are formed and finish by the Nash equilibrium conditions.

2.2.1 Stochastic assumptions, information and solution concept

We first argue that the following assumptions are adapted to our empirical setting:

Assumptions S(etting):

(S.i) Preference shocks, ε, and grade shocks, u, are independent of (X,Z) and between each

other, and both are continuously distributed.

(S.ii) The solution concept is a Nash equilibrium. Students have common knowledge of the

sample-specific preferences, εi, characteristics, Xi and Zi as well as common knowledge of grade

equation parameters, β, and preference parameters, ζ.

(S.iii) The information of students and econometricians on the distribution of random grade

shocks, u, and characteristics, Xi and Zi is symmetric.

(S.iv) The distribution of grades is such that ∀j ∈ J , P j > 0 almost everywhere PZ .

In Assumption S.i, independence of shocks and (X,Z) is a standard exogeneity assumption

while it is key in the following that preference shocks, ε and grade shocks, u, are independent.

It is akin to the usual assumption in consumer studies that income and preference shocks are

independent. A relaxation of this assumption would require an instrumental strategy that is beyond

the scope of this paper.3

Assumption S.ii is a complete information set-up that we adopt for two reasons. First, school

choice at this University is a game which had been repeated every year over a long time span

and which had high stakes for students, families, high schools and preparatory courses alike. The

strategizing ability seems more acceptable in our set up than in the case of primary or high schools

3We test and do not reject an implication of this assumption in the empirical section, conditional on admittedly

specific auxiliary conditions.
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(for instance, see He, 2016). The time period over which a student ability is assessed is much longer

and many other agents like parents or teachers are ready to help out students to form expectations

(see Manski, 1993, for a critical appraisal of such assumptions). Second, a Bayesian-Nash solution

concept would be appropriate when agents have private information about their preference shocks,

εi. Yet, as this congestion game involves many players, it can be conjectured that strong laws of

large numbers ensure that the two set-ups are close in terms of aggregate outcomes.

Assumption S.iii might be more controversial since it posits that students have no better

knowledge of their own success probabilities than their fellow students or econometricians. First,

school choices are shown below to ultimately depend on the ratio of success probabilities in the

different schools. Any superior knowledge of an individual specific effect affecting success is partly

wiped out by this non linear differencing. Second, we use an observable pre-exam national grade

in the empirical application to control for superior knowledge. We will briefly return to the effect

that the existence of superior information could have on our procedure at the end of this section.

Finally, Assumption S.iv makes sure that a pure strategy is optimal almost surely for all

students and simplifies the analysis of the game.

2.2.2 Timing

The timing of information revelation, described in the previous section, is formalized as follows.

Before schools are chosen, the number of seats in each school, {nj}j∈J are announced and the

total number of participants, say n+ 1, is observed. We assume that n+ 1 >>
∑

j∈J n
j since the

Vestibular exam is highly selective.

We distinguish one arbitrary applicant, indexed by 0, from all other applicants, i = 1, ., n,

and we analyze her decision making. We can proceed this way because we are considering an

independently and identically distributed (i.i.d.) setting and because the model is assumed sym-

metric between agents (although they differ ex-ante in their observed characteristics and ex-post

in their unobserved shocks). Applicant 0 faces the n other applicants and we shall construct her

best response to other players’choices, {Di}i=1,.,n ≡ D(n) since we use a Nash solution concept

(Assumption S.ii). The information set of student 0 at the initial stage comprises at least all

elements of W0 = (X0, Z0, ε0), X(n) = {Xi}i=1,.,n, Z(n) = {Zi}i=1,.,n and D(n).

Student 0 chooses her school (D0 ∈ J ) as a function of her success probabilities, {P j
0}j∈J ,
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and her preferences as shown in equation (1). Because of Assumption S.iv, student 0 plays a pure

strategy almost surely. This is her best response to the aggregate behavior of other students on

which success probabilities depend. In this sense this is an aggregative game (Jensen, 2010) and

we will later make use of this characteristic.

After choosing one school, the exam is taken and students are selected in or out of each school,

j, by retaining the best nj students and this defines the thresholds as functions of observed grades.

There are two types of risks that student 0 faces. First, the aggregate risks due to grade shocks

affecting other students, U(n) whose elements are ui, i = 1, ., n, second the individual risks due to

her own grade shock, u0. Integrating out both risks allows success probabilities to be derived as

the rational expectations of success of student 0.

2.2.3 Success probabilities and best responses

Denote Zj
(n) the set of grade shifters of the sub-sample of students i = 1, ., n applying to school

j ∈ J that student 0 considers when she computes her best response to D(n). By construction

Z(n) = (Zj
(n))j∈J . Similarly, we denote U

j
(n) the corresponding components of U(n). We shall see in

the next subsection how sub-samples are derived from primitives. Denote T = (T j)j∈J the random

vector of exam thresholds that determine entry into each school, j ∈ J and whose realizations

are observed thresholds (tj)j∈J . These thresholds are random unknowns at the initial stage since

they depend on variables, u, that are random unknowns at the initial stage.4

Should school j be chosen by student 0, her success would be determined, considering the

sample of other students, by the binary condition

1{m(Z0, u0, β) ≥ T j(Zj
(n), U

j
(n))}.

Given that the Nash solution concept, S.ii, fixes the sample of applicants to school j, threshold

T j(.) for school j ∈ J only depends on the characteristics of applicants to this school, Zj
(n), and

on their grade shocks, U j
(n). Because grades are continuously distributed (Assumption S.i), we can

also neglect ties. The existence of thresholds resembles what Azevedo and Leshno (2016) derived

in a different context of a stable equilibrium with an infinite number of applicants.

4We adopt the term random unknowns to signal that the distribution function of those unknowns are common

knowledge. Measurability issues are dealt with below.
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The formal construction of these thresholds is explained below after having determined choices

but the intuition is clear. School j threshold that student 0 considers is equal to the grade obtained

by the nj-ranked student in i = 1, . . . , n. These thresholds are not explicitly indexed by 0 although

they refer to the thought experiment that student 0 performs when constructing her expectations

as a function of characteristics and strategies of other students i = 1, ., n.

When student 0 decides upon a school to apply to, she formulates expected probabilities of

success by integrating the condition of success with respect to the aggregate source of risk described

by U j
(n) (remember that student 0 observes Z(n) and conditions on D(n)) and with respect to the

individual source of risk, u0:5

P j
0 = P j(Z0, Z

j
(n), β) = EUj

(n)
,u0

[
1{m(Z0, u0, β) ≥ T j | Z0, Z

j
(n)

]
,

= EUj
(n)

[
pj(Z0, T

j, β) | Z0, Z
j
(n)

]
, (2)

in which the following function results from integrating out the individual shock, u0, only:

pj(Z0, T
j, β) = Eu0

[
1{m(Z0, u0, β) ≥ T j | Z0, T

j
]
. (3)

Note that the only influence of U(n) is through thresholds which are suffi cient statistics. They do

not depend on the determinants of student preferences, X0 and X, except through revealed school

choices and they depend on Zj
(n) only through T

j that are computed below. We use the exclusion

of Xs below for identification.

Denote D0(X0, ε0, ζ, {P j
0}j∈J ) ∈ J the best response of applicant 0 resulting from equation

(1). Given that the sample is i.i.d and that 0 is an arbitrary representative element of the sample,

we can by substitution construct the samples of applicants to school j by using:

Zj
(n) = {i ∈ {1, ., n};Di(Xi, εi, ζ, {P k

i }k∈J ) = j}.

It is thus clear that the application mapping Z(n) into Z
j
(n) is measurable although it remains to

be shown that the application mapping Z(n) into thresholds (T j)j∈J is measurable. That is what

we do now.

2.2.4 The determination of the thresholds

We can now return to the determination of thresholds (T j)j∈J , considered by agent 0. For any

realization of U(n), the J Nash equilibrium conditions yield a realization of the thresholds, {tj}j∈J ,
5All expectations exist since integrands are measurable and bounded.
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as:
n∑
i=1

[1{Di = j}1{m(Zi, ui, β) ≥ tj] = nj, (4)

As usual with empirical quantiles, this system has many solutions, tj. We retain the solution

corresponding to the grades of the less well ranked applicant in each school and because ties are

absent with probability one, this solution is unique and a measurable function of Z(n) and U(n).

This defines the random thresholds, {T j}j∈J .

Equations (1) and (4) are necessary conditions for a Nash equilibrium.6 A sketch of proof of

the existence of a Nash equilibrium is spelt out in Appendix A and builds upon tools developed

for potential games with weak strategic substitutes (Dubey, Haimanko and Zapechelnyuk, 2006).

2.3 Identification of Success Probabilities and Preferences

We now study the identification of success probabilities and preferences.

2.3.1 Success probabilities

Success probabilities are expressed, using equation (2), as a function of known variables —char-

acteristics Z0, Z(n) and decisions D(n)—and unknown variables —parameter β, the distribution

of grade shocks, u, and the distribution of thresholds {T j}j∈J . Firstly, the grade equation,

m = m(Z, u; β), identifies parameter β and the distribution of u. Plugging these objects into

the Nash conditions (4), given Z(n) and D(n) and computing thresholds identifies the distribution

of {T j}j∈J . In consequence, success probabilities are identified. In the following, we denote them,

{P j(Z)}j∈J .

In general, the identification of P j(Z) depends on the context which may be less simple than

the one we used here. Yet, it is likely in general that exogenous variation in these probabilities

could be given by various measures of ability, not only of an aggregate type as here, but also by

field-specific grades. In Section 3, we return to the identification of success probabilities in our

empirical application.

6Because the number of applicants is very large with respect to the total capacity, we neglect the occurrence

that seats remain unmatched. In other words, we assume that the probability that one subsample j contains less

than nj students is zero or negligible. At the University under consideration, the average rate of success is between

5% and 20% (Table S.i, Supplementary Appendix).
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2.3.2 Choice-based sample and outside options

We adopt a general random utility set-up in which values are continuously distributed (Assumption

S.i). By the probability integral transform, we can thus always adopt the representation in which

each function V j is monotonic in one unobservable, denoted εj, whose marginal distribution is

uniform on [0, 1].

∀j ∈ J , V j = V j(X, εj) <∞.

Dependence between εjs is left unrestricted and is described by any continuous copula.

There are two issues of concern for identification that distinguishes this proof from Agarwal

and Somaini (2018). The first one regards choice-based sampling since our sample comprises

students interested by at least one school, so that we condition the analysis on the event that

maxj∈J (V j) > 0. Second, we have to consider that only some schools could have positive value

for students and we have to condition the analysis on unobservable latent sets J+ ⊂ J of schools

that provide positive utility. Namely, other schools, in the complement of J+ in J , J c
+ = J /J+,

are strongly dominated by the outside option with probability one.

The finite set J+ whose number of elements is greater or equal to one because of choice based

sampling, is a random set whose distribution is induced by the distribution of random values, V j:

Q(J+ | X) = Pr(∀j ∈ J+, Vj > 0;∀j ∈ J c
+, Vj ≤ 0 | max

j∈J
(V j) > 0, X).

Let us first derive the optimal school choice conditional on J+ and integrate out J+ in a

second step. If set J+ is a singleton, student’s choice is its single element and success probabilities

do not matter. If set J+ has two or more elements, success probabilities affect choices through

the relative values of P jV j (equation (1)). Students may disguise their true preferences and act

strategically. These relative values are positive because set J+ is defined as such and because

P j > 0 by Assumption S.iv. We can rewrite the decision model when j ∈ J+ by taking the

logarithm of equation (1):

D = j if log(P j) + log(V j) > maxk∈J+/{j}(log(P k) + log(V k)), (5)

in which we kept the dependence of V k on X, εk and of P j on Z implicit and in which ties are

of probability zero because of Assumption S.i. Denote ∆jk(Z) = log(P j(Z))− log(P k(Z)) in the
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following and express choice probabilities, by integrating out sets J+, as:

Pr(D = j | Z,X) =
∑

J+;J+⊃{j}

Q(J+ | X) Pr(∀k ∈ J+,∆
jk(Z) > log(V k)− log(V j) | X,Z,J+,J c

+).

(6)

It is useful to consider the two-school example to understand the sequence of proofs below.

The two-school example When the choice set is reduced to two elements, J ={S, F} as in

our empirical application,7 Figure 1 exhibits how we solve the decision problem in each of four

quadrants.

First, the south-west quadrant is composed of individuals who are excluded from the choice-

based sample and its probability measure is not identified. Second, in the north-west quadrant,

V S > 0 andV F ≤ 0, J+ = {S} and school S is necessarily chosen. The probability measure of

this quadrant is

δS(X) = Q({S} | X) = Pr{V S > 0, V F ≤ 0 | max(V S, V F ) > 0, X}

Similarly, in the south-east quadrant, V F > 0 andV S ≤ 0, J+ = {F} and school F is necessarily

chosen. Its probability measure is δF (X) = Q({F} | X). In both regions, students reveal their

true preferences and do not act strategically. Note that identification is ordinal only in these two

quadrants.

This is different in the north-east quadrant since choices can change if success probabilities P S

and P F change. Specifically, school S is chosen if and only if

log(P S) + log(V S) > log(P F ) + log(V F ).

Denoting δSF (X) as the probability of the north-east quadrant, the choice probability regarding

the first school is derived from equation (6):

Pr(D = S | X,Z) = δS(X) + δSF (X) Pr{log(P S)− log(P F ) > log(V F )− log(V S) | X,Z}. (7)

Returning to the general equation (6), we now study the identification of the two following

structural objects; first, the probability measure of each quadrant, Q(J+ | X); second, the joint

distribution of log-value differences, log(V j)− log(V k), in each quadrant J+.

7Our empirical application deals with two schools in two cities, Fortaleza and Sobral, and we use their initials,

F and S, to make easier the recollection of which school we are talking about.
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2.3.3 Identification of preferences

As is well known in discrete models since Manski (1988) and Matzkin (1993), a necessary condition

for identification is the full variation of some regressors, conditionally on others. Those regressors

are here the success probabilities:

Assumption CV (Complete Variation): Almost everywhere (a.e.) PX , the support of

P (Z) = (P j(Z))j∈J , conditional on X, is the set (0, 1)J .

Assumption CV requires first that the set of covariates Z is at least of dimension J and

that their variation induces that the support of success probabilities is the full unit hypercube.

Success probabilities P (Z) act as prices (Azevedo and Leshno, 2016) and the effects of preference

shifters cannot be identified from success probabilities absent exclusion restrictions. This is why

this assumption requires that a suffi cient number of grade shifters, Z, should be excluded from

the list of preference shifters, X. This is akin to the exclusion of school priorities from preferences

in Agarwal and Somaini (2018).

We use equation (6) and make success probabilities vary in the unit hypercube. We adopt

a two-step strategy. First, we show that the probability measures of quadrants, Q(J+ | X), are

identified.

Proposition 1 Under Assumption CV, for any non-empty J+ ⊂ J , Q(J+ | X) is identified.

Proof. See Appendix B.1

The intuition for this proof is better gained by using again the two-school example. The

structural probabilities of each quadrant in Figure 1 are:

{δS(X), δSF (X), δF (X)},

and these appear in equation (7). By Assumption CV, the support of∆SF (Z) = log(P S)−log(P F )

is the full real line and we can identify δS by using the limit of equation (7):

δS(X) = lim
∆SF (Z)→−∞

Pr(D = S | ∆SF (Z), X).

Interchanging S and F identifies δF and δSF (X) = 1− (δS(X) + δF (X)).

Returning to the general case, we now prove identification of the distribution function of log-

value differences, log(V j)− log(V k), in each quadrant J+.
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Proposition 2 Under Assumptions CV and ∀J+ ⊂ J , Q(J+ | X) > 0 a.e. PX , the joint

distribution of Pr((log(V k)− log(V j))k∈J+/{j}, | X,J+,J c
+) is identified a.e. PX , for any J+ ⊂ J ,

and fixing any specific j ∈ J+ as the "reference" alternative.

Proof. See Appendix B.2.

We added the condition that Q(J+ | X) > 0 for simplicity. In the case, Q(J+ | X) = 0,

preferences cannot be identified in set J+ but it has no importance.

The proof of the proposition is by induction over the total number of schools and we thus deal

with the two-school example again to provide the intuition.

A two-school example (ct’d) From equation (7) and assumingQ({S, F} | X) = δSF (X) >

0 , we can form the expression that:

Pr(D = S | ∆SF (Z), X)− δS(X)

δSF (X)
= Pr(∆SF (Z) > log V F − log V S | X,Z) (8)

All terms on the left-hand side are identified and standard arguments (Matzkin, 1993) show that

the distribution of log V S − log V F conditional on X is identified under the condition that the

support of ∆SF (Z), conditional on X, is the full real line.

Returning to the main argument, it is to be emphasized that Proposition 2 states identification

of a joint distribution of preferences within a quadrant. This implies that Propositions 1 and 2 have

the corollary that counterfactuals, investigating alternative mechanisms, are identified and this is

what we use in the empirical application. Expected utilities of a rank-ordered list of any length are

derived from the success probabilities and the joint distribution of differences of values, in each set

J+ of alternatives with positive values. Generally speaking, what matters is that expected utilities

are bilinear functions of the underlying values, V k, and of the success probabilities (equation (7),

Agarwal and Somaini, 2018). The corollary thus applies to all mechanisms described by Definitions

1-3 of Agarwal and Somaini (2018).

We finish by a set of remarks about extensions.

Remark 1 Most importantly, this identification proof is obtained under the restrictive con-

dition that one school only is chosen by students. When a more informative rank-ordered list

comprising several schools can be submitted by students, identified objects in Propositions 1 and
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2 remain the same.8 We proceed by providing a counter-example of a result that would state that

other objects can be identified in the 2-school case.

Recall that in the 2-school case, observing rank-ordered lists of length one identifies the prob-

ability of school, say S, to be positively valued and of school, say F , of being negatively valued,

as a limit result by varying success probabilities in such a way that school, F , always dominates

S if both are positively valued (Proposition 1). If we can now observe rank-ordered lists of length

2, the same probability can be identified by the probability of observing a rank-ordered list which

ranks S first and the empty set second.

Using length-2 rank-ordered lists, we cannot identify, however, more than this probability

in the quadrant in which VS > 0 and VF ≤ 0 and this is true as well in the other quadrant

VS ≤ 0 and VF > 0. In the quadrant VS > 0 and VF > 0 in which the log differences of values

are identified (Proposition 2), this holds true as well. Admittedly, success probabilities change

if we change the length of the rank-ordered lists but their identification still relies on using the

continuous variation of grades and the cutoffs are still determined by equations similar to equation

(4). In conclusion, observing longer rank-ordered lists leads to overidentification that could help

increasing the precision of preference estimates although this issue is out of the scope of this paper.

Remark 2 Differences of log-values are non parametrically identified but levels are not iden-

tified. In Section 4, the evaluation of counterfactual welfare is achieved by completing identifying

conditions with additional assumptions.

Remark 3 We could further adopt a linear median restriction for differences between loga-

rithms of values such as, in the two-school example

log V S − log V F = Xγ + ε

in which the distribution of ε, F (. | X) is restricted as:

F (0 | X) =
1

2
. (9)

Parameter γ and F (ε | X) are identified.

8This result requires that students never rank negatively-valued schools in their rank-ordered lists because, for

instance, they face an infinitesimal cost of refusing an offer (that they could receive from a negatively-valued school

if they rank it).
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Remark 4 It is possible to weaken Assumption CV and admit that the support of the

conditional distribution of ∆jk(Z) conditional on X might not be the full real line. If we keep

the two-school example to make the point in a simple setting, assume for convenience that the

support of ∆SF for any value taken by X includes the value 0. Then as developed in Manski

(1988), identification becomes partial under the median restriction (9) written above. Parameter

γ is identified using the median restriction and F (. | X) is identified in the restricted support in

which ∆(Z) + Xγ varies. Our data exhibit limited variation and this is why we adopt, in the

empirical application, a parametric assumption for F (. | X). What non parametric identification

arguments above prove is that this parametric assumption is a testable assumption at least in the

support in which ∆SF (Z) +Xγ varies.

Remark 5 We can now briefly return to the issue of superior information that students could

have with respect to econometricians. To discuss this point, suppose that each student receives a

signal, before choosing the school to apply to, about her ability, say σi, and which is correlated

with exam grades. If we keep the complete information structure, signals are fully observed by

agents. Using the same model of belief about success in each school but conditioning now on

the vector of signals σ, agents use success probabilities that can be written as π(Z, σ) instead of

P (Z). Because of the law of iterated expectations, we have that E(π(Z, σ)|Z) = P (Z). Denote

W = π(Z, σ)/P (Z) the positive random variable standing for superior information and which is

mean independent of Z by construction.9 This is not, however, a suffi cient condition to recover log-

value differences and it shall be additionally assumed that W and X,Z are independent to prove

that log value differences are identified up to an additive independent "measurement" error term.

A common prior assumption for agents and econometricians alike is thus a strong assumption but

absent any other observed decision variable that might help recover or proxy σ (see Campbell,

1987, for instance), dealing with the general case seems out of reach.

3 The empirical application

We begin with describing our empirical application and with adapting the general model described

in the previous section to the particulars that Universidade Federal do Ceará (UFC from here on

9We take the ratio between those probabilities because the decision model in set J+ is written in logarithms.
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out) in Northeastern Brazil used to select students in 2004. We then turn to the computation of

success probabilities and give a summary of our empirical strategy. We finish by reviewing our

estimation results.

We restrict, for various reasons, the empirical application to two medical schools only. They

are respectively located in Sobral (denoted S), the second most populated city in the state of

Ceará and Fortaleza (denoted F ), the state capital. First, the content of second-stage exams

differs if schools are in different fields (medicine or law for instance) and this would introduce

substantial heterogeneity between schools. Second, it enables us to choose the best schools in

the University for which our assumptions on information and outside options are the most likely

to be satisfied. Third, the more schools are analyzed, the stronger the requirement of complete

variation of success probabilities (Assumption CV) for identification is.

We chose the two best medical schools because (1) they are the schools which attract the best

students among all candidates within UFC (see Table S.ii in the Supplementary Appendix) (2) on

prior grounds, the best substitutes are a slightly lower quality medical school in the country side

(Barbalha) or pharmacy and related fields with a lower standing in terms of cut-off grades (3)

other schools of excellence are schools of law which are presumably bad substitutes. As a matter of

fact, the best substitutes are outside the University: a state university and three private medical

colleges in Fortaleza and Sobral; outside the state, medical schools in Recife at the closest or in

Sao Paulo or Campinas further away. All substitutes are dealt within the model as an aggregate

outside option.10

We focus on medical schools also because of their attractiveness for the best students. Almost

no students desist between the two stage exams if they pass the first stage. Being accepted in

those schools is extremely valuable and the care and attention of students, parents and teachers

are certainly at their highest for those two schools. The school in Sobral is small and offers 40

positions only while Fortaleza is much larger since it offers 150 seats. As shown in the empirical

analysis below, this asymmetry turns out to be key for evincing strategic effects.

10See Sections S.1 and S.2 in the Supplementary Appendix which justify these arguments and complement the

empirical analysis presented here.
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3.1 Timing and the two-stage exams of the Vestibular

The timing of the real mechanism is enriched in two ways with respect to the stylized setting that

we described in Section 2.

First, students take a standardized national exam, known as ENEM and measuring students’

ability in different subjects (maths etc) before college choices are made and about one year before

Vestibular exams begin. ENEM results are used by the University when computing the passing

thresholds at the Vestibular exams. It is also a very convenient measure of ability that all students

know when they choose their preferred school.

Second, exams are taken in two stages. The first stage exam is identical across schools and

denoted as

m1 = m1(Z, u1; β1)

in which u1 are random individual circumstances that affect results at this exam. After this first

exam, students are ranked according to a weighted combination of grades ENEM and m1. Those

weights are common knowledge ex-ante and measure the relative interest of schools in selecting

students using the national and the local exam grades. The thresholds of success at the first-stage

exam are given by the rule that the number of available slots is equal to 4 times the number of final

seats offered by the school. Given that schools have respectively 40 and 150 seats, the number of

students passing the first stage is 160 and 600 out of a total of 542 and 2,325 candidates.

We write the selection rule after the first exam as:

m1 ≥ tj1(ENEM) = τ j1 − a1ENEM,

in which τ j1 is determined by the number of candidates and positions available in the school.

Threshold tj1 depends on ENEM because students are ranked according to a weighted sum of m1

and ENEM whose weights are (1, a1) but we make this dependence implicit in the following.

Students who do not pass the first exam get their outside option D = ∅, with utility, V∅.

Other students take the second-stage exam and get a second-stage grade, denoted m2:

m2 = m2(Z, u2; β2)

where u2 is an error term whose interpretation is similar to u1 and u2 is possibly correlated with

u1. These students are ranked according to a known weighted linear aggregator of ENEM,m1 and
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m2, and this again stands for the relative importance given to each of these dimensions by schools.

Students are accepted in the order of their ranks until completion of the positions available for

each school. As before, we write the selection rule as:

m2 ≥ tj2(ENEM,m1),

as a function of a second threshold which also depends on previous exam grades since a linear

aggregator is used to rank students. Students who fail the second-stage exam get the same outside

utility as students who fail the first-stage exam.

We can then extend the definition of the probability of success in school D to:

PD = Pr(m1(Z, u1; β1) ≥ TD1 (ENEM),m2(Z, u2; β2) ≥ TD2 (ENEM,m1)).

3.2 Identification of grade equations and success probabilities

Only students who pass the first-stage exam can write the second-stage exam. Therefore in our

data, the second-stage grades, m2, are censored when first-stage grades, m1, are not large enough

i.e. m1 < T j1 and in the absence of any restriction, the distribution of m2 is not identified.

3.2.1 A control function approach

To proceed we shall specify that (m1(Z, u1; β1),m2(Z, u2; β2)) are linear indices of covariates

with respective parameters β1 and β2. The estimation of β1 proceeds under the restriction that

E(u1|Z) = 0. In the second-stage grade equation we use a control function approach to describe

the influence of the unobservable factor derived from the first grade equation (Blundell and Powell,

2003). We assume that:

u2 = g(u1) + u∗2

in which u∗2 is mean independent of u1, E(u∗2 | u1, Z) = 0.

By doing this, we are now also able to control the selection bias since u∗2 is supposed to be

mean independent of u1 and therefore E(u∗2 | m1 ≥ T j1 , Z) = 0. This would identify parameters

and the control function g(.). Nonetheless, our goal is not only to estimate these parameters but

also to estimate the joint distribution of (u1, u2). This is why in the following we assume that u1

and u∗2 are independent of each other and of variables Z and simply use the estimated empirical

distributions of u1 and u2 when estimating success probabilities.
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3.2.2 Simulated success probabilities

To predict success probabilities, two important elements are needed: the joint distribution of

random terms u1 and u2 and the admission thresholds for the first and second-stage grades. We

already stated assumptions under which we can recover the former. The latter are derived from

the definition of the final admission in each school as described by two inequalities as functions of

linear combinations of initial grades and first and second-stage grades fixed by the University:

m1 + 120 ∗ ENEM/63 ≥ τ j1,

0.4 ∗ (m1 + 120 ∗ ENEM/63) + 0.6 ∗m2 ≥ τ j2. (10)

Thresholds (τ j1, τ
j
2) are taken here as any possible realization and we construct equation (3) from

the distribution of random grade shocks. Integrating out thresholds T j1 and T
j
2 comes in a second

step.

Conditional success probabilities We first transcribe the inequalities (10) as functions of

unobserved heterogeneity terms u1 and u2. For every student, passing the two exams means that

the two random terms in the grade equations should be large enough as described by:

u1 ≥ τ j1 − 120 ∗ ENEM/63− Zβ1,

u∗2 ≥
τ j2
0.6
− 2

3
(Zβ1 + u1 + 120 ∗ ENEM/63)− Zβ2 − g(u1).

Notice that the second inequality depends on first-stage grade shocks, u1, because of the correlation

between grades. Therefore the success probability in a school j, as defined by a function of

thresholds in equation (3), can be expressed as:

pj(Z, β, τ j1, τ
j
2) = Pr{u1 ≥ mj

1 − Zβ1, u
∗
2 ≥ mj

2 −
2

3
Zβ1 − Zβ2 −

2

3
u1 − g(u1)},

=

∫ ∞
mj
1−Zβ1

fu1(x)(Pr{u∗2 ≥ mj
2 −

2

3
Zβ1 − Zβ2 −

2

3
x− g(x)})dx,

=

∫ ∞
mj
1−Zβ1

fu1(x)[1− Fu∗2(m
j
2 −

2

3
Zβ1 − Zβ2 −

2

3
x− g(x))]dx, (11)

in which mj
1 and m

j
2 are functions of thresholds: mj

1 = τ j1 − 120 ∗ ENEM/63,

mj
2 =

τ j2
0.6
− 2

3
(120 ∗ ENEM/63).
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Unconditional success probabilities As those are derived from an expectation taken over

thresholds T in equation (2), we use a simulated sample analog and compute the distribution

function of T at an arbitrary level of precision using equilibrium conditions (4)11 by simulation of

U(n). By construction, T depends on observation 0 and thus its distribution has to be computed

for every single observation. For simplicity and because this dependence matters less and less

when n grows, we compute those thresholds in the empirical application using equation (4) in

which the sums are taken over the full sample i = 0, 1, ., n and success probabilities are estimated

only once instead of n+ 1 leave-one-out estimates.

3.3 Empirical strategy: Summary

We first estimate parameters of the grade equations and denote them β̂n. This, in turn, allows us to

compute the expectation of the success probabilities conditional on thresholds τ jk, k = 1, 2, j = S, F

as in equation (11) using the estimated distribution functions for errors in the grade equations.

We then compute unconditional success probabilities by integrating out by simulation conditional

success probabilities as in equation (2). Namely, for any simulation c = 1, ., C, draw in the

distribution of U (n) and derive realizations of T , say tc in the C samples of size n by fixing choices

1{Di(Zi, εi, ζ, P
S
i , P

F
i ) = S}, characteristics Xi and by solving the equilibrium conditions (4).

Equation (2) can then be computed by integration as:

P̂ j
0,C =

1

C

C∑
c=1

pj(Z0, β̂n, t
j
1,c, t

j
2,c). (12)

Preferences are described by the probabilities of each quadrant in Figure 1, {δS(X), δSF (X), δF (X)}

and by the following parametric specification of log-value differences:

log V S − log V F = Xγ + ε, ε ∼ N(0, 1).

Preference parameters ζ = (δ, γ) are estimated using a conditional maximum likelihood approach:

ζ̂n = arg max
ζ

l(ζ|P̂ S
0,C , P̂

F
0,C).

This is a conditional likelihood function since P̂ S
0,C , P̂

F
0,C depend on the first-step estimate, β̂n.

Standard asymptotic arguments yield:

ζ̂n
P−→

n→∞
ζ.

11Generalizing them to the two-stage exam setting is straightforward, see equation (13) below.
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We used bootstrap to obtain the covariance matrix of those estimates by replicating the complete

estimation procedure as a mixture of non parametric (grade equations) and parametric bootstrap

(choice equations).

3.4 A Brief Description of Estimation Results

The list of variables and descriptive statistics in the pool of applicants to the two schools we

consider appear in Table 1. Looking at admission rates, one can see that Sobral admitted 40/527 =

7.6% and Fortaleza 150/2340 = 6.4% and this makes Fortaleza more competitive. Comparing the

mean and median of initial and first-stage grades, Sobral has nonetheless better applications than

Fortaleza. As to the second-stage grades, the group selected for Sobral has a slightly higher median

than the one selected for Fortaleza although both groups have the same mean.

Because empirical results in this article are focussed on counterfactuals, estimates from our

empirical analysis are shown and analyzed in Section S.2 in the Supplementary Appendix. We

fully report and comment therein estimates of grade equations, predictions of success probabilities

and estimates of preference parameters. We now discuss only briefly our most important modelling

choices and our main results.

As described in Table 1, explanatory variables are those that affect exam performance or

school preferences. For grade equations, all potential explanatory variables are included: a proxy

for ability which is the initial grade m0 obtained at the national exam (ENEM), age, gender,

educational history, repetitions, parents’education and the undertaking of a preparatory course.

Our guide for selecting variables is that a better fit of grade equations leads to a better prediction

of success probabilities in the further steps of our empirical strategy.

Second, as developed in Section 2.3.3, one exclusion restriction at least is needed to identify

preferences. We chose to exclude from preference shifters all variables related to past educational

history. Indeed, preferences are related to the forward looking value of the schools (e.g. wages)

which, conditional on the proxy for ability, is unlikely to depend on the precise educational history

of the student (e.g. private/public sector history and undertaking a preparatory course). This is

even more likely since we condition on ability m0 which is assessed in the ENEM after educational

history. This dynamic exclusion restriction is akin to what is assumed in panel data and posits

that m0 is a suffi cient statistic for educational history. As a consequence, preferences are specified
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as a function of ability, gender, age, education levels of father and mother, and the number of

repetitions of the entry exam. The inclusion of gender, age and education of parents is standard

in this literature. The number of repetitions reveals either the determination of a student through

her strong preference for the schools or the lack of good outside options. We performed a thorough

specification search and tested for overidentifying restrictions.

Third, the second-stage exam has a different format (writing essays) than the first-stage mul-

tiple choice exam and the second-stage grade equation has a much lower R2. An interesting

economic interpretation is that the first-stage exam is designed to skim out the weaker students

and this multiple question exam is quite predictable (large R2). In the second stage, the examiners

can be selective in many more dimensions and try to pick out students using unobserved traits

which are predictive of future behavior (success in the field of studies, drop out, etc) and that the

econometrician cannot observe. This justifies the double stage nature of the exam as trying to

minimize screening costs. We will return to this point below.

Fourth, Table 2 reports descriptive results on predicted probabilities of success. Means and

medians of first-stage success probabilities are around 20-30% in both schools. This is close

to what is observed in the sample but not exactly identical since these probabilities are partly

counterfactual objects, for instance, success probabilities in Sobral for those who chose Fortaleza.

The second-stage success probabilities are close to what is observed and as expected roughly four

times lower than the first-stage ones.

Finally, students heavily favor Fortaleza over Sobral and this confirms that Fortaleza is the most

popular medical school in the state. The ratio of those probabilities is 10 which is approximately

the ratio between the populations of the two cities albeit much larger than the ratio of final seats

in the two schools (150/40). Nonetheless, there is a substantial fraction of students whose utilities

for both schools are positive (more than 40%).12

4 Evaluation of the Impact of Changes of Mechanisms

We now investigate the impact of various changes in the allocation and selection mechanisms that

are discussed in academic and policy debates. To organize the presentation, some preliminary

12Full details and comments of our empirical analysis appear in Section S.2 of the Supplementary Appendix.
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discussion of school preferences over the information obtained at the different exams is in order.

We also return to the issue of substitutes.

School preferences are revealed by the type of exams and selection rules that are used for

admission as described by equations (10). In the following, we will evaluate outcomes and welfare

in each counterfactual by conditioning on the expected final scores used for admission.13 The

first-stage selection sums two multiple-choice exam scores —ENEM and first stage —in a roughly

equivalent way.14 Final selection however overweights the second-stage grade (.6) with respect to

the compound ENEM & first-stage grade (.4). As the weight of the latter is not zero, first-stage

and ENEM scores provide valuable information in addition to the selection rôle they are used for.

Scores at the two stage exams presumably measure two different cognitive dimensions affecting the

future career of students in the schools. Note however that there is no bottom grade requirement

at the second-stage as there is at the first stage and the second stage cannot be considered as

more informative even if its weight is larger.

Second, counterfactual analyses are conducted under the assumption that the choice-based

sample remains the same and this implicitly means that the value of outside options does not

change. We also assume that the change in pre-determined variables, for instance, the take-up of

preparatory courses or the exit and entry flows of students applying to these two schools because

of the change in the admission rules, is second order.

The first counterfactual experiment that we implement is to cut slots proposed at the second-

stage exam by offering twice, instead of four times, the number of final seats. It is likely that a

two-stage exam is used because schools want to avoid congestion and the tuning between the two

stages is key. The first-stage is very easy to grade since machines can mark multiple-choice exams

very quickly. The second stage is much deeper since it relies on open-ended questions and is more

costly to grade. The trade off is therefore to balance these substantial screening costs with the

depth of the first-stage selection that might select out good students because of the format (see

also He and Magnac, 2018). There are other examples of this in other countries: in top engineering

schools in France, selection is distinguished in an admissibility (written) and an admission stage

(oral).

13As expected, success probabilities are an increasing function of this score. More interestingly, the ratio between

success probabilities at Sobral relative to Fortaleza is also increasing with this score except at the very top.
14In equation (10), the coeffi cient in front of ENEM is a rescaling term that equalizes ranges of m1 and ENEM.
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Second, we experiment with enlarging the choice set of students before taking exams. They

would list two ordered choices instead of a single one so as to get closer to a Gale-Shapley mech-

anism. This means that even if students fail the first-stage qualification in one of the two schools

they may still get into the second-stage exam for the other school. This implies that the aver-

age skill level of passing students increases and that the difference between the two schools is

attenuated.

Third, since having two stages in the exam allows schools to cut costs and achieve a more in-

depth selection at the second stage, another experiment consists in changing the timing of choice.

In the third counterfactual experiment, students would choose their final school after taking the

first-exam and learning their grades. The experiment is different from the previous two since

students have more information on their success probabilities when they choose. It generates

however additional organization costs and delays due to the serial dictatorship mechanism that it

induces after the first stage. It is also likely to generate more opportunistic behavior.

Before entering into the details of these counterfactual mechanisms, the identification of utili-

ties from estimated preferences and success probabilities is key in these evaluations. We show that

expected utilities are underidentified and we suggest how plausible bounds for counterfactual esti-

mates can be constructed. We also explain how to compute counterfactual estimates conditional

on observed choices.

4.1 Identifying Counterfactual Expected Utilities

Taking expectations with respect to grades using success probabilities P S
i , P

F
i of ex-post utility

levels, Ui, leads to:

E
(
Ui | V S

i , V
F
i

)
= 1{V S

i ≥ 0, V F
i < 0}P S

i V
S
i +1{V F

i ≥ 0, V S
i < 0}P F

i V
F
i

+ 1{V F
i ≥ 0, V S

i ≥ 0}
[
1{Di = S}P S

i V
S
i + 1{Di = F}P F

i V
F
i

]
= P S

i V
S
i

(
1{V S

i ≥ 0, V F
i < 0}+ 1{V F

i ≥ 0, V S
i ≥ 0}1{Di = S}

)
+P F

i V
F
i

(
1{V F

i ≥ 0, V S
i < 0}+ 1{V F

i ≥ 0, V S
i ≥ 0}1{Di = F}

)
.

Even if the location parameter is fixed by the outside option, this expected utility can always

be rescaled by any increasing function. This is why we choose the absolute value
∣∣V F
i

∣∣ as the scale
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factor to set:

V F
i = 1 if V F

i > 0,

V F
i = −1 if V F

i < 0.

Under this normalization:
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)
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,

the only unknown is V S
i when V S

i ≥ 0, V F
i < 0 since V Si

V Fi
when V F

i ≥ 0, V S
i ≥ 0 is identified (see

Section 2.3.3). This partial identification issue comes from the fact that ordinal preferences only

are recovered in the case in which only one of the value function is positive and when both value

functions are positive, relative cardinal utilities only can be identified.

Various assumptions are plausible. If there is some positive correlation between V F
i and V S

i ,

we would expect that

E
(
V S
i | V S

i ≥ 0, V F
i < 0

)
< E

(
V S
i | V S

i ≥ 0, V F
i ≥ 0

)
= E

(
V S
i

V F
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| V S
i ≥ 0, V F

i ≥ 0

)
< exp(Xiγ)E(exp(εi) | V S

i ≥ 0, V F
i ≥ 0)

< exp(Xiγ + .5),

the last expression being obtained under normality of εi. This is why we assume that when V S
i > 0:

log V S
i =

µ0

2
V F
i + (log

V S
i

V F
i

− µ0

2
)
∣∣V F
i

∣∣ =
µ0

2
V F
i + (Xiγ + εi −
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2
)
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∣∣
where µ0 > 0 captures the positive dependence between V S

i and V F
i . This is coherent with the

previous equation since :  V S
i = exp(Xiγ + εi) if V F

i = 1,

V S
i = exp(Xiγ + εi − µ0) if V F

i = −1.

We will thus evaluate E
(
Ui | V S

i , V
F
i

)
using bounds on µ = exp(−µ0) that we make vary

between 0 (the lower bound for V S
i ) and 1 (the case in which V S and V F are uncorrelated).
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We use this measure of welfare in relative terms among students to evaluate the amount of

redistribution between them of changes in the allocation mechanisms.15

4.2 Computing equilibria

In every counterfactual experiment, we draw unknown random terms conditional on observed

choices for simulation purposes. This ensures that simulated choices are compatible with observed

choices in the data. In each simulation, let D̄i be the counterfactual choices of the students that

depend on counterfactual expectations P̄ S
i and P̄

F
i . Denote n̄S = 2nS and n̄F = 2nF the new

number of seats in the cutting-seat counterfactual. In other cases n̄S = 4nS and n̄F = 4nF as in

the original system.

Given that historical variables and outside option value do not change, the population of

reference does not change in the counterfactual experiments since experiments affect success prob-

abilities only. The pool of applicants remains the set of students whose utilities are such that

V S > 0 or V F > 0 and therefore we consider the same sample i = 0, ., n. Consistency of choices

and expectations require that the counterfactual random thresholds, T̃0, as defined as the solution

(t̃S1 , t̃
S
2 , t̃

F
1 , t̃

F
2 ) to the counterfactual counterpart of equation (4):

n∑
i=1

[1{D̄i(P̄
S
i , P̄

F
i ) = S}1{m1(Xi, β, ui) ≥ t̃S1 }] = n̄S,

n∑
i=1

[1{D̄i(P̄
S
i , P̄

F
i ) = F}1{m1(Xi, β, ui) ≥ t̃F1 }] = n̄F ,

n∑
i=1

[1{D̄i(P̄
S
i , P̄

F
i ) = S}1{m1(Xi, β, ui) ≥ t̃S1 ,m2(Xi, β, ui) ≥ t̃S2 }] = nS,

n∑
i=1

[1{D̄i(P̄
S
i , P̄

F
i ) = F}1{m1(Xi, β, ui) ≥ t̃F1 ,m2(Xi, β, ui) ≥ t̃F2 }] = nF ,

(13)

have a distribution function that leads to the counterparts of equation (12):16

P̄ j
0 = E(1{m1(X0, β, u0) ≥ t̃j1,m2(X0, β, u0) ≥ t̃j2}) (14)

We thus propose to iterate the following algorithm (we explain it for observation 0 and this

extends to any index i:

15These welfare measures could be translated back into changes of odd ratios of expected success probabilities

using the preference equation (5) but this does not add much to our evaluation.
16Changing the timing of choices requires to acknowledge that there are no choices to make before the first-

stage. The first two equations in (13) do not depend on D̄i and PSi , P
F
i are the conditional expectations after the

second-stage. Those adaptations do not modify the main principles.
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1. Initialization:

• Draw C = 499 random preference shocks ε(n),c in their distributions conditional to

observed choices, Di, and using preference parameter estimates ζ̂n. Fix those ε(n),c for

the rest of the procedure (see Supplementary Appendix S.3.1.1 for details).

• Draw C random vectors U(n),c and fix them for the rest of the procedure.

• Set the initial P S,0
0 , P F,0

0 values at their simulated values P̂ j
0,C derived from equation

(12) in which we use U(n),c and the observed experiment to compute thresholds t
j
1,c and

tj2,c using equations (4).

2. At step k, denote P S,k
i , P F,k

i the expected success probabilities

(a) Compute counterfactual choices Di(Zi, εi,c, ζ̂n, P
S,k
i , P F,k

i ).

(b) Compute a sequence of t̃c for c = 1, ., C using U(n),c and equations (13).

(c) Derive P̂ j,k+1
0,C from equation (14).

3. Repeat the previous step until a measure of distance d(P (k+1), P (k)) is small enough.

If this algorithm converges then this is the fixed point we are looking for. We study in Appendix

A a simplified model in which we show that a Nash equilibrium is obtained in a finite number of

steps.

4.3 Cutting seats at the second-stage exam

We start with the easiest policy change that reduces admission rates to the second stage. As said,

the existing Vestibular system allows the number of students who take the second exam to be

four times the number of final seats. In the experiment, the number of available positions is kept

unchanged but the number of admissions after the first-stage exam is now twice the number of

seats. We explore the possible consequences of this policy and investigate two main issues —who

among students benefit from this policy change and whether schools lose good students.

Some discussion about the expected effects are in order. Cutting seats in the second exam

reduces schools’ screening costs although this comes with the risk of losing talented students.

Students may not be always consistent in their exam performance and even the most gifted may
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have a strong negative shock in the first exam. Those students would be eliminated too early

without being given a second chance. Nonetheless, it could also be that cutting seats protect the

first-stage best achievers from competition and thus from the risk of losing ranks at the second-

stage exam. A formal argument is as follows. Subpopulations defined by a specific final weighted

score are now composed by more top-achievers at the first stage. The net result is however unclear

theoretically because the distribution of the final weighted score changes itself and needs to be

integrated out. This is why an empirical analysis is worthy of attention.

The simulation of the counterfactual and the computation of expected utility follow procedures

described in Section 4.1 and Section 4.2.

4.3.1 Changes in thresholds

In Table 3 we present estimates of the new threshold distributions at both stage exams in the

three counterfactual experiments. In the cutting seat experiment, the counterfactual first-stage

thresholds are much higher than in the original experiment since fewer students are admitted after

the first-stage exam. In contrast, the thresholds of the second-stage exam are slightly lower than

in the original system because there is now less competition in the second-stage exam when half

as many students are admitted. In both first- and second-stage exams, estimated thresholds in

Sobral are more volatile than the ones in Fortaleza because Sobral is a much smaller school.

To evaluate how this counterfactual brings benefit to schools and students, we study in turn,

changes in success probabilities and changes in students’utilities.

4.3.2 Changes in success probabilities

Schools would find that the admittance procedure has improved if abler students would get a

higher chance of admission and the less gifted students would have a lower chance. This is why

we evaluate changes in success probabilities in relation to an index of students’abilities. As our

ability index, we use the expected final grade which is, as already said, a combination of the

initial, first and second-stage grades. We also choose to focus on the top 50% of students because

the lower 50% of the sample have almost no chance of getting admitted whether the original or

counterfactual mechanisms are used.

We represent changes in success probabilities in Figure 2 for Sobral. Three vertical lines are

33



drawn at the median of expected final grade and at the quantiles associated to the first and

second-stage thresholds in the original system (averaged across schools). Changes in probabilities

are very similar in the two schools.17 The dispersion of these changes, conditional on expected

grade, is due to the heterogeneity of observed characteristics across students.

The very top students who are above the second-stage admission quantile, have better chances

in the counterfactual system since they are likely to face less competition in the second-stage exam.

Our estimates of grade equations show that second-stage grades have a much larger variance than

first-stage grades. The risk of failing is thus lower when fewer students participate in the second-

stage exam. In contrast, for students who are between the median and first-stage threshold in

terms of expected final grades, this is the converse. They are much less often admitted after the

first-stage exam and even if the second-stage exam is less competitive, it is the former negative

effect that dominates overall. In particular, students who are around the first-stage threshold in

the current system are more likely to be selected out at the first stage.

4.3.3 Changes in students’utilities and the impact on schools

Table 4 presents summaries of changes in students’expected utility. We construct groups according

to various quantiles of the distribution of the expected final grade. The closer to the top of the

distribution, the smaller the groups are (two percent of the population only). As defined in Section

4.1, we set the unknown weight in utilities at µ = 0.8.18

Consistently with changes in success probabilities, top students have significant utility improve-

ments although this is also true for lower ranked students (above the 80% quantile). Nonetheless,

focussing on means of expected utility hide very large dispersions in the 80-90% quantiles. This

is best seen in the distribution of changes in utility (Supplementary Appendix S.1, Figure S.v)

in which students in the 8th and 9th deciles are the ones whose changes in utility is the most

dispersed. Furthermore, students just above the median tend to have lower expected utility in the

counterfactual system and this is consistent with what we obtained for success probabilities. If

we divide the sample by the original school choice, an indication of their preference, students who

17The corresponding Figure for Fortaleza appears in Section S.3 of the Supplementary Appendix (Figure S.iv).
18We also performed robustness checks by using weights µ varying from 0 to 1 (see Section 4.1). Results are

shown in Table S.viii in the Supplementary Appendix. Differences are very small and our results are quantitatively

robust to the value of µ.
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chose Fortaleza tend to benefit more than the ones who opted for Sobral. The influence of the

second-stage exam seems to be much larger there than in Sobral. Overall, these results about this

counterfactual experiment bring out a moderate total utilitarian welfare change. Yet, there are

strong distributional effects and top students are better off and less able students are worse off.

The impact of cutting seats seems favorable for schools since the most able students now have

a higher chance of admission since they are protected from the competition of less able students at

the second stage. This benefit comes in addition to cutting the costs of organizing and correcting

the second-stage exam proofs.

4.4 Enlarging the choice set

In this experiment, students can submit an enlarged list of two schools if they wish. A choice list

contains two elements d1 and d2 in which d1 is the preferred school. Since our sample of interest

only comprises students who positively value at least one of the schools, we have d1 ∈ {S, F}. Yet,

students can now apply to a second choice and d2 ∈ {∅, S, F}/{d1} in which d2 = ∅ is the outside

option chosen by students who do not give positive value to the second school. This mechanism

belongs to the deferred-acceptance family with the additional twist that we keep the sequence of

two exams as it is. The allocation of students after the first exam needs however to be adapted

and this is the design that we now explain.

4.4.1 Design of the experiment

To fix ideas, consider first a student who (1) has VS > 0 and VF > 0 (2) chooses the list (S, F ). If

after the first-exam, she is above the threshold for school S, her second choice does not matter.19

It is only if she would NOT be accepted to the second-stage exam in school S that she could

compete for the second-stage exam in school F .20 She fails altogether when her grades are lower

than both thresholds.

Consider first that at equilibrium tS1 > tF1 . After the first-stage exam, there are three possible

outcomes for the student:

19In particular, we discard the possibility of choosing a second ranked school after a success at the first stage

exam.
20See also the third experiment in which students choose according to the information they have on their per-

formance at the first stage for a variation around these constraints.
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• m1 ≥ tS1 : she takes the second exam of school S,

• m1 < tS1 and m1 ≥ tF1 : she takes the second-stage exam of school F,

• m1 < tF1 : she fails and takes the outside option.

While if tS1 < tF1 (the probability of a tie being equal to zero),

• m1 ≥ tS1 : she takes the second exam of school S;

• m1 < tS1 : she fails and takes the outside option.

This sequence is easily adapted to students choosing the list (F, S). Moreover, for students

submitting a list (d1,∅), the sequence of actions is the same as in the original mechanism. Students

are selected into the second-stage exam for school d1 if their grade is above its first-stage threshold.

Furthermore, given any choice among the four lists, {(S, F ), (F, S), (S,∅), (F,∅)} we can con-

struct counterfactual success probabilities in each school P S and P F by adapting the algorithm

we used before (see Supplementary Appendix S.3.2). For any value of success probabilities, we

can then compute the optimal choice between {(S, F ), (F, S), (S,∅), (F,∅)}. Details about how

we get counterfactual thresholds and choices follow the lines of what was developed in Section 4.2.

4.4.2 Changes in thresholds

The new thresholds for this counterfactual experiment are also shown in Table 3. For the first

stage, the threshold of Sobral is now slightly larger than the original one while the threshold

of Fortaleza remains roughly unchanged. This is an indication that Sobral is admitting better

students while the effect on Fortaleza is negligible. Some of the students who were failing Fortaleza

before can now compete for Sobral and get admitted after the first stage. Furthermore, some of

the students who were choosing Sobral for strategic reasons in the original mechanism can now at

no risk choose Fortaleza first and Sobral second. Deferred acceptance mechanisms lessen strategic

motives and make choices more truthful (Abdulkadiroglu and Sonmez, 2003) although the move

is not necessarily Pareto-improving (Balinski and Sonmez, 1999). In the original system, students

tended to choose Sobral as a ”safety school”even when they truly preferred Fortaleza since success

probabilities were higher at the former school. Giving students two choices attenuates the ”safety

school”effect although it does not eliminate it completely because of the two-stage nature of the

36



exam. Yet, thresholds for the school in Fortaleza remains higher than for Sobral at both stages

because it attracts more top-ability (m0) students as is shown by preference estimates (see Table

S.vii).

Large standard errors for counterfactual thresholds at the second-stage exam make differences

with the current ones insignificant. Even if this counterfactual experiment moves some of the

relatively good students after the first-stage exam from Fortaleza to Sobral, Sobral however still

attract less able students than Fortaleza in the second stage as in the first stage.

4.4.3 Changes in success probabilities

Figure 3 reports changes in success probabilities for Sobral (see Figure S.vi for Fortaleza). Unlike

the previous counterfactual experiment, the changes in Sobral and Fortaleza are now somewhat

different. In Fortaleza, the change in success probabilities is negligible as thresholds are constant

and the reallocation of choices from Sobral to Fortaleza not strong enough. In contrast, a fraction

of students below the first admission threshold and above median has a lower success probability

in Sobral in the counterfactual experiment. This is because better students who fail Fortaleza

switch to Sobral to compete with them and lower ranked students are evicted since first-stage

thresholds are now higher in Sobral. In other words, getting Sobral if failing Fortaleza is acting as

an insurance device and students just above the first-stage threshold benefit from the existence of

this insurance. Last, note that the change in success probabilities is small in this counterfactual

compared with cutting seats since it affects students only through the allocation mechanism.

4.4.4 Changes in expected utilities and the impact on schools

From the student perspective, this mechanism is also attractive since a majority of students —

55% —will be (strictly) better off as shown in Table 5. Moreover, top students benefit more

from the change than less able students because they are more likely to pass to the second-

stage exam even if they happen to fail their preferred school. Deferred acceptance restricts less

the possibilities of very top students since they can keep options open. In particular, students

who preferred Sobral initially, benefit much more than those who preferred Fortaleza initially,

seemingly because the pressure of competition at the top in Sobral is lower since it loses its safety

school status. In contrast, since Sobral has a lower threshold at the first-stage exam, students
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who prefer Sobral and are ranked around the first-stage threshold suffer from more competition

from evicted students from Fortaleza. However, for those who preferred Fortaleza in the original

system, expected utility mainly increases because of the second chance they get to compete for

Sobral when they fail Fortaleza. The effect on expected utility is thus larger than the change in

success probabilities.

In summary, enlarging the choice set improves the average ability of those who pass the first-

stage exam in both schools. The majority of students are better off except students ranked

around the first-stage threshold in the original system and who prefer the smallest school. From

the perspective of the schools, Sobral should be more favorable to this mechanism since it can now

attract higher ranked students. Fortaleza’s thresholds remain the same although the composition

of their recruitment might have changed since Sobral lost its safety school status. This seems

however to moderately affect top students.

This confirms theoretical insights that the move to a deferred acceptance mechanism is likely

to make both schools and more top students better off.

4.5 Changing the timing

In the last counterfactual experiment, we try to evaluate the impact on students when they

choose schools after learning their first-stage exam grade and no longer before this exam. Schools

continue to rank students according to the same combination of ENEM and m1.

The new selection procedure is a serial dictatorship mechanism which is Pareto-optimal in the

case of a single exam (for instance, Abdulkadiroglu and Sonmez, 1998). It proceeds as follows.

Starting from the first-ranked student and going down the ranking afterwards, each student chooses

school S or F until the number of admitted students in one of the schools, say j, reaches four

times the number of final seats in this school. This defines threshold tj1. The sequence continues

going down the ranking although choice is now restricted to the other school D 6= j or to opting

out until the number of admitted students in that school reaches four times the number of final

seats. The allocation of students to the second-stage exam is then complete. The game continues

afterwards as in the current system.

As before, utilities V S and V F remain the same while this new mechanism affects the proba-

bilities of success P S
m1

= Pr{m2 > tS2 |m1} and P F
m1

= Pr{m2 > tF2 |m1} which are now conditional
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on the first-stage grade m1. To define choices, suppose that tS1 > tF1 which means in practice that

Sobral seats are filled in faster than Fortaleza’s. A student can face three cases:

• m1 > tS1 : the choice set is complete and consists in {S, F}. Schools are chosen by comparing

P S
m1
V S and P F

m1
V F (since either V S > 0 or V F > 0).

• m1 < tS1 and m1 ≥ tF1 : the choice set is restricted to F and the student either opts for the

second-stage exam in F if V F > 0 or the outside option if not.

• m1 < tF1 : the only choice left is the outside option.

This algorithm is easily adapted to the case in which tS1 < tF1 prevails. Additionally, we

compute the same ex-ante expected utilities by integrating out shocks in m1.

4.5.1 Changes in thresholds

The new thresholds in this counterfactual experiment are shown in Table 3. Sobral has now a

slightly lower threshold at the first stage and a slightly higher threshold at the second-stage exam

while this is true but at the second stage for Fortaleza. The school in Fortaleza is overall more

popular (see Table S.vii) and even more than the difference in offered seats. By making students

choose in the order of first-stage grades, positions in Sobral at the second-stage exam are less

likely to be filled earlier than Fortaleza’s despite the one to four ratio (160/600). For instance, if

more than 80% of the top 750 students prefer Fortaleza to Sobral, the 600 seats at Fortaleza would

be filled in after those 750 students would reveal their choices while Sobral would still have 10

seats to fill in. Note that in simulations, such a solution can be very unstable with respect to the

random draws of grade shocks and depend very much on revealed preferences and the first-stage

randomness in selecting the set of students who can go to the second stage.

4.5.2 Changes in success probabilities

Changes in success probabilities in Sobral are shown in Figure 4. Success probabilities, evaluated

ex-ante, now depend more on the first stage than before so that students performing well at the

first stage increase their overall success probabilities while those performing worse have now lower

success probabilities. There is also a large dispersion of these changes. Ex-post dispersion increases

with the final expected grade because it increases with the level of the initial success probabilities
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and this confirms the increasing importance of the first-stage grade. These conclusions are true

for Fortaleza (see Section S.3) as well.

4.5.3 Changes in expected utilities and the impact on schools

As this mechanism introduces an element of flexibility for students since they can condition their

choices on their first-stage grades, their expected utility is on average mechanically larger than in

the original system. Indeed, the frequency of an increase in expected utility is the largest in the

three experiments. This mechanism is mainly attractive for the top students as shown in Table

6. In a nutshell, top students in the first stage are better protected from the competition of lower

ranked students.

There are clear differences in utility changes among the top students conditional on their

preferences for the schools. On average, students who were choosing Fortaleza in the original

system would benefit more than those who preferred Sobral. This seems to be due to the difference

in the sizes of the school because of the argument presented above when we were analyzing the

impact on thresholds. Sobral seats are filled less quickly than Fortaleza’s.

Overall, this counterfactual seems more friendly to top students. Nonetheless, such a system

seems to select students with lower future academic success as shown by the analysis of Wu and

Zhong (2014) using historical data on China provinces which have changed allocation mechanisms

in this direction. Our data is too limited to explore this issue.

5 Conclusion

In this paper, we use data from entry exams and an allocation mechanism to colleges to provide

an evaluation of changes in those mechanisms. We first use a model of school choices as well as

performance to estimate parameters governing success probabilities and preferences. Expectations

of sophisticated students are obtained by sampling into the Nash equilibrium conditions. Using

those estimates, we can compute in a second step the impact of three counterfactual experiments

on success probabilities and expected utility of students. This shows at what benefits and costs

the current mechanism could be changed, not only in terms of aggregate utilitarian welfare but

also in terms of potentially strong redistributive effects between schools and between students.

These cost-benefit analyses show that the choice of an allocation mechanism has sizeable
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consequences for both schools and students. The mechanism in place is neither fair nor strategic

although it might be rationalized by the fact that some schools and/or groups of students would

lose if it were changed. The political economy of such a choice of an allocation mechanism remains

to be documented and analyzed and it would be interesting to develop the analysis of the ex-ante

game between schools and/or students that leads to the adoption of such or such mechanisms

of selection and allocation. As a matter of fact, Federal universities in Brazil adopted in 2010,

under pressure of the Federal government, a national allocation mechanism consisting of student

submissions of a list of two preferred schools and a complicated learning mechanism. Some of us

are in the process of collecting data to evaluate this new system.

Nonetheless, the previous mechanism allowed schools to tailor their selection procedures to the

information they had about the prerequisites for their courses and any predictors of success or

drop out of the students they selected. This fine tuning is lost in the new centralized procedure

which abstracts away from the question of acquiring information that determines school preferences

(Coles, Kushnir and Niederle, 2013). Specifically, the new allocation mechanism used in Brazil (for

instance analyzed in Machado and Szerman, 2017) is based on a single grade given by an improved

version of ENEM which nevertheless remains of poorer quality than the vestibular analyzed in this

paper since the additional information yielded by the two-stage exams is now lost. Universities

were also reducing opportunistic behavior as shown by the last counterfactual since knowing results

at the first-stage exam allows students to strategize better.

Our selection of two elite medical schools is admittedly specific and tailored to minimize de-

partures from our simplifying assumptions. As preferences for these two schools are presumably

closer than any other pair of schools, the impact of treatment on outcomes —i.e. success proba-

bilities and school choice —might be magnified by this selection. Whether this larger impact is

translated into larger welfare effects is, however, ambiguous since differences between preferences

are smaller.

On the modeling side, much remains to be done. Specifically, the modelling assumptions

about expectations are strong and weakening them is high on the agenda. Identification however

is bound to be weak since there is nothing in our data that might indicate whether agents are

sophisticated, well or badly informed or even naïve (He, 2016, Agarwal and Somaini, 2018). The

analysis shall thus proceed as an analysis of robustness that could lead to partial identification of
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the costs and benefits we have been describing above. It is also true that the question of why so

many students are taking this exam although they have no chances to succeed remains pending.

They could be overly optimistic and this relates to assumptions about expectations but they could

also use the exam as a training device for the following year or for other exams of a similar type.

This behaviour seems to be easier to accommodate in the current framework.
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A Existence of a Nash equilibrium and convergence to an

equilibrium

When using the current mechanism or counterfactual experiments, the question of the existence

of a Nash equilibrium is pending. This equilibrium is defined as the solution to the best response

equations (1) and success probabilities that are mutually compatible and compatible with the

equilibrium conditions (4). We rely on the theory of pseudo potential games as developed in

Dubey et al (2006)

In this discussion, we sketch the proof in a simpler game restricted to two schools j ∈ {S, F}
and a single stage exam and imposing some weak conditions. The extension to mores schools or

two exams complicates notation but does not affect the intuition. Conditions (4) become:

n∑
i=1

[1{Di = S}1{m1(Zi, ui, β) ≥ tS1 ] = 4nS,

n∑
i=1

[1{Di = F}1{m1(Zi, ui, β) ≥ tF1 ] = 4nF .

We will also assume that both schools are overdemanded by students who do not value positively

both schools i.e.
n∑
i=1

1{V S
i > 0 ≥ V F

i } > 4nS,

n∑
i=1

1{V F
i > 0 ≥ V S

i ] > 4nF ,
(15)

so that thresholds in (4) are always defined by equalities.

Setting λj(D(n)) = 4nj
n∑
i=1

1{Di=j}
, we can write an explicit definition of the thresholds as the

empirical (1− λj)−quantile of the distribution of grades in the sample of applicants to j:

T j1 (Zj
(n), U

j
(n)) = F−1

{m1(Zi,ui,β),Di=j}(1− λj).

Note that the strategies of other students affect λj as well as the quantile so that expected success

probabilities can be written as:

P j
0 (D(n)) = E(1{m1(Z0, ui, β) ≥ T j1 (Zj

(n), U
j
(n))}).

It is easy to formulate deep assumptions about the distribution function of grades that imply

that the success probabilities strictly decrease when adding an additional competitor to the set of

applicants to d. Indeed, let order the strategy set {S, F} as S > F . Extend the order to a partial

order in strategies D(n) in the sample by positing that:

D(n) > D′(n) iffDi ≥ D′i and for at least one i Di > D′i.
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If the distribution of grade shocks is unbounded, adding competitors creates congestion and we

have that:

D(n) > D′(n) =⇒ P S
0 (D(n)) < P S

0 (D′(n)) and P
F
0 (D(n)) > P F

0 (D′(n)).

It is now straighforward to prove that the game satisfies the dual strong single crossing property.

Suppose indeed that V S
0 > 0 and that:

P S
0 (D′(n))V

S
0 ≤ P F

0 (D′(n))V
F

0 .

This implies

P S
0 (D(n))V

S
0 < P S

0 (D′(n))V
S

0 ≤ P F
0 (D′(n))V

F
0 < P F

0 (D(n))V
F

0 .

This is also trivially satisfied when V S
0 ≤ 0 and V F

0 > 0.

As this property of dual strong single crossing implies that this is a game of weak strategic

substitutes with aggregation (Dubey et al, 2006) , it is a pseudo potential game (Theorem 1, p.81)

and it has a Nash equilibrium (Proposition 1, p.84). Furthermore, since the strategy set is finite,

there are no best response cycles in the game. "If players start with an arbitrary strategic profile

and each player (one at a time) unilaterally deviates to his unique best reply then the process

terminates in a Nash equilibrium after finitely many steps" (Remark 1, p.85)

B Proofs in Section 2

B.1 Proof of Proposition 1

Fix J0 ⊂ J , a set of non-empty indices. The probability that the observed choice belongs to J0,

Pr(D ∈ J0 | Z,maxj∈J (V j) > 0, X) is identified a.e. PX,Z and by equation (6) is equal to:∑
(j,J+);J+⊃{j}⊂J0

Q(J+ | X) Pr(∀l ∈ J+,∆
jl(Z) > log(V l)− log(V j) | X,Z,J+,J c

+).

Because of Assumption CV, the support of any vector {∆jk(Z)}k∈J /{j} is (−∞,+∞)card(J )−1.

Consider the limit when, for all j ∈ J0 and all k ∈ J c
0 , ∆jk(Z) tends to −∞

lim
∀(j,k)∈J c0×J c0 ,∆jk(Z)→−∞

Pr(D ∈ J0 | Z,max
j∈J

(V j) > 0, X)

For all k ∈ J c
0 , conditions ∆jk(Z) > log(V k) − log(V j) are never satisfied and the limit above is

thus equal to:∑
(j,J+);J+⊃{j}⊂J0

Q(J+ | X) Pr(∀l ∈ J+ ∩ J0,∆
jl(Z) > log(V l)− log(V j) | X,Z,J+,J c

+)

=
∑

J+;J+⊂J0

Q(J+ | X) ≡ Q∗(J0 | X)
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because the terms in the first line, Pr(∀l ∈ J+ ∩ J0, . . .) sum to one over j ∈ J0 for all J+ ⊂ J0.

In consequence, ∀J0 ⊂ J and J0 non empty, Q∗(J0 | X) is identified a.e. PX .

Consider now that J0 = {j} is a singleton. Then Q({j} | X) = Q∗({j} | X) is identified. By

induction suppose that for K ≥ 2, Q(JK | X) is identified for all JK such that card(JK) = K.

Consider JK+1 with card(JK+1) = K + 1 and:

Q∗(JK+1 | X) =

 ∑
JK ;JK⊂J0,card(JK)=K

Q(JK | X)

+Q(JK+1 | X)

which proves that Q(JK+1 | X) is identified. As this is true for K = 1, and if true for K, true for

K + 1, Q(J0 | X) is identified for all J0 ⊂ J .�

B.2 Proof of Proposition 2

We proceed by induction over the number of schools, J . The two-school case is proved in the text.

To design the proof at the simplest level, we first derive the proof for J = 3 and J = {1, 2, 3}.
The general proof will follow the same lines but at a more abstract level and will show that if it

is true for J , this is also true for J + 1.

Stage 1: from two schools to J = 3 Write the observed choice probabilities in equation (6)

when ∆13(Z)→ −∞, which is permitted by assumption CV:

Pr(D = 1 | Z,X) = Q({1} | X)

+Q({1, 2} | X) Pr(∆12(Z) > log(V 2)− log(V 1) | X,Z,J+ = {1, 2},J c
+ = {3}),

since alternative 1 is always dominated by alternative 3 when both V1 and V3 are positive. Given

that Q(.) is identified and different from zero, this identifies

Pr(∆12(Z) > log(V 2)− log(V 1) | X,Z,J+ = {1, 2},J c
+ = {3}).

By generalizing this line of argument to any pair {j, k} in {1, 2, 3} this proves the identification
of distributions in all quadrants of reduced dimension, J = 2.

We can return to equation (6)

Pr(D = j | Z,X) =
∑
J+⊃{j}

Q(J+ | X) Pr(∀k ∈ J+,∆
jk(Z) > log(V k)− log(V j) | X,Z,J+,J c

+)

in which all terms are identified except when set J+ = J . As Q(J | X) is positive by assumption,

we derive from this equation an expression for Pr(∀k ∈ J ,∆jk(Z) > log(V k)−log(V j) | X,Z,J+ =

{1, 2, 3},J c
+ = ∅) for all j ∈ J as a function of identified terms. By the complete variation

assumption CV of ∆jk(Z), this ensures the identification of the joint distribution Pr((log(V k) −
log(V 1))∀k∈J /{1} | X,Z,J ) if 1 is taken as the reference alternative. The property under induction

is thus true for J = 3.
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Stage 2: from J to J + 1 Assume now that the property is true for J . We now show that the

property is true for J + 1. It follows the same steps as above:

(i) Assume that for all j ∈ J /{l}, ∆jl(Z) → −∞ which identifies, through equation (6), for

any j ∈ J /{l}:

Pr(∀k ∈ J /{j, l},∆jk(Z) > log(V j)− log(V k) | X,Z,J+ = J /{l},J c
+ = {l}).

(ii) Return to equation (6)

Pr(D = j | Z,X) =
∑
J+⊃{j}

Q(J+ | X) Pr(∀k ∈ J+,∆
jk(Z) > log(V k)− log(V j) | X,Z,J+,J c

+)

in which all terms are identified except the one corresponding to J+ = J . As Q(J | X) is positive,

we can derive an expression for Pr(∀k ∈ J /{j},∆jk(Z) > log(V k) − log(V j) | X,Z,J ) for all

j ∈ J . By the complete variation assumption CV of ∆jk(Z), this ensures the identification of the

joint distribution Pr((log(V k)− log(V 1))k∈J /{1} | X,Z,J ) if 1 is taken as the reference alternative.

Identification of differences between log-values is thus true for J + 1.�
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Tables and Figures

Table 1: Descriptive statistics in the two medical majors

Sobral: 40 positions
Variable Mean Median Std. Dev. Min. Max. N

Grade: National Exam (m0) 50.43 52.00 7.29 18.00 61.00 527
Grade: First stage 71.67 73.00 15.74 20.00 103.00 527

Grade: Second stage 240.0 246.5 33.98 94.3 296.6 160
Female 0.47 0 0.50 0 1 527

Age 19.58 21.50 2.48 16.00 25.00 527
Private High School 0.87 1 0.33 0 1 527

Repetitions 0.99 1 0.88 0 2 527
Preparatory Course 0.71 1 0.45 0 1 527
Father’s education 2.09 2 1.03 0 3 527
Mother’s education 2.21 3 0.98 0 3 527

Fortaleza: 150 positions
Variable Mean Median Std. Dev. Min. Max. N

Grade: National Exam (m0) 49.16 52.00 10.03 12.00 63.00 2340
Grade: First stage 70.06 72.00 20.01 20.01 110.00 2340

Grade: Second stage 240.0 245.1 34.37 48.3 311.1 600
Female 0.54 1 0.50 0 1 2340

Age 19.13 17.50 2.43 16.00 25.00 2340
Private High School 0.77 1 0.41 0 1 2340

Repetitions 0.69 1 0.83 0 2 2340
Preparatory Course 0.59 1 0.49 0 1 2340
Father’s education 2.13 2 1.00 0 3 2340
Mother’s education 2.15 2 0.98 0 3 2340

Source: Vestibular cross section data in 2004.
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Table 2: Simulated success probabilities

Sobral Fortaleza
Stage 1 Final Success Stage 1 Final Success

Min. 0.000 0.000 0.000 0.000
25% 0.001 0.001 0.000 0.000

Median 0.088 0.011 0.012 0.004
Mean 0.314 0.076 0.203 0.062

75% 0.676 0.103 0.360 0.071
Max. 1.000 0.934 1.000 0.920

1 Success probabilities are constructed using 1000 Monte Carlo simu-
lations.

Table 3: Thresholds of the Counterfactuals

School Sobral Fortaleza

Stage 1 Original system Mean Thresholds 184.48 189.88
Standard Errors (1.257) (0.401)

Cutting seats Mean Thresholds 195.79 201.04
Standard Errors (0.996) (0.506)

Two-Choices Mean Thresholds 186.98 190.13
Standard error (0.564) (0.458)

Timing-Change Mean Thresholds 183.05 190.11
Standard error (0.859) (0.447)

School Sobral Fortaleza

Stage 2 Original system Mean Thresholds 235.41 241.44
Standard Errors (1.669) (0.898)

Cutting seats Mean Thresholds 233.34 237.77
Standard Errors (3.094) (1.603)

Two-Choices Mean Thresholds 235.38 241.19
Standard error (2.589) (1.302)

Timing-Change Mean Thresholds 239.07 244.30
Standard error (2.722) (1.408)

1 The coefficients and their standard errors are computed by using the 499
bootstrapped estimates of preference and grade parameters and applying the
procedure in the text.

2 The cutting seats counterfactual has a few cases in which the computation de-
veloped in Section 5.2 does not converge after many repetitions, and we have
excluded those bootstrap values that do not converge after 500 iterations.
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Table 4: Cutting seats: Expected utility changes

Expected ALL D=Sobral D=Fortaleza
Final Grade mean s.d. mean s.d. mean s.d.

0% -50% -0.00029 0.00116 -0.00109 0.00185 -0.00011 0.00084
50%-60% 0.00001 0.00744 -0.00733 0.00563 0.00252 0.00622
60%-70% 0.00674 0.01655 -0.01125 0.00931 0.01206 0.01433
70%-80% 0.03122 0.02770 -0.00919 0.01272 0.03843 0.02306
80%-82% 0.04070 0.02813 -0.00096 0.00413 0.05493 0.01574
82%-84% 0.05491 0.02896 0.00540 0.00539 0.06567 0.01887
84%-86% 0.07304 0.03128 0.00107 0.00866 0.08482 0.01123
86%-88% 0.06124 0.03374 0.00257 0.00837 0.07762 0.01367
88%-90% 0.07932 0.03072 0.00813 0.00484 0.09027 0.01308
90%-92% 0.09239 0.03272 0.00617 0.00969 0.10224 0.01463
92%-94% 0.08806 0.04041 0.00991 0.00905 0.10696 0.01227
94%-96% 0.11009 0.03125 0.00834 0.00213 0.11839 0.01114
96%-98% 0.11178 0.03456 0.01104 0.00531 0.12249 0.01008
98%-100% 0.08939 0.04669 0.00760 0.00533 0.11185 0.01989

E(∆Ui)
0.01966 -0.00267 0.02487

s.d.(∆Ui)
0.03785 0.00817 0.04009

Frequency( ∆Ui > 0)
0.4363 0.2084 0.4894

1 ALL contains all the students no matter what the original choices are.
2 D=Sobral means the sub-population of those who choose Sobral in the original system;

and D=Fortaleza means the sub-population of those who choose Fortaleza in the
original system.

3 E(∆Ui) (resp. s.d.(∆Ui)) is the sample average (resp. standard deviation) of the total
utilitarian welfare change.

3 Pr(∆Ui > 0) is the frequency of students whose expected utility changes are positive
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Table 5: Two choices: Expected utility changes

Expected ALL D=Sobral D=Fortaleza
Final Grade mean s.d. mean s.d. mean s.d.

0% -50% 0.00002 0.00076 0.00048 0.00144 -0.00009 0.00043
50%-60% 0.00176 0.00372 0.00537 0.00531 0.00052 0.00174
60%-70% 0.00727 0.01006 0.02106 0.01084 0.00320 0.00487
70%-80% 0.01706 0.01907 0.05619 0.01400 0.01008 0.00843
80%-82% 0.03719 0.03064 0.08629 0.00523 0.02042 0.01126
82%-84% 0.03140 0.03081 0.09163 0.00784 0.01831 0.01291
84%-86% 0.02817 0.03303 0.10573 0.00620 0.01548 0.01003
86%-88% 0.04673 0.03837 0.11457 0.00713 0.02780 0.01406
88%-90% 0.04323 0.03573 0.12548 0.00781 0.03058 0.01563
90%-92% 0.03728 0.03984 0.14298 0.01055 0.02520 0.01731
92%-94% 0.05830 0.04879 0.14871 0.00588 0.03643 0.02148
94%-96% 0.04137 0.04184 0.17341 0.00454 0.03059 0.01799
96%-98% 0.05055 0.04687 0.18008 0.00424 0.03677 0.02042
98%-100% 0.05964 0.06562 0.17849 0.01288 0.02702 0.02069

E(∆Ui)
0.01143 0.03074 0.00693

s.d.(∆Ui)
0.02705 0.05073 0.01400

Frequency(∆Ui > 0)
0.5431 0.7029 0.5058

1 ALL contains all students no matter what the original choices are.
2 D=Sobral means the sub-population of those who choose Sobral in the original

system; and D=Fortaleza means the sub-population of those who choose Fortaleza
in the original system.

3 Notes: See notes of Table 4.
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Table 6: Timing change: Expected utility changes

Expected ALL D=Sobral D=Fortaleza
Final Grade mean s.d. mean s.d. mean s.d.

0% -50% 0.00053 0.00158 -0.00019 0.00065 0.00070 0.00168
50%-60% 0.00731 0.00584 -0.00064 0.00182 0.01003 0.00394
60%-70% 0.01798 0.01034 0.00196 0.00291 0.02271 0.00612
70%-80% 0.03551 0.01394 0.00691 0.00491 0.04062 0.00722
80%-82% 0.04164 0.01984 0.00954 0.00386 0.05260 0.00654
82%-84% 0.04821 0.01877 0.01087 0.00588 0.05633 0.00683
84%-86% 0.05375 0.01971 0.00818 0.00574 0.06121 0.00674
86%-88% 0.05348 0.02207 0.01425 0.00571 0.06443 0.00745
88%-90% 0.06125 0.02169 0.01046 0.00434 0.06907 0.00865
90%-92% 0.06933 0.02109 0.01364 0.00633 0.07569 0.00932
92%-94% 0.06514 0.02591 0.01646 0.00808 0.07691 0.00989
94%-96% 0.07891 0.02258 0.01366 0.00598 0.08424 0.01289
96%-98% 0.07912 0.02262 0.01773 0.00570 0.08566 0.01054
98%-100% 0.06413 0.02878 0.01581 0.00784 0.07739 0.01454

E(∆Ui)
0.01862 0.00288 0.02229

s.d.(∆Ui)
0.02703 0.00609 0.02865

Frequency( ∆Ui > 0)
0.6557 0.5166 0.6881

1 ALL contains all the students no matter what the original choices are.
2 D=Sobral means the sub-population of those who choose Sobral in the original

system; and D=Fortaleza means the sub-population of those who choose Fortaleza
in the original system.

3 See notes of Table 4
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Figure 1: Choice space
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Figure 2: Cutting seats: Changes of success probabilities in Sobral
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[1] The circles plot individual success probability changes vs expected final grades; [2] From left to right, 1) the
first vertical line is the median, 2) the second vertical line is the average of quantiles for 1st stage admission –

(1− 4(nos+nof)
nobs )×100%, and 3) the third line is the average of quantiles for 2nd stage admission – (1− (nos+nof)

nobs )×
100% in which nos is the number of final seats in Sobral, nof is the number of final seats in Fortaleza and nobs is
the number of total applicants; [3] The solid fitted curve is obtained by lowess smoothing.
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Figure 3: Two choices: Success probability change in Sobral
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Figure 4: Timing change: Success probability changes in Sobral
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Supplementary Appendix available upon request

S.1 Data appendix

Matching students with university schools in Brazil is a very competitive process and in particular

in public federal universities which are mostly the best institutions. More than two millions of

students competed to access one of the 331,105 seats in 2006. In some schools, medicine or law for

instance, the ratio of applications to available seats can be as high as 20 or more (INEP, 2008).

Fierce competition is by no means the exclusivity of Brazilian universities. What made Brazil

specific in the years 2000s was the formality of the selection process at the level of each university.

In contrast to countries such as the United States where the predominant selection system uses

multiple criteria (for instance, Arcidiacono, 2005), selection using only objective performance

under the form of grades at exams is pervasive in Brazil. More than 88% of available seats are

allocated through a vestibular as is called the sequence of exams taken by applicants to university

degrees (INEP, 2008). Moreover, in contrast to countries such as Turkey (Balinski and Sonmez,

1999), the organization of selection was decentralized at the level of universities until 2010.

ENEM is a non-mandatory Brazilian national exam, which evaluates high school education in

Brazil. Until 2008, the exam consisted in two tests: a 63 multiple-choice test on different subjects

(Portuguese, History, Geography, Math, Physics, Chemistry and Biology) and writing an essay.

S.1.1 Description

The Vestibular, an entrance exam whereby different universities develop their own format of

testing students restricted by some federal constraints, has its roots in the creation of the first

undergraduate course in Brazil 200 hundred years ago. Only in 1970, with the creation of the

National Commission of the Vestibular, the system started to develop a regulatory background in

order to rationalize the increasing demand for undergraduate education in the country. The final

step that shaped the format of the Vestibular in place in 2004 was taken in 1996 with the approval

of the Law of Directives and Basis of the National Education (LDB). The LDB, among other

things, set the minimum requirements of the exam and explicit constraints regarding the form and
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content that universities must obey if they choose to select their students through a Vestibular.

Olive (2002) asserts that LDB introduced a regular and systematic process of evaluation and

credentialing that initiated a new era of meritocracy in Brazilian universities. Even though LDB

reinforced regulation and as a consequence brought about many new restrictions, law abiding

universities still have in practice a lot of degrees of freedom to adapt their entrance exams to their

needs.

S.1.2 The Vestibular at UFC

The Vestibular at UFC shares the same features described above regarding its protocol. However,

we give a detailed description of some of its feature in order to gain insight when developing and

estimating econometrics models. First, all entrance exams in public universities must be preceded,

by law, by the release of a document called Edital which contains the whole set of regulations

regarding the exam: among others, a specific timeline for exams, a detailed list of syllabus for all

disciplines required in the exams, the schools offered as well as the available spots in each one,

how scores are calculated, how students are ranked, forbidden actions that may cause elimination

from the exams, minimum requirements in terms of grades and so on. Accordingly to Brazilian

law the Edital is a document that possesses the status of legislation, i.e., any dispute of rights

with respect to details of the Vestibular must use the contents of the Edital as a first guiding line

in order to settle the dispute.

The first stage, called General Knowledge (GK), is composed of a unique 63 objective questions

(multiple choice, with five alternatives A, B, C, D and E) exam whose content is exactly the

core high school curricula, i.e., Portuguese (Grammar and Writing), Geography, History, Biology,

Chemistry, Mathematics, Physics and Foreign Language.

Adding up all "standardized" scores gives the total standardized score XGK
s . In order to pass

to the following second stage and take the so called Specific Knowledge (SK) exam, the student

must obey the following rules:

1. Get a grade in each subject appearing in the GK exam;

2. After being ranked accordingly to his/her overall standardized score XGK
s , the student

must be placed in a position equal or above the threshold specific to his/her chosen school. This

threshold is calculated based on the following rule: Let N be the number of available places in

a specific school previously shown in the Edital. Let r be defined as the ratio of the number of

students choosing the school and the number of available seats in the school. If r < 10 then the

threshold is 3N , otherwise it is 4N .
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The second-stage exam is comprised of two separated sub-exams (realized in two consecutive

days apart only two weeks after the release of first-stage exam results) and they are set according

to the requirements of each school. The sum of all standardized scores taken in the second stage

gives the second-stage grade. The sum of all first-stage standardized scores and all second-stage

standardized scores gives the final grade. All students are ranked again and available seats are

allocated to the best ranked students.

S.1.3 Descriptive analysis

The complete original database comprises 41377 students who took the Vestibular exam in 2004.

There are several groups of variables in the database that are useful for this study:

• Grades at the various exams —the initial national high school evaluation exam (ENEM), the
first and second stage of the Vestibular system as well as the number of repetitions of the

entry exams.

• Basic demographic variables —gender, age by discrete values (16, 17.5, 21 and 25) and the
education levels of father and mother.

• Education history —public or private primary or high school as described by discrete values
indicating the fraction of time spent in private schools and undertaking of a preparatory

course

• Choices of schools

In total there are 58 schools that students may consider at Universidade Federal do Ceará. We

grouped these schools into broad groups according to the type of second-stage exams that students

take to access these schools. Table S.i reports the number of student applications, available

positions and the rate of success at stages 1 and 2 in each of those school fields. These fields are

quite different not only in terms of organization and in terms of contents but also regarding the

ratio of the number of applicants to the number of positions. At one extreme lie Physics and

Chemistry in which the number of applications is low and the final pass rates reasonably high

(20%). At a lesser degree this is also true for Accountancy, Agrosciences and Engineering. At the

other extreme, lie Law, Medicine, Other humanities and Pharmacy, Dentist and Other in which

the final pass rate is as low as 5 or 6% that is one out of 16 students passes the exam.

Medicine is one of the most diffi cult school to enter as can be seen in Table S.ii which reports

summary statistics in each school field and the grades obtained at the first stage of the college
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exam.S.1 We report statistics on the distribution of the first-stage grades in three samples:S.2 the

complete sample, the sample of students who passed the first stage and the sample of students who

passed the second stage and thus are accepted in the schools. school fields are ranked according

to the median grade among those who passed the final exam in that school field. These statistics

are very informative. Distributions remain similar across groups. Minima (column1) tend to be

ordered as the median of students who pass (column 6). The first columns also reveal that some

groupings might be artificial. The whole distribution is for example scattered out in mathematics

from a minimum of 70 to a maximum of 222 while in medicine the range is 189 to 224. Other

details are worth mentioning. Medicine and Law are ranked the highest and the difference with

other school fields is large. The minimum grade in medicine to pass to the second stage is close

to the maximum that was obtained by a successful student in Other fields and somewhat less

than in Agrosciences. The first-stage grade among those who passed in Medicine (resp. Law)

has a median of 206 (resp. 189) while the next two are Pharmacy, Dentist and Other (175) and

Engineering (171) and the minimum is for Agrosciences at 142.

This is why eventually, we chose to analyze only two medical schools in Sobral and Fortaleza.

S.2 Empirical Analysis: Estimates of Grade and Prefer-

ence Equations

We present here the results of the estimation of grade equations, success probabilities and prefer-

ences.

S.2.1 Descriptive statistics

Table S.iii summarises the distribution of grades in the two medical schools Sobral and Fortaleza

in three samples: the complete sample, the sample of students who passed the first stage and

the sample of students who pass the final stage. Fortaleza is the most competitive one since the

median of the first-stage grade of those who passed is equal to 209 while it remains around 200 for

Sobral. In conclusion, Fortaleza is more popular among students who apply to a medical school

S.1We do not report the second stage grades as they consist in grades in specific fields that are not necessarily

comparable across majors.
S.2We report for the complete sample the 10th percentile instead of the minimum in order to have a less noisy

view of whom are the applicants. There are also a few zeros in the distribution of the initial grades.
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although it is not clear whether this popularity comes from preferences or is the result of strategic

behavior of students. Our model is an attempt to disentangle those effects.

There are also other interesting differences among applicants to the two schools regarding

gender, age, private high school and preparatory course as appears in Table 1. There are more

female applicants to Fortaleza than to Sobral. Sobral candidates are older on average and repeat

more exams than Fortaleza candidates do and these two variables are highly correlated. The

average time spent in private high school is higher in Sobral and it is more likely for a Sobral

candidate to have taken a preparatory course.

Among explanatory variables, the initial grade obtained at the national exam ENEM receives

a special treatment. When missing (in 5% of cases), we imputed for ability the predicted value

of the initial grade ENEM obtained by using all exogenous variables and we denote the result

as m0 to distinguish it from ENEM which is used when computing the passing grades. The

administrative rule is to impute 0 when ENEM is missing.

S.2.2 Estimates of grade equations

S.2.2.1 First-stage exam

We report in Table S.iv the results of linear regressions of the first grade equation using three

different specifications. We pay special attention to the flexibility of this equation as a function

of the ability proxy m0, which is the observed ranking of each student with respect to his or her

fellow students and the best proxy for the success probability at the exams. We use splines in

this variable although other non-parametric methods such as Robinson (1988) could be used. A

thorough specification search made us adopt a 2-term spline specification, which is reported in

the first column of Table S.iv. This specification is used later to predict success probabilities in

both schools.

Estimates show that more talented students tend to have better grades in exams, since m0 has

significant positive effects on the first-stage grades although this dependence is slightly non linear

as represented in Figure S.ii. Among other explanatory variables, age has a significant negative

coeffi cient in all specifications and this indicates that older students who might have taken one gap

year or more are relatively less successful in the first-stage exam. Taking a preparatory course and

repeating the entry exam have positive and significant effects on grades by presumably increasing

abilities and experience of applicants. In the second specification, we tested for the joint exclusion

of parents’education and it is not rejected by a F-test. In the third specification, we restrict the
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term in m0 to be linear. It shows that results related to other coeffi cients are stable and robust.

The set of explanatory variables we choose yields a large R2 at around 0.72, and this does not

vary much across different specifications.

S.2.2.2 Second-stage exam

In the second-stage grade equation, we again sought for flexibility with respect to two variables

—the initial stage grade m0 and the residual from the first-stage grade equation û1 as it controls

for dependence between stages. Using both non-parametric and spline methods, we found that

a two term spline in the initial stage grade m0 and a linear term in û1 were enough in terms of

predictive power. Results are reported in Table S.v. First of all, there exists a strong positive

correlation between u1 and u2, which indicates that unobservable factors on top of the ability

proxy affect both equations. All other things being equal, students are more likely to perform well

in the second exam if they perform well in the first exam. This may due to some unobservable

effort difference or emotional resilience difference between students. The clear significance of the

first-stage residual signals that effort for studying might have been exerted by students during the

year separating the initial stage exam revealing m0 and the proper entry exam that we analyze.

Yet, our attempts in previous work to construct a more sophisticated model including endogenous

effort failed in the sense that the influence of effort never came out significantly. This is why we

decided to use the current simpler model. As for other demographic variables, they affect similarly

the second-stage grade as the first-stage grade except for gender. Results suggest that females

perform significantly better than males in the second-stage exam, while in the first-stage grade

gender differences are not significant.

Regarding robustness checks, another concern is heteroskedasticity. We perform Breusch-

Pagan tests to see whether there is substantial heteroskedasticity in the grade equations. For the

first grade equation, gender is negatively correlated with squared residuals although the global

F-test does not reject homoskedasticity at a 1% level (p-value of 3.4%). For the second grade

equation, the test rejects homoskedasticity at the 1% level and shows that age, private high school

and repetition are significant in explaining squared residuals. This is consistent with the common

sense that better high school education and more experience makes your performance steadier.

However, in the rest of the paper, we adopt the homoskedasticity assumption since we checked that

heteroskedasticity does not generate large differences in the prediction of success probabilities.
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S.2.2.3 Success probabilities

Success probabilities are simulated using the empirical distributions of û1 and û2 and of the

thresholds. We run nS = 2000 sets of n simulations by drawing into the estimated empirical

distribution of errors, û1 and û2. We then compute thresholds by solving equation (4) for each of

the previous nS set of simulators. We then replace the integration with respect to the thresholds

as in equation (12) and the integration in equation (11) by summing over the set of nS simulators.

We experimented with different numbers of simulations to make sure that simulation error is

negligible. This allows to compute simulated success probabilities for each student at both stages

of the exam and in both schools.

In addition to summaries of predicted probabilities reported in the text in Table 2, we break

down the simulated probability to see the difference between students choosing Fortaleza and

choosing Sobral in the original data. In order to see how student choices depend on their actual

success probabilities, we compute the odds ratio of success probabilities at both stages. We rank

the population with respect to their first-stage grades and construct the grid of odd ratios at all

percentiles for both stages. The result is shown in Table S.vi. Some critical quantiles at the top

are provided for more detail. The two most important range of percentiles are indeed the 70/75th

and 93/95th percentiles since the admission rate at the first exam is slightly less than 30% and

the admission rate at the second exam is around 5/7%. Odds ratios are generally larger than 1

and odds ratios are the largest at the middle percentiles for both stages of the exam. It suggests

that students who are not at the top of the rankings are making decisions that are affected more

by success probabilities than by preferences and might play more strategically. For top students,

odd ratios are closer to 1 because preferences matter more for those whose success probabilities

are large and strategic effects are less important.

S.2.3 Estimates of school preferences

We build our estimation procedure on the identification results developed in Section 2.3.3 although

we adopt two parametric assumptions. First, the distribution of random preferences is assumed

to be a normal distribution when both schools yield positive utility to students. Second, the

probabilities that only one school has positive utility are described by logistic functions which

depend on a smaller set of covariates. Following the notation of Section 2.3.3, we write the

probability measure of the regions in Figure 1, for instance the north-east quadrant (that is
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V S > 0, V F > 0) as:

δSF (X) =
1

1 + exp(XδSF )
.

The choice probability is thus derived from equation (7):

Pr(D = S | ∆(Z), X) = δS(X) + δSF (X)Φ(log(P S)− log(P F ) +Xγ)

in which Φ(.) is the zero mean unit normal distributionS.3 and the success probabilities P d are

to be replaced by their simulated predictions using grade equations (column 1 of Table S.iv and

column 2 of Table S.v) as developed in the previous Section S.2.2.3. In the first part of Table S.vii,

we report the estimated preference coeffi cients and in the second part we present more readable

summary statistics of the estimated probabilities of each region, δSF (X). There are three different

specifications included in this table. The key difference is how explanatory variables enter the

specification of δS and δSF . We chose to use two main variables, abilitym0 and Living in Fortaleza

as the main drivers of these probabilities and the three columns of Table S.vii include one or both

of these variables.

The results are very stable across specifications. As far as δ parameters are concerned, ability

significantly affects the probability of the region of jointly positive values, (S, F ) (and as a conse-

quence of adding up, also the preference for F alone). Living in Fortaleza decreases preferences

for Sobral alone (δS) or jointly with Fortaleza (δSF ). The second part of Table S.vii shows that

the average probability of preferring Sobral alone (resp. Fortaleza alone) to the outside option

is around 0.06 (respetively 0.55). These frequencies stay almost invariant across specifications.

These results lead to what is commented in the text.

We now turn to parameters γ that affect preferences of students who prefer both schools to the

outside option in the north-east quadrant of Figure 1. The variables, "Living in Fortaleza", Age,

Gender (female) and ability, m0, have a negative impact on the preference for Sobral, the smaller

school. In contrast, the number of repetitions have a positive impact on choosing the medical

school in Sobral. A well educated father affects positively preferences for the bigger school in

Fortaleza while mother’s education does not have any significant influence on preferences. This is

probably because of the colinearity between parents’educations.

Finally, we tested the maintained hypothesis that performance shocks and preference shocks

are independent by introducing the residual û1 in this preference equation. The hypothesis cannot

be rejected at the 10% level (the p-value is equal to 0.184).

S.3As the range of the log probability difference is not the whole real line as in Section 2.3.3, the scale of the error

is not identified and its variance is thus normalized to one.
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S.3 Complements to the Counterfactual Analysis

S.3.1 Simulated preferences conditional on observed choices

Recall that we describe three groups of students according to their preferences: those only inter-

ested in Sobral, those only interested in Fortaleza and those interested in both. The probability

of each of these three groups are denoted as δSi , δ
F
i , δ

SF
i and these probabilities are heteroge-

neous across students since they depend on Xi. Let εi = (ε
(1)
i , ε

(2)
i ) be such that ε(1)

i ∼ U [0, 1]

and ε
(2)
i ∼ N(0, 1). The first random term allocates student 0 to one of the three groups i.e.

ε
(1)
i ≤ δS(Xi) means that she prefers Sobral only to the outside option and ε

(1)
i ≥ δS(Xi)+δSF (Xi)

means that she prefers Fortaleza only to the outside option. If ε(1)
i ∈ (δS, δS + δSF ), both schools

bring positive utility to her. It is only in the latter case that expected success probabilities matter.

Let the function of Xi and the second random term:

ln(V F (Xi, εi, ζ)/V S(Xi, εi, ζ)) = Xiγ + ε
(2)
i

be the relative utility in logarithms of Sobral and Fortaleza. Using success probabilities P S
i (Zi, β)

and P F
i (Zi, β), the decision is determined by:

D0(Xi, εi, ζ, P
S
i , P

F
i ) = S ⇐⇒ ln(V S(Xi, εi, ζ)/V F (Xi, εi, ζ)) + ln(P S

i /P
F
i ) ≥ 0,

D0(Xi, εi, ζ, P
S
i , P

F
i ) = F ⇐⇒ ln(V S(Xi, εi, ζ)/V F (Xi, εi, ζ)) + ln(P S

i /P
F
i ) < 0.

S.3.1.1 Simulations of ε(i) conditional on choices

We shall simulate εi,c in its distribution conditional on the observed choice Di = S (say). This

necessarily means that ε(1)
i ∼ U [0, 1] conditional on ε(1)

i < δS(Xi) + δSF (Xi) so that we can write:

ε
(1)
i,c = (δS(Xi) + δSF (Xi))ε̃

(1)
i,c

in which ε̃(1)
i,c ∼ U [0, 1]. Then, if ε(1)

i,c < δS(Xi) the observed choice is necessarily Di = S. In the

other case, if ε(1)
i,c > δS(Xi), we should condition the drawing of ε

(2)
0 on the restriction that:

Xiγ + ε
(2)
i + ln(P S

i /P
F
i ) > 0

as derived from equation (5). This is easily done by drawing in a truncated normal distribution.

Draw ε̃
(2)
i,c into a U [0, 1] and write:

ε
(2)
i,c = Φ−1(Φ(− ln(P S

i /P
F
i )−Xiγ) + (1− Φ(− ln(P S

i /P
F
i )−Xiγ))ε̃

(2)
i,c ),
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or equivalently:

ε
(2)
i,c = −Φ−1(Φ(ln(P S

i /P
F
i ) +Xiγ)(1− ε̃(2)

i,c )).

Adaptations should be made to this construction when the choice is Di = F . In this case,

ε
(1)
i,c = δS(Xi) + (1− δS(Xi)ε̃

(1)
i,c , ε̃

(1)
i,c ∼ U [0, 1],

ε
(2)
i,c = Φ−1(Φ(− ln(P S

i /P
F
i )−Xiγ)(1− ε̃(2)

i,c )), ε̃
(2)
i,c ∼ U [0, 1].

S.3.2 The counterfactual experiment with lists of two choices

Here we describe how to compute the model of choice between two schools, S and F. This allows

four possible choices: (S, F ), (F, S), (S,∅), (F,∅) and their respective expected values: USF ,

UFS, US, UF . Those values depend on probabilities of success and on thresholds in the following

way.

Starting with the singleton lists (d,∅), we have that:

Ud = V d Pr{m1 > td1,m2 > td2}

as before. For the lists (d1, d2) ∈ {(S, F ), (F, S)}, we use the description of the text to state that:

Ud1d2 = V d1 Pr{m1 > td11 ,m2 > td12 }+ V d2 Pr{m1 ∈ [td11 , t
d2
1 ),m2 > td22 }

in which Pr{m1 ∈ [td11 , t
d2
1 )} = 0 if td21 < td11 . The choice model can now be described by four

success probabilities: P d = Pr{m1 > td1,m2 > td2}, d = S, F

P d1d2 = Pr{m1 ∈ [td11 , t
d2
1 ),m2 > td22 }, (d1, d2) ∈ {(S, F ), (F, S)},

which are functions of thresholds td1, t
d
2. Those thresholds remain suffi cient statistics in order to

derive success probabilities.

S.3.3 Additional Tables and Figures

Figure S.i reports the estimated density of grades distinguishing Sobral and Fortaleza applicants.

The first-stage grade density function in Sobral has a regular unimodal shape while Fortaleza

has a somewhat irregular modal shape and a fat tail on the left. The second-stage grade density

functions, both in Fortaleza and Sobral, are unimodal and the Sobral density function has a fatter
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tail on the left-hand side. The truncation at the first-stage plays an important role in removing

the fat tails of both densities on the left-hand side.

Figure S.iii shows a picture of those odds ratios at all percentiles. We can visualize individual

changes in expected utility in the cutting seat counterfactual in Figure S.v . Figure S.vi (re-

spectively Figure S.viii) report changes in success probabilities for Fortaleza in the two choice

experiment (resp. timing change). Changes in expected utility for the two choice experiment

(resp. timing change) are graphed in Figure S.vii (resp. Figure S.ix).

Other references:

Instituto Nacional de Estudos e Pesquisas (INEP), 2008, "Sinopses estatísticas da

educação superior", available at http://www.inep.gov.br/superior/censosuperior/sinopse/.

Olive, A. C., 2002, "Histórico da educação superior no Brasil", in: Soares, M. S. A. (coord.).

Educação superior no Brasil. Brasília, p. 31-42.

Robinson, P. M., 1988, "Root-N-consistent semiparametric regression", Econometrica, 56:931-

954.
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Table S.i: Number of applications, number of positions and success probabilities

Groups of majors Applications % Pass 1st stage % Pass 2nd stage Positions
Accountancy 1,374 40% 13% 185

Administration 2,474 29% 8% 200
Agrosciences 2,996 41% 13% 390
Economics 1,516 37% 11% 160
Engineering 2,648 40% 14% 360
Humanities 4,897 17% 9% 430

Law 3,625 20% 5% 180
Mathematics 2,425 37% 11% 269

Medicine 4,024 23% 6% 230
Other 2,778 21% 6% 165

Pharmacy, Dentist & Other 5,312 24% 6% 320
Physics & Chemistry 1,734 58% 20% 349

Social Sciences 5,574 26% 7% 385
Source: Vestibular cross section data in 2004.
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Table S.iv: First stage exam grade equation

Specification 1 Specification 2 Specification 3

(Intercept) 27.28 26.59 78.00
(3.59)*** (3.66)*** (2.23)***

Female 0.54 0.47 0.44
(0.40) (0.40 ) ( 0.40)

Age -0.86 -0.86 -0.87
(0.11 )*** (0.11 )*** (0.11)***

Special high school -6.54 -6.46 -6.65
(1.73)*** (1.74)*** (1.75)***

Private high school 2.67 1.99 2.14
(0.56)*** (0.67)*** (0.65)***

Preparatory course 1.67 1.51 1.51
(0.48)*** (0.50)*** (0.50)***

Repetitions 2.83 2.86 2.87
(0.35)*** (0.37)*** (0.37)***

Ability(m0) 12.96
(0.65)***

Spline(1)(m0 Residual) 48.18 48.72
(4.03)*** (4.00)***

Spline(2)(m0 Residual) 89.17 89.20
(4.54)*** (4.49)***

Living in Fortaleza 3.72 3.69 3.60
(0.66)*** (0.67)*** (0.67)***

Living in Fortaleza*Ability 2.02 1.98 1.93
(0.68)*** (0.66)*** (0.66)***

Mother’s education 0.11 0.10
(0.31) (0.31)

Father’s education 0.33 0.33
(0.29) (0.29)

R2 0.7196 0.7199 0.7198

1 Living in Fortaleza is a dummy which indicates whether the student is currently living in
Fortaleza.

2 Standard errors are between brackets and * (resp. ** and ***) denotes significance at a 10
(resp 5 and 1) percent level.

3 The coefficients and their standard errors are computed by bootstrapping the procedure
499 times using the empirical distribution of residuals.
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Table S.v: Second stage exam grade equation

Specification 1 Specification 2

(Intercept) 232.65 171.69
(13.72)*** (20.08)***

Female 7.36 7.16
(2.27)*** (2.28)***

Age -3.90 -3.96
(0.75)*** (0.74)***

Special high school -11.48 -12.68
(21.76) (20.25)

Private high school 8.82 9.11
(4.15)*** (4.27)***

Preparatory course 9.15 8.95
(3.38)*** (3.44)***

Repetitions 13.91 14.14
(2.21)*** (2.25)***

u1 (m1 residual) 2.51
(0.18)***

Spline(1)(m1 residual) 68.09
(28.38)***

Spline(2)(m1 residual) 153.07
(11.47)***

Ability (m0) 35.23 35.05
(3.52)*** (2.63)***

R2 0.2284 0.2286

1 Standard errors are computed by bootstrapping 499 times using
both grade equations and the empirical distributions of residuals.

2 Standard errors are between brackets and starred signs are de-
fined as in Table S.iv.
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Table S.vi: Odds ratio of success proba-
bilities

Percentile First stage Second stage

10 1.00 2.66
20 1.00 1.60
30 1.47 1.08
40 0.86 1.61
50 1.07 2.26
60 1.33 3.43
70 1.29 5.34
75 1.18 5.62
80 1.15 5.22
85 1.14 4.41
90 1.10 3.73
95 1.03 3.37

100 1.00 1.74

1 The first column reports the odds ra-
tio of success probabilities at the first
stage between subsamples of those who
choose Sobral and choose Fortaleza
p1sob|di=s
p1fort|di=s/

p1sob|di=f
p1fort|di=f .

2 The second column reports the odds ra-
tio of final success probability at the sec-
ond stage between subsamples of those
who choose Sobral and choose Fortaleza
psob|di=s
pfort|di=s/

psob|di=f
pfort|di=f .

3 Percentiles in rows are computed using first
stage exam grades.
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Table S.vii: Estimated preferences for Sobral’s medical school

Parameters
Specification 1 Specification 2 Specification 3

δS0 -2.782 -1.132 -1.167
(0.303)*** (0.309)*** (0.277)***

δSm0
0.261 0.166

(0.189)* (0.146)*
δSLivinginFortaleza -1.815 -1.586

(0.522)*** (0.283)***
δSF
0 -0.453 0.521 0.484

(0.271)* (0.312)** (0.296)**
δSF
m0

0.979 1.062
(0.198)*** (0.179)***

δSF
LivinginFortaleza -1.314 -1.225

(0.326)*** (0.393)***
Intercept 0.075 0.334 0.0482

(0.707) (0.387) (0.393)
Ability (m0) -1.079 -0.977 -0.020

(0.261)*** (0.247)*** (0.095)
Living in Fortaleza -0.248 -0.558

(0.301). (0.314)**
Female -0.325 -0.240 -0.373

(0.139)*** (0.152)*** (0.186)***
Age -0.038 -0.045 -0.048

(0.039) (0.027)** (0.026)**
Repetitions 0.688 0.851 0.911

(0.144)*** (0.141)*** (0.210)***
Father’s education -0.278 -0.257 -0.341

(0.111)*** (0.119)*** (0.154)***
Mother’s education 0.084 0.046 0.216

(0.106) (0.114) (0.145)

Proportions
Specification 1 Specification 2 Specification 3

δS
Min 0.022 0.021 0.050

Mean 0.060 0.057 0.066
Max 0.122 0.248 0.196

δSF
Min 0.015 0.016 0.365

Mean 0.385 0.412 0.386
Max 0.816 0.852 0.559

δF
Min 0.062 0.027 0.245

Mean 0.555 0.531 0.548
Max 0.963 0.962 0.585

1 The second part of the table reports summaries of the probabilities of being in one of the
three regions of Figure 1.

2 The coefficients and their standard errors are computed by bootstrapping 499 times the
whole procedure (including grade equations).

3 Standard errors are between brackets and starred signs are defined as in Table S.iv.
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Table S.viii: Cutting seats: Robustness

Expected µ = 0.8 µ = 0 µ = 1
Final Grade mean s.d. mean s.d. mean s.d.

0% -50% -0.00029 0.00116 -0.00026 0.00105 -0.00030 0.00119
50%-60% 0.00001 0.00744 0.00032 0.00697 -0.00007 0.00756
60%-70% 0.00674 0.01655 0.00715 0.01594 0.00664 0.01671
70%-80% 0.03122 0.02770 0.03143 0.02727 0.03117 0.02781
80%-82% 0.04070 0.02813 0.04074 0.02806 0.04069 0.02815
82%-84% 0.05491 0.02896 0.05478 0.02917 0.05494 0.02891
84%-86% 0.07304 0.03128 0.07302 0.03129 0.07305 0.03128
86%-88% 0.06124 0.03374 0.06117 0.03381 0.06126 0.03372
88%-90% 0.07932 0.03072 0.07917 0.03106 0.07936 0.03063
90%-92% 0.09239 0.03272 0.09230 0.03293 0.09241 0.03267
92%-94% 0.08806 0.04041 0.08779 0.04087 0.08812 0.04029
94%-96% 0.11009 0.03125 0.11000 0.03153 0.11011 0.03118
96%-98% 0.11178 0.03456 0.11163 0.03498 0.11181 0.03446
98%-100% 0.08939 0.04669 0.08917 0.04707 0.08945 0.04660

E(∆Ui)
0.01966 0.01975 0.01964

s.d.(∆Ui)
0.03785 0.03775 0.03787

Pr(∆Ui > 0)
0.4363 0.4363 0.4363

1 Results as in Table 4 using different values of µ.
2 See notes of Table 4
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Figure S.i: Density plots of the grades
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Figure S.ii: The relation between ability and first stage grades
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[1] The round grey points are the scatter plots of first stage grade on ability (normalized Enem); [2] The curve is
the LOWESS curve of first stage grade on ability (normalized Enem).
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Figure S.iii: The Odds ratio plot of simulated success probabilities
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[1] The star points are odds ratio at the first stage ; [2] the triangular points are the odds ratio at the second stage;
[3] percentiles are computed using first stage grades.
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Figure S.iv: Cutting seats: Changes of success probabilities in Fortaleza
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Figure S.v: Cutting seats: Expected utility changes
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[1] the grey squares (resp. blue triangles) report changes in expected utilities and expected final grades for those
who choose Sobral (resp. Fortaleza) in the original system. [2] the red line is the 0 level; [3] the vertical lines are
as in Figure S.iv.
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Figure S.vi: Two choices: Success probability change in Fortaleza
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Figure S.vii: Two choices: Expected utility changes
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Figure S.viii: Timing change: Success probability changes in Fortaleza
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Figure S.ix: Timing change: Expected utility changes

50 100 150 200 250

0.
00

0.
05

0.
10

0.
15

0.
20

Expected final grade

U
til

ity
 d

iff
er

en
ce

Notes: See notes of Figure S.v

S.xxviii




