
AVERTISSEMENT

Ce document est le fruit d’un long travail approuvé par le jury de
soutenance et mis à disposition de l’ensemble de la
communauté universitaire élargie.

Il est soumis à la propriété intellectuelle de l’auteur : ceci
implique une obligation de citation et de référencement lors de
l’utilisation de ce document.

D’autre part, toute contrefaçon, plagiat, reproduction illicite de
ce travail expose à des poursuites pénales.

Contact : portail-publi@ut-capitole.fr

LIENS

Code la Propriété Intellectuelle – Articles L. 122-4 et L. 335-1 à
L. 335-10
Loi n°92-597 du 1er juillet 1992, publiée au Journal Officiel du 2
juillet 1992
http://www.cfcopies.com/V2/leg/leg-droi.php
http://www.culture.gouv.fr/culture/infos-pratiques/droits/protection.htm

i

Abstract

Cloud provisioning is the process of deployment and management of applications on public cloud

infrastructures. Cloud provisioning is used increasingly because it enables business providers to

focus on their business without having to manage and invest in infrastructure. Cloud provisioning

includes two levels of interaction: (1) between end-users and business providers for application

provisioning; and (2) between business providers and resource providers for virtual resource pro-

visioning. The cloud market nowadays is a complex environment where business providers need

to maximize their monetary profit, and where end-users look for the most efficient services with

the lowest prices. With the growth of competition in the cloud, business providers must ensure

efficient provisioning that maximizes customer satisfaction and optimizes the providers’ profit.

So, both providers and users must be satisfied in spite of their conflicting needs. Negotiation is

an appealing solution to solve conflicts and bridge the gap between providers’ capabilities and

users’ requirements. Intuitively, automated Service Level Agreement (SLA) negotiation helps in

reaching an agreement that satisfies both parties. However, to be efficient, automated negotia-

tion should consider the properties of cloud provisioning mainly the two interaction levels, and

complexities related to dynamicity (e.g., dynamically-changing resource availability, dynamic

pricing, dynamic market factors related to offers and demands), which greatly impact the suc-

cess of the negotiation.

The main contributions of this thesis tackling the challenge of multi-level negotiation in a dy-

namic context are as follows: (1) We propose a generic negotiator model that considers the

dynamic nature of cloud provisioning and its potential impact on the decision-making outcome.

Then, we build a multi-layer negotiation framework built upon that model by instantiating it

among Cloud layers. The framework includes negotiator agents. These agents are in communica-

tion with the provisioning modules that have an impact on the quality and the price of the service

to be provisioned (e.g, the scheduler, the monitor, the market prospector). (2) We propose a

bilateral negotiation approach between end-users and business providers extending an existing

provisioning approach. The proposed decision-making strategies for negotiation are based on

communication with the provisioning modules (the scheduler and the VM provisioner) in order

to optimize the business provider’s profit and maximize customer satisfaction. (3) In order to

maximize the number of clients, we propose an adaptive and concurrent negotiation approach

as an extension of the bilateral negotiation. We propose to harness the workload changes in

terms of resource availability and pricing in order to renegotiate simultaneously with multiple

non-accepted users (i.e., rejected during the first negotiation session) before the establishment

of the SLA. (4) In order to handle any potential SLA violation, we propose a proactive rene-

gotiation approach after SLA establishment. The renegotiation is launched upon detecting an

unexpected event (e.g., resource failure) during the provisioning process. The proposed rene-

gotiation decision-making strategies aim to minimize the loss in profit for the provider and to

ensure the continuity of the service for the consumer.

The proposed approaches are implemented and experiments prove the benefits of adding (re)negotiation

to the provisioning process. The use of (re)negotiation improves the provider’s profit, the number

of accepted requests, and the client’s satisfaction.

ii

Résumé

L’approvisionnement du Cloud est le processus de déploiement et de gestion des applications

sur les infrastructures publiques du Cloud. L’approvisionnement du Cloud est de plus en plus

utilisé car il permet aux fournisseurs de services métiers de se concentrer sur leurs activités

sans avoir à gérer et à investir dans l’infrastructure. L’approvisionnement Cloud comprend

deux niveaux d’interaction : (1) entre les utilisateurs finaux et les fournisseurs de services pour

l’approvisionnement des applications, et (2) entre les fournisseurs de services et les fournisseurs

de ressources pour l’approvisionnement des ressources virtuelles. L’environnement Cloud est

devenu un marché complexe où tout fournisseur veut maximiser son profit monétaire et où les

utilisateurs finaux recherchent les services les plus efficaces tout en minimisant leurs coûts. Avec

la croissance de la concurrence dans le Cloud, les fournisseurs de services métiers doivent assurer

un approvisionnement efficace qui maximise la satisfaction de la clientèle et optimise leurs profits.

Ainsi, les fournisseurs et les utilisateurs doivent être satisfaits en dépit de leurs besoins contra-

dictoires. La négociation est une solution prometteuse qui permet de résoudre les conflits en

comblant le gap entre les capacités des fournisseurs et les besoins des utilisateurs. Intuitivement,

la négociation automatique des contrats (SLA) permet d’aboutir à un compromis qui satisfait les

deux parties. Cependant, pour être efficace, la négociation automatique doit considérer les pro-

priétés de l’approvisionnement du Cloud et les complexités liées à la dynamicité (dynamicité de

la disponibilité des ressources, dynamicité des prix). En fait ces critères ont un impact important

sur le succès de la négociation. Les principales contributions de cette thèse répondant au défi de

la négociation multi-niveau dans un contexte dynamique sont les suivantes: (1) Nous proposons

un modèle de négociateur générique qui considère la nature dynamique de l’approvisionnement

du Cloud et son impact potentiel sur les résultats décisionnels. Ensuite, nous construisons un

cadre de négociation multicouche fondé sur ce modèle en l’instanciant entre les couches du Cloud.

Le cadre comprend des agents négociateurs en communication avec les modules en relation avec

la qualité et le prix du service à fournir (le planificateur, le moniteur, le prospecteur de marché).

(2) Nous proposons une approche de négociation bilatérale entre les utilisateurs finaux et les

fournisseurs de service basée sur une approche d’approvisionnement existante. Les stratégies de

négociation sont basées sur la communication avec les modules d’approvisionnement (le planifi-

cateur et l’approvisionneur de machines virtuelles) afin d’optimiser les bénéfices du fournisseur

de service et de maximiser la satisfaction du client. (3) Afin de maximiser le nombre de clients,

nous proposons une approche de négociation adaptative et simultanée comme extension de la

négociation bilatérale. Nous proposons d’exploiter les changements de charge de travail en termes

de disponibilité et de tarification des ressources afin de renégocier simultanément avec plusieurs

utilisateurs non acceptés (c’est-à-dire rejetés lors de la première session de négociation) avant la

création du contrat SLA. (4) Afin de gérer toute violation possible de SLA, nous proposons une

approche proactive de renégociation après l’établissement de SLA. La renégociation est lancée

lors de la détection d’un événement inattendu (par exemple, une panne de ressources) pendant

le processus d’approvisionnement. Les stratégies de renégociation proposées visent à minimiser

la perte de profit pour le fournisseur et à assurer la continuité du service pour le consommateur.

Les approches proposées sont mises en œuvre et les expériences prouvent les avantages d’ajouter

la (re)négociation au processus d’approvisionnement. L’utilisation de la (re)négociation améliore

le bénéfice du fournisseur, le nombre de demandes acceptées et la satisfaction du client.

Contents

Abstract i

Résumé i

Contents iii

List of Figures vii

List of Tables viii

List of Algorithms ix

Abbreviations x

Introduction 1

1 Context . 1

2 Thesis research issue and challenges . 3

3 Research Aims and Contributions . 6

4 Structure of the Thesis . 9

I Basic concepts 10

1 Introduction . 11

2 Cloud computing . 11

2.1 Cloud definition . 11

2.2 Cloud characteristics . 11

2.3 Cloud services . 12

2.4 Cloud market . 12

2.5 Cloud provisioning definition . 13

2.6 Cloud provisioning process . 14

3 Automated negotiation basic concepts . 15

3.1 Definition . 15

3.2 Negotiation protocol . 16

3.3 Negotiation objects . 16

3.4 Decision making models . 17

3.4.1 Utility function . 17

3.4.2 Negotiation decision-making strategy 17

3.5 Negotiation approaches . 18

4 Service Level Agreement (SLA) . 19

4.1 Definition . 19

4.2 SLA life-cycle . 20

4.3 SLA-based cloud provisioning process . 21

5 Conclusion . 22

iii

Contents iv

II Related Work 23

1 Introduction . 23

2 Cloud provisioning approaches . 24

2.1 non-QoS-aware provisioning approaches 24

2.2 QoS-aware provisioning approaches . 25

2.2.1 Same type of VMs . 25

2.2.2 Different VMs types . 26

2.3 A synthesis of cloud provisioning approaches 28

3 Negotiation approaches in utility computing . 31

3.1 Generic negotiation approaches . 31

3.2 Negotiation approaches in SOC environment 33

3.2.1 Negotiation frameworks . 33

3.2.2 Generic negotiation and renegotiation protocol 35

3.3 Negotiation approaches in GRID environment 35

3.4 Negotiation approaches in Cloud environment 37

3.4.1 Generic negotiation approaches 37

3.4.2 Cloud resource negotiation (level 1) 39

3.4.3 SaaS/PaaS negotiation (level 2) 41

3.5 Synthesis of negotiation approaches . 42

3.6 Discussion . 45

4 Conclusion . 48

III The negotiation-based framework applied to cloud provisioning 49

1 Introduction . 49

2 Overview of the generic negotiation-based provisioning process 51

3 Description of the (re)negotiation activity . 54

3.1 The negotiator model . 54

3.1.1 The negotiation session . 55

3.1.2 The decision-making strategy of the negotiator 55

3.1.3 The coordination between interdependent negotiation sessions . 57

3.2 The behavior process for the negotiator 58

4 Multi-layer and dynamic negotiation framework for cloud provisioning 60

4.1 The agents . 61

4.2 The environment . 61

4.3 The interaction among agents during application provisioning 62

4.3.1 The request phase (from the user layer to the IaaS layer) 62

4.3.2 The delivery phase (from the the IaaS layer to the user layer) . . 63

5 Conclusion . 63

IV Bilateral negotiation for an efficient SaaS application provisioning 64

1 Introduction . 65

2 Compute-intensive SaaS application provisioning scenario 66

2.1 SLA models and assumptions . 66

2.2 Overview of the (bilateral)negotiation framework for SaaS application pro-
visioning . 67

3 Negotiation-based SaaS application provisioning approach 68

3.1 Towards flexible admission control process 68

3.1.1 Classical admission control process 69

3.1.2 Flexible admission control process 70

3.2 Interaction between the negoBusiness and the business provider’s provi-
sioning modules . 72

4 Utility and profit-driven decision-making strategies 73

4.1 The negoBusiness’s decision-making strategy 73

Contents v

4.1.1 The negoBusiness’s offer evaluation strategy 74

4.1.2 The negoBusiness’s offer generation strategy 74

4.2 The negoUser ’s decision-making strategy 76

4.2.1 The negoUser ’s offer evaluation strategy 77

4.2.2 The negoUser’s offer generation strategy 77

5 Evaluation and analysis . 77

5.1 Implementation and experimental settings 77

5.2 Results and analysis . 78

5.2.1 Low urgency requests . 79

5.2.2 High urgency requests . 80

6 Conclusion . 82

V Adaptive and concurrent negotiation for an efficient SaaS application provi-
sioning 83

1 Introduction . 84

2 Overview of the adaptive negotiation framework for SaaS provisioning 85

2.1 Scenario description . 85

2.2 The proposed framework . 85

3 Adaptive negotiation-based SaaS provisioning process 87

4 Renegotiation decision-making strategies . 89

4.1 The negoBusiness’s decision-making strategy 90

4.2 The negoUser ’s decision-making strategies 91

5 Evaluation and analysis . 92

5.1 Implementation and experimental settings 92

5.2 Results and analysis . 92

6 Conclusion . 94

VI Proactive renegotiation for an efficient SaaS application provisioning 96

1 Introduction . 97

2 Overview of the renegotiation framework for SaaS provisioning 98

3 Selection of an Option for Profit-aware Rescheduling 99

3.1 Definition of an Unexpected Event . 99

3.2 Definition of the Rescheduling Option . 100

3.3 Algorithm for Selection of a Profit-aware Rescheduling Option 100

4 The Renegotiation-based Rescheduling Procedure 102

4.1 The renegotiation overall process . 103

4.2 The Decision-making Strategies for Renegotiation 104

4.2.1 Decision-making by the negoBusiness 104

4.2.2 Decision-making by the Users . 105

5 Evaluation . 106

5.1 Experimental settings . 106

5.2 Results and Analysis . 107

5.2.1 Impact when varying the expected utility of the business provider 108

5.2.2 Impact when varying the expected utility of the clients 109

5.2.3 Impact as the number of resources are varied 109

6 Conclusion . 110

Conclusions and Future Work 111

1 Contributions and Research Summary . 111

2 Future Directions . 113

2.1 Short-term Perspectives . 113

2.2 Long-term Perspectives . 114

Contents vi

A Example of negotiation protocols 115

1 Alternate offers protocol . 115

2 Iterated Contract Net Protocol . 115

B Multi-Agent System 117

1 Definitions . 117

2 JADE platform . 118

3 Communication between agents . 119

Bibliography 121

Publications List 133

List of Figures

I.1 Three-tier cloud computing market [1] . 13

I.2 Cloud provisioning process . 15

I.3 SLA life-cycle [2] . 20

I.4 SLA-based cloud provisioning process . 21

III.1 Generic negotiation-based-provisioning process 53

III.2 A generic negotiator model during the (re)negotiation phase 54

III.3 Overview of the negotiator behavior during (re)negotiation 59

III.4 Multi-layer and dynamic negotiation framework for cloud provisioning 60

IV.1 (Bilateral)negotiation framework for SaaS application provisioning 67

IV.2 Admission control strategy process . 69

IV.3 Flexible admission control strategy process . 71

IV.4 Interaction between the negoBusiness and the business provider’s provisioning
modules . 72

IV.5 Algorithms’ performance during variation in users’ preferences 79

IV.6 Algorithm performance during variation in negotiation strategy 81

V.1 Adaptive negotiation framework for SaaS provisioning 87

V.2 Interaction between the negoBusiness and the business provider’s provisioning
modules for an adaptive negotiation-based SaaS provisioning 88

V.3 The total profit and the number of accepted users 93

V.4 The average received utility . 94

VI.1 Renegotiation framework for SaaS provisioning 98

VI.2 Impact of provider’s expected utility variation . 108

VI.3 Impact of variation of clients’ expected utility . 109

VI.4 Impact of variation of number of resources . 110

A.1 Alternate offers protocol [3] . 116

A.2 Iterated Contract Net Protocol [4] . 116

B.1 The JADE Architecture [5] . 119

vii

List of Tables

II.1 A synthesis of cloud provisioning approaches (Business provider side) 29

II.2 A synthesis of negotiation approaches in SOC and Grid environment 43

II.3 A synthesis of negotiation approaches in Cloud environment 44

III.1 Description of symbols . 58

IV.1 Simulation parameters for low urgent requests . 78

IV.2 Simulation parameters for high urgent requests 79

viii

List of Algorithms

1 Pseudo-code to calculate best-to-propose offer(s) 74

2 renegotiation strategy . 90

3 Pseudo-code for selection of rescheduling option 102

4 Pseudo-code for renegotiation-based rescheduling 103

ix

Abbreviations

SaaS Software As A Service

PaaS Platform As A Service

IaaS Infrastructure As A Service

MAS Multi Agent System

SLA Service Level Agreement

VM Virtual Machine

QoS Quality Of Service

SOC Service Oriented Architecture

BTU Billing Time Unit

x

Introduction

1 Context

Cloud computing presents a highly dynamic marketplace for delivering IT services on demand [6].

The cloud can be considered as a three-tier or three-layered market [1] composed of: (i) end-users;

(ii) business service providers offering Software-as-a-Service (SaaS) and Platform-as-a-Service

(PaaS) applications; and (iii) resource providers maintaining the physical servers and offering

Infrastructure-as-a-Service (IaaS) virtual resources.

Cloud provisioning is the process of deployment and management of applications on public

cloud infrastructures (i.e., IaaS such as Amazon EC2) [7, 8]. To run their applications, business

providers may prefer to rent virtual resources from IaaS providers instead of in-house hosting. By

doing so, they avoid infrastructure maintenance and can scale their application to serve as many

end-users as possible. As business fluctuates, the business providers can also scale down. Renting

rather than owning resources enables business providers to focus on their business, without having

to manage and invest in infrastructure. In addition, they benefit not only from the pay-per-use

model but also from the competition between different resource providers offering attractive

offers. Cloud provisioning is composed of two interaction levels. The first one is between end-

users and business provider(s) for application provisioning, while the second deals with Virtual

Machine (VM) provisioning between the business provider and the resource provider(s). In this

thesis, we focus on the business provider, who is responsible for application and VMs provisioning.

Cloud provisioning is generally governed by a Service Level Agreement (SLA) contract established

between the parties concerned (e.g., user and business provider, business provider and IaaS

provider). An SLA is a formal representation of the Quality Of Service (QoS), the penalties

and the obligations agreed upon by the contractors [9]. For efficient cloud provisioning, business

providers aim to optimize their monetary profit and to satisfy as many end-users’ requests as

possible. To do so, business providers require SLA- and profit-aware provisioning strategies. In

other words, the business provider should guarantee that: (i) the SLA is met and (ii) it is also

making some profit by serving end-users.

1

Introduction 2

Despite its advantages, cloud provisioning has some complexities due essentially to the dynamic

nature of the cloud environment (e.g., dynamically-changing resource availability, dynamic pric-

ing, and dynamic market factors related to offers and demands) [7]. Efficient cloud provisioning

that satisfies the end-users and maximizes the providers’ profit is not a trivial task when con-

sidering the dynamicity of the cloud. Among the limitations impacting the efficiency of cloud

provisioning is the inflexibility of SLAs. Indeed, contemporary providers bind their services to

inflexible take-it-or-leave-it SLAs [10]. Alternatively, some proposed approaches use admission

control strategies able to evaluate the request according to the provider’s capabilities and such

approaches decide whether to accept or reject the request. When it is not possible to provide the

requested service (while satisfying the obligations of the SLA), the provider rejects the request

in order to avoid an SLA violation. By considering the constraints of resource provisioning (e.g.,

cost and availability), the business provider may lose several clients, which may lead to a loss of

potential profit. This is due to the gap between clients’ requirements and business providers ca-

pabilities. In fact, each cloud actor (e.g., the end-user, business provider, and resource provider)

has its own interests. In particular, the client aims to obtain the most convenient service at the

cheapest price, while the service/resource provider aims to maximize its profit and to serve the

maximum number of clients. The negotiation between cloud actors is an intuitive way to solve

conflicts between clients and providers and to reach a satisfactory agreement. As the infras-

tructures and platforms for the cloud became more complex, it created the need for automated

negotiation to handle dynamic and multi-level concurrent interactions.

Automated negotiation is a promising solution when dealing with conflicts and brings flexibility

to the SLA establishment process. It is considered as an important step in the SLA life-cycle [2].

Automated negotiation has three primary aspects [11]: (i) the negotiation protocol, which defines

the rules of interaction; (ii) the negotiated service, which is composed of objects (also called

issues) about which the participants negotiate; and (iii) the decision-making model, which defines

the decision-making strategies for each actor.

Intuitively, negotiation helps in reaching an agreement that satisfies both parties. However, in

order to be efficient, the negotiation should consider the cloud provisioning properties (e.g., two

interaction levels) and complexities related to dynamicity, which greatly impacts the success of

the negotiation. In fact, according to the state-of-the-art, cloud provisioning characteristics are

insufficiently taken into account by the current negotiation approaches.

The main focus of this thesis is to deal with negotiation for an efficient cloud provisioning by

proposing a conceptual negotiation framework suitable for cloud provisioning. Also, we propose

three negotiation approaches related to SaaS application provisioning and especially to compute-

intensive applications. In fact, the cloud is evolving to include a High Performance Computing

(HPC) environment that is able to perform large-scale and resource-intensive applications by

offering on-demand computing power [12].

Introduction 3

2 Thesis research issue and challenges

Our thesis research issue is : How to automate multi-level negotiation for an efficient

cloud provisioning that satisfies end-users and optimizes business provider profit in

a dynamic context ?

Cloud provisioning has several properties such as the two interaction provisioning levels and the

dynamicity at both business side (e.g., dynamic pricing, variation in market offers) and resource

side (e.g., variation in resource availability). Cloud provisioning properties on one hand, and the

business provider’s objectives on the other hand make an efficient negotiation a challenging task.

Despite active research in the context of cloud negotiation, some issues are still not addressed

(e.g., multi-level, dynamicity). The research issue question raises four challenges. The first

challenge is related to negotiation for cloud provisioning in general. The others deal with issues

related to an efficient SaaS application provisioning:

Question 1: How the negotiation should be designed for an efficient

cloud provisioning ?

Cloud provisioning has two main properties that highly influence the negotiation outcome and the

way to achieve an agreement that satisfies both parties. The first one is related to the multi-layer

aspect of the cloud. Each cloud layer offers one type of service, which may depend on another

layer. In fact, the application provisioning depends on the resource provisioning from the IaaS

layer. Consequently, the negotiation with end-users for application provisioning will depend on

resource provisioning. The second one is related to the dynamic context of provisioning, where

the context refers to the elements in relation with the quality of the negotiated service and its

price. In fact, in addition to negotiators’ preferences which may be variable, there may be several

dynamic elements that could influence the negotiation process. Those elements may be related

to the provisioning process itself such as resource allocation, monitoring, or some other elements

related to dynamic market status.

Despite their importance, the two properties mentioned above are not well addressed in the cur-

rent negotiation models. In fact, concerning the multi-layer aspect, most of the literature focuses

on negotiation in a specific layer and primarily in resource negotiation at the IaaS layer [13]. The

negotiation at the business layer is not well addressed and the elaborated approaches [10, 14, 15]

do not consider the dynamic resource provisioning. Some existing work addresses the multi-layer

aspect [10, 15, 16], but do not consider the decision-making strategies across provisioning lev-

els. Furthermore, concerning the second property (dynamic context of provisioning), most of

the literature proposes a decision-making strategy that considers fixed elements. Thus, those

strategies are appropriate for a given negotiation situation (e.g., [17, 18]). Given the cloud

Introduction 4

dynamicity, when the situation changes, the strategy may not be relevant. In addition, the

majority of the elaborated approaches assumes that the negotiation is an independent activity

of the provisioning process (i.e., independent of the allocation and the monitoring activities)

[14, 19].

In conclusion, there are missing features (multi-layer, dynamic context) in current negotiation

models, that should be considered for an efficient cloud provisioning. As mentioned earlier,

while this challenge is related to cloud negotiation in general, the following challenges deal with

SaaS-application negotiation and especially compute-intensive application.

Question 2: How SaaS application negotiation could maximize customer

satisfaction and optimize business provider profit ?

With the growth of competitiveness in cloud, business providers must ensure an efficient pro-

visioning which maximizes customer satisfaction and optimizes their profit. Indeed, for each

incoming request, the provider must take the right decision about its placement on rented VMs,

while satisfying the QoS requirements and maximizing profit. To optimize the profit, the busi-

ness provider should maximize the budget given by clients, minimize the costs of rented VMs and

minimize penalty costs. The majority of the elaborated approaches for application provisioning

focus on costs of rented VMs. In fact, some work considers both profit optimization and customer

satisfaction [1, 20]. However, as mentioned earlier, this work (as most provisioning approaches)

suffers from inflexible SLAs by either using a take-it-or-leave-it strategy or admission control

strategy.

The negotiation between end-users and the business provider brings flexibility to the provisioning

process, by trying to find a compromise satisfying both parties. But, for an efficient provisioning,

the negotiation decision-making strategies should consider elements related to the provisioning

process such as request scheduling and VM provisioning strategies. In fact, an efficient assign-

ment of application requests on leased VMs impacts highly on customer satisfaction and business

provider’s profit.

In contrast to IaaS negotiation, SaaS application negotiation is not well developed in the liter-

ature [13]. Furthermore, the current SaaS negotiation models do not consider scheduling and

VM provisioning in their decision-making strategies. This work leads to an inefficient profit

optimization since they do not consider the prices of the resources needed by the user’s request.

Also, the customer satisfaction is not guaranteed because the performance of the application

depends highly on the VMs executing it.

So, the second challenge consists in proposing a bilateral negotiation approaches between the

end-user and the business provider aiming to optimize the business provider’s profit and maxi-

mizing the customer satisfaction.

Introduction 5

Question 3: How the business provider could maximize the number of

clients given the constraints related to resource availability and pricing

at negotiation time ?

In order to maximize the number of clients, the business provider should be able not only to

accept as many incoming requests as possible but also to guarantee the clients’ requirements.

This is a challenging task when considering finite resources at a time and concurrency among

heterogeneous clients’ requests (i.e., having different requirements with different budget). In

fact, reaching an agreement is not usually feasible due to the constraints related to resources

availability and pricing at negotiation time. Also, the clients may have specific requirements with

limited budget that the provider could not satisfy when considering resources status and prices

at negotiation time. In addition, negotiation sessions are generally limited by time (which is

called negotiation deadline). If the two parties do not reach an agreement before the negotiation

deadline, the negotiation ends up with failure.

The majority of the elaborated negotiation approaches are mono-session (e.g., [19, 21, 22]). Those

approaches enable the exchange of offers and counter offers (i.e., multi round) only during the

negotiation session which is limited by the negotiation deadline. This solution may lead to an

increased number of rejected users. This is because, the negotiation decision-making strategies

are based on the current situation constraints (e.g., insufficient resources and high resources’

prices) that may not allow for an agreement to be reached.

In addition to the mono-session aspect, the concurrency among clients’ requests are insufficiently

taken into consideration by the current negotiation approaches.

In order to minimize the number of rejected users’ requests, the business provider should use

an adaptive negotiation approach that considers the workload change (resource availability and

pricing) and keeps negotiating concurrently with all users according to those changes. So, the

provider can accept more users which will lead to an increased profit and better satisfaction of

end-users.

So, the third challenge consists of proposing an adaptive negotiation mechanism according to

resource availability and pricing variation in order to maximize the number of clients.

Question 4: How to overcome the problem of unexpected events leading

to potential SLA violation ?

Cloud computing represents a highly dynamic environment (both at the business level and at

the resource level). There may be unforeseen events at the resource level such as catastrophic

resource failure, or there may be unexpected events at the business level coming from the need to

share rented resources between new clients that compete for immediate execution. These events

Introduction 6

may result in a violation of the original negotiated SLA since the schedule originally done (based

on the initial SLA) can be modified.

Generally if a contract is violated, a penalty is paid and the service is canceled [23, 24]. But if a

contract is violated due to circumstances not accounted for in the original SLA negotiation, the

two parties may both lose badly. For example, consider the situation in which a job is critical

to the success of the business. In principle, the client could have insisted on a penalty in the

original SLA that is equal to the value of the client’s business, as a compensation for the losses

resulting from the failure of that business-critical job. But this is usually unrealistic, since such

a penalty could be even larger than the total assets of the provider. Hence, the client will never

be fully compensated, and the provider faces a loss of future clients due to the loss in reputation

as the number of violated jobs accumulates. For these reasons, the provider and the client would

normally prefer to renegotiate a new SLA with new issues’ values rather than pay a steep penalty

and accept the cancellation of a business-critical job.

Most of the literature assumes that once an SLA is established, it cannot be renegotiated [23–26].

The concept of renegotiation has not yet been well studied [27]. The idea of renegotiation had

been invoked by some works, whereas there is no a concrete decision-making strategy (e.g., [13,

28]) or the renegotiation decision-making is partially considered [29]. There is some work that

tries to enhance the WS-Agreement negotiation protocol using renegotiation [29–31], and others

propose general conceptual renegotiation frameworks [32, 33]. The work mentioned above do

not propose any decision-making model to guide the renegotiation process toward a satisfactory

agreement.

So, the fourth challenge consist in proposing a renegotiation approach aiming to ensure the

continuity of service and minimize the loss in profit due to potential SLA violation.

3 Research Aims and Contributions

The aim is to propose a novel negotiation framework to handle the issues presented previously

and deal with the limitations of existing approaches. The contributions of the thesis can be

summarized as follows:

Contribution 1: Negotiation-based framework applied to cloud provi-

sioning

Our objective is to propose a negotiation framework taking into account cloud provisioning prop-

erties (multi-layer and dynamicity).

First, we propose a generic negotiation-based provisioning process which contains the most im-

portant activities to be considered for an efficient negotiation-based provisioning in the cloud.

Introduction 7

The proposed process shows how the negotiation could be guided by the provisioning activities,

especially allocation and monitoring. Also, it details the different cases where it is important to

renegotiate either before SLA establishment or after SLA establishment.

Second, we focus on the (re)negotiation activity as part of the overall provisioning process by pre-

senting the negotiator model and the behavior process of the negotiator during the (re)negotiation

phase. The negotiator model can be instantiated in each cloud layer as an agent which is able

to act on behalf of any cloud actor (user, business provider, resource provider). The negotiator’s

decision-making strategy takes into account dynamic provisioning context which consists of the

elements impacting the QoS of the negotiated service and its price. The decision-making strategy

is designed in a way to consider potential dynamic changes and to act accordingly.

Finally and based on the negotiator model and its instantiation among cloud layers, we propose

a multi-layer negotiation framework that considers the dynamic nature of cloud provisioning and

its potential impact on the decision-making outcome.

Contribution 2: Bilateral negotiation for an efficient SaaS application

provisioning

In order to maximize business provider’s profit and increase customer satisfaction, we propose

a negotiation approach between end-users and the business provider based on an existing provi-

sioning approach. That provisioning approach is composed of two phases: (i) Admission control

phase which evaluates and decides whether to accept or reject a request based on business

provider’s capabilities. (ii) Scheduling phase which is responsible for request assignment to vir-

tual resources.

First, we propose to extend the classical admission control in order to support negotiation by

storing the reasons of rejection. Then, we integrate the negotiation capabilities to the overall

provisioning process. The core idea of our solution is, when it is not possible to schedule a re-

quest respecting the initial SLA, the business provider may propose other scheduling alternatives

instead of rejecting the request. The scheduling alternatives are generated through the commu-

nication with the provisioning modules such as admission control, scheduler and VM provisioner.

We propose two decision-making strategies based on the generated scheduling alternatives. The

business provider follows a decision-making strategy according to his goal.

The experiments show the benefits of adding negotiation to the provisioning process by im-

proving the business provider’s profit, the number of accepted users’ requests, and the client’s

satisfaction.

Introduction 8

Contribution 3: Adaptive and concurrent negotiation for an efficient

SaaS application provisioning

In order to maximize the number of clients, we propose to extend the bilateral negotiation

approach previously described to deal with the negotiation failure cases at point of time t. Given

the dynamicity of the cloud (variation of resource availability, dynamic resource pricing, etc.),

at point of time t + 1, there may be new elements such as new idle resource and new resource

capacity which may change the previous negotiation outcome. We propose to harness those

changes by adapting the negotiation behavior accordingly. In fact, in dynamic environment it is

important to use a negotiation approach aware of the system changes. We propose an adaptive

negotiation approach that considers the workload change and keeps negotiating concurrently with

non-accepted users according to those changes. So, the business provider can accept more users

which will lead to an increased profit and better satisfaction of end-users. To do so, when the

negotiation fails, the business provider gives other chances to non-accepted users by renegotiating

(before SLA establishment) simultaneously with them when there is a change in the elements

considered in the first negotiation. Those elements change are given by the business provider’s

provisioning modules (VM provisioner and scheduler). The experiments show that the adaptive

and concurrent negotiation improves the business provider’s profit, the number of accepted users’

requests, and the client’s satisfaction, as compared with the bilateral negotiation.

Contribution 4: Proactive renegotiation for an efficient SaaS provision-

ing

In order to convert the lose-lose situation due to SLA violation into a win-win one, we propose a

proactive renegotiation approach after SLA establishment. When an event threatens a lose-lose

violation of the SLA, the renegotiation is launched to establish a new SLA that limits the losses

on the two sides. We propose an automated renegotiation-based approach when detecting an un-

expected event during the SaaS provisioning process. In our approach, the provider proactively

renegotiates with the clients whose jobs may be in violation of the SLAs, in order to minimize

the loss in profit and in order to ensure the continuity of the service. The renegotiation approach

is composed of two steps.

(i) The first step happens when the business provider detects an unexpected event. Since the

provider may not be able to physically continue some jobs with the same scheduling parame-

ters (VM, completion time, etc.), we consider alternative rescheduling options for the business

provider. The first step consists of the selection of an option for profit-aware rescheduling. In

examining the possible scheduling options, the provider chooses an option leading to a minimum

loss in profit while also minimizing the number of canceled jobs.

(ii) At the second step, the business provider triggers a renegotiation with those end-users whose

Introduction 9

jobs may terminate after deadline. The strategies followed by the business provider are based

on the rescheduling option selected in the first step.

The experiments show that this new approach minimizes the loss in profit of the business provider

and minimizes the number of cancelled jobs, as compared with enforcing the original SLA.

4 Structure of the Thesis

The rest of this thesis is organized as follows. In Chapter I, we present basic concepts related

to our research context (e.g., cloud computing, automated negotiation). In Chapter II, we re-

view related literature on cloud provisioning and SLA negotiation. In Chapter III, we present

our multi-layer and dynamic negotiation framework applied to cloud provisioning. In Chap-

ter 4, we propose a bilateral negotiation approach between end-users and a business provider

aiming to maximize customer satisfaction and optimize the provider’s profit. The negotiation

decision-making strategies are based on the communication with the provisioning modules (e.g.,

the scheduler and the VM provisioner). In Chapter V, the bilateral negotiation is extended in

order to support concurrent and adaptive negotiation according to workload variation in terms

of resource availability and pricing. When the bilateral negotiation fails, the business provider

renegotiates simultaneously with those users when there is a change in the elements considered

in the first negotiation. In Chapter VI, we propose a renegotiation approach after SLA estab-

lishment between end-users and a business provider aiming to minimize SLA penalty costs and

to ensure the continuity of the service. Finally, we conclude the thesis and draw some future

directions.

Chapter I

Basic concepts

Contents

1 Introduction . 11

2 Cloud computing . 11

2.1 Cloud definition . 11

2.2 Cloud characteristics . 11

2.3 Cloud services . 12

2.4 Cloud market . 12

2.5 Cloud provisioning definition 13

2.6 Cloud provisioning process . 14

3 Automated negotiation basic concepts 15

3.1 Definition . 15

3.2 Negotiation protocol . 16

3.3 Negotiation objects . 16

3.4 Decision making models . 17

3.5 Negotiation approaches . 18

4 Service Level Agreement (SLA) 19

4.1 Definition . 19

4.2 SLA life-cycle . 20

4.3 SLA-based cloud provisioning process 21

5 Conclusion . 22

10

Chapter 1. Basic concepts 11

1 Introduction

The cloud computing is increasingly used for IT service delivery. The cloud is evolving towards

a highly dynamic market where each actor has its own interest. Automated negotiation is a

compelling way to reach a satisfactory agreement between two or more parties with conflicting

needs. It is generally adopted in the Cloud in order to enable negotiators to establish a common

agreement, written as a Service Level agreement (SLA) contract. In Section 2, we provide a

brief overview about cloud computing and cloud provisioning. In Section 3, we present the main

concepts of automated negotiation. In Section 4, we give a description of SLA life-cycle and

SLA-based cloud provisioning process. Finally, we conclude the chapter in Section 5.

2 Cloud computing

2.1 Cloud definition

Several definitions had been proposed for cloud computing. According to National Institute of

Standards and Technology (NIST) [34], the cloud computing is ”a model for enabling ubiquitous,

convenient, on-demand network access to a shared pool of configurable computing resources (e.g.,

networks, servers, storage, applications, and services) that can be rapidly provisioned and released

with minimal management effort or service provider interaction”. In [35], Furht defines the cloud

computing as ”a new style of computing in which dynamically scalable and often virtualized

resources are provided as a services over the Internet.”

In [9], Buyya et al. propose the following definition including SLA negotiation:

”A Cloud is a type of parallel and distributed system consisting of a collection of inter-connected

and virtualized computers that are dynamically provisioned and presented as one or more unified

computing resource(s) based on service-level agreements established through negotiation between

the service provider and consumers.”

2.2 Cloud characteristics

According to NIST, the cloud has five essential characteristics:

• On-demand self-service ”X as service”: cloud resources (e.g., infrastructure, platform,

application) are viewed as a services and can be provisioned automatically without human

interaction.

• Broad network access: cloud resources are available over the network and can be accessed

by heterogeneous thin or thick client platforms (e.g., mobile phones, laptops).

Chapter 1. Basic concepts 12

• Resource sharing: cloud resources are virtualized and shared among multiple consumers

using the multi-tenant model. The consumers have no information about the structure

hidden behind the resource provisioned.

• Elasticity and scalability: the resource capabilities can be quickly increased (scale up) or

released (scale down) according to the demand.

• Measured service: cloud services can be measured, monitored and controlled with a trans-

parent manner for both the provider and the consumer.

2.3 Cloud services

The cloud offers three type of service models:

• Software as a Service (SaaS): the capability to offer applications running on cloud infras-

tructure. The consumers can access to the applications from everywhere via the internet

without any control on hardware requirements. There are two main type of SaaS ap-

plications: (i) enterprise-based applications, such as Customer Relationship Management

(CRM) solutions (e.g., salesforce1); or (ii) compute-intensive applications, such scientific

data processing application.

• Platform as a Service (PaaS): the capability to offer platform including programming tools

and languages to create and deploy application onto cloud infrastructure. The consumers

have control on the deployed applications without any control on the cloud infrastructure.

Among PaaS solutions, we can cite Microsoft Azure2 and Google App Engine3.

• Infrastructure as a Service (IaaS): the capability to offer computing resources (e.g., pro-

cessing, storage, network), where the consumer can deploy any operating system and

application without any control on the cloud infrastructure. Amazon Elastic Compute

Cloud (EC2)4 is an example of an IaaS solution.

The above mentioned cloud services can be presented as a layered cloud computing architecture,

where each layer is associated to one type of service.

2.4 Cloud market

The cloud computing is evolving toward an open marketplace [6]. The cloud can be seen as

a three-tier cloud market [1]. The Figure I.1 shows the different actors in the cloud market.

1https://www.salesforce.com/
2https://azure.microsoft.com/fr-fr/
3https://cloud.google.com/appengine/?hl=fr
4https://aws.amazon.com/fr/ec2/

Chapter 1. Basic concepts 13

The business providers (or service providers) offer both SaaS and PaaS services while resource

providers offer IaaS services. To execute their services, business providers need to rent VM

instances from resource providers. So, resource providers charge business providers for renting

virtual resource while the business providers charge customers for processing requests. The

main goal of a business provider is to maximize his/her profit by maximizing the revenue and

minimizing the costs of rented VMs.

Figure I.1: Three-tier cloud computing market [1]

2.5 Cloud provisioning definition

The cloud provisioning is the process of deployment and management of applications on public

cloud infrastructures (i.e., IaaS such as Amazon EC2) [7, 8]. The cloud provisioning has three

steps:

• VM provisioning which is responsible for VM(s) instantiation. The VM(s) instantiated

should match application requirements in terms of hardware and software. Actually, cloud

resource providers offer different types of VMs with different characteristics and different

prices. For example, Amazon EC2 proposes three billing models for VMs: (i) On-demand

model enables the consumer to start using the instances immediately [21]. The consumer

pays per Billing Time Unit (BTU), for Amazon EC2 the unit is equal to one hour. (ii) Re-

served model requires consumers to pay for one- or three-year term but benefit from a

discount on price per hour compared with the on-demand model. (iii) Spot instances are

charged dynamically according to spot prices set by Amazon. The spot prices depends on

the supply and the demand for spot instances. The consumers’ requests are processed if

their prices are greater than the spot price. If the spot price changes, and the request’s

Chapter 1. Basic concepts 14

price is below the spot price, so the consumer’s application is interrupted. Consumers can

benefit from saving costs by using that type of instances but it cannot be suitable for all

type of application.

• Resource provisioning which responsible for VMs placement into physical servers (called

also scheduling). The scheduling is done after mapping VMs characteristics onto physi-

cal resources ones. The most used resource allocation policies by the IaaS providers are

Best Effort and Immediate Reservation [36]. For the Best Effort policy, the request con-

tains both the start time and the duration. If there are available resources, the request

is assigned to those resources else the request is placed in a FIFO queue. The Immedi-

ate reservation policy is a form of advance reservation with an immediate start (used by

Eucalyptus [37]). If there are available resources, the request is immediately assigned to

those resources else the request is rejected.

• Application provisioning includes the deployment of specialized applications within

VMs. Furthermore, it includes the mapping and the scheduling of end-users’ requests on

application instances. The mapping consists of translating the application requirements

into resource needed for its execution. In fact, the requests are received in terms of

software/platform characteristics, and resources are needed to realize these requests. The

mapping allows the business provider to define the amount of resource needed for each

request. The scheduling defines when and where to place the accepted end-users’ requests.

So, the cloud provisioning may include two levels of provisioning according to the requested

service (application, resource). In fact, the service provisioning is defined as the transfer of value

from the provider to the requester [2]. The first level (level 1) between end-users and service

providers and the second one (level 2) between service providers and resource providers.

2.6 Cloud provisioning process

Based on the previous definition, we illustrate the cloud provisioning process in Figure I.2. The

Figure shows the different actors involved in the cloud provisioning process: end-users (Users

layer), business providers (Business layer) and resource providers (Resource layer). The business

provider is responsible for application provisioning (application request mapping and scheduling)

and VM provisioning (VM(s) instantiation). The resource provider is responsible for resource

provisioning (VM request mapping and scheduling). Scheduling is the core of any resource

management process. There are two types of scheduling in the cloud [24], depending on the

type of resource considered, physical or virtual: (i) the scheduling on the resource provider side

deals with VM placement on physical servers and finds where and when to place a VM [36].

The scheduling should ensure an efficient utilization of physical servers; (ii) the scheduling on

Chapter 1. Basic concepts 16

called issues) about which the participants negotiate. (iii) The decision-making models defines

the decision-making strategies for each actor.

3.2 Negotiation protocol

The negotiation protocol includes the participants in the negotiation and can be represented by

a state transition diagram containing (i) the negotiation states (ii) the legal transitions between

states and (iii) the locutions that may be exchanged between the participants. There are three

types of protocol, according to the number of participants in a the negotiation.

One-to-one (bilateral): One consumer and one provider negotiate for a specific type of service.

The most commonly used protocol is the Rubinstein alternating offer protocol [39] or the

FIPA contract net protocol [4]. A detailed description about those protocols is given in

Appendix A.

One-to-many: There are two subtypes. The first one concerns a consumer who negotiates

with many providers offering the same type of service. The goal of the negotiation in

this case is to choose the best service at the cheapest price that still meets the consumer

requirements. The second type deals with one provider negotiating with many consumers

in order to have the best profit such as in an English or Dutch auction [40].

Many-to-many: In the case of many-to-many participants, we deal with concurrent one-to-

many negotiation sessions. In this case, the protocol should define a coordination mecha-

nism between the concurrent negotiation sessions [16, 41, 42].

3.3 Negotiation objects

The negotiation objects represent issues on which participants must agree. The agreement may

contain one or more issue(s). The Multi-issue negotiation is more complex than the single-issue

one due to the potential interdependence among them [43]. There are two types of issues:

• service-specific issues concern the negotiated service type. Those issues represent QoS pa-

rameters related to the service. In fact, each type of service has specific QoS attributes [44].

For example, for IaaS service, the negotiation could be about CPU capacity, memory size,

storage, etc. For PaaS service, the negotiation could be about scalability. And for SaaS

service, an agreement may contain reliability and availability.

• generic issues match all types of services, such as price and security issue.

Chapter 1. Basic concepts 17

3.4 Decision making models

The decision making model depends on the negotiation protocol, the nature of the negotiation

issues, and the operations that can be performed on it [11]. The negotiation model enables

negotiators to generate and evaluate offers during the negotiation process in order to realize

their objectives. First, to evaluate an offer, the model is generally based on utility functions

and negotiators’ preferences. Second, to generate an offer, the model employs a strategy that

determines at each step the counter offer that will be sent to the opponent.

3.4.1 Utility function

The utility function measures the level of satisfaction of a given offer, in other words how good

is that offer [45]. The utility function is used to express customer satisfaction which measures

the service performance against customer preferences and expectation [1]. In the business world,

the customer satisfaction is a key indicator.

Generally, a single attribute utility function is used for the evaluation of one issue. For an offer

with multiple issues, an aggregate utility function should be used. The aggregate utility function

can be additive (i.e weighed sum of single attribute utility function) or non-additive mainly

when there is a dependence between issues [46]. Before starting negotiation, the negotiator sets

a minimum utility value under which offers are not accepted. The minimum utility is generally

denoted by reserved utility.

For offer generation, the negotiators generally use the the indifference curve which represent the

combination of issues leading to the same utility

3.4.2 Negotiation decision-making strategy

For counter offer generation, two basic strategies may be used according to the negotiators’ goals:

Concession At each step, the negotiator decreases the total utility value by decreasing the

utility of individual issues. The strategy consists in determining the amount of con-

cession at each step using a specific pattern. Several techniques had been proposed in

order to determine the concession patterns. Among the negotiation techniques, we can

cite [47]: (1) Time-dependent: consider the time given for negotiation and model the

fact that negotiators should concede faster as the deadline approaches. (2) Resource de-

pendent: consider the resource remaining during negotiation. (3) Behavior-dependent:

the negotiator imitates his opponent’s behavior and generates counter offer(s) accord-

ingly. (4) Market-dependent: is used for multilateral negotiation scenario and generally

Chapter 1. Basic concepts 18

considers a combination of three criteria [48]. The first one is Time as described for Time-

dependent. The second criteria is the probability of finding an agreement closer to the

negotiator’s preferences (expressed by an opportunity function). The third criteria is the

number of competitors and the number of available options in the market (expressed by

an competition function) [41]. (5) Policy-based: that technique captures user preferences

in the form of policies. Policies are sets of rules which define actions to be taken when

certain conditions are met [49]. The policy-based technique is based on the mapping of

high-level policies expressing business goals to low-level metrics defining the concession

degree [50].

Trade-off At each step, the negotiator decreases some individual attributes’ utility values and

increases others in order to keep the total utility value unchanged. The degree of trade-off

can be defined using the fuzzy similarity concept. The fuzzy similarity is based on the

fact that the more similarity there is between the offer to send and the received offer, the

higher the chance to reach an agreement satisfying both parties.

3.5 Negotiation approaches

There are three main approaches to automated negotiation in the multi-agent domain [51]:

Game Theory It consists of a set of players performing strategic interactions. Each player has a

set of possible actions that can be performed and a function that measures the outcome for

each action taken. The aim of each player is to perform actions that maximize its outcome.

In game theory, the participants should have finite strategies (possible actions and their

outcome). In fact, both the number of negotiators’ choices and the number of rounds

are finite. Also the participants should have a full knowledge of others’ preferences [11].

These assumptions make a game theory approach poorly adapted for a dynamic and highly

distributed environment like Cloud computing; indeed the number of participants and the

number of issues may be very high. Also the strategies in such a dynamic environment

cannot be finite.

Heuristics The heuristic approach is based on the representation of the negotiators’ proposals

and counter proposals as points in the space with their outcomes. The outcomes are cal-

culated according to the negotiators’ preferences and their utility functions. The possible

agreements are in the intersection of the negotiators’ acceptable outcomes sets. The aim is

to find sub-optimal solutions [11]. Generally, negotiators are interested in pareto optimal

offer which represents a combination of issues that cannot be better for one without being

worst for the other [52].

Chapter 1. Basic concepts 19

Argumentation The argumentation approach is based on arguments exchanged in order to

persuade others and change their beliefs [53–56]. This approach permits the sharing of

additional information about negotiators’ belief or other circumstances. The arguments

exchanged may be used to justify a proposal, to support an offer, or to explain a fact.

The argumentation is based on the interaction between arguments and how to reach a

consistent conclusion [57]. The main elements of an argumentation-based negotiation are

(i) argument and proposal evaluation: consider both objective (quality of proof) and sub-

jective evaluation (preference); (ii) argument and proposal generation: it may be done

using different approaches such as explicit rules (if-then) or a planning approach; and

(iii) argument and proposal selection: based on the relationships between arguments. At

each step the negotiator should select the most relevant argument from its sets of argu-

ments in response to the opponent’s proposal [58]. The elements cited above require a

high computational and communication load, and the efficiency of argumentation depends

on the application. To be pertinent as a negotiation approach, the overload must be com-

pensated by its potential benefits [57]. The application of argumentation as a negotiation

approach in Cloud computing is a new challenge [59, 60]. It may not be efficient in all

cases.

4 Service Level Agreement (SLA)

4.1 Definition

In service-oriented systems (e.g., service-oriented computing, grid computing, cloud computing),

both clients and provider need to control the service requested/offered. This mutual control can

be expressed in a contact which specify not only the functional and non functional properties

of the service, but also the price and penalties for non-compliance. In [45], the authors define

the SLA as ”a contractual obligation between the service provider and the service consumer by

specifying mutually-agreed understandings and expectations of the provision of a service”.

An SLA contract can be seen as a formal representation of values for Quality of Service (QoS),

obligations and penalties agreed upon by both parties (consumer and provider). For the con-

sumer, the SLA is a guarantee to have the required service and hence motivates the use of cloud

services. Given the excepted requirements of the consumers, the provider can efficiently manage

its capacity.

Chapter 1. Basic concepts 20

4.2 SLA life-cycle

The SLA life-cycle contains the needed activities for service provisioning and SLA Management

(SLAM). The SLAs are established not only to express Service level but also contain information

for supporting the service provisioning activities [2]. In the literature, There are various SLA life-

cycles [2, 9, 27]. Here, we present the SLA life-cycle proposed in [2] because it shows the different

cases where the negotiation could happen between the contractors. As shown in figure I.3, the

SLA life-cycle has six steps:

Figure I.3: SLA life-cycle [2]

1. Description (SLA template development and SLA advertisement): The SLA template is

described according to the offered service. Then, the service template is published by the

service providers.

2. Matchmaking: The consumers searches for the providers that offer services matching with

their requirements.

3. Negotiation: In order to bridge the gap between the offered service and the requested one,

the consumer and the selected provider may negotiate the SLA template terms.

4. Agreement and deployment: If the negotiation succeeded, the SLA is established according

to the template and signed by the concerning parties.

5. Monitoring and assessment: During the service execution, the service is periodically mon-

itored and the service level is assessed and compared to the established SLA. If there are

violations, the SLA may be renegotiated or cancelled.

6. Termination (SLA settlement and SLA archive): The SLA terminates either when the

contract period is over or when there is an SLA violation. In the case of SLA violation, a

penalty must be paid according to the signed SLA. At this step and after service execution,

the two parties may negotiate for service re-execution. Finally, the SLA is disposed or

archived according to concerning parties policies.

Chapter 1. Basic concepts 22

that reasons, some providers use admission control algorithm which determines which re-

quest to accept. The algorithm is executed whenever a new request arrives. It checks two

conditions: (i) the feasibility condition checks if there is enough resources to execute the

request. (ii) the profitability condition checks if the request acceptance brings some ”mon-

etary” profit to the provider. If the two conditions are satisfied, the request is accepted;

if not, it is rejected [63]. The admission control has been used as a general mechanism to

avoid overloading of resources while ensuring SLA satisfaction [20].

5. Monitoring and Assessment: In dynamic environment, it is important to continuously

measure the system performance (e.g physical and virtual servers, network performance,

application running on public infrastructure) [27]. The data collected from monitoring

components is evaluated and it is used to predict or detect SLA violation. If it is the case,

the SLA may be renegotiated.

6. Termination: The SLA based provisioning process may terminate with one of the three

cases: (1) without agreement, the two parties do not reach an agreement, no SLA was es-

tablished. (2) SLA established and respected without paying penalty, (3) SLA established

but there is violation, in this case a penalty is paid.

5 Conclusion

In this chapter we presented the basic concepts related to our research context. We introduced

the principles of cloud computing and cloud provisioning. Afterwards, we presented the main

concepts of automated negotiation. Finally, we presented the SLA contract by describing the

SLA life-cycle and proposing an SLA-based cloud provisioning process.

In the next chapter, we present a detailed description and analysis of the state-of-the-art focusing

on two research areas: (i) Cloud provisioning approaches used by the business provider and

(ii) negotiation approaches in utility computing environment such as Service Oriented Computing

(SOC), grid and cloud.

Chapter II

Related Work

Contents

1 Introduction . 23

2 Cloud provisioning approaches 24

2.1 non-QoS-aware provisioning approaches 24

2.2 QoS-aware provisioning approaches 25

2.3 A synthesis of cloud provisioning approaches 28

3 Negotiation approaches in utility computing 31

3.1 Generic negotiation approaches 31

3.2 Negotiation approaches in SOC environment 33

3.3 Negotiation approaches in GRID environment 35

3.4 Negotiation approaches in Cloud environment 37

3.5 Synthesis of negotiation approaches 42

3.6 Discussion . 45

4 Conclusion . 48

1 Introduction

Since we focus on automated negotiation for an efficient cloud provisioning, the related work

can be divided into two research areas: (i) Automated negotiation and (ii) Cloud provisioning.

In fact, in most cases the two topics have been studied separately. So, in this chapter, we

present a review on both cloud provisioning approaches and automated negotiation approaches.

In Section 2, we provide a review on cloud provisioning approaches (at business side) and we

23

Chapter 2. Related Work 24

pay particular attention on SLA-based provisioning. In Section 3, we propose a review on

automated negotiation in utility computing environment: SOC, grid computing and mainly

cloud computing. Afterwards, we discuss the limitations of existing negotiation approaches with

respect to the research challenges presented in the Introduction. We focus on needs on applying

negotiation for an efficient cloud provisioning. Finally, we conclude the chapter in Section 4.

2 Cloud provisioning approaches

As mentioned in Chapter I, the cloud provisioning includes three steps: (i) application provision-

ing, (ii) VM provisioning and (iii) resource provisioning. In this thesis, we focus on application

and VM provisioning which are controlled by the business provider. In this section, we present

the cloud provisioning approaches including mapping strategy, scheduling algorithms and VM

provisioning policies. The mapping strategy indicates the resources needed to execute the re-

quired application. The scheduling algorithms determine when and where to execute the request.

The VM provisioning policies indicate when a new VM is provisioned. Generally and in most

cases, the scheduling algorithm includes the mapping strategy and the VM provisioning poli-

cies [20, 26].

We can classify the provisioning approaches into two categories: (1) non-QoS-aware provisioning

approaches and (2) QoS-aware provisioning approaches.

2.1 non-QoS-aware provisioning approaches

Using non-QoS-aware provisioning approaches, all incoming requests are processed with the

same way regardless of their requirements. The scheduling algorithms focus only on resource

utilization and do not consider request performance (e.g., response time, completion time). The

SLA parameters including price, agreed on QoS and penalties are not considered in the scheduling

decisions. In [64], Genaud et al. propose four sets of provisioning strategies where the rented

resources are Billed per Time Unit (BTU):

• 1VM4All: One VM is provisioned and all the users’ requests are accepted and placed in

its queue in order to be assigned to that VM. Using this strategy, the business provider

can benefit from an optimal resource cost. But, the wait time will be high which impacts

the performance of the requests.

• 1VMperJob-based strategies: At each user’s request a new VM is instantiated. There are

three versions of 1VMperJob strategy by reusing idle VMs: (i) 1VMperJobPlus strategy

assigns the request to the first idle VM. (ii) 1VMperJobBest assigns the request to the

Chapter 2. Related Work 25

VM having the latest shutdown date. (iii) 1VMperJobBest assigns the request to the VM

having the soonest shutdown date.

• Bin-Packing-based strategies: Those strategies try to optimize idle time by assigning re-

quests to idle resources satisfying a certain condition. If such a VM does not exist then a

new VM is deployed. There are three versions: (i) FirstFit assigns the request to the first

VM where the execution of the request does not require to prolongate the BTU (i.e., no

extra cost must be paid). (ii) BestFit is an extension of the FirstFit where the selected

VM leaves the shortest idle time. (iii) WorstFit is an extension of the FirstFit where the

selected VM leaves the longest idle time.

The non-QoS-aware provisioning approaches are not suitable for SLA-based provisioning because

if the agreed on QoS parameters are not respected then a penalty must be paid. So, The penalty

costs will be high which may impact the provider’s profit and reputation. Since QoS parameters

are not considered, the above mentioned approaches do not propose a mapping strategy, and the

request can be executed in any resource regardless of its requirements.

2.2 QoS-aware provisioning approaches

In contrast to the above mentioned works, QoS-aware provisioning approaches have more chance

to meet SLA. There are essentially two categories according to the type of resources used for

application request execution. The first category considers the same VM type and assumes that

all requests have the same execution time. The second category considers heterogeneous VMs,

so the request execution time depends on the VM executing it. A detailed description of the

approaches in each category is given in the following.

2.2.1 Same type of VMs

As extension of Bin-Packing strategies, Genaud et al. [64] propose four scheduling algorithms that

consider the completion time: (i) EarliestFit assigns the request to the VM where the wait time

is minimal. (ii) RelaxFirstFitx assigns the request to the first VM while satisfying the following

condition ”the waiting time do not exceed x times the request runtime”. (iii) RelaxEarliestFitx

and RelaxLatestFitx assign the request to the VM that will be idle respectively first and last,

while satisfying the condition of the RelaxFirstFitx algorithm. Those algorithms consider wait

time as factor influencing the completion time. In fact the completion time is a sum of wait time

and runtime.

In [24], Leitner et al. propose a scheduling algorithm that tries to find a tradeOff between the

application performance offered and the infrastructure cost paid. The objective is to minimize

Chapter 2. Related Work 26

not only the cost of running VMs but also to minimize SLA violations. The authors propose a

greedy approach that calculates the cost of each possible schedule. The cost is calculated as the

sum of the infrastructure cost and the penalty cost. The algorithm takes as input the estimated

execution time of the request and the current load. That algorithm decides for each request

whether to launch a new VM or to schedule it on an existing VM so as the cost is minimal.

In contrast to the above mentioned works which consider that the VM provisioning decision

is invoked for each request (per-customer basis), there are some provisioning approaches that

adapt the number of deployed VMs according to the demand [7, 65]. Those works focus on

VM provisioning rather than requests scheduling. In [7], Calheiros et al. propose an adaptive

mechanism for VM provisioning according to the system requirement in terms of response time

and number of rejected requests. In fact, the application admission control mechanism rejects

requests if all application instances (deployed VMs) have k requests in their queue. The adaptive

mechanism is based on information from the workload analyzer which estimates future demands.

Those information are used by the load predictor and the performance modeler which solve an

analytical performance model. That model is able to predict the effect of a provisioning schedule

on system requirement in terms of target QoS (response time, rejection rate). If the estimated

values are below agreed on QoS and the resource utilization is under a fixed threshold, the the

number of VMs instances is dynamically updated. In [65], Le et al. propose an adaptive resource

management approach especially for deadline-bound applications. The objective is to adapt the

number of VMs in order to guarantee that request completion time is before the deadline. The

authors do not propose an admission control mechanism, all the requests are assigned to a waiting

queue. Whenever there is an idle VM, a job is dequeued and assigned to that VM. The dynamic

provisioning is based on the current status of the waiting queue and the VM pool. In fact, the

estimated capacity of VM pool can be measured using the queue theory. Based on the estimated

number of required VMs, new VMs are added or destroyed.

2.2.2 Different VMs types

There are several provisioning approaches that consider heterogeneous resources. Those ap-

proaches focus on which VMs to execute the request so as to optimize profit and/or customer

satisfaction. In fact, the choice of VMs that will execute the requests impacts highly the perfor-

mance of the request and the resource cost, hence impacts business provider’s profit and customer

satisfaction. After choosing the appropriate VMs via an efficient mapping strategy, the requests

are assigned to those VMs provisioned.

Chen et al. [1] propose a service provisioning approach based on utility-model which character-

izes the relationship between business provider’s profit and customer satisfaction. The incoming

Chapter 2. Related Work 27

requests are buffered in a queue. After a certain time interval, the provider runs scheduling al-

gorithm to bid for VM instances able to run the requests while satisfying the provider objective.

The authors proposes two scheduling algorithms depending on business provider’s objective:

(i) optimize profit with a predefined minimal customer satisfaction, (ii) maximize customer sat-

isfaction with a predefined minimal unit profit. The scheduling algorithms include a mapping

mechanism which indicates the VM instances that allow to guarantee the customer requirements

and respect the resource pricing. The process of scheduling and biding for VM instances is re-

peated at each time interval. If the request is not completed in the current time interval, it will

stay in the queue in order to be processed in the next time interval. In [23], Liu et al. focus on

divisible service request and propose a cost-aware scheduling aiming to minimize leased resources

cost without SLA violation. After dividing the request into independent and homogeneous sub-

tasks, the proposed algorithm finds the optimal combination of VMs able to run user request

subtasks without any SLA violation. The authors use a genetic algorithm, which is not adapted

to dynamic environment because the execution time may be very high [25, 26].

Wu et al. [20] propose three types of scheduling algorithms to maximize provider profit while sat-

isfying customer satisfaction through minimizing SLA violations. These scheduling algorithms

are designed to minimize the number of instantiated VMs, by maximizing the utilization of VMs

that are already initialized. The core of the scheduling algorithms consists of two phases: (i) the

admission control phase, which evaluates the request and decides whether to accept or reject

an incoming request based on the SLA requirements and the resource capability. This phase

uses different strategies that guide the evaluation of the request and gives the final acceptance

decision; and (ii) the scheduling phase, which chooses the scheduling alternative that yields the

maximum profit, while scheduling the request according to information that was saved during

the admission control phase. The authors in [20] propose three types of scheduling algorithms,

based on varying the strategies used in the admission control phase.

In [25, 26], Wu et al. propose a provisioning approach for enterprise software application aiming

to optimize the SaaS provider profit and improve Customer Satisfaction Level (CSL) by min-

imizing SLA violation. In [25], the authors propose a mapping and scheduling policies which

minimize cost of rented VMs by maximizing the utilization of instantiated ones. The scheduling

algorithms had been extended in [26] in order consider the consumer’s future interest in having

more accounts by using rescheduling for upgrade service edition request.

There are few works in the literature dealing with negotiation for an efficient provisioning [40, 66].

In [40], the negotiation is carried out between the scheduling service (acting on behalf of the end-

users) and the resource manager services (acting on behalf of the providers) in order to find an

efficient workflow schedule. The negotiation protocol used is CDA (Continuous double auction)

where offers and asks are submitted simultaneously until there is a match or the auction is

canceled. The outcome of the negotiation is a set of resources that is provisioned for application

Chapter 2. Related Work 28

execution. In the same sense, in [66], Prodan et al. propose an advance reservation based

on a negotiation approach for application scheduling. The resource manager strategy may be:

(1) attentive, which consists in generating a new start time the closest to the requested one; or

(2) progressive, which consists in generating an offer based on other users’ requests in order to

divide resource equally among users.

2.3 A synthesis of cloud provisioning approaches

Table II.1 provides a synthesis of the current cloud provisioning approaches based on the fol-

lowing criteria.

• Cloud provisioning steps (as mentioned earlier we focus on the steps controlled by the

business provider): to indicate each steps are addressed: (i) mapping, (ii) scheduling,

(iii) VM provisioning.

• Objective: to indicate the business provider objective.

• Profit-aware: to indicate if the business provider provisioning approach consider profit

optimization. Since the profit depends on three parameters, that criteria may be split into

three sub-criteria on which depends the profit: (i) Budget given by the user for processing

the request, (ii) Cost of rented resources where the application requests are executed,

(iii) Penalty cost

• Admission control: to indicate if the provisioning approach use an admission control mod-

ule before accepting a request. The admission control verifies two conditions the feasibility

and the profitability.

• Scaling up: this criteria indicates if the provisioning approach allows the instantiation of

new VMs (when needed).

• VMs type: to indicate if the same VM type is used (homogeneous), or different types of

VMs (heterogeneous).

• Negotiation: to indicate if the provisioning approach uses negotiation or not. If it is the

case we indicate in which level the negotiation is carried out: (i) level 1 between end-users

and business providers or (ii) level 2 between business providers and resource providers.

• Application type: to indicate which type of service is offered (Compute application or

Enterprise-based application)

C
h
a
p
ter

2
.
R
ela

ted
W
o
rk

2
9

Table II.1: A synthesis of cloud provisioning approaches (Business provider side)

Provisioning
steps:
1.Mapping
2.Scheduling
3.VM provisioning

Objective

Profit-
aware
a. Budget
b. Cost
c. Penalty Cost

Admission
control

Scaling up VMs type Negotiation
Application
type

1VM4All [64] 2 minimize cost - No No Identical No compute
1VMperJob [64] 2,3 minimize wait time - No Yes Identical No compute

Bin-Packing [64] 2,3
minimal cost
and maximize rsc utilization

b No
Yes
on-demand

Identical No compute

EarliestFit [64]
Relax-based [64]

2,3
minimize cost
and maximize rsc utilization
and minimize wait time

b No
Yes
on-demand

Identical No compute

[24] 2,3
minimize cost
and minimize SLA violation cost

b,c Feasibility
Yes
on-demand

Identical No compute

[7] 3
guarantee the response time
and rejection rate

- Feasibility Yes Identical No compute

[65] 3 respect the deadline - No Yes Identical No
compute
deadline-bound

[1] 1,2,3
maximize profit
or customer satisfaction

a,b No
Yes
spot

heterogeneous No
compute
preemptible

[23] 1,2,3
minimize cost
(without violation)

a,b no
yes
on-demand

heterogeneous No
compute
divisible

[20] 1,2,3
maximize both profit
and customer satisfaction

a,b,c
Feasibility
Profitability

yes
on-demand

heterogeneous No compute

[25],
[26]

1,2,3
maximize both profit
and customer satisfaction

b,c No Yes heterogeneous No enterprise

[40] 2,3
Fast and cheap
execution of application

b - yes heterogeneous level 2
compute
workflow

[66] 2,3
Improve the workflow
execution predictability

- - yes heterogeneous level 2
compute
workflow

Chapter 2. Related Work 30

The analysis of the table II.1 highlights the following points:

• Concerning profit optimization, the majority of the elaborated approaches consider only

leased resources cost [1, 20, 24–26, 64]. Some of them consider penalty cost [20, 24–26].

Few approaches consider the budget given by end-user for processing the request. In order

to optimize the profit, all the parameters on which it depends (budget, resource cost,

penalty cost) should be considered as in [20].

• The possibility of instantiating new VMs (scaling up) has been considered by most ap-

proaches. Some of the proposed approaches consider identical VMs types [7, 24, 64, 65],

some others consider heterogeneous ones [1, 20, 23, 25, 26]. It is important to consider

different VMs types since it is more realistic. Furthermore, the execution of a request may

vary from one VM to another depending on the performance of that VM, which could

impact customer satisfaction. In order to benefit from the attractive resource offers due

the competitiveness between cloud providers, it is crucial to consider heterogeneous cloud

providers offering different types of VMs as in [20].

• The admission control is used by few approaches [7, 20, 24] despite its effectiveness to

guarantee the SLA and to avoid resource overloading. Current SaaS providers do not have

admission control and use take-it-or-leave-it strategy. In order to guarantee the SLAs

established, some provisioning approaches accept all requests then do adaptation to avoid

SLA violation but those approaches are suitable only for same type of requests, and not for

heterogeneous requests that need per-customer evaluation and adaptation decision [65].

The feasibility condition is different from one work to another. In [24], the condition

checks the possibility of schedule the request by deploying a new VM. However, in [7],

the feasibility is checked only on already instantiated VMs. The profitability condition,

as part of the admission control, is only addressed in [20]. In order to optimize the profit

while guaranteeing the SLA, the two conditions should be verified.

• The majority of the elaborated approaches consider customer satisfaction as a fixed param-

eter in provisioning. In other words, given the initial user’s request, the business provider

takes the decision either to accept (even with possible violation) or reject the request. In

the same sens, current cloud providers use a take-it-or-leave-it strategy. Those approaches

deals with inflexible SLAs. Furthermore, most of those approaches assume that maximiz-

ing customer satisfaction is done only via minimizing SLA violation [20, 25, 26]. In [1],

the proposed approach is based on variable customer satisfaction, the business provider

can either maximize its profit or maximize customer satisfaction. We are interested in

an efficient provisioning which leads to maximize both profit and customer satisfaction.

From a business provider, those two objectives are dependent and conflicting. Negotiation

is considered as the most appealing and flexible approach in dealing with conflicts [22].

Chapter 2. Related Work 31

While negotiation is considered as in important activity in service/resource provisioning

process, the majority of cloud application provisioning approaches do not use negotiation.

It is almost used for resource provisioning which be detailed in the next Section. There

are few works in the literature dealing with negotiation for improving application provi-

sioning [40, 66]. Those works focus on level 2 negotiation (i.e negotiation with resource

provider) and deals with one-issue negotiation. In [40], the resource prices are generated

randomly during the auction. The authors in [66] considers the start time as the only

parameter that affects client satisfaction.

In addition to the fact that the SLA cannot be negotiated, the proposed approaches do

not consider what to do after an SLA violation, and once established, the SLA cannot be

modified.

We propose to handle the last point dealing with inflexible SLA (which is not well addressed

yet) by adding negotiation and renegotiation between end-users and business provider during the

provisioning process. The other points (profit parameters, heterogeneous cloud providers and

admission control) are already addressed in [20]. For that reason, that work has been chosen as

basis for our negotiation-based provisioning.

However, to be efficient, the negotiation approaches should be appropriate for cloud provision-

ing. In what follows, we review the negotiation approaches proposed in utility computing and

especially in cloud computing. This is followed by discussing the limitations of those approaches

with regards to cloud provisioning properties.

3 Negotiation approaches in utility computing

In utility computing, the negotiation is mainly used to establish SLA between consumer and

provider with conflicting objectives [67, 68]. In the literature, the negotiation had been ad-

dressed in several ways. Some works deals with generic negotiation approaches regardless of

the negotiation environment. Some others propose an approach for a given environment (SOC,

GRID, CLOUD). In what follows, we give a brief description of generic negotiation approaches

and those elaborated in SOC and GRID environment. Afterwards, we give a detailed description

of negotiation approaches in cloud environment. Then, we present a synthesis and discussion of

the described approaches.

3.1 Generic negotiation approaches

As an important step in the SLA life-cycle, the negotiation capabilities are integrated in most SLA

management frameworks and languages [9]. The WSLA [69, 70] and the WS-Agreement [71, 72]

Chapter 2. Related Work 32

are the most used standards and allows negotiation over SLA templates. In [2], the authors give

a more detailed comparison between SLA languages considering two negotiation criteria. The

first one is related to meta-negotiation which expresses the information related to the negotiation

establishment. The second one is related to Negotiability which represents negotiable SLA terms

and their allowed values. According to [2], only WS-Agreement deals with the two criteria and

it is the most suitable for negotiation.

The Multi Agent Systems (MAS) are generally used for negotiation [73]. In what follows, we

present some relevant generic negotiation approaches within MAS context that can be reused in

utility computing environment.

In [74], Tamma et al. focus on a generic negotiation protocol by defining an ontology of nego-

tiation protocols. The ontology is based on common concepts of negotiation protocols and it

is shared among participants. In the same direction, in [75], Bartolini et al. propose a general

protocol that can be specialized for wide variety of negotiation protocols. The general protocol

is based on a taxonomy of negotiation rules (e.g rule for admission of agents, rule for posting a

proposal, rules of agreement formation). The authors propose also a framework where partici-

pants could negotiate following the general protocol rules. The framework is based on software

agent responsible for evaluating negotiation rules and taking actions as a consequence.

In [17], Lai et al. propose a generic multi-issue negotiation strategy aiming to reach a ”win-

win” solution. The proposed strategy is based on utility function and can be divided into three

components: (i) the conceding strategy where the negotiator establishes the reserved utility

using a time-dependent strategy. (ii) the responding strategy responsible for offers evaluation

and accept an offer only if the received utility is greater than the utility of the offer that will

be sent at the next round. (iii) the proposing strategy responsible of counter-offers generation

during the negotiation. That strategy is based on the fact that different offers (combination of

issues) may have the same utilities. So, it is important to find which offers satisfy both parties.

There are two mechanisms for generating counter-offers when the negotiator does not know the

opponent’s utility function. The first one called shortest-distance is used when the negotiator

have a utility function. It consists in choosing the closest offer to received offer on the indifference

curve/surface. Based on that selected offer, the negotiators can choose a limited number of offers

from the indifference curve/surface (i.e those offers have the same utility as the closest offer).

The second mechanism called pareto-optimal mediating is used when the negotiator does not

have an elicited utility function. The mechanism assumes that the negotiator can assess the

utility of a limited set of points. Based on those points, the problem can be decomposed into

a series of linear negotiation baselines managed by a mediator, which assists the two agents to

find a pareto-optimal point.

In [51], Radu proposes an adaptive rule-based negotiation strategy. The rule to be applied at

each negotiation round is defined according to previous interactions with other agents in the

Chapter 2. Related Work 33

system. Given the dynamicity of cloud environment and the high number of users, the approach

in [51] is not suitable because of the unlimited number of rules that can be generated.

GENIUS1 (Generic Environment for Negotiation with Intelligent multi-purpose Usage Simula-

tion) is a negotiation environment implementing an open architecture for heterogeneous agents.

It includes a set of agents with a specific negotiation strategies and allows the design and imple-

mentation of new strategies by specifying the negotiators’ preferences. The strategies are based

on negotitors’ internal preferences and opponent behaviour. Furthermore, GENIUS allows the

simulation of tournaments between negotiating agents. The negotiation follows the bilateral

alternating offers protocol [76]. Also, GENIUS includes an analytical toolbox that enables the

analysis of negotiation results and the calculation of optimal solutions.

3.2 Negotiation approaches in SOC environment

In SOC context, some approaches focus on negotiation frameworks and mainly the decision-

making strategies (e.g., [18, 50, 77]) while some others focus on generic (re)negotiation protocol

(e.g., [31, 78]).

3.2.1 Negotiation frameworks

In [18], Faratin et al. propose a formal negotiation model for service-oriented provisioning. The

model focus on decision making process during negotiation. For offer evaluation, the negotiator

calculates first the utility value of the received offer’s (at point of time t). Also, he calculates

the utility of the offer that he will send at t + 1. Based on those two values, the provider de-

cide whether to accept/reject the offer or else generate a counter offer. The offer generation is

a linear combination of simple negotiation decision function called tactic. A tactic determines

the amount of concession for a single issue at each step by considering a single parameter, such

as time, remaining resource, or the opponent’s behavior. The authors define three families of

negotiation function. The time-dependent tactics considers the time given for negotiation and

models the fact that negotiators should concede more quickly as the deadline approaches. There

are two families of time-dependent functions: polynomial function and exponential ones. The

polynomial function concedes faster at the beginning than the exponential one. For each func-

tion, the negotiator can generate an infinite number of tactics by varying the function convexity

degree parameter, which controls the concession characteristics. That parameter indicates the

agent behavior: boulware agents make small concession at the beginning (large concession when

deadline approaches), conceder agents go quickly to their reservation value and linear agents

1http://ii.tudelft.nl/genius/

Chapter 2. Related Work 34

concedes evenly during the whole negotiation. A resource-dependent tactics considers the re-

sources remaining during negotiation. A negotiator following a behavior-dependent tactics will

imitate the opponent’s behavior and will generate a counter-offer accordingly.

Unlike [18], in [50, 77] the negotiation is done via a broker. In [77], Comuzzi et al. propose

a broker representing either provider, or both provider and consumer able to carry out nego-

tiation in semi-automated or automated manner respectively. The broker takes as input the

provider/consumer strategy and utility function. The proposed broker uses a concession time

dependent function for decision making. In the same sense, in [50], Zulkernine et al. propose

an adaptive and intelligent broker able to carry out negotiation between service providers and

consumers according to their business level specification. The decision-making strategy is based

on parametric time dependent function. The preference parameter is varied according to the

received opponent’s offer.

In [33, 79], the authors focus on adding negotiation capabilities to the Service Oriented Architec-

ture (SOA). In [79], Hasselmeyer et al. propose an SLA negotiation framework where providers

and consumers could negotiate via a negotiation service. The provider is represented by a negoti-

ation service and an SLA template repository comprising the offered services with their possible

QoS. The consumers are represented by a negotiation service and a user interface (for human

interaction). The negotiation follows the Discrete-Offer-Protocol which is a one-round protocol.

After the discovery and the selection phase, the consumer sends his request to the concerned

provider’s negotiation service. The provider checks if there is an offer in the SLA template

repository that matches the consumer’s request, then decides which offer to send. Finally, the

consumer decides whether to accept or reject the request and informs the provider’s negotia-

tion service. That work deals with one-round negotiation where all possible offers are stored in

advance in the repository, which may be not suitable for dynamic environment like cloud.

In [33], Mach et al. propose a negotiation and re-negotiation framework for web service con-

tracting. The proposed framework architecture is based on the SOA enhanced with negotiation

between consumers and providers, where the negotiation and the renegotiation happens before

and after service execution, respectively. Each negotiator agent contains a negotiation and re-

negotiation engine. That engine is based on a knowledge base that includes three elements:

(i) the business rules repository where the negotiator stores the rules implementing his proper

business strategy, (ii) the economic cost model where the negotiator stores the cost of each

production factor (e.g., computational power, disk space, network bandwidth), (iii) the history

data store past information (e.g of successful contracts, statistical data about the QoS of each

provider). The re-negotiation happens after SLA violation detected (after service execution).

In [80], Di Nitto et al. propose the architecture of a negotiation framework that can supports

various negotiation protocol. The architecture is composed of (i) participants each participant

Chapter 2. Related Work 35

is represented by a multi-agent system containing one or more negotiators able to carry each

negotiation with a manual or automatic manner and a coordinator to manage the negotiations

done by each participant. (ii) marketplace which manages the interactions among all participants

according to the negotiation protocol. Also, the marketplace contains a mediator able to generate

offers on behalf of negotiators. For a bilateral negotiation case and based on the negotiators’

evaluations of the generated SLA, the mediator generates proposals so as to fall into the area of

the intersection of the two acceptance regions.

In [45], Yan et al. propose an agent-based framework for SLA negotiation aiming at fulfilling

end-to-end QoS requirements of the service composition. The authors propose to extend FIPA

protocol in order to support one-to-many negotiation (for the same type of service). A Coor-

dination mechanism is proposed to check the overall QoS from the different type of services

negotiated. For decision making, two heuristics (concession, and tradeOff) based on fuzzy sim-

ilarity are proposed. In [81], the agent-based framework is extended to support renegotiation.

After establishing all SLAs of the service composition, the QoS values of atomic services are mon-

itored. When an SLA violation is detected, one or more SLAs are renegotiated autonomously in

order to guarantee the original end-to-end QoS requirements.

3.2.2 Generic negotiation and renegotiation protocol

In [78], Hudert et al. propose a negotiation framework based on WS-agreement supporting a

variety of bilateral and multilateral protocols. To do so, the authors define a meta-language

enabling the definition of a multitude of protocols. The process of contract creation contains

three phase. During the fist phase, an exchange protocol is proposed where the created protocol

definition is distributed among prospective negotiators via a third-party coordinator. Afterwards,

the participants start negotiation following the rules mentioned at the previous phase. Finally,

the negotiation is concluded either by an agreement or not.

Before renegotiation was introduced to the WS-Agreement protocol by the Grid Resource Alloca-

tion Agreement Protocol (GRAAP) group [71], many researchers tried to extend the negotiation

component of the WS-Agreement standard in order to support renegotiation [30, 31]. Those au-

thors focus on a renegotiation protocol and propose an approach for extending the WS-Agreement

standard in order to support renegotiation.

3.3 Negotiation approaches in GRID environment

In Grid environment, the majority of negotiation approaches [16, 28, 82] focus on coordinating

access to multiple resources from different resource providers. In [82], Czajkowski et al. propose

Chapter 2. Related Work 36

an SLA negotiation protocol aiming to coordinate access to multiple resource simultaneously.

The authors define three types of SLAs: (i) Task Service Level Agreements (TSLAs) deals with

task performance, (ii) Resource Service Level Agreements (RSLA) deals with the right to use

resource characterized by its abstract capabilities, (iii) Binding Service Level Agreements(BSLA)

is for the binding between the reservation of resources (RSLA) and the task (TSLA). That work

does not consider resource pricing.

In [28], Ouelhadj et al. propose an SLA negotiation protocol for an agent-based grid scheduling

system. The SLA-based grid scheduling infrastructure is composed of three types of agents: the

user agent, the local scheduler assigned to a specific computer resource, and the Super scheduler

which manager the local schedulers of the same institution. The proposed protocol defines the

interactions between those agents and is based on Contract Net protocol (CNP). There are

two levels of interactions (i) meta-SLA negotiation between the user and the Super Scheduler

(one-to-many) the SLA contain the high level information about the resources needed. (ii) sub-

SLA negotiation between the Super scheduler and the local scheduler (one-to-many) the SLA

contain the low level information (CPU, memory, etc.). The protocol allows the possibility of

renegotiation in case of SLA violation. The proposed protocol is powerful for resource scheduling

and infrastructure management but deals with one-round negotiation.

In [3], Venugopal et al. propose a bilateral negotiation mechanism between a resource broker (i.e

consumer) and a provider for the advance reservation of compute nodes. The negotiation mech-

anism is based on Rubinstein’s Alternating Offers Protocol. The broker’s negotiation strategy

is based on estimating the number of nodes required for the application given the application

requested deadline. The strategy consists on decreasing the number of required nodes until

reaching the lower bound (i.e., the application terminates with deadline) or the provider accepts

the request or else the broker receives an offer able to execute the application within the deadline.

The provider strategy consists on checking the feasibility of the request respecting the number

of nodes and time-slot. If is possible to execute the application, the request is accepted. If it

is not possible to respect the number of nodes, the request is rejected. If it is not possible to

respect the time-slot, the provider generates an offer containing a new time-slot according to the

nodes’ availability.

In [83], Sim et al. propose a concurrent negotiation mechanism for grid resource co-allocation

ensuring that the consumer can obtain all required resources simultaneously. The negotiation

mechanism include essentially two parts: (i) concurrent one-to-many negotiation for one type of

resources, where it is possible to renege from a contract by paying penalty fees. This type of

negotiation is done by a commitment manager (CE) using time dependent concession making

strategy for offer generation. The CE selects the resource contract leading to the highest expected

utility, which is based on the reneging probability and penalty fees. (ii) coordinating multiple

one-to-many negotiations using a Utility Oriented Coordination (UOC) strategy. The UOC

Chapter 2. Related Work 37

strategy aims to guarantee a high success rate and a higher utility value. The UOC is based on

predicting the change in utility in the next round for each one-to-many negotiation.

In [29], Sharaf et al. propose an extension to the WS-agreement protocol in order to support

renegotiation. The authors propose a decision-making strategy based on a fuzzy logic decision

support system, as part of the AssessGrid project. The proposed strategy enables the evaluation

of an offer received during renegotiation in order to compare it to the original agreement. The

authors focus on offer evaluation and do not provide details about offer generation during the

renegotiation.

3.4 Negotiation approaches in Cloud environment

As mentioned in Chapter I, the cloud provisioning contains two interaction levels. The first level

(level 1) deals about resource negotiation while the second one (level 2) deals about SaaS/PaaS

negotiation. Here we will classify existing work according to the provisioning level for which it

applies (level 1 or level 2). There are also some works dealing with generic negotiation approaches

regardless of the interaction level.

3.4.1 Generic negotiation approaches

In [62], Venticinque et al. propose a design of a cloud market called “Cloud Agency” for delivering

services and for resource management. The cloud Agency aims to fulfill the requirements of user’s

applications given a collection of cloud service providers. The architecture is based on software

agents having different roles in the market: each provider and each client is represented by an

agent. Provider agents are managed by amediator agent which is responsible of selecting the best

providers matching the user requirements. The negotiator agent is responsible of SLA fulfillment

between the mediator and the client agent. The authors address the interoperability problem

between different cloud providers and users by proposing a unique cloud ontology. In [41, 84],

the authors propose the design and development of software agents in a Cloud market with

the purpose of enhancing discovery, negotiation and composition of cloud services. The authors

adopts the brokering architecture where many brokers act as mediators between consumer agents

and resource provider agents. The brokers’ role is to sub-lease bundled service to consumers,

where the service is composed by multiple resources from different providers. The Cloud market is

composed of two interrelated markets (i) service market: where consumers and brokers negotiate

using a market driven strategy (time, market factors), (ii) resource market where each broker

negotiate multiple providers for reserving different types of resources. The broker consists of

a coordinator that coordinates the parallel negotiations done by the commitment managers

for acquiring n different types of Cloud resources. Each commitment manager negotiates with

Chapter 2. Related Work 38

different Cloud providers for one type of resource. That work deals with one issue negotiation

(price) and specific scenario where the negotiated service is a group of resources. Furthermore,

the negotiation in each market is treated separately from the other one although the dependence

between the two markets.

In [32], Hani et al. define three components essential to carry out the renegotiation: (i) the

service monitoring able to detect possible failure; (ii) the Service assessment, which defines the

renegotiable parameters and the limit for each issue; and (iii) the SLA renegotiation component,

which is based on Genetic algorithm. In [85], Galati et al. explore the possibility of adding an

SLA renegotiation protocol to CMAC (Condition Monitoring A Cloud) platform. The authors

considers the renegotiation as negotiating a counter-offer (before the SLA establishment).

In [86], Silaghi et al. propose a generic time-based negotiation strategy using learning procedure.

The proposed strategy aims to maximize negotiators’ utilities. Before starting negotiation, the

negotiator divide the negotiation time on subintervals. At each negotiation step, the negotiator

analyzes the incoming opponent’s proposal and updates the opponent profile. Then, for bid

generation, the negotiator strategy depends on the subinterval, for instance when the subinterval

is close to the negotiation deadline the agents make more concession.

In [22], the authors propose two negotiation algorithms implementing the tradeoff and the con-

cession strategy. The two strategies had been compared in terms of individual utility, social

utility and success rate, using a “storage as a service” scenario. The algorithms are valid only

for two-attribute negotiation (e.g., storage price, reliability). The amount of concession/tradeoff

is identical at each round, and it is fixed before starting negotiation.

Given the potential dependence between service and resource provisioning, the are some works

that address the negotiation at the two levels. In [16], Siebenhaar et al. focus on concurrent

negotiation in the Cloud market across multiple levels (consumer, service provider, and resource

provider). The authors propose a many-to-many protocol based on FIPA specification messages.

The many-to-many protocol consists of many one-to-many protocols coordinated by a coordina-

tion entity (CE) for each participant in the negotiation. The CE is responsible for the generation

of the negotiation entities (NEs) that will handle the one-to-many negotiation. The protocol is

composed of two phases. In the first phase (warm-up), the NEs are exchanging pre-proposals

and counter pre-proposals until there is at least one acceptable offer. Then, the NE sends a

pre-accept to the owner of the best offer and pre-reject to the others. In the second phase

(countdown), the NEs are competing to propose the best definitive offer. For decision making

the NEs use a time-dependent concession strategy.

Chapter 2. Related Work 39

3.4.2 Cloud resource negotiation (level 1)

At this level, the negotiation is about VMs characteristics. The main objective is an efficient

resource management while satisfying consumers’ requirements. In [21], Son et al. focus on spot

instances VMs types. The authors propose a negotiation strategy based on time slot and price

preferences in order to maximize resource utilization and minimize resource fragmentation on the

provider side and to minimize cost on the consumer side. The authors define a time slot utility

function for the consumer and the provider, by converting high-level preferences for each time

slot into mathematical parameters. For the consumer, the utility function models preferences

for different time slots. For the provider, the utility function is based on prioritization of the set

of the available time slot. For each consumer’s request, the highest priority is given to time slots

with an expected less demand, the earliest time one, and those fitting to the duration demanded.

Furthermore, the authors proposes a tradeOff burst mode negotiation strategy where agents are

allowed to concurrently make multiple proposals with the same aggregate utility function. This

model works only if both consumer and providers can do this conversion, a task which requires

skilled users; second, it assumes that the provider can anticipate the demands, which is not simple

in a Cloud environment. In [87, 88], Son et al. extend the SLA negotiation approach proposed

in [21] with an SLA management approach for an efficient resource allocation in distributed

data-centers. In fact, the distribution of virtual machines among servers highly influences the

VM performance (response time). So, it is important to find an efficient VM placement in

order to maintain the negotiated SLA and to avoid violation. The authors propose and SLA-

and location-aware resource allocation scheme. The VM placement strategy considers both the

geographical location of data centers and their workload.

In [19], Dastjerdi et al. propose a service negotiation framework facilitating automated SLA ne-

gotiation between providers and consumers. The authors propose a concession strategy using a

parametric time-dependent function for both consumer and provider. The consumer objective

is to concede on less important QoS and verify offers reliability. In fact, the concession parame-

ter for offer generation is defined according to preferences over attributes. the consumer’s offer

evaluation strategy is based on the reliability of the provider’s offer, measured via a third party

monitoring service. The provider objective is to maximize profit and balance resource utiliza-

tion. To do so, the concession parameter is defined according to both resource utilization and

preferences over attributes. The concession parameter can be applied only for price generation.

The ANEKA2 platform presented in [89] supports negotiation for the execution of parallel task

application on many nodes. The proposed negotiation strategy for the provider (ANEKA) con-

sists of varying the requested start time according to the availability of nodes.

2http://www.manjrasoft.com/anekaarchitecture.html

Chapter 2. Related Work 40

In [90], Akhani et al. extend Haizea3 with an advance reservation policy supporting negotiation.

The negotiation is launched when the requests of users cannot be fulfilled (i.e., when no more

available resource with the needed requirements). The authors propose two algorithms: (i) on

the provider side for counter offer generation. It consists in varying at each step some of the

user requirements (start time, duration, memory and CPU) in order to minimize resource frag-

mentation; and (ii) on the consumer side, it consists in selecting the most convenient offer based

on requirements’ flexibility. The main drawback of that work is that the negotiation strategy is

static for all incoming requests and considers only resource fragmentation.

In [52], Copil et al. address the problem of energy consumption in the Cloud. The authors

propose a negotiation mechanism aiming to find a balance between energy consumed (i.e amount

of resource offered) and performance offered. To do so, the authors propose a negotiation protocol

based on particle swarm optimization heuristics leading to a high social welfare. The negotiation

process starts by an initialization phase, in which each participant generate a number of possible

offers which is called swarm (i.e., the offers closest to their goal). At each round, when an offer

is received from the opponent, the swarm evolution is calculated (i.e., the effect of the offer at

the current population). Then, the counter offer is generated which is the average of offers in

the swarm.

In [91], Stantchev et al. focus on mapping QoS requirements of business process (SLA) to IT

infrastructure. The negotiation is carried out between a business process owner and the infras-

tructure owner. The proposed approach include three steps (i) Formalization where both the

requirements of the business process and the capabilities of the infrastructure are formalized.

(ii) Negotiation where the business process requirements is compared to infrastructure capabili-

ties under different load hypothesis. The decision where to replicate some service is taken based

on that comparison. (iii) Enforcement of business process SLAs at the IT infrastructure level

by parallelization of service processing via replication in different datacenters. The proposed

negotiation approach is different from classical negotiation ones (where offers and counter offer

are generated). In fact, it deals with one-round negotiation with an objective to find an efficient

mapping between the business process requirement and resource specifications.

In [46], Marcias et al. propose a negotiation model for cloud resource provider aiming to max-

imize a non-additive utility function that considers different objectives. The authors define the

following goals for the provider: (i) Maximization of revenue (ii) Client classification (iii) Prior-

itization of tasks in peak-off hours (iv) Maximization of provider’s reputation. Each goal can be

evaluated using a sub-utility function based on SLA terms requested. The evaluation parameters

are collected from resource level information (historical monitoring data, resource status) Given

3Open source VM lease manager: http://haizea.cs.uchicago.edu/

Chapter 2. Related Work 41

the importance of each goal (weight), the provider utility is calculated as a weighted sum of

goals’ sub-utilities. The price and time slot are generated so as to have the maximum utility.

In [92], An et al. focus on the resource allocation problem in a dynamic cloud market. The

authors extend the Rubinstein’s alternating offers protocol in order to include tentative agree-

ment where either buyer (i.e consumer) or seller (i.e provider) can cancel the agreement without

paying penalty. The authors propose two negotiation strategies: (i) on the buyer side (i.e.,

consumer side) where the proposed price for the resource depends on pressure deadline (for ac-

quiring the resource), the seller’s expected cost of providing the resource, the demand/supply

ratio of resource over time (ii) on the seller side (i.e., provider side), by trying to maximize its

revenue by accepting offers, decommitting from agreements, or even by canceling some tentative

agreements.

3.4.3 SaaS/PaaS negotiation (level 2)

The negotiation at this level is between end-users that want to use applications already de-

ployed on the Cloud and business provider. The negotiation is about application performance

characteristics.

In [14], Wu et al. propose a negotiation framework based on a broker which assists consumers

to find SaaS providers satisfying their needs. The broker’s objective is to optimize its profit

margin and to satisfy the user’s requirements. The provider’s aim is to maximize its revenue

by accepting the maximum number of users. The strategy used for counter offer generation is

time-dependent and market-dependent.

In contrast to [14], in [15], the negotiation is carried out directly between agents representing

consumers and providers. In that work, Son et al. propose a mechanism that adaptively controls

negotiation issues weights by analyzing workload trends. During a negotiation session, the

preferences (negotiation issues’ weights) are changed based on workload prediction. The idea is

to propose attractive prices and to postpone requests in peak load period in order to avoid SLA

violations. The authors define a utility function for each issue (price, response time, time slot).

The overall utility is a weighted sum of the individual utilities. For counter offer generation, the

agents use a time-dependent concession strategy.

In the context of the SLA@SOI project, in [10], Yakub et al. propose a robust and computa-

tionally inexpensive negotiation strategy aiming to reach a near-optimal SLA. The negotiation is

performed by a negotiation manager component that have been integrated to the business layer.

The negotiation manager is able to negotiate with both SaaS users and IaaS providers (negotia-

tion at level 1 and level 2), During negotiation, the agents follows the bilateral alternating offers

Chapter 2. Related Work 42

protocol. For decision-making, the agents use a concession strategy called Reactive Exploitation,

where the degree of concession is defined according to the opponent behavior.

3.5 Synthesis of negotiation approaches

Table II.2 and II.3 provide a synthesis of the current negotiation approaches in SOC/Grid and

Cloud environment respectively. The synthesis is based on the following criteria.

• Objective: to indicate the objective of the related work dealing with negotiation.

• Service type: to indicate the type of the service negotiated.

• Objects: to indicate the negotiation issues.

• Protocol: to indicate the protocol followed during negotiation.

• Technique: to indicate the technique used by the negotiation decision-making strategies.

• Decision factors: to indicate the elements considered when evaluating and generating offers

during negotiation.

• REnegotiation: to indicate if there is a possibility of renegotiate an already established

contract. If yes, we specify if the renegotiation is reactive or proactive.

• Implementation: to indicate if the proposed approach is implemented or not.

In addition to the above mentioned criteria, in table II.2, we specify the context (SOC or Grid).

Furthermore, for the negotiation approaches in cloud environment (Table II.3), two additional

criteria are considered:

• Multi-layer: to indicate if the dependence of service provisioning on resource provisioning

is considered.

• Heterogeneity: (i) Protocol: to indicate if the heterogeneity of protocols is considered,

(ii) Service description: to indicate if the heterogeneity of service description is considered.

C
h
a
p
ter

2
.
R
ela

ted
W
o
rk

4
3

Table II.2: A synthesis of negotiation approaches in SOC and Grid environment

Objective-Contribution Service type Objects Protocol Technique Decision factors Renegotiation Implementation
Context
(SOC,Grid)

[18]
Propose a formal negotiation model
for service-oriented provisioning

Service -
(bilateral)
Alternating offer

Concession

Preferences
Time
Remaining resource
Opponent’s behavior

no yes SOC

[77] Extend SOA to support negotiation Service -
(bilateral)
Alternating offer

Concession
Preferences
Time

no no SOC

[50]
Propose an adaptive and
intelligent negotiation broker framework

Web service -
Bilateral
defined protocol

Concession
Preferences
Time
Opponent’s offer

no yes SOC

[79] Extend SOA to support negotiation Service - Discrete-Offer Static match - no yes SOC

[33] Extend SOA to support negotiation Web Service -
Alternating offer
(one round) OR
auction

-
Business rule
Cost model
History data

reactive no SOC

[80] Propose an SLA negotiation framework Service - -
Simulated
Annealing

- no yes SOC

[45]
Fulfill end-to-end QoS requirements of the service
composition

Composite
service

-
(many one-to-many)
FIPA Iterated
Contract Net

Concession
tradeOff
Fuzzy
similarity

Preferences
Opponent’s offer

no yes SOC

[81]
Fulfill end-to-end QoS requirements of the service
composition

Composite
service

-
(many one-to-many)
FIPA Iterated
Contract Net

Concession
tradeOff

- proactive no SOC

[78]
Support a multitude of protocols
based on WS-agreement

Service - defined protocol - - no no SOC

[30], [31]
Add renegotiation capabilities
to WS-agreement

Service - defined protocol - - yes no SOC/Grid

[82]
Propose a negotiation protocol
aiming to coordinate access to multiple resource

Grid resource - defined protocol - - no no Grid

[28]
Propose an SLA negotiation protocol for
an agent-based grid scheduling system

Grid resource -
(one-to-many)
Contract Net protocol

- - reactive no Grid

[3]
Propose a negotiation mechanism
for the advance reservation of compute nodes

Grid resource Start time
(bilateral)
Alternating offers

- Available nodes no yes Grid

[83]
Propose a concurrent negotiation mechanism
for grid resource co-allocation

Grid resource Price
(one-to-many)
Defined protocol

Concession
Reneging probability
Penalty fee
Time

no yes Grid

[83]
Extend WS-Agreement
with renegotiation

Grid resource - - - Historical data yes yes Grid

C
h
a
p
ter

2
.
R
ela

ted
W
o
rk

4
4

Table II.3: A synthesis of negotiation approaches in Cloud environment

Objective-Contribution Service type Objects Protocol Technique Decision factors
RE
negotiation

Multi
layer

Heterogeneity
Impl.

Protocol
Service
description

[62] Design of a cloud market
Cloud
service

- - - - yes no yes yes no

[41], [84]
Design and development
of a cloud market

Cloud
service

Price multilateral Concession
Preferences
Time
Market factors

no no no no yes

[16]
Propose a concurrent negotiation
approach across multiple levels

Cloud
service

- multilateral Concession
Preferences
Time

no yes no no yes

[32]
Propose a renegotiation
framework

Cloud
service

- - Genetic algo - proactive no no no yes

[86]
Propose a generic
time-based negotiation
strategy using learning procedure

Cloud
service

- bilateral
Concession
Learning

Preferences
Time
Opponent profile

no no no no yes

[22]

Propose two negotiation
algorithms implementing
the tradeoff and the
concession strategy

Cloud
service

-
bilateral
Alternating
offers

Concession
Tradeoff

Preferences no no no no yes

[21],[87]
[88]

Propose a price and time slot
negotiation strategy

IaaS
Price
Time slot

bilateral
Alternating offers

TradeOff
(burst mode)

Preferences no no no no yes

[19]
Propose an SLA
negotiation framework

IaaS Price
Extended
alternating offers

Concession
Preferences
Rsc utilization
Reliability

no no no yes yes

[89]
Propose a negotiation mechanism
for the execution of parallel
task application on many nodes

IaaS Start time - -
Nodes
availability

no no yes yes yes

[90]
Extend Haizea with an advance
reservation policy supporting
negotiation

IaaS

Number of nodes,
Memory,
CPU
Start time,
Duration

- - Resource status no no no no yes

[52]

Propose a negotiation mechanism
aiming to find a balance
between energy
consumed and performance offered

IaaS
Price,
Memory, Cpu

bilateral
Alternating
offers

Particle Swarm
Optimization
(PSO)

Preferences
Time
Opponent Offer

no no no no yes

[91]

Mapping QoS
requirements of business
process requirements to
IT infrastructure

IaaS - - Comparison
Infra capabilities,
Service replication

no no no no yes

[46]
Propose a non-additive
utility function that
considers different objectives

IaaS
Price
Time slot

Alternating offers -

Historical
monitoring
data
Resource status

no no no no yes

[92]
Design a negotiation model for
the problem of dynamic resource
allocation in a cloud market.

IaaS
Price
Penalty

Extended

alternating
offers

Consumer:
Concession
Provider:
Optimization

Consumer:
Time
Resource cost
Demand/supply
Provider:
Resource status
Resource cost
Penalty

no no no no yes

[14]
Propose an
automated SaaS negotiation
framework

SaaS

Price
Refresh time
Process time
Availability

one-to-many
Alternating offers

Concession
Preferences
Time
Market factors

no no no no yes

[15]
Propose an adaptive negotiation
strategy according to
workload change

SaaS/PaaS
Price
Response time,
Time slot

bilateral
Alternating
offers

Concession
Preferences
Time
Workload status

no yes no no yes

[10]
Propose a negotiation
strategy based on opponent
behavior

SaaS/PaaS
Availability
Performance
Backup

bilateral
Alternating offers

Concession
Preferences
Time
Opponent behavior

no yes no no yes

Chapter 2. Related Work 45

3.6 Discussion

In recent years, SLA negotiation has received great importance. Despite active research, several

limitations can be identified according to the research challenges presented in the Introduction.

The first challenge deals with cloud provisioning in general. The other challenges are related to

SaaS provisioning which had been chosen as an application domain.

• How the negotiation should be designed for an efficient cloud provisioning

The Cloud provisioning has two main properties that highly impact the efficiency of ne-

gotiation. The first one is the dependence of cloud application provisioning on resource

provisioning from the IaaS layer (multi-layer). The second property is the dynamic con-

text of provisioning. In fact, there may be many elements that impacts the quality and

the price of the service to be provisioned. Those elements are denoted by decision factors.

Most of literature focuses on negotiation in specific layer and primarily resource nego-

tiation at the IaaS layer. A negotiation approach dealing with specific layer cannot be

suitable for cloud provisioning where there is two interdependent interactions levels. The

multi-layer property is insufficiently taken into consideration. The elaborated negotiation

approaches in SOC and grid context do not consider the multi-layer property because the

nature of those environment do not require the multi-layer aspect. Furthermore, there are

few works [10, 15, 16] in the cloud dealing with the multi-layer aspect (see Table II.2).

In [16], the authors focus on a multi-layer negotiation protocol without considering the ne-

gotiation decision-making strategies. In [10, 15], the negotiation is specific to SaaS/PaaS

negotiation and cannot be applied across levels.

Most of the elaborated negotiation approaches deals with a decision-making strategy that

uses a fixed technique considering fixed elements (i.e., decision factors). The most used

technique is concession and the most used decision factors are the time and the nego-

tiators’ preferences. Those strategies are generally efficient just for a given negotiation

scenario. For instance, the strategies based on learning technique [86] are not suitable for

an ever-changing environment. Furthermore, AI techniques that aims to search optimal

or even sub-optimal solutions [52, 76, 80] are not suitable for dynamic environment. In

fact, formalizing all the elements impacting the quality of the service and its price, and

the relation between them may lead to intractable optimization. Even generic decision-

making strategies [76] are relevant for specific situation and cannot be applied for dynamic

scenario. In fact, those strategies are based on the representation of the large space of

possible contracts. Furthermore, the negotiator’s preference should be fixed before start-

ing negotiation [17].

Given the cloud dynamicity, when the situation changes, the specific strategy may not be

relevant. So, we need a generic negotiation strategy that considers the dynamic elements

Chapter 2. Related Work 46

related to the provisioning. In addition to negotiators’ preferences, market factors and

opponent offers; there are elements related to the provisioning process such as allocation

and monitoring. Those elements impacts highly the quality of the service to be provi-

sioned and its price. Furthermore, the monitoring information can serve for renegotiation

which is very important in such dynamic environment. Despite their importance, those

elements are insufficiently taken into consideration. In fact, while most of IaaS negotia-

tion approaches considers resource allocation, only few service negotiation approaches [15]

considers resource allocation. Furthermore, the elements related to the monitoring are

considered only by [19, 46].

There are many negotiation approaches relying on broker architecture [62, 93] mainly in

SOC context [50, 77, 80]. Due to cloud characteristics (dynamicity and highly scalability),

we need decentralized solution to handle negotiation.

To the best of our knowledge, according to the state-of-the-art no generic multi-layer

(re)negotiation model taking into account dynamic elements had been proposed in SOC,

Grid and Cloud environment.

• How SaaS application negotiation could maximize customer satisfaction and optimize busi-

ness provider profit

As mentioned in the previous Section, the majority of SaaS provisioning approaches do not

consider negotiation between end-users and business provider (see Table II.1). Further-

more, unlike IaaS and cloud service negotiation which have been deeply studied, SaaS/-

PaaS negotiation are insufficiently developed in the literature [10, 14, 15]. The IaaS nego-

tiation approaches as well as the Grid resource negotiation approaches cannot be applied

to SaaS/PaaS negotiation, because the strategies proposed are related to resources char-

acteristics which are different from application one. In addition, Cloud service negotiation

approaches as well as service negotiation approaches in SOC context present the negotia-

tion as an independent activity from the others activities of the provisioning process. To

be efficient, the negotiation must consider others provisioning activities such as resource

allocation, which is responsible for service execution. In fact, the allocation including

scheduling and VM provisioning impacts highly the quality of the service to be provi-

sioned. Also, the provider profit depends on the resources leased and their prices. So,

in order to maximize customer satisfaction to optimize the profit, the business provider

should consider when negotiating both requests scheduling and VM provisioning.

The elaborated SaaS/PaaS negotiation approaches are not designed for customer satisfac-

tion maximization and profit optimization. In [14], the resources’ costs are not considered

when calculating the total provider’s revenue. Also, the information related to request

placement in virtual resources (i.e., scheduling information) are not considered by the

negotiation decision-making strategies. Those information impacts highly the offered per-

formance which impacts customer satisfaction. In contrast to [14], in [15], the business

Chapter 2. Related Work 47

provider’s strategy considers resources’ costs and workload status but the proposed strat-

egy is not suitable for users having high urgent requests. In fact, the strategy is based on

postponing users’ requests in peak load period. Also, the proposed approach assumes a

fixed resource pool with the same users’ requirements.

Although the fact that negotiators’ preferences can be dynamic, in [10], the authors as-

sume that the preferences are fixed before starting the negotiation and are the same for

all incoming requests. Furthermore, the offered price is not considered when generating

possibles offers. It is important to consider the price, because the performance offered

depends on the price paid which depends also on the market status.

To the best of our knowledge, according to the state-of-the-art, there is no SaaS negotiation

approach that optimizes business provider’s profit and maximizes customer satisfaction.

• How the business provider could maximize the number of clients given the constraints

related to resource availability and pricing at negotiation time ?

The majority of the negotiation approaches focus on bilateral negotiation without con-

sidering the concurrency among clients’ requests. In fact, the bilateral protocol is used

in most approaches and the concurrency is absent ad decision factor (see Table II.2, Ta-

ble II.3). There are some negotiation approaches dealing with multilateral negotiation

(e.g., [16, 19, 41]), those works focus on choosing best provider(s). However, in order to

maximize the number of clients, the business provider should be able to assign efficiently

available resources among concurrent requests.

In addition, the variation in resource availability and pricing are insufficiently taken into

consideration by some proposed decision-making strategies (e.g., [21], [15]. In fact, those

approaches consider the variation just during negotiation session which is limited by the

deadline. In those mono-session negotiation approaches, if the negotiation fails, the users’

requests are rejected. Due to the gap between users’ requirements and the provider capa-

bilities, this may lead to an increased number of rejected users.

To the best of our knowledge, according to the state-of-the-art, there is no adaptive and

concurrent SaaS negotiation approach that considers variation in resource availability and

pricing.

• How to overcome the problem of unexpected events leading to potential SLA violation

Most of the SLA-based application provisioning approaches discussed in the previous Sec-

tion assumes that once an SLA is established, it cannot be renegotiated [23–26]. Unlike

SLA negotiation, the concept of SLA renegotiation has not yet been well studied [27].

There is some work that tries to enhance the WS-Agreement negotiation protocol in order

to support renegotiation [29–31]. In [30, 31], the elaborated approaches do not consider

decision-making strategies during renegotiation. In [29], only the offer evaluation strategy

Chapter 2. Related Work 48

is considered, and there is no detail about how the offers are generated during renegoti-

ation. Also, the proposed protocol in [28] allows renegotiation in case of SLA violation,

but the proposed approach focus on negotiators’ interactions before SLA establishment.

In [81], the elaborated renegotiation approach is specific to service composition scenario.

In [32, 33], the authors propose general conceptual renegotiation frameworks without giv-

ing details about the renegotiation decision-making strategies. In [62], the authors present

some issues related to renegotiation without presenting a concrete contribution on how it

could be done.

To the best of our knowledge, according to the state-of-the-art, there is no decision-making

model that guides the renegotiation process toward a satisfactory agreement.

4 Conclusion

In this chapter, we have analyzed and discussed related work on cloud provisioning and ne-

gotiation. The analysis of cloud provisioning approaches shows that SLA negotiation between

end-users and business providers is insufficiently taken into consideration. In fact, most of cloud

provisioning approaches deals with inflexible SLAs. Furthermore, the analysis shows that al-

though the service/resource negotiation problem has been widely treated in literature, there are

still some limitations that have to be considered (e.g., multi-level, dynamicity).

In this thesis, we aim to overcome these limitations. To deal with multi-level and and dynamic

environment, we propose a generic multi-layer (re)negotiation model taking into account dy-

namic elements that can influence the negotiation outcome. Furthermore, in order to optimize

business provider’s profit and maximizes customer satisfaction, we propose a negotiation-based

provisioning approach. Also, to deal with the variation in resource availability and pricing, we

propose an adaptive and concurrent SaaS negotiation approach aiming to maximize the number

of clients. Finally, we propose a proactive renegotiation approach aiming to handle potential

SLA violation. The different contributions of the proposed approach are discussed in the next

chapters.

Chapter III

The negotiation-based framework

applied to cloud provisioning

Contents

1 Introduction . 49

2 Overview of the generic negotiation-based provisioning pro-

cess . 51

3 Description of the (re)negotiation activity 54

3.1 The negotiator model . 54

3.2 The behavior process for the negotiator 58

4 Multi-layer and dynamic negotiation framework for cloud

provisioning . 60

4.1 The agents . 61

4.2 The environment . 61

4.3 The interaction among agents during application provisioning . 62

5 Conclusion . 63

1 Introduction

For efficient cloud provisioning, both providers and users should be satisfied in spite of their

conflicting needs. In contrast to take-it-or-leave it strategies, negotiation is a flexible solution to

solve conflicts and enable reaching satisfactory agreements for both parties.

49

Chapter 3. The negotiation-based framework applied to cloud provisioning 50

Cloud provisioning has two main properties that highly impact the decision-making process of

negotiation and strategies for reaching a satisfactory agreements for both parties. The first

one is the dependence of cloud application provisioning on resource provisioning from the IaaS

layer. The second property is the dynamic context of provisioning, where the context refers to

all elements in relation with the quality and the price of the service to be provisioned. Among

those elements there are some related to the provisioning process itself (e.g., scheduler, resource

provisioner, Monitor). Also among others elements we can cite those related to the negotiator’s

preferences, market situation, etc. The importance of those elements vary according the nego-

tiation situation, and the information given by those elements are constantly varying during a

negotiation session.

Despite their importance, the two properties mentioned above are not well addressed in the

current negotiation models. Most of literature focuses on negotiation in one specific layer and

primarily resource negotiation at the IaaS layer [13]. Furthermore, the relation between the

negotiation and the other provisioning activities is not explicitly presented. For resource ne-

gotiation, there are some works that consider resource allocation (e.g., [21], [3]). However, the

application negotiation is presented as an independent activity from the application provisioning

process. The decision-making strategies (even generic ones) are suitable for specific situation,

and cannot be applied for various scenarios.

Our objective is to design a generic negotiator suitable for cloud environment, that can be used

by any cloud actor (user, business provider, resource provider) and for any negotiation scenario

(with possible dynamic changes). To do so, we propose a generic negotiation-based provisioning

process which contains the most important activities to be considered for an efficient negotiation-

based provisioning in the cloud. Furthermore, the process shows how negotiation is guided by

the provisioning activities, especially allocation and monitoring steps. The proposed process

shows the different cases where it is important to renegotiate either before SLA establishment or

after SLA establishment.In this thesis, we focus on the negotiation and renegotiation activities

as part of the overall provisioning process. We propose also design of generic negotiator that

can be instantiated in each cloud layer and able to act on behalf any cloud actor (user, business

provider, resource provider). The negotiator’s decision-making strategy takes into account dy-

namic elements in relation with the provisioned service QoS and its price. The decision making

strategies are designed in a way to consider potential dynamic changes and to acts accordingly.

Based on the negotiator model and its instantiation among cloud layers, we propose a multi-layer

and dynamic negotiation framework for cloud provisioning.

This chapter is organized as follows. In Section 2, we present our negotiation-based provisioning

process. Section 3 details the negotiation and renegotiation activities by presenting the negotiator

model and its behavior. Then, we show how the model can be instantiated among cloud layers

Chapter 3. The negotiation-based framework applied to cloud provisioning 51

resulting in an operational multi-layer negotiation framework presented in Section 4. Finally,

Section 5 concludes the chapter.

2 Overview of the generic negotiation-based provisioning

process

The proposed negotiation-based provisioning process is based on the SLA-based provisioning

process illustrated in Figure I.4 (see Chapter I). The SLA-based provisioning process is composed

of six activities: Discovery, selection, negotiation, allocation, monitoring and assessment and

termination. We focus essentially on the negotiation and the renegotiation and their relation

with the others provisioning activities. Our objective is to show how the negotiation is guided by

the provisioning activities which impact the quality of the provisioned service. This is done via

the design of a generic decision-making model, which considers not only the negotiator internal

elements (preferences, related negotiation, etc) but also external elements that can be gathered

from the provisioning activities.

As shown in Figure III.1, the negotiation-based provisioning process is composed of seven activi-

ties: Discovery, selection, meta-negotiation, negotiation and renegotiation, allocation, monitoring

and assessment and termination. As compared to the SLA-based provisioning process, we have

added the meta-negotiation activity. Also, we define the relation between the activities for an

efficient provisioning. In the following, we describe the modification added to the original process

by highlighting their importance for an efficient provisioning.

The Cloud computing is an heterogeneous environment; there is no standard protocol for com-

munication between clouds nor a common semantic for expressing resources and their character-

istics. So the negotiation between heterogeneous parties may lead to inconsistencies. For that

reason, negotiators should at least agree on the negotiation protocol and SLA terms semantics

before starting the negotiation. This activity is called meta-negotiation [89], [2], [94], [95] and

aims to facilitate communication between heterogeneous parties. It is done before starting the

negotiation process by agreeing on information related to the negotiation establishment. During

this phase the negotiators define the information related to the negotiation establishment (e.g

the negotiation protocol, the negotiation issues, the authentication method reference) [2]. We

believe that the meta-negotiation is a crucial activity in the provisioning process; in fact nego-

tiators may have different protocols and may express their SLA terms differently. Consequently,

it is essential to consider a meta-negotiation activity to avoid inconsistencies and to reach a com-

mon understanding during negotiation. So, in order to address the heterogeneity of protocols,

we assume that there is library of protocols including FIPA protocols (which provides a formal

Chapter 3. The negotiation-based framework applied to cloud provisioning 52

definition of several negotiation protocols) and possible other commonly used protocols such as

alternating offer protocol.

Given the negotiation protocol and the SLA terms, the negotiation between the user and the

provider can be started. Due to the gap between user’s requirements and the provider capabilities

at negotiation time, the negotiation may not result in a compromise satisfying both parties. Since

negotiation is already limited by deadline (the generation of offers and counter-offers cannot be

infinite), the negotiation may fail. So, in that cases, we propose that the provider may launch a

renegotiation, when there are new elements that may change the outcome of the previous failed

negotiation. That type of renegotiation is described in Chapter V.

If the negotiation succeeds, the SLA containing the agreed on terms is established. Consequently,

based on the SLA the provider allocates the adequate resources (virtual or physical) based on

the SLA established.

The monitoring activity should be able to report standard performance measurements to the

provider, which could anticipate system degradation and so trigger a renegotiation before SLA

violation and so avoid paying high penalties. The resource provider can monitor physical re-

sources, and can detect if the VM running on those resources may be impacted. For example,

the business provider can monitor the state of VMs where application are executing. By doing

so, if there are problems (VM failure, VM performance degradation), the provider can predict

potential violation and so trigger renegotiation proactively (if allowed by the other party). That

type of renegotiation is described in Chapter VI.

As explained above, the renegotiation may be triggered in two cases: (1) Before SLA estab-

lishment when the first negotiation fails, (2) After SLA establishment when the monitor risk of

violation. If the renegotiation fails, it can be repeated or not depending on the condition de-

fined by the two parties before starting the negotiation. Intuitively, the renegotiation after SLA

establishment cannot be repeated, and the provider must respect the new SLA since a second

violation will be critical for his reputation. But, the renegotiation before SLA establishment can

be useful as long as the user does not find the required service/resource.

We design a generic decision-making model that can be used in negotiation as well as in rene-

gotiation. For that reason, we refer to negotiation and renegotiation activity by a single term

(re)negotiation that will be used throughout this chapter. The decision-making model is based

on the decision-making strategy responsible for offer evaluation and generation. The decision-

making strategy should be guided not only by internal elements (e.g., negotiator’s preferences)

but also external elements that can be gathered from the provisioning activities. There are two

important activities: (i) Allocation activity which includes the mapping, the scheduling and the

resource provisioning. In fact, for the request evaluation and for offer generation, the provider

should know the requests’ translation in terms of required resources (mapping), also the current

Chapter 3. The negotiation-based framework applied to cloud provisioning 54

3 Description of the (re)negotiation activity

The (re)negotiation activity can be described by giving the negotiator model and the behavior

process of the negotiator during the (re)negotiation.

3.1 The negotiator model

Figure III.2 illustrates the main concepts in relation with a negotiator in the cloud. A negotiator

is able to carry automated negotiation on behalf of cloud actor (e.g end-user, business provider

or IaaS provider). Generally the negotiator is represented by an agent. The negotiator may have

one or two roles. A role is either a consumer or a provider. A negotiator with two roles is both a

consumer and provider, for example, the business provider is an application provider and at the

same time a consumer of resource from the resource layer. Each role may follow a negotiation

session based on a decision-making strategy. When a negotiator has two roles, it is important

to define a coordination mechanism that manages the communication between the two roles. In

what follows, we will detail each concept defining the negotiator.

Negotiation session

ID

deadline

type
start()

stop()

Objects

Service
Rules

Contract Net

Protocol
Rubinstein's

alternating offers

Negotiator

offerReceived

offerToSend

evaluateReceivedOffer()

generateCounterOffer()

Offer generation

Strategy

Agreement
Offer evaluation

Strategy

Provisioning

context

Role

Tactic

Cloud service

properties

Preferences
weights

goals

Internal

External

1..m

Protocols library

Tactics library

1..2

has

follo
w

guided

Time dependent Resource dependent Market dependent

Decision making Strategy

Consumer

Utility

function

successful

negotiation

Protocol

RoleCoordinator

type
Provider

re
s
u
lt
suse

follow

in case of two

roles

follow

u
s
e

use

in case two

roles

TradeOff Strategy Concession Strategy

Figure III.2: A generic negotiator model during the (re)negotiation phase

Chapter 3. The negotiation-based framework applied to cloud provisioning 55

3.1.1 The negotiation session

A negotiation session can be defined as the period covering the time from when the interaction

between negotiators begins until the interaction ends (with agreement or not) in order to get/offer

a cloud service. The negotiated service (e.g., software, resource) is composed of objects (also

called issues) over which the actors negotiate. Generally the negotiation issues are related to

the service QoS and price. In fact, there is a relationship between the service performance and

the its price. Negotiable SLA terms in the Cloud differ from one layer to the another, except

for generic issues such as price. For each type of service, there correspond some characteristics

that are the object of negotiation. A negotiation session follows a protocol that defines the

interaction rules between participants and defines the condition for termination. Fipa Contract

net protocol and Rubinstein’s Alternating Offers Protocol are the most common used protocols

for negotiation. The details about protocol types are given in the Appendix A. We are interested

especially in multi-round protocols where the negotiators could exchange offer and counters-offer

at each round.

3.1.2 The decision-making strategy of the negotiator

The (re)negotiation activity is based essentially on the negotiator decision-making model. An

efficient decision-making strategy is the key of successful (re)negotiation. During a negotiation

session, each negotiator follows a decision-making strategy, which is composed of:

Offer evaluation strategy: This allows a negotiator to evaluate an offer and to decide whether

to accept, reject or propose a counter-offer according to the predefined preferences of

the negotiator. The preferences are generally given by the cloud actor. The strategy is

generally based on a utility function that measures the degree of satisfaction for each offer

that is received. Based on the received utility value, the negotiator decides about the action

to take (accept/reject/counter-offer). In the case of negotiating with multiple opponents,

the negotiator chooses the offer with the highest utility value. The utility-based evaluation

strategy is efficient when the cloud actor could formally define the utility function and his

preferences. While this could be possible for an end-user, but for cloud providers it would

be difficult to formulate all the elements related to the negotiated service. In fact, those

elements may impact the action taken at each round. For example, to evaluate an incoming

application request, the business provider must check the capabilities in terms of owned

resources, also the possibility to get more VMs and others factors that impact the quality

of the provisioned application. For that reason, we believe that the offer evaluation should

be guided by the provisioning context, which refers to all elements in relation with the

quality and the price of the service to be provisioned.

Chapter 3. The negotiation-based framework applied to cloud provisioning 56

Offer generation strategy: This enables a negotiator to generate offers and counter-offers at

each round. There are essentially two approaches to generation of counter-offers: tradeoff

and concession. During a negotiation session, a negotiator may choose to use the concession

approach, to use the tradeoff approach, or to combine them. The tradeoff approach consists

of decreasing the utility values of some issues and increasing the values of others, in order

to keep the overall utility value unchanged. The concession approach consists of decreasing

the value of the utility function (i.e., the satisfaction) using one or a combination of tactics.

A tactic is represented by a negotiation decision function which defines the amount of

concession at each negotiation round [18]. The negotiation decision function types are

explained in Chapter I. Time-dependent, resource-dependent and market-dependent are

the most appropriate functions for negotiation in the cloud environment. In fact, the time,

the remained resource and the market factors are important elements impacting the QoS

of the service and its price. For that reason, we have reused those tactics in our model

(stored in a tactic library). But, those tactics could be used only if the negotiator knows

in advance the reserved offer. Fixing a reserved offer before starting negotiation cannot

be possible mainly for cloud providers. This is due to dynamic factors such as resource

availability and dynamic pricing. So, in those cases, the offer generation should be based

at least on the state of resources and their costs. For that reason, we believe that the offer

generation should be guided by the provisioning context.

As explained above, both offer evaluation and offer generation strategies should be guided by

the cloud provisioning context. We define the provisioning context as the elements that could

impact the quality of the provisioned service and its price. We define two types of contexts:

• Internal context: The internal context contains the information private to the negotiator.

It is composed essentially of the preferences and the related negotiations. The preferences

are used as inputs by a negotiator and the preferences are generally communicated by the

cloud actor. Examples of preferences are: the reserved and the preferred value for each

issue, the importance of each negotiation issues (weight), the goal of negotiation (maximize

profit, maximize number of clients, etc.). The related negotiation contains the output of

the negotiation carried by the other role (in the case that a negotiator can have two roles).

In the latter case, the output will be used not only for multi-layer negotiation, but also

for renegotiation.

• External context: The external context contains the information given by the external

modules in relation to the negotiated service. The external modules can be related to the

provisioning activities (scheduler, VM provisioner, monitor) as mentioned in the previous

section or others modules like the market prospector. The market prospector estimates

the number of competitors and alternatives of the concerned service and can also guide the

Chapter 3. The negotiation-based framework applied to cloud provisioning 57

pricing during negotiation. The offer generation strategy can be seen as a combination

of tactics selected from the tactic library and new ones based on the external context.

An example of that strategy we will be detailed in the next chapter for SaaS application

provisioning scenario.

To summarize, the proposed decision-making model can be used for any negotiation scenario by

varying the elements related to the context considered. Also, the information gathered from the

provisioning context can assist the negotiator to choose the suitable tactics for offer generation

(from the tactic library). For example, when there are many competitors (as communicated by

the market prospector), the negotiator should choose a market-dependent tactic. Also when the

time for negotiation is important, the negotiator should choose a time-dependent tactic.

3.1.3 The coordination between interdependent negotiation sessions

The role coordinator is used only in cases where the agent has two roles. It is important to define

the coordination between the two interdependent negotiation sessions, each triggered by a given

role. We consider three types of coordination for a business provider agent:

• The agent negotiates first with the end-user in the context of its provider role, and then

the agent negotiates with the IaaS provider in the context of its consumer role, and based

on the output of the prior negotiation with the end user in the context of the provider role.

That coordination may be not efficient when the business provider does not succeed to

obtain the needed resource (from the IaaS provider) guaranteeing the already established

SLA with the end-user.

• The agent negotiates in the context of the consumer role against the IaaS provider (when

possible), regardless of the demand. The agent then negotiates in the context of the

provider role based on the available resources already negotiated in the earlier negotiation

(no synchronization between the two roles). That type of coordination may lead to an

over-provisioning of resource compared to incoming load.

• The agent negotiates in both roles simultaneously. In the provider role, the agent be-

gins negotiations with the end user; in the consumer role, the agent negotiates with IaaS

provider based on the end-user request; and then the agent communicates the result to

the provider role in order to carry out the negotiation with the end user.

In what follows, for the operational framework, we have chosen the third type of coor-

dination (negotiating in both roles simultaneously) because it allows to acquire just the

needed resources.

Chapter 3. The negotiation-based framework applied to cloud provisioning 58

3.2 The behavior process for the negotiator

When receiving an offer during a negotiation session, the negotiator has a generic behavior for

decision-making. We model the behavior process using the Rubinstein’s Alternating Offers Pro-

tocol. The protocol followed during the negotiation session imposes the messages exchanged

between the negotiators. The proposed generic behavior process of a negotiator r is described

by the following expression:

BPr(Op−>r, fevalr, fgenerr, SLA).

The definition of the variables of the formula is listed in Table III.1. The behavior process BPr

is described in Figure III.3.

Table III.1: Description of symbols

p The proposer p

r The responder r

Op−>r(t) The offer O sent from negotiator p to
negotiator r at time t

SLA(O) The generated SLA contract corre-
sponding to the offer O

fevalr The evaluation function of negotiator r

fgenerr The function that generates one or
more offers from negotiator r

tdeadline The negotiation deadline

Figure III.3 shows the behavior process triggered by an offer Op−>r(t) received from a proposer p.

The negotiator starts by evaluating this offer using the evaluation function fevalr as part of the

offer evaluation strategy. The action taken by the responder depends on the evaluation function

output. The action will be one of the following three cases.

• accept: If the received offer is acceptable, the two parties establish the SLA contract

SLA(Op−>r(t)).

• reject: The responder can reject the offer, and so the negotiation session terminates

without an agreement.

• propose: The responder can propose one or more counter-offers using the offer generation

function fgenerr specified in the offer generation strategy. Then the agent r starts a new

round t + 1. If the negotiation deadline tdeadline is reached, the negotiation terminates

without an agreement. Otherwise, the responder sends the counter-offer Or−>p(t+ 1).

Chapter 3. The negotiation-based framework applied to cloud provisioning 61

order to define our agent-based framework, we detail bellow the agents, the environment, and

the possible interactions between agents for an application provisioning:

4.1 The agents

We consider three type of negotiation agents:

NegoUser agent: The NegoUser agent has a consumer role and acts on behalf of the end-

user and under its control. The end-user gives as input: its preferences about issues (for

example, the end-user may give more importance to the price than the response time),

the utility function (feval) which evaluates offers, and the function (fgener) for counter-

offer(s) generation.

NegoBusiness agent: TheNegoBusiness agent represents the business provider. The provider

may have two roles: (i) the provider role, denoted NegoPR, which may negotiate with

the NegoUser for application provisioning; and (ii) the consumer role, denoted NegoCR,

which may negotiate with the resource provider represented by the NegoIaaS agent for

VM provisioning. The decision making (offer evaluation and counter-offer strategies) for

each role is guided by the internal and external provisioning context. The most relevant

elements to consider for the internal context are: the business provider preferences; the

goal; and the previous negotiations for VM provisioning. For the external context, as

mentioned in the previous Section 3.1, the NegoBusiness may use information from the

application scheduler, the application monitor, the VM provisioner and the application

market prospector. Those modules have a large impact on the quality of the service to be

provisioned and its price.

NegoIaaS agent: This agent acts on behalf of the IaaS provider. It has as internal context the

IaaS provider preferences. For the external context, the negoIaaS may communicate with

the following modules for an efficient decision-making during negotiation: the scheduler

of the VMs, the monitor of the VMs, and the resource market prospector.

4.2 The environment

The agents are negotiating in a cloud marketplace; each actor belongs to a cloud layer accord-

ing to the type of service offered. For efficiency in decision-making, the agents communicate

with the modules representing their external context (the scheduler, the monitor, or the market

prospector). Additional modules that may impact the provisioning may also be added to the

external context, in order to be considered in the decision-making.

Chapter 3. The negotiation-based framework applied to cloud provisioning 62

4.3 The interaction among agents during application provisioning

During the negotiation-based provisioning process, the negotiators exchange offers based on the

generic behavior described in Figure III.3. The offer is composed of a set of attributes corre-

sponding to the value of the QoS parameters, which may be negotiable or not. The negotiable

ones have values that may change over time during a negotiation session, in contrast to the non-

negotiable terms, which have fixed values. There are two levels of interaction: 1) Level 1 deals

with the interaction between the users layer and the business layer and 2) Level 2 contains the in-

teractions between the business layer and the IaaS layer (resource layer). The negotiation-based

provisioning process is composed of two phases defined according to the coordination between

the two roles of the business provider described in Section 3.1.3.

4.3.1 The request phase (from the user layer to the IaaS layer)

The request phase consists of the following steps:

Step 1: the NegoUser starts the process by sending a request to the NegoBusiness containing

his/her requirements in terms of QoS and price.

Step 2: the NegoPR evaluates the incoming request, by mapping it to the needed resource(s)

able to execute it while respecting the QoS requirements. For the evaluation, the NegoPR

considers the already available resources among the existing ones (i.e already acquired by

the negoBusiness from the IaaS layer) and can also consider potential additional ones

(based on the output ofNegoCR negotiation). Those information concerning the resources

(already acquired and additional ones) are given by the application scheduler and the VM

provisioner. If the request can be scheduled and the QoS requirements can be fullfilled,

the evaluation module returns true. And otherwise it returns false. Other conditions may

be checked during the evaluation such as the profitability for a given request (i.e if the

request acceptance brings some ”monetary” profit to the provider).

Step 3: If the available resources (among existing ones) do not satisfy the incoming request’s

QoS requirements, the NegoCR should ask the NegoIaaS for new resources.

Step 4: NegoIaaS evaluates the request of the NegoCR according to the available physical

resources and according to its IaaS resource allocation strategy. If it is possible to provide

the VM(s) with the required characteristics, the evaluation module returns true. Otherwise

it returns false.

Chapter 3. The negotiation-based framework applied to cloud provisioning 63

4.3.2 The delivery phase (from the the IaaS layer to the user layer)

The delivery phase depends on the result of the evaluation. In the traditional process for provi-

sioning, if the evaluation returns true, the request is accepted and the delivery succeeds (level 1

and level 2). Otherwise, the request is rejected (according to the take-it-or-leave-it strategy).

We enhance the provisioning process with a possible negotiation at each level mainly when the

the evaluation returns false. The new delivery phase consists on the following steps.

Step 5: The NegoIaaS and NegoCR negotiate for resource delivery, until reaching an agree-

ment satisfying both parties, or until the deadline is reached (level 2). If the negotiation

succeeds, an SLA is signed between the two parties.

Step 6: The IaaS provider delivers the requested resource to the business provider if the nego-

tiation succeeds at Step 5.

Step 7: The NegoPR negotiates with the end-user concerning application delivery (level 1),

and the SLA is signed if the negotiation succeeds.

Step 8: If the negotiation succeeds at step 7, the business provider allocates the needed resources

and starts the execution of the end-user’s request.

5 Conclusion

In this chapter, we have proposed a generic negotiation-based provisioning process highlighting

the interaction between the negotiation and others provisioning activities. Then, we propose a

generic negotiator model able to act on behalf of any cloud actor (end-user, business provider,

resource provider) and for any negotiation scenario. That model was instantiated among cloud

layers resulting in a multi-layer (re)negotiation framework for cloud provisioning.

For the next contributions, we focus on the first level negotiation (i.e., between end-user and busi-

ness provider) and more specifically for compute-intensive SaaS provisioning scenario while taking

into account varying IaaS providers. In the next chapter, we propose a bilateral negotiation-based

provisioning approach for compute-intensive SaaS application.

Chapter IV

Bilateral negotiation for an

efficient SaaS application

provisioning

Contents

1 Introduction . 65

2 Compute-intensive SaaS application provisioning scenario . 66

2.1 SLA models and assumptions 66

2.2 Overview of the (bilateral)negotiation framework for SaaS ap-

plication provisioning . 67

3 Negotiation-based SaaS application provisioning approach . 68

3.1 Towards flexible admission control process 68

3.2 Interaction between the negoBusiness and the business provider’s

provisioning modules . 72

4 Utility and profit-driven decision-making strategies 73

4.1 The negoBusiness’s decision-making strategy 73

4.2 The negoUser ’s decision-making strategy 76

5 Evaluation and analysis . 77

5.1 Implementation and experimental settings 77

5.2 Results and analysis . 78

6 Conclusion . 82

64

Chapter 4. Bilateral negotiation 65

1 Introduction

With the growth of competitiveness in cloud, business providers must ensure an efficient provi-

sioning which maximizes customer satisfaction and optimizes their profit. For a business provider,

an efficient provisioning is not a trivial task when considering different IaaS providers and het-

erogeneous users’ requests (with different requirements). Indeed, for each incoming request, the

provider must take the right decision about its placement on rented VMs, while satisfying the

QoS requirements and maximizing profit. To optimize the profit, the business provider should

maximize the number of clients while minimizing the costs of rented VMs. In order to guaran-

tee that the SLA is met, the business provider must adopt profit- and QoS-aware provisioning

approach.

To serve several clients while respecting the established SLAs, some proposed QoS-aware pro-

visioning approaches [7] adapt the resource pool according to the load prediction and not per-

customer basis (coarse-grained reasoning). Furthermore, those approaches assume that users

have the same requirements. So, they are not suitable for heterogeneous requests mainly with

different deadline constraints. In fact, those requests need a per-customer basis provisioning

(fine-grained reasoning). As a solution, in [20], an admission control strategy is proposed to

decide whether to accept or to reject the request based on the resource capacity and request

profitability. When it is not possible to schedule the request, the request is rejected in order to

avoid SLA violation. By considering the constraints of resource provisioning from the IaaS layer

(cost, availability, etc.), the business provider may reject several requests, which may lead to loss

in profit.

Negotiation-based approaches are promising solutions when dealing with conflicts. Although

its importance, SaaS application negotiation has not yet been well studied [13]. Current SaaS

providers use take-it-or-leave-it strategy. In [14], the proposed approach (as the most approaches

elaborated for service negotiation) presents the negotiation as an independent phase from the

service provisioning activities. In fact, in the decision-making strategies, they do not consider

the SaaS provisioning context including the scheduling and the VM provisioning, although their

impact on the QoS of the service to be provisioned and its price as explained in the previous

chapter.

In this chapter, we propose a bilateral negotiation approach between business provider and end-

user within a compute-intensive SaaS provisioning. The proposed approach aims to maximize

customer satisfaction and optimize provider’s profit. When no scheduling solution is possible,

the business provider can propose an alternative schedule, satisfying the user by harnessing the

tradeoff between SLA attributes. By doing so, the provider can win more clients, which leads

to an increased profit. We conduct simulation to assess the negotiation-based approach. The

Chapter 4. Bilateral negotiation 66

experiments show the benefits of adding negotiation to the provisioning process by improving

the business provider profit, the number of accepted users’ requests, and the client satisfaction.

This chapter is organized as follows. In section 2 we describe the compute-intensive SaaS pro-

visioning context. In section 3, we show how we integrate negotiation capabilities to the provi-

sioning process. The negotiation decision-making strategies are detailed in section 4. Section 5

presents experiments to assess the bilateral negotiation approach for SaaS provisioning. Finally,

in Section 6, we conclude the chapter.

2 Compute-intensive SaaS application provisioning scenario

As explained in previous chapter, the application provisioning includes two levels of interaction:

(i) level 1 where an SLA is established between end-user and business provider and (ii) level

2 where an SLA is established between business provider and IaaS provider. In this section,

we present the SLA model at each level and the assumptions made for our scenario. Then, we

present the negotiation framework for SaaS provisioning as a specialization of the multi-layer

framework illustrated in Figure III.4.

2.1 SLA models and assumptions

SLA model at level 1 At this level, the SLA attributes depend on the SaaS application

type. For compute-intensive applications, the request may contain the following attributes:

Deadline, Budget, Request size, Penalty Rate, file Input size. For this work, we assume that

deadline and budget issues are negotiable and other issues are not. In fact, the budget that will

paid be by the user and the deadline offered are the key issues for customer satisfaction. Also,

for simplification reasons, we will consider only the deadline (D), the budget (B) and the request

size (RS) as parameters in the request/offer evaluation and generation. In addition, we assume

that the request size is expressed in Millions of Instructions (MI). Thus, the request processing

time (procT) will depend on the Million Instructions Per Second (MIPS) offered by the VM

executing it.

SLA model at level 2 The request may contain the following terms: VM Initiation Time

or service provisioning time (iniT), Price, Processing Speed, Input Data Transfer Price, Output

Data Transfer Price, and Data Transfer Speed. We use MIPS as a measure of the processing

power of the VM.

We assume that the VM provisioning model is on-demand, as this is the most common model

[23], and the VM pricing model follows that of cost-per-hour billing. The resource provider

Chapter 4. Bilateral negotiation 68

ones. Those information are used to make the decision to accept or to reject the request.

To be accepted, the request must verify two conditions: (i) The profit condition: the

requested budget must be greater than the overall cost. In fact, to process a request,

the SaaS provider may pay resource cost and also potential SLA violation cost. (ii) The

deadline condition: the request must be completed before the requested deadline. The

estimated completion time can be calculated based on the request length and the the VM

capacity that will execute the request.

• schedule manager: is responsible for assigning users’ requests to available time slots. It

has information about the load of each owned resource.

• VM provisioner: is responsible for VM provisioning and deploying application instances

on that VM. It has information about resources for lease (BTU price, initiation time,

provider owner, capacity, etc.). That information is used when the provider would like to

scale up.

The NegoBusiness is able to carry out negotiation with end-users when it is not possible to

schedule their requests. The offers generated during the negotiation are based on information

given by the admission control manager. Since we exclude negotiation with the resource provider,

so we focus only the provider role of the NegoBusiness. If the negotiation at level 2 was

considered, the consumer role will negotiate with the IaaS providers and then informs the VM

provisioner to instantiate the VM and deploy the application.

In what follows, we describe how we add negotiation capabilities to the provisioning approach,

by detailing the interaction between the NegoBusiness and the above mentioned modules. The

negotiation aims not only to increase the business provider’s profit, but also to increase the

satisfaction of the consumers.

3 Negotiation-based SaaS application provisioning approach

In this section, we present first how we extend the admission control strategy in order to support

negotiation-based provisioning. Then we present the interaction between the negoBusiness and

the business provider’s provisioning modules.

3.1 Towards flexible admission control process

we present first how the request is evaluated using the initial algorithm (on which we base our

work). Then we present our extension in order to support negotiation.

Chapter 4. Bilateral negotiation 70

summarized in (IV.1).

compT imei =











∑n
k=1 procTk − a(j) + procTi, if exist VM

initT + procTi, if new VM

(IV.1)

Where procTk is the requestk processing time, a(j) is the execution time already spent by the

currently executing request , and iniT is the VM initiation time. If the deadline condition is

satisfied, the provider calculates the profit gained by processing the request using the equation

(IV.2).

profiti = budgeti − infCosti − penaltyCosti (IV.2)

Where Budgeti denotes the received price for serving requesti, infCosti and penaltyCosti de-

note respectively the infrastructure cost and penalty cost. The infCost is calculated by equation

(IV.3) and it depends on the scheduling strategy decision, if the request will be scheduled on a

new VM, we add the initiation cost.

infCosti =











procTi ∗ price, if exist VM

iniT ∗ price+ procTi ∗ price, if new VM

(IV.3)

The penalty cost represents how much the user pays when the provider misses the deadline. It

depends on the penalty model adopted. Here we assume that the cost will be proportional to

the delay, it is calculated by the following formula (IV.4):

penaltyCosti = penaltyRatei ∗ delayi (IV.4)

With penaltyRatei denotes the ratio for user compensation when missing the deadline and delayi

is the variation between the agreed on deadline and the actual response time.

3.1.2 Flexible admission control process

We aim to enhance the admission control phase in order to minimize the number of rejected

requests. The logic of our solution is when it is not possible to schedule the request respecting

the initial SLA, the admission control manager stores the reasons of rejection as parameters to

use them later in negotiation. For each incoming request, the provider calculates two parameters:

1. The flexible time (fTime): It is calculated using the formula (IV.5).

fT imei = deadlinei − compT imei (IV.5)

Chapter 4. Bilateral negotiation 73

First, the negoBusiness sorts the negotiation potential scheduling list by generating three sub-

lists based on the parameters (fT ime, fBudget) that were stored during the flexible admis-

sion control phase: 1) subList1 contains potential offers with extra time and missing budget;

2) subList2 contains potential offers with missing time and extra budget; and 3) subList3 con-

tains potential offers with missing time and missing budget. We assume that each potential

offer p is stored in the sub-list(s) as follows: (Dop,Bop,fT imep, fBudgetp) where Dop and Bop

denotes respectively the deadline and the budget that can be offered as counter-offer. The user

request is denoted by (Dr, Br, RSr) where Dr, Br and RSr denotes respectively the requested

deadline, the requested budget and the request size.

Second and after generating the sub-list(s), the negoBusiness computes the best-to-propose

offer in each sub-list, denoted by bestToProposei where i denotes the subList index. The

bestToProposei is the best offer that the agent can make to the user given a subListi. The best-

to-propose offer is calculated using the algorithm 1. From the subList1 the negoBusiness chooses

the offer having the minimum missing budget (line 1 to 3). From the subList2, the negoBusiness

chooses the offer having the minimum missing time (line 4 to 6). From the subList3, the provider

chooses the closest offer to the consumer request using the closestToRequest function (line 7 to 9).

This function calculates the distance of each potential offer to the initial request (line 12 to 15).

The distance is calculated using the estimated weight of deadline (EstWD) and budget (EstWB).

In fact, the provider can guess if the consumer insists on the deadline (for high urgent requests)

or insists on the budget (for low urgent requests). Finally, the function returns the offer having

the minimum distance to the user request (line 16 to 18).

Finally, the negoBusiness triggers a negotiation session with the negoUser. If the negotiation

succeeds, the request is scheduled via the resource manager.

4 Utility and profit-driven decision-making strategies

During the negotiation session, the two agent exchange offers and counter-offers following their

decision-making strategies.

4.1 The negoBusiness’s decision-making strategy

As mentioned in the previous chapter, for the internal context, the negoBusiness can use

the business provider’s goals and the output of the negotiation with the IaaS provider’s agent

(negoIaaS). In our scenario, we assume that a business provider may have one of the following

goals: (i) maximize the number of users accepted, with minimum profit (goal1); or (ii) maxi-

mize the number of users accepted, and maximize the profit (goal2). Since we assume that the

Chapter 4. Bilateral negotiation 74

Algorithm 1 Pseudo-code to calculate best-to-propose offer(s)

Require: The generated sub-list(s), the user request (Dr, Br, RSr)
Ensure: The best-to-propose offer in each sub-list stored in the list bestToPropose
1: if subList1 is not empty then
2: select offerj from subList1 with min fBudget
3: bestToPropose1 = offerj
4: if subList2 is not empty then
5: select offerj from subList2 with min fT ime
6: bestToPropose2 = offerj
7: if subList3 is not empty then
8: bestToPropose3 = closestToRequest(subList3, (Dr, Br, RSr))
9: return bestToPropose

10:

11: Function closestToRequest(subListi, (Dr, Br, RSr))
12: EstWD = getEstimatedWeightDealine(Dr, Br, RSr)
13: EstWB = 1− EstWD

14: for each offerp ∈ subListi do
15: DistanceToRequestp = EstWD(Dr −Dop/Dr) + EstWB ∗ (Br −Bop/Br)
16: choose offerp having minimum DistanceToRequestp
17: bestToProposei=offerp
18: return bestToProposei

resource provisioning is on-demand (i.e no negotiation), so the negoBusiness gets information

about the price of the VMs and their characteristics from the VM provisioner (and not from the

negoBusiness consumer role as mentioned in the previous chapter).

4.1.1 The negoBusiness’s offer evaluation strategy

The request evaluation is different from the evaluation done by the admission control manager.

It is based on the ”best-to-propose” offers calculated before starting negotiation. In fact, to

check if a received request can be scheduled, the negotiation manager compares the request to

each of the bestToProposei offer where 1 ≤ i ≤ 3.

If there is at least one offer bestToProposei that satisfies the condition Dop ≤ Dr and Bop ≤ Br,

then the negotiation manager accepts the negoUser request else the negotiation continues by

generating counter-offers.

4.1.2 The negoBusiness’s offer generation strategy

The offer generation strategy will depend on the the evaluation of the user’s preferences. The

negoBusiness can guess if the user prefers to emphasize deadline over budget or budget over

deadline. Indeed, it is intuitive that a request of high urgency occurs for a high budget with a

Chapter 4. Bilateral negotiation 75

very tight deadline i.e wdeadline > wbudget. In contrast, a request of low urgency occurs for a low

budget with a very relaxed deadline i.e wbudget > wdeadline [89]. In most cases, the user does

not disclose the weights and keeps secret his or her preferences [22], hence the provider cannot

know the exact values.

By evaluating the user’s preference, the negoBusiness comes closer to meeting the negoUser’s

initial offer, and so the negoBusiness increases the chance of the negoUser accepting the pro-

posal. If the request is urgent, the consumer preferences on deadline will be greater than the

budget, and the consumer may concede on the budget in order to obtain an earlier deadline.

However if the request is not urgent, the consumer will want to have a minimum cost, and

so the consumer may concede on the deadline in order to obtain a lower budget. The agent

NegoBusiness can use one of the following strategies for counter-offer generation depending on

the business provider’s goal:

1. pure scheduling-based strategy:

In order to maximize the number of accepted requests and to increase the chance of a

request being accepted, the provider begins by sending the best-to-propose offer from

the sub-list corresponding to the assumed preference of the user. The generation of a

counter-offer then comes from one of the other sub-lists. For example, if the request

is urgent and the three sub-lists are not empty, the provider proposes bestToPropose1

at the first round, the bestTopropose2 at the second round and the bestToPropose3 at

the third round. Otherwise, if the request is not urgent, the provider starts by sending

the bestToPropose2, then the bestToPrpose1 and finally the bestToPrpose3. Using this

strategy, the negotiation rounds are maximum equal to three (the number of sub-lists).

2. time-dependent and scheduling-based strategy:

While keeping one of the best-to-propose offer as reserved offer, the provider can choose an

appropriate negotiation tactic from tactic database to generate the values of the negotiable

issues. Given the importance of time factor, The negoBusiness can use a time-dependent

concession tactic with scheduling-based strategy to generate counter-offers. In our case,

That strategy is used when there is a bestToPropose offer with extra budget (the subList2

is not empty). The negotiation manager keeps the bestToPropose2 as reserved offer and

uses the following time-dependent concession function [18] to generate the budget values

denoted by budgetV al:

budgetV al = min+ (1− α(t)) ∗ (max−min); (IV.7)

where min and max denote respectively the reserved budget value (Bop from bestToPropose2)

and the maximum budget value (equal to the initial requested budget). Different functions

had been proposed for the calculation of α(t) such as polynomial and exponential [18]. We

Chapter 4. Bilateral negotiation 76

had chosen the polynomial function for its simplicity:

α(t) = k + (1− k) ∗ (min(t, tmax)/t)
1/β (IV.8)

where k denotes the initial concession, t and tmax denote the current number of rounds and

the maximum number of rounds respectively. The β value denotes the convexity degree

(i.e concession behavior).

The negoBusiness concedes on the issue of budget until reaching the reserved budget (i.e

budget leading to the minimum expected profit). By doing so, the provider can avoid

disclosing in the first round the budget leading to its minimum expected profit. For the

deadline value, the negotiation manager sends at each roundDop from the bestToPropose2.

The first strategy is used when the business provider wants to obtain the maximum number of

clients with the minimum profit (goal1), whereas the second strategy is used when the business

provider’s primary objective is to maximize profit (goal2).

4.2 The negoUser ’s decision-making strategy

The negoUser uses the following information communicated by the user as part of its internal

context:

• The weights on the deadline and the budget: Each attribute has a weight wi in the

range [0, 1] expressing its importance. For example, for requests of high urgency, users

place more importance on the deadline than on the budget. In contrast, for requests of

low urgency, users place more importance on the budget than on the deadline.

• The range of each issue, delimited by its worst (xworst) and best (xbest) values

• The preferred value and the reserved value for each issue

• The utility function: The utility value of a negotiable attribute i with value x can be

calculated as follows:

U(xi) =
xi − xworst

xbest − xworst
(IV.9)

The overall utility of a received offer composed of n attributes is calculated as a weighted

sum of each individual utility (IV.9).

U(offer) =

n
∑

k=1

wi ∗ U(xi) (IV.10)

Chapter 4. Bilateral negotiation 77

4.2.1 The negoUser ’s offer evaluation strategy

Given a reserved and preferred value for each issue, the negoUser calculates the reserved and

preferred utility using equation (IV.10). The negoUser begins the negotiation by sending the

preferred offer, and for each received offer, the negoUser calculates the received utility and

accepts an offer if and only if U(offerreceived) ≥ U(offerreserved).

4.2.2 The negoUser’s offer generation strategy

There are different strategies that can be applied to generate a counter-offer. We use a tradeoff

strategy that consists of increasing the utility of the preferred attribute while decreasing the

utility of the other attribute [22]. In other words, if the negoUser concedes on the less preferred

issue while increasing the utility of the more preferred issue, then the overall utility does not

change.

5 Evaluation and analysis

5.1 Implementation and experimental settings

We implement our framework using multi-agent system using JAVA and the Java Agent DEvel-

opment framework (JADE) [5]. Each software agent is negotiating on behalf of either end-user

or business provider. Furthermore, business provider’s modules are represented by three type of

agents representing the admission control manager, the negotiation manager and the resource

manager. The agents communicate through the Fipa Interaction Protocol and the negotiation

is done through the bilateral version of the iterated contract net protocol (the multi-round nego-

tiation protocol) [4]. We simulate different VM types by varying their MIPS. For that purpose,

we use the benchmark for MIPS in Cloud VMs [96].

The experiments are carried out for two users’ sets:

• Users having requests of low urgency: Those users have relaxed deadlines and low bud-

gets. We consider three types of users’ sets: relaxed, medium and demanding, along with

minimum initial utility value, relaxed, medium and high, respectively. The users’ initial

utility values are generated randomly from an interval between minimum initial utility

and maximum initial utility. The minimum initial utility value is varied according to the

user set and the maximum initial utility is fixed. The values of the experimental parame-

ters associated with those users are presented in Table IV.1. For this set of experiments,

Chapter 4. Bilateral negotiation 78

we aim to study the impact of adding negotiation to the classical provisioning (without

negotiation).

• Users having requests of high urgency: Those users have soon deadlines and high budgets.

The values of the experimental parameters associated with those users are presented in Ta-

ble IV.2. For this set of experiments, we aim to study the impact of varying the negotiation

decision-making strategy of the business provider’s negotiation agent (negoBusiness).

The values for deadline are generated as in [20]. Given the deadline values, The values for the

budget are generated according to the initial utility, which is generally equal to the preferred

one. The relation between the values follows the rule the sooner is the deadline requested the

higher is the assigned budget.

These experiments were conducted on a laptop with a 64 bit Intel Core 1.8 GHz CPU and

4GB RAM and Windows 7 as operating system. The same environment was used for the other

contributions, which will be described in the next Chapters.

User agent decision-making configuration The reserved utility is equal to the pre-

ferred utility for all users’ agents. In other words, the user’s agent accepts an offer only if the

utility of that offer is equal or greater to his preferred utility. Furthermore, the user’s agent

follows the tradeOff approach to generate counter-offers during negotiation.

The decision-making configuration described above is the least flexible configuration in negoti-

ation, because the users do not accept concessions. By doing so, we will be sure that for other

configurations, our negotiation-based approach will perform better.

Table IV.1: Simulation parameters for low urgent requests

Parameters value

Request length 4 ∗ 106(MI)

Number of users 1000

Max initial utility 0, 9

Min initial utility (relaxed) 0, 80

Min initial utility
(medium)

0, 82

Min initial utility (high) 0, 85

5.2 Results and analysis

Our objective is to evaluate our negotiation-based provisioning approach and to compare it

to a classical provisioning approach ’ProfMinVm’ presented in [20]. For that, we use three

performance measurement metrics: (i) the total profit expressing how much the business provider

Chapter 4. Bilateral negotiation 79

Table IV.2: Simulation parameters for high urgent requests

Parameters value

Request length 2 ∗ 106(MI)

Number of users 100

Max initial utility 0, 9

Min initial utility 0, 85

tdeadline 20

profits, (ii) the number of users accepted, and (iii) the average of the received utilities of the

accepted users. In what follows, we will first present the experimental results related to the users

having requests of low urgency. This first experimentation is conducted in order to compare the

classical provisioning to the negotiation-based one. Then, we will present the experimental results

related to the users having high urgent requests. The second experimentation is conducted in

order to compare the negotiation strategies followed by the business provider’s agent.

5.2.1 Low urgency requests

To study the impact of adding negotiation, we compare the performance of the provisioning

approach without negotiation to the negotiation-based one. The Figure IV.5 shows the different

values saved for profit, for the number of users accepted, and for the average utility with respect

to the users’ initial preferences.

First observation:

0

20

40

60

80

100

Relaxed Medium High

T
ot

al
 P

ro
fi

t
($

)

Variation in users' preferences

without negotiation

with negotiation

0

0,2

0,4

0,6

0,8

1

Relaxed Medium High

A
vg

 U
ti

li
ty

Variation in users' preferences

without negotiation

with negotiation

0

200

400

600

800

1000

1200

Relaxed Medium High

A
cc

ep
te

d
 U

se
rs

Variation in users' preferences

without negotiation

with negotiation

Figure IV.5: Algorithms’ performance during variation in users’ preferences

Chapter 4. Bilateral negotiation 80

By increasing the initial utility of users (which is equal to the preferred and reserved one), we note

a degradation in profit and the number of accepted users, and an improvement in the average

received utility. In fact, the higher the initial utility is, the lower the chance to find a convenient

scheduling. If the users are demanding and there is no possible scheduling, the users’ requests

will be rejected which decrease the total profit. But, for those users, if the request is accepted,

the final received utility will be equal or greater than the preferred one which increase the average

received utilities. In contrast to the provisioning approach without negotiation that has a large

degradation, our algorithm shows little degradation. The degradation in our algorithm is due

to the fact that the reserved utility is equal to the preferred utility. Consequently, the users

cannot accept an offer just because the received utility is not greater than the initial one, in

other words, the users do not accept to make concessions. So, by slightly decreasing the reserved

utility (which is the case in the most common negotiation configurations), the degradation for

the negotiation-based provisioning approach is improved. In this case, the users accept to make

concessions until reaching the reserved utility which increase the chance to reach an agreement.

Second observation:

When users are demanding, the performance of the negotiation-based provisioning approach

greatly exceeds that of the initial one (without negotiation). The profit and the number of users

accepted tend to zero for the initial approach. In fact, the user requests have low budgets, which

may even be less than the minimum expected profit. For that reason, those requests will be

rejected by the provider. By using negotiation, the provider can propose to increase the budget,

thus reaching the minimum expected profit, and proposing a better deadline. So, the overall

user utility is not decreased, and the increase in the budget is compensated by a better response

time. By harnessing the tradeoff relationship between deadline and budget, the two parties can

reach a satisfactory agreement.

In conclusion, for the three sets of users, our algorithm’s performance exceeds that of the initial

one in terms of profit, number of accepted users, and average received utility.

5.2.2 High urgency requests

To study the impact of varying the business provider decision-making strategy, we compare the

pure scheduling-based strategy (strategy 1) where the business agent (negoBusiness) sends the

best-to-propose offer at each round, to the combined one called time-dependent scheduling-based

strategy (strategy 2) where the negoBusiness uses a time-dependent concession tactic within

the scheduling-based strategy. Figure IV.6 shows the different values saved for profit, for the

number of users accepted, and for the average utility with respect to the strategy used (without

negotiation, nego-strategy 1, nego-strategy 2)

Chapter 4. Bilateral negotiation 81

0

10

20

30

40

50

60

70

80

T
ot

al
 P

ro
fi

t
($

)

without negotiation

nego-strategy 1

nego-strategy 2

0,82

0,84

0,86

0,88

0,9

0,92

A
vg

 U
ti

li
ty without negotiation

nego-strategy 1

nego-strategy 2

0

20

40

60

80

100

120

A
cc

ep
te

d
 U

se
rs

without negotiation

nego-strategy 1

nego-strategy 2

Figure IV.6: Algorithm performance during variation in negotiation strategy

The total profit using strategy 1 exceeds slightly the total profit using the strategy without

negotiation. This is because the provider using strategy 1 generates offers based on the minimum

expected profit. The provider can adopt this strategy to have the maximum number of clients

even with little profit. We note that the total profit using strategy 2 exceeds the the total profit

using strategy 1. In fact, the provider using strategy 2 (time-dependent and scheduling-based

strategy) is doing little concessions during negotiation. In fact, the provider starts by proposing

the preferred value of the budget (generally high budget), and concedes to the reserved value

(minimum expected profit) only when negotiation deadline approaches.

We note that the number of accepted users using strategy 1 and strategy 2 exceeds highly

that of the strategy without negotiation. In fact, without negotiation, the number of rejected

users can be increased mainly when the users are demanding. The number of accepted users

using the strategy 1 and the strategy 2 are equals. In fact, regardless of the offers received

from the provider, the users generate counter-offers using the tradeoff strategy until reaching

the negotiation deadline. And since the maximum number of rounds (negotiation deadline) in

our configuration is relatively high, the negotiation ends with success using the two strategies.

However, the number of rounds needed to reach the agreement using the strategy 2 is greater

than strategy 1.

We note that the average utilities is higher using the strategy 1 than the strategy 2. In fact,

the provider following the strategy 1 is proposing good prices (based a the minimum expected

profit), which lead to increasing the users satisfaction. However, the provider following the

Chapter 4. Bilateral negotiation 82

strategy 2 focus on maximizing the profit by proposing high prices, which lead to a decreased

user satisfaction.

6 Conclusion

In this chapter, we have proposed a bilateral negotiation approach for an efficient SaaS provi-

sioning. The negotiation between business provider and end-user aims to optimize the provider’s

profit and maximize customer satisfaction. We base our approach on an existent provisioning

approach, where the users’ requests are rejected if the business provider cannot schedule the re-

quest. We propose to bring more flexibility to the provisioning approach. Instead of rejecting the

users’ request, the negotiation agent acting on behalf the business provider (negoBusiness) tries

to propose alternative schedules to the user agent. To do so, the negoBusiness communicates

with the provisioning modules (admission control, scheduler, VM provisioner) in order to find

alternative schedules satisfying both parties. We have propose two decision-making strategies

for the negoBusiness, those strategies could be used according to the business provider’s goals.

The experimental evaluation demonstrates the benefit of including negotiation in the provision-

ing process. In the next chapter, we propose to extend the negotiation approach to be adaptive,

considering dynamic changes in workload.

Chapter V

Adaptive and concurrent

negotiation for an efficient SaaS

application provisioning

Contents

1 Introduction . 84

2 Overview of the adaptive negotiation framework for SaaS

provisioning . 85

2.1 Scenario description . 85

2.2 The proposed framework . 85

3 Adaptive negotiation-based SaaS provisioning process . . . 87

4 Renegotiation decision-making strategies 89

4.1 The negoBusiness’s decision-making strategy 90

4.2 The negoUser ’s decision-making strategies 91

5 Evaluation and analysis . 92

5.1 Implementation and experimental settings 92

5.2 Results and analysis . 92

6 Conclusion . 94

83

Chapter 5. Adaptive and concurrent negotiation 84

1 Introduction

Business providers offer highly scalable applications to end-users. To run the users’ requests

efficiently, business providers must take the right decision about requests placement on virtual

resources. The business providers aim to optimize their profit and satisfy users. So, an efficient

scheduling decision becomes a challenging task due to finite resources at a time. Negotiation-

based approaches are promising solutions when dealing with conflicts. Using negotiation, the

users and providers may find a satisfactory schedule. However, reaching a compromise between

the two parties is a cumbersome task due to workload constraints at negotiation time. In fact,

the users may have specific requirements with limited budget, that the provider could not satisfy

due to workload status at point of time t. The workload status is defined by the set of Virtual

Machines (VMs), VMs state and characteristics, and the requests affected to each VM. The gap

between the user’s requirements and the provider’s capability may lead to difficulty to reach

a compromise. Negotiation session are generally limited by time (which is called negotiation

deadline), it is obvious since the negotiation cannot be infinite. If the two parties does not reach

an agreement before the negotiation deadline, the negotiation ends with failure.

Most of negotiation approaches designed in the Cloud are mono-session. Those approaches en-

ables exchange of offers and counter offers (i.e multi round) only during the negotiation session

which is limited by the negotiation deadline. Furthermore, the negotiation decision-making

strategies are based on the situation at negotiation time which may not allow reaching an agree-

ment. If the negotiation fails, the users’ requests are rejected. So, we face a situation that

not only the users are not satisfied but also the business provider may loss in profit because of

cumulative loss of clients.

Given the dynamicity of the cloud (variation of workload, dynamic resource pricing, etc.), at

point of time t+1, there may be new elements such as new idle resource and new resource capac-

ity which may change the previous negotiation outcome. We propose to harness those changes

by adapting the negotiation behavior accordingly. In this chapter, we propose an adaptive ne-

gotiation approach that considers the workload change and keeps negotiating concurrently with

non-accepted users according to those changes. So, the provider can accept more users which will

lead to an increased profit and better satisfaction of end-users. To do so, when the negotiation

fails, the business provider gives another chances to non-accepted users by renegotiating simul-

taneously with them when there is a change in the elements considered in the first negotiation.

Those elements change are given by the others business provider’s provisioning modules (VM

provisioner and scheduler). The experiments show that the adaptive and concurrent negotiation

improves the business provider profit, the number of accepted users’ requests, and the client

satisfaction, as compared with the bilateral negotiation.

Chapter 5. Adaptive and concurrent negotiation 85

This chapter is organized as follows. In section 2 we give an overview of the adaptive negotia-

tion framework for SaaS provisioning. In section 3 we detail the interactions between business

provider’s provisioning modules during the provisioning process. The renegotiation decision-

making strategies are detailed in section 4. Section 5 presents experiments to assess the adaptive

negotiation approach for SaaS provisioning. Finally, in Section 6, we conclude the chapter.

2 Overview of the adaptive negotiation framework for SaaS

provisioning

The adaptive negotiation framework is based on the proposed multi-layer negotiation frame-

work(see Figure III.4) and the compute-intensive SaaS provisioning scenario described in the

previous Chapter. The adaptive negotiation is an extension of the bilateral negotiation proposed

in the previous Chapter IV.

2.1 Scenario description

The compute-intensive application provisioning scenario is detailed in the previous chapter IV.

The application request/offer contains essentially the following attributes: the deadline, the

budget allocated by the user for request processing, the request length, and the penalty rate

that represents how much the business provider would pay as compensation in case of violation.

We assume that the deadline and the budget are negotiable issues.

As mentioned earlier, the application provisioning depends on resource provisioning. In fact, to

execute the users’ requests, the business provider needs resources that may be owned by different

Infrastructure-as-a-Service (IaaS) providers. We assume the VM provsioning is on-demand and

the VM Billing is per Time Unit (BTU), as for example, with the Amazon on-demand instances

for which the unit is equal to one hour [64].

2.2 The proposed framework

The Figure V.1 illustrates the adaptive negotiation framework for SaaS application provisioning.

The upper layer is composed of the negotiation agents (negoUser) acting on behalf users. The

negoUser is able to carry out automated negotiation with the business provider’s negotiation

agent (negoBusiness) according to the user’s preferences and requirements. For the negotiation-

based SaaS provisioning, The business provider uses the following modules:

• Admission control manager is responsible for request mapping and evaluation. To be

accepted, the request must verify both the feasibility and the profitability conditions. In

Chapter 5. Adaptive and concurrent negotiation 86

other words, the available resources must ensure that the request processing will terminate

before the requested deadline. Furthermore, the request processing must give some profit

to the business provider. In classical provisioning, if one of the two condition is not verified

the user’s request is rejected [20]. In the previous Chapter IV, we have explained how we

enhance the classical admission control module in order to support negotiation. The idea

was to find alternative schedules instead of rejecting the request. If the request does not

satisfy the two conditions, the admission control manager forwards the request with the

alternative schedules to the negoBusiness agent.

• Schedule manager: is responsible for assigning users’ requests to available time slots. It

has information about the load of each owned resource.

• VM provisioner: is responsible for VM provisioning and deploying application instances

on that VM. It has information about resources for lease (BTU price, initiation time,

provider owner, capacity, etc.).

Based on the communication with the above mentioned provisioning modules, the negoBusiness

is able to carry out two types of automated negotiation depending on the situation. The first type

is the bilateral negotiation which happens when the negoBusiness receives a request which

cannot be accepted from the admission control manager. In this case, the negoBusiness opens

a bilateral negotiation session with the negouser. The offers generated during the negotiation

are based on information given by the admission control manager. The details of the bilateral

negotiation approach can be found in the previous chapter IV. In that approach, as in the most

current negotiation approaches, if the negotiation fails, then the user’s request is rejected. The

negotiation fails due to a low user’s budget and/or not enough resource capacity to finish the

user’s request before the requested deadline.

In this chapter, we propose to enhance the bilateral negotiation in order to take into account

the change in elements considered in the first negotiation. In other words, the negoBusiness

should adapt his behavior according to the changes. Here, we assume that the elements change

consists of the availability of new resource capacity. This change can be achieved either via the

instantiation of new VMs or extending the lease period of an already existing VM. The considered

elements changes are denoted by workload changes. Those changes are triggered either by the

VM provisioner or the schedule manager. The second type of negotiation that can be handled

by the negoBusiness is the adaptive negotiation according to workload changes.

The key idea of the adaptive negotiation approach is that, if the first negotiation fails, the

negoBusiness stores some information about the users in the renegotiation list in order to

renegotiate with them later (when there is a change in workload that may enable the acceptance

of their requests). When there is a change in workload, the negoBusiness opens a renegotiation

session with the non-accepted users during the first negotiation (from the renegotiation list).

Chapter 5. Adaptive and concurrent negotiation 89

resources with the needed capacity (i.e the existing resources cannot fulfill the request’s

requirements). If at time t+1, the provider will have a new VM with the needed capacity,

the request could be accepted.

The two types of profile cited above deals with users having a low budget and a high reserved

utility value (i.e., demanding users). That value is included in the user’s preferences and repre-

sents the minimum degree of satisfaction under which the user cannot accept the offer. Generally

those users have low-urgent requests, because users with high-urgent requests have high budget

that can cover the cost of extending the lease period or even the cost of the instantiation of new

VMs. Furthermore, given the requested soon deadline, the users of high-urgent requests do not

have time for a renegotiation after a period of time has elapsed.

After evaluating the user profile, the corresponding negoUser is added to the appropriate rene-

gotiation list. We define a renegotiation list for each user profile. When there is a change

in workload, the resource manger notifies the negoBusiness and send the nature of change.

For example, when there is a new request accepted, its scheduling results either on a new VM

intantiation or the extend of lease period of an already existing VM.

The negotiation manager then selects the appropriate renegotiation list(s) and triggers a rene-

gotiation with the users in this list. When the lease period of an existing VM is extended, the

negoBusiness renegotiates with the first type of users. Although, when a new VM is instanti-

ated, the negoBusiness renegotiates with the two types of users.

Note that in our approach, the communication between the admission control manager and

the negoBusiness should be synchronized via message exchange. The admission manager does

not process new requests while the negoBusiness is still negotiating. At the end of the rene-

gotiation session, if there are newly accepted users (with whom the renegotiation succeeded),

the negoBusiness informs the resource manager to schedule those requests. Otherwise, the

negoBusiness sends a notification to the admission manager in order to process further re-

quests.

More details about the renegotiation session and the decision-making strategies followed by the

negoBusiness and the negoUser are presented is the next section.

4 Renegotiation decision-making strategies

In this section, we present how the negoBusiness renegotiates concurrently with the negoUser(s)

with whom the first negotiation fails. First, we describe the negoBusiness’s strategy that guides

the offer’s evaluation and generation during the renegotiation session. Second, we present some

strategies that the negoUser could follow.

Chapter 5. Adaptive and concurrent negotiation 90

4.1 The negoBusiness’s decision-making strategy

Algorithm 2 details the provider’s renegotiation strategy. It takes as input three parameters: the

list of negoUser(s) with whom the first negotiation fails (renegList), the maximum number of

rounds during the renegotiation nbrMax and the new workload status W which can be defined

as (vmID, est) where the vmID denotes the ID of the newly available VM (newly instantiated

or newly idle resource time). The est denotes the earliest start time where the VM cannot start

execute the request before est. The output of the algorithm is the renegotiation outcome, which

contains the achieved agreement(s).

Algorithm 2 renegotiation strategy

Require: renegList, nbrMax, W
Ensure: The achieved agreement(s)
1: if renegList 6= ∅ & nbrRound ≤ nbrMax then
2: for each userj ∈ renegList do
3: compTj=EvalCompT(ReqLengthj ,W)
4: tradeOffj = (compTj − deadReqj)/deadReqj
5: budgetj = budgReqj + tradeOffj ∗ budgReqj
6: offerj=GenerateOffer(budgetj ,compTj)
7: SEND offerj to userj
8: nbrRound++
9: WAIT FOR RESPONSES(x)

10: if responses 6= ∅ then
11: accList=EvalResp(responses)
12: if accList 6= ∅ then
13: useracc=ChooseBest(accList,W)
14: SEND ACCEPT to useracc
15: update W
16: remove useracc from renegList
17: renegList=accList
18: GO to line 1
19: else
20: exit
21: else
22: exit
23: else
24: Exit

The negoBusiness starts the renegotiation session by preparing a customized offer to each

negoUser in the renegList, assuming that the number of the current round (nbrRound) does

not exceed the nbrMax (line 1 to 7). To prepare an offer, the algorithm calculates the estimated

completion time of the user’s request (compTj) by using the EvalCompT method. This method

takes as input the user’s request length and the new workload status W (line 3). Then, the

degree of tradeoff (tradeOff) is calculated. It measures how much the provider will enhance

or lower the deadline value compared to the requested deadline deadReq (line 4). Then, the

Chapter 5. Adaptive and concurrent negotiation 91

negoBusiness calculates the budget that it will propose (budget) using the tradeoffs between

the deadline requested deadReq and the budget requested budgReq (line 5). The better the com-

pletion time that is proposed, the higher the budget that is proposed, and vice versa. Finally, the

negoBusiness prepares the offer to be sent, which contains the estimated completion time and

the calculated budget (line 6). After sending to each negoUser the customized offer (line 7), the

negoBusiness increments the number of rounds (line 8) and waits for responses for a predefined

time x (line 9). If no response is received (line 10), then the renegotiation session is closed.

Otherwise, the negoBusiness evaluates the responses containing counter-offers using the Eval-

Resp method. This method has as output the list of acceptable received offers from negoUsers

denoted by accList (line 11). In fact, the negoUser(s) may propose counter-offer(s) that do

not satisfy the cost and the deadline condition even when considering the workload change.

If the acceptable list is empty (line 12) (no acceptable counter-offer received from negoUser),

the renegotiation session is closed. Otherwise, the negoBusiness chooses and the negoUser

whose request leads to the best profit using ChooseBest method (line 13 and 14). This method

calculates the profit for each negoUser’s request in accList using the following formula:

profiti = budgeti − costi(BTU, est, compTi), (V.1)

where the budgeti denotes the budget proposed by the user i in the counter-offer. The costi

denotes the resource cost and can be calculated given the BTU of the VM where to execute

the request (vmID). The est and compTi denote the start time and the completion time of the

request, respectively.

After choosing the best negoUser, the workload status is updated to include the newly ac-

cepted request (line 15) and the accepted user is removed from the renegList (line 16). The

negoBusiness could continue renegotiating with the users in accList, until there is no acceptable

user’s request or until the number of rounds is equal to nbrMax (line 18).

4.2 The negoUser ’s decision-making strategies

The decision-making strategy followed by the negoUser is different from provider’s one. It is

based on users’ preferences expressed in terms of a utility function. The utility function measures

the degree of satisfaction of a given offer. Generally, the utility value of a given offer results

from a weighted sum of the utilities for the individual attributes. In particular, in multi-issue

negotiation, the user assigns a weight to each issue, expressing the importance of such issue.

The strategy followed by the negoUser is the same as in the previous chapter 4: before starting

the negotiation, the user defines a reserved utility value, and the negoUser accepts an offer only

if the utility of the offer received is greater then the reserved utility value.

Chapter 5. Adaptive and concurrent negotiation 92

For counter-offer generation, the negoUser use tradeOff approach which consists of increasing

the utility of the preferred attribute while decreasing the utility of the other one.

5 Evaluation and analysis

5.1 Implementation and experimental settings

We implemented the adaptive negotiation framework V.1 using Multi-agent system. The details

about the implementation are given in the evaluation Section of the previous Chapter IV. We

have extended the behavior of the agents in order to support adaptive negotiation. Whenever

there is a change in workload, the agent representing the resource manager sends ACL message

to the negotiation agent negoBusiness. Furthermore, the negotiation agent use the one-to-many

version of the iterated contract net protocol to renegotiate with user’s agents.

As mentioned in Section 3, the proposed approach is suitable for users having requests of low

urgency (low budget and relaxed deadline). So, we assume that the negoBusiness renegotiates

only with those negoUser(s) (negotiating on behalf the users). The users having requests with

high urgency (high budget and soon deadline) are generated to create variation in workload.

The initial preference and initial request of users are generated randomly so as to have an initial

utility greater than 0.8 (demanding users). The user agents follow the strategy described in 4.2

with the assumption that the reserved utility value is equal to the initial one.

We measure performance using three metrics: 1) the total profit calculated as the sum of accepted

users’ budgets minus the total resource costs and the penalty costs (if any), 2) the number of

users accepted, and 3) the average of the received utilities of accepted users. To evaluate our

proposed approach, we conduct two series of experiments. For the first one, we calculate the

total profit and the number of accepted users while varying the number of users generated. For

the second one, we calculate the average received utilities for 100 users generated.

5.2 Results and analysis

We evaluate the two versions of our proposed approach obtained by varying the negoBusiness

agent’s renegotiation strategy (1) the first version noted ”adapt R1” uses one-round concurrent

renegotiation session, (2) the second version noted ”adapt Rx” uses a multi-round concurrent

renegotiation session. The maximum number of rounds is defined dynamically according to the

renegotiation session stop condition. In our case, the renegotiation session ends when all users

reject the offer or there are no more users in the renegotiation list. We compare the proposed

approach to the following ones:

Chapter 5. Adaptive and concurrent negotiation 93

1. classical provisioning approach (without negotiation) noted ”no nego”. The approach uses

take-it-or-leave-it strategy and it is used by the current cloud providers. We have chosen

the algorithm presented in [20] because it performs more efficiently when evaluated and

compared with the reference scheduling algorithms. More details about that choice is

given the previous Chapter.

2. bilateral negotiation-based provisioning (non-adaptive negotiation) noted ”no adapt”. The

bilateral negotiation approach is an extension of the classical provisioning described above.

This approach is based on a mono-session negotiation between the negoUser and the

negoBusiness (i.e without renegotiation). The negoBusiness negotiates with the negoUser

when it is not possible to schedule the user’s request. When, the negotiation fails, the

user’s request is rejected.

Concerning the analysis of the results, we are interested in the difference between the values

generated for each approach and not the values in themselves.

First observation Figure V.3 shows the different values saved for the total profit and the

number of accepted users for each approach with respect to the number of generated users.

Figure V.3: The total profit and the number of accepted users

We observe that the total profit and the number of accepted users is improved when using

adaptive negotiation (”adapt R1”, ”adapt Rx”) regardless of the total number of generated

users. This is because, the adaptive negotiation increases the chance of a request being accepted

by considering potential opportunities (workload change). When the number of rejected users

decreases, the total profit systematically increases. In fact, our renegotiation strategy aims to

maximize the number of accepted users while minimizing the cost of rented resources, so the

accepted users give the provider more profit without paying high costs. Furthermore, we note

that total profit and the number of accepted users increase when the number of generated users

increases. It is obvious that having more users leads to an increased number of accepted users

and an increased profit. When comparing the two versions of the adaptive negotiation-based

Chapter 5. Adaptive and concurrent negotiation 94

approaches, the performance of ”adapt Rx” exceeds the ”adapt R1”. This is expected, since the

multi-round renegotiation increases the chance to converge towards an agreement compared to

the one-round renegotiation. Thus, the number of accepted users will be improved leading to a

higher profit. Note that, the improvement is due to users having low urgent requests, because

we assume that the negotiation manager renegotiates only with those users.

Second observation Figure V.4 shows the different values obtained for the average received

utility. We observe that the customer satisfaction is enhanced using adaptive negotiation and

mainly using the multi-round renegotiation approach ”adapt Rx”. This is due to the design

of the renegotiation decision-making strategies. In fact, the user accepts an offer only if the

received utility is greater than the reserved one (which is equal to the initial one). Also, the

provider’s offer-generation strategy is based on the tradeoffs between the attributes. The higher

is the budget proposed, the better is the completion time proposed and vice versa.

Figure V.4: The average received utility

As conclusion, the adaptive negotiation-based approach using multi-round renegotiation provides

a win-win framework for users having requests of low urgency and business providers. In fact,

the proposed approach performs better than the other ones in terms of business provider’s profit,

number of accepted users and customer satisfaction.

6 Conclusion

In this chapter, we have proposed an adaptive negotiation approach according to workload

changes for SaaS provisioning. Due to the gap between the users’ requirements and the busi-

ness provider’s capabilities at negotiation time, the negotiation may not reach a compromise.

By considering the workload changes, the business agent negoBusiness could renegotiate with

users’ agents with whom the fist negotiation has been fail. The renegotiation decision making

strategy followed by the negoBusiness aims to maximize resource utilization and also customer

Chapter 5. Adaptive and concurrent negotiation 95

satisfaction. The experimental evaluation demonstrates the benefit of the adaptive negotiation

in the provisioning process. In the next chapter, we consider an other type of renegotiation

triggered by an unexpected event that may cause the violation of an already established SLA.

Chapter VI

Proactive renegotiation for an

efficient SaaS application

provisioning

Contents

1 Introduction . 97

2 Overview of the renegotiation framework for SaaS provi-

sioning . 98

3 Selection of an Option for Profit-aware Rescheduling 99

3.1 Definition of an Unexpected Event 99

3.2 Definition of the Rescheduling Option 100

3.3 Algorithm for Selection of a Profit-aware Rescheduling Option 100

4 The Renegotiation-based Rescheduling Procedure 102

4.1 The renegotiation overall process 103

4.2 The Decision-making Strategies for Renegotiation 104

5 Evaluation . 106

5.1 Experimental settings . 106

5.2 Results and Analysis . 107

6 Conclusion . 110

96

Chapter 6. Renegotiation 97

1 Introduction

Automated negotiation in the Cloud is primarily used to establish an SLA between clients and

providers. It happens generally in the first phase of the service-provisioning process (before the

SLA establishment itself). In the first phase, in order to maximize the number of clients and

minimize the costs of renting sufficient computer resources, the business provider adopts a profit-

and SLA-aware scheduling algorithm. The schedule must guarantee that the SLA is met, while

also maximizing the profit.

Given the highly dynamic nature of the cloud environment, unexpected events may affect the

initial scheduling plans, which leads to unanticipated SLA violations. Thus, an unaccounted

event may create a lose-lose situation between provider and client. If the SLA is violated the

provider must pay the potentially high penalty that is negotiated within the original SLA. But

from the client’s viewpoint, an SLA violation may cause cancellation of a business-critical job,

and no ordinary SLA penalty can compensate for the loss of the client’s business. The provider’s

reputation could also suffer as the number of such SLA violations grows, resulting in loss of future

clients. For these reasons, the provider and the client would normally prefer to renegotiate using

a new SLA with a new deadline (i.e., an extension beyond the first deadline), rather than pay a

steep penalty and accept the cancellation of a business-critical job.

Most of the literature assumes that once an SLA is established, it cannot be renegotiated [23–26].

The concept of renegotiation has not yet been well studied [27]. For the best of our knowledge,

there is no concrete renegotiation decision-making strategy which had been proposed for cloud

application provisioning.

In this chapter, we propose an automated renegotiation-based approach when detecting an un-

expected event during the SaaS provisioning process. In our approach, the business provider

proactively renegotiates with the clients whose jobs may be in violation of the SLAs, in order to

minimize the loss in profit and in order to assure the continuity of the service. The renegotiation

approach is composed of two steps. The first step happens when the business provider detects

an unexpected event. To avoid an SLA violation, the business provider may take rescheduling

actions. We consider different alternative rescheduling options for the business provider. The

first step consists of the selection of an option for profit-aware rescheduling which leads to a

minimum loss in profit while also minimizing the number of canceled jobs. At the second step,

the business provider triggers a renegotiation with those end users whose jobs may terminate

after deadline according to the rescheduling option selected at the first step. Experiments show

that this new approach minimizes the loss in profit of the business provider and minimizes the

number of cancelled jobs, as compared with enforcing the original SLA.

Chapter 6. Renegotiation 99

After signing the contract, unexpected eventsmay later occur that can impact the current schedul-

ing. To avoid an SLA violation, the negoBusiness tries first to take rescheduling actions via

the communication with the Schedule manager and the VM provisioner. However, maybe no

rescheduling can meet the previously signed SLA. For example, migrating a job to another VM

after failure may delay the completion time beyond the agreed upon deadline. The SLA model

generally assumes that once the deadline is violated, the job is automatically cancelled and a

penalty is paid. This is the scenario in which automated renegotiation becomes important, as

part of a second phase of service provisioning. In that phase the negoBusiness invoke a new

renegotiation session with the negoUser (acting on behalf end-user), in order to minimize the

SLA penalty costs and in order to ensure the continuity of service. The renegotiation decision-

making strategies are based on the first step where the negoBusiness chooses a rescheduling

option given potential scheduling alternatives. The option selected must lead to minimum loss

in profit while also minimizing the number of cancelled jobs.

In what follows, we detail how automated renegotiation can be used to handle unexpected events,

as part of a second phase in SaaS application provisioning.

3 Selection of an Option for Profit-aware Rescheduling

When detecting an unexpected event that alters the initial scheduling, the negoBusiness takes

rescheduling actions in order to avoid SLA violations to the extent possible. Generally, the

provider may have more than one rescheduling option. For this reason, we propose an algorithm

for the selection of an option for profit-aware rescheduling. In this section, we model first the

unexpected event and the rescheduling option. Then, we present our algorithm for selection of

a rescheduling option.

3.1 Definition of an Unexpected Event

An unexpected event leads to a change in the situation under which the already signed SLAs had

originally been negotiated. Indeed, the schedule contracted by the business provider in the first

phase may be affected, thereby leading to violation of the original SLA. The unexpected events

can be classified into two categories: (1) resource events, for example VM failure, failure of the

currently executing job, etc. The jobs scheduled on that VM may be affected, and so the initial

scheduling may be altered. (2) business events, such as a new incoming client needing immediate

execution with no additional VMs available from the IaaS provider. Thus, the business provider

may choose to execute a new job on an already active VM even though there exist prior jobs

(either running, or scheduled but not yet started). An unexpected event can be specified using

two parameters: the time at which the event occurs, tevent; and the set of resources affected by

Chapter 6. Renegotiation 100

the event, vmID. As mentioned earlier, the unexpected event is assumed to be detected just

prior to SLA violation through a monitoring module.

3.2 Definition of the Rescheduling Option

The rescheduling option is composed of potential scheduling actions applied to accepted and

scheduled jobs (which may either be running or not yet started). Two examples of rescheduling

actions are: (i) the job may be proactively migrated a new computer; where the job can be either

restarted from a previous checkpoint image (if the provider is invoking periodic checkpointing

to protect against catastrophic failure) or restarted from the beginning, (ii) the job may be

postponed until the resource where it is scheduled will be available, (iii) the job may be inserted

in already existing resource. A scheduling action defines when and where to place a job. A

scheduling action Ac, applied to a job j, can be defined as:

(type, j, estimated start time, vmID, compT, actionCost)

where: the type denotes the scheduling action type. For example: migrate, insert, postpone.

The estimated start time and vmID define when and where to start the job, respectively. The

compT denotes the estimated completion time, and can be calculated based on the information

given by scheduling action. The actionCost denotes extra costs due to the rescheduling action

taken.

Hence, a rescheduling option, denoted Op, is defined as follows: Op = {Acj}, where j ∈
{rescheduled jobs}. Each rescheduling option has as output a list of rescheduled jobs (resch List)

and the list’s rescheduling information given by the scheduling action.

3.3 Algorithm for Selection of a Profit-aware Rescheduling Option

For the selection of a rescheduling option, we consider two metrics: 1) the lossInProfitp, which

calculates the SaaS provider loss in profit when choosing rescheduling option p; and 2) the

number of potential cancelled jobs when choosing option p, denoted by nbrJobsp.

1. The lossInProfitp for the provider: This include two parameters: a) The actionCost

define the cost due to the action. For example, if the action is to migrate the job to a new

VM , the cost of the action will be equal to the price of provisioning a new VM . b) The

penaltyCost, defined as the SLA violation cost, which can be calculated for a job j using

Chapter 6. Renegotiation 101

the following formula:

penaltyCostj =























0, if compTj ≤ respTj

prj ∗ delayj , if respTj ≤ compTj ≤ dlj

fixedPenaltyj , if dlj < compTj

(VI.1)

where respTj is the agreed upon response time, and dlj is the agreed upon deadline. The

value prj indicates the penalty rate. The fixedPenaltyj denotes the penalty paid in case

of violation.

2. The number of potential cancelled jobs, nbrJobsp: This calculates the jobs whose estimated

completion time compTj are greater than the deadline dlj of the initial SLA.

The proposed algorithm, Algorithm 3, below, takes as input the list of possible rescheduling

options that the negoBusiness can choose after receiving the notification of the unexpected

event. The algorithm returns a scheduling option and associated rescheduling information for

each job such that the number of cancelled jobs is minimized and the loss in profit is minimized.

For each possible rescheduling option: First, Algorithm 3, below, calculates the estimated

completion time compTj for each job j, based on the action Acj applied to this job (line 5).

Second, the algorithm calculates the lossInProfit as a sum of the loss in profit for each of the

rescheduled jobs (lines 6 and 7). Third, the algorithm selects the potential cancelled jobs whose

compT are greater than the agreed upon deadline, calculates nbrJobs, and stores the reschedul-

ing information for those jobs in potentialCancelJobs (line 8 to 10). Then, the algorithm stores

the option results in optionsResults (line 13). Finally, the algorithm selects the option noted

optionsResultss having the minimum nbrJobs and the minimum lossInProfit (line 14) using

the selectBestOption function. We propose to use utility functions in order to select the most

convenient option. For each possible rescheduling option: the selectBestOption function

calculates the utility values UtLoss and UtNbrJobs for lossInProfit and nbrJobs using equa-

tion IV.9 (line 21 and 22). The worst and best values for the lossInProfit are the maximum

and minimum lossInProfit values selected from the optionResults, respectively. Likewise, the

worst and best values for nbrJobs are the maximum and minimum nbrJobs values selected from

the optionResults, respectively. Then, the function calculates the option’s distance to the best

option (line 23). The best option has UtLoss = 1 and UtNbrJobs = 1, because the maximum

value of the utility is equal to one. Finally, the function returns the option having the minimum

distance to the best option (line 24 to 27). The negoBusiness will renegotiate based on the

results of the rescheduling option selected (optionsResultss)

Chapter 6. Renegotiation 102

Algorithm 3 Pseudo-code for selection of rescheduling option

Require: The list of possible rescheduling options
Ensure: The rescheduling option leading to the min lossInProfit and min nbrJobs
1: for each p ∈ possible rescheduling options do
2: lossInProfitp = 0
3: nbrJobsp = 0
4: for each j ∈ resch Listp do
5: compTj = getCompT (Acj)
6: lossInProfitj = penaltyCost(compTj) + actionCost(Acj)
7: lossInProfitp = lossInProfitp + lossInProfitj
8: if compTj > dlj then
9: nbrJobsp ++

10: Add resch info from resch Listj to potentialCancelJobsp
11: else
12: continue
13: Store lossInProfitp,nbrJobsp,potentialCancelJobsp in OptionsResultsp
14: OptionsResultss=selectBestOption(OptionsResults)
15: return OptionsResultss

16:

17: Function selectBestOption(OptionsResults)
18: minDistance =

√
2

19: optionsResultss = optionsResultsp
20: for each p ∈ OptionsResults do
21: UtLossp = U(lossInProfitp)
22: UtNbrp = U(nbrJobsp)

23: Distancep =
√

(UtLossp − 1)2 + (UtNbrp − 1)2

24: if Distancep < minDistance then
25: minDistance = Distancep
26: optionsResultss = optionsResultsp
27: return optionsResultss

4 The Renegotiation-based Rescheduling Procedure

Once a rescheduling option is selected, the negoBusiness triggers a renegotiation session with

each negoUser representing the user whose job may be cancelled. We assume that the renego-

tiable issues are: (1) new deadline which is an extension beyond the first deadline and (2) com-

pensation which is a discount by the business provider on the originally agreed-upon price, as a

concession by the provider for avoiding the steep penalty envisaged by the original SLA violation.

The values of the renegotiable issues (deadline, compensation) will be guided by the renegotiation

decision-making strategy and will be based on the results of the selected rescheduling option. In

this section, we present first the overall process for renegotiation. Then we present details about

the strategies that will be followed by the negoBusiness and the negoUser.

Chapter 6. Renegotiation 103

4.1 The renegotiation overall process

A renegotiation session can be defined as the period covering the time when the interaction be-

tween negotiators begins until it stops. The renegotiation session terminates either with an agree-

ment, and in this case the new SLA is applied, or without an agreement, in which case the initial

SLA is applied. The different states of the renegotiation session, denoted renegSessionState,

are: 1) Active (when the two parties are exchanging offers and counter-offers); 2) Succeeded

(when the renegotiation session terminates with an agreement if one party accepts the offer

received from his opponent); 3) Failed (when the renegotiation session terminates without an

agreement). This last situation (Failed) occurs when one party rejects the opponent’s offer or

when the renegotiation deadline is reached.

The renegotiation-based rescheduling algorithm, Algorithm 4, takes as input the potentialCancelJobs

list (included in the optionsResults returned by Algorithm 3). For each job that may be can-

celled, the negoBusiness opens a renegotiation session with the negoUser that owns that job.

The renegotiation sessions are triggered sequentially. The negoBusiness opens a new renegotia-

tion session only if the current one is terminated (lines 3 and 4). If the renegotiation terminates

with success, then the SLA is updated to include the new agreed upon deadline and the com-

pensation (lines 5 and 6). If the renegotiation about the job j fails then the negoBusiness must

update the estimated completion time of the jobs that potentially are rescheduled after job j,

in order to avoid the resource wastage due to unused time slots (lines 8 to 10). For that rea-

son, the renegotiation is done sequentially, so that the negoBusiness can update the estimated

completion time of the rescheduled jobs based on the renegotiation session’s output.

Algorithm 4 Pseudo-code for renegotiation-based rescheduling

Require: The list of potential cancelled jobs
Ensure: The results of each renegotiation session
1: for each j ∈ potentialCancelJobs do
2: open renegotiation session j with owner of job j
3: while renegSessionStatej == Active do
4: wait
5: if renegSessionStatej == Succeded then
6: update the SLAj

7: continue
8: else if renegSessionStatej == Failed then
9: for each k ∈ rescheduled jobs after j do

10: update compTk in potentialCancelJobsk

Chapter 6. Renegotiation 104

4.2 The Decision-making Strategies for Renegotiation

During the renegotiation session, the negoBusiness and the negoUser automatically exchange

offers and counter-offers according to their decision-making strategies. As explained in the Chap-

ter III, the strategies are guided by the provisioning context information which be detailed in

the following.

The renegotiation strategy should be designed to rapidly achieve agreement, since the partic-

ipants are generally pressed when renegotiating after an SLA violation. For this reason, we

assume that the new deadline proposed by the negoBusiness in the first round cannot be mod-

ified when exchanging offers and counter-offers. This is because the proposed deadline value is

imposed by the rescheduling option selected. So the given deadline value is the best that the

provider can offer to the client. In what follows, we present how the compensation value is

evaluated and generated during the renegotiation session.

4.2.1 Decision-making by the negoBusiness

Internal context The NegoBusiness uses the following information communicated by the

business provider:

• The utility function value of a negotiable attribute i with value x can be calculated using

equation IV.9 where the worst and best values are defined by the business provider before

starting the negotiation as internal preference. In our scenario, based on the SLA model

described in equation VI.1, the values penaltyCost(deadline) and fixedPenalty denote

the best and worst values of compensation, respectively

• The preferred and reserved utility values as upper and lower bounds on the expected utility.

The expected utility value consists of a tradeOff between minimizing the loss in profit and

satisfying the client. The expected client utility can vary between 0 and 1. In the special

case when the utility is equal to 1, the provider proposes a minimum compensation (the

provider’s best value) while still managing to relax the deadline. So, in this case the

provider prefers minimizing the provider loss in profit over satisfying the client. And in

the special case that the utility is equal to 0, the provider proposes to pay the fixed penalty

as compensation while continuing to run the job. So, the provider doesn’t minimize the

provider loss, but instead satisfies the client by not cancelling his job. The preferred and

reserved values are kept secret and are not know by the client.

External context As mentioned in Section 2, The negoBusiness’s decision-making relies

on the external information form the monitor module, the Schedule manager and the VM pro-

visioner. As mentioned in the Section 3, the monitor gives information about the resource(s)

Chapter 6. Renegotiation 105

affected. The negoBusiness gets information about the potential affected jobs from the Schedule

manager. Based on those information, the agent chooses the best rescheduling option (minimiz-

ing the loss in profit and the number of cancelled jobs) based on the schedule manger and VM

provisioner information. Finally, the negoBusiness could negotiate using the results of the

rescheduling option selected.

The offer evaluation strategy The acceptance conditions of a received offer from the

client during the renegotiation session are: 1) U(compensation received) >= U(compensation proposed);

and 2) deadline received > compT .

If the offer received from the client does not satisfy the two conditions mentioned above, the

provider will propose a counter-offer using the utility-based offer generation strategy.

The Strategy for Generation of Utility-based Offers As mentioned earlier, the pro-

posed new deadline will be equal to the estimated completion time included in potentialCancelJobs

list. Given the expected utility for the provider, the compensation utility value can be generated

using equation IV.10. And the compensation value can be generated given the equation IV.9.

In the first round, the provider agent generates the initial offer based on the provider’s preferred

utility. During the later rounds, the provider may back off from its preferred utility until reaching

its reserved utility.

4.2.2 Decision-making by the Users

Internal context The NegoUser uses the following information communicated by the user:

• The weights on the deadline and the compensation: Each attribute has a weight wi in the

range [0, 1] expressing its importance. For example, for high priority jobs, users may place

more importance on the deadline than on compensation. In contrast, for low priority jobs,

users may place more importance on the compensation than on the deadline.

• The range of each issue, delimited by its worst (xworst) and best (xbest) values

• The preferred (preferredUt) and reserved (reservedUt) utility values, as bounds on the

overall expected utility. Those clients having urgent business-critical jobs assign low value

to the (reservedUt). This is because they prefer to accept the job along with a relaxed

deadline and a smaller compensation, rather than having the job cancelled.

• The utility functions used to evaluate a received offer: the single attribute utility and the

overall utility are calculated using the equations IV.9 and IV.10, respectively.

Chapter 6. Renegotiation 106

The Strategy for Offer Evaluation In our scenario, the client accepts an offer only if

U(offerreceived) ≥ reservedUt. The client rejects an offer if ∃ issue i, U(xi) < 0. Otherwise,

the client proposes a counter-offer using the following strategy.

The Strategy for Offer Generation As mentioned earlier, the negoUser does not change

the deadline value proposed by the negoBusiness when generating a counter-offer. Since the

deadline utility is known (expressed by the negoBusiness’s initial offer), the compensation utility

value can be generated from the expected overall utility using equation IV.10. As was the case

for the negoBusiness, the negoUser similarly starts by generating an offer according to the

preferredUt value, until reaching the reservedUt value.

5 Evaluation

5.1 Experimental settings

We implemented the renegotiation framework (Figure VI.1) for SaaS provisioning using Multi-

agent system. The details about the framework implementation are given in the evaluation

Section of Chapter IV. We have extended the behavior of the agents in order to support proac-

tive renegotiation. When there is unexpected event, the monitor agent sends an ACL message to

the negoBusiness. After choosing the best rescheduling option (via the communication with the

agents representing the Schedule manager and the VM provisioner), the negoBusiness renegoti-

ates with each negoUser using the the bilateral version of the the iterated contract net protocol.

In the SaaS application provisioning process there are two phases: 1) Before the SLA estab-

lishment: the negoBusiness tries to find a schedule satisfying the client’s request, and decide

whether to accept or reject the request. Once accepted, an SLA is signed between the two par-

ties (between SaaS provider and client). 2) When an unexpected event occurs after the SLA

establishment, as we have presented in Section 3, there are two steps. The first step happens

when the monitor initially detects an unexpected event that may alter the initial schedule. The

first step deals with choosing an option from several possible rescheduling options. In the second

step, the negoBusiness triggers a renegotiation session with each NegoUser representing the

user whose SLA may be violated.

Since we are interested in testing and validating the renegotiation approach, we assume in our

experiments that:

• The first phase is done according to the negotiation-based scheduling algorithm described

in chapter IV. Note that, any scheduling algorithm for SaaS provisioning can be used,

Chapter 6. Renegotiation 107

such as 1VMperAll, 1VMperJob, BinPacking heuristics, etc. However, we choose instead

an SLA and a cost-aware scheduling algorithm in order to minimize the cost of the rented

VMs by maximizing resource utilization. For each accepted job, the output of the first

phase is an SLA with the required scheduling information. The scheduling information

indicates where and when to put the job to satisfy the SLA.

• The first step of the second phase is not explicitly implemented. Instead, we generate an

unexpected random event. We implement a rescheduling module simulator that gener-

ates the list of potential rescheduled jobs and their estimated completion time given an

unexpected event. We assume that the jobs are rescheduled sequentially. The estimated

completion for the job running can be generated randomly and for the other jobs using

the following formula.

compTj = compTjr +
∑

k∈{k between jr et j}

procTk,l (VI.2)

where compTjr denotes the completion time of the job running jr at tevent. And procTk,l

denotes the processing time of job k on the VM of type l.

We assume that the rescheduling module simulator chooses the best rescheduling option.

5.2 Results and Analysis

Our objective is to evaluate the renegotiation-based application provisioning approach and to

compare it to the basic scenario in which the provider cannot modify the established SLA. For

the basic scenario, we assume that the provider tries to execute a rescheduling action (step 1)

without any renegotiation. If the SLA is violated the job is cancelled and the SLA penalty is paid.

We measure performance using two metrics: 1) the total loss in profit, expressing how much the

provider loses when violating an already established SLAs; and 2) the number of cancelled jobs,

the number of jobs whose completion time is beyond the agreed upon deadline for the original

SLA.

We conduct three types of experiments in which we calculate the loss in profit and the number of

cancelled jobs. For these experiments, we assume that each agent (negoBusiness or negoUser)

is able to generate only one offer during the renegotiation session, since the renegotiation must

be done in a timely manner. Furthermore, we assume for the expected utility that the agent’s

reserved utility is equal to the preferred one. So the agents generate one offer according to their

expected utility. If the opponent accepts the offer, the renegotiation ends with an agreement.

Otherwise the renegotiation fails. This configuration (where preferred utility is equal to the

reserved one) is the worst possible configuration in negotiation, since it is the least flexible.

By choosing this configuration, we will be sure that for other configurations, our renegotiation

Chapter 6. Renegotiation 108

algorithm will perform better. Hence, when relaxing the expected utility, there is a greater

chance of a request/offer being accepted, and so the number of successful renegotiation sessions

will be increased.

For the first and the second experiments, we vary the expected utility for the business provider

and the client, respectively, while injecting exactly one unexpected event (affecting only one VM).

For the third experiment, we vary the number of resources affected by the unexpected event.

Note that an event may lead to altering the initial scheduling of more than one VM. For example,

a failure may affect many VMs.

5.2.1 Impact when varying the expected utility of the business provider

Figure VI.2 shows the different values obtained for the loss in profit and the number of cancelled

jobs with respect to the provider expected utility. For those experiments, we generate clients

and their initial request with expected utility equal to 0.1 (clients with business-critical jobs).

Figure VI.2: Impact of provider’s expected utility variation

We observe that the loss in profit and the number of cancelled jobs using renegotiation is mini-

mized compared to the basic scenario. Without renegotiation, the loss in profit and the number

of cancelled jobs are constant regardless of the value of the provider utility. This is expected,

since the negoBusiness’s strategy for handling unexpected events does not consider the value

of the provider utility.

In Figure VI.2(a), the loss in profit (red curve) is decreasing when the business provider’s ex-

pected utility increase. This is because the utility is related to the compensation paid to the

client. The higher the utility, the less is the compensation that is paid, and so the loss in profit

is also less. In Figure VI.2(b), the number of cancelled jobs (red curve) is constant regardless

of the value of the provider utility, this is because the client’s reserved utility is at the lower

limit. This implies that the client will accept any offer from the business provider, even if the

compensation is not at the upper limit (not at the upper bound for the provider utility). For

those clients, a lower utility is nevertheless better than cancelling the job.

In the next experiments, we will vary the clients’ expected utility.

Chapter 6. Renegotiation 109

5.2.2 Impact when varying the expected utility of the clients

Figure VI.3 shows the different values obtained for the loss in profit and the number of cancelled

jobs, with respect to the clients’ expected utility. For those experiments, the provider’s expected

utility is equal to 0.6. We note, as in Figure VI.2, that the loss in profit and the number of

cancelled jobs are constant in the basic scenario, since the basic scenario does not take into

account client satisfaction.

Figure VI.3: Impact of variation of clients’ expected utility

With renegotiation, we notice that the loss in profit and the number of cancelled jobs increase

when the client expected utility increases. For the users with low utility values, the renegotiation

approach performs much better than the basic one. But, for users with high utility values, the

renegotiation approach results are the same as the basic one. So, when increasing the clients’

expected utility, the renegotiation approach performance tends to the performance of the basic

one. In contrast, when the expected utility is low, the client has a high-priority business-critical

job, and so the negoUser accepts any renegotiation offer in order to assure the continuity of the

user’s business. In contrast, the negoUser representing the client with a high expected utility

(i.e., having a less business-critical job) may choose to not accept a renegotiation offer. In this

case, the client prefers that the provider should pay the penalty and cancel the job.

5.2.3 Impact as the number of resources are varied

Figure VI.4 shows the different values obtained for the loss in profit and the number of cancelled

jobs with respect to the number of affected resources. For those experiments, the provider and

the client expected utility are equal to 0.6 and 0.1, respectively.

We notice that the loss in profit (with and without renegotiation) and the number of cancelled

jobs (without renegotiation) increase when the number of affected resources increases. Further,

when the unexpected event affects many VMs, the number of rescheduled jobs increases which

lead to a potentially increased number of cancelled jobs. Consequently, the total loss in profit

will increase. In Figure VI.4(b), the number of cancelled jobs is equal to zero, regardless of the

number of resources. This is because, in our configuration, we generate clients whose jobs are

highly business-critical. So the clients always accept the renegotiation requests.

Chapter 6. Renegotiation 110

Figure VI.4: Impact of variation of number of resources

For the three experiments, we conclude that: 1) our approach performs better than the basic one

in terms of profit and the number of cancelled jobs when the clients’ jobs are highly business-

critical (low expected client utility); and 2) the performance of our approach tends toward the

basic one when the clients have jobs that are less business-critical (when the clients’ expected

utility is high). Thus in the second case, the clients do not accept a renegotiation, and prefer to

enforce the initial SLA.

6 Conclusion

In this chapter, we have described an SLA renegotiation-based approach to proactively handle

SLA violations. The renegotiation process is based on the interaction between negoBusiness

agent (representing the business provider) and business provider’s provisioning modules (Sched-

ule manager, VM provisioner, Monitor). When detecting an unexpected event by the monitor,

the business provider may take rescheduling actions to avoid SLA violation. We proposed an

algorithm to select the best rescheduling option aiming to minimize the loss in profit and the

number of cancelled jobs. The decision-making strategies are based on a utility function for

the business provider and scheduling information generated by the rescheduling option chosen

before renegotiation. The resulting decision-making model makes possible a win-win situation

(ensuring continuity of service and minimizing SLA penalties costs). The experimental evalua-

tion demonstrates the benefit of an SLA renegotiation approach as compared with enforcing the

original SLA.

Conclusions and Future Work

1 Contributions and Research Summary

The cloud market is nowadays a complex environment where business providers need to max-

imize their monetary profit and end-users look for the most efficient services with the lowest

prices. For efficient cloud provisioning, both providers and users should be satisfied in spite of

their conflicting needs. Negotiation is an appealing solution to solve conflicts and enable reach-

ing satisfactory agreements. However, to be efficient, the negotiation should consider the cloud

provisioning properties (e.g., two interaction levels) and complexities related to dynamicity (e.g.,

resource availability variation, dynamic pricing) which impact highly the success of the negotia-

tion.

Automated negotiation for an efficient cloud provisioning represents a major challenge that is not

adequately treated despite the several existing researches. In order to address these challenges,

this thesis provides several novel contributions:

• The negotiation-based framework applied to cloud provisioning

In order to build a negotiation framework suitable for cloud provisioning, we have first pro-

posed a generic negotiation-based provisioning process showing the interaction between the

negotiation and other provisioning activities. Then, we propose a generic negotiator model

able to act on behalf of any cloud actor (end-user, business provider, resource provider)

and can be used for any negotiation scenario. That model was instantiated among cloud

layers resulting in a multi-layer and dynamic negotiation framework for cloud provisioning.

What makes our framework differs from others is the fact that it considers cloud provi-

sioning properties (multi-layer, dynamic provisioning context).

• Bilateral negotiation for an efficient SaaS application provisioning

For an efficient application provisioning that satisfies end-users and that optimizes business

provider’s profit, we have enhanced an existing provisioning approach with negotiation ca-

pabilities. The negotiation is carried out between end-users and a business provider. When

111

Conclusions and Future Work 112

it is not possible to schedule the user’s request, the business provider tries to find an alter-

native schedule satisfying both parties. The alternative schedules are generated through

the communication with other provisioning modules such as the admission control, sched-

uler and VM provisioner. We have proposed two decision-making strategies that can be

followed according to the business provider’s goal (i.e., preferences).

In contrast to existing SaaS negotiation approaches, our approach is based on the commu-

nication with the other provisioning modules in order to optimize business provider’s profit

and maximize customer satisfaction. Furthermore, our approach differs from existing pro-

visioning approaches by the fact that it considers SLA negotiation between end-users and

the business provider in order to bring more flexibility to the provisioning process.

• Adaptive and concurrent negotiation for efficient SaaS application provisioning

Due to the gap between the users’ requirements and the business provider’s capabilities at

negotiation time, the negotiation may not reach a compromise. So, in order to maximize

the number of clients, we have proposed an adaptive and concurrent negotiation approach

as an extension to the bilateral one previously described. We have proposed to harness

the workload changes in terms of resource availability and pricing in order to renegotiate

simultaneously with non-accepted users. The renegotiation is launched when there is a

change in the elements considered in the first negotiation. The proposed renegotiation

decision-making strategy aims to maximize resource utilization and also customer satis-

faction.

Our proposed approach differs from existing ones by the fact that it considers renegotiation

before SLA establishment according to workload changes in terms of resource availability

and pricing.

• Proactive renegotiation for an efficient SaaS provisioning

In order to handle potential SLA violation, we have proposed a proactive renegotiation

approach after SLA establishment. When detecting an unexpected event by the monitor,

the business provider may take rescheduling actions to avoid SLA violation. We proposed

an algorithm to select the best rescheduling option aiming to minimize the loss in profit

and the number of cancelled jobs. The decision-making strategies are based on scheduling

information generated by the rescheduling option chosen before renegotiation. The re-

sulting decision-making model makes possible a win-win situation (ensuring continuity of

service and minimizing SLA penalties costs). Our proposed approach differs from existing

ones by the fact that it proposes a concrete renegotiation decision-making model for SaaS

provisioning aiming to minimize the loss in profit and ensure the continuity of the service.

Conclusions and Future Work 113

2 Future Directions

Besides the aforementioned contributions, several perspectives are still to be investigated in order

to improve our work. In what follows, we present short and long-term perspectives that extend

and enhance our work.

2.1 Short-term Perspectives

In order to improve the proposed approach, the following short-term perspectives can be inves-

tigated:

• Implementing negotiation capabilities at resource level (level 1)

In this thesis, we have concentrated on business level while considering dynamic and on-

demand resource provisioning from different resources providers. So, we have implemented

and tested only the negotiation between end-users and business provider (level 2). As a

first step towards enhancing the proposed work, we plan to implement negotiation be-

tween business providers and resource providers. To do so, existing resource negotiation

strategies can be reused (e.g., [21], [19], [92]). We are interested in studying the depen-

dencies between the negotiation strategies of the different levels (level 1 and level 2) while

considering the different types of coordination used by the business provider (presented in

Chapter III).

• Designing negotiation strategies for end-users considering different business providers

In this thesis, we have focused on the business provider’s negotiation strategies while

we have reused existent negotiation strategies for end-users (e.g, tradeoff strategies [22]).

The second short-term perspective consists in designing negotiation strategies for end-

users considering different business providers. In fact, the negotiation may be associated

to selection approaches in order to assist end-users to find the best business providers

satisfying their needs [42].

• Implementing the rescheduling step when detecting an unexpected event (before renego-

tiation)

In this thesis, the rescheduling step presented in Chapter VI was not implemented. We

plan to further investigate the rescheduling options when detecting an expected event.

Then, we aim to study the impact when the rescheduling option is varied in an effective

large scale environment.

• Considering real-data

In this thesis, all experiments were conducted on simulation studies. We plan to test our

Conclusions and Future Work 114

approach in a real cloud environment. Furthermore, we are interested in studying and

testing others negotiation scenarios with new requirements and others negotiation issues.

• Developing a module for assessing negotiation time

Finally, we plan to develop a module for assessing the negotiation time. This could be

done by calculating the time taken by negotiation for different scenarios. In fact, before

engaging in a negotiation, it would be better to know whether it is worth it to negotiate

or not (for instance, the negotiation may be useless if the negotiation time is high and the

negotiated service is deadline-sensitive).

2.2 Long-term Perspectives

The following perspectives aim to extend our proposed negotiation approaches:

• Developing the self-negotiation aspect

Given the existing and the implemented strategies, we aim to design a tool to assist nego-

tiator to choose the best strategy (combination of tactics, parameters considered by the

strategy) according to the negotiation scenario. To do so, we plan to use the autonomic

computing principles [97–99]. The Knowledge database may contain the negotiation strate-

gies, the internal context elements and the already established SLAs. The Monitor should

be able to communicate with external context elements such as the market prospector and

updates the knowledge base according to the information collected. The Analyze and Plan

modules should be able to analyze the negotiation scenario and choose the best negoti-

ation strategy. Finally, the Execute module should be able to evaluate/generate offer(s)

according to the chosen strategy.

• Implementing the negotiator tool generator

We are interested in designing and implementing a negotiator tool generator. The nego-

tiator generator tool should be able to generate automatically a negotiator that is able to

negotiate autonomously regardless of the negotiation scenario. The negotiator generator

may take as input the application domain, the negotiated service and the negotiator’s

preferences. The core of the negotiator tool will be based on the model presented in

Chapter III.

Appendix A

Example of negotiation protocols

1 Alternate offers protocol

Figure A.1 shows the allowed interactions between two participants (proposer and responder) in

a negotiation session following the alternate offers protocol.

The negotiation process is started by the proposer who sends an initiate message to the responder.

The responder replies with the negotiation identifier (negotiationID).Then, the proposer sends

his/her proposal (submitProposal). The responder evaluates the received proposal and replies by

accepting, rejecting or sending a counter-offer. In case the response is a counter-offer, the proposer

has the same options. The iteration is repeated until one party accepts the received proposal or

aborts the negotiation session by sending a reject message. After receiving an accept message,

the other party has to send a confirm message and receives a confirm-acceptance message as a

response.

2 Iterated Contract Net Protocol

Figure A.2 shows the protocol flows between one initiator and n participants in a negotiation

session following the iterated contract net protocol.

The initiator starts the negotiation process by sending m initial call for proposals (cfp). The

participant can refuse or propose a message. So of the n participants, the initiator can receive

k propose messages and j refuse messages. Of the k proposals, if there are acceptable messages

(final iteration), the initiator may accept p of the bids and reject others. Alternatively the

initiator may decide to iterate the process by sending a revised cfp to l participants and so

rejecting k − l participants. Then, if the action is achieved, the participant sends an inform

115

Appendix A. Example of negotiation protocols 116

Figure A.1: Alternate offers protocol [3]

message. Else, the participant sends a failure message.

The negotiation process terminates if (i) the initiator rejects all the received proposals, OR

(ii) the initiator accepts at least one proposal, OR (iii) all the participants refuse the bid.

Figure A.2: Iterated Contract Net Protocol [4]

Appendix B

Multi-Agent System

1 Definitions

Agent Definition

Several definitions had been proposed, however most researchers agreed on the following defini-

tion proposed by Wooldridge et al. [100]:

”An agent is a computer system that is situated in some environment, and that is capable of

autonomous action in this environment in order to meet its design objectives.” According to

that definition, an agent can have the following properties [101]:

• Autonomy: an agent operates without human interaction and has control over its actions.

• Social ability: an agent communicates with other agents using an agent-communication

language.

• Reactivity: an agent perceives the environment and acts according to environment’s

changes.

• pro-activeness: an agent is able to take actions according to its goal.

MAS definition

In [102], A MAS system is defined as follows:

”A multi-agent system is a loosely coupled network of problem-solving entities (agents) that work

together to find answers to problems that are beyond the individual capabilities or knowledge of

117

Appendix B. Multi-Agent System 118

each entity (agent).”

Ferber defines the following elements composing a MAS [103]:

• An environment E representing a space having generally a metric.

• A set of objects O. Each object can have a position in E at a given moment. Those objects

are passive, in other words the agents can perceive, create, modify and destroy them.

• A set of agent A, agents are special objects representing the active entities of the system.

• A set of relation R, which unites objects between them.

• A set of operators Op allowing the agents of A to perceive, produce, consume, transform

and manipulate objects of O.

• Operators called the laws of the universe. Those operators represents the application of

these operations and the reaction of the world to the modification attempt.

To summarize, A MAS consists of a set of agents, interacting with each others via messages, in

a common environment where the agents can act and cooperate to achieve their objectives.

2 JADE platform

Many platforms have been developed to implement agent-based systems (e.g, MADKIT 1, MA-

SON 2). Based on MAS platforms comparison [104–106], we have chosen JADE plateform. JADE

is compliant to FIPA specification which facilitate interoperability among different MAS. Also,

Jade platform provides many graphical tools for development and debugging [107].

JADE architecture

Figure B.1 illustrates the architectural elements of the JADE platform. The JADE platform is

composed of containers which can be launched on different hosts. Each container can contain

zero or more agents. For instance, as shown in figure B.1, container ”Container 1” in host ”Host

3” contains agents ”A2” and ”A3”. The platform contains a special container called ”Main

Container”. The main container differs from the other containers as:

• It is the first container to start in the platform and the other containers register to it at

bootstrap time.

1www.madkit.net
2https://cs.gmu.edu/ eclab/projects/mason/

Appendix B. Multi-Agent System 119

• It includes two special agents. The first one called Agent Management System (AMS)

which responsible of platform management such as starting and killing agent or shutting

down the platform. Other agents request such actions to the AMS. The second special

agent is called Directory Facilitator (DF) and provides Yellow Pages service where the

service offered by the different agents can be published.

Figure B.1: The JADE Architecture [5]

3 Communication between agents

Agents can communicate transparently regardless of their location (same container, different

containers, same platform, different platforms). The communication between agents is based on

asynchronous message passing. The message format is defined according to ACL-FIPA specifi-

cations. An ACL Message contains the following attributes:

• the sender

• the receiver(s)

• the communicative act (also called performative) represents the intention of the sender of

the message. FIPA defined 22 communicative acts such as inform, request, agree, propose,

Appendix B. Multi-Agent System 120

query. Each performative has its own semantics. In our thesis, we use the performatives

related to the FIPA iterated contract net protocol (e.g, cfp, propose, inform, refuse).

• the content contains the information that the sender would like to send to the receiver.

The message content depends on the type of the communicative act. In our work the

content may contain the QoS attributes and their values (as part of the SLA).

Bibliography

[1] Junliang Chen, Chen Wang, Bing Bing Zhou, Lei Sun, Young Choon Lee, and Albert Y.

Zomaya. Tradeoffs between profit and customer satisfaction for service provisioning in

the cloud. In Proceedings of the 20th International Symposium on High Performance

Distributed Computing, HPDC ’11, pages 229–238, New York, NY, USA, 2011. ACM.

ISBN 978-1-4503-0552-5. doi: 10.1145/1996130.1996161. URL http://doi.acm.org/10.

1145/1996130.1996161.

[2] Kyriakos Kritikos, Barbara Pernici, Pierluigi Plebani, Cinzia Cappiello, Marco Comuzzi,

Salima Benrernou, Ivona Brandic, Attila Kertész, Michael Parkin, and Manuel Carro. A

survey on service quality description. ACM Comput. Surv., 46(1):1:1–1:58, July 2013.

ISSN 0360-0300. doi: 10.1145/2522968.2522969. URL http://doi.acm.org/10.1145/

2522968.2522969.

[3] Srikumar Venugopal, Xingchen Chu, and Rajkumar Buyya. A negotiation mechanism for

advance resource reservations using the alternate offers protocol. In Hans van den Berg

and Gunnar Karlsson, editors, IWQoS, pages 40–49. IEEE, 2008. ISBN 978-1-4244-2084-1.

URL http://dblp.uni-trier.de/db/conf/iwqos/iwqos2008.html#VenugopalCB08.

[4] FIPA Interaction Protocols, http://www.fipa.org/repository/ips.php3.

[5] Jade Site: Java Agent DEvelopment Framework, http://jade.tilab.com/.

[6] A. Bestavros and O. Krieger. Toward an open cloud marketplace: Vision and first steps.

IEEE Internet Computing, 18(1):72–77, Jan 2014. ISSN 1089-7801. doi: 10.1109/MIC.

2014.17.

[7] Rodrigo N. Calheiros, Rajiv Ranjan, and Rajkumar Buyya. Virtual machine provisioning

based on analytical performance and QoS in cloud computing environments. In Proceedings

of the 2011 International Conference on Parallel Processing, ICPP ’11, pages 295–304,

Washington, DC, USA, 2011. IEEE Computer Society. ISBN 978-0-7695-4510-3. doi:

10.1109/ICPP.2011.17. URL http://dx.doi.org/10.1109/ICPP.2011.17.

121

http://doi.acm.org/10.1145/1996130.1996161
http://doi.acm.org/10.1145/1996130.1996161
http://doi.acm.org/10.1145/2522968.2522969
http://doi.acm.org/10.1145/2522968.2522969
http://dblp.uni-trier.de/db/conf/iwqos/iwqos2008.html#VenugopalCB08
http://dx.doi.org/10.1109/ICPP.2011.17

Bibliography 122

[8] Rajiv Ranjan, Liang Zhao, Xiaomin Wu, and Anna Liu. Cloud Computing Principles,

Systems and Applications, chapter Peer-to-Peer Cloud Provisioning: Service Discovery

and Load-Balancing, pages pp.195–217. Springer, 2010.

[9] Linlin Wu and Rajkumar Buyya. Service level agreement (sla) in utility computing systems.

CoRR, 14:286–310, 2010.

[10] Edwin Yaqub, Ramin Yahyapour, Philipp Wieder, Constantinos Kotsokalis, Kuan Lu,

and Ali Imran Jehangiri. Optimal negotiation of service level agreements for cloud-

based services through autonomous agents. In Proceedings of the 2014 IEEE Interna-

tional Conference on Services Computing, SCC ’14, pages 59–66, Washington, DC, USA,

2014. IEEE Computer Society. ISBN 978-1-4799-5066-9. doi: 10.1109/SCC.2014.17. URL

http://dx.doi.org/10.1109/SCC.2014.17.

[11] N. R. Jennings, P. Faratin, A. R. Lomuscio, S. Parsons, M. Wooldridge, and C. Sierra.

Automated negotiation: prospects, methods and challenges. Intern. J. of Group Decision

and Negotiation, 10(2):199–215, 2001.

[12] P. Church, A. Wong, M. Brock, and A. Goscinski. Toward exposing and accessing hpc

applications in a saas cloud. In 2012 IEEE 19th International Conference on Web Services,

pages 692–699, June 2012. doi: 10.1109/ICWS.2012.119.

[13] A. Omezzine, S. Tazi, N. Bellamine, B. Saoud, K. Drira, and G. Cooperman. Towards

a dynamic multi-level negotiation framework in cloud computing. In Cloud Technologies

and Applications (CloudTech), 2015 International Conference on, pages 1–8, June 2015.

doi: 10.1109/CloudTech.2015.7336999.

[14] Linlin Wu, Saurabh Kumar Garg, Rajkumar Buyya, Chao Chen, and Steve Versteeg.

Automated sla negotiation framework for cloud computing. In Cluster, Cloud and Grid

Computing (CCGrid), 2013 13th IEEE/ACM International Symposium on, pages 235–244.

IEEE, 2013.

[15] Seokho Son, Dong-Jae Kang, Seyoung Phillip Huh, Won-Young Kim, and Wan Choi.

Adaptive trade-off strategy for bargaining-based multi-objective SLA establishment under

varying cloud workload. The Journal of Supercomputing, 72(4):1597–1622, 2016. doi:

10.1007/s11227-016-1686-y. URL http://dx.doi.org/10.1007/s11227-016-1686-y.

[16] Melanie Siebenhaar, Ulrich Lampe, Dieter Schuller, Ralf Steinmetz, et al. Concurrent

negotiations in cloud-based systems. In Economics of Grids, Clouds, Systems, and Services,

pages 17–31. Springer, 2012.

http://dx.doi.org/10.1109/SCC.2014.17
http://dx.doi.org/10.1007/s11227-016-1686-y

Bibliography 123

[17] Guoming Lai and Katia Sycara. A generic framework for automated multi-attribute ne-

gotiation. Group Decision and Negotiation, 18(2):169, Jul 2008. ISSN 1572-9907. doi:

10.1007/s10726-008-9119-9. URL http://dx.doi.org/10.1007/s10726-008-9119-9.

[18] Peyman Faratin, Carles Sierra, and Nicholas R. Jennings. Negotiation decision functions

for autonomous agents. Robotics and Autonomous Systems, 24(3-4):159–182, 1998. doi:

10.1016/S0921-8890(98)00029-3. URL http://dx.doi.org/10.1016/S0921-8890(98)

00029-3.

[19] Amir Vahid Dastjerdi and Rajkumar Buyya. An autonomous reliability-aware negoti-

ation strategy for cloud computing environments. In CCGRID, pages 284–291. IEEE

Computer Society, 2012. ISBN 978-1-4673-1395-7. URL http://dblp.uni-trier.de/

db/conf/ccgrid/ccgrid2012.html#DastjerdiB12.

[20] Linlin Wu, Saurabh Kumar Garg, and Rajkumar Buyya. SLA-based admission control for

a software-as-a-service provider in cloud computing environments. J. Comput. Syst. Sci.,

78(5):1280–1299, September 2012. ISSN 0022-0000. doi: 10.1016/j.jcss.2011.12.014. URL

http://dx.doi.org/10.1016/j.jcss.2011.12.014.

[21] Seokho Son and Kwang Mong Sim. A price- and-time-slot-negotiation mechanism for cloud

service reservations. IEEE Trans. Systems, Man, and Cybernetics, Part B, 42(3):713–728,

2012. doi: 10.1109/TSMCB.2011.2174355. URL http://dx.doi.org/10.1109/TSMCB.

2011.2174355.

[22] X. Zheng, P. Martin, and K. Brohman. Cloud service negotiation: Concession vs. tradeoff

approaches. In Cluster, Cloud and Grid Computing (CCGrid), 2012 12th IEEE/ACM

International Symposium on, pages 515–522, May 2012. doi: 10.1109/CCGrid.2012.94.

[23] Zhipiao Liu, Shangguang Wang, Qibo Sun, Hua Zou, and Fangchun Yang. Cost-aware

cloud service request scheduling for saas providers. The Computer Journal, page bxt009,

2013.

[24] Philipp Leitner, Waldemar Hummer, Benjamin Satzger, Christian Inzinger, and Schahram

Dustdar. Cost-efficient and application SLA-aware client side request scheduling in an

infrastructure-as-a-service cloud. In Cloud Computing (CLOUD), 2012 IEEE 5th Interna-

tional Conference on, pages 213–220. IEEE, 2012.

[25] L. Wu, S. K. Garg, and R. Buyya. SLA-based resource allocation for software as a service

provider (saas) in cloud computing environments. In 2011 11th IEEE/ACM International

Symposium on Cluster, Cloud and Grid Computing, pages 195–204, May 2011. doi: 10.

1109/CCGrid.2011.51.

http://dx.doi.org/10.1007/s10726-008-9119-9
http://dx.doi.org/10.1016/S0921-8890(98)00029-3
http://dx.doi.org/10.1016/S0921-8890(98)00029-3
http://dblp.uni-trier.de/db/conf/ccgrid/ccgrid2012.html#DastjerdiB12
http://dblp.uni-trier.de/db/conf/ccgrid/ccgrid2012.html#DastjerdiB12
http://dx.doi.org/10.1016/j.jcss.2011.12.014
http://dx.doi.org/10.1109/TSMCB.2011.2174355
http://dx.doi.org/10.1109/TSMCB.2011.2174355

Bibliography 124

[26] Linlin Wu, Saurabh Kumar Garg, Steve Versteeg, and Rajkumar Buyya. SLA-based re-

source provisioning for hosted software-as-a-service applications in cloud computing envi-

ronments. IEEE Transactions on services computing, 7(3):465–485, 2014.

[27] Ahmad Fadzil M Hani, Irving Vitra Paputungan, and Mohd Fadzil Hassan. Renegotiation

in service level agreement management for a cloud-based system. ACM Computing Surveys

(CSUR), 47(3):51, 2015.

[28] D. Ouelhadj, J. Garibaldi, J. Maclaren, R. Sakellariou, and K. Krishnakumar. A multi-

agent infrastructure and a service level agreement negotiation protocol for robust schedul-

ing in grid computing. In In Advances in Grid Computing - EGC 2005, volume 3470 of

Lecture Notes in Computer Science, pages 651–660. Springer Verlag, 2005.

[29] Sanaa Sharaf and Karim Djemame. Extending ws-agreement to support renegotiation of

dynamic grid slas. In eChallenges e-2010 Conference, pages 1–8. IEEE, 2010.

[30] Michael Parkin, Peer Hasselmeyer, and Bastian Koller. An sla re-negotiation protocol. In

Proceedings of the 2nd Non Functional Properties and Service Level Agreements in Service

Oriented Computing Workshop (NFPSLA-SOC08), CEUR Workshop Proceedings, ISSN

1613-0073, Volume 411. Citeseer, 2008.

[31] Giuseppe Di Modica, Orazio Tomarchio, and Lorenzo Vita. Dynamic slas management in

service oriented environments. Journal of Systems and Software, 82(5):759–771, 2009.

[32] Ahmad Fadzil M Hani, Irving Vitra Paputungan, and M Fadzil Hassan. Service level

agreement renegotiation framework for trusted cloud-based system. In Future Information

Technology, pages 55–61. Springer, 2014.

[33] Werner Mach and Erich Schikuta. A generic negotiation and re-negotiation framework for

consumer-provider contracting of web services. In Proceedings of the 14th International

Conference on Information Integration and Web-based Applications & Services, pages 348–

351. ACM, 2012.

[34] Michael Hogan, Fang Liu, Annie Sokol, and Jin Tong. Nist cloud computing standards

roadmap. Technical report, National Institute of Standards and Technology, 2011.

[35] Borko Furht. Handbook of Cloud Computing, chapter Cloud Computing Fundamentals,

page pp 319. Springer, 2010.

[36] Amit Nathani, Sanjay Chaudhary, and Gaurav Somani. Policy based resource allocation

in iaas cloud. Future Gener. Comput. Syst., 28(1):94–103, January 2012. ISSN 0167-739X.

doi: 10.1016/j.future.2011.05.016. URL http://dx.doi.org/10.1016/j.future.2011.

05.016.

http://dx.doi.org/10.1016/j.future.2011.05.016
http://dx.doi.org/10.1016/j.future.2011.05.016

Bibliography 125

[37] Daniel Nurmi, Rich Wolski, Chris Grzegorczyk, Graziano Obertelli, Sunil Soman, Lamia

Youseff, and Dmitrii Zagorodnov. The eucalyptus open-source cloud-computing system. In

Proceedings of the 2009 9th IEEE/ACM International Symposium on Cluster Computing

and the Grid, CCGRID ’09, pages 124–131, Washington, DC, USA, 2009. IEEE Computer

Society. ISBN 978-0-7695-3622-4. doi: 10.1109/CCGRID.2009.93. URL http://dx.doi.

org/10.1109/CCGRID.2009.93.

[38] Richard Lawley, Keith Decker, Michael Luck, Terry Payne, and Luc Moreau. Automated

negotiation for grid notification services. In Euro-Par 2003 Parallel Processing, 2003.

[39] Ariel Rubinstein. Perfect equilibrium in a bargaining model. Econometrica, 50(1):97–109,

1982. ISSN 00129682, 14680262. URL http://www.jstor.org/stable/1912531.

[40] Radu Prodan, Marek Wieczorek, and Hamid Mohammadi Fard. Double auction-based

scheduling of scientific applications in distributed grid and cloud environments. J. Grid

Comput., 9(4):531–548, 2011. doi: 10.1007/s10723-011-9196-x. URL http://dx.doi.

org/10.1007/s10723-011-9196-x.

[41] Kwang Mong Sim. Towards Complex Negotiation for Cloud Economy, pages 395–406.

Springer Berlin Heidelberg, Berlin, Heidelberg, 2010. ISBN 978-3-642-13067-0. doi: 10.

1007/978-3-642-13067-0 42. URL http://dx.doi.org/10.1007/978-3-642-13067-0_

42.

[42] Mahboobeh Moghaddam and Joseph G. Davis. Service selection in web service com-

position: A comparative review of existing approaches. In Athman Bouguettaya,

Quan Z. Sheng, and Florian Daniel, editors, Web Services Foundations, pages 321–346.

Springer, 2014. ISBN 978-1-4614-7518-7. URL http://dblp.uni-trier.de/db/books/

collections/wsf2014.html#MoghaddamD14.

[43] Shaheen S. Fatima, Michael Wooldridge, and Nicholas R. Jennings. Multi-issue negotiation

under time constraints. In Proceedings of the First International Joint Conference on

Autonomous Agents and Multiagent Systems: Part 1, AAMAS ’02, pages 143–150, New

York, NY, USA, 2002. ACM. ISBN 1-58113-480-0. doi: 10.1145/544741.544775. URL

http://doi.acm.org/10.1145/544741.544775.

[44] Mohammed Alhamad, Tharam Dillon, and Elizabeth Chang. Conceptual sla framework for

cloud computing. In IEEE international conference on digital ecosystems and technologies

(DEST 2010), 2010.

[45] Jun Yan, Ryszard Kowalczyk, Jian Lin, Mohan B. Chhetri, Suk Keong Goh, and Jianying

Zhang. Autonomous service level agreement negotiation for service composition provision.

Future Gener. Comput. Syst., 23(6):748–759, July 2007. ISSN 0167-739X. doi: 10.1016/j.

future.2007.02.004. URL http://dx.doi.org/10.1016/j.future.2007.02.004.

http://dx.doi.org/10.1109/CCGRID.2009.93
http://dx.doi.org/10.1109/CCGRID.2009.93
http://www.jstor.org/stable/1912531
http://dx.doi.org/10.1007/s10723-011-9196-x
http://dx.doi.org/10.1007/s10723-011-9196-x
http://dx.doi.org/10.1007/978-3-642-13067-0_42
http://dx.doi.org/10.1007/978-3-642-13067-0_42
http://dblp.uni-trier.de/db/books/collections/wsf2014.html#MoghaddamD14
http://dblp.uni-trier.de/db/books/collections/wsf2014.html#MoghaddamD14
http://doi.acm.org/10.1145/544741.544775
http://dx.doi.org/10.1016/j.future.2007.02.004

Bibliography 126

[46] M. Macas and J. Guitart. Using resource-level information into nonadditive negotiation

models for cloud market environments. In 2010 IEEE Network Operations and Manage-

ment Symposium - NOMS 2010, pages 325–332, April 2010. doi: 10.1109/NOMS.2010.

5488485.

[47] Amir Vahid Dastjerdi. QoS-aware and Semantic-based Service Coordination for Multi-

Cloud Environments. PhD thesis, THE UNIVERSITY OF MELBOURNE, 2013.

[48] Kwang mong Sim. Towards a unifying multilateral cloud negotiation strategy. In Interna-

tional MultiConference of Engineers and Computer Scientists, 2013.

[49] Farhana H. Zulkernine, Patrick Martin, Chris Craddock, and Kirk Wilson. A policy-based

middleware for web services SLA negotiation. In ICWS, pages 1043–1050. IEEE Computer

Society, 2009.

[50] Farhana H. Zulkernine and Patrick Martin. An adaptive and intelligent SLA negotiation

system for web services. IEEE T. Services Computing, 4(1):31–43, 2011. URL http:

//dblp.uni-trier.de/db/journals/tsc/tsc4.html#ZulkernineM11.

[51] Serban Radu. An Adaptive Negotiation Multi-Agent System for e-Commerce Applications.

PhD thesis, University Politehnica of Bucharest, 2013.

[52] Ioan Salomie Tudor Cioara Ionut Anghel Georgiana Copil, Daniel Moldovan and Diana

Borza. Cloud sla negotiation for energy saving a particle swarm optimization approach.

In Intelligent Computer Communication and Processing (ICCP), 2012.

[53] Jamal Bentahar, Zakaria Maamar, Wei Wan, Djamal Benslimane, Philippe Thiran, and

Sattanathan Subramanian. Agent-based communities of web services: an argumentation-

driven approach. Service Oriented Computing and Applications, 2(4):219–238, 2008. URL

http://dblp.uni-trier.de/db/journals/soca/soca2.html#BentaharMWBTS08.

[54] Francesca Toni, Mary Grammatikou, Stella Kafetzoglou, Leonidas Lymberopoulos,

Symeon Papavassileiou, Dorian Gaertner, Maxime Morge, Stefano Bromuri, Jarred Mcgin-

nis, Kostas Stathis, Vasa Curcin, Moustafa Ghanem, and Li Guo. The argugrid plat-

form: An overview. In Proceedings of the 5th international workshop on Grid Eco-

nomics and Business Models, GECON ’08, pages 217–225, Berlin, Heidelberg, 2008.

Springer-Verlag. ISBN 978-3-540-85484-5. doi: 10.1007/978-3-540-85485-2 18. URL

http://dx.doi.org/10.1007/978-3-540-85485-2_18.

[55] Iyad Rahwan and Kate Larson. Argumentation in Artificial Intelligence, chapter Argu-

mentation and Game Theory, pages 321–339. Springer Science+Business Media, 2009.

http://dblp.uni-trier.de/db/journals/tsc/tsc4.html#ZulkernineM11
http://dblp.uni-trier.de/db/journals/tsc/tsc4.html#ZulkernineM11
http://dblp.uni-trier.de/db/journals/soca/soca2.html#BentaharMWBTS08
http://dx.doi.org/10.1007/978-3-540-85485-2_18

Bibliography 127

[56] Iyad Rahwan and Kate Larson. Mechanism design for abstract argumentation. In Pro-

ceedings of the 7th international joint conference on Autonomous agents and multiagent

systems - Volume 2, AAMAS ’08, pages 1031–1038, Richland, SC, 2008. International

Foundation for Autonomous Agents and Multiagent Systems. ISBN 978-0-9817381-1-6.

URL http://dl.acm.org/citation.cfm?id=1402298.1402365.

[57] Nicolas Maudet, Simon Parsons, and Iyad Rahwan. Argumentation in Multi-Agent Sys-

tems: Context and Recent Developments, pages 1–16. Springer Berlin Heidelberg, Berlin,

Heidelberg, 2007. ISBN 978-3-540-75526-5. doi: 10.1007/978-3-540-75526-5 1. URL

http://dx.doi.org/10.1007/978-3-540-75526-5_1.

[58] Iyad Rahwan, Sarvapali D. Ramchurn, Nicholas R. Jennings, Peter Mcburney, Simon Par-

sons, and Liz Sonenberg. Argumentation-based negotiation. Knowl. Eng. Rev., 18(4):

343–375, December 2003. ISSN 0269-8889. doi: DOI:10.1017/S0269888904000098. URL

http://dx.doi.org/DOI:10.1017/S0269888904000098.

[59] Stella Heras, Fernando de la Prieta, Sara Rodrguez, Javier Bajo, Vicente J. Botti, and

Vicente Julin. The role of argumentation on the future internet: Reaching agreements on

clouds. In Sascha Ossowski, Francesca Toni, and George A. Vouros, editors, AT, volume

918 of CEUR Workshop Proceedings, pages 393–407. CEUR-WS.org, 2012. URL http:

//dblp.uni-trier.de/db/conf/at/at2012.html#HerasPRBBJ12.

[60] Stella M. Heras Barbera. CASE-BASED ARGUMENTATION IN AGENT SOCIETIES.

PhD thesis, UNIVERSITAT POLITECNICA DE VALENCIA, 2011.

[61] Adel Nadjaran Toosi, Rodrigo N. Calheiros, and Rajkumar Buyya. Interconnected cloud

computing environments: Challenges, taxonomy, and survey. ACM Comput. Surv., 47(1):

7:1–7:47, May 2014. ISSN 0360-0300. doi: 10.1145/2593512. URL http://doi.acm.org/

10.1145/2593512.

[62] Salvatore Venticinque, Rocco Aversa, Beniamino Di Martino, Massimilano Rak, and Dana

Petcu. A Cloud Agency for SLA Negotiation and Management, pages 587–594. Springer

Berlin Heidelberg, Berlin, Heidelberg, 2011. ISBN 978-3-642-21878-1. doi: 10.1007/

978-3-642-21878-1 72. URL http://dx.doi.org/10.1007/978-3-642-21878-1_72.

[63] A. AuYoung, L. Grit, J. Wiener, and J. Wilkes. Service contracts and aggregate utility

functions. In 2006 15th IEEE International Conference on High Performance Distributed

Computing, pages 119–131, 2006. doi: 10.1109/HPDC.2006.1652143.

[64] Stéphane Genaud and Julien Gossa. Cost-wait trade-offs in client-side resource provisioning

with elastic clouds. In IEEE International Conference on Cloud Computing, CLOUD 2011,

Washington, DC, USA, 4-9 July, 2011, pages 1–8, 2011. doi: 10.1109/CLOUD.2011.23.

URL http://dx.doi.org/10.1109/CLOUD.2011.23.

http://dl.acm.org/citation.cfm?id=1402298.1402365
http://dx.doi.org/10.1007/978-3-540-75526-5_1
http://dx.doi.org/DOI:10.1017/S0269888904000098
http://dblp.uni-trier.de/db/conf/at/at2012.html#HerasPRBBJ12
http://dblp.uni-trier.de/db/conf/at/at2012.html#HerasPRBBJ12
http://doi.acm.org/10.1145/2593512
http://doi.acm.org/10.1145/2593512
http://dx.doi.org/10.1007/978-3-642-21878-1_72
http://dx.doi.org/10.1109/CLOUD.2011.23

Bibliography 128

[65] G. Le, K. Xu, and J. Song. Dynamic resource provisioning and scheduling with deadline

constraint in elastic cloud. In 2013 International Conference on Service Sciences (ICSS),

pages 113–117, April 2013. doi: 10.1109/ICSS.2013.18.

[66] Radu Prodan and Marek Wieczorek. Negotiation-based scheduling of scientific grid

workflows through advance reservations. J. Grid Comput., 8(4):493–510, 2010. doi:

10.1007/s10723-010-9165-9. URL http://dx.doi.org/10.1007/s10723-010-9165-9.

[67] Nooruldeen Nasih Qader Bahador Shojaiemehr, Amir Masoud Rahmani. Cloud computing

service negotiation: A systematic review. Computer Standards & Interfaces, 2017.

[68] Kwang Mong Sim. Grid resource negotiation: survey and new directions. Trans. Sys. Man

Cyber Part C, 40(3):245–257, May 2010. ISSN 1094-6977. doi: 10.1109/TSMCC.2009.

2037134. URL http://dx.doi.org/10.1109/TSMCC.2009.2037134.

[69] Alexander Keller and Heiko Ludwig. The wsla framework: Specifying and monitoring

service level agreements for web services. J. Netw. Syst. Manage., 11(1):57–81, March 2003.

ISSN 1064-7570. doi: 10.1023/A:1022445108617. URL http://dx.doi.org/10.1023/A:

1022445108617.

[70] Heiko Ludwig, Alexander Keller, Asit Dan, Richard P. King, and Richard Franck. Web

Service Level Agreement (WSLA) Language Specification, v1.0, January 2003. URL http:

//www.research.ibm.com/wsla/WSLASpecV1-20030128.pdf.

[71] Oliver Waeldrich, Dominic Battré, Francis Brazier, Kassidy Clark, Michel Oey, Alexander

Papaspyrou, Philipp Wieder, and Wolfgang Ziegler. Ws-agreement negotiation version 1.0.

In Open Grid Forum, volume 35, page 41, 2011.

[72] Dominic Battré, F. M. T. Brazier, K. P. Clark, M. A. Oey, Alexander Papaspyrou, Oliver

Wäldrich, Philipp Wieder, and Wolfgang Ziegler. A proposal for ws-agreement negotiation.

In Proceedings of the 2010 11th IEEE/ACM International Conference on Grid Computing,

pages 233–241. IEEE, October 2010. ISBN 978-1-4244-9348-7.

[73] Stefano Bromuri, Visara Urovi, Maxime Morge, Kostas Stathis, and Francesca Toni. A

multi-agent system for service discovery, selection and negotiation. In Carles Sierra, Cris-

tiano Castelfranchi, Keith S. Decker, and Jaime Simo Sichman, editors, AAMAS (2), pages

1395–1396. IFAAMAS, 2009. ISBN 978-0-9817381-7-8. URL http://dblp.uni-trier.

de/db/conf/atal/aamas2009-2.html#BromuriUMST09.

[74] Valentina A. M. Tamma, Michael Wooldridge, Ian Blacoe, and Ian Dickinson. An ontology

based approach to automated negotiation. In Julian A. Padget, Onn Shehory, David C.

Parkes, Norman M. Sadeh, and William E. Walsh, editors, AMEC, volume 2531 of Lecture

http://dx.doi.org/10.1007/s10723-010-9165-9
http://dx.doi.org/10.1109/TSMCC.2009.2037134
http://dx.doi.org/10.1023/A:1022445108617
http://dx.doi.org/10.1023/A:1022445108617
http://www.research.ibm.com/wsla/WSLASpecV1-20030128.pdf
http://www.research.ibm.com/wsla/WSLASpecV1-20030128.pdf
http://dblp.uni-trier.de/db/conf/atal/aamas2009-2.html#BromuriUMST09
http://dblp.uni-trier.de/db/conf/atal/aamas2009-2.html#BromuriUMST09

Bibliography 129

Notes in Computer Science, pages 219–237. Springer, 2002. ISBN 3-540-00327-4. URL

http://dblp.uni-trier.de/db/conf/amec/amec2002.html#TammaWBD02.

[75] Claudio Bartolini, Chris Preist, and Nicholas R. Jennings. Software engineering for multi-

agent systems iii. chapter A Software Framework for Automated Negotiation, pages 213–

235. Springer-Verlag, Berlin, Heidelberg, 2005. ISBN 3-540-24843-9. URL http://dl.

acm.org/citation.cfm?id=2167504.2167521.

[76] Koen Hindriks, Catholijn M. Jonker, Sarit Kraus, Raz Lin, and Dmytro Tykhonov. Genius:

Negotiation environment for heterogeneous agents. In Proceedings of The 8th International

Conference on Autonomous Agents and Multiagent Systems - Volume 2, AAMAS ’09,

pages 1397–1398, Richland, SC, 2009. International Foundation for Autonomous Agents

and Multiagent Systems. ISBN 978-0-9817381-7-8. URL http://dl.acm.org/citation.

cfm?id=1558109.1558313.

[77] Marco Comuzzi and Barbara Pernici. An architecture for flexible web service qos negoti-

ation. In EDOC, pages 70–82. IEEE Computer Society, 2005. ISBN 0-7695-2441-9. URL

http://dblp.uni-trier.de/db/conf/edoc/edoc2005.html#ComuzziP05.

[78] Sebastian Hudert, Heiko Ludwig, and Guido Wirtz. Negotiating slas-an approach for a

generic negotiation framework for ws-agreement. Journal of Grid Computing, 7(2):225–

246, Jun 2009. ISSN 1572-9184. doi: 10.1007/s10723-009-9118-3. URL http://dx.doi.

org/10.1007/s10723-009-9118-3.

[79] Peer Hasselmeyer, Henning Mersch, Bastian Koller, HN Quyen, Lutz Schubert, and Philipp

Wieder. Implementing an sla negotiation framework. In Proceedings of the eChallenges

Conference (e-2007), volume 4, pages 154–161, 2007.

[80] Elisabetta Nitto, Massimiliano Penta, Alessio Gambi, Gianluca Ripa, and Maria Luisa

Villani. Negotiation of service level agreements: An architecture and a search-based ap-

proach. In Proceedings of the 5th International Conference on Service-Oriented Comput-

ing, ICSOC ’07, pages 295–306, Berlin, Heidelberg, 2007. Springer-Verlag. ISBN 978-

3-540-74973-8. doi: 10.1007/978-3-540-74974-5 24. URL http://dx.doi.org/10.1007/

978-3-540-74974-5_24.

[81] J. Yan, J. Zhang, J. Lin, M. B. Chhetri, S. K. Goh, and R. Kowalczyk. Towards au-

tonomous service level agreement negotiation for adaptive service composition. In 2006

10th International Conference on Computer Supported Cooperative Work in Design, pages

1–6, May 2006. doi: 10.1109/CSCWD.2006.253253.

[82] Karl Czajkowski, Ian T. Foster, Carl Kesselman, Volker Sander, and Steven Tuecke. Snap:

A protocol for negotiating service level agreements and coordinating resource manage-

ment in distributed systems. In Revised Papers from the 8th International Workshop

http://dblp.uni-trier.de/db/conf/amec/amec2002.html#TammaWBD02
http://dl.acm.org/citation.cfm?id=2167504.2167521
http://dl.acm.org/citation.cfm?id=2167504.2167521
http://dl.acm.org/citation.cfm?id=1558109.1558313
http://dl.acm.org/citation.cfm?id=1558109.1558313
http://dblp.uni-trier.de/db/conf/edoc/edoc2005.html#ComuzziP05
http://dx.doi.org/10.1007/s10723-009-9118-3
http://dx.doi.org/10.1007/s10723-009-9118-3
http://dx.doi.org/10.1007/978-3-540-74974-5_24
http://dx.doi.org/10.1007/978-3-540-74974-5_24

Bibliography 130

on Job Scheduling Strategies for Parallel Processing, pages 153–183, London, UK, UK,

2002. Springer-Verlag. ISBN 3-540-00172-7. URL http://dl.acm.org/citation.cfm?

id=646383.689694.

[83] Kwang Mong Sim and Benyun Shi. Concurrent negotiation and coordination for grid re-

source coallocation. Trans. Sys. Man Cyber. Part B, 40(3):753–766, June 2010. ISSN 1083-

4419. doi: 10.1109/TSMCB.2009.2028870. URL http://dx.doi.org/10.1109/TSMCB.

2009.2028870.

[84] K. M. Sim. Agent-based cloud computing. IEEE Transactions on Services Computing, 5

(4):564–577, Fourth 2012. ISSN 1939-1374. doi: 10.1109/TSC.2011.52.

[85] Adriano Galati, Karim Djemame, Martyn Fletcher, Mark Jessop, Michael Weeks, Simon

Hickinbotham, and John McAvoy. Designing an SLA protocol with renegotiation to max-

imize revenues for the cmac platform. In Web Information Systems Engineering–WISE

2011 and 2012 Workshops, pages 105–117. Springer, 2013.

[86] Gheorghe Cosmin Silaghi, Liviu Dan Şerban, and Cristian Marius Litan. A framework

for building intelligent sla negotiation strategies under time constraints. In Proceedings of

the 7th International Conference on Economics of Grids, Clouds, Systems, and Services,

GECON’10, pages 48–61, Berlin, Heidelberg, 2010. Springer-Verlag. ISBN 3-642-15680-0,

978-3-642-15680-9. URL http://dl.acm.org/citation.cfm?id=1884547.1884553.

[87] Seokho Son, Gihun Jung, and Sung Chan Jun. An sla-based cloud computing that facili-

tates resource allocation in the distributed data centers of a cloud provider. The Journal of

Supercomputing, 64(2):606–637, 2013. URL http://dblp.uni-trier.de/db/journals/

tjs/tjs64.html#SonJJ13.

[88] Seokho Son and Sung Chan Jun. Negotiation-based flexible sla establishment with sla-

driven resource allocation in cloud computing. In CCGRID, pages 168–171. IEEE Com-

puter Society, 2013. ISBN 978-1-4673-6465-2. URL http://dblp.uni-trier.de/db/

conf/ccgrid/ccgrid2013.html#SonJ13.

[89] Rajkumar Buyya, Chee Shin Yeo, Srikumar Venugopal, James Broberg, and Ivona Brandic.

Cloud computing and emerging it platforms: Vision, hype, and reality for delivering

computing as the 5th utility. Future Gener. Comput. Syst., 25(6):599–616, June 2009.

ISSN 0167-739X. doi: 10.1016/j.future.2008.12.001. URL http://dx.doi.org/10.1016/

j.future.2008.12.001.

[90] Janki Akhani, Sanjay Chuadhary, and Gaurav Somani. Negotiation for resource allocation

in iaas cloud. In Proceedings of the Fourth Annual ACM Bangalore Conference, COM-

PUTE ’11, pages 15:1–15:7, New York, NY, USA, 2011. ACM. ISBN 978-1-4503-0750-5.

doi: 10.1145/1980422.1980437. URL http://doi.acm.org/10.1145/1980422.1980437.

http://dl.acm.org/citation.cfm?id=646383.689694
http://dl.acm.org/citation.cfm?id=646383.689694
http://dx.doi.org/10.1109/TSMCB.2009.2028870
http://dx.doi.org/10.1109/TSMCB.2009.2028870
http://dl.acm.org/citation.cfm?id=1884547.1884553
http://dblp.uni-trier.de/db/journals/tjs/tjs64.html#SonJJ13
http://dblp.uni-trier.de/db/journals/tjs/tjs64.html#SonJJ13
http://dblp.uni-trier.de/db/conf/ccgrid/ccgrid2013.html#SonJ13
http://dblp.uni-trier.de/db/conf/ccgrid/ccgrid2013.html#SonJ13
http://dx.doi.org/10.1016/j.future.2008.12.001
http://dx.doi.org/10.1016/j.future.2008.12.001
http://doi.acm.org/10.1145/1980422.1980437

Bibliography 131

[91] Vladimir Stantchev and Christian Schrpfer. Negotiating and enforcing qos and slas in grid

and cloud computing. In Nabil Abdennadher and Dana Petcu, editors, GPC, volume 5529

of Lecture Notes in Computer Science, pages 25–35. Springer, 2009. ISBN 978-3-642-01670-

7. URL http://dblp.uni-trier.de/db/conf/gpc/gpc2009.html#StantchevS09.

[92] Bo An, Victor Lesser, David Irwin, and Michael Zink. Automated negotiation with de-

commitment for dynamic resource allocation in cloud computing. In Proceedings of the

9th International Conference on Autonomous Agents and Multiagent Systems: Volume

1 - Volume 1, AAMAS ’10, pages 981–988, Richland, SC, 2010. International Founda-

tion for Autonomous Agents and Multiagent Systems. ISBN 978-0-9826571-1-9. URL

http://dl.acm.org/citation.cfm?id=1838206.1838338.

[93] Elarbi Badidi. A framework for software-as-a-service selection and provisioning. CoRR,

abs/1306.1888, 2013.

[94] Ivona Brandic, Dejan Music, and Schahram Dustdar. Service mediation and negotiation

bootstrapping as first achievements towards self-adaptable grid and cloud services. In Pro-

ceedings of the 6th International Conference Industry Session on Grids Meets Autonomic

Computing, GMAC ’09, pages 1–8, New York, NY, USA, 2009. ACM. ISBN 978-1-60558-

578-9. doi: 10.1145/1555301.1555302. URL http://doi.acm.org/10.1145/1555301.

1555302.

[95] Ivona Brandic. Towards self-manageable cloud services. In Proceedings of the 2009 33rd

Annual IEEE International Computer Software and Applications Conference - Volume 02,

COMPSAC ’09, pages 128–133, Washington, DC, USA, 2009. IEEE Computer Society.

ISBN 978-0-7695-3726-9. doi: 10.1109/COMPSAC.2009.126. URL http://dx.doi.org/

10.1109/COMPSAC.2009.126.

[96] K. Mu Li. All clouds are not created equal. http://insights.wired.com.

[97] Markus C. Huebscher and Julie A. McCann. A survey of autonomic computing degrees,

models, and applications. ACM Comput. Surv., 40(3):7:1–7:28, August 2008. ISSN 0360-

0300. doi: 10.1145/1380584.1380585. URL http://doi.acm.org/10.1145/1380584.

1380585.

[98] Steve R. White, James E. Hanson, Ian Whalley, David M. Chess, and Jeffrey O. Kephart.

An architectural approach to autonomic computing. In ICAC, pages 2–9. IEEE Computer

Society, 2004. ISBN 0-7695-2114-2. URL http://dblp.uni-trier.de/db/conf/icac/

icac2004.html#WhiteHWCK04.

[99] Rajkumar Buyya, Rodrigo N. Calheiros, and Xiaorong Li. Autonomic cloud computing:

Open challenges and architectural elements. volume abs/1209.3356, 2012. URL http:

//dblp.uni-trier.de/db/journals/corr/corr1209.html#abs-1209-3356.

http://dblp.uni-trier.de/db/conf/gpc/gpc2009.html#StantchevS09
http://dl.acm.org/citation.cfm?id=1838206.1838338
http://doi.acm.org/10.1145/1555301.1555302
http://doi.acm.org/10.1145/1555301.1555302
http://dx.doi.org/10.1109/COMPSAC.2009.126
http://dx.doi.org/10.1109/COMPSAC.2009.126
http://doi.acm.org/10.1145/1380584.1380585
http://doi.acm.org/10.1145/1380584.1380585
http://dblp.uni-trier.de/db/conf/icac/icac2004.html#WhiteHWCK04
http://dblp.uni-trier.de/db/conf/icac/icac2004.html#WhiteHWCK04
http://dblp.uni-trier.de/db/journals/corr/corr1209.html#abs-1209-3356
http://dblp.uni-trier.de/db/journals/corr/corr1209.html#abs-1209-3356

Bibliography 132

[100] Michael J Wooldridge Nicholas R. Jennings. Agent Technology Foundations, Applications,

and Markets, chapter Applications of Intelligent Agents, pages 3–28. Springer, 1998.

[101] Michael Wooldridge and Nicholas R. Jennings. Intelligent agents: Theory and practice.

Knowledge Engineering Review, 10:115–152, Wooldridge95.

[102] Peter Stone and Manuela Veloso. Multiagent systems: A survey from a machine learning

perspective. Autonomous Robots, 8(3):345–383, July 2000.

[103] J. Ferber. Les Systèmes multi-agents: vers une intelligence collective. I.I.A. Informatique

intelligence artificielle. InterEditions, 1995. ISBN 9782729605728. URL http://www2.

lirmm.fr/~ferber/publications/.

[104] Ritu Gupta and Gaurav Kansal. A survey on comparative study of mobile agent platforms.

International Journal of Engineering Science and Technology (IJEST), 2011.

[105] Florin Leon, Marcin Paprzycki, and Maria Ganzha. A review of agent platforms. Technical

report, Multi-Paradigm Modelling for Cyber-Physical Systems, 2015.

[106] M. Dastani A. El F. Seghrouchni J.J. Gomez-Sanz J. Leite G. O’Hare A. Pokahr A. Ricci

R.H. Bordini, L. Braubach. A survey of programming languages and platforms for multi-

agent systems. Informatica: An International Journal of Computing and Informatics,

2006.

[107] Aya Omezzine, Sami Yangui, Narjès Bellamine Ben Saoud, and Samir Tata. Mobile service

micro-containers for cloud environments. In WETICE, pages 154–160. IEEE Computer

Society, 2012.

http://www2.lirmm.fr/~ferber/publications/
http://www2.lirmm.fr/~ferber/publications/

Publications List

• Aya Omezzine, Narjès Bellamine Ben Saoud, Said Tazi, Gene Cooperman. Towards a

generic multilayer negotiation framework for efficient application provisioning in the cloud.

Concurrency and Computation: Practice and Experience, 2017

• Aya Omezzine, Said Tazi, Narjès Bellamine, Gene Cooperman. SLA and Profit-aware SaaS

Provisioning through Proactive Renegotiation. The 15th IEEE International Symposium

on Network Computing and Applications (IEEE NCA 2016)

• Aya Omezzine, Said Tazi, Narjès Bellamine, Gene Cooperman. Negotiation based schedul-

ing for an efficient SaaS provisioning in the Cloud. The 4th International Conference on

Future Internet of Things and Cloud (FiCloud 2016)

• Aya Omezzine, Säıd Tazi, Narjès Bellamine Ben Saoud, Khalil Drira, Gene Cooperman.

Towards a dynamic multi-level negotiation framework in Cloud computing. The Interna-

tional Conference on Cloud Technologies and Applications (CLOUDTECH 2015)

133

	Abstract
	Résumé
	Contents
	List of Figures
	List of Tables
	List of Algorithms
	Abbreviations
	Introduction
	1 Context
	2 Thesis research issue and challenges
	3 Research Aims and Contributions
	4 Structure of the Thesis

	I Basic concepts
	1 Introduction
	2 Cloud computing
	2.1 Cloud definition
	2.2 Cloud characteristics
	2.3 Cloud services
	2.4 Cloud market
	2.5 Cloud provisioning definition
	2.6 Cloud provisioning process

	3 Automated negotiation basic concepts
	3.1 Definition
	3.2 Negotiation protocol
	3.3 Negotiation objects
	3.4 Decision making models
	3.4.1 Utility function
	3.4.2 Negotiation decision-making strategy

	3.5 Negotiation approaches

	4 Service Level Agreement (SLA)
	4.1 Definition
	4.2 SLA life-cycle
	4.3 SLA-based cloud provisioning process

	5 Conclusion

	II Related Work
	1 Introduction
	2 Cloud provisioning approaches
	2.1 non-QoS-aware provisioning approaches
	2.2 QoS-aware provisioning approaches
	2.2.1 Same type of VMs
	2.2.2 Different VMs types

	2.3 A synthesis of cloud provisioning approaches

	3 Negotiation approaches in utility computing
	3.1 Generic negotiation approaches
	3.2 Negotiation approaches in SOC environment
	3.2.1 Negotiation frameworks
	3.2.2 Generic negotiation and renegotiation protocol

	3.3 Negotiation approaches in GRID environment
	3.4 Negotiation approaches in Cloud environment
	3.4.1 Generic negotiation approaches
	3.4.2 Cloud resource negotiation (level 1)
	3.4.3 SaaS/PaaS negotiation (level 2)

	3.5 Synthesis of negotiation approaches
	3.6 Discussion

	4 Conclusion

	III The negotiation-based framework applied to cloud provisioning
	1 Introduction
	2 Overview of the generic negotiation-based provisioning process
	3 Description of the (re)negotiation activity
	3.1 The negotiator model
	3.1.1 The negotiation session
	3.1.2 The decision-making strategy of the negotiator
	3.1.3 The coordination between interdependent negotiation sessions

	3.2 The behavior process for the negotiator

	4 Multi-layer and dynamic negotiation framework for cloud provisioning
	4.1 The agents
	4.2 The environment
	4.3 The interaction among agents during application provisioning
	4.3.1 The request phase (from the user layer to the IaaS layer)
	4.3.2 The delivery phase (from the the IaaS layer to the user layer)

	5 Conclusion

	IV Bilateral negotiation for an efficient SaaS application provisioning
	1 Introduction
	2 Compute-intensive SaaS application provisioning scenario
	2.1 SLA models and assumptions
	2.2 Overview of the (bilateral)negotiation framework for SaaS application provisioning

	3 Negotiation-based SaaS application provisioning approach
	3.1 Towards flexible admission control process
	3.1.1 Classical admission control process
	3.1.2 Flexible admission control process

	3.2 Interaction between the negoBusiness and the business provider's provisioning modules

	4 Utility and profit-driven decision-making strategies
	4.1 The negoBusiness's decision-making strategy
	4.1.1 The negoBusiness's offer evaluation strategy
	4.1.2 The negoBusiness's offer generation strategy

	4.2 The negoUser's decision-making strategy
	4.2.1 The negoUser's offer evaluation strategy
	4.2.2 The negoUser's offer generation strategy

	5 Evaluation and analysis
	5.1 Implementation and experimental settings
	5.2 Results and analysis
	5.2.1 Low urgency requests
	5.2.2 High urgency requests

	6 Conclusion

	V Adaptive and concurrent negotiation for an efficient SaaS application provisioning
	1 Introduction
	2 Overview of the adaptive negotiation framework for SaaS provisioning
	2.1 Scenario description
	2.2 The proposed framework

	3 Adaptive negotiation-based SaaS provisioning process
	4 Renegotiation decision-making strategies
	4.1 The negoBusiness's decision-making strategy
	4.2 The negoUser's decision-making strategies

	5 Evaluation and analysis
	5.1 Implementation and experimental settings
	5.2 Results and analysis

	6 Conclusion

	VI Proactive renegotiation for an efficient SaaS application provisioning
	1 Introduction
	2 Overview of the renegotiation framework for SaaS provisioning
	3 Selection of an Option for Profit-aware Rescheduling
	3.1 Definition of an Unexpected Event
	3.2 Definition of the Rescheduling Option
	3.3 Algorithm for Selection of a Profit-aware Rescheduling Option

	4 The Renegotiation-based Rescheduling Procedure
	4.1 The renegotiation overall process
	4.2 The Decision-making Strategies for Renegotiation
	4.2.1 Decision-making by the negoBusiness
	4.2.2 Decision-making by the Users

	5 Evaluation
	5.1 Experimental settings
	5.2 Results and Analysis
	5.2.1 Impact when varying the expected utility of the business provider
	5.2.2 Impact when varying the expected utility of the clients
	5.2.3 Impact as the number of resources are varied

	6 Conclusion

	Conclusions and Future Work
	1 Contributions and Research Summary
	2 Future Directions
	2.1 Short-term Perspectives
	2.2 Long-term Perspectives

	A Example of negotiation protocols
	1 Alternate offers protocol
	2 Iterated Contract Net Protocol

	B Multi-Agent System
	1 Definitions
	2 JADE platform
	3 Communication between agents

	Bibliography
	Publications List

