
Collective investment decision making with
heterogeneous time preferences

Christian Gollier
University of Toulouse

Richard Zeckhauser∗

Harvard University

June 27, 2003

Abstract

We examine the investment decision problem of a group whose
members have heterogeneous time preferences. In particular, they
have different discount factors for utility, possibly not exponential.
We characterize the properties of efficient allocations of resources,
and of the shadow prices that would decentralize such allocations.
We show in particular that the representative agent discounts future
utility hyperbolically when all group’s members discount their own
future utility exponentially and have DARA preferences. We also
exhibit conditions that lead the representative agent to have a rate
of impatience that decreases with GDP per capita. We apply these
findings to the determination of the term structure of interest rates.
Keywords: aggregation of preferences, hyperbolic discounting,

impatience, time preference, investment and consumption.
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1 Introduction

Saving and investment decisions are among the most important choices of
economic agents. They strongly affect the lifetime welfares of individuals
and the prosperity of nations. Such decisions reflect time preferences. Most
people prefer an immediate utility reward to the same reward experienced
later. This pure preference for the present, or impatience, has long been rec-
ognized by economists and psychologists. The classical model introduced by
Samuelson (1937) takes this into account by assuming that consumers max-
imize the discounted value of their flow of utility, utilizing an exponentially
decreasing discount factor, i.e., with a constant rate of impatience. However,
the intensity of impatience is a subject that is little understood and fiercely
debated.
Frederick, Loewenstein and O’Donoghue (2002) survey several attempts

to estimate individuals’ discount rates. Two noteworthy findings emerge.
First, high discount rates predominate. For example, Warner and Pleeter
(2001) study actual financial decisions made by U.S. military servicemen, and
find an estimated mean discount rate of 17.5% per year. Second, and more
important, there is spectacular variation across studies and within studies
across individuals, with no convergence toward an agreed-upon or unique
rate of impatience. In their study, Warner and Pleeter (2001) found that
individual discount rates vary between 0% and 70% per year. Barsky, Juster,
Kimball and Shapiro (1997) estimated a negative mean rate of impatience by
using survey responses in the Health and Retirement Study. In the literature
more generally, rates range from −6% to 55700%.
These variations could stem in part from differences in the time horizon

considered in the various experiments and field studies. There is no rea-
son to believe that consumers use the same discount rate per period when
discounting utility over different time horizons. Strotz (1956) was the first
economist to discuss horizon-dependent discount rates. Empirical evidence
suggests that agents discount future happiness at a rate that declines with
the time at which the happiness will be experienced. Most typically, peo-
ple use ”hyperbolic discounting”, i.e., declining discount rate with respect
to time-horizon, rather than exponential discounting. This leads to a time-
inconsistency problem that emerged recently as a ”hot” topic in our profes-
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sion.1

This paper follows another path to explain the wide range of estimates
for individual discount rates. There is no reason to believe that different
consumers have identical time preferences for utility streams. Let us assume
that sizeable disparities in discount rates arise because individuals strongly
differ in their attitude towards time. Day-to-day evidence, say in pursuing
education or bad habits, is compatible with heterogeneous time preferences.
Such heterogeneity raises several questions that we explore in this paper.
When individuals use different rates of impatience to discount their fu-

ture utilities, it is not clear a priori which discount rate should be used,
for example, for public investments. This raises the more general question
of the aggregation of preferences in a group. We consider a general model
where each agent maximizes a time-additive lifetime utility. The discount
rate is heterogenous in the population and it may depend upon either the
time of receipt (hyperbolic discounting) or on current consumption. Agents
may also have different instantaneous utility functions. We assume that the
group is able to allocate consumption within the group in a Pareto-efficient
way. We first show that the behavior of the group towards time can be dupli-
cated by a representative agent whose lifetime utility functional is also time
additive. Time additivity is essential to define a concept of impatience. Ru-
binstein (1974) also examined the question of aggregating heterogenous rates
of impatience, but he derives a solution only for exponential and logarithmic
utility function in a two-period model.
One of the key findings of this paper is that if individuals have hetero-

geneous constant rates of impatience, the representative agent will not in
general use a constant rate to discount the future. More precisely, we show
that if individuals have decreasing absolute risk aversion (DARA), as would
seem reasonable, then the representative agent has a declining discount rate.
In short, heterogeneous individual exponential discounting yields collective
hyperbolic discounting. Under some realistic calibrations of the economy,
the collective discount factor duplicates either the one discussed by Loewen-
stein and Prelec (1992), or its simplified ”quasi-hyperbolic” version (Laibson
(1997)).
To get to this result, we need to examine how agents should share re-

sources intertemporally in an exchange economy, what might be labeled the

1See for example Laibson (1997), Carrillo and Mariotti (2000), Benabou and Tirole
(2000) and O’Donoghue and Rabin (2001).
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multiple-cakes problem. Obviously, it is Pareto-efficient for the most impa-
tient members to receive a larger share of the period’s cake early in life; that
share will be decreasing with time. This allocation is a best compromise
between individual relative impatience and the agents’ willingness to smooth
consumption over time. This trait of individual preferences is measured by
the concavity of their utility function. As shown by Wilson (1968), it is best
to use the notion of (absolute) tolerance to consumption fluctuations over
time. If u(.) denotes the utility function of an agent, her tolerance to fluc-
tuations is measured by T (.) = −u0(.)/u00(.). It is Pareto-efficient to request
that more tolerant agents bear a larger share of fluctuations of aggregate in-
comes. Extending a well-known result by Wilson, we show that the group’s
tolerance to fluctuations in the per-capita income is the unweighted mean of
its members’ tolerance.
Turning to pure time preferences, we show that the rate of impatience

of the representative agent equals a weighted mean of individual rates of
impatience. These weights are proportional to the individual tolerances to
consumption fluctuations. Intuitively, agents with a very low tolerance want
to smooth their consumption independent of their degree of impatience. The
group will therefore not take account of these agents when determining their
collective degree of impatience. Except for exponential utility functions, the
weights in computing the weighted mean of individual discount rates will
fluctuate over time. When T increases with wealth (DARA), those members
with a smaller discount rate will see their weight increasing in tandem with
time in parallel to their level of consumption. Therefore, we obtain that the
rate of impatience of the representative agent decreases with time .
The fact that the representative agent uses hyperbolic discount factors

in no way implies that the group faces a time-consistency problem. Suppose
that each individual in the group discounts future utility in an exponen-
tial way. As is well-known, such individuals will not want to modify their
portfolio of future credit/saving contracts as time moves forward. In short,
the allocation of future consumption will still be Pareto-efficient tomorrow.
This future allocation will correspond to another set of Pareto weights. A
time-inconsistency problem arises only if some members in the group are
themselves time inconsistent.
In the classical model of intertemporal choices, it is assumed that the rate

of impatience is independent of wealth. We show by contrast that, even if
individual rates of impatience are independent of consumption, the rate of
impatience that should be used by the social planner is generally not indepen-
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dent of the group’s per capita consumption. We provide a sufficient condition
that guarantees that more developed economies should use a smaller rate of
impatience.
We apply our findings to the determination of equilibrium interest rates

in the economy. We consider two equilibrium models, one with infinitely
lived consumers, and another with overlapping generations. In the model
with infinitely lived agents, we focus the analysis on the term structure of
interest rates. Cox, Ingersoll and Ross (1985a,b) were the first to examine
this question using a consumption-based approach. Whether we should use
a decreasing rate to discount cash-flows occurring in the far distant future
received intense debate. Significant long-term risks, such as global warming,
are a new ingredient in the discussion, and beyond the scope of this anal-
ysis. In a risk-free economy with no growth, the competitive interest rate
equals the rate of impatience of the representative agent. Thus, our results
sustain the recommendation to use a decreasing rate of interest to discount
cash-flows occurring in a more distant future. The theoretical basis for this
recommendation strongly differs from those developed earlier by Weitzman
(2001) and Gollier (2002a,b).
We also examine an overlapping generation growth (OLG) model, poten-

tially with a production sector. In the classical OLG model with cohorts
living only for two periods, the only possible transactions are within each
cohorts. It implies that the effects of the heterogeneity of time preferences
on the aggregate variables of the economy are completely characterized by
the preferences of the representative agent of each cohort.

2 Assumptions on individual preferences

We consider a cohort or a group of heterogeneous agents indexed by θ in
a type set Θ. They all live from date 0 to date N. Types are distributed
according to cumulative distribution function H : Θ → [0, 1]. We assume
that the lifetime utility U(θ) of consumer θ is time-additive.2 This excludes
habit formation and anticipatory feelings. The lifetime utility of agent θ is

2Following Koopmans (1960), time additivity can be derived from the independence
axiom stating that if two intertemporal prospects share a common outcome at a given
date, then preference between them is determined solely by the remaining outcomes that
differ.
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evaluated at date 0 by

U(θ) =

Z N

0

u(c(t), t, θ)dt, (1)

where c(.) is the consumption plan of the agent, and u(c, t, θ) is the discounted
utility extracted by agent of type θ consuming c at time t. We assume that

u0(c, t, θ) =
∂u

∂c
(c, t, θ)

is continuously differentiable in (c, t), and is nonincreasing in c. If u0 is
decreasing in t, consumers are impatient, i.e., at any given consumption
level they value future marginal utility less than current marginal utility.
We hereafter redefine the two well-known indexes of sensitivity of marginal
utility either with respect to t and with respect to c.
The instantaneous rate of pure time preference of agent θ consuming c at

time t equals

δ(c, t, θ) = −
∂ lnu0(c, t, θ)

∂t
= −

∂u0
∂t
(c, t, θ)

u0(c, t, θ)
. (2)

It measures the rate at which marginal utility decreases with time with con-
sumption held constant. This definition can be rewritten as

u0(c, t0, θ) = u0(c, t, θ) exp

"
−

Z t0

t

δ(c, τ , θ)dτ

#
.

Impatient people have a positive δ. In the special case of a multiplicatively
separable utility function u(c, t, θ) = β(t, θ)h(c, θ), δ is independent of c. If we
add the assumption of exponential discounting (β(t, θ) = exp(−δ(θ)t)), δ is
also independent of t. In the case of hyperbolic discounting, δ is independent
of c, but is decreasing in t. In the face of the consistency problem that a non
constant δ raises, we assume at this stage that agents can commit on their
future consumption plan at date t = 0.
In a parallel way, one can define the absolute aversion to consumption

fluctuations over time through the following equation:

A(c, t, θ) = −
∂ lnu0(c, t, θ)

∂c
= −

u00(c, t, θ)
u0(c, t, θ)

. (3)
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Thus A measures the rate at which marginal utility decreases with consump-
tion at a given time. In the risk context, it corresponds to the Arrow-Pratt
index of the concavity of u with respect to c. As stated by Pratt (1964), in
a static framework it satisfies:

u0(c0, t, θ) = u0(c, t, θ) exp

"
−

Z c0

c

A(y, t, θ)dy

#
.

Under our assumptions, A is nonnegative. Again, under the condition of a
multiplicatively separable utility function, A would be independent of t. If
we assume as well exponential utility (h(c, θ) = − exp(−a(θ)c)), A would
also be independent of c. But it is usually assumed that A is decreasing in
c, i.e., DARA applies. In the following, we will most often use the inverse of
A, which is the index of absolute tolerance to consumption fluctuations. It is
denoted T (c, t, θ) = 1/A(c, t, θ).

3 Efficient cake sharing with heterogeneous
preferences

Characterizing the optimal investment decision of a cohort of heterogeneous
agents requires understanding how the cohort will share the cash flows gen-
erated by any such investment, namely how it divides the multiple cakes that
become available, one per period. Suppose that agents of type θ are endowed
with a flow z(., θ) : [0, N ] → R of the single consumption good. We assume
that endowments are risk free. An allocation is characterized by a set of
consumption profiles C(., .) : R+ × Θ→ R, where c(t, θ) is the consumption
of agent θ at time t. Such an allocation is feasible if at each instant of time
average consumption equals average income:

EC(t,eθ) = z(t) =def Ez(t,eθ) ∀t ∈ [0, N ], (4)

where Ef(eθ) = R
Θ
f(θ)dH(θ) is the mean of f(eθ) with respect to the type

distribution H in the cohort.
The only restriction that we impose on the cohort’s sharing of the cakes

is that it be Pareto-efficient. An allocation C(., .) is Pareto-efficient if it is
feasible and there is no other feasible allocation that raises the lifetime utility
of at least one type without reducing the lifetime utility of the other types.
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To any such efficient allocation, there exists a weight function λ(.) : Θ→ R+

such that it is the solution of the following social planner’s program:

SWF (λ) = max
C(.,.)

E

·
λ(eθ)Z N

0

u(C(t,eθ), t,eθ)dt¸ s.t. (4). (5)

In his classic analysis of the static syndicate problem, Wilson (1968) con-
sidered a decision problem that is similar to (5). He examined a decision
under uncertainty for expected-utility (EU) maximizers with heterogeneous
utility functions, but homogeneous beliefs. Except for this restriction, the ad-
ditivity property made in the EU model under static uncertainty and in the
time-additive model (1) under dynamic certainty makes these two problems
equivalent. Wilson (1968) proved that the optimal collective decision policy
is isomorphic to the optimal decision policy of a representative agent who
also maximizes the expected value of a function of consumption per capita in
the cohort. The EU functional of the representative agent is additively sepa-
rable with respect to the states of nature. Wilson’s result can be extended to
a dynamic framework, as Constantinides (1982) has shown. The existence of
a representative agent with such simple aggregative properties has become a
cornerstone of theories in finance and macroeconomics. In Wilson’s model,
the probability weights that are used to measure individual expected utili-
ties are the same for all individuals given that beliefs are homogeneous.3 The
parallel assumption for intertemporal choices under certainty is that agents
use the same discounting function to measure their lifetime utility.
The following Proposition shows that the existence of a representative

agent with a time separable lifetime utility does not require any restriction
on time preference beyond the time separability of U(θ) for all θ.

Proposition 1 (Representative Agent) To any positive weight function λ(.),
there exists a representative agent with a time-additive utility function v such
that SWF (λ) =

R N
0
v(z(t), t)dt. Function v is defined by

v(z, t) = max
c(z,t,.)

E
h
λ(eθ)u(c(z, t,eθ), t,eθ)i s.t. Ec(z, t,eθ) = z. (6)

The associated efficient allocation is characterized by C(t, θ) = c(z(t), t, θ)
for all t and θ.

3Leland (1980) reconsidered Wilson’s model when agents have heterogeneous beliefs.
Gollier (2003) uses techniques similar to those presented in this paper to determine how
to aggregate heterogeneous beliefs in a group that can share risk in a Pareto-efficient way.
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Proof: This is a direct consequence of the additivity of SWF (λ) with
respect to types and time, which implies that

E

·
λ(eθ) Z N

0

u(C(t,eθ), t,eθ)dt¸ = Z N

0

E
h
λ(eθ)u(C(t,eθ), t,eθ)i dt.¥

This Proposition enables us to decompose the multiperiod maximization
program (5) into a sequence of static maximization programs (6). By im-
posing at each time t the feasible allocation of cake z(t) that maximizes the
weighted sum of discounted utilities, the social planner obtains an ex ante
allocation plan that maximizes the weighted sum of the members’ lifetime
utilities. The time additivity of individual preference functionals is, of course,
essential to get this result.
Proposition 1 disentangles the two impacts that time has on the efficient

sharing of the cake and on the utility of the representative agent. First,
it has a direct effect coming from the dependence of individual members’
utilities on time. Second, it plays a role because income per capita, z(t),
is a function of time. It is useful to separate these two effects by defining
C(t, θ) = c(z(t), t, θ). In the following, we examine the properties of functions
v(., .) and c(., ., θ).
By the concavity of u with respect to its first argument, the solution to

program (6) is unique. Its first-order condition is written as

λ(θ)u0(c(z, t, θ), t, θ) = ψ(z, t), (7)

for all (z, t) and θ, where ψ is the Lagrange multiplier of the feasibility con-
straint associated with time t and average endowment z. By the envelope
theorem, the marginal value of wealth at time t is the Lagrange multiplier
associated with time t. Thus we have that

∂v

∂z
(z, t) = ψ(z, t), (8)

for all (z, t).

4 The group’s tolerance to aggregate fluctu-
ations

We now characterize the cohort’s tolerance to aggregate fluctuations in earn-
ings. To do so, we need to determine how these fluctuations will be allocated
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among the different agents in the cohort. Consider a marginal increase in
the per capita income z. At time t with average consumption z, agent θ0s
sensitivity of consumption to such an increase is given by ∂c

∂z
(z, t, θ). This is

referred to as the marginal propensity to consume (MPC). It tells us how
fluctuations in z get transferred to fluctuations in individual consumption
levels. Given the feasibility constraint Ec(z, t,eθ) = z, it must be that, for all
(z, t),

E
∂c

∂z
(z, t,eθ) = 1. (9)

The fluctuation of average consumption must equal the fluctuation of average
earnings in the cohort. The following Proposition characterizes the MPC.

Proposition 2 (Cake-Sharing) The marginal propensity to consume of agent
θ at time t when the average endowment is z, is proportional to this agent’s
tolerance to consumption fluctuations evaluated at c(z, t, θ) :

∂c

∂z
(z, t, θ) =

T (c(z, t, θ), t, θ)

ET (c(z, t,eθ), t,eθ) . (10)

Proof: Fully differentiating first-order condition (7) with respect to z
yields

λ(θ)u00(c(z, t, θ), t, θ)
∂c

∂z
(z, t, θ) =

∂ψ

∂z
(z, t).

Eliminating λ(θ) by using (7) again, we rewrite the above condition as

∂c

∂z
(z, t, θ) = −

∂ψ
∂z
(z, t)

ψ(z, t)
T (c(z, t, θ), t, θ). (11)

Moreover, combining this result with condition (9) implies that

−
∂ψ
∂z
(z, t)

ψ(z, t)
ET (c(z, t,eθ), t,eθ) = 1. (12)

Eliminating the ratio in (11) and (12) yields the result.¥
The Cake-Sharing Proposition states that more tolerant agents have larger

marginal propensities to consume. It is intuitively appealing that people who
are more tolerant to consumption fluctuations should be allocated a larger
share of aggregate fluctuations. By contrast, agents who strongly dislike fluc-
tuations, i.e., those with a small T , enjoy an efficient consumption plan that
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is relatively insensitive to aggregate fluctuations. Proposition 2 also shows
that all agents have a nonnegative marginal propensity to consume out of ag-
gregate incomes. All consumption levels are procyclical, but some are more
procyclical than others.
Knowing how the cohort allocates fluctuations in aggregate earnings to

different individuals determines the cohort’s attitude towards fluctuations in
the size of the cake. The cohort’s tolerance to fluctuations in average earnings
is given by

Tv(z, t) =def −
∂v
∂z
(z, t)

∂2v
∂z2
(z, t)

. (13)

When the per capita endowment z(.) is increasing in t, an increase in Tv
will increase the cohort’s propensity to invest in a normal project, i.e., a
project that yields an increasing cash-flow over time. Equation (12) yields
the following result.

Proposition 3 (Tolerance to Consumption Fluctuations) The cohort’s ab-
solute tolerance to consumption fluctuations is the mean of its members’
tolerances:

Tv(z, t) = ET (ec, t,eθ). (14)

Proposition 3 has several consequences. For example, because equation
(14) implies that

∂Tv
∂z
(z, t) = E

·
T 0(ec, t,eθ)∂c

∂z
(z, t,eθ)¸ = E

h
T 0(ec, t,eθ)T (ec, t,eθ)i
ET (ec, t,eθ) ,

we conclude that DARA is inherited by v from u. In other words, if all
members have a tolerance that increases in c, then the cohort has a tolerance
that increases with z. This extends a result obtained by Carroll and Kimball
(1996) to the group context. Notice that v being DARA implies that the
group as a whole is ready to pay more to smooth consumption when it is
poor than when it is wealthy.

5 The group’s rate of impatience

In the classic case with homogenous exponential discount factors, individuals’
consumption levels vary only with fluctuations in the aggregate endowment
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z(.). When discount rates are heterogenous, by contrast, time enters as an
additional factor. We examine the partial derivative of individual consump-
tion levels with respect to time: ∂c/∂t. When the average income z remains
constant over time, it is intuitive that impatient people will trade later con-
sumption for earlier consumption with those who are more patient. The
impatient ones will have a decreasing consumption path, and vice versa.
Again, given the feasibility constraint, it must be that

E
∂c

∂t
(z, t,eθ) = 0. (15)

When the average income remains constant over time, increases in consump-
tion by some members of the cohort must be compensated by equivalent
reductions to others. Fully differentiating the first-order condition (7) yields

λ(θ)
∂u0

∂t
(c, t, θ) + λ(θ)u00(c, t, θ)

∂c

∂t
=

∂ψ

∂t
.

Using (2), (3) and (7) again to eliminate the Lagrange multiplier λ, we can
rewrite the above equality as

−δ(c, t, θ)− A(c, t, θ)
∂c

∂t
=

∂ψ
∂t

ψ
,

or equivalently,
∂c

∂t
= −T (c, t, θ)

"
∂ψ
∂t

ψ
+ δ(c, t, θ)

#
. (16)

Replacing ∂c/∂t in (15) by its expression from (16) yields

∂ψ
∂t

ψ
= −

E
h
δ(ec, t,eθ)T (ec, t,eθ)i
E
h
T (ec, t,eθ)i , (17)

where ec = c(z, t,eθ). Proposition 4 characterizes the time profile of individual
consumption plans when people have heterogenous discount rates. It flows
from properties (16) and (17).

Proposition 4 (Individual Consumption Path) The increase in consump-
tion through time of agent θ is decreasing in the agent’s discount rate δ(θ):

∂c

∂t
(z, t, θ) = T (c(z, t, θ), t, θ)

£
δ(z, t)− δ(c(z, t, θ), t, θ)

¤
, (18)
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with

δ(z, t) =
E
h
δ(ec, t,eθ)T (ec, t,eθ)i
ET (ec, t,eθ) . (19)

The Individual-Consumption-Path Proposition determines how more pa-
tient people should substitute current consumption for future consumption.
Notice that the consumption path of agent θ increases locally in t if and only
if her rate of impatience is smaller than the weighted mean δ of individual
rates of impatience. More patient members postpone their consumption to
the future in exchange for a positive return on their savings. Because both
δ and δ are a function of z and t, efficient consumption profiles need not to
be monotone. In technical terms, the above Proposition requires that ∂c/∂t
be increasing in δ(θ) when agents have the same tolerance to consumption
fluctuations. The following Corollary exhibits the weaker property of single-
crossing.

Corollary 1 Suppose that agents have the same tolerance to consumption
fluctuations: ∂T (c, t, θ)/∂θ ≡ 0. Then, individual consumption profiles sat-
isfy the single-crossing property: ∀(θ, θ0) ∈ Θ2 : δ(c, t, θ) > δ(c, t, θ0) ∀(c, t)
implies that

c(z, t, θ) = c(z, t, θ0) =⇒
∂c

∂t
(z, t, θ) ·

∂c

∂t
(z, t, θ0).

Proof: This is a direct consequence of equation (18).¥
We can now turn to the central aim of this paper, which is to characterize

the aggregation of individual discount rates. Impatience comes from the fact
that, seen from t = 0, the marginal value of an increase in consumption
decreases with the time at which it takes place. One can make impatience
more explicit in the definition of the cohort’s preferences by defining the
cohort’s instantaneous rate of impatience as

δv(z, t) =def −
∂ ln ∂v

∂z
(z, t)

∂t
= −

∂2v
∂z∂t

(z, t)
∂v
∂z
(z, t)

= −
∂ψ
∂t
(z, t)

ψ(z, t)
. (20)

Combining conditions (20) and (17) yields the following result:

Proposition 5 (Collective Impatience) The instantaneous rate of pure pref-
erence for the present of the representative agent defined by (20) is a weighted
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mean of individual members’ instantaneous rates:

δv(z, t) =
E
h
δ(ec, t,eθ)T (ec, t,eθ)i
E
h
T (ec, t,eθ)i . (21)

Not surprisingly, the (implicit) psychological discount rate of the repre-
sentative agent is a weighted mean of the individual rates of impatience in
the cohort: δv(z, t) = δ(z, t). In such an environment, in the absence of
growth, a marginal investment incurring a cost at t and yielding a benefit at
t+∆t would be socially desirable if and only if its net return would exceed
δv(z, t). The cohort’s rate of impatience can be rewritten as

δv(z, t) = bEz,tδ(c(z, t,eθ), t,eθ),
where bEz,t is a ”risk-neutral” expectation operator defined as

bEz,tf(eθ) = R
f(θ)T (c(z, t, θ), t, θ)dH(θ)R
T (c(z, t, θ), t, θ)dH(θ)

. (22)

The mean of individual rates of impatience is weighted by the correspond-
ing individual tolerances to consumption fluctuations. This weighting of the
mean of δ is intuitive. Patient agents will be willing to save strongly early
in life only if they are sufficiently tolerant to the consumption fluctuations
they will face. To illustrate, consider a cohort with two agents. Agent 1 has a
high discount rate δh and is somewhat tolerant to consumption fluctuations.
Agent 2, by contrast, has a lower discount rate δl, but has a zero tolerance to
consumption fluctuation. Despite his patience, agent 2 will prefer to smooth
his consumption completely. Therefore, agent 1 will bear the entire burden
of aggregate fluctuations. The cohort’s attitude towards time is therefore de-
termined entirely by agent 1’s preferences. In particular, the cohort’s degree
of impatience will be the larger δh.

6 The term structure of the group’s rate of
impatience

As a direct consequence of the fact that δv is a weighted mean, it is bounded
below and above by the smallest and largest individual rates of impatience:

min
θ∈Θ

δ(c(z, t, θ), t, θ) · δv(z, t) · max
θ∈Θ

δ(c(z, t, θ), t, θ).
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It is important to notice that the weighting function T is a function of both
z and t. This is made explicit in the notation by indexing the expectation
operator bE by (z, t). Thus, even if δ is independent of z and t, it is generally
not true that δv is independent of these variables. We now examine the term
structure of the cohort’s rate of impatience.
Fully differentiating condition (21) with respect to t and using condition

(18) yields

∂δv
∂t
(z, t) = 2( bEδT 0)( bEδ)− bEδ2T 0 − ( bEδ)2( bET 0) (23)

+ bE∂δ

∂t
+ bE∂δ

∂c
T (δv − δ)− bE 1

T

∂T

∂t
(δv − δ),

where T , δ and their derivatives are evaluated at (c(z, t,eθ), t,eθ). To simplify
notation, we dropped the index to operator bEz,t. To examine this property,
let us first focus on the traditional model of a cohort whose members are
exponential discounters. In this benchmark case, individual utility functions
are multiplicatively separable: u0(c, t, θ) = β(t, θ)h0(c, θ). This means that
δ is independent of c, and that T is independent of t. The fact that in-
dividual members have exponential discount functions implies furthermore
that β(t, θ) = exp(−d(θ)t), or that δ ≡ d is also independent of t. For this
situation the second line in property (23) vanishes.
The problem here is to determine whether the cohort as a whole should use

exponential discounting when all of its members use exponential discounting.
It trivially should when all members have the same discount rate. A more
interesting case arises when individual preferences satisfy the ISHARA prop-
erty. A utility function exhibits Harmonic Absolute Risk Aversion (HARA) if
its absolute risk tolerance is linear in consumption. Quadratic, exponential,
power and logarithmic functions are HARA. A set of utility functions satisfies
the Identically Sloped HARA (ISHARA) property if its members’ absolute
risk tolerances are linear in consumption with the same slope: T 0(c, θ) = 1/γ.
The set of utility functions that satisfies this differential equation are repre-
sented:

u(c, t, θ) = k exp(−δ(θ)t)

µ
c− a(θ)

γ

¶1−γ
. (24)

These utility functions are defined over the consumption domain such that
γ−1( c − a(θ)) > 0. When γ > 0, parameter a(θ) is often referred to as the
minimum level of subsistence. This preference set includes preferences with
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heterogeneous exponential utility functions u(c, t, θ) = −β(t, θ) exp(−A(θ)c)
when γ tends to +T, and a(θ)/γ tends to −1/A(θ). Taking a(θ) = 0 for all
θ, it also includes the set of power (and logarithmic) utility functions with
the same relative concavity index γ for all θ. Under this set of conditions,
equation (23) simplifies to

∂δv
∂t
(z, t) = −T 0

h bEδ2 − ( bEδ)2i .
Using Jensen’s inequality, we conclude that the term structure of the social
discount rate is decreasing if T 0 is a positive constant, and that it is increasing
when T 0 is a negative constant. T 0 positive is a standard assumption in
economics; it corresponds to decreasing absolute risk aversion (DARA) in
the context of uncertainty. DARA means that agents have a tolerance to
consumption fluctuations that increases with their wealth. Proposition 6
shows that the constancy of T 0 can be relaxed at no additional cost.

Proposition 6 (Hyperbolic Collective Impatience) Suppose that agents have
multiplicatively separable utility functions with exponential discount: u(c, t, θ)
= k exp(−δ(θ)t)ν(c, θ). The term structure of the social rate of impatience
δv is decreasing (increasing) if all utility functions ν(., θ), θ ∈ Θ, exhibit
decreasing (increasing) absolute risk aversion.

Proof: We consider the case of DARA (T 0 positive). Dividing equation
(23) by bET 0, the discount rate δv is decreasing with respect to time if

2
³ bEδ(eθ)´³Eδ(eθ)´ · ³ bEδ(eθ)´2 +E(δ(eθ))2, (25)

where Eδ(eθ) = R δ(θ)dF (θ), and

dF (θ) =
T (c(θ), θ)T 0(c(θ), θ)

ET (c(eθ),eθ)T 0(c(eθ),eθ)dH(θ).
Because T 0 is uniformly positive, F can be interpreted as a cumulative prob-
ability function. Observe that

2
³ bEδ(eθ)´³Eδ(eθ)´ · ³ bEδ(eθ)´2 + ³Eδ(eθ)´2 . (26)

Moreover, we know from Jensen’s inequality that³
Eδ(eθ)´2 · E(δ(eθ))2. (27)
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Obviously, combining (26) and (27) yields (25), which concludes the proof.¥
Notice that we neither restrict T to be linear, nor assume any correlation

between rates of impatience and degrees of tolerance to fluctuations. The
monotonicity of these degrees of tolerance is the only thing that matters
for the slope of the term structure of δv. Simple intuition supports this
important result. From equation (18), we know that more patient consumers
have an increasing consumption profile. Under DARA, their tolerance to
consumption fluctuations increases through time. This implies that when
time goes forward, consumers with a low δ see their weight growing in the
mean δv(z, t) = bEz,tδ(eθ). This implies that the social rate of impatience
decreases with time.

Example 1 We illustrate this result with a simple example. There are two
groups of agents, respectively with constant rates of impatience δl and δh > δl.
All agents have the same felicity function ν(c, θ) = min(b(c−a), d(c−a)), with
0 < d < b. This function is piecewise linear with a kink at c = a. We consider
the case where b tends to infinity, which means that the left branch of the curve
becomes vertical. Parameter a is the minimum level of subsistence. On the
relevant domain [a,+∞[ of this limit function, agents have a nondecreasing
tolerance (DARA), with a zero tolerance at c = a, and an infinite tolerance
for all c > a. In this economy, any Pareto-efficient sharing of the cake
produces a flip-flop consumption pattern. Prior to some identified date τ , the
patient group functions at subsistence, and the impatient group consumes any
surplus. After time τ , the impatient group falls to subsistence, and the patient
group enjoys any surplus. As a consequence, the social rate of impatience
δv(z, t) equals δh prior to τ , and δl thereafter. The term structure is a simple
downward step function in this case. Rates of impatience that are decreasing
with time horizon are often refered to as ”hyperbolic” discounting. Phelps and
Pollak (1968), then followed by Laibson (1997) and many others afterwards,
introduced this stepwise functional form to describe observed psychological
discount rates. This special case is often refered to the ”beta-delta” model.

Example 2 This discounting functional would emerge as the socially effi-
cient rule for less extreme examples. Let us replace the piecewise-linear fe-
licity function by a power felicity function. The two equally weighted groups
have the same constant relative risk aversion γ. Under this "fair" efficient
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Figure 1: The discount rate as a function of time horizon for two-agent group
with δh = 20% and δl = 5%, when ν(c, θ) = c0.9.

allocation of resources, the group’s discount rate as a whole can be written as

δv(z, t) =
δ
1+γ
γ

l e−
δlt

γ + δ
1+γ
γ

h e−
δht

γ

δ
1
γ

l e
− δlt

γ + δ
1
γ

h e
− δht

γ

.

When γ tends to zero, this function of t can be approximated by a downward
step function with step levels at δh and δl.4 In Figure 1, we draw this function
for δh = 20%, δl = 5% and γ = 0.1.

These two examples provide an additional intuition for why the social
rate of impatience should be decreasing. Consider in particular example 2
which is illustrated by Figure 1. Consider a marginal investment by the
cohort that would move some cohort’s income from time t to t − ∆t. If t
is small, this change in the structure of the cash-flows will mostly benefit
those who consume the largest share of the cohort’s cake early in life. These
are the more impatient agents. It is then intuitive that the social planner
uses the (high) rate of impatience of these agents when performing the cost-
benefit analysis of this investment project. On the contrary, for an investment

4The step occurs at time horizon t = (ln δh − ln δl)/(δh − δl).
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project moving some of the cohort’s income from a larger time t to t−∆t, it
will be the more patient members who will mostly benefit from this change,
because they consume the larger share of the cake at those time horizons.
The social planner will thus use their smaller rate of impatience to perform
the cost-benefit analysis of this alternative investment project. In short, the
social planner will use a rate of impatience which is decreasing with the time
horizon from δh to δl.
The next example is interesting because it generates a fuctional form for

the social discount rate that fits some of those that are already existing in
the literature.

Example 3 Suppose that ν(c, θ) = c1−γ/(1− γ) and that δ(θ) = θ. Suppose
moreover that discount rates θ are distributed following a negative exponential
law eθ ∼ f(θ) = e−θ/µ/µ on Θ ≡ [0,+∞[, with a mean Eeθ = µ. We consider
the Pareto-efficient allocation that corresponds to the weighting function λ
such that λ(θ) = θη for some scalar η.5 In this illustration, it can be verified
that

δv(z, t) =
η + γ

t+ γ
µ

, (28)

which is independent of z. When relative risk aversion γ tends to infinity, δv
tends to µ uniformly for all t. When γ tends to zero, δ(z, t) tends uniformly
to η/t. In Figure 2, we draw the maximum discount rate δv as a function of
time when γ = 2 (relative risk aversion) and µ = 5% (mean discount rate).
As seen in (28), the socially efficient discount rate δv declines with time t as
1/(t+ γ

µ
). The discount factor β(t) can be written as

β(t) = exp

·
−

Z t

0

δv(z, τ)dτ

¸
=

·
1 +

µt

γ

¸−(η+γ)
. (29)

This is the functional form suggested by Loewenstein and Prelec (1992), who
generalized earlier proposals made by Herrnstein (1981) and Mazur (1987).
It is useful to examine how consumption is allocated in this economy. The

set of first-order conditions (7) combined with the feasibility constraints can

5One conception of fairness when all agents have the same utility function would set
η = 1. This implies that the mean weight of individuals’ felicity over their (infinite)
lifetime is the same for everyone:

R∞
0
λ(θ)e−θtdt = 1 for all θ.
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be solved analytically to yield

c(z, t, δ) =
µz

Γ
³
γ+η
γ

´ µ t
γ
+
1

µ

¶γ+η
γ

δη/γe−
δt
γ , (30)

where Γ(x) =
R
0
δx−1e−δdδ is the Gamma function. In Figure 3, we draw

the efficient consumption plan for a few types when the average earnings in
the population remain constant over time and are normalized to unity. We
see again what drives the declining term structure of δv: At t = 0, individual
consumption levels and individual degrees of tolerance are positively related
to the individual rates of impatience. This weighting leads to a social rate of
impatience that is greater than µ. As time goes forward, most resources go
to those with low discount rates, and the social rate of impatience falls below
µ. Notice that, following condition (18) with r ≡ δv,the consumption profile
of agent θ is locally increasing as long as δ(θ) is less than δv(z, t). Because
δv is decreasing in t, consumption profiles of all agents with a rate of impa-
tience δ(θ) less than δv(z, 0) ' 7.5% are hump-shaped, whereas those agents
with a rate of impatience greater than 7.5% have decreasing consumption
throughout. In general, efficient consumption profiles are either decreasing
or hump-shaped under the assumptions of Proposition 6.6

It follows immediately from equation (23) that one can relax the assump-
tion that members of the cohort use exponential discounting. If ∂δ/∂t is
nonpositive for all θ ∈ Θ, that will just reinforce the negativity of the right-
hand side of this equation.

Corollary 2 Suppose that agents have multiplicatively separable utility func-
tions with hyperbolic discounting: u(c, t, θ) = k exp(−δ(t, θ)t)h(c, θ) and ∂δ/∂t ·
0. The term structure of the social rate of impatience δv is decreasing if all
utility functions h(., θ) exhibit decreasing absolute risk aversion.

6The figure does not extend far enough to show the consumption for the individual
with δ = 1 to begin to fall. The limit case is the agent with δ = 0; she is the only one to
have a steadily increasing consumption plan.
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Figure 2: The social rate of impatience δv as a function of time.
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Figure 3: Efficient consumption path for agents with different discount rates
δ.
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7 A wealth effect on the group’s impatience

In the standard model of consumption, saving and growth, rates of impa-
tience are assumed to be independent of consumption levels: ∂δ/∂c ≡ 0.
However, it is often observed that wealthier economies are more patient. In
our notation, this would mean that δv is decreasing in z. In this section, we
examine whether these two assumptions can be compatible.
Observe that we found that δv is independent of z in our three examples.

These examples also illustrate the following Proposition.

Proposition 7 Suppose that u is multiplicatively separable in such a way
that u(c, t, θ) = kβ(t, θ)h(c, θ). The following conditions are equivalent:

1. For any distribution of individual discount factors and of Pareto weights,
the social rate of impatience is independent of the consumption per
capita z.

2. The members of the cohort have ISHARA preferences (24), i.e., h(c, θ) =³
c−a(θ)

γ

´1−γ
.

Proof: Fully differentiating equation (21) with respect to z and using
property (10) yields

(ET )
∂δv
∂z
(z, t) = bEδT 0 − ( bEδ)( bET 0), (31)

where T, δ and their derivative are evaluated at (c(z, t,eθ), t,eθ), and wherebE is the ”risk-neutral” expectation operator defined by (22). For ISHARA
preferences, T 0 is a constant. This implies that the right-hand side of the
above equality is zero. To prove the necessity of ISHARA, suppose that
there exist (ca, θa) and (cb, θb) such that T 0(ca, θa) > T 0(cb, θb). Consider
individual discount functions β such that δ(t, θa) > δ(t, θb). Let z denote
the consumption per capita in the cohort when all agents who have type θa
consume ca and all agents who have type θb consume cb. Then, select λ(.)
such that λ(θ) tends to zero for all θ /∈ {θa, θb}. Then, select λ(θa) and λ(θb)
such that

λ(θa)β(t, θa)h
0(ca, θa) = λ(θb)β(t, θb)h

0(cb, θb).

This means that at time t with wealth per capita z, it is socially efficient for
agents θi to consume ci, i = a, b. Because of the positive correlation between
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δ and T 0, we get that the right-hand side of equation (31) is positive. This
implies that δv is increasing in wealth locally at z, a contradiction.¥
Except in the ISHARA case, the representative agent need not have a

multiplicatively separable utility function even when each member in the
cohort has a multiplicatively separable utility function. Rubinstein (1974)
obtained the same wealth irrelevancy property in the special case of expo-
nential and logarithmic utility functions. In the following Proposition, by
contrast, we assume that more patient people have a tolerance to fluctua-
tions that is more sensitive to changes in consumption. In such a situation,
the social rate of impatience will be decreasing with the consumption per
capita in the economy, despite the fact that consumers’ impatience does not
depend on consumption.

Proposition 8 Suppose that the members of the cohort have a rate of im-
patience that is independent of their consumption: ∂δ/∂c ≡ 0. Suppose also
that their tolerance to fluctuations is linear with respect to their consumption:
∂T 0/∂c ≡ 0. The social rate of impatience at t will be decreasing with the
consumption level per capita if δ and T 0 evaluated at t are anti-comonotone:
∀(θ, θ0) ∈ Θ2 : [δ(c, t, θ)− δ(c, t, θ0)] [T 0(c, t, θ)− T 0(c, t, θ0)] · 0.

Proof: Under these assumptions, we have that

bE∂δ

∂c
T = 0

and bEδT 0 · ( bEδ)( bET 0).
From (31), this implies that δv is decreasing in z at t.¥
A simple intuition supports this result. It comes from the fact that the

social rate of impatience is a weighted mean of individual rates of impatience.
When δ and T 0 are anti-comonotone, an increase in wealth differentially in-
creases the weights associated with the lower rates of impatience. An increase
in z then pushes δv downwards.
In the special case of utility functions exhibiting constant relative risk

aversion (CRRA), viz. u0(c, t, θ) = β(t, θ)c−γ(θ), there is a negative relation-
ship between relative risk aversion γ(θ) and T 0(c, t, θ) = 1/γ(θ). Thus, the
above Proposition applied to the case of CRRA utility function implies that
the rate of impatience is a decreasing function of societal wealth if more pa-
tient people are also less risk-averse. The following example illustrates this
point.

23



20 40 60 80 100
t

0.06

0.08

0.12

0.14

0.16

0.18

0.2
δv

z=0.5

z=1

z=2

Figure 4: The term struture of the social rate of impatience when u0(c, t, θl) =
e−0.05tc−1 and u0(c, t, θh) = e−0.2tc−10.

Example 4 Consider an economy with two groups of equal size. Rates of
impatience are constant, hence independent of time and consumption levels.
The first group has low impatience rate δl and a logarithmic felicity function
(γl = 1). The second group has a larger rate of impatience δh > δl and a
larger constant relative risk aversion γh > 1. We derived numerically the
Pareto-efficient allocation correponding to equal Pareto weights λl = λh, in
the case of γh = 10, δl = 0.05 and δh = 0.20. Figure 4 shows the term
structure of the social rate of impatience when the consumption per capita
z equals 0.5, 1 and 2. We see that a larger per capita consumption yields a
smaller rate of impatience for all time horizons, as proved by Proposition 8.
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8 The interest rate and its term structure
with a single generation

Up to now, we characterized the intertemporal preferences of a cohort. In
the remaining of the paper, we use these characteristics to determine the
optimal saving and investment choices and equilibrium interest rates. We
will consider two different economic settings. In this section, we assume that
there is a single generation of infinitely lived agents, whereas we consider the
case of overlapping two-period generations in the next section.
We consider here an economy with a single cohort of infinitely lived

agents. The collective choice problem is described by the opportunity to
invest in various projects indexed by j ∈ J. Project j yields a per-capita flow
of incomes ζj(.) : R

+ → R. The collective decision problem is to select the
project that maximizes the lifetime utility of the cohort:

max
j∈J

Z ∞

0

v(ω(t) + ζj(t), t)dt, (32)

where ω(t) is the endowment per capita of the single consumption good at
date t. Suppose that z(.) is the optimal flow of consumption per capita in this
economy. Consider in particular a marginal investment project that costs dx
at time t and that yields a benefit erdtdx at time t+ dt.7 Parameter r is the
return of this investment project. Assuming that the consumption path is
continuously differentiable, z is indeed optimal if the lifetime social utility is
unaffected by this marginal investment, that is if

−v0(z(t), t) + erdtv0(z(t+ dt), t+ dt) = v0(z(t), t)
h
−1 + erdte−δvdte−Avz

0(t)dt
i

is zero, where Av = 1/Tv = −v00/v0 is the collective degree of aversion to
consumption fluctuations. This is equivalent to r being equal to

r(z, t) = δv(z, t) +Av(z, t)
∂z

∂t
. (33)

This equation characterizes the equilibrium forward interest rate correspond-
ing to date t, given the consumption per capita z and its growth z0. Condition

7Obviously, these flows occur over a period of time of measure 0, with no effect on U .
In reality, costs and benefits are incurred during respectively period [t, t + ε] and period
[t+ dt, t+ dt+ ε].
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(33) usefully extends the well-known property of optimal consumption when
preferences exhibit exponential discounting. It shows the relationship be-
tween the psychological discount factor δ and the financial discount rate r
appropriately employed to discount monetary cash flows. The shadow price
of time, r, is the sum of two terms. The first is δv, the collective rate of
impatience. The second term comes from the collective preference for con-
sumption smoothing. When large consumption growth is expected, a large
interest rate is required to induce agents to save. Otherwise, they would
want to borrow money today to smooth the expected increase in their future
incomes.8

The yield curve in this economy is characterized by ρ(t) = r(z(t), t).
When there are no aggregate fluctuations, socially efficient interest rates just
equal the social discount rates whose term structure was examined in the
previous two sections. Observe in particular that in the absence of growth,
the yield curve will be decreasing when consumers have heterogeneous rates
of impatience and decreasing absolute aversion to fluctuations. When the
economic growth rate z0/z is not zero, the second term in the right-hand side
of (33) comes into play. In this section, we examine the properties of this
consumption smoothing effect. We first consider the direct effect of time on
the consumption-smoothing term Avz

0. Because by definition we have that

∂Av
∂t
(z, t) =

∂δv
∂c
(z, t) (35)

for all (z, t), the previous section gives us some information on this prob-
lem. Consider for example the case where agents have ISHARA preferences.
Proposition 7 combined with property (35) tells us that Tv is independent of
t in that case. It implies that the interest rate formula (33) is time invariant
in this case. In the next Proposition, we consider a special case of this where
all agents have the same constant relative aversion γ, but they differ about
their constant rate of impatient δ(θ).

Proposition 9 Suppose that u(c, t, θ) = ke−δ(θ)tc1−γ/(1− γ) for all (c, t, θ).

8Reversing the argument, if the equilibrium interest rate r is given by a production
technology with constant returns to scale, the equilibrium growth of the economy is written
as

∂z

∂t
= Tv(z, t) [r − δv(z, t)] . (34)

This is the Keynes-Ramsey rule extended to heterogeneous time preferences in the econ-
omy.
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Suppose also that the growth rate z0(t)/z(t) of the economy is independent of
time. If there exists at least one pair (θ, θ0) such that δ(θ) 6= δ(θ0), the yield
curve is decreasing.

Proof: Because this is a special case of ISHARA preferences, we know
from Proposition 7 that δv is independent of z. Using equation (14), we have
that

Tv(z, t) = ET (ec, t,eθ) = Eec/γ = z/γ.
This implies that

ρ(t) = r(z(t), t) = δv(t) + γ
z0(t)
z(t)

.

Because z0/z is independent of t, and because δv is decreasing in t because
of Proposition 6, we obtain that ρ is decreasing in t. ¥
In the next Proposition, we consider the alternative case where agents

have heterogenous CRRA preferences. In a static context with uncertainty,
Hara and Kuzmics (2002) show that this implies that the representative agent
has an Rv which is decreasing with respect to z.9 We now provide a shorter
proof of this result. As shown by Gollier (2002a), it implies that the yield
curve is decreasing under the standard assumptions.

Proposition 10 Suppose that agents have constant, identical rates of impa-
tience, and that consumption per capita is growing at a constant rate. Then
if agents have heterogenous but constant rates of relative risk aversion, the
yield curve is decreasing.

Proof: Because we assume that agents have homogenous rates of im-
patience, the first term in the right-hand side of (33) is independent of t.
Moreover, we know that it also implies that ∂Av/∂t vanishes. We are done
if ∂zAv/∂z is nonpositive. Differentiating zAv(z, t) = z/Tv(z, t) with respect
to z implies that this is the case if

ET (c(eθ), t,eθ) · zET 0(c(eθ), t,eθ)T (c(eθ), t,eθ)
ET (c(eθ), t,eθ) ,

9Calvet, Grandmont and Lemaire (2001) obtain a similar result.
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or equivalently, since T (c, t, θ) = c/γ(θ), if"
E
c(eθ)
γ(eθ)

#2
· Ec(eθ)E c(eθ)

(γ(eθ))2 .
The Cauchy-Schwarz inequality implies that this is always true.¥

9 A simple overlapping generation model

In this section, we consider a more realistic economy with overlapping gener-
ations of savers/consumers. In any stationary equilibrium of credit markets,
the short-term interest rate must be constant through time, and the yield
curve must be flat. Our analysis of an OLG model will address how the het-
erogeneity of time preferences affects the growth of the economy and the level
of interest rates at equilibrium. We will consider the classical discrete-time
OLG model in which each cohort lives only two periods. This implies that
credit markets only allow for resource exchanges within cohorts. It implies
in turn that the heterogeneity of time preferences affects the dynamics of the
economy only through its effect on the time preferences of the representa-
tive agents of the successive generations. We assume that the distribution of
preferences within each cohort remains stable through time.
In the discrete version of the model analyzed earlier in this paper, an

agent of type θ has a lifetime utility described by

U(θ) = u(c1, θ) + β(θ)u(c2, θ),

where ct is her consumption at age t = 1 or 2. Observe that we consider here
the simplifying assumption of a multiplicatively separable discount factor β.
The representative agent of a cohort is given by

v(z, 1) = max
c1(z,.)

E
h
λ(eθ)u(c1(z,eθ),eθ)i s.t. Ec1(z,eθ) = z, (36)

for the cake sharing problem at young age, and by

v(z, 2) = max
c2(z,.)

E
h
λ(eθ)β(eθ)u(c2(z,eθ),eθ)i s.t. Ec2(z,eθ) = z, (37)

for the old age. We assume that the ISHARA condition holds with T 0u(c, θ) =
γ−1 for all (c, θ). This implies that there exists a scalar βv such that v(z, 2) =
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βvv(z, 1). Adapting Appendix A in Gollier (2003) to this intertemporal con-
text, the discount factor βv of the representative agent equals

βv =

E
h
λ(eθ)1/γβ(eθ)1/γi
E
h
λ(eθ)1/γi

γ

. (38)

To sum up, in the ISHARA case, the heterogeneity of time preferences has
no further effect on the classical OLG growth model than modifying the
discount rate of each cohort’s representative agent. The simplest case is in
the logarithmic case u(c, θ) = ln(c) where βv = Eβ(eθ). When consumers
are logarithmic, the heterogeneity of impatience has no effect at all on the
equilibrium growth, and the economy evolves over time as in an homogeneous
economy in which all agents would have the same discount factor Eβ(eθ).
A more realistic case has u(c, θ) = c1−γ/(1− γ) with an index of relative

risk aversion γ larger than unity. Applying Jensen’s inequality to equation
(38) implies that

βv ·
E
h
λ(eθ)1/γβ(eθ)i
E
h
λ(eθ)1/γi .

In this alternative case, the heterogeneity of time preferences raises the col-
lective degree of impatience of each cohort. This implies that the interest
rate will be larger, that the equilibrium growth rate of the economy will be
reduced, and that the steady state will entail a smaller consumption per
capita. Notice that for non-logarithmic utility functions, each cohort’s rate
of impatience will depend upon the Pareto weights λ. If the allocation of
consumption within each cohort is decentralized through competitive credit
markets, this allocation will depend upon the interest rate.

10 Conclusion

Groups do not generally behave towards time as do individual consumers.
For example, the group’s rate of impatience is not independent of the group’s
wealth level. However, the basic property of additivity of individual pref-
erences is transmitted to the preferences of the representative agent. This
implies that the representative agent of the group has no consumption habits
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and no anticipatory feelings if its members don’t also have such psychological
traits.
The main objective of the paper was to aggregate heterogeneous time pref-

erences. It shows that the local collective rate of impatience is a weighted
mean of the members’ local rates of impatience. Each member’s weight is
proportional to her degree of absolute tolerance to consumption fluctuations.
This aggregation rule implies that the collective rate of impatience is de-
creasing with respect to the time horizon when wealthier consumers are less
averse to consumption fluctuations, a common assumption. For long hori-
zons, any transfer of the group’s wealth across time will mostly affect the
most patient agents because they are those who have the largest stake on
aggregate wealth. Thus, when considering investments affecting cash flows
corresponding to these long horizons, the group should use the lower rate
of impatience in the group for cost-benefit analysis. On the contrary, for
short-time horizons, transferring wealth across time affects mainly the con-
sumption flow of the most impatient agents. In the collective cost-benefit
analysis for such investments, the larger rate of impatience of these agents
should be employed. This reasoning presupposes, of course, that the group is
able to redistribute consumption within the group in response to each agent’s
degree of impatience.
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