
Who should we believe?
Collective risk-taking decisions with

heterogeneous beliefs

Christian Gollier∗

University of Toulouse (LEERNA-INRA and IDEI)

July 25, 2003

Abstract

Suppose that a group of agents having divergent expectations can
share risks efficiently. We examine how this group should behave
collectively to manage these risks. We show that the beliefs of the
representative agent is in general a function of the group’s wealth level,
or equivalently, that the representative agent has a state-dependent
utility function. We also prove that the probability distribution used
by the representative agent is biased in favor of the beliefs of the more
risk tolerant agents in the group. From this central result, we show
how does increasing disagreement on the state probability affect the
state probability of the representative agent. When there are only
two states of nature, we show that the representative agent has a
bias towards certainty. Moreover, the divergence of opinions about
the probability of occurence of a boom may help solving the equity
premium puzzle.
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1 Introduction

People have divergent opinions on a wide range of subjects, from the outcome
of an election or of a war, the profitability of a new technology to the risk
of global warming. Suppose that this heterogeneity of beliefs does not come
from asymmetric information but rather from intrinsic differences in how to
view the world. People agree to disagree, which implies that prices and ob-
served behaviors of other market participants do not generate any Bayesian
updating of individual beliefs. We examine how the group as a whole will
behave towards risk. Aggregating beliefs when agents differ on their expec-
tations is useful to solve various economic questions, from asset pricing to
cost-benefit analyses of collective risk prevention.
The attitude towards risk of a group of agents depends upon how risk

is allocated in the group. For example, if an agent is fully insured by other
agents, it is intuitive that this agent’s beliefs should not affect the social
welfare function. Only those who bear a share of the risk should see their
expectations be taken into account on the collective risk decision. In this
paper, we assume that risks can be allocated in a Pareto-efficient way in
the group. In such a situation, the willingness to take risk is increasing in
the Arrow-Pratt index of absolute risk tolerance. It implies that the beliefs
of agents with a larger risk tolerance should have a larger impact on how
individual expectations are aggregated. At the limit, those with a zero risk
tolerance do not influence the group’s expectations.
The properties of the socially efficient probability distribution are derived

from the characteristics of the efficient allocation of risk in the group, such
as the one derived from the competitive allocation with complete Arrow-
Debreu markets. Borch (1960,1962), Wilson (1968) and Rubinstein (1974)
were the first to characterize the properties of Pareto-efficient risk sharings.
Wilson (1968), and more recently Calvet, Grandmont and Lemaire (2001)
showed that the standard methodology of the representative agent can still
be used when agents have heterogeneous beliefs. Leland (1980) examined the
competitive equilibrium asset portfolios when agents have different priors on
the distribution of state probabilities.
The main comparative static exercise that we consider in this paper is to

compare two states of nature for which the distribution of individual proba-
bilities are different. Consider for example a situation where all agents believe
that state s2 has the same probability of occurrence than another state s1,
except agent θ. Suppose that this agent has a subjective probability for s2
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that is 1 percent larger than for s1. By how much should we increase the
probability of state s2 with respect to s1 in the collective decision making?
The central technical result of the paper is to show that the collective prob-
ability should be increased by x/100 percents, where x is the share of the
aggregate risk that is borne by agent θ, or the agent θ0s tolerance to risk
expressed as a share of the group’s risk tolerance. More generally, the rate of
change of the collective probability is a weighted mean of the rate of change
of the individual probabilities. The weights are proportional to the individual
risk tolerances. More risk tolerant agents see their beliefs better represented
in the collective decision making under uncertainty. This intuitive result has
several important consequences.
Observe first that, as initially observed by Hylland and Zeckhauser (1979),1

the efficient aggregation of beliefs cannot be disentangled from the risk at-
titude of the group’s members. Except in the case of constant absolute risk
aversion, this individual risk attitudes depends upon the allocation of con-
sumption in the group. It implies that the efficient collective probability
distribution will be a function of the wealth per capita in the group. The
representative agent has state-additive preferences as under the standard ex-
pected utility model, but the different terms of the sum cannot be written
as a product of a probability that would depend only upon the state by a
utility that would depend only upon consumption. Equivalently, this means
that the representative agent has a state-dependent utility function, despite
the fact that all members of the group have state-independent preferences.
Drèze (2001) and Drèze and Rustichini (2001) examine the effect of the state
dependency of the utility function for risk management and risk transfers.
Another way to interpret this result is that the collective probability distri-
bution depends upon the aggregate wealth level. Wilson (1968) showed that
this wealth effect vanishes only when agents have an absolute risk tolerance
that is linear with the same slope. We reexamine this wealth effect when this
condition is not fulfilled.
The efficient aggregation result for beliefs states that the rate of change

of the collective probability across states is a weighted mean of the rate of
changes of individual probabilities. This result must be compared to the
observation that the state probability used by the representative agent does
not need to be in between the smallest and the largest state probabilities of

1See also Mongin (1995), and Gilboa, Samet and Schmeidler (2001). Our work differs
much from this branch of the literature by allowing trade.
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the agents. We will exhibit numerical counterexamples to this in the paper.
Notice however that when deciding about transfers of wealth across states,
what really matters are relative state prices per unit of probability. Thus
the rate of change in the collective probabilities across states is the relevant
information for determining the collective risk exposure, and our aggregation
formula provides exactly that information.
The main objective of the paper is to determine how the divergence of

opinions about the true probability distribution of the states of nature affects
the optimal collective risk exposure, and the equilibrium asset prices. Let
us compare two states of nature such that all individual probabilities for the
second state are k percents larger than those of the first state. A direct
consequence of our aggregation rule is that the collective probability will
also be increased by k percents. Two classical aggregation rules satisfy this
necessary condition. Under the geometric (arithmetic) mean approach, the
collective state probability is assumed to be proportional to the geometric
(arithmetic) Pareto-weighted mean of the individual subjective probabilities
for that state.
The geometric mean approach for the aggregation of beliefs is socially

efficient only if all members of the group have the same utility function ex-
hibiting constant absolute risk aversion. When this condition is not fulfilled,
the rate of change in the collective probability will dependent upon the rel-
ative degree of disagreement in the two states under consideration. We say
that there is increasing disagreement if those agents with a larger subjec-
tive probability for the initial state also have a larger rate of increase of the
likelihood of the second state relative to the first. We show that decreas-
ing absolute risk aversion (DARA) implies that the geometric aggregation
rule underestimates the effect of an increase in disagreement on the collec-
tive probability. To illustrate, suppose that Mrs Jones has a larger subjective
probability for a flood to occur this year than Mr Jones. Compared her own
beliefs about floods, Mrs Jones has a subjective probability for the risk of
an earthquake that is k percents larger, whereas Mr Jones has a subjective
earthquake probability that is k percents smaller than his estimate of the
probability of a flood. Thus, the geometric mean probability in the couple is
the same for the two risks, but there is more disagreement about the likeli-
hood of an earthquake than for a flood. Under DARA, it implies that, when
Mr and Mrs Jones decide about their collective prevention efforts and insur-
ance, they should use a larger probability of occurrence for an earthquake
than for a flood.
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The alternative aggregation rule would be to take the arithmetic (Pareto-
weighted) mean of individual probabilities for the collective beliefs. It is easily
shown from the efficient aggregation rule that the arithmetic mean approach
is efficient if and only if all agents have a logarithmic utility function. We
show that this approach overestimates the effect of an increase in disagree-
ment on the collective probability, if the sensitivity of absolute risk tolerance
to changes in consumption is smaller than for the log utility function. Under
constant relative risk aversion, this means that relative risk aversion is larger
than unity, a plausible assumption. Suppose again that Mr and Mrs Jones
have a subjective flood probability of respectively pMr and pMrs > pMr. Sup-
pose also that for earthquake, Mr Jones has a probability pMr − k, and Mrs
Jones has a probability pMrs + k. Here, the arithmetic means of individual
probabilities are the same for the two events, and there is more disagreement
for an earthquake than for a flood. Then, if relative risk aversion is larger
than unity, the collective probability for an earthquake should be smaller
than for a flood. This result has first been obtained by Varian (1985) and
Ingersoll (1987). We extend it to the comparison of states where the means
of individual probabilities are not equal.
These results describe how the heterogeneity of beliefs affects the dif-

ference in collective probabilities for any pair of states. Going from this
partial analysis to a more global one, it is necessary to describe the structure
of disagreements across states. This would be useful to determine whether
the collective distribution function be stochastically dominated by the mean
subjective distribution. Cecchetti, Lam and Mark (2000) and Abel (2002)
examine the effect of a change in the beliefs of the representative agent on
the equity premium. Contrary to us, they assume that all agents have the
same beliefs that deviate from what could be inferred from the existing data.
However, their work is useful to us because once the beliefs of the represen-
tative agent is obtained, our model becomes equivalent to an economy with
homogeneous beliefs that can differ from a reference probability distribution.
It is not true in general that a first-order-stochastically dominated shift in the
subjective distribution of aggregate consumption raises the equity premium.
Abel (2002) defines the notion of uniform pessimism by a leftward translation
of the objective distribution of the aggregate consumption. He shows that
uniform pessimism raises the equity premium. We provide another result
which states that transferring probability mass from the wealthiest states
uniformly to the other states also unambiguously raises the equity premium.
Now, if most of the disagreement is concentrated on the likelihood of a boom,
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and if relative risk aversion is larger than unity, we know that this state should
have a collective probability that is less than its mean individual probability.
Thus, such concentration of disagreement on the boom state provides exactly
the kind of transformation of the collective probability distribution for which
we know that it raises the equity premium. We provide a numerical illustra-
tion that shows that a disagreement on the likelihood of a boom may have
a sizeable positive effect on the equity premium. In a plausible simulation,
it multiplies the equity premium by 4. The bad news is that the equity pre-
mium is reduced when most of the disagreement is about the likelihood of
a krach. Calvet, Grandmont and Lemaire (2001) also examine the effect of
heterogenous beliefs on the equity premium. They are able to sign this effect
when the relative risk aversion of the representative agent is decreasing with
average wealth.2

The structure of the paper is as follows. Section 2 is devoted to the de-
scription of the aggregation problem when agents have heterogeneous pref-
erences and beliefs. In section 3, we solve the risk-taking decision problem
of the representative agent, assuming that collective preferences are known.
We show how to aggregate individual risk tolerances and individual beliefs
in this framework in section 4. In section 5, we examine the problem of the
multiplicative separability between utility and probability. In section 6, we
define our concept of increasing disagreement, and we determine its effect
on the collective degree of optimism. Section 7 provides a global analysis of
the effect of the heterogeneity of beliefs on the collective probability distri-
bution and the equity premium. An analysis specific to the two-state case is
presented in Section 8. Finally, we present concluding remarks in section 9.

2 The aggregation problem

We consider an economy or a group of N heterogeneous agents indexed by
θ = 1, ..., N. Agents extract utility from consuming a single consumption
good. The model is static with one decision date and one consumption date.
At the decision date, there is some uncertainty about the state of nature

2Hara and Kuzmics (2001) obtained independently results about how to aggregate risk
aversion when beliefs are homogeneous.
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s that will prevail at the consumption date. The set of possible states of
nature is denoted S ⊂ R. Agents are an expected-utility maximizer with
a state-independent utility function u(., θ) : R → R where u(c, θ) is the
utility of agent θ consuming c. We assume that uc = ∂u/∂c is continuously
differentiable and concave in c. As in Calvet, Grandmont and Lemaire
(2001), we focus on interior solutions. To guarantee this, we assume that
limc→0 ∂u/∂c = +∞ and that limc→+∞ ∂u/∂c = 0.
We also assume that each agent θ has beliefs that can be represented by a

density function p(., θ) : S → R+. Agents differ not only on their utility and
beliefs, but also on their state-dependent wealth: ω(s, θ) denotes the wealth
of agent θ in state s. E denotes the expectation operator with respect to eθ ,
i.e., Ef(eθ) =PN

θ=1 f(θ)/N .
The group must take a decision towards a collective risk. This can be a

portfolio choice, or a decision to invest in a prevention activity to reduce a
global risk. In any case, the problem is to transfer wealth across states at
an exogenously given exchange rate. The standard paradigm to analyze this
problem is the Arrow-Debreu framework. We assume that there is a complete
set of Arrow-Debreu securities in the economy. The equilibrium price of the
Arrow-Debreu security associated to state s is denoted π(s, θ) > 0. It means
that agent θ must pay π(s) ex-ante to receive one unit of the consumption
good if and only if state s occurs. We normalize prices in such a way thatR
S
π(s, θ) = 1.
A consumption plan is described by a function C(., .) : S × Θ→ R . The

consumption per capita in state s is denoted z(s) :

EC(s,eθ) = z(s) (1)

for all s ∈ S. The mean initial endowment is denoted ω(s) = Eω(s,eθ).When
the group is active on contingent markets, z and ω need not to be equal.
The crucial assumption of this paper is that the group can allocate risks

efficiently among its members. An allocation C(., .) : S × Θ→ R+ is Pareto-
efficient if it is feasible and if there is no other feasible allocation that raises
the expected utility of at least one member without reducing the expected
utility of the others. For a given Pareto-weight function λ(.) : Θ → R+,
normalized in such a way that Eλ(eθ) = 1, the group would select the portfolio
of Arrow-Debreu securities and the allocation of the risk within the group
that maximize the weighted sum of the members’ expected utility under the
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feasibility constraint:

max
C
E

·
λ(eθ)Z

S

p(s,eθ)u(C(s,eθ),eθ)ds¸ (2)

s.t.

Z
S

π(s)E
h
C(s,eθ)− ω(s,eθ)i ds = 0. (3)

It is useful to decompose this decision problem into two stages. Consider
a specific state s and define

v(z, P ) = max
c0(z,.,θ)

E
h
λ(eθ)p(eθ)u(c(z, P,eθ),eθ)i s.t. Ec(z, P,eθ) = z, (4)

where P = (p(1), ..., p(N)) is a vector of N individual probabilities associated
to the state under scrutiny. In this cake-sharing problem, z represents the
consumption per capita, and v(z, P ) is the maximum sum of the members’
utility weighted by the product of the Pareto weights (λ(1), ...,λ(N)) and
the subjective probabilities P . Our notation makes explicit that the efficient
allocation c and the value function v depend upon the vector P of individual
subjective probabilities associated to the state under scrutiny. Notice that
by construction, v is homogenous of degree 1 with respect to P.
The second stage is a collective portfolio problem in which the group

selects the state-dependent sizes of the cake that maximizes the sum of v
across the states:

max
z(.)

Z
S

v(z(s), P (s))ds s.t.

Z
S

π(s) [z(s)− ω(s)] ds = 0, (5)

where P (s) = ((p(s, 1), ..., p(s,N)) is the vector of subjective state probabili-
ties across agents. Obviously, combining these two-stage problems generates
the solution to program (2), with C(s, θ) = c(z(s), P (s), θ).
Notice that the v function describes the risk attitude and beliefs of the

representative agent in the sense of Constantinides (1982). It can be inter-
preted as the product of the collective state probability by the collective
utility for consumption per capita z. However, it is not true in general
that the representative agent has preferences and beliefs that are multiplica-
tively separable as in the standard expected utility model. In other words,
the subjective probability distribution of the representative agent may be
wealth-dependent, or equivalently, the utility function of the representative
agent may be state-dependent. This is why we considered the non-separable
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case in the previous section. Being neither a probability nor a utility, but
rather the contribution of the state to ex-ante expected utility, v will here-
after be referred to as the contribution function.3

3 Efficient collective risk exposure

In this section, we examine the determinants of the efficient collective risk
exposure, assuming that the contribution function v is known. It solves
problem (5) whose first-order condition is written as:

vz(z(s), P (s)) = ξπ(s), (6)

for all s ∈ S. This first-order condition defines the optimal risk exposure z(s)
as a function Z of π(s) and P (s) : z = Z(π, P ). We consider the effect on Z
of a marginal change of the state price π and of the vector P of individual
probabilities. Fully differentiating condition vz(Z, P ) = ξπ yields

vzzdZ +
NX
θ=1

vzp(θ)dp(θ) = ξdπ.

Eliminating the Lagrange multiplier from the above equation by using equa-
tion (6) implies that

dZ = T v(Z,P )

"
NX
θ=1

vzp(θ)(z, P )

vz(z, P )
dp(θ)−

dπ

π

#
, (7)

where T v is the absolute risk tolerance of the group, which is defined as

T v(z, P ) = −
vz(z, P )

vzz(z, P )
. (8a)

Equation (7) describes how the optimal consumption per capita varies across
states as a function of the distribution of individual beliefs and of state prices.
Seen from ex-ante, it describes the efficient risk exposure of the group. The

3Wilson (1968) calls it the evaluation measure. Wilson takes it as a function of z and s.
It is obvious however that it depends upon the state s only through the vector of individual
probabilities P (s). We make this explicit in our approach by making v dependent of P.
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simplest case is when there is a single agent in the group with individual
probability p, which implies that equation (7) simplifies to

dZ = T u(Z, 1)

·
dp

p
−
dπ

π

¸
, (9)

where T u(z, θ) = −uc(z, θ)/ucc(z, θ) is the agent θ’s risk tolerance. If higher
states are better from the point of view of an external observer, he can
interpret dp(s)/p(s) as a local index of optimism of the agent. The variability
of state consumption is proportional to the difference between the agent’s
degree of optimism and the price volatility dπ(s)/π(s). In the special case of
actuarially fair prices, π/p is independent of the state, which implies that the
bracketed term in (9) vanishes. As is well-known, a risk-free position would
be optimal in that case. On the contrary, when there are two states s and s0

such that d ln p is larger than d lnπ, equation (9) implies that the agent will
consume more in state s0 than in state s. This is because the agent perceives
consumption in state s0 as cheaper in actuarial terms than consumption in
state s. The willingness to take advantage of the cheaper state consumption
is limited ex-ante by risk aversion. As stated by equation (9), the optimal
risk exposure is proportional to the agent’s risk tolerance.
The extension of this standard optimal rules for individual portfolio choice

to collective decision making is described by equation (7). Let us define
function R as

R(z, P, θ) =
d ln vz(z, P )

d ln p(θ)
=
p(θ)vzp(θ)(z, P )

vz(z, P )
. (10)

R(z, P, θ) is the elasticity of the marginal contribution vz(z, P ) to change in
p(θ). By definition of the contribution function, it can also be interpreted as
the elasticity of the collective state probability to a change in the subjective
probability of agent θ. Because vz is homogenous of degree 1 in P, it must
be that

NX
θ=1

R(z, P, θ) = 1

for all (z, P ). Property (7) can then be rewritten as

dZ = T v(Z,P )

"
NX
θ=1

R(z, P, θ)
dp(θ)

p(θ)
−
dπ

π

#
. (11)
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Function R thus describes the efficient rule for the aggregation of beliefs. By
analogy with the single agent case (9), if the subjective probability of agent
θ is increased by k percents, this would have the same effect on the collective
risk decision as an increase of the subjective probability of the representative
agent by Rk percents. If R = 1/N , the representative agent has no bias in
the aggregation of individual beliefs.
Keeping in mind equation (11), the remaining of the paper is devoted to

this characterization of T v(z, P ) and R(z, P, θ) of the collective contribution
function v, which is defined by the cake-sharing program (4). Its first-order
condition is written as

λ(θ)p(θ)uc(c(z, P, θ), θ) = ψ(z, P ) = vz(z, P ), (12)

for all (z, P ), and for all θ = 1, ..., N. The second inequality comes from the
envelop theorem.

4 The aggregation rules

In this section, we characterize the group’s degree of tolerance to risk on the
wealth per capita z and the group’s beliefs as functions of the primitives of
the model, i.e., u and p.
The collective attitude towards risk depends upon how this collective risk

is allocated to the members’ risk on consumption. This is characterized by
∂c/∂z. Fully differentiating first-order condition (12) with respect to z and
using the feasibility constraint Ec(z, P,eθ) = z yields the following well-known
Wilson (1968)’s result:

dc =
T u(c(z, P, θ), θ)

ET u(c(z, P,eθ),eθ)dz. (13)

One can interpret this property of the efficient risk-sharing rule as follows:
suppose that there are two states of nature that are perceived to be identi-
cal by all agents (p(s,eθ) = p(s0,eθ)), expect for the mean income z. Equa-
tion (13) shows how to allocate the collective wealth differential in the two
states. Observe that the positiveness of the right-hand side of (13) means
that individual consumption levels are all procyclical, ceteris paribus. More
risk-tolerant agents should bear a larger fraction of the collective risk.
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From this efficient collective risk-sharing rule, it is easy to derive the
degree of risk tolerance of the group as a whole. Wilson (1968) obtains that

T v(z, P ) = ET u(c(z, P,eθ),eθ). (14)

The group’s absolute risk tolerance is the mean of its members’ tolerance.
There is no bias in the aggregation of individual risk tolerances. We conclude
that this rule already valid in the simpler Wilson’s model is robust to the
introduction of heterogeneous expectations.
In the classical case with homogeneous beliefs, an important property of

any Pareto-efficient allocation of risk is the so-called mutuality principle. It
states that efficient individual consumption levels depend upon the state only
through the wealth per capita z. Its economic interpretation is that all diver-
sifiable risks are eliminated through sharing. In this classical case, the wealth
level per capita z is a sufficient statistic for efficient individual consumption
levels. The mutuality principle is obviously not robust to the introduction
of heterogeneous beliefs because efficient allocation plans c(z, P, θ) depend
also upon the distribution of individual subjective probabilities associated to
the state. For example, agents will find mutually advantageous exchanges of
zero-sum lotteries in order to gamble on states that they believe to be more
likely than their counterpart. In the following, we examine the effect of a
change in the distribution of individual probabilities P on the allocation of
wealth and on the marginal contribution vz.
The aggregation of beliefs cannot be disentangled from how the hetero-

geneity of beliefs affects the allocation of risk in the group. In the following
Proposition we derive altogether the aggregation rule of beliefs and the al-
location of diversifiable risks. The comparative exercise there and in the
remaining of the paper consists in comparing two states of nature s and s0

with P (s0) = P (s) + ∆P. It does not consist in increasing the subjective
probability of state s by agent θ. We do not modify the structure of the
beliefs in the economy.

Proposition 1 The elasticity of the collective state probability to the subjec-
tive state probability of agent θ is proportional to agent’s θ risk tolerance:

R(z, P, θ) =
d ln vz(z, P )

d ln p(θ)
=

T u(c(z, P, θ), θ)

N ET u(c(z, P,eθ),eθ) . (15)
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The efficient allocation of consumption satisfies the following condition:

dc(z, P, θ)

d ln p(θ0)
=


T u(c(z, P, θ), θ)

"
1−

T u(c(z, P, θ), θ)

N ET u(c(z, P,eθ),eθ)
#
if θ = θ0

−
T u(c(z, P, θ), θ)T u(c(z, P, θ0), θ0)

N ET u(c(z, P,eθ),eθ) if θ 6= θ0.

(16)

Proof: Fully differentiating the first-order condition (12) with respect to
p(θ0) and dividing both side of the equality by λpuc = ψ yields

dc(z, P, θ) = −T u(c(z, P, θ), θ)
dψ

ψ
(17)

for all θ 6= θ0, and

dc(z, P, θ0) = T u(c(z, P, θ0), θ0)
·
dp(θ0)
p(θ0)

−
dψ

ψ

¸
. (18)

By the feasibility constraint, it must be that Edc(z, P,eθ) = 0. Replacing
dc(z, P, θ) by its expressions given above implies that

dψ

ψ
=

T u(c(z, P, θ), θ)

N ET u(c(z, P,eθ),eθ) dp(θ
0)

p(θ0)
. (19)

Combining (17), (18) and (19) yields (16). By the envelop theorem, we also
know that vz(z, P ) = ψ(z, P ). It implies that

d ln vz(z, P ) =
dψ

ψ
. (20)

Combining equations (19) and (20) yields property (15).¥
Let us first focus on property (16). Ceteris paribus, an increase in the

state probability by agent θ increases his efficient consumption and it reduces
the consumption by all other members of the group. Ex-ante, this means
that the members take risk on their consumption even when there is no
social risk, i.e., when z is state independent. Agents take a long position on
states that they perceive to have a relatively larger probability of occurrence
relative to the other members of the group. This illustrates the violation of
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the mutuality principle. Notice that the size of these side bets among the
members of the group is proportional to the members’ risk tolerance. At the
limit, if an agent θ has a zero tolerance to risk, it is not efficient for him to
gamble with others in spite of the divergence of opinions in the group.
Condition (15) provides a nice characterization of the aggregation of in-

dividual beliefs in groups that can share risk efficiently. The elasticity of
the collective probability to a change in an agent’s subjective probability is
proportional to that agent’s degree of absolute risk tolerance. Thus, the ag-
gregation of individual beliefs is biased in favor of those agents who are more
risk tolerant. Combining properties (15) and (13), we obtain that

R(z, P, θ) =
1

N

dc(z, P, θ)

dz
. (21)

The collective probability distribution is biased towards those who actually
bear the collective risk in the group.
In the remaing of the paper, we use the aggregation rule (15) to derive

properties of the collective probability distribution.

5 Wealth effect on the aggregation of beliefs

The fact that all members of the group have a multiplicatively separable con-
tribution function p(s, θ)u(c, θ) does not imply that the contribution func-
tion of the representative agent inherits this property from them. In other
words, it is not necessarily true that v(z, P ) = pv(P )h(z), where pv(P ) could
be interpreted as the collective probability of a state whose distribution of
subjective state probabilities across agents is P = (p(1), ..., p(N)), and h(z)
would be the utility of mean wealth z. This non-separability implies that the
collective tolerance to risk T v is a function of P , and that the aggregation
rule R for beliefs depends upon wealth z. The equivalence between these two
non-separability properties of the contribution function is expressed by the
following equality:

∂(−1/T v(z, P ))

∂p(θ)
=

∂R(z, P, θ)

∂z
.

When the contribution is not multiplicatively separable, one can say that the
representative agent has a state-dependent utility function, or equivalently,
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that its subjective probability distribution is sensitive to changes in aggregate
wealth.
We start with a rephrasing of another Wilson’s result where such a wealth

effect does not exist. It corresponds to situations where the derivative of indi-
vidual risk tolerances ∂T u/∂c are all identical and consumption independent.
The corresponding set of utility functions is referred to as ISHARA. A util-
ity function has an Harmonic Absolute Risk Aversion (HARA) if its absolute
risk tolerance is linear in consumption: ∂T u/∂c(c, θ) = 1/γ(θ) for all c.
A set of utility functions satisfies the Identically Sloped HARA (ISHARA)
property if their absolute risk tolerances are linear in consumption with the
same slope: γ(θ) = γ for all θ. The set of utility functions that satisfies these
conditions must be parametrized as follows:

u(c, θ) = κ

µ
c− a(θ)

γ

¶1−γ
(22)

These utility functions are defined over the consumption domain such
that γ−1( c− a(θ)) > 0. When γ > 0, parameter a(θ) is often referred to as
the minimum level of subsistence. This preference set includes preferences
with heterogeneous exponential utility functions u(c, t, θ) = − exp(−A(θ)c)
when γ tends to +∞, and a(θ)/γ tends to −1/A(θ). Taking a(θ) = 0 for all
θ, it also includes the set of power (and logarithmic) utility functions with
the same relative risk aversion γ for all θ.

Proposition 2 The aggregation rule R for beliefs is independent of the wealth
per capita in the group if and only if the members of the group have ISHARA
preferences (22):

∂R(z, P, θ)

∂z
= 0 ∀(z, P, θ) ⇐⇒

∂T u(c, θ)

∂c
is independent of θ, for all c.

Proof: Fully differentiating equation (15) with respect to z and using
property (13) yields

N(ET u(ec,eθ))2
T u(c(z, P, θ), θ)

∂R

∂z
(z, P, θ) =

∂T u

∂c
(c(z, P, θ), θ)− bEzP ∂T u

∂c
(ec,eθ), (23)

where ec = c(z, P,eθ), and where bEzP is a ”risk-neutral” expectation operator
defined as bEzPf(eθ) = Ef(eθ)T u(c(z, P,eθ),eθ)

ET u(c(z, P,eθ),eθ)
15



For ISHARA preferences, ∂T u/∂c is a constant, which implies that the right-
hand side of equation (23) vanishes, and R is independent of the per capita
wealth in the group. Reciprocally, R independent of z implies that

∂T u

∂c
(c(z, P, θ), θ) = bEzP ∂T u

∂c
(c(z, P,eθ),eθ)

for all θ and P . This can be possible only if ∂T u/∂c is independent of c and
θ, which means that the group has ISHARA preferences.¥
The ISHARA condition guarantees that R remains constant when the

wealth level changes in the group. This result is equivalent to the property
that efficient sharing rules are linear in z in ISHARA groups with homogenous
beliefs. In Appendix A, we derive an analytical solution to the aggregation
problem when the ISHARA condition is satisfied.
In Proposition 2, we assumed that the derivative of individual absolute

risk tolerances be identical across agents. In the next Proposition, we show
that agents with a large sensitivity of risk tolerance to changes in consump-
tion have a share R in the aggregation of beliefs that is increasing with
wealth.

Proposition 3 To each vector (z, P ), there exists a scalar m belonging to
[minθ ∂T

u(c(z, P, θ), θ)/∂c,maxθ ∂T
u(c(z, P, θ), θ)/∂c] such that

∂R(z, P, θ)

∂z
≥ 0 if and only if

∂T u(c(z, P, θ), θ)

∂c
≥ m(z, P ).

Proof: This is a direct consequence of equation (23) with

m(z, P ) = bEzP ∂T u
∂c
(c(z, P,eθ),eθ).¥

Agents with a large sensitivity of risk tolerance to changes in consumption
are those who increase their bearing of the collective risk when the group’s
wealth increase. The result follows from the fact that the share R of agent
θ0s beliefs in the aggregation of beliefs is proportional agent θ’s share in the
group’s risk.
In the special case of utility functions exhibiting constant relative risk

aversion (CRRA), viz. u(c, θ) = c1−γ(θ)/(1 − γ(θ)), there is a negative re-
lationship between relative risk aversion γ(θ) and ∂T u(c, θ)/∂c = 1/γ(θ).
Thus, the above Proposition applied in the case of CRRA utility functions

16



0.5 1 1.5 2
z

0.3

0.4

0.5

0.6

R

Figure 1: The share R of the beliefs of a low risk-averse agent in the collective
beliefs as a function of the group’s wealth per capita.

means that less risk-averse agents have a share R in the aggregation of beliefs
that is increasing with wealth. To illustrate, suppose that there are two agents
in the group, respectively with constant relative risk aversion γ(θ1) = 1 and
γ(θ2) = 2. In Figure 1, we have drawn the share R of agent θ1’s beliefs in the
collective beliefs has a function of z, for P such that λ(θ1)p(θ1) = λ(θ2)p(θ2).
Because agent 1 is relatively less risk-averse than agent 2, this curve is upward
sloping.

6 The effect of increasing disagreement on
the collective state probability

In this section, we want to determine the effect of the divergence of opin-
ions on the collective probability distribution. The efficient collective risk
exposure is governed by how vz fluctuates with the wealth per capita and
with the distribution of individual probabilities P. In section 4, we already
determined the relationship between vz and z by characterizing the collective
tolerance T v to an aggregate risk. In the ISHARA case, this relationship is
not affected by the divergence of opinions in the population. We now turn to
the effect of the heterogeneity of beliefs on the beliefs of the representative
agent. We first consider marginal changes from P to P + dP. Latter in this
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section, we extend our results to comparing two distributions of individual
state probabilities P and P 0. We want to determine the sign of vzP (z, P )
in the small, or to compare vz(z, P 0) to vz(z, P ) in the large. If vz(z, P 0) is
larger than vz(z, P ), the demand for the contingent claim is increased by the
shift in the distribution of beliefs from P to P 0. Ceteris paribus, the opti-
mal consumption per capita in the group would be increased by this shift.
Equation (11) describes the link between the optimal state consumption per
capita and the distribution of individual beliefs in a more precise way.
The effect of a shift in distribution on the collective probability depends

upon the dispersion of individual beliefs in a complex way. As a benchmark,
consider the proportional shift in distribution with P 0 = kP for some scalar
k 6= 1. Each member of the group believes that state s0 is k time more likely
than state s. The decision problem (4) is unchanged by this multiplicative
change in the parameters of the problem. The efficient allocation of z will
be the same in the two states, and vz(z, kP ) = kvz(z, P ), for all z and P .
Thus, as stated before, v and its partial derivatives with respect to z are
homogeneous of degree 1 in the vector of individual probabilities P . In the
following, we define a family of shifts in P that are not proportional.
In order to focus on the heterogeneity of beliefs, we assume in this section

that risk preferences are homogenous: ∂T u/∂θ ≡ 0. We first define the notion
of increasing disagreement.

6.1 Increasing disagreement in the small and in the
large

With proportional shifts in the distribution of individual probabilities, the
rate of change d ln p(θ) is the same for all θ: d ln p(θ) = k d ln p. We say
that the degree of disagreement on the probability is unaffected. As said
above, such a shift raises the collective probability by the same factor k. We
hereafter define a concept of increasing disagreement that is based on the
Monotone Likelihood Ratio (MLR) order. However, the main ingredient in
this section is not the individual subjective probabilities p(θ), but rather the
Pareto-weighted ones q(θ) = λ(θ)p(θ). We say that a marginal shift dP yields
increasing disagreement if those agents with a larger q(θ) also have a larger
rate of increase d ln q(θ) = d ln p(θ). Compared to a proportional increase,
the distribution of individual probabilities becomes more dispersed.

Definition 1 Consider a specific distribution of individual probabilities P =
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(p(1), ..., p(N)) and a specific Pareto-weight vector (λ(1), ...,λ(N)). We say
that a marginal shift dP yields increasing disagreement if q(eθ) = λ(eθ)p(eθ)
and d ln q(eθ) are comonotone: for all (θ, θ0) :

[q(θ0)− q(θ)] [d ln q(θ0)− d ln q(θ)] ≥ 0. (24)

Those with a larger subjective probability also have a larger rate of in-
crease of their probability. If we assume without loss of generality that q is
increasing in θ, this is equivalent to require that p(θ0)/p(θ) be increased by
the shift whenever θ0 > θ. This is a MLR property. Notice that our defini-
tion of increasing disagreement does not constrain in any way how the mean
(log) (Pareto-weighted) probability is affected by the shift in distribution. In
the following Proposition, we show that increasing disagreement generates
a Rothschild-Stiglitz (1970) spread in the distribution of Pareto-weighted
individual log probabilities.

Proposition 4 Any marginal shift dP that preserves the mean E ln q(eθ) is
an increase in disagreement if and only if it generates a Rothschild-Stiglitz
increase in risk of ln q(eθ). Any marginal shift dP that increases disagreement
and preserves the mean Eq(eθ) generates a Rothschild-Stiglitz increase in risk
of q(eθ).
Proof: We check that for any concave function h, Eh(ln q(eθ)) is decreased

by the marginal shift dP . Suppose without loss of generality that q is increas-
ing in θ. Because dP is an increase in disagreement, we have that d ln q(θ) is
increasing in θ. By the covariance rule, it implies that

dEh(ln q(eθ)) = E hh0(q(eθ))d ln q(eθ)i · Eh0(q(eθ))Ed ln q(eθ) = 0. (25)

The last equality comes from the assumption that dP preserves the mean
of ln q(eθ). This proofs the sufficiency part of the first statement. The proof
of necessity is by contradiction. Suppose that d ln q(θ) is not increasing in
the neighborhood K of some θ0. Then, inequality (25) is reversed for any
function h that is linear outside K and concave in K, thereby contradicting
the condition that d ln q(eθ) yields a Rothschild-Stiglitz increase in risk of
ln q(eθ). The proof of the second statement of the Proposition follows the
some line as the sufficiency proof above by replacing function h by functionbh(.) = h(ln(.)), which is concave if h is concave.¥
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Our assumption of increasing disagreement is more restrictive than the
Rothschild-Stiglitz notion of an increase in risk in the distribution of individ-
ual probabilities. The latter just requires that q(θ) and dq(θ) be comonotone,
whereas the former requires that q(θ) and d ln q(θ) be comonotone, which is
more demanding.
We can also examine non marginal changes in distribution by comparing

two distribution P0 and P1. Our definition of an increase in disagreement ”in
the large” is as follows.

Definition 2 Consider a specific Pareto-weight vector (λ(1), ...,λ(N)). We
say that P1 yields more disagreement than P0 if q0(eθ) = λ(eθ)p0(eθ) and
ln q1(eθ)− ln q0(eθ) are comonotone: for all (θ, θ0) :

[q0(θ
0)− q0(θ)]

·
ln
q1(θ

0)
q0(θ

0)
− ln

q1(θ)

q0(θ)

¸
≥ 0.

If q0 is increasing in θ, this is equivalent to require that (P0, P1) satisfies
the Monotone Likelihood Ratio (MLR) property that p1(θ)/p0(θ) be increas-
ing in θ. Because agents with a larger lnq under P0 get a larger increase in
log probabilities under P1, it implies that the distribution of log probabilities
under P1 is a spread of the individual log probabilities under P0. Thereby, it
amplifies the dispersion of q(eθ).
It is useful to decompose any shift in distribution from P0 to P1 as a se-

quence of infinitesimal changes in probabilities dP (τ) = (dp(τ , 1), ..., dp(τ , N))
indexed by τ going from 0 to 1 with

P (t) = P0 +

Z t

0

dP (τ) ≥ 0 and P (1) = P1.

Among the various ways to do this, we are interested in the paths P (.) that
preserve the property of increasing disagreement for each infinitesimal change
dP (τ) in the vector of individual probabilities. The following Lemma proves
that such paths exist.

Lemma 1 If P1 exhibits more disagreement than P0, there exists a path P (.)
linking P0 to P1 in which each increment dP (τ) yields an increase in dis-
agreement.
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Proof: We check that P (t) = P t1P
1−t
0 = P0 exp[t lnP1/P0] satisfies this

property. Define q(t, θ) = λ(θ)p(t, θ) = λ(θ)p1(θ)
tp0(θ)

1−t. It implies that

d ln q(t, θ) = ln
p1(θ)

p0(θ)
dt, (26)

which is independent of t. Without loss of generality, suppose that P0 is such
that q0(1) · q0(2) · ... · q0(N). Because P1 exhibits more disagreement
than P0, it must be that p1(θ)/p0(θ) = q1(θ)/q0(θ) be increasing in θ. Com-
bining this with equation (26) implies that the right bracketed term in (24)
is positive if θ0 > θ. It remains to prove that λ(θ)p1(θ)tp0(θ)1−t is increasing
in θ. This is immediate from the observation that

λ(θ)p1(θ)
tp0(θ)

1−t = q1(θ)tq0(θ)1−t = q0(θ)
·
q1(θ)

q0(θ)

¸t
is the product of two positive increasing functions of θ. Notice that this
implies that λ(θ)p(t, θ) increases with θ at a rate that increases with t,or
that λ(θ)p(t, θ) is logsupermodular. ¥
This Lemma is useful because it allows us to focus on marginal changes in

distribution. Any result holding for increasing disagreement in the small can
be extended to increases in disagreement in the large. For example, because
a sequence of increases in risk is an increase in risk, Proposition 4 implies
that P1 is riskier than P0 in the sense of Rothschild-Stiglitz if P1 exhibits
more disagreement than P0 and Eq1(eθ) = Eq0(eθ).
Consider an initial distribution P = (p(1), ..., p(N)) of individual proba-

bilities, and a shift dP = (dp(1), ..., dp(N)) in this distribution. We hereafter
examine the effect of this shift on the collective probability. From definition
(10) of the aggregation function R(z, P, θ), we have that

d ln vz(z, P ) =
NX
θ=1

R(z, P, θ)
dp(θ)

p(θ)
.

Using Proposition 1 together with the assumption that all agents have the
same utility function, this can be rewritten as

d ln vz(z, P ) =
E
h
T u(c(z, P,eθ))d ln p(eθ)i
ET u(z, P,eθ) . (27)
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The left-hand side of this equality can be interpreted as the rate of increase
in the collective probability. Equation (27) states that it is a weighted mean
of the rate of increase in the individual probabilities. The weights are pro-
portional to the individual absolute risk tolerance.

6.2 The geometric mean approach

In the special case of constant absolute risk aversion (CARA), T u is constant.
It implies that equation (27) can be rewritten in this special case as

d ln vz(z, P ) = Ed ln p(eθ). (28)

This means that the contribution function v(z, P ) can be written as a product
of a collective utility h(z) by a collective probability pv(P ) that takes the form
of

pv(P ) = a

"
NY
θ=1

p(θ)

#1/N
, (29)

where a is a normalizing constant that guarantees that
R
S
pv(P (s))ds = 1. In

the CARA case, the efficient collective state probabilities are proportional to
the geometric average of the individual state probabilities. This is called the
geometric aggregation rule for beliefs. In this section, we suppose that the
social planner takes this geometric aggregation rule of individual beliefs into
consideration, and we determine the error that it generates when the CARA
condition on individual preferences is not satisfied.
Under the geometric aggregation rule, a shift in the distribution dP that

preserves the geometric mean has no effect on the collective probability. Sup-
pose that, comparing to a reference state, we examine an alternative state
where the probability of Mr Jones is increased by k+ ε% and the probability
of Mrs Smith is reduced by k−ε%. The couple using the geometric mean ap-
proach would increase the probability of this alternative state by k% without
taking into account of their increased divergence of opinions. However, the
socially efficient rule would increase the collective probability by ηk, where
η is defined by

η(z, P, dP ) =
d ln vz(z, P )

1
N

PN
θ=1 d ln p(θ)

.

When η is larger (smaller) than unity, using the geometric aggregation rule
would underestimate (overestimate) the rate of increase of the collective
probability. Thus η − 1 measures the error of using the geometric rule.

22



We see that η(z, P, dP ) is larger than unity if and only if

E
h
T u(c(z, P,eθ))d ln p(eθ)i ≥ E hT u(c(z, P,eθ))i E hd ln p(eθ)i . (30)

When it is T u is not constant, the allocation of consumption in the group
will affect the weights in the aggregation formula (27). Suppose without loss
of generality that q(θ) = λ(θ)p(θ) is increasing in θ. Combining the first-
order condition (12) with risk aversion implies that c(z, P, θ) is increasing in
θ. Under decreasing absolute risk aversion (DARA), it implies in turn that
T u(c(z, P, θ)) is also increasing in θ. In short, the definition of increasing
disagreement just guarantees that T u and d ln p be comonotone under DARA.
Applying the covariance rule to E [T ud ln p] directly implies (30), or η ≥ 1.
Of course, switching to either increasing absolute risk aversion or decreasing
disagreement would yield η · 1.

Proposition 5 Suppose that the individual utility functions are identical.
The following two conditions are equivalent:

1. For any wealth z, any initial distribution of individual probabilities P
and any shift dP yielding increasing disagreement, the geometric mean
approach underestimates the rate of increase of the collective probability:
η(z, P, dP ) ≥ 1;

2. Absolute risk aversion is decreasing: ∂T u/∂c ≥ 0.

Proof: The sufficiency of DARA has been proved above. Suppose now
by contradiction that T u is locally decreasing in the neighborhood B of c0.
Then, take z = c0 and an initial distribution P (ε) such that λ(θ)p(θ) =
k + εθ for all θ. When ε = 0, c(z, P (0), θ) = c0 for all θ. Take a small
ε such that c(z, P (ε), θ) remains in B for all θ. By assumption, the shift
dP exhibits increasing disagreement, which means that c(z, P (ε), θ) and
d ln p(θ) are comonotone. This implies that T u(c(z, P (ε), θ)) and d ln p(θ)
are anti-comonotone, thereby reversing the inequality in (30). This implies
that DARA is necessary for property 1.¥
Under DARA, a mean-preserving spread in log probabilities, in the small

or in the large, always raises the collective probability. The intuition of this
result is easy to derive from the central property (15) of the aggregation of
heterogeneous beliefs. Under DARA, this property states that those who
consume more see their beliefs better represented in the aggregation. But by
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definition of an increase in disagreement, those who consume more are also
those who have a larger rate of increase in their subjective probability. We
conclude that, because of the bias in favor of those who consume more, an
increase in disagreement raises the collective probability even when the mean
rate of increase in individual probabilities is zero.
When the geometric mean of individual probabilities is independent of

the state, the social planner should consider that the different states are
equally likely only when absolute risk aversion is constant. Under DARA,
doing so would underestimate the efficient collective probability of the state
with larger disagreement. Let us illustrate this result by the following ex-
ample. There are two agents, θ = 1 and θ = 2, both with a constant rel-
ative risk aversion γ = 0.1. This implies that their absolute risk aversion
is decreasing. There is a continuum of states of nature s ∈ S = [0, 1].
The beliefs of agent θ is represented by an exponential density function
p(s, θ) = δθ exp[δθs]/(exp[δθ] − 1). This means that agent θ has a constant
rate of increase δθ = d ln p(s, θ)/ds of his state probabilities . We assume that
δ1 = −δ2 = δ = 5, which implies that any change in s preserves the mean of
the log probabilities, or that the geometric mean of individual probabilities is
independent of s. When increasing state s from 0 to 1, the subjective state
probability of agent θ = 1 increases at rate δ, whereas the one of agent θ = 2
decreases at rate δ. In Figure 2, we draw these density functions. In Figure
3, we describe the efficient allocation of risk in the group when there is no
aggregate risk (z = 1) and when λ(1) = λ(2). From Figure 2, we see that
increasing s at the margin everywhere between 0 and 0.5 decreases disagree-
ment in the group, whereas marginally increasing s everywhere between 0.5
and 1 increases disagreement.
In Figure 4, we draw the collective probability density which is charac-

terized by

pv(s) = p(s, 1)

"µ
p(s, 2)

p(s, 1)

¶1/γ
+ 1

#γ
.

Because when s > 0.5 a marginal increase in s reduces disagreement, DARA
implies that the collective probability is increasing in s in this region. The
slope of the collective density function is very similar to the slope of the
density function of agent θ = 1. This is because, as seen from Figure 3,
most of the aggregate wealth is consumed by that agent in these states.
This implies that the social planner who considers transferring wealth across
states in this region will mostly be concerned by the beliefs of that agent.
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Figure 2: A set of beliefs for which the average of individual log probabilities
is independent of the state.
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Figure 3: Optimal allocation of consumption c(1, P (s), θ).
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Figure 4: The collective density function for u(c, θ) = c1−γ/(1− γ), p(s, 1) =
5 exp[5s]/(exp[5]− 1), and p(s, 2) = −5 exp[−5s]/(exp[−5]− 1).

In region s < 0.5 on the contrary, the collective probability is decreasing in
s because a larger s yields less disagreement. Most of the aggregate wealth
is consumed by agent θ = 2 in these states, which implies that the social
planner who consider transferring wealth across these states will use beliefs
whose sensitivity to changes in s is close to the one of the subjective density
function of that agent.
This is an example for which the geometric mean of individual proba-

bilities is constant. The geometric aggregation rule (29) applied in this case
would generate a uniform collective probability density represented by the
horizontal line in Figure 4. In terms of collective risk management, a social
planner using the geometric rule would not purchase enough insurance for
the states with the largest divergence of opinions, i.e., extreme states in this
example.
Figure 4 illustrate another important feature of the aggregation of beliefs.

Contrary to the intuition, the collective probability of any state s needs not to
belong to the interval bounded by minθ∈Θ p(s, θ) and maxθ∈Θ p(s, θ). This is
in sharp contrast with the rate of increase in the collective probability, which
is a weighted mean of the rate of increase in the individual probabilities, as
stated by equation (27).
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6.3 The arithmetic mean approach

In the previous section, we justified the geometric aggregation rule by con-
sidering the CARA case. Consider alternatively that all agents have a log-
arithmic utility function. Using the first-order condition (12), the optimal
consumption plan is such that

c(z, P, θ) = T u(c(z, P, θ)) = b(z, P )q(θ)

for all θ. In this case, property (27) can be rewritten as

d ln vz(z, P ) =
Eq(eθ)d ln q(eθ)

Eq(eθ) =
Edq(eθ)
Eq(eθ) = d lnEq(eθ). (31)

This means that the contribution function v(z, P ) can be written as a product
of a collective utility h(z) by a collective probability pv(P ) that takes the form
of

pv(P ) = a
1

N

NX
θ=1

λ(θ)p(θ). (32)

This describes the arithmetic aggregation rule. In a group with agents having
a logarithmic utility function, the efficient rule to aggregate heterogeneous
beliefs consists in computing for each state the Pareto-weighted mean of the
individual subjective probabilities. If two states have the same weighted
mean, they should have the same collective probability. If agents do not
have a logarithmic utility, this arithmetic aggregation rule is inefficient. The
associated error can be estimated by

φ(z, P, dP ) =
d ln vz(z, P )

d lnEq(eθ) . (33)

When φ is larger than unity, using the arithmetic aggregation rule would
underestimate the rate of increase in the collective probability generated
by the marginal shift dP. It is useful to observe that, for any increasing
disagreement dP, φ is smaller than η, as states in the following Proposition.

Proposition 6 Consider a marginal shift in distribution dP that increases
disagreement. It implies that d lnEq(eθ) is larger than dE ln q(eθ), and that

φ(z, P, dP ) · η(z, P, dP ). (34)

27



Proof: If dP yields increasing disagreement, it implies that

Eq(eθ) dq(eθ)
q(eθ) ≥ Eq(eθ) Edq(eθ)q(eθ) ,

or that d lnEq(eθ) ≥ dE ln q(eθ). The definition of η and φ directly implies
(34). ¥
When disagreement is increasing, the rate of increase of the expected in-

dividual probabilities is larger than the expected rate of increase of individual
probabilities. It implies that φ is smaller than η, or that φ > 1 =⇒ η > 1.
In words, for an increase in disagreement, requiring that the rate of increase
in the collective probability be larger than the rate of increase in the mean
individual probabilities is more demanding than it be larger than the mean
rate of increase of individual probabilities. Thus DARA is necessary but not
sufficient for φ ≥ 1.
Using equation (27), φ is larger than unity if and only if for all α

Edq(eθ) = αEq(eθ) =⇒ E

"
T u(c(z, P,eθ))

q(eθ) dq(eθ)# ≥ αE
h
T u(c(z, P,eθ))i .

(35)
The following Lemma is useful to solve this determine the condition under

which this property holds.

Lemma 2 Consider two functions f1 and f2 from X ⊂ R to R++, and
g : X → R. Then, the following two conditions are equivalent:

1. For any random variable eθ with support in X and for any constant α,
Ef1(eθ)g(eθ) = αEf1(eθ) implies that Ef2(eθ)g(eθ) · αEf2(eθ).

2. f1(θ)/f2(θ) and g(θ) are comonotone in X.

Proof: It is a direct consequence of the ”diffidence theorem” in Gollier
and Kimball (1996) (Proposition 11 in Gollier (2001)). ¥
This Lemma generalizes the covariance rule that we used to prove Propo-

sition 5.

Proposition 7 Suppose that the individual utility functions are identical.
The following two conditions are equivalent:

28



1. For any wealth z, any initial distribution of individual probabilities P
and any shift dP yielding increasing disagreement, the arithmetic mean
approach underestimates the rate of increase of the collective probability:
φ(z, P, dP ) ≥ 1;

2. The derivative of absolute risk tolerance with respect to consumption is
larger than unity: T uc (c) ≥ 1 for all c.

Proof: Because we consider the case of increasing disagreement, we can
assume without loss of generality that q and d ln q(θ) are increasing in θ. By
the first-order condition (12), c must be increasing in θ. We use Lemma 2
with f1(θ) = q(θ), f2(θ) = T u(c(z, P, θ)) and g(θ) = d ln q(θ). By the first-
order condition (12), we have that f1(θ) = ψ(z, P )/uc(c(z, P, θ)). Lemma 2
requires that f1(θ)/f2(θ) = ψ(z, P )/[uc(c(z, P, θ))T

u(c(z, P, θ))] be increasing
in θ. Because c is increasing in θ, this is true if and only if u0(c)T u(c) is
increasing in c. This is the case if

u00(c)T u(c) + u0(c)T uc (c) = u
00(c)T u(c) [1− T uc (c)] ≥ 0

for all c. This is equivalent to require that T uc (c) ≥ 1.¥
Again, an equivalent result can be obtained for non marginal changes in

distribution. Considering the particular case in which Eλ(eθ)p(eθ) is preserved
across states, we obtain the following Corollary which is due to Varian (1985)
and Ingersoll (1987).

Corollary 1 Suppose that the individual utility functions are identical. Con-
sider two distribution P0 and P1 of individual probabilities, where the Pareto-
weighted mean of individual probabilities is unchanged: Eλ(eθ)p1(eθ) = Eλ(eθ)p0(eθ).
Suppose moreover that P1 exhibits more disagreement than P0. If T uc (c) ≥ 1
for all c, then the collective subjective probability is larger under P1 than
under P0 : vz(z, P1) ≥ vz(z, P0).

Notice that

T uc (c) =
P u(c)

Au(c)
− 1 with Au(c) = −

u00(c)
u0(c)

and P u(c) = −
u000(c)
u00(c)

. (36)

Au and P u are respectively the degree of absolute risk aversion and absolute
prudence. Kimball (1990) shows that absolute prudence is useful to measure
the impact of risk on the marginal value of wealth. Namely, he shows that the
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effect of risk on the marginal value of wealth is equivalent to a sure reduction
of wealth that is approximately proportional to the product of the variance of
the risk by P u. Using equation (36), the derivative of absolute risk tolerance
is larger than unity if and only if absolute prudence is larger than twice the
absolute risk aversion:

T uc (c) ≥ 1⇔ P u(c) ≥ 2Au(c). (37)

There is a simple intuition to Corollary 1. It states that, everything else
unchanged, the group should devote more effort to finance aggregate con-
sumption in states with more disagreement if P u is larger than 2Au. The
paradigm of the veil of ignorance is useful for this intuition, using Proposi-
tion 4. Under the veil of ignorance, the cake sharing problem (4) is equiva-
lent to an Arrow-Debreu portfolio problem. More disagreement in the cake
sharing problem can be reinterpreted as more risk in the portfolio problem,
which has two conflicting effects on the marginal value of aggregate wealth
vz. The first effect is a precautionary effect. The increase in risk has an
effect on vz that is equivalent to a sure reduction of aggregate wealth that
is approximately proportional to absolute prudence. But this does not take
into account of the fact that the group does rebalance consumption towards
those who have a larger probability. This endogenous negative correlation
between the weighted probability q(θ) and individual consumption is favor-
able to the expected consumption Eλ(eθ)p(s,eθ)c(z, s,eθ). Under the veil of
ignorance, this makes the representative agent implicitly wealthier, thereby
reducing the marginal value of wealth. This wealth effect is proportional
to the rate at which marginal utility decreases with consumption. It is thus
proportional to Au. Globally, more disagreement raises the marginal value of
wealth if the precautionary effect dominates the wealth effect, or if absolute
prudence is sufficiently larger than absolute risk aversion. This provides an
intuition to condition P u ≥ 2Au, or T uc ≥ 1.

4

The assumption that agents have decreasing absolute risk aversion is a
widely accepted hypothesis in our profession. The plausibility of condition
T uc ≥ 1 is muchmore questionable. In fact, most specialists in the field believe
that T uc is smaller than unity. The argument goes as follows. In the absence
of any direct estimate of the sensitivity of absolute risk tolerance to changes

4In the Arrow-Debreu portfolio context, Gollier (2002) shows that condition Pu ≥ 2Au

is necessary and sufficient for a mean-preseving spread in the distribution of state price
per unit of probability to raise the marginal value of wealth.
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in wealth, we usually consider the CRRA specification u(c) = c1−γ/(1 − γ)
for which T u(c) = c/γ. It implies that T uc ≥ 1 if and only if γ is smaller than
unity. Relying on asset pricing data and the equity premium puzzle, one
must conclude that relative risk aversion must be much larger than unity.
Therefore, Proposition 7 should be interpreted by considering their contra-
position with T uc (c) · 1! Notice that the limit case is the logarithmic utility
function for which T uc (c) ≡ 1. This is the only case in which using the alter-
native aggregation rule based on pv(s) = a Eλ(eθ)p(s,eθ) is socially efficient.
When T uc (c) · 1, using this rule will induce the planner to demand too many
Arrow-Debreu securities in states with a low level of disagreement, and not
enough in states with a high level of disagreement. Observe that this con-
clusion is exactly opposite to the one presented in the previous subsection
when the planner use the geometric aggregation rule for individual beliefs.
In fact, when 0 · T u · 1, we get the nice property that the rate of increase
of the collective probability is in between the mean rate of increase of the
individual probabilities and the rate of increase of the mean probabilities:

Ed ln q(eθ) · d ln vz(z, P ) · d lnEq(eθ)
for an increase in disagreement.
We illustrate these results by the following example. There is a con-

tinuum of states represented by S = [0, 1]. There are two agents in the
group. The beliefs of agent θ = 1 are represented by the density function
p(s, 1) = 2s, whereas agent θ = 2 has a density function p(s, 2) = 2 − 2s.
They are represented by the dashed lines in Figure 5. We assume that agents
have the same state-independent utility function u(c) = c1−γ/(1− γ), where
γ is constant relative risk aversion. We consider the Pareto efficient allo-
cation associated to λ(1) = λ(2). Increasing s from 0 first tends to reduce
disagreement. Above s = 1/2, increasing s increases disagreement. Because
p(s) = Eλ(eθ)p(s,eθ) = 1 for all s ∈ S, these changes in disagreement preserves
the mean of q(s,eθ). We draw Figure 5 where the two plain curves are for the
efficient collective densities, respectively for γ = 10 and γ = 0.1. The efficient
collective density function is uniform when agents are logarithmic (γ = 1).
When γ = 10, the efficient density function is hump-shaped, whereas it is
U-shaped in the case of γ = 0.1. These are direct consequences of Proposition
7.
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Figure 5: The collective density function for u(c, θ) = c1−γ/(1− γ), p(s, 1) =
2s, and p(s, 2) = 2− 2s.

7 The equity premium and doubts on the oc-
currence of a boom

What are the implications of these results on the equity premium? The
equity premium is the expected excess return that is obtained at equilibrium
when accepting to bear the collective risk rather than investing in the risk
free asset. There is a specific difficulty to use this concept when there is no
agreed-upon probability distribution for the excess return. We consider the
position of the econometrician who can use a long time series of observations.
The sample average state probability q(s) equals the objective probability of
state s. For some reasons, investors disagree on these state probabilities, but
we assume that their expectations are unbiased on average: Eq(s,eθ) = q(s)
for all s ∈ S.5

The group is here reinterpreted as the set of all consumers in an exchange
economy à la Lucas (1978), which implies that the equilibrium condition

5This is in sharp contrast with Abel (2002) who assumes alternatively that investors
share their beliefs p(s, θ) = p(s) ∀θ, which are systematically biased with respect to the
objective probability distribution p∗.
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is ω(s) = z(s) for all s, where ω(s) and z(s) are respectively the mean
endowment and the mean consumption in state s. The first-order condition
of program (5) can be rewritten as an equilibrium condition as follows:

vz(ω(s), P (s)) = π(s),

where π(s) is the price of the Arrow-Debreu security associated to state s.
Suppose that investors have state-independent ISHARA utility functions.
We know from Proposition 2 that vz is multiplicatively separable in that
case: vz(ω, P ) = pv(P )h0(ω). The risk free rate equals

Rf =

·Z
S

π(s)ds

¸−1
=

·Z
S

pv(P (s))h0(ω(s))ds
¸−1

The price of equity equals

P e =

Z
S

ω(s)π(s)ds =

Z
S

pv(P (s))ω(s)h0(ω(s))ds.

The objective expected payoff of equity is equal to µ =
R
S
q(s)ω(s)ds. As in

Abel (2002), the objective equity premium is thus equal to

φ =
µ

P eRf
=

£R
S
q(s)ω(s)ds

¤ £R
S
pv(P (s))h0(ω(s))ds

¤R
S
pv(P (s))ω(s)h0(ω(s))ds

. (38)

When beliefs are homogeneous, pv(.) and q(.) coincide, and the calibration
of the parameters in equation (38) using historical data yields an equity
premium that is much smaller than the average equity premium observed
on financial markets during the last century. In this section, we examine
whether the heterogeneity of beliefs could explain this puzzle.
It is intuitive that the equity premium would be increased if the repre-

sentative agent would perceive equity as riskier than what can be inferred
by the historical data. A larger equity premium would then be necessary
to compensate for the larger subjective risk. Consider the example summa-
rized in Figure 5. Suppose that aggregate state wealth ω(s) equals s for all
s, so that the horizontal axis in this figure measures wealth. The objective
distribution of wealth is therefore uniform on [0,1] in this example. When
relative risk aversion is larger than unity, the divergence of opinions tends to
reduce the probability of the extreme states, and to raise the probability of
medium-wealth states. This means that the representative agent perceives
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the collective risk as smaller than what is given by the objective distribu-
tion. Following Proposition 7, this is due to the fact that the divergence of
opinions is strongest for the probability of the extreme events. Under the
assumption that the derivative of absolute risk aversion is less than unity,
this reduces the probability of these events, thereby reducing the risk per-
ceived by the representative agent. Solving the equity premium puzzle would
rather require concentrating the divergence of opinions to the medium-wealth
states. This is not the most plausible assumption that one can do about the
distribution of beliefs on financial markets. We will therefore not pursue this
line of research.6

Let us alternatively assume that most of the divergence of opinions is
concentrated on the probability of occurrence of a boom. The structure of
individual beliefs are similar to those described in Figure 6. Suppose that
ω(s) = s, and assume that S =]a, b]. There is a boom if s ∈ [b − ∆, b].
Individual θ believes that the probability of a boom state s is θ q(s), where
q(s). For all s < b −∆ − ε, the subjective probability of state s for agent θ
equals (1−θk) q(s)/(1−k), where k =

R b
b−∆ q(s)ds is the objective probability

of a boom. In the small interval I = [b−∆− ε, b−∆[, the individual beliefs
are selected in order to guarantee that p(s, θ) be differentiable with respect
to s. By construction, we have that d ln q(s, θ) = d ln q(s) for all θ and for all
s except in interval I. Using equation (27), this implies that

d ln pv(P (s)) = d ln q(s)

for all s except in interval I.We assume that k and ∆ are small, so that most
of the disagreement is concentrated in the boom probability. It implies that
the degree of disagreement is decreasing in interval I. Under the assumption
that T uc · 1, Proposition 7 implies that

d ln pv(P (s)) · d ln q(s)

in this interval. To sum up, the rate of increase in the collective probability
is everywhere equal to the rate of increase in the mean probability, except
in interval I where it is smaller. It implies that the representative agent has

6An additional reason for this is that it is in general not true that an increase in the
equity risk reduces the demand for equity by all risk-averse investors, thereby reducing the
equilibrium price of equity. See Rothschild and Stiglitz (1971), Gollier (1995) and Abel
(2002).
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Figure 6: Most of the divergence of opinions is concentrated on the proba-
bility of occurence of a boom. Relative risk aversion γ equals 10. The beliefs
pv of the representative agent is first-order stochastically dominated by the
mean beliefs p.

beliefs that are first-order stochastically dominated by the objective proba-
bility distribution. More specifically, the representative agent uses a density
function pv such that

pv(P (s)) =

½
k1 q(s) ≥ q(s) if s · b−∆− ε
k2 q(s) · q(s) if s ≥ b−∆.

(39)

with k1 = (1− k2k)/(1− k) ≥ 1. Perceiving equity returns as less favorable,
the representative agent would reduce his demand for equity, thereby increas-
ing the equilibrium equity premium. Figure 6 illustrates such a phenomenon.

Proposition 8 Suppose that most of the divergence in opinions is concen-
trated in the probability of occurrence of a boom. Suppose that agents have
CRRA preferences u(c) = c1−γ/(1 − γ) with γ > 1. It implies that the het-
erogeneity of beliefs raises the equity premium.

Proof: It remains to prove that a transfer of probability mass from the
wealthiest state to the other states raises the equity premium φ. In Appendix
B, we prove that P eRf is reduced by a change in the probability density
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pv that transfers probability mass from any state with wealth per capita
ω ≥ ω uniformly the other states, as in (39). This critical wealth level
ω is strictly smaller than the upper bound of the support of the wealth
distribution. It implies that the equity premium φ = µ/P eRf is increased by
the heterogeneity of beliefs when the divergence of opinions is concentrated
in the probability of occurrence of the wealthiest state.¥
In the rest of this section, we consider a credible calibration exercise whose

objective is to show that the effect of divergent opinions may have a strong
impact on the equity premium. We assume that all agents have the same
utility function with a constant relative risk aversion γ equaling 4. Suppose
that agents form expectations for the future growth rate of the economy from
observing the realized growth rates of real GDP per capita in the U.S.A.
over the 70’s and 80’s (source Penn-World data). The mean growth rate
has been 1.72% per year, and the standard deviation equalled 2.48%. This
is not far from the historical mean (1.8%) and standard deviation (3.56%)
that have been reported by Kocherlakota (1996) for the period 1889-1978.
In a situation where agents agree on the probability distribution that would
attach a probability 1/20 to each of the 20 observations, the equilibrium
equity premium would equal 0.25% per year, far below the average equity
premium of 6% observed during the last century.
Suppose alternatively that agents disagree on the probability distribution

of the growth rate of the economy. We gathered the five best years of these
two decades, for which the growth rate exceeded 3.7%. These states are re-
ferred to as boom states, whereas the other states are referred to as ”normal”
states . From our data, the objective probability of a boom equals 1/4. The
objective probability of the occurrence of a normal state is 3/4. But, for
some reason, agent of type θ attaches a probability θ not necessarily equal to
3/4 to the occurrence of a normal state. The probability of occurrence of a
boom is the only source of divergence of opinions. This means in particular
that all agents agree on the probability of 1/5 (1/15) of each of the observed
growth rates conditional to a (no-)boom. We stress the fact that our simula-
tions preserve the mean expectations which are equal to the objective ones.
More precisely, we assume that the mean eθ is 3/4. There are two groups of
equal size and with the same Pareto-weights. The members of the optimistic
group believe that the probability of occurrence of a normal state is θm that
is smaller than 3/4 , whereas the members of the optimistic group believes
that the probability of occurrence of a normal state is 1.5− θm > 3/4. Con-
sider in particular case θm = 1/2, in which case the optimistic group believes
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Figure 7: The equity premium in percent per year as a function of the degree
of heterogeneity. The degree of heterogeneity is unity when eθ is distributed
as (0.5, 1/2; 1, 1/2). It is zero for eθ ∼ (0, 75, 1/2; 0.75, 1/2). More generally,
the degree of heterogeneity is measured by 3− 4θm.

that a boom will occur with certainty, whereas the optimistic group believes
that this event will occur only with probability 1/2. With such a strong
divergence of opinions on the occurrence of a boom, the equilibrium equity
premium goes up to 0.96%. It is far to explain the equity premium puzzle,
but it multiplies almost by a factor 4 the equity premium that would have
been observed without heterogeneous beliefs. In Figure 7, we describe the
equity premium as a function of the degree of divergence of opinions. We
see that the equity premium increases with the degree of heterogeneity at an
increasing rate. The details of our computations are presented at the end of
Appendix C.

We could have alternatively assumed that most of the divergence of opin-
ions is concentrated on the probability of occurrence of a krach. Under the
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assumption that the derivative of absolute tolerance is less than unity, this
would tend to reduce the equity premium. Why shouldn’t we take into ac-
count of the extremely optimistic agents who believe that the likelihood of
a krach is high? Just because these agents will purchase insurance against
the occurrence of the krach state. At the limit, they will stay out of the
equity market. Only the optimistic agents will participate. That will have a
negative impact on the equity premium.

8 The two-state case

In this section, we consider a very specific situation in which all agents agree
on the fact that there are only two states of nature, s1 and s2, but they
disagree on the probability of these two states. This would be a natural
modeling to examine earthquake insurance markets for example. None of
the results presented earlier in this paper is helpful to describe the binary
case. In particular, the notion of increasing disagreement, which has been
instrumental to characterize the effect of the heterogeneity of beliefs on their
aggregation, is useless in the binary case. This is because p(s1,eθ) and p(s2,eθ)
must have the same degree of disagreement, since p(s2,eθ) = 1− p(s1,eθ).
Suppose that the agents have an identical state-independent utility func-

tion. Returning to the sources of the original problem, we can use the first-
order condition (12) of the cake-sharing problem (4) together with the feasi-
bility constraint to characterize the marginal value of wealth by the following
condition:

z = Ef

Ã
q(si,eθ)

vz(z, P (si))

!
,

where function f is defined as u0(f(1/t)) = t. Notice that f is increasing and
that it is concave (convex) if and only if T uc is uniformly smaller (larger) than
unity. One can define the collective probability distribution as follows:

pvi =
vz(z, P (si))

vz(z, P (s1)) + vz(z, P (s2))
.

The collective state probabilities are nonnegative and they sum up to unity.
In this section, we are interested in determining whether the collective state
probability be larger than the corresponding Pareto-weighted mean of indi-
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vidual state probabilities, i.e., whether

pvi ≥
Eq(si,eθ)

Eq(s1,eθ) +Eq(s2,eθ) .
Proposition 9 Suppose that there are only two states of nature. Suppose
also that individual Pareto-weighted state probabilities are symmetrically dis-
tributed around their mean, which implies that q(si,eθ) = qi+eε, with Eeε = 0.
If all agents have the same utility function u with T uc (c) ≥ 1 for all c, then
we have that

pv1



≥
Eq(s1,eθ)

Eq(s1,eθ) +Eq(s2,eθ) · 0.5 if Eq(s1,eθ) < Eq(s2,eθ)
=

Eq(s1,eθ)
Eq(s1,eθ) +Eq(s2,eθ) = 0.5 if Eq(s1,eθ) = Eq(s2,eθ)

·
Eq(s1,eθ)

Eq(s1,eθ) +Eq(s2,eθ) ≥ 0.5 if Eq(s1,eθ) > Eq(s2,eθ).
These inequalities are reversed if T uc (c) is smaller than unity for all c.

Proof: Suppose that Eq(s1,eθ) < Eq(s2,eθ), or q1 < q2. Define function ξ
in such a way that

z = Ef

µ
x+eε
ξ(x)

¶
for all x. By definition, we have that vz(z, P (si)) = ξ( qi). Observe that

pv1 =
ξ( q1)

ξ( q1) + ξ( q2)
≥

q1
q1 + q2

if and only if
ξ( q1)

q1
≥

ξ( q2)

q2
.

A sufficient condition for this condition to hold is that ξ(x)/x be decreasing
in x, or xξ0(x)− ξ(x) · 0. By definition of function ξ, this is true if

x

Ef 0
µ
x+ eε
ξ(x)

¶
E
x+ eε
ξ(x)

f 0
µ
x+ eε
ξ(x)

¶ − ξ(x) · 0,
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or, equivalently, if

Eeεf 0µx+eε
ξ(x)

¶
≥ 0.

Because Eeε = 0 and ξ(x) ≥ 0, this is true if and only if f is convex, or
T uc ≥ 1.¥
Because by construction the degrees of disagreement are the same in the

two states, these results are different in nature from what we obtained in
section 6.3 where we compared two states that differ only on their degrees
of disagreement. This is in spite of the fact that the technical conditions on
the utility function are the same for the two sets of results.
When the two states are equally likely on the basis of the Pareto-weighted

mean individual beliefs, i.e., when Eq(s1,eθ) equals Eq(s2,eθ), the social plan-
ner should assume that the two states are equally likely. This is a situation
where the disagreement on the probability of state s1 exactly counterbalances
the disagreement on the probability of state s2. In fact, this neutrality result
that is specific to that distribution of beliefs does not rely on any condition on
the utility function. Notice that the assumption that p(si,eθ) is symmetrically
distributed around its mean is essential here, since it implies that p(s2,eθ) is
obtained from p(s1,eθ) by a translation. The structure of disagreement must
be exactly the same for the two states. When this symmetry assumption is
relaxed, the first and third moments of these two random variables will differ,
yielding a third-order effect.
Suppose alternatively that, on the basis of the Pareto-weighted mean of

individual beliefs, state s1 is less likely than state s2: Eq(s1,eθ) · Eq(s2,eθ).
Under the realistic assumption that T uc < 1, it implies that the collective
subjective probability of state s1 should be smaller than the mean one. Re-
ciprocally, when state s1 is more likely than state s2 on average, the collective
probability of state s1 must be larger than the mean one. In a word, when
T uc < 1, the social planner should be an extremist. Or, he should bias his
beliefs towards certainty. He should raise the larger probability and, symmet-
rically, he should reduce the smaller one. On the contrary, when T uc is larger
than unity, the representative agent biases probabilities towards probability
0.5.

40



9 Conclusion

Our aim in this paper was to characterize the probability distribution that
should be used for collective decision making when individuals differ about
their expectations. To examine this question, we assumed that agents can
share risk efficiently, thereby relying on techniques borrowed from the theory
of finance. The basic ingredient behind our results is that, in aggregating in-
dividual beliefs, one should favor the beliefs of agents that bear a larger share
of the risk. However, the allocation of risk in the economy is endogenous and
it depends upon the individual beliefs. Therefore, efficient risk allocations are
more difficult to characterize under expectations disagreement. For example,
it is not necessarily efficient to wash out diversifiable risks in that case. It
may be efficient for agents to gamble against each others in spite of their risk
aversion. Horsetrack betting is Pareto-improving when agents have different
beliefs about the chances of the competing horses.
In an Arrow-Debreu framework, the risk exposure of an individual is a

local concept that is measured by local differences in state consumption levels
across states. As is well-known, the socially efficient local risk exposure for
an agent is proportional to his local degree of absolute risk tolerance which
measures the rate at which marginal utility decreases with consumption. We
showed that this result remains true with heterogeneous beliefs. The basic
property of the aggregation of beliefs is that an increase in the subjective
probability of agent θ should raise the collective probability also proportion-
ally to agent θ0s degree of absolute risk tolerance. If an agent bears a share
x of the collective risk, a one percent increase in his subjective probability
should raise the collective probability by x/100 percents. This result has
several important consequences.
First, it implies that the socially efficient collective probability distribu-

tion depends upon the aggregate wealth level of the group. This is because
the aggregate wealth level affects the way risks should be allocated in the
group. However, when agents have the same HARA utility function, changes
in aggregate wealth has no effect on the allocation of risks. This implies that
the collective probability distribution is independent of wealth in that case.
We showed that the identically-sloped HARA case is the only case in which
such separability property between beliefs and utility holds. In all other
cases, the representative agent has a state-dependent utility function.
Second, we derived various results that are useful to understand the ef-

fect of the divergence of opinions on the shape of the collective probability
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distribution. To do this, we defined the concept of increasing disagreement.
In short, there is more disagreement about the probability of state s0 than
about the probability of state s if the individual subjective probabilities are
more dispersed in state s0 than in state s. We showed that, with such a
shift in the distribution of individual probabilities, the rate of increase of
the collective probability is larger than the mean rate of increase of individ-
ual probabilities if and only if absolute risk aversion is decreasing. We also
showed that it is smaller than the rate of increase of the mean probability
if and only if the derivative of absolute risk tolerance is smaller than unity,
a plausible hypothesis on preferences. It must be stressed that these results
are purely local. They do not provide a global view about how the beliefs of
the representative agent are affected by the heterogeneity of beliefs.
The last step is to link the structure of disagreement at the global level to

the global properties of the collective probability distribution. When most
disagreements are concentrated in the wealthier states, the collective distribu-
tion function is dominated by the average individual probability distribution
in the sense of first-order stochastic dominance. This tends to raise the equity
premium. We showed in a simple numerical example that the heterogeneity
of individual beliefs may have a sizeable effect on the equity premium.
The critical assumption of this model is that the group can allocate risk

efficiently. This assumption is difficult to test. For example, the efficient
coverage of earthquake coverage in various regions can be interpreted in two
ways. The optimistic view is that homeowners are more pessimistic than
insurers about the risk, which implies that the low insurance coverage is
socially efficient. But alternatively, it could be interpreted as a proof that
markets are incomplete. A similar problem arises to explain the insurance
crisis after 9/11/01, or about the difficulty to share the risk related to global
warming on an international basis. A possible extension of this work would
be to consider an economy with incomplete markets.

42



References

Athey, S.C., (2002), Monotone Comparative Statics Under Un-
certainty, Quarterly Journal of Economics, 117(1) : 187-223.

Abel, A.B., (2002), An exploration of the effects of optimism and
doubt on asset returns, Journal of Economic Dynamics and
Control, 26, 1075-1092.

Borch, K. (1960). “The Safety Loading of Reinsurance Premi-
ums”, Skandinavisk Aktuarietskrift 153-184.

Borch, K. (1962). “Equilibrium in a ReinsuranceMarket”, Econo-
metrica 30, 424-444.

Calvet, L., J.-M. Grandmont and I. Lemaire, (2001), Aggregation
of heterogenous beliefs and asset pricing in complete financial
markets, mimeo, Harvard University and CREST (Paris).

Cecchetti, S.G., P.-S. Lam and N.C. Mark, (2000), Asset pricing
with distorted beliefs: Are equity returns too good to be true?,
American Economic Review, 90, 787-805.

Constantinides, G.M., (1982), Intertemporal asset pricing with
heterogeneous consumers and without demand aggregation,
Journal of Business, 55, 253-67.

Drèze, J.H., (2001), Loss reduction and implicit deductibles in
medical insurance, CORE discussion paper, U. of Louvain.

Drèze, J.H., and A. Rustichini, (2001), State-dependent utility
and decision theory, in S. Barbera, P. Hammond, and C. Seidl,
Eds, Handbook of Utility Theory, 2, Kluwer, Dordrecht.

Gilboa, I., D. Samet and D. Schmeidler, (2001), Utilitarian ag-
gregation of beliefs and tastes, http://www.tau.ac.il.

Gollier, C., (1995), The Comparative Statics of Changes in Risk
Revisited, Journal of Economic Theory , 66, 522-536.

Gollier, C., (2001), The economics of risk and time, MIT Press,
Cambridge, Ma.

Gollier, C., (2002), Optimal dynamic portfolio risk with first-
order and second-order predictability, mimeo, University of
Toulouse.

43



Gollier, C., and M.S. Kimball, (1996), Toward a systematic ap-
proach to the economic effects of uncertainty: characterizing
utility functions, Discussion paper, University of Michigan.

Hara, C., and C. Kuzmics, (2001), Representative consumer’s risk
aversion and efficient risk sharing rules, mimeo, Cambridge
University.

Hylland, A., and R. Zeckhauser, (1979), The impossibility of
Bayesian group decision making with separate aggregation of
beliefs and value, Econometrica, 47, 1321-36.

Ingersoll, J., (1987), Theory of Financial decision making, Row-
man and Littlefield, Totowa, New Jersey.

Kimball, M.S., (1990), Precautionary savings in the small and in
the large, Econometrica, 58, 53-73.

Leland, H.E., (1980), Who Should Buy Portfolio Insurance?, Jour-
nal of Finance, 35, 581-596.

Mongin, P., (1995), Consistent Bayesian aggregation, Journal of
Economic Theory, 66, 313-351.

Nau, R.F., (2002), A generalization of Pratt-Arrow measure to
non-expected-utility preferences and inseparable probability
and utility, Management Science, forthcoming.

Rothschild, M. and J. Stiglitz, (1970), Increasing risk: I. A defi-
nition, Journal of Economic Theory, 2, 225-243.

Rothschild, M. and J. Stiglitz, (1971), Increasing risk: II Its eco-
nomic consequences, Journal of Economic Theory 3, 66-84.

Rubinstein, M., (1974), An aggregation theorem for securities
markets, Journal of Financial Economics, 1, 225-244.

Varian, H., (1985), Divergence of opinion in complete markets,
Journal of Finance, 40, 309-317.

Wilson, R. (1968). “The theory of syndicates”, Econometrica 36,
113-132.

44



Appendix A: The case of ISHARA preferences

In this appendix, we examine the special case of ISHARA preferences (22)
for which we know from proposition 2 that R is independent of z. It implies
that vz(z, P ) is separable into a product pv(P )h0(z). Moreover, ISHARA
preferences (22) yield an analytical solution for the aggregation problem.
Indeed, in this particular case, the first-order condition to state-dependent
the Pareto program (4) implies that

c(z, P, θ)− a(θ) = k [λ(θ)p(θ)]1/γ .

Since T u(c, θ) = (c−a(θ))/γ, property (15) can be rewritten in the ISHARA
case as

R(z, P, θ) =
[λ(θ)p(θ)]1/γ

NE
h
λ(eθ)p(eθ)i1/γ . (40)

The definition of R applied to the ISHARA case implies that

R(z, P, θ) =
p(θ)pvθ(P )

pv(P )
, (41)

where pvθ = ∂pv/∂p(θ). Combining (40) and (41) yields

pvθ(P )

pv(P )
=

λ(θ)1/γp(θ)−1+1/γ

NE
h
λ(eθ)p(eθ)i1/γ (42)

for θ = 1, ..., N. The solution to this system of partial differential equations
has the following form:

pv(P ) = C

·
E
h
λ(eθ)p(eθ)i1/γ¸γ , (43)

where C is a constant. In order for pv to be a probability distribution, we
need to select the particular solution with

pv(P ) =

·
Eeθ
h
λ(eθ)p(s,eθ)i1/γ¸γ

R
S

·
Eeθ
h
λ(eθ)p(t,eθ)i1/γ¸γ dt. (44)
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Calvet, Grandmont and Lemaire (2001) obtained the same solution. Ru-
binstein (1974) derives it in the special cases γ = 1 and γ = +∞.7 Thus,
in the ISHARA case, we can directly compute the socially efficient proba-
bility distribution of risk as a function of individual beliefs p, the Pareto
weights λ, and the concavity coefficient γ. Two special cases are worthy to
examine. Consider first the case with γ tending to zero. This corresponds
to risk-neutral preferences above a minimum level of subsistence. Under this
specification, condition (44) is rewritten as

pv(P (s)) = pn(P (s)) =def
maxθ∈Θ λ(θ)p(s, θ)R
S
maxθ∈Θ λ(θ)p(t, θ)dt

for all s. (risk-neutral case)

With risk-neutral preferences, the efficient allocation produces a flip-flop
strategy where the cake in state s is entirely consumed by the agent with
the largest Pareto-weighted probability associated to that state. It implies
that the group will use a state probability pn proportional to it to determine
its attitude toward risk ex ante.
In the case of logarithmic preferences (γ = 1), the denominator in (44)

equals Eλ(eθ) sinceZ
S

Eeθλ(eθ)p(t,eθ)dt = Eeθ ·λ(eθ)Z
S

p(t,eθ)dt¸ = Eλ(eθ) = 1.
It implies that

pv(P (s)) = pln(P (s)) =def Eλ(eθ)p(s,eθ) for all s. (logarithmic case)
With these Bernoullian preferences, the efficient probability that should be
associated to any state s is just the weighted mean pln(s) of the individual
subjective probabilities of that state s. This is the limit case T uc ≡ 1 of the
result presented in Proposition 7.

Appendix B: Change in beliefs and the equity premium
7When γ tends to infinity, we obtain the following aggregation formula:

pv(s) =
expE ln p(s,eθ)a(eθ)/Ea(eθ)R
S
expE ln p(t,eθ)a(eθ)/Ea(eθ)dt .
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In this Appendix, we show that a uniform transfer of probability mass
from a high wealth state reduces the future price of equity P eRf . It implies
that the equity premium φ = µ/P eRf is increased.

Proposition 10 Consider a random variable ey(p) which is distributed as
(ex, p;x0, 1 − p), with x0 ∈ R and p ∈ [0, 1]. Suppose that the real-valued
utility function h is increasing and concave. The future price of equity

FP e(p) = P e(p)Rf(p) =
Eey(p)h0(ey(p))
Eh0(ey(p))

is decreasing in p if and only if x0 is larger than x = Eexh0(ex)/Eh0(ex), which
is the risk-neutral mean of ex.
Proof: FP e(p) is decreasing in p if and only if

[Eexh0(ex)− x0h0(x0)]Eh0(ey)− [Eh0(ex)− h0(x0)]Eeyh0(ey) · 0,
where ey is distributed as (ex, p;x0, 1− p). This condition can be rewritten as
p [h0(x0)Eexh0(ex)− x0h0(x0)Eh0(ex)]+(1−p) [h0(x0)Eexh0(ex)− x0h0(x0)Eh0(ex)] · 0,
or, equivalently, as

h0(x0) [Eexh0(ex)− x0Eh0(ex)] · 0.
This is true if and only if x0 is larger than x = Eexh0(ex)/Eh0(ex). ¥

Appendix C: Numerical illustration

In this appendix, we provide the details of the numerical illustration pre-
sented at the end of section 7. We assume that all agents have the same
state-independent utility function u(c) = −c−3/3, which yields a constant
relative risk aversion equaling γ = 4. We consider the Pareto-efficient solu-
tion with equal weights. The percentage yearly growth rate of real GDP per
capita for period 1970-1990 in the United States is

D logGDP = (2.04, 3.74, 4.4,−2.14,−2.89, 4.13, 3.78, 3.94, 1.26,−0.02,

1.34,−4.06, 2.57, 5.94, 1.90, 1.65, 1.96, 2.96, 2.13,−0.23)
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(source Penn-World data). Let eω1 be the uniformly distributed and dis-
crete random variable whose support is given by the 15 smallest elements of
D logGDP . Similarly, let eω2 be the uniformly distributed and discrete ran-
dom variable whose support is given by the 5 largest elements of D logGDP
. The ”objective” risk on the growth rate is the random variable eω which is
distributed as (eω1, 3/4; eω2, 1/4). Its mean equals Eeω = −→µ = 1.0172, which
implies a mean growth rate of real GDP per capita of 1.72% per year dur-
ing the period. When all agents have the same beliefs that is represented
by eω, the equity premium that sustains the corresponding Pareto-efficient
allocation equals

φ =
EeωEu0(eω)
Eeωu0(eω) = 1.0025,

or 0.25% per year.
We now consider an economy with heterogenous beliefs. Agent θ has be-

liefs on the growth rate per capita that are distributed as ey(θ) ∼ (ey1, θ; ey2, 1−
θ). Let types be distributed as eθ ∼ (θm, 1/2; 1.5− θm, 1/2), so that the mean
type is Eeθ = 3/4. It means that individual expectations are equal to ey on
average. It implies that p(ω, θ) = θ/15 if ω is in the support of eω1, and
p(ω, θ) = (1− θ)/5 if ω is in the support of eω2. From Appendix B, we know
that the beliefs pv(.) of the representative agent is such that

pv(P (ω)) =

£
(θm/15)

1/γ + ((1.5− θm)/15)
1/γ
¤γ

15 [(θm/15)
1/γ + ((1.5− θm)/15)

1/γ]
γ
+ 5 [((1− θm)/5)

1/γ + ((θm − 0.5)/5)
1/γ]

γ

if ω is in the support of eω1, and
pv(P (ω)) =

£
((1− θm)/5)

1/γ + ((θm − 0.5)/5)
1/γ
¤γ

15 [(θm/15)
1/γ + ((1.5− θm)/15)

1/γ]
γ
+ 5 [((1− θm)/5)

1/γ + ((θm − 0.5)/5)
1/γ]

γ

if ω is in the support of eω2. It simplifies to
pv(P (ω)) =

½
k1/15 if ω is in the support of eω1;

(1− k1)/5 if ω is in the support of eω2. ,
with

k1 =

£
θm

1/γ + (1.5− θm)
1/γ
¤γ

[θm
1/γ + (1.5− θm)

1/γ]
γ
+ [(1− θm)

1/γ + (θm − 0.5)
1/γ]

γ
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It yields the following pricing formula:

φ =
Eeω. £k1Eeω−γ1 + (1− k1)Eeω−γ2 ¤£
k1Eeω1−γ1 + (1− k1)Eeω1−γ2

¤
For example, wheneθ is distributed as (0.5, 1/2; 1, 1/2), i.e., when θm = 0.5,we
obtain that k1 ' 0.96. This is to be compared to k1 = 0.75 in the homogenous
case with θm = 0.75. This represents a massive transfer of probability mass
to the lower wealth states compared to the objective distribution. Because

Eeω−γ1 = 0.973, Eeω−γ2 = 0.894, Eeω1−γ1 = 0.978, Eeω1−γ2 = 0.878,

we conclude that φ = 1.0096, yielding an equity premium equaling 0.96%.
In Figure 7, we evaluate the equity premium for other values of θm.
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