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Decomposition of changes in the consumption of macronutrients

in Vietnam between 2004 and 2014

Abstract

Vietnam is undergoing a nutritional transition like many middle-income countries.

This transition is characterized by an increase in per capita total calorie intake re-

sulting from an increase in the consumption of fat and protein while the carbohydrate

consumption decreases. This paper proposes to highlight the sociodemographic drivers

of this transition over the period 2004-2014, using Vietnam Household Living Standard

Survey data. We implement a method of decomposition of between-year differences in

economic outcomes recently proposed in the literature. This method decomposes the

between-year change in various indicators related to the outcome distribution (mean,

median, quantiles. . . ) into the effect due to between-year change in the conditional

distribution of the outcome given sociodemographic characteristics, or “structure ef-

fect”, and the effect due to the differences in sociodemographic characteristics across

years, or “composition effect”. In turn, this last effect is decomposed into direct con-

tributions of each sociodemographic characteristics and effects of their interactions.

The composition effect, always positive, generally outweighs the structure effect when

considering the between-year changes in distributions of per capita calorie intake or

calorie intake coming from protein or fat. The effects of changes in the composition of

the Vietnamese population thus overcome the effects of changes in preferences of the

same population. This finding is reversed in the case of carbohydrates. Food expendi-

ture and household size appear to be the main contributors to the composition effect.

The positive effects of these two variables explain well most of the between-year shifts

observed in the calorie intake distributions. Urbanization and level of education con-

tribute negatively to the composition effect, with the noticeable exception of fat where

the effect of urbanization is positive. But these two variables effects are negligible

compared to those of food expenditure and household size.

Keywords: Macronutrient consumption, Nutritional transition, Decomposition met-

hod, Copula, Vietnam.
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1 Introduction

Since the launch of economic reforms in 1986, Vietnam has recorded impressive achie-

vements in growth performance and, at the same time, has also experienced a nutrition

transition like many other middle-income countries in South East Asia. Dietary di-

versity from 2005 to 2015 in South-East Asia and China has considerably increased:

the share of cereal demand (in terms of quantity) has decreased by 12% while the

share of meat and fish demand and those of dairy and eggs have increased by 8%

and 30% respectively, the share of fruits and vegetables staying steady (IFPRI, 2017).

On one hand, this nutrition transition to energy-dense, poor quality diets has led to

obesity and diet-related chronic diseases. Using two nationally representative surveys,

Ha et al. (2011) show that the nationwide prevalence of overweight (body mass index

≥ 25kg/m2) and obesity (body mass index ≥ 30kg/m2) was 6.6% and 0.4% respecti-

vely in 2005, almost twice the rates of 2000 (3.5% and 0.2%). Using the Asian body

mass index cut-off of 23kg/m2 the overweight prevalence was 16.3% in 2005 and 11.7%

in 2000. According to the World Health Organization, the percentage of overweight

people in the total population of Vietnam is 21% in 2014, the percentage of obese

people being 4%. On the other hand, Ha et al. (2011) point out that the underweight

prevalence (body mass index < 18.5kg/m2) of 20.9% in 2005 is lower than the rate of

25.0% in 2000. This rate has decreased by half in ten years and is currently 11%. Ha

et al. (2011) also analyze the possible sources of this evolution and note that women

were more likely to be both underweight and overweight compared to men in both

2000 and 2005. Urban residents were more likely to be overweight and less likely to be

underweight compared to rural residents in both years. The shifts from underweight

to overweight were clearer among the higher levels of food expenditure.

Many studies have been devoted to the evolution of food consumption in both

developed and developing countries. Some of them aim to document how the evolution

of the socioeconomic status of country’s inhabitants has influenced their diets ( Thang

and Popkin (2004), Burggraf et al. (2015)). Recently, Mayen et al. (2014) reviewed 33

studies on this issue. These studies show that (1) high socioeconomic status or living in
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urban areas is associated with higher intakes of calories, protein, total fat, cholesterol,

polyunsaturated, saturated, and mono-unsaturated fatty acids, iron, and vitamins A

and C and with lower intakes of carbohydrates and fiber, and (2) high socioeconomic

status is also associated with higher fruit and/or vegetable consumption, diet quality,

and diversity. The improvement of the socio-economic status of populations thus leads

to a better feeding of human beings. But the other side of the coin is the link between

improved diets and noncommunicable disease as emphasized by Popkin (2006) and

Riera-Crichton and Tefft (2014). Thus, both policy makers and citizens are concerned

by these concomitant evolutions and the fight against their consequences in terms of

malnutrition or over-food consumption. All this requires first of all knowledge of the

drivers of these evolutions.

In this paper we document shifts in consumption of macronutrients in Vietnam over

the period 2004 to 2014. Thanks to data from Vietnamese households living standard

survey, we can calculate total calorie intakes of Vietnamese households, convert them

into an adult equivalent, or per capita, calorie intakes (thus allowing comparison be-

tween households), and their decomposition into the three macronutrients : proteins,

fat and carbohydrates (Trinh Thi et al., 2018). This survey also contains detailed infor-

mation on the socio-demographic characteristics of Vietnamese households. Each wave

of this survey is, moreover, representative of the Vietnamese population. This survey

can therefore be used for a comparison of the nutritional status of the Vietnamese

population between two waves.

We propose the use of decomposition methods to assess the determinants of change

in macronutrients consumption in Vietnam using the 2004 and 2014 waves of VHLSS.

Decomposition methods were first introduced in order to quantify the contributions

of labor, capital, and unexplained factors (productivity) to economic growth (Solow,

1957). They have been extensively used in labor economics, following the seminal pa-

pers of Oaxaca (1973) and Blinder (1973). Fortin et al. (2011) provide a comprehensive

overview of decomposition methods that have been developed since then. This method

is recently wide used in the health sector, among them: Nie et al. (2018), (Anderson,

2018). The common objective of decomposition methods is to decompose between-
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group differences in economic outcomes such as wage or income, into two components:

a composition effect due to differences in observable covariates across groups, and a

structure effect due to differences in the relationship that links the covariates to the

considered outcome. Applications to Vietnamese economy include Nguyen et al. (2007)

on urban-rural income inequality, Sakellariou and Fang (2014) on wage inequality and

the role of the minimum wage, and, very recently, Benjamin et al. (2017) on income in-

equality. To our knowledge, there is no work using decomposition methods to study the

evolution of the nutritional diet and its socio-demographic determinants for Vietnam.

The Oaxaca-Blinder decomposition method has been refined in a large number of

methodological papers and extended to the cases of distributional parameters besides

the mean over the last four decades. Among all these methodological developments,

we use the decomposition procedure recently proposed by Rothe (2015) which can be

applied to mean, quantiles, or other parameters characterizing the distribution of the

considered outcome (in our application, per capita calorie intake or calorie intakes co-

ming from the three macronutrients). This decomposition method expands classical

methods by adding to the usual decomposition of the composition effect into the di-

rect contribution of each covariate due to between-group differences in their respective

marginal distributions, and several two way and higher order interaction effects due

to the interplay between two or more covariates, a third effect, or dependence effect,

accounting for the between-group difference in the dependence pattern among the co-

variates. To get a better understanding of the goals of the decomposition method we

use, we will illustrate it by a simple example. Here, we analyze the difference in calorie

intake distributions for two years, 2004 and 2014. Our outcome is measured by per

capita calorie intake. We are interested in two potential drivers of the difference in

per capita calorie intake distributions in 2004 and 2014: (1) evolution of Vietnamese

households’ food expenditures, and (2) urbanization. For instance, Vietnamese house-

holds increased their food spending between 2004 and 2014 and Vietnamese population

is more urban in 2004 than in 2014. Moreover urban citizens tend to spend more on

food (dependence between these two explanatory) hence leading to an extra increase

in overall food expenditures. We are interested by decomposing the difference between
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per capital calorie intake averages in 2014 and 2004. The structure effect is the part of

this difference that can be explained by the between-year difference in the conditional

distributions of per capita calorie intake given food expenditures and location in an

urban area. The composition effect is the part of the difference that can be explained

by the between-year differences in observable characteristics (food expenditures and

living in an urban area). The first direct contribution is the part of the composition

effect that can be attributed to the fact that Vietnamese households have higher food

expenditures in 2014 compared to 2004. The second direct effect captures the part in

the composition effect due to the fact that Vietnamese population is more urban in

2014 than in 2004. The (only) interaction effect measures the additional contribution

of the fact that Vietnamese population at the same time spends more for food and is

more urban in 2014. Finally, the dependence effect accounts for between-year difference

in association patterns among the two covariates, food expenditures and location in an

urban area. In other words, the dependence effect captures the fact that the relative

food expenditure of urban and rural households differs in the two years.

The remainder of the paper is structured as follows. Section 2 describes the decom-

position method based on copulas and its practical implementation. Section 3 gives a

description of the data we use in this study. Results are presented and commented in

section 4. Section 5 concludes.

2 Decomposition method

2.1 Decomposing the decomposition effect

This section introduces through an example the methodology subsequently used, and

draws heavily on Rothe (2015).

In the remainder of this article, we will focus on the evolution of certain charac-

teristics of the distribution of the quantities of macronutrients consumed in Vietnam:

average values and quantiles, between 2004 and 2014. Let us concentrate, below, on

the number of calories obtained from the consumption of carbohydrates per day and
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per individual. The same reasoning will apply to the number of calories obtained from

the consumption of protein or fat. For any household i in year 2004 and any household

h in year 2014, we observe an outcome variable: the per capita and per day amount of

calories obtained from the consumption of carbohydrates, denoted by Y 2004
i and Y 2014

h ,

respectively. These observations are the realizations of two random variables, denoted

by Y 2004 and Y 2014, whose marginal cumulative distribution functions, or CDFs, are

F 2004
Y and F 2014

Y , respectively. Our object of interest is a distribution feature, denoted

by ν(F ), where ν(.) is a function from the space of all one-dimensional distribution

functions to the real line. The main features we are interested in include the mean, i.e.

ν : F →
∫
ydF (y), and the α–quantiles, i.e. ν : F → F−1(α) = inf {t : F (t) ≥ α} for a

given value of α ∈ [0, 1].

Suppose, for ease of presentation, that we have observed two covariates for each

individual in the sample of a given year: for example, food expenditures and location

in either urban or rural areas. Of course, the presentation given below can be easily

generalized to more than two covariates. We denote the vectors of the two covariates

by X2004 = (X2004
1 , X2004

2 ) and X2014 = (X2014
1 , X2014

2 ), and their joint CDFs by F 2004
X

and F 2014
X , respectively. The decomposition method aims at understanding how the

observed difference between the distribution feature ν(F 2014
Y ) and ν(F 2004

Y ), i.e.

∆ν
Y = ν(F 2014

Y )− ν(F 2004
Y ) (1)

is related to differences between the distributions F 2004
X and F 2014

X . For this, we can

define the counterfactual outcome distribution F
2004|2014
Y that combines the conditional

distribution in year 2004 with the distribution of covariates in year 2014, as

F
2004|2014
Y (y) =

∫
F 2004
Y |X (y, x) dF 2014

X (x) (2)

where F 2004
Y |X (y, x) denotes the conditional distribution of outcome given values of the

covariates in year 2004. In our example, we can interpret F
2004|2014
Y (y) as the distri-

bution of per day and per capita carbohydrates consumption after a counterfactual

experiment in which the joint distribution of the two covariates is changed from year

2004 to year 2014, but the conditional distribution of per day and per capita carbo-

hydrates consumption given these characteristics remains that of 2004. One can then
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decompose the observed between-year difference ∆ν
Y into

∆ν
Y =

(
ν
(
F 2014
Y

)
− ν

(
F

2004|2014
Y

))
+
(
ν
(
F

2004|2014
Y

)
− ν

(
F 2004
Y

))
= ∆ν

S + ∆ν
X (3)

where ∆ν
S is a structure effect, solely due to differences in the conditional distribution of

the outcome given values of covariates between the two years, and ∆ν
X is a composition

effect, solely due to differences in the distribution of the covariates between the two

years.

The different elements of the decomposition (3) can be easily estimated using non-

parametric estimates of CDFs. One such strategy, focusing on densities instead of

CDFs, is applied in DiNardo et al. (1996) or Leibbrandt et al. (2010). But the appli-

cation of such a strategy soon encounters the problem of the curse of dimensionality.

For a fixed sample size, the precision of the nonparametric estimators deteriorates very

rapidly when the number of covariates increases, even if these estimators are free from

any specification error (Silverman, 1986). In addition, it is also interesting to break

down the composition effect for the different covariates. This can be easily done using

the Oaxaca (1973) and Blinder (1973) approach when focusing on the between-year

difference of average outcomes. But the possibility of disentangling the impact of each

of the covariates in the composition effect rests on the very restrictive assumption that

the data are generated from a linear model. As pointed out by Rothe (2015), in the

general case, it is difficult to express the composition effect as a sum of terms which

depend on the marginal distribution of a single covariate only. Instead, an explicit

decomposition of the composition effect in terms of the respective marginal covariate

distributions typically contains “interaction terms” resulting from the interplay of two

or more covariates, and also “dependence terms” resulting from between-year difference

in the dependence pattern among the covariates.

Rothe (2015) proposes to use results from copula theory in order to disentangle the

covariates’ marginal distributions from the dependence structure among them. Indeed,

the CDF of Xt can always be written as

F tX(x) = Ct(F tX1
(x1), F tX2

(x2)) for t ∈ {2004, 2014} (4)
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following Sklar’s Theorem (Sklar, 1959). Ct(.) is a copula function, i.e., a bivariate CDF

with standard uniformly distributed marginals, and F tXj
(.) is the marginal distribution

of the jth component of Xt (Trivedi and Zimmer, 2007). The copula describes the joint

distribution of individuals’ ranks in the two components of Xt. The copula accounts for

the dependence between the covariates in a way that is separate from and independent

of their marginal specifications. This result holds for continuous covariates. When

some of them are discrete, some identifiability issues may arise, that can be solved by

making parametric restrictions on the functional form of the copula.

In this context, the decomposition given by Eq. (3) can then be generalized as

follows. Let k denote an element of the 2-dimensional product set {2004, 2014}2, i.e.

k = (k1, k2) where k1 (resp. k2) is equal to either 2004 or 2014. We can define the

distribution of the outcome in a counterfactual setting where the conditional distribu-

tion is as in year t, the covariate distribution has the copula function of year s, and

the marginal distribution of the lth covariate is equal to that in group k by

F
t|s,k
Y =

∫
F tY |X(y, x)dF s,kX (x) (5)

with

F s,kX (x) = Cs(F k1
X1

(x1), F k2
X2

(x2)). (6)

For instance, the counterfactual distribution F
2004|2014
Y in Eq. (3) can be written as

F
2004|2014,1
Y where 1 = (2014, 2014). In other words, the computation of the counter-

factual distribution F
2004|2014
Y uses the conditional distribution of the outcome given

the covariates in year 2004, the dependence structure of year 2014 , and the marginal

distributions of the covariates in year 2014. Similarly, we can get F 2004
Y = F

2004|2004,0
Y

where 0 = (2004, 2004).

Now we can write the composition effect ∆ν
X as

∆ν
X = ν

(
F

2004|2014
Y

)
− ν

(
F 2004
Y

)
= ν

(
F

2004|2014,1
Y

)
− ν

(
F

2004|2004,0
Y

)
=

(
ν
(
F

2004|2014,1
Y

)
− ν

(
F

2004|2004,1
Y

))
+
(
ν
(
F

2004|2004,1
Y

)
− ν

(
F

2004|2004,0
Y

))
= ∆ν

D + βν(1) (7)
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The first term of the decomposition in Eq. (7), or

∆ν
D = ν

(
F

2004|2014,1
Y

)
− ν

(
F

2004|2004,1
Y

)
,

captures the contribution of the between-year difference of the covariates’ copula functi-

ons. ∆ν
D is thus a dependence effect. The second term, or

βν(1) = ν
(
F

2004|2004,1
Y

)
− ν

(
F

2004|2004,0
Y

)
measures the joint contribution of between-year differences in the marginal covariate

distributions.

Let now e1 = (2014, 2004) and e2 = (2004, 2014). βν(1) can in turn be decomposed

as

βν(1) =
(
βν(1)− βν(e1)− βν(e2)

)
+ βν(e1) + βν(e2) (8)

with

βν(e1) = ν
(
F

2004|2004,e1

Y

)
− ν

(
F

2004|2004,0
Y

)
and

βν(e2) = ν
(
F

2004|2004,e2

Y

)
− ν

(
F

2004|2004,0
Y

)
In other words, βν(e1) and βν(e2) measure the respective direct contributions of the

first and second covariate. Let ∆ν
M (1) ≡ βν(1) − βν(e1) − βν(e2). ∆ν

M (1) can then

interpreted as a “pure” interaction effect.

To sum up, the composition effect can be written as

∆ν
X = βν(e1) + βν(e2) + ∆ν

M (1) + ∆ν
D, (9)

i.e, as the sum of the respective contributions of each covariate, a term measuring

the pure effect of their interaction, and a term measuring the contribution due to

the between-year variation of the dependence between covariates. This decomposition

can easily be generalized in the case of more than two covariates and focus either on

individual effect of each of them and the pure effect of their interaction as shown above,

or on the effect of groups of variables and of the interaction among these groups.
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2.2 Practical implementation

Consider now the general case where the vector of the covariates has d elements, and

suppose we have two iid samples
{

(Y t
i , X

t
i )
}nt

i=1
of size nt from the distribution of

(Y t, Xt) for t = 2004, 2014. The practical implementation of the decomposition proce-

dure presented above requires the estimation of various functions or parameters.

Univariate CDFs. Univariate CDFs are estimated nonparametrically using the

classical empirical CDF, i.e.

F̂ tXj
(xj) =

1

nt

nt∑
i=1

I(Xt
ji ≤ xj) (10)

Conditional CDF of Y t|X t. The conditional CDF of Y t|Xt is a multivariate

function whose dimension depends on the number of covariates. A nonparametric

estimate of this function can be quite imprecise when the number of covariates is large,

due to the so-called curse of dimensionality. Flexible parametric specifications can be

used to overcome this drawback of nonparametric estimators (see Fortin et al. (2011)).

As in Rothe (2015), conditional CDFs F tY |X are estimated using the distributional

regression approach of Foresi and Peracchi (1995). The distributional regression model

assumes that

F tY |X(y, x) ≡ Φ(x′δt(y)), (11)

where Φ(.) is the standard normal CDF. The finite-dimensional parameter δt(y) is

estimated by the maximum likelihood estimate δ̂t(y) in a Probit model that relates the

indicator variable I(Y t ≤ y) to the covariates Xt.

Copula choice. The last function necessary for the implementation of the decompo-

sition procedure of Rothe (2015) is the copula function. Let us take a copula contained

in a parametric class indexed by a k-dimensional parameter θ. A strategy for estima-

ting the parameters characterizing the copula then consists in choosing the minimum

distance estimator defined as (Weiß, 2011)

θ̂t = arg min
θ

nt∑
i=1

(
F̂ tX(Xt

1i, . . . , X
t
di)− Cθ(F̂ tX1

(Xt
1i), . . . , F̂

t
Xd

(Xt
di))
)

(12)
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Different parametric copula functions can be used (Trivedi and Zimmer, 2007). But,

here too, we must keep in mind when choosing this function to select a function that

is sufficiently flexible for generating all possible types of dependence. Moreover, we

are confronted here with the fact that our variables are a mixture of continuous and

discrete variables. To address these issues, we choose the Gaussian copula model

CΣ(u) = Φd
Σ

(
Φ−1(u1), . . . ,Φ−1(ud)

)
(13)

where Φd
Σ(.) denotes the CDF of a d-variate standard normal distribution with corre-

lation matrix Σ, and Φ−1(.) is the inverse function of the standard normal distribution

function Φ(.). The parameters θ ≡ Σ determine the dependence pattern among the

covariates.

The flexibility and the analytical tractability of Gaussian copulas make them a

handy tool in applications as emphasized by Jiryaie et al. (2016). First, This specifica-

tion has a computational advantage, namely, that only the (a, b) element of Σ affects

the pairwise dependence between the covariates Xt
a and Xb

b . So minimum distance

estimation (12) can be performed for each pair of covariates, not by taking all the

covariates together simultaneously.

Second, as noted above, the copula function describes the joint distribution of

individuals’ ranks in the various components of Xt, and, here, the dependence between

two components can be measured using a correlation coefficient as we are working with

Gaussian copula. Indeed, in the bivariate case, we get

CΣa,b
(FXa(Xai), FXb

(Xbi)) = Φ2
Σa,b

(
Φ−1(FXa(Xai)),Φ

−1(FXb
(Xbi))

)
(14)

where Φ2
Σa,b

(.) denotes the CDF of the bivariate normal distribution with covariance

matrix Σa,b, and Φ−1(FXa(Xai)) (resp.Φ−1(FXb
(Xbi)) can be interpreted as the quantile

of the univariate marginal distribution associated to the observation Xai (resp. Xbi).

Third, Gaussian copulas make it possible to have both continuous and discrete va-

riables in the vector of covariates. We only have to assume that each discrete covariate

Xt
j can be represented as Xt

j = tj(X̃
t
j) for some continuously distributed latent varia-

ble X̃t
j and a function tj(.) that is weakly increasing in its argument. For instance, if
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Xt
j is a binary, we could have Xt

j = I(X̃t
j > cj) for some constant cj . Details on the

computation of the joint distribution of a vector of continuous and discrete variables

using Gaussian copula can be found in Jiryaie et al. (2016).

Counterfactual distributions. After estimating the copula and the marginal

distributions for each time period, we can construct the joint c.d.f. of the explanatory

variables given by (6) in any counterfactual experiment where the copula is as in time

s and the marginals as in time k1 and k2. Given this joint c.d.f, using equation (5) and

the conditional c.d.f F tY |X(y, x) at time t estimated by equation (11), we can construct

an estimation of any counterfactual distribution of the outcome.

3 Data

This study relies on the survey “Vietnam Household Living Standard Survey”, or

VHLSS. This survey is conducted by the General Statistics Office of Vietnam, or GSO,

with technical assistance of the World Bank, every two years since 2002. Each VHLSS

survey contains modules related to household demographics, education, health, employ-

ment, income generating activities, including household businesses, and expenditures.

The survey is conducted in all of the 64 Vietnamese provinces and data are collected

from about 9000 households for each wave. The survey is nationally representative and

covers rural and urban areas. In this study, we use the two waves of VHLSS conducted

in 2004 and 2014.

3.1 Macronutrient intakes

Average annual or monthly food expenditures and quantities about 56 food items are

collected for each household surveyed in each VHLSS wave.1 The observed kilograms

can then be converted into kilocalories using the conversion coefficients given in the

Vietnamese Food Composition Table constructed by the Vietnam National Institute

1Only average annual food consumption was recorded in 2004 while monthly average food consumption

was surveyed in 2014.
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of Nutrition in 2007. Table 1 shows the coefficients that have been applied to perform

these conversions into calorie intakes and amounts of proteins and fats, expressed as

calorie intakes. Calorie intakes from carbohydrates are then obtained by difference.

These annual calorie intakes, which are computed at the household level, are then

converted into daily intakes and adjusted in the form of per capita calorie intakes

to be comparable between households. This adjustment makes use of the household

equivalence scale calculation procedure recently proposed by Aguiar and Hurst (2013).2

Figure 1 reports the kernel weighted estimates of the densities of per capita calorie

intake for the two years. There is a shift to the right for the density from 2004 to 2014,

indicating an increase in per capita calorie intake over the period, not only on average

but also for all quantiles such as those reported in Table 4.

Figure 1: Density of per capita calorie intake
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Figure 2 reports the kernel weighted estimates of the densities of per capita calorie

intakes of carbohydrates, fat, and proteins, for the two years. Significant changes ap-

pear when comparing the estimated densities for fat and proteins, while the estimated

densities for carbohydrates appear to be very close. There is a significant shift to the

right for the estimated densities for fat and protein in 2014. Meanwhile, the estimated

density for carbohydrates in 2014 has the same mode as in 2004, but becomes flat-

ter. This visual observation is confirmed by the evolution of average values, standard

deviations, and quantiles at 10, 50 and 90% as reported in Table 4. All these values

2More details are given in Trinh Thi et al. (2018).
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Figure 2: Density of per capita calorie intake by macronutrient
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increase significantly for fat and proteins. Average and median values stay quite sta-

ble between 2004 and 2014 for carbohydrates while standard deviation increases, 10%

quantile decreases, and 90% quantile increases. In other words, per capita calorie inta-

kes from fat and proteins in Vietnamese households have increased over the considered

period. Per capita calorie intake from carbohydrates remained stable on average, while

this stability hides a contrasted picture with an increase for some households and a

decrease for others.

3.2 Sociodemographic variables

Table 3 summarizes the sociodemographic variables we use in this paper, and detailed

descriptive statistics on these variables are given in Table 4. These statistics show

several interesting developments. First, total food expenditures of Vietnamese hou-

seholds increased over the considered period. Second, the population of these same

households is more urbanized in 2014 than in 2004. Third, the average household size

has decreased slightly, with about 65% of these households having four or fewer mem-

bers in 2014 compared to about 55% ten years earlier. Fourth, heads of households

are, on average, more educated in 2014 than in 2004. Furthermore, the proportion

of heads with more than 12 schooling years (high school level) increased significantly

from 2004 to 2014. Finally, the proportions of households with heads belonging to the

Kinh ethnicity or living in South Vietnam remained stable.
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—– Insert Tables 3 and 4 —–

4 Results

To estimate the various elements of the decomposition of the composition effect, we

proceed as described in section 2. Copulas are thereby modeled by a Gaussian copula

and the joint CDF of each pair of covariates estimated using marginal empirical CDF

estimators and copula estimators. Table 2 reports the estimated values of the copula

parameters from the 2004 and 2014 VHLSS waves. Estimated copula parameters show

positive and significant association between food expenditures and location in an urban

area as well as food expenditures and household size. The first association decreased

between 2004 and 2014 while the second remained fairly stable. The association bet-

ween location in an urban area and ethnicity is negative and significant whatever the

considered waves, as expected, and increases over the period. The association between

location in an urban area and years of education is positive but becomes significant

only in 2014. A stable positive and significant association is also shown for location

in an urban area and living in South Vietnam. We also notice a negative association

between household size and ethnicity in 2004, which disappears completely in 2014.

As recently pointed out by Benjamin et al. (2017), the share of minorities in the rural

population has risen over time, from below 15% in 2002 to over 18% in 2014. This is a

consequence of a higher fertility among minorities, combined with rising urbanization

among the Kinh. Finally, the association between the number of years of education

and living in South Vietnam is negative and significant but decreasing between 2004

and 2014.

—– Insert Table 2 —–

Conditional CDFs F tY |X are modeled by a distributional regression model with a

Gaussian link function. We do not report the results as they are not very helpful in

the discussions that follow. Nevertheless, they are available from the authors.

Tables 5, 6, 7, and 8 then present the results of our decomposition of per capita ca-

lorie intake and calorie intake coming from the three macronutrients, for two measures
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of location: mean and median, and for the two quantiles at 10% and 90% allowing to

construct a measure of dispersion. Row by row, we report estimates of total change,

i.e. ∆ν
Y , usual structure and composition effects, i.e. ∆ν

S and ∆ν
X . Then the compo-

sition effect is in turn decomposed into the dependence effect, i.e. ∆ν
D, and marginal

distribution effect, i.e. βν(1). Finally, this last effect is decomposed into the direct

contribution for each of the six covariates, i.e. the βν(el), and the “two-way” inte-

raction effects, i.e. the ∆ν
M . Figures 3 and 4 summarize these same results in the form

of barplots.

Figure 3: Total differences, composition and structure effects
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Each estimated value in a decomposition is accompanied by the estimated value of

its standard error. Rothe (2015) shows the asymptotic convergence of the estimator

of each element in a decomposition to a mean zero normal distribution. But, as the

asymptotic variance of these estimators takes a fairly complicated form, a practical way

to estimate this variance is the use of a standard nonparametric bootstrap in which the

estimates are recomputed a large number of times on bootstrapped samples {Ỹ t
i , X̃

t
i}
nt
i=1

drawn with replacement from the original data {Y t
i , X

t
i}
nt
i=1. The bootstrap variance

estimator then coincides with the empirical variance of the bootstrapped estimates.
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Figure 4: Direct contributions to the composition effects
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Here, estimated standard errors are calculated using nonparametric bootstrap with

300 replications.

Knowledge of the estimated values of total difference and the associated standard

errors first allow to have an indication as to whether the chosen modeling of decompo-

sition using parametric restrictions on copulas and conditional distributions, provides

a reasonable fit. Indeed, these estimated values of total difference can be compared

with the differences that can be directly calculated from the descriptive statistics given

in Table 4. It should be noted that, in all cases, the difference computed from the

descriptive statistics belongs to the 95% confidence interval that can be constructed

from the estimated value of total difference and its estimated standard error. Moreover,

the estimated values of total difference for quantiles capture well the observed shifts

in empirical quantiles of calorie intake distributions. The chosen model thus provides

a reasonable fit to the data.

Let us now look more closely at each of the tables. Table 5 presents the estimated

values of the various elements in the decomposition of differences in means, median

and quantiles at 10% and 90% between the two years for per capita calorie intake.
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The decomposition of total difference in structure effect and composition effect reveals

two effects that play in opposite directions. A strong positive composition effect then

appears while the structure effect is negative and quite stable among quantiles. The

composition effect is only counterbalanced by the structural effect in the case of the

quantile at 10%. Moreover, the composition effect increases with the quantile.

In other words, the change in the conditional distributions of per capita calorie

intake givenf the sociodemographic characteristics, i.e. in the relationship between per

capita calorie intake and these covariates, between the two years caused a significant

decrease in per capita calorie intake on average as well as on the three considered

quantiles. Meanwhile, the change in the composition of the sample of households

between the two years led to a significant increase in per capita calorie intake. This

increase was larger than the decrease due to changes in the relationship between per

capita calorie intake and sociodemographic variables, except for the 10% quantile where

the two compensate.

The dependence effect that captures the contribution of between-year differences in

the covariates’ copula functions plays no role in the decomposition of composition effect.

The dependence effect is never significantly different from zero. The composition effect

is almost always equal to the total marginal distribution effect resulting from differences

in the marginal covariate distributions across the two years.

Consider now the decomposition of the total marginal distribution effect into direct

effects of each covariate and ”two-way” interactions effects. This decomposition shows

the importance of the contribution of food expenditures and household size to total

marginal distribution effect, i.e., here, the composition effect. These contributions

are indeed positive, large, and significantly different from zero. It should be noted

that these contributions increase according to the considered quantile order. Food

expenditures and household size play a more and more important role in the increase

of per capita calorie intake when moving from the 10% quantile to the 90% quantile.

The effects of these two variables are barely offset by the negative and significantly

different from zero effects of urbanization and years of education of the head of the

household. Moreover, almost all ”two-way” interaction effects are negligible.
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Similar comments can be made regarding decompositions for consumption in terms

of calories from fat and protein (see Tables 6 and 7) Thus, the estimated values of the

total difference for the different quantiles closely trace the observed uniform changes

in these distributions towards higher consumption of the two macronutrients. Again,

the main source of change comes from the composition effect that the structural effect

only partially compensates for. It should be noted that the structural effect is never

significantly different from zero in the case of fat. The dependence effect is negligible,

and the main contributors to the composition effect are still food expenditures and

household size. The estimated values of the impacts of these two covariates on changes

in consumed calories from fat and protein increase when moving from the 10% quantile

to the 90% quantile. Now, the number of years of education of the head of household

still impacts negatively on changes, the effects being sometimes not significantly diffe-

rent from zero. The effect of urbanization is negligible in the case of proteins, whereas

it becomes positive in the case of fat. Nevertheless, although significantly different

from zero for most of considered statistics, the effect of urbanization is negligible when

compared to those of food expenditure or household size.

The results obtained in the case of carbohydrates are more contrasted than the

previous ones (see Table 8). Here again, the estimated values of the total difference

trace well what is observed for the empirical distributions of calories consumed from

carbohydrates, whether in terms of location or spread statistics. Thus, total differen-

ces for mean and median are not significantly different from zero at the 10% and 5%

threshold respectively, while total differences for 10% and 90% quantiles are signifi-

cantly different from zero, the first being negative while the second is positive. The

results capture well the flattening of the distribution between 2004 and 2014. But now,

the structure effect compensates the composition effect in the cases of the mean and

median, or even exceeds it for 10% quantile when decomposing total difference. As

for the decomposition of the composition effect, it gives rise to similar comments to

those made above for per capita calorie intake: negligible dependence effect, and strong

positive contributions of food expenditures and household size compensated in part by

negative contributions of urbanization and level of education of head of household.
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5 Conclusion

The aim of this paper is to document the evolution of Vietnamese household consump-

tion in terms of total calorie intake and consumption of macronutrients over the period

2004-2014. The availability of VHLSS surveys makes it possible to have detailed data

on these consumptions. The descriptive analysis of the data reveals an increase in per

capital calorie intake over the period not only on average but also at all the quantiles of

the corresponding distribution. The same evolution is observed for the consumption of

proteins and that of fat. The distribution of carbohydrate consumption, on the other

hand, flattens, showing an increase in low and high consumption between the two years

while staying stable on average.

The characterization of the drivers of these evolutions is based on the use of a de-

composition method recently proposed by Rothe (2015). In addition to the classical

decomposition of between-year changes in terms of structure and decomposition effects,

this method allows us to compute the direct contributions of various socio-demographic

variables and the effects of their interactions in these between-year changes. We imple-

ment this method on VHLSS data to characterize the different effects on between-year

mean, median, and 10% and 90% quantiles changes in per capita calorie intake and

macronutrient consumptions in Vietnam.

The main results we have obtained can be summarized as follows (see Figures 3

and 4). First, decompositions using parametric restrictions on copulas and conditional

distributions provide a reasonable fit. The estimated values of the between-year total

differences clearly reflect the observed differences, either on average or for the con-

sidered quantiles. Second, the structure and composition effects play in an opposite

direction, whatever the considered decomposition. Structure effects, which come from

between-year differences in the relationship that links the covariates to the considered

outcome, are always negative, while composition effects, which are due to differences in

the distributions of observable covariates across years, are always positive. Third, the

composition effect often outweighs the structure effect when considering the between-

year changes in distributions of per capita calorie intake or calorie intake coming from
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protein or fat. The effects of changes in the composition of the Vietnamese population

thus overcome the effects of changes in preferences of the same population. This finding

is particularly striking in the case of calorie intake from fat where structure effects are

never distinguishable from zero. In the case of carbohydrates, this finding is reversed,

with the exception of the 90% quantile. Fourth, food expenditure and household size

appear to be the main contributors to the composition effect, regardless of the consi-

dered decomposition. The positive effects of these two variables explain well most of

the between-year shifts observed in the calorie intake distributions. Urbanization and

level of education contribute negatively to the compositional effect, with the noticeable

exception of fat where the effect of urbanization is positive. In all cases, the effects

of the latter two variables are negligible compared to those of food expenditure and

household size. Finally, dependence effects and two-way interaction effects appear to

be negligible or insignificant.

The decomposition method we use in this paper focuses on the decomposition of the

composition effect into its main drivers: the direct effects of covariates or the effects of

their interactions. It therefore allows a detailed analysis of one of the two sides of the

decomposition, the composition effect, but it says nothing about the structure effect.

Our application shows that the latter effect can play an important role. The related

issue of deriving a decomposition of the structure effect, that is, dividing between-year

differences in the structural functions that link the covariates and the outcome variable,

into components that can be attributed to individual covariates, still is an open issue.
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Appendix: Tables and Figures

Table 1: Conversion table Calories for Vietnam.

Food Energy protein fat
Kcal gr gr

Plain rice 344.5 8.5 1.55
Sticky rice 347 8.3 1.6
Maize 354 8.3 4
Cassava 146 0.8 0.2
Potato of various kinds 106 1.4 0.15
Wheat grains, bread, wheat powder 313.7 10.2 1.1
Fresh rice noodle, dried rice noodle 143 3.2 0.2
Vermicelli 110 1.7 0
Pork 26016.5 21.5
Beef 142.5 20.3 7.15
Buffalo meat 122 22.8 3.3
Chicken meat 199 20.3 13.1
Duck and other poultry meat 275 18.5 22.4
Other types of meat - - -
Processed meat - - -
Fresh shrimp, fish 83 17.75 1.2
Dried and processed shrimps, fish 361 49.16 14.6
Other aquatic products and seafoods - - -
Eggs of chicken, ducks, Muscovy ducks, geese 103.74 8.34 7.74
Tofu 95 10.9 5.4
Peanuts, sesame 570.5 23.8 45.5
Beans of various kinds 73 5 0
Fresh peas of various kinds 596 0.4
Morning glory vegetables 25 3 0
Kohlrabi 36 2.8 0
Cabbage 29 1.8 0.1
Tomato 20 0.6 0.2
Other vegetables - - -
Orange 37 0.9 0
Banana 81.5 1.2 0.2
Mango 69 0.6 0.3
Other fruits - - -
Lard, cooking oil 863.5 0 99.8
Fish sauce 60 12.55 0
Salt 0 0 0
MSG 0 0 0
Glutamate 0 0 0
Sugars, molasses 390 0.55 0
Confectionery 412.2 8.9 10.7
Condensed milk, milk powder 395.7 23.4 11.9
Ice cream, yoghurt - - -
Fresh milk 61 3.9 4.4
Alcohol of various kinds 47 4 0
Beer of various kinds 11 0.5 0
Bottled, canned, boxed beverages 47 0.5 0
Instant coffee 353 12 0.5
Coffee powder 0 0 0
Instant tea powder 0 0 0
Other dried tea 0 0 0
Cigarettes, waterpipe tobacco 0 0 0
Betel leaves, areca nuts, lime, betel pieces 0 0 0
Outdoor meals and drinks - - -
Other foods and drinks - - -
Amount per 100gr food ; protein contains 4 calories per gram and fat contains 9 calories per gram

Table 2: Estimated copula parameters

Urban Hsize Ethnic Yeduc South
2004 2014 2004 2014 2004 2014 2004 2014 2004 2014

lExp 0.502 0.410 0.542 0.582 -0.167 0.206 0.160 0.239 0.364 0.186
(0.124) (0.149) (0.107) (0.138) (0.159) (0.119) (0.253) (0.345) (0.272) (0.289)

Urban -0.034 0.007 -0.288 -0.624 0.113 0.278 0.377 0.349
(0.269) (0.204) (0.084) (0.093) (0.092) (0.097) (0.066) (0.077)

Hsize -0.544 -0.033 -0.009 -0.005 0.006 -0.081
(0.245) (0.199) (0.118) (0.129) (0.129) (0.108)

Ethnic -0.191 -0.131 -0.247 -0.384
(0.077) (0.086) (0.289) (0.360)

Yeduc -0.529 -0.320
(0.127) (0.122)

Note: Bootstrapped standard errors, based on 300 replications, are in parenthesis.
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Table 3: Description of sociodemographic variables

Variable Values Description
lExp Food expenditures per year in US$ (in logarithms)
Hsize Number of household members
Urban Location of the household:

= 1 if household is located in Urban area
= 0 if household is located in rural area

Ethnic Ethnicity of head of household
= 1 if Kinh Ethnicity
= 0 if minority

Y educc Highest educational level of the head of households (year):
= 0 No schooling
= 5 primary level
= 9 Secondary school level
= 12 High school level
= 16 College degree
= 18 Master degree
= 21 Ph.D level

South Region:
= 1 if Household is located in the South of Vietnam
= 0 otherwise

Table 4: Descriptive statistics in VHLSS 2004 and 2014

Mean SD Q10 Q50 Q90
2004
PCCI 3359.746 1015.451 2259.852 3195.859 4609.399

VC 2415.078 756.170 1565.208 2318.522 3343.795
VP 457.920 156.403 294.643 428.629 653.904
VF 486.748 239.576 247.206 433.159 792.876

lExp 6.135 0.547 5.461 6.125 6.844
Urban 0.235 – – –
Hsize 4.355 1.636 2 4 6
Ethnic 0.893 – – –
Y educc 6.222 4.712 0 5 12
South 0.345 – – –
2014
PCCI 3764.194 1421.362 2313.206 3488.157 5528.041

VC 2493.419 1032.906 1445.146 2297.777 3764.969
VP 548.367 219.059 320.181 501.073 830.010
VF 722.409 343.119 367.404 647.299 1174.950

lExp 6.638 0.611 5.843 6.667 7.399
Urban 0.311 – – –
Hsize 3.808 1.526 2 4 6
Ethnic 0.869 – – –
Y educc 7.097 5.047 0 9 12
South 0.339 – – –
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Table 5: Estimated decomposition of per capita calorie intake

Mean Q10 Median Q90

Total difference 362.16 (28.90) 18.62 (26.38) 279.48 (20.81) 830.71 (78.76)
Structure effect -291.21 (52.53) -283.63 (49.12) -361.79 (39.69) -328.38 (213.09)
Composition effect 653.37 (44.47) 302.25 (46.16) 641.27 (36.71) 1159.09 (202.78)

Composition effect:

Dependence effect 0.91 (23.08) -30.6 (22.94) 0.25 (23.26) -7.97 (135.35)
Marginal effect 652.46 (39.97) 332.85 (42.83) 641.02 (33.65) 1167.06 (206.92)

“Direct” contributions to composition effect:

lexp 532.86 (36.16) 250.05 (35.54) 538.66 (33.05) 900.04 (137.13)
Urban -11.06 (2.90) -11.55 (3.28) -9.56 (3.41) -9.49 (8.96)
Hsize 131.12 (8.94) 53.62 (8.46) 112.77 (12.26) 246.08 (27.01)

Ethnic 0.69 (1.53) 1.90 (1.33) 0.34 (1.69) -1.61 (3.95)
Yeduc -18.16 (7.08) -3.09 (6.21) -14.00 (5.72) -26.18 (12.53)
South 0.99 (1.06) 0.88 (0.96) 0.83 (1.30) 1.11 (1.30)

“Two-way” interaction effects:

lexp:Urban -1.73 (5.08) 7.41 (6.83) -9.83 (9.02) 3.38 (23.43)
lexp:Hsize 23.58 (10.38) 50.01 (24.08) 30.04 (20.97) 34.87 (129.97)

lexp:Ethnic 0.61 (2.70) 3.89 (3.58) 2.36 (4.12) 2.36 (14.9)
lexp:Yeduc -6.14 (6.01) -7.56 (10.87) -11.06 (11.26) -14.48 (32.18)
lexp:South 0.44 (0.70) 0.03 (0.80) 0.21 (1.28) 0.29 (3.96)

Urban:Hsize 0.14 (1.19) 2.62 (2.73) -6.45 (4.10) 1.47 (6.32)
Urban:Ethnic -0.45 (0.29) -0.54 (0.47) -0.26 (0.54) -0.39 (1.48)
Urban:Yeduc 0.41 (0.81) 0.17 (1.22) -2.37 (2.39) -1.43 (3.73)
Urban:South -0.20 (0.22) -0.01 (0.19) -0.05 (0.31) -0.64 (0.70)
Hsize:Ethnic 0.84 (0.48) 0.90 (1.09) 1.25 (1.37) 0.73 (2.68)
Hsize:Yeduc -2.38 (2.05) -1.76 (3.85) -14.84 (6.15) -5.78 (10.89)
Hsize:South -0.06 (0.15) -0.43 (0.46) 0.63 (0.72) -0.22 (0.74)

Ethnic:Yeduc -0.32 (0.40) -0.61 (0.50) 0.29 (0.62) -0.17 (1.63)
Ethnic:South 0.03 (0.05) 0.05 (0.09) -0.01 (0.14) -0.10 (0.14)
Yeduc:South 0.04 (0.07) -0.01 (0.14) 0.04 (0.38) -0.20 (0.44)

Note: Bootstrapped standard errors, based on 300 replications, are in parenthesis.

Table 6: Estimated decomposition of calorie intake from fat

Mean Q10 Median Q90

Total difference 221.51 (8.68) 119.61 (6.13) 200.73 (7.06) 364.92 (28.06)
Structure effect -17.63 (13.93) -1.92 (6.8) -15.85 (10.51) -5.33 (55.00)
Composition effect 239.14 (12.39) 121.53 (8.13) 216.57 (9.58) 370.25 (55.94)

Composition effect:

Dependence effect -0.77 (8.01) 2.34 (5.94) -0.67 (5.01) 6.33 (46.76)
Marginal effect 239.91 (11.11) 119.19 (5.95) 217.24 (8.49) 363.92 (54.53)

“Direct” contributions to composition effect:

lexp 178.97 (9.34) 80.78 (6.57) 173.74 (7.12) 296.02 (36.63)
Urban 2.51 (0.68) 0.77 (0.3) 2.39 (0.75) 2.91 (2.11)
Hsize 47.64 (2.68) 26.16 (2.55) 44.33 (2.74) 71.02 (7.29)

Ethnic 0.24 (0.44) -0.18 (0.21) 0.14 (0.33) -0.65 (1.17)
Yeduc -0.98 (0.92) -0.04 (1.19) 0.75 (1.27) -6.75 (2.79)
South 0.28 (0.34) 0.10 (0.15) 0.30 (0.37) 0.67 (0.93)

“Two-way” interaction effects:

lexp:Urban 0.31 (1.37) 2.62 (1.28) -1.40 (1.24) -3.23 (7.07)
lexp:Hsize 10.13 (3.30) 9.36 (5.19) -1.56 (5.72) 25.03 (32.16)

lexp:Ethnic 0.54 (0.91) 0.48 (0.47) -0.22 (0.75) 1.85 (3.51)
lexp:Yeduc -0.56 (1.26) 1.83 (2.46) -2.07 (2.02) 2.70 (7.42)
lexp:South 0.19 (0.23) 0.00 (0.16) 0.13 (0.38) -0.14 (0.69)

Urban:Hsize 0.54 (0.33) 0.62 (0.32) -0.74 (0.67) 1.63 (1.90)
Urban:Ethnic -0.02 (0.13) -0.01 (0.03) 0.04 (0.11) 0.07 (0.31)
Urban:Yeduc -0.05 (0.13) -0.01 (0.10) -0.32 (0.25) 0.20 (0.86)
Urban:South -0.04 (0.05) 0.00 (0.02) -0.03 (0.06) 0.07 (0.21)
Hsize:Ethnic 0.04 (0.16) 0.14 (0.16) 0.35 (0.27) 0.53 (0.76)
Hsize:Yeduc -0.33 (0.32) 0.77 (1.03) -0.83 (0.90) -0.88 (2.71)
Hsize:South 0.04 (0.05) 0.05 (0.06) 0.01 (0.14) 0.01 (0.46)

Ethnic:Yeduc -0.08 (0.10) -0.04 (0.06) -0.06 (0.11) -0.34 (0.47)
Ethnic:South 0.00 (0.02) 0.00 (0.01) 0.00 (0.02) 0.03 (0.10)
Yeduc:South 0.02 (0.02) 0.00 (0.03) 0.01 (0.06) 0.01 (0.29)

Note: Bootstrapped standard errors, based on 300 replications, are in parenthesis.
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Table 7: Estimated decomposition of calorie intake from protein

Mean Q10 Median Q90

Total difference 85.74 (4.54) 23.76 (4.37) 70.93 (3.97) 163.34 (11.17)
Structure effect -52.32 (9.08) -43.97 (7.05) -61.23 (7.35) -41.46 (31.46)
Composition effect 138.06 (8.09) 67.73 (7.06) 132.16 (7.18) 204.8 (30.44)

Composition effect:

Dependence effect 2.94 (6.06) 2.80 (4.98) 2.66 (4.74) -5.93 (25.79)
Marginal effect 135.12 (7.13) 64.93 (6.78) 129.5 (6.73) 210.73 (26.85)

“Direct” contributions to composition effect:

lexp 108.11 (6.08) 49.37 (5.10) 108.17 (5.54) 169.77 (19.08)
Urban -0.57 (0.40) -0.82 (0.32) -0.91 (0.45) 0.14 (1.06)
Hsize 26.89 (1.43) 15.33 (1.63) 23.34 (1.46) 43.44 (6.05)

Ethnic -0.21 (0.19) -0.04 (0.15) -0.27 (0.26) -0.37 (0.54)
Yeduc -1.84 (0.82) -0.29 (0.94) -2.44 (0.86) -4.16 (1.51)
South -0.06 (0.09) 0.00 (0.03) -0.01 (0.04) -0.08 (0.17)

“Two-way” interaction effects:

lexp:Urban -0.23 (0.98) 1.28 (0.99) -2.89 (1.42) 4.36 (3.93)
lexp:Hsize 2.74 (2.10) 0.80 (4.47) 6.84 (4.70) -7.37 (17.44)

lexp:Ethnic -0.56 (0.44) -0.11 (0.53) -0.29 (0.60) -1.60 (2.56)
lexp:Yeduc 0.14 (0.86) -1.41 (1.97) -1.76 (1.77) -1.35 (3.93)
lexp:South 0.14 (0.21) 0.06 (0.10) 0.21 (0.28) 0.08 (0.32)

Urban:Hsize 0.28 (0.19) -0.10 (0.28) 0.25 (0.37) 1.51 (1.49)
Urban:Ethnic -0.04 (0.04) 0.00 (0.04) -0.06 (0.08) 0.03 (0.12)
Urban:Yeduc -0.03 (0.09) -0.10 (0.16) -0.01 (0.30) 0.12 (0.31)
Urban:South -0.03 (0.04) 0.00 (0.01) -0.01 (0.02) -0.08 (0.10)
Hsize:Ethnic 0.04 (0.06) 0.19 (0.12) 0.19 (0.15) -0.19 (0.66)
Hsize:Yeduc -0.15 (0.28) -0.07 (0.78) -0.18 (0.74) -1.24 (1.85)
Hsize:South -0.02 (0.02) -0.01 (0.03) 0.01 (0.03) -0.19 (0.23)

Ethnic:Yeduc -0.02 (0.04) 0.03 (0.05) -0.02 (0.12) -0.09 (0.20)
Ethnic:South 0.00 (0.05) 0.00 (0.00) 0.00 (0.00) 0.01 (0.04)
Yeduc:South 0.00 (0.01) 0.00 (0.01) 0.01 (0.02) -0.01 (0.04)

Note: Bootstrapped standard errors, based on 300 replications, are in parenthesis.

Table 8: Estimated decomposition of calorie intake from carbohydrates

Mean Q10 Median Q90

Total difference 45.36 (22.04) -120.24 (21.14) -27.88 (18.25) 372.23 (50.91)
Structure effect -244.93 (36.73) -238.99 (30.56) -252.19 (24.66) -300.78 (134.48)
Composition effect 290.29 (32.66) 118.75 (29.32) 224.31 (22.52) 673.01 (128.18)

Composition effect:

Dependence effect 0.68 (17.57) -6.03 (15.75) 5.50 (10.70) 18.43 (74.42)
Marginal effect 289.61 (29.3) 124.78 (24.67) 218.81 (19.74) 654.58 (110.40)

“Direct” contributions to composition effect:

lexp 253.01 (25.7) 135.13 (20.79) 207.47 (19.2) 528.18 (88.29)
Urban -12.63 (2.34) -16.17 (3.88) -13.01 (2.78) -11.54 (6.03)
Hsize 59.84 (5.07) 19.53 (6.60) 43.53 (5.54) 140.86 (22.94)

Ethnic 0.60 (1.35) 1.29 (1.95) 0.93 (1.45) -0.50 (2.55)
Yeduc -15.53 (5.07) -6.82 (6.62) -19.57 (4.18) -18.59 (7.90)
South 0.75 (0.78) 0.93 (1.00) 0.83 (0.94) 0.47 (0.69)

“Two-way” interaction effects:

lexp:Urban -2.20 (4.04) 8.73 (5.57) -0.93 (5.67) -14.17 (17.3)
lexp:Hsize 13.24 (6.80) -7.25 (8.55) -1.78 (10.89) 14.15 (59.55)

lexp:Ethnic 0.83 (1.92) 4.82 (2.70) -0.38 (1.78) 3.43 (8.75)
lexp:Yeduc -6.16 (4.28) -9.55 (8.78) -2.97 (7.21) 0.29 (16.59)
lexp:South 0.08 (0.48) -0.52 (0.76) -0.25 (0.56) 1.08 (2.45)

Urban:Hsize -0.73 (0.79) 0.20 (3.37) 0.08 (3.28) 3.76 (5.80)
Urban:Ethnic -0.41 (0.25) -0.52 (0.61) -0.67 (0.54) -0.39 (0.78)
Urban:Yeduc 0.52 (0.52) 1.80 (2.12) 3.10 (2.39) -0.73 (1.91)
Urban:South -0.14 (0.16) -0.29 (0.26) -0.09 (0.27) -0.32 (0.35)
Hsize:Ethnic 0.80 (0.34) 1.69 (1.02) 0.68 (0.91) 1.22 (2.63)
Hsize:Yeduc -1.93 (1.30) -4.10 (2.70) -1.57 (4.60) -12.03 (7.96)
Hsize:South -0.09 (0.14) 0.00 (0.37) -0.04 (0.33) -0.07 (0.52)

Ethnic:Yeduc -0.28 (0.29) -0.68 (0.74) -0.28 (0.67) -0.27 (0.67)
Ethnic:South 0.03 (0.04) 0.07 (0.13) 0.03 (0.09) 0.03 (0.06)
Yeduc:South 0.03 (0.05) -0.08 (0.22) -0.07 (0.32) 0.00 (0.15)

Note: Bootstrapped standard errors, based on 300 replications, are in parenthesis.
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