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Introduction

The optimal management of an assets portfolio is dynamic by nature. This basic point was first

made by Mossin [1968], Merton [1969] and Samuelson [1969]. However, they concluded that,

under the commonly accepted assumptions of that time, the optimal assets allocation is myopic.

This means that the investment horizon is irrelevant, or that the optimal dynamic allocation is

equivalent to the static one. More generally, Merton [1973] has shown that variation in expected

returns over time may induce horizon effects. However, closed-form solutions to Merton’s

intertemporal model are difficult to find except in the case where the investor has log utility of

consumption, i.e., with unit constant relative risk aversion, which is a case of limited interest

since it implies that Merton’s model reduces to a static one. The lack of closed-form solutions

for constant (but not unit) relative risk aversion coefficient explains why so few empirical work

was devoted to the horizon effects until very recently. When assets returns are unpredictable,

myopia becomes optimal in the more general case of constant relative risk aversion. Increasing

the investment period raises both the expected final payoff and its volatility in such a way that

these two effects counterbalance each others perfectly under these conditions.

This question of optimal myopia is particularly crucial for financial intermediaries in charge

of the management of lifecycle saving programs. Most pension programs now take the form

of Defined Contribution plans, which means that most of the financial risk is borne by the

individuals contributing to the system. It implies that these financial intermediaries should

manage their financial reserves by taking into account the long-term objectives of their cus-

tomers, which is to accumulate enough wealth for their retirement. The European Union is

however considering a new regulation of the solvency of (life) insurance companies in which

their capital requirement would be based on the assets and liabilities risks measured on a

12-month basis. In this paper, we raise the question of whether this so-called ”Solvency II”

myopic rule is efficient from the viewpoint of the policyholders. If we accept the assumption

that relative risk aversion is constant,1 the answer to this question relies on whether assets

returns are predictable or not.

Future assets returns are predictable if they are statistically related to some easily observ-

able variables that are referred to as predictors. Fama and French [1988], Poterba and Summers

[1988], Campbell [1996], Campbell, Lo and MacKinlay [1997], Barberis [2000], Cochrane [2001]

and many others estimated significant predictability of US stocks returns. In particular, there

is mean-reversion in stocks returns, in the sense that shocks in expected stocks returns are

negatively correlated with shocks to realized stocks returns. For example, Barberis [2000] used

a simple VAR setup for stocks returns with the dividend-price ratio as predictor. He showed

that the implied standard deviation of ten-year U.S. stocks returns is 23.7 percent, much

smaller than the 45.2 percent value implied by the standard deviation of monthly returns.

Using a more sophisticated VAR analysis of bills, bonds and stocks returns with three predic-

1Gollier and Zeckhauser [2002] examine this question when relative risk aversion is not constant.
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tors, Campbell and Viceira [2002] showed that mean-reversion of U.S. stocks returns cuts their

standard deviation from 18% at a one-year horizon to 14% at a 25-year horizon.

Because mean-reversion implies that stocks are safer in the long run, the intuition suggests

that a long horizon agent should have a larger demand for stocks early in his investment period.

Campbell and Viceira [1999] and Barberis [2000] numerically estimated the sensitiveness of the

demand for stocks to the investment horizon. The hedging demand for stocks is surprisingly

large. For an agent with a relative risk aversion equaling 10 and a ten-year time horizon, the

optimal investment in stocks is about 40% of current wealth without predictability. It goes

up to 100% when mean-reversion is taken into account. This suggests that limiting the risk

measurement to 12-month as in the Solvency II reform would inefficiently bias the insurers’

assets portfolios towards bonds and bills. Given the large equity premium that has been

observed over the past century both in the United States and in Europe (Dimson, Marsh and

Staunton [2002]), this regulatory failure could have dramatic effects on the accumulated wealth

and welfare of future retirees.

Our contribution to this literature is twofold.

First, one important limitation to applying these ideas to make policy recommendations is

that this literature is entirely based on U.S. data. It is a priori not clear whether these findings

can be applied to other countries, as long as we don’t have a general theory that would explain

these serial correlations in assets returns. Our aim in this paper is to see whether the above-

mentioned findings made on U.S. markets can be extended to France. We use quarterly data

from 1970Q4 to 2006Q4 to perform a VAR analysis of real assets returns on French financial

markets. We use the following list of predictors to determine the intensity of predictability:

past real returns of stocks, bonds and bills, the nominal interest rate, the dividend-price ratio

and the spread of interest rates. We closely follow the analysis that was used by Campbell

and Viceira [2002], and obtain similar conclusions. Namely, stocks returns are slightly mean-

reverting, whereas the returns of portfolios of bonds — either rolled or held to maturity —

exhibit some degree of mean-aversion. The intensity of mean-reversion of French stocks returns

is weaker than the one reported by Campbell and Viceira on U.S. data, but we still conlude

that the excess risk of stocks on bonds is smaller for long horizons than for short ones.

Second, we depart from existing empirical work by providing 95% confidence intervals for

the various assets risks across horizons. They reveal that the risk associated with equities is

actually significantly higher than the one of other assets for short investment horizons, but it

becomes statistically undistinguishable from the bonds rolled risk for horizons longer than 5

quarters and from the bonds held to maturity after around six years.

The paper is organized as follows. Section 1 shows how conditional second-order moments

of asset returns, i.e. their volatility, can be derived from a VAR setup. Section 2 describes

the data used for the VAR model estimation presented in Section 3. In Section 4, French

assets conditional volatilities are compared across investment horizons. The robustness of

these results is then checked in Section 5 while Section 6 concludes.
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1 Asset returns predictability and horizon effects from a VAR

setup

A vector autoregressive (VAR) dynamics for U.S. asset returns is considered in e.g. Camp-

bell [1991], Campbell [1996], Barberis [2000] or Campbell and Viceira [2002].2 Beyond asset

returns predictability considerations, Campbell and Viceira [2002] analysis emphasizes how

well-suited the VAR framework is in order to evaluate investment horizon effects. Following

their approach, our empirical study allows an arbitrary set of traded assets and state variables.

More specifically, we consider a short-term interest rate together with excess stock returns and

excess bond returns. Let R0t denote the ex post real short rate and r0t = log(R0t) the log (or

continuously compounded) real return on this asset that is used as a benchmark to compute

excess returns on other asset classes. Then, with ret and rbt the log real stock return and the

log real bond return, let xet = ret − r0t and xbt = rbt − r0t denote the corresponding log excess

returns.

We retain the same VAR(1) system as in Campbell and Viceira [2002] and Campbell et al.

[2003]3:

zt = Φ0 + Φ1zt−1 + vt, (1)

where

zt =




r0t

xt

st



 (2)

is a m× 1 vector with xt, the n× 1 vector of log excess returns and st the m−n− 1× 1 vector

of variables which have been identified as returns predictors in existing empirical analysis,

such as the nominal short rate, the dividend-price ratio and the yield spread between long-

term and short-term bonds. In equation (1), Φ0 is the m× 1 vector of intercepts and Φ1 is the

m×m matrix of slope coefficients. It is assumed that the roots of the characteristic polynomial

Φ(z) = Im−Φ1z lie strictly outside the unit circle in absolute value, a condition which rules out

nonstationary or explosive behavior in zt. Finally, vt is the m×1 vector of innovations in asset

returns and return forecasting variables, which is assumed to be i.i.d. normally distributed:

vt ∼ N (0,Σv), (3)

where Σv is the m × m covariance matrix.

2Under the assumption that asset returns are well described by such a VAR model, Campbell, Chan and

Viceira [2003] show how to obtain approximate solutions to the multiperiod portfolio choice model they propose.

In this model, the investor is infinitely-lived with Epstein-Zin utility and there are no borrowing or short-sales

constraints on asset allocation.
3As emphasized by these authors, the analysis below can be easily extended to more than one lag. How-

ever, the number of parameters in a VAR model increases exponentially with the number of lags, which may

significantly reduce the estimates precision.
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As stressed in Campbell and Viceira [2004], the conditional k−period variance-covariance

matrix obtains straightforwardly from the VAR model estimates. First, cumulative k−period

log returns are obtained by adding one-period log returns over k successive periods. Then,

under the assumption that Σv is constant over time4, the conditional k−period variance is

given by:

V art(zt+1 + · · · + zt+k) = Σv + (I + Φ1)Σv(I + Φ1)
′

+(I + Φ1 + Φ1Φ1)Σv(I + Φ1 + Φ1Φ1)
′ + · · ·

+(I + Φ1 + · · · + Φk−1
1 )Σv(I + Φ1 + · · · + Φk−1

1 )′ (4)

In order to extract the conditional moments of real returns from the VAR, we use the following

(n + 1) × m selection matrix:

Mr =

[
1 01×n 01×(m−n−1)

ın×1 In×n 0n×(m−n−1)

]

in (4). Then, dividing both sides by the horizon in order to annualize, we get:

1

k
V art




r
(k)
0,t+1

r
(k)
e,t+1

r
(k)
b,t+1



 =
1

k
MrV art(zt+1 + · · · + zt+k)M

′

r. (5)

This approach will be applied to the French data described in the next section.

2 The French assets return data

The short term rate is the 3-month PIBOR rate, obtained from Datastream. The end-of-

quarter values from this monthly series are retained to get quarterly observations, and r0t

denotes the real ex post short term rate, i.e. the difference between the log return on the

3-month PIBOR and the log inflation rate. The inflation series is calculated from the monthly

Consumer Price Index series (source: INSEE) as 100 × (cpit − cpit−12)/cpit−12. The log yield

on this 3-month PIBOR is also used as the measure of the log short-term nominal interest

rates, rnom
0t .

French data for equities prices and returns come from Morgan Stanley Capital International

(MSCI) database and are available since December 1969. More precisely, quarterly stock mar-

ket data are based on the monthly MSCI National Price and Gross Return Indices in local

currency. From these data, a quarterly stock total return series and a quarterly dividend series

4Time variation in Σv could be incorporated in the model, but since the available empirical evidence suggests

that the persistence of changes in risk is quite low, this should not affect too much the conclusions regarding

long-term asset allocation.
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are obtained following the methodology described in Campbell [1999]5. Note that we depart

from Campbell’s approach by not including the tax credits on dividends which are applicable

to France. Indeed, MSCI calculates returns from the perspective of US investors, so it ex-

cludes from its indices these tax credits which are available only to local investors. Campbell

chooses to add back the tax credits quite roughly, by applying the 1992 rate of 33.33% to

all the sample. Nevertheless, this rate hasn’t remained fixed over the sample considered here

(1970Q1—2006Q4). On top of this, the way dividends are taxed has also changed during that

period. We couldn’t find exact tax rate data for our sample, and guess that on average, the

French tax credits system has increased the nominal stock returns by around 40%. Since ap-

plying this coefficient to all the observations would be neutral as long as volatility is concerned,

we choose to work with data excluding tax credits. The quarterly log real return on the stock

index is denoted ret and defined as the difference between the log return on equities and the log

inflation rate. The log excess return on equities is then xet = ret − r0t. The log dividend-price

ratio, denoted ldmpt is the log dividend less the log price index. Since the quarterly dividend

series is calculated from the monthly dividend payments over the past year, this series starts

in 1970Q4 only.

Regarding the bond market, the long term government bond yield is used as a proxy vari-

able. The monthly observations come from Datastream, and an end-of-quarter yield has been

computed by selecting the end-of-quarter values. Then, the long bond return is constructed

from this series using the loglinear approximation technique described in Chapter 14 of Camp-

bell et al. [1997]:

rnom
b,n,t+1 ≈ Dntynt − (Dnt − 1)yn−1,t+1

where n is the bond maturity, Dnt is the bond duration and Ynt is the bond yield from which

the log bond yield obtains as ynt = log(1 + Ynt). The duration at time t is calculated as:

Dnt ≈
1 − (1 + Ynt)

−n

1 − (1 + Ynt)−1

where n is set to 10 years. Following Campbell and Viceira [2002], we approximate yn−1,t+1

by yn,t+1. The log real return on bonds, denoted rbt, is the difference between rnom
bt and the

log inflation. The log excess return on bonds is then xbt = rbt − r0t. The log real returns on

PIBOR, bonds and equities are plotted in Figure 7, see Appendix.

Finally, the yield spread (sprt) is the difference between the 10-year Treasury bond yield

from Datastream and the 3-month PIBOR rate, again using end-of-quarter observations.

Table 1 reports sample means and standard deviations in annualized percentage points,

except for the dividend-price ratio. To annualize the raw quarterly data, means are multiplied

by 400 while standard deviations are multiplied by 200 since the latter increase with the square

root of the time interval in serially uncorrelated data. The mean log returns are adjusted by

5See also Campbell’s “Data Appendix for Asset Prices, Consumption and the Business Cycle”, March 1998,

downloadable from Campbell’s homepage.
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adding one-half their variance so that they reflect mean gross returns. These statistics are

computed for the sample 1970Q4-2006Q4.

Table 1: Sample statistics for real asset log returns

mean standard deviation

r0 2.31 1.34

xe 6.95 23.05

xb 1.38 6.55

rnom
0

7.34 1.72

ldmp -4.95 0.56

spr 1.02 1.39

Remind that the stock return here does not include tax credits. When adding back, say, a

40% tax credit rate, the stock excess return would reach more than 8% per year. By contrast

the excess return of the 10-year Treasury bond is only about 1.4%. Volatility is much higher

for stocks than for bonds (23.05% and 6.55% resp.).

ADF unit root tests are reported in Table 2. The deterministic component includes at

most a constant under the stationary alternative. The lag order of the ADF regression was

selected as the smallest one succeeding in eliminating residuals autocorrelation up to order 8.

The unit root null is strongly rejected for r0, xe, xb and spr, whereas it is clearly not rejected

Table 2: ADF Unit Root Tests

r0 xe xb rnom
0

ldmp spr

ADF stat -2.84 (1) -11.54 (0) -9.29 (0) -2.04 (1) -1.50 (0) -4.57 (1)

p-value 0.055 0.000 0.000 0.268 0.530 0.000

Number of autoregressive lags into parenthesis.

for the dividend-price ratio and for the nominal short term rate.

3 The VAR model estimates

In the sequel, we will consider the same model as Campbell and Viceira [2002], i.e. zt =

(r0,t, xe,t, xb,t, r
nom
0,t , ldmpt, sprt) in equation (1). The first four variables are multiplied by

100. The lag order of is set to one, according to both Akaike, Schwartz and Hannan-Quinn

information criteria. Moreover, the null of no residuals autocorrelation up to order 8 is not

rejected at the 6% level according to Box-Pierce statistics.
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Due to the stock market data, our sample is 1970Q4–2006Q4, i.e. 145 observations. The

VAR is thus estimated from 1971Q1 to 2006Q4. The results are reported in Table 3. The

first column reports the real 3-month rate equation. The lagged 3-month rate and the lagged

spread coefficients are significantly different from zero and hence help predicting the real 3-

month return. The second column refers to the real stock log return equation. This variable is

known to be hardly predictable, which is here confirmed by the R2 value of 10%. Nevertheless,

the lagged bond log return and the lagged dividend-price ratio coefficients are significantly

different from zero. The third column shows that both lagged 3-month return, bond return

and yield spread help predicting the log bond return. The R2 of this equation is 12%. The last

three columns reveal that the return forecasting variables are highly persistent, especially the

nominal short rate and the dividend-price ratio. In order to check for the VAR model stability,

we have computed the roots of its characteristic polynomial: it turns out that the modulus of

the largest root is lesser than one, with a value of 0.97. Hence the VAR apparently satisfies

the stability condition.

Table 4 reports standard deviations of estimated residuals on the diagonal and their corre-

lations off-diagonal.

The magnitude of real returns residuals standard deviations obtained here are somehow

similar to those obtained on quarterly data by Campbell et al. [2003] and Campbell and Viceira

[2005].6 Indeed, these authors find 0.57, 8.06 and 2.69 for r0, xe and xb respectively, to compare

with our values of 0.23, 11.23 and 3.14. The residuals cross-correlations are also quite similar to

those found by these authors, except for the log real short-term rate equation: contrary to their

results, we find that unexpected real short-term returns are negatively correlated with log bond

excess returns and yield spread innovations, and positively correlated with nominal short-term

rate innovations. Unexpected log excess stock returns are highly negatively correlated with

shocks to the log dividend-price ratio, and mildly positively correlated with unexpected log

excess bond returns and yield spread innovations. Finally, unexpected log excess bond returns

are negatively correlated with shocks to the nominal short-term rate and to a lesser extend

with shocks to real short-term returns. They are weakly positively correlated to yield spread

innovations.

The signs of these innovations cross-correlations may explain some results. As shown

by Stambaugh [1999], the small-sample bias in such regressions has the opposite sign to the

sign of the correlation between innovations in returns and innovations in predictive variables.

Hence, one may suspect that for the 3-month return equation, where the spread innovations

are negatively correlated with returns innovations, there is a positive small-sample bias which

may in turn explain some apparent predictability. On the contrary, the positive correlation

between bond return and yield spread innovations suggests that the predictability of bond

returns is not overstated in our sample. Regarding the log excess stock returns equation, the

6Campbell et al. [2003] use quarterly US data from 1952Q2 to 1999Q4 while Campbell and Viceira [2005]

extend the sample until 2002Q4.

8



Table 3: VAR estimation results

r0,t xe,t xb,t rnom
0,t ldmpt sprt

r0,t−1 0.931 6.444 1.747 -0.040 -0.109 -0.156

(0.058) (2.833) (0.793) (0.058) (0.033) (0.211)

[15.91] [2.27] [2.20] [-0.69] [-3.33] [-0.74]

xe,t−1 0.001 -0.016 -0.024 0.001 -0.000 -0.002

(0.002) (0.091) (0.026) (0.002) (0.001) (0.007)

[0.42] [-0.17] [-0.94] [0.59] [-0.38] [-0.33]

xb,t−1 -0.005 0.620 0.243 -0.021 -0.006 0.054

(0.006) (0.307) (0.086) (0.006) (0.003) (0.023)

[-0.79] [2.02] [2.82] [-3.29] [-1.74] [2.35]

rnom
0,t−1

0.078 -4.217 -0.238 1.014 0.053 -0.027

(0.047) (2.261) (0.633) (0.046) (0.026) (0.168)

[1.68] [-1.86] [-0.37] [21.89] [2.04] [-0.16]

ldmpt−1 -0.146 8.617 0.933 -0.074 0.850 0.153

(0.083) (3.997) (1.118) (0.082) (0.046) (0.297)

[-1.76] [2.15] [0.83] [-0.91] [18.39] [0.52]

sprt−1 0.070 1.537 0.618 0.043 -0.021 0.729

(0.018) (0.893) (0.250) (0.018) (0.010) (0.066)

[3.78] [1.72] [2.47] [2.35] [-2.09] [10.98]

c -0.899 46.024 3.697 -0.414 -0.757 1.155

(0.460) (22.278) (6.235) (0.456) (0.258) (1.656)

[-1.95] [2.07] [0.59] [-0.91] [-2.94] [0.70]

R-squared 0.88 0.10 0.12 0.93 0.95 0.66

Standard errors in ( ) and t-statistics in [ ].
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Table 4: Standard deviations and correlations of residuals

r0 xe xb rnom
0

ldmpt sprt

r0 0.232 -0.267 -0.377 0.806 0.145 -0.742

xe — 11.230 0.243 -0.301 -0.804 0.198

xb — — 3.142 -0.571 -0.231 0.071

rnom
0

— — — 0.230 0.250 -0.857

ldmp — — — — 0.130 -0.150

spr — — — — — 0.835

predictability due to the log dividend-price ratio may be overstated due to the quite strong

negative correlation between stock returns and dividend-price ratio innovations.

4 Comparing French assets risk across investment horizons

The conditional k-period variance-covariance matrix of real returns is obtained from the

VAR(1) estimates according to equation (4). The conditional standard deviation of the cumu-

lative returns over investment horizon is divided by the square root of the horizon, so as to get

annualized values. The annualized percent standard deviations of real returns for investment

horizons up to 100 quarters, i.e. 25 years, are plotted in Figure 1.

0 10 20 30 40 50 60 70 80 90 100
0

5

10

15

20

25

Holding period, K (quarters)

A
nn

ua
liz

ed
 s

ta
nd

ar
d 

de
vi

at
io

n 
(%

)

Pibor 3−month

Equities

Long bond rolled

Bond held to maturity K

Figure 1: Annualized percent standard deviations of real returns
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If returns were i.i.d., Siegel’s measure of risk, i.e., the standard deviation of annualized

returns, would be independent of the investment horizons. Hence, finding evidence that risk

does not scale with horizon in this way would tend to confirm the predictability of returns.

This is precisely the case here since the standard deviations plotted in Figure 1 depend on

the investment horizon. Stock returns appear slightly less volatile at longer horizons than at

shorter ones. In this sense, French stocks are mean-reverting. The same result is obtained for

annual and quarterly US data by Campbell and Viceira [2002], Campbell et al. [2003] and

Campbell and Viceira [2005]. However, French stock returns volatility decreases lesser than its

US analogue: here, it drops from 22.3% to 21% after 25 years whereas the US stock returns

volatility is only around 8% at this long horizon, according to Campbell and Viceira [2005]

results.

This finding is a direct consequence of our VAR analysis. The mean-reversion of stocks

return can be inferred from different channels. For example, we see in Table 3 that the au-

toregressive coefficient of the excess return of stocks is negative. But we also see that the

dividend-price ratio is a good predictor of the future stocks return. Moreover, shocks to the

excess return and to the dividend-price ratio are strongly negatively correlated, as seen in

Table 4. It implies that a positive shock on the excess return of stocks yields a negative shock

on the dividend-price ratio, which in turn yields an downwards revision of the expectation of

future stocks returns.

Regarding bonds, two kinds of investment strategies are considered from the estimated

model. The long bond rolled strategy is the one implicitly assumed in long-term bond returns

time series: the maturity of the bond is held constant at, say, 10 years, buying a 10-year bond

each period and selling it next period so as to buy a new 10-year bond. The second strategy

consists in buying a bond and holding it until maturity. In this case, the standard deviation of

the real return is given by the standard deviation of cumulative inflation from time t to time

t + K, since this nominal bond held to maturity is riskless in nominal terms.

Contrary to Campbell and Viceira [2005], we find that the long bond rolled strategy is

slightly mean-averting. Note however that using annual data, Campbell and Viceira [2002]

find a mean-averting behavior for this return. Starting from about 6% at short horizons, the

long bond rolled real return volatility reaches 8% at the 25-year horizon. Even though the

long bond rolled return volatility is always lesser than the one for stocks, the gap reduces from

16% at the one-quarter horizon to 13% at the 25-year horizon, see Figure 2. The real returns

on both PIBOR and the variable-maturity bond are even more mean-averting. The volatility

of the later becomes greater than the one of the PIBOR after five quarters and than the one

of the long bond rolled after around thirteen years. Campbell and Viceira [2005] reach the

similar conclusion: the return on the variable-maturity bond becomes riskier than the long

bond rolled from the 8-year horizon on. While their study also finds that the return on the

variable-maturity bond becomes riskier than the stock return for horizons greater than thirty-

two years, it turns out from our data that the variable-maturity bond risk never exceeds the
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stock risk, whatever the investment horizon considered. Finally, their study reveals that the

return on short term T-bills becomes riskier than the return on long bond rolled after around

forty-five years; this phenomenon does not occur in our data.

Overall, the stock real return is always riskier than the other assets considered here. For

horizons longer than thirteen years, the return volatility of variable-maturity bond exceeds

the ones of both the constant-maturity bond and the 3-month PIBOR. From the one-year

investment horizon on, the 3-month PIBOR becomes the less risky asset.

Regarding the excess risk of stock returns, which is crucial in terms of portfolio allocation,

Figure 2 shows that it decreases as horizon grows with respect to all other assets classes

considered here. Starting from 22% with respect to the 3-month rate and the variable maturity

bond, this excess risk in stocks falls to 14.7% and 10.3% respectively after 25 years. The excess

risk of stocks compared to the long bond rolled strategy falls from 16.2% to 13% at the 25-year

horizon. Omitting this excess risk mean-reversion would clearly lead to understate the share

of stocks in the portfolio choice of long-horizon investors.
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Figure 2: Excess risk of stocks compared to other assets

From the conditional variance-covariance matrix given in equation (5), it is straightforward

to compute the correlations of the real returns at all horizons. Figure 3 shows that the corre-

lations of stocks return and both fixed and variable-maturity long bonds return are positive at

all horizons. At the one-quarter horizon, the correlation between stock and variable-maturity

bond (resp. fixed-maturity bond) returns is around 3% (resp. 11%). It then peaks at 36%

(resp. 35%) at the 10-year horizon. At the 25-year horizon, the stock—variable-maturity bond

correlation is still 34%, whereas the stock—fixed-maturity bond correlation decreases to 29%.
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More striking hump-shaped patterns are also present in Campbell and Viceira [2005]’s study.

The main discrepancy in our findings is that the correlation between stock and bond held to

maturity returns remains positive at all horizons, even for the 50-year horizon, while Campbell

and Viceira [2005] find that this correlation becomes negative after 45 years. Accordingly,

they claim that stocks are able to hedge inflation risk in the very long term. This feature

is not shared by French data. However, as stressed by these authors, the very long horizons

predictions of the model must be cautiously interpreted because of the size of the sample.
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Figure 3: Correlations of real returns implied by VAR(1) estimates

5 Robustness analysis

The conclusions drawn above rely entirely on the VAR(1) model estimates reported in Tables

3 and 4. We propose to check their robustness along three dimensions. Firstly, we will extend

the methodology proposed in Campbell and Viceira [2002] by taking the standard errors of Φ0,

Φ1 and Σv OLS estimates into account. Secondly, the stability of the coefficients estimates will

be checked using the structural break analysis developed by Bai, Lumsdaine and Stock [1998].

Indeed, the Sup test developed by these authors allows to test the null of VAR parameters

stability against the alternative of a structural change at unknown date. Thirdly, motivated

by the unit root tests reported in Section 2, different information sets will be considered.
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5.1 Bootstrapped confidence intervals for the curves of annualized standard

deviation

Rather surprisingly, the confidence intervals of the annualized standard deviation curves are

neither reported nor commented in existing empirical work. Yet, since the OLS estimates of

Φ0, Φ1 and Σv have of course a non-zero variance-covariance matrix, i.e. are measured with

uncertainty, nothing ensures a priori that the difference between the curves in e.g. figure 1 is

statistically significant.

In order to check this, the parametric residual bootstrap method described in e.g. Hansen

and Seo [2002] is used. From the model given by equation (1), assuming that vt is i.i.d. from

an unknown distribution, and for fixed initial conditions on zt, the bootstrap distribution may

be calculated by simulation. Random draws are made from the estimated residuals vector v̂t

and then the simulated vector series z
s
t are computed by recursion given model (1). 10,000

vector series z
s
t are created, with the same length as the sample size. The initial condition

is set to the actual value. For each simulated z
s
t , Φ̂s

0, Φ̂s
1 and Φ̂s

v are obtained from the

OLS estimation of equation (1). From these matrices, the corresponding annualized standard

deviations of simulated real returns are computed. For each kind of assets, figure 4 below

reports the 5% and 95% quantiles associated to annualized standard deviations obtained from

the 100,000 drawings. This figure reveals that once their 95% confidence intervals are taken
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Figure 4: 95% Confidence Intervals for risks across horizons

into account, the risks corresponding to the short rate, the long bond rolled and the bond held

to maturity are not significantly different from each other after the one-year horizon. Indeed,

14



their confidence intervals intersect very quickly. Moreover, the short term rate and long bond

rolled risk confidence intervals cross the one of equities at the 5-quarter horizon. From that

horizon on, equities risk is not significantly higher than these two ones. Only the bond held to

maturity risk remains significantly lower than the one of equities until the 6-year horizon.

5.2 Stability analysis

The liberalization of the French financial markets in the mid-eighties may have affected the

returns dynamics over, say, the second half of our sample. If it were actually the case, then

our conclusions would be biased since the VAR model given in equation (1) does not allow for

a structural change. In order to allow for a general structural change at time τ = Tλ, with

λ ∈ (0, 1), the VAR model can be generalized as follows:

zt = Φ0 + Φ1zt−1 + D(t > τ)(Γ0 + Γ1zt−1) + ut, (6)

where Γ0 and Γ1 are respectively m×1 and m×m matrices, ut is the m×1 vector of innovations

assumed to be i.i.d. with E(uu
′

t) = Σu. D(t > τ) is a dummy variable such that D(t > τ) = 0

for t ≤ τ and D(t > τ) = 1 for t > τ . Under the null hypothesis that no break occurs, model

(6) reduces to the VAR given in equation (1):

zt = Φ0 + Φ1zt−1 + vt

with E(vtv
′

t) = Σv. Hence, the null hypothesis of no structural break at time τ corresponds to:

H0 : Γ0 = 0m×1 and Γ1 = 0m×m. (7)

If the break point τ were known, then standard likelihood ratio (LR), Lagrange Multiplier

(LM) or Wald (W) test statistics could be used to test H0. If τ is unknown, the difficulty is

that there is no estimate of τ under the null hypothesis: τ is a nuisance parameter under the

null. The parameters µ1 and B are also unidentified nuisance parameters under H0. With

τ unknown, we will follow the common practice initiated by Davies [1987] which consists in

using sup tests of the type:

SupLR(τ) = sup
τ∈[τinf ,τsup]

LRT (τ) (8)

where τinf corresponds to the initial fraction of the full sample T which is trimmed, in practice

often set to 0.15T as suggested by Andrews [1993] and τsup = (1−τinf )T . In our case, since the

sample length is 145 and the number of parameters is 42, the trimming parameter is chosen so

as to leave 42 observations before the first break date τinf and after the last break date τsup.

Moreover,

LRT (τ) = (T − nc)(log det(Σv) − log det(Σ(τ))) (9)
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where nc denotes the number of constrained coefficients involved by assumption (7). Note

that the LR statistics depends on τ through the estimate of the variance-covariance matrix of

residuals under the alternative (6). Equivalently, one could define SupLM and SupW statistics.

As can be shown from Andrews [1993] and Bai et al. [1998], the asymptotic null distribution

of SupLR(λ) is free of nuisance parameter. Hence, the critical values for the test statistics can

be tabulated. However, as the empirical use of it will involve a finite number of observations,

we will rather use a residual bootstrap method calculated by simulation. For given initial

conditions, random draws are made from the residual vectors under the null. From these

bootstrap residuals, one can create a simulated sample of series using model (1), and for each

sample, calculate the corresponding SupLR statistic. The bootstrap p-value then obtains as

the percentage of simulated statistics which exceed the actual statistics.7

For a set of break dates ranging from 1981Q1 to 1996Q4, the SupLR statistic is 72.93, and

its bootstrapped p-value — computed from 5000 replications — is 48.37%. Consequently, the

null of parameters stability cannot be rejected for our VAR(1) model.

5.3 Change in the information set

As stressed earlier, the estimation results given in Tables 3 and 4 must be cautiously considered

since the univariate unit root tests do not reject the null hypothesis for the log nominal short-

term rate and for the log dividend-price ratio. Even though the largest root of the VAR(1)

characteristic polynomial is lesser than one, it is still very close to unity with a value of 0.97.

Johansen’s cointegration rank test further confirms that this value may not be significantly

different from unity.8

Therefore, we propose to check the robustness of our conclusions by substituting the first

differences to the levels of these variables. Nevertheless, the first differences of the nominal

short rate and of the dividend-price ratio do not help predicting the real returns9. Hence, we

reintroduce the log of the dividend to price ratio in levels, since it seems to be an important

predictor of the stocks returns. The results obtained from the 5-dimensional vector z
∗

t =

(r0,t, xe,t, xb,t, ldmpt, sprt) are quite similar to the ones from the 6-variable system. Again, the

information criteria point to a lag length of one and the Box-Pierce statistics does not reject

the null of no residuals autocorrelation up to order 8. This VAR model in z
∗

t is thus estimated

using the same sample as the VAR in zt, namely 1971Q1– 2006Q4. The largest root of the

characteristic polynomial is now 0.94 in absolute value and Johansen’s trace test allows to

conclude that the cointegration rank is four at the 6% level, hence suggesting the stability

of this multidimensional system. The estimated equations of the five remaining variables are

basically unchanged compared to the 6-variable system. Since the nominal short rate has been

7A detailed description of the method can be found in e.g. Hansen [1996] or Hansen and Seo [2002].
8The trace test concludes to four cointegration relations at most, at the 10% level, hence indicating two

common trends.
9Results not reported but available upon request.
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excluded from this model, the inflation rate dynamics cannot be recovered from the system.

Consequently, it is now impossible to compute the conditional moments of the variable-maturity

bond strategy. The annualized standard deviations of the real returns on the three remaining

assets are reported in Figure 5. The pattern of the stock real return volatility is very similar to

one obtained in the previous section: the standard deviation reaches 22.5% at the one-quarter

horizon, peaks at 23% at the six-year horizon and then slowly decreases until it reaches 21%

at the 25-year horizon. Compared to the 6-variable model, the pattern of the 3-month PIBOR
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Figure 5: Annualized percent standard deviations of real returns (z∗t )

real returns volatilities remain largely unchanged. By contrast, the long bond rolled strategy

appears even more mean-averting, growing from 6% to 14% between the one-quarter and the

25-year horizons. So, in this 5-variable model,the equities return is always riskier than the

long bond return which in turn is always riskier than the 3-month PIBOR rate. Moreover, as

can be seen from Figure 6, the volatility differentials strongly decrease with the investment

horizon, hence leaving the conclusions unchanged compared with the previous model.

6 Concluding remarks

The aim of this paper was to assess French assets returns predictability within a VAR setup.

Using quarterly data from 1970Q4 to 2006Q4, it turns out that bonds, equities and bills returns

are actually predictable, at least to some extend. This feature has important consequences in

terms of multiperiod portfolio choice. It implies that the investment horizon does indeed matter

in the asset allocation. Following the approach developed by Campbell and Viceira [2002], the
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Figure 6: Correlations of real returns (z∗t )

VAR parameters estimates are used to compute real returns conditional moments of order two.

From a six-variable VAR model similar to the one estimated by these authors, we actually find

an horizon effect for French data.

In particular, French stock market return is slightly mean-reverting while bonds and bills

returns are mean-averting. Consequently, the gap between stock risk and other assets risk

reduces as the horizon gets longer. Whereas this gap is around 22% at the one-quarter horizon

for stocks compared to the 3-month rate and the bond held to maturity, it falls to 14.7% and

10.3% respectively at the 25-year horizon. The gap between the stock and constant maturity

bond risks decreases from 16.2% to 13%.

Compared to Campbell and Viceira [2002] and Campbell and Viceira [2005] results, French

stocks returns appear less strongly mean-reverting than their US analogues. It is also worth

noting that the 25-year horizon volatility of the four French assets considered here ranks from

6% to 21%. By contrast, their US analogues lie between 3% and 8%. Regarding the conditional

correlation between assets across investment horizons, French data reveal the same kind of

patterns as the ones found by Campbell and Viceira [2005], namely an increasing correlation

at the short and medium horizons.

Finally, our main conclusions suggest that long-horizon investors may well overstate the

share of bonds in their portfolio choice when neglecting the horizon effect on risk of asset

returns predictability.

18



References

Andrews, D.W.K., Tests for Parameter Instability and Structural Change with Unknown

Change Point, Econometrica, 1993, 61, 821–856.

Bai, J., R.L. Lumsdaine, and J.H. Stock, Testing For and Dating Common Breaks in Multi-

variate Time Series, Review of Economic Studies, 1998, 65, 395–432.

Barberis, N., Investing for the long run when returns are predictable, Journal of Finance,

2000, 55, 225–264.

Campbell, J., A variance decomposition for stock returns, Economic Journal, 1991, 101,

157–179.

, Understanding risk and return, Journal of Political Economy, 1996, 104, 298–345.

, Asset Prices, Consumption, and the Business Cycle, in J. Taylor and M. Woodford,

editors, Handbook of Macroeconomics, vol.1, North-Holland: Amsterdam, 1999, pp. 1231–

1303.

, A. Lo, and A. MacKinlay, The Econometrics of Financial Markets, Priceton: Priceton

University Press, 1997.

and L. Viceira, Consumption and portfolio decisions when expected returns are time

varying, Quarterly Journal of Economics, 1999, 114, 433–495.

and , Strategic Asset Allocation, Oxford University Press, 2002.

and , Long-Horizon Mean-Variance Analysis: A User Guide, Manuscript, Dept of

Economics, Harvard University, Cambridge MA 2004.

and , The Term Structure of the Risk-Return Tradeoff, Working Paper 11119,

NBER, Cambridge MA 2005.

, Y. Chan, and L. Viceira, A Multivariate Model of Strategic Asset Allocation, Journal

of Financial Economics, 2003, 67, 41–80.

Cochrane, J., Asset Pricing, Priceton: Priceton University Press, 2001.

Davies, R. B., Hypothesis Testing When a Nuisance Parameter is Present Only Under the

Alternative, Biometrika, 1987, 74, 33–43.

Dimson, E., P. Marsh, and M. Staunton, Triumph of the Optimists: 101 Years of Global

Investment Returns, Princeton: Princeton University Press, 2002.

Fama, E. and K. French, Dividend yields and expected stock returns, Journal of Financial

Economics, 1988, 22, 3–27.

19



Gollier, C. and R. Zeckhauser, Time horizon and portfolio risk, Journal of Risk and Uncer-

tainty, 2002, 24, 195–212.

Hansen, B. and B. Seo, Testing for Two-Regime Threshold Cointegration in Vector Error-

Correction Models, Journal of Econometrics, 2002, 110, 293–318.

Hansen, B.E., Inference when a Nuisance Parameter Is Not Identified Under the Null Hypoth-

esis, Econometrica, 1996, 64 (2), 413–430.

Merton, R., Lifetime portfolio selection under uncertainty: The continous time case, Review

of Economics and Statistics, 1969, 51, 247–257.

, An intertemporal capital asset pricing model, Econometrica, 1973, 41, 867–887.

Mossin, J., Optimal multiperiod portfolio policies, Journal of Business, April 1968, pp. 215–

229.

Poterba, J. and L.H. Summers, Mean reversion in stock returns: Evidence and implications,

Journal of Financial Economics, 1988, 22, 27–60.

Samuelson, P., Lifetime portfolio selection by dynamic stochastic programming, Review of

Economics and Statistics, 1969, 51, 239–246.

Stambaugh, R., Predictive Regressions, Journal of Financial Economics, 1999, 54, 375–421.

20



Appendix
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Figure 7: French data (1970Q4—2006Q4)
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