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Abstract

Structural Vector Autoregressions with a differenced specification of hours (DSVAR) suggest that pro-
ductivity shocks identified using long-run restrictions lead to a persistent and significant decline in hours
worked. Economists have interpreted this evidence as showing that standard business cycle models in which
a positive technology shock leads to a rise in hours are inconsistent with the data. In this paper we argue that
such a conclusion is unwarranted because model’s data and actual data are not treated symmetrically. To
illustrate this problem, we estimate and test a flexible-price DSGE model with non-stationary hours using
Indirect Inference on impulse responses of hours and output after technology and non-technology shocks.
We find that, once augmented with a moderate amount of real frictions, the model can mimic well impulse
responses obtained from a DSVAR on actual data. Using this model as a data generating process, we show
that our estimation method is less subject to bias than a method that would directly compare theoretical
responses with responses from the DSVAR.
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0. Introduction

This paper combines dynamic stochastic general equilibrium (DSGE) models and Structural
Vector Autoregressions (SVARs) to characterize the joint dynamics of hours worked and labor
productivity.

The literature on the subject is currently burgeoning. In a provocative paper, Galí (1999) ar-
gues that the response of hours to a technology shock is persistently and significantly negative in
the US as well as in other G7 countries (see also Galí, 2004 regarding the euro area). This claim
is based on SVARs of the growth rates of labor productivity and hours with long-run restrictions.
The negative response of hours is interpreted as invalidating a whole class of business cycle
models, namely technology-driven flexible price ones (Galí and Rabanal, 2004 and Francis and
Ramey, 2005). These SVARs results and their interpretation have raised major controversies. On
the one hand, Christiano et al. (2004) provide evidence in favor of a level-stationary specification
of hours worked (LSVAR), as opposed to the difference-stationary (or DSVAR) specification in
Galí (1999).1 On the other hand, Erceg et al. (2005) and Chari et al. (2005) use DSGE models
estimated on US data as Data Generating Processes (DGP) to evaluate the identification of tech-
nology shocks provided by DSVARs. Chari et al. (2005) show that a DSVAR model leads to a
negative response of hours under a business cycle model in which hours respond positively. They
conclude that SVARs with long-run restrictions are not useful guides for developing business
cycle theories.2

The contribution of the present paper is twofold. First, we develop a DSGE model with non-
stationary hours. In contrast to related studies, our model is in close conformity with the DSVAR
specification advocated by Galí (1999): hours being non-stationary, the DSVAR is the correct
specification to investigate. The model also embeds time non-separability in leisure choices. We
select the parameters of the model so that a DSVAR estimated on simulated data from the model
would mimic a DSVAR estimated on actual data. More precisely, the method used in this paper
picks the parameters that minimize the discrepancy between the simulated Impulse Response
Functions (IRFs)—those from the DSVAR estimated on model’s data—and the empirical IRFs—
those from the DSVAR estimated on actual data. While our model is technology-driven, features
flexible prices and displays a positive response of hours to a technology shock, it can generate
simulated IRFs that look like the Galí (1999) finding. This calls into question the conclusions
reached by Galí (1999) and Francis and Ramey (2005).

Second, we illustrate the merits of our approach through a comparison with a popular alterna-
tive methodology used by Rotemberg and Woodford (1997), Christiano et al. (2005a), and Altig
et al. (2005), among others. This alternative methodology selects parameter values so that the
theoretical IRFs are as close as possible to the empirical IRFs obtained from a DSVAR. We work
through an example and show that this methodology delivers severely biased estimates of the
model’s structural parameters, and underperforms the method we suggest.

The methodology used in this paper is close in spirit to Sims’s (1989) general principle, sub-
sequently adopted by Cogley and Nason (1995): treating models and data symmetrically. With
such an approach, the IRFs from the DSVAR are given no a priori structural interpretation. They
are just moments from the data, and the DSVAR is similar to a filter.3 However, these moments

1 With their LSVAR specification, Christiano et al. (2004) show that hours increase after a permanent technology
shock.

2 See also Cooley and Dwyer (1998) criticism of SVARs.
3 The DSVAR plays the role of the auxiliary model in Gouriéroux et al. (1993).



240 M. Dupaigne et al. / Review of Economic Dynamics 10 (2007) 238–255
can be useful to evaluate a theoretical model, provided the associated model’s quantitative im-
plications vary appropriately with the parameters of interest (loosely speaking, it is the analog of
the likelihood function not being flat in the relevant dimension of the parameter space). Indeed,
our results suggest that using IRFs from a DSVAR as moments to be matched allows us to dis-
criminate between different DSGE models. In particular, real frictions (here, under the form of
habit persistence) are essential to mimic the data.

The direct comparison of theoretical responses and IRFs from a DSVAR would only make
sense if the DSVAR properly recovers structural shocks and the associated dynamic propagation
(see Kehoe, 2006). In what follows, we label Direct Inference (or direct approach) the estimation
of structural parameter based on the distance between theoretical responses and IRFs from a
SVAR model estimated on actual data. The danger of this approach is obvious: if the SVAR is
biased, as shown by Erceg et al. (2005) and Chari et al. (2005), a direct evaluation of a DSGE
model will prove highly misleading. We investigate this issue taking our estimated model as
the data generating process. We then compare the relative performances of the direct approach
with our Indirect Inference methodology. To begin with, we generate data from our model and
estimate model’s parameters using these competing approaches. Doing this a large number of
times allows us to obtain a population of parameter estimates under each estimation methods,
which we can compare to the true value and to each other. We show that the parameters we get
with Direct Inference can be rather far from the parameters we fixed for simulation. In contrast,
the parameters obtained by Indirect Inference are very close to their true values.

To ensure that our DSGE model satisfies the key identifying assumptions of the DSVAR,
we follow Chang et al. (2007) and consider two permanent shocks in our theoretical frame-
work. In addition to a permanent technology shock, the model includes a permanent preference
shock which yields non-stationary hours. Importantly, this model preserves the property that only
technology shocks exert a permanent effect on labor productivity. Non-stationary hours and the
long-run impact of technology shocks on labor productivity are perfectly in accordance with the
DSVAR adopted by Galí (1999) and Galí and Rabanal (2004).

Modeling hours as a non-stationary process is of course debatable, since hours per capita
admit a physical constraint. As most of the literature does, we ignore this constraint in our quan-
titative investigation. Hence, the resulting dynamics must be viewed as a local approximation.
Note that from an empirical point of view, this property is supported by the data.

The paper is organized as follows. In Section 1, we reproduce Galí’s (1999) findings obtained
from a DSVAR model estimated on quarterly post war US data. The resulting IRFs will be treated
as the moments of interest. In Section 2, we expound our DSGE model with non-stationary hours.
Section 3 is devoted to an exposition of our quantitative exercise based on Indirect Inference. Sec-
tion 4 provides a comparison between this indirect approach and the popular direct estimation.
The last section briefly concludes.

1. Estimated impulse responses for US data

The first step in our procedure is to reproduce the results obtained by Galí (1999), and define
the moments that will be matched in our quantitative exercise. To do so, we first consider the
following VAR(p) model

zt = A1zt−1 + · · · + Apzt−p + εt , E{εtε
′
t } = �, (1)
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with zt = (�xt ,�nt )
′, where xt is logged labor productivity, nt is logged total hours worked

per capita, and � is the first difference operator.4 To simplify the exposition, we abstract from
constant terms in the above VAR model. This specification with hours worked in first difference
is used by Galí (1999, 2004, 2005), Galí and Rabanal (2004), and Francis and Ramey (2005).
We follow Galí and Rabanal (2004) and set p to 4.

This VAR model is used to identify technology and non-technology shocks. Let us define
B (L) = (I2 − A1L − · · · − ApLp)−1, so that

zt = B(L)εt ,

with I2 the identity matrix. Now, we assume that the canonical innovations εt are linear combi-
nations of the structural shocks ηt for some non singular matrix S, i.e. εt = Sηt . As usual, we
impose an orthogonality assumption on the structural shocks which, together with a scale normal-
ization, implies Eηtη

′
t = I2. This gives us three constraints out of the four needed to completely

identify S.
To setup the last identifying constraint, let us define C(L) = B(L)S. Given the ordering of zt ,

we simply require that C(1) be lower triangular, so that only technology shocks can affect the
long-run level of labor productivity. This amounts to imposing that C(1) is the Cholesky factor
of B(1)�B(1)′. Given consistent estimates of B(1) and �, we easily obtain an estimate for C(1).
Retrieving S is then a simple task using the formula S = B(1)−1C(1). The impulse responses are
then deduced from the VMA(∞) representation

zt = B(L)B(1)−1C(1)ηt (2)

with ηt = (η1,t ,η2,t )
′, where η1,t is the identified technology shock, whereas η2,t is the non-

technology one. The standard-errors of the IRFs are computed numerically using the δ-function
method (see Hamilton, 1994).5

The IRFs are reported on Fig. 1. Several salient features emerge from this figure. Output
increases permanently in response to either a technology shock or a non-technology shock, hours
do not respond asymptotically to technology shocks, while non-technology shocks generate a
long-run effect on hours. The impulse responses of output and hours to the non-technology shock
are persistent and hump-shaped. These responses are estimated precisely for each horizon. In
addition, as in Galí (1999), hours worked decrease significantly on impact after a technology
shock. Moreover, the negative effect is rather persistent.

Confronted with these DSVAR evidence, business cycle students have one of two choices.
Either they take them at face value, thus discarding a host of DSGE models previously thought to
be useful, as suggested by Galí (1999) and Francis and Ramey (2005); or they can treat these IRFs
as what they are, i.e. moments from the data that need not be given a structural interpretation,
especially so if the DSVAR is highly biased, as forcefully put forth by Chari et al. (2005) and, to
a lesser extent, by Erceg et al. (2005).

The purpose of this paper is to provide a quantitative tool that simply treats these IRFs as
arbitrarily-chosen moments from the data with no necessary interpretation, thus preventing busi-
ness cycle students from reaching incorrect conclusions as to the dynamic effects of potentially
ill-identified (technology) shocks. Doing so requires first that we develop a DSGE model with

4 Our quarterly data for the period 1948:1–2002:4 are constructed as follows. Labor productivity is defined as non-farm
business output divided by non-farm business hours worked; hours worked are non-farm business hours worked divided
by civilian population over the age of 16.

5 We obtain virtually identical results using a simple bootstrap method.
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Note: The IRFs are obtained from a DSVAR with four lags estimated on productivity growth and hours growth. The data
are for the Non-Farm Business sector, over the sample period 1948:1–2002:4. The solid line represents the point estimate
and the gray area corresponds to the 90% asymptotic confidence interval.

Fig. 1. IRFs of output and hours to technology and non-technology shocks.

non-stationary hours which is completely compatible with the DSVAR specification and the iden-
tification scheme proposed by Galí (1999). The next section describes the model.

2. A DSGE model with non-stationary hours

We build a flexible price DSGE model with non-stationary hours, due to a permanent prefer-
ence shock (Bt), along the lines of Chang et al. (2007). In addition, the model includes a random
walk productivity shock (Zt ).

Following Bouakez and Kano (2006), we assume that labor supply choices are time non-
separable: the service flows from leisure are a function of current and once-lagged leisure
choices. The intertemporal expected utility function of the representative household is given by

E0

∞∑
t=0

βi

{
U(Ct) − V

(
Nt

Bt

,
Nt−1

Bt−1

)}
,

where
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U(Ct ) = log(Ct ),

V

(
Nt

Bt

,
Nt−1

Bt−1

)
= 1

1 + χ

[
Nt/Bt

(Nt−1/Bt−1)a

]1+χ

, χ > 0.

Here β ∈ (0,1) denotes the discount factor and E0 is the expectation operator conditional on the
information set available as of time t = 0. Ct is the consumption at date t and Nt represents
the household’s labor supply. When a < 0, the model implies that labor supply is intertempo-
rally substitutable, while a > 0 implies intertemporal complementarities. The labor supply Nt is
subject to a permanent preference shock Bt , that follows the stochastic process

log(Bt ) = log(Bt−1) + σBεB,t ,

where σB > 0, and εB,t is iid with zero mean and unit variance. As noticed by Galí (2005),
this shock can be an important source of fluctuations, as it accounts for permanent shifts in the
marginal rate of substitution between goods and labor (see Hall, 1997).

The representative firm uses capital Kt and labor Nt to produce the homogeneous final
good Yt . The technology is represented by the following constant returns-to-scale Cobb–Douglas
production function

Yt = K1−α
t (ZtNt )

α,

where α ∈ (0,1). Zt is assumed to follow an exogenous process of the form

log(Zt ) = gZ + log(Zt−1) + σZεZ,t ,

where σZ > 0 and εZ,t is iid with zero mean and unit variance. The constant gZ is a drift term in
the random walk process of Zt . The capital stock evolves according to the law of motion

Kt+1 = (1 − δ)Kt + It ,

where δ ∈ (0,1) is the constant depreciation rate. Finally, the final good can be either consumed
or invested

Yt = Ct + It .

The first order conditions implied by the model are standard, except that relating to labor
choices, which can be written as

∂V (Nt/Bt ,Nt−1/Bt−1)

∂Nt

+ β Et

∂V (Nt+1/Bt+1,Nt/Bt )

∂Nt

= U ′(Ct )α
Yt

Nt

.

As usual, this condition equates the marginal disutility of work to the marginal utility of
consuming the marginal product of labor. In our setup, past hours worked affect current utility.
Therefore, the marginal disutility of labor involves past, current and expected hours worked. In
the intertemporal complementarity case (respectively substitutability), current increases in labor
supply reduce (respectively raise) next period’s marginal disutility of labor.

In this model, the labor supply shock Bt has a permanent effect on hours as well as on output,
consumption, investment, and capital. In addition, Zt has a long-run effect on Yt , Ct , Kt , and It ,
but no long-run effect on Nt . Accordingly, it is important to notice that in our model Zt alone
can have a long-run effect on labor productivity. Hence, this model is perfectly compatible with
the first difference specification for hours and the identification assumptions used in the DSVAR
previously estimated.6

6 In the DGPs considered in Erceg et al. (2005) and Chari et al. (2005), hours worked are stationary. Facing data that
originate from these models, the natural statistical representations are VARs with hours in level, not in first-differences.
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To obtain a stationary equilibrium these variables must be rescaled as follows

Ñt = Nt

Bt

, Ỹt = Yt

ZtBt

, C̃t = Ct

ZtBt

, Ĩt = It

ZtBt

, K̃t+1 = Kt+1

ZtBt

.

With these transformations, a well-behaved deterministic steady state exists, which is akin to
what would stem from a standard neoclassical growth model. The approximate solution of the
model is computed from a log-linearization of the stationary equilibrium conditions around this
deterministic steady state using the numerical algorithm of Anderson and Moore (1985).

Non-stationary hours receive empirical support. First, standard univariate unit root tests (ADF,
KPSS) lead in general to accept the hypothesis of a unit-root in hours worked (Galí and Rabanal,
2004; Francis and Ramey, 2005; Christiano et al., 2004).7 Second, Galí (2005) regresses hours
on the consumption–output ratio (in logs). When the data are unfiltered, he finds that this re-
gression has little explanatory power. However, with data in first-differences, the fit is greatly
improved, consistently with basic neoclassical theory. Christiano et al. (2005b) run a closely
related regression and obtain a highly autocorrelated residual, suggesting the presence of perma-
nent labor-supply wedges.

However, modeling hours as a non-stationary process is highly controversial. Obviously, the
maximal number of hours that a person can work a day is bounded. Hence, no model that takes
into account this physical constraint can yield a unit root in the logarithm of hours. The specifi-
cation of the utility function ignores any physical bound: it is always possible to find a sequence
of Bt such that Nt will eventually exceed any positive limit N̄ , even if Bt is a stationary shock.
In addition, log-linear solutions ignore this upper bound. This problem is all the more reinforced
as we assume that Bt follows a random walk. Thus, our model as well as our solution procedure
yield dynamics that should be viewed as a local approximation, a view that is widespread in the
literature with similar utility functions.

3. Indirect Inference using the DSVAR

In this section, we consider the IRFs of output and hours previously estimated as moments
from the data that we ask our DSGE model to reproduce. We follow the methodology advocated
by Sims (1989) and Cogley and Nason (1995), which consists in treating models and actual data
symmetrically. In our setup, this implies that the DSGE parameters should be picked so that IRFs
from the DSVAR on model’s simulated data match as well as possible the IRFs from the same
DSVAR on US data. As a consequence, it does not matter whether IRFs from actual data are
structural or not: they are just moments of the data with possibly little or no economic content.

A legitimate question arises: Why these moments? Either the DSVAR does a good job of
identifying the true structural responses, in which case these IRFs are a legitimate object to be
matched. Or the DSVAR delivers a distorted image of the true structural responses, in which case
these moments can still be useful, provided their DSGE counterparts vary appropriately as one
varies the parameters of interest. The potential power of our approach is that even if the DSVAR
is completely biased and distorted, the DSGE parameters can still be consistently estimated.
In this sense our approach is very much in the spirit of the Indirect Inference approach or the
simulated method of moments approach.

7 The multivariate tests (ADF with covariates and encompassing tests) in Christiano et al. (2004) seem to be more
favorable to a stationary representation of hours.
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Let us now describe the way our method is implemented. We partition the model parame-
ters θ into two groups θ = {θ1, θ2} The first group, θ1 = {χ,gZ,β,α, δ}, is calibrated prior to
estimation. The parameter χ is set to one, as in Altig et al. (2005). The growth rate of Zt , gZ , is
equal to 1.005. We set β = 1.03−0.25, which implies a steady state annualized real interest rate
of 3 percent. We set α = 0.64, that implies a steady state capital’s share in output equal to 36%,
as in Cooley and Prescott (1995). Finally, we set δ = 0.025, which implies an annual rate of
depreciation of capital equal to 10 percent.

Given these a priori values, we first investigate the response of hours to a positive technology
shock. We conduct this exercise for several values of the habit parameter a, having no prior on
this parameter. For parameter values consistent with a saddle-path configuration, hours never
respond negatively to such a shock. In order to illustrate the mechanism implied by habits in
leisure, Fig. 2 reports the response of hours to a 1% technology shock for positive and negative
values of a. When a < 0, as in Kydland and Prescott (1982), agents are willing to substitute
intertemporally leisure after a technology shock, so as to exploit the increase in productivity. This
implies a substantial response of hours on impact, though a smaller persistence. To the contrary,
when a > 0, the labor supply is complementary in adjacent periods, due to habit formation. In
this case, agents are less willing to increase their labor supply, conducing to a smaller response
of hours on impact and a gradual increase of hours over time.

Fig. 2. Model impulse responses of hours to technology shocks.
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The second group of model parameters is θ2 = {a,σZ,σB}. As suggested by the Sims–
Cogley–Nason approach, these three parameters are estimated using an indirect estimation. The
empirical IRFs of hours from the DSVAR are used as an auxiliary criterion that allows us to
identify and estimate θ2 through simulations. More precisely, let ψ̂T denote a vector of DSVAR-
based IRFs estimated using equation (2) from actual data on a sample of size T , and ψ̃T ,S(θ) the
average over S simulations of DSVAR-based IRFs estimated from artificial data with the same
sample size. More details regarding the implementation of the Indirect Inference approach are
provided in Appendix A.

The Indirect Inference estimator of θ2 minimizes the following quadratic form

J (θ2) = g′
T ,SWT gT ,S

where gT ,S = [ψ̂T − ψ̃T ,S(θ2)] and WT is a symmetric nonnegative matrix that depends on the
data.

When the number of IRFs exceeds the number of structural parameters, a global specifica-
tion test can be conducted in the lines of Hansen (1982). The test statistics J = T S

1+S
J (θ2)

is asymptotically distributed as a chi-square, with degrees of freedom equal to the number of
over-identifying restrictions (see Gouriéroux et al., 1993).

The model is estimated using the IRFs of output and hours to the two shocks. Notice that
in this case, for a sufficiently long horizon, we implicitly estimate the DSGE model so as to
reproduce the likelihood of the DSVAR on actual data. This estimation method is in fact analog
to a full information approach. Thus, if the model is not rejected by the data, this means that the
DSGE implies a DSVAR equivalent to that on actual data. That this empirical DSVAR can or
cannot be given a structural interpretation is completely irrelevant.

In practice, we estimate θ2 using the first 21 point estimates of the responses of output and
hours to each shock in the DSVAR. S = 50 simulations were used for a sample size equal to
219 quarters, as in the data. Simulated innovations are redrawn from the same seeds for each
function evaluation. In order to reduce the effect of initial conditions, the simulated samples
include 200 initial points which are subsequently discarded in the estimation. The minimization
of the simulated criterion function is carried out using the sequential dynamic programming
algorithm provided by the MATLAB Optimization Toolbox.

In order to investigate the ability of the chosen moments to discriminate between different
versions of our DSGE model, we perform two experiments. In the first one, we shut down habits
in leisure (a = 0). We will later refer to this case as the no habit model. In the second, we estimate
all the parameters in θ2. We will refer to this setup as the habit model.

Estimation results are reported in Table 1. The first column of results reports parameter esti-
mates for the no habit model. The second column concerns the habit model. In each case, we
also report the associated J -statistics as well as the contribution of technology shocks to the
fluctuations of output and hours at business cycle frequencies.

As shown in Table 1, the no habit model is rejected by the data (see the P-value of the
J -statistics). In contrast, the habit model passes the over-identification test. The labor supply
parameter a is significantly positive, indicating that labor supply is subject to intertemporal
complementarities, in accordance with previous results from Eichenbaum et al. (1988), Bover
(1991), Wen (1998), and Bouakez and Kano (2006). Our estimation suggests that today’s leisure
significantly reduces leisure services in the subsequent time period. The estimated value of the
standard-error of the technology shock, σZ , is equal to 1.33%. The point estimate is close to what
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Table 1
Results from Indirect Inference

No Habit Model Habit Model

a – 0.6383
(0.0185)

σZ 0.0149 0.0133
(0.0006) (0.0004)

σB 0.0101 0.0076
(0.0002) (0.0003)

J 223.3 81.9
[0.00] [45.03]

V (y/εZ) (in %) 88.4 93.6
V (n/εZ) (in %) 20.8 53.9

Note: Standard-errors in parentheses; P -values in brackets. S = 50 simulations were used in
the estimation procedure. The latter is based on the IRFs of output and hours to both shocks
in the DSVAR model. The first 21-point estimates of each IRFs are used as the moments to be
matched. V (y/εz) and V (n/εz) are the contributions of technology shocks to output and hours
fluctuations at business cycle frequencies, respectively. These contributions are computed in
the DSGE model at the parameters estimates. The business cycle component of each series are
obtained from the HP filter with the smoothing parameter set to 1600.

would obtain in simple growth accounting exercises over our data set,8 and does not differ from
previous studies (Prescott, 1986; Hansen, 1997 and Erceg et al., 2005). The estimated standard-
error of the preference shock innovation, σB , equals 0.76%. This value is similar to what Chang
et al. (2007) obtain (0.6%) when they estimate a DSGE model with non-stationary hours using
Bayesian techniques on NFB data. Christiano et al. (2005b) estimate a first order autoregressive
representation for this type of variable. They obtain an autoregressive coefficient of 0.986, and a
0.56% standard-error of the innovation. Their results are supportive of our own estimation.

These estimation results make the following point: the IRFs from the DSVAR are useful
moments, whether or not they can be given a structural interpretation. Here, these moments
unambiguously allow us to discriminate between the two versions of the DSGE model. Next we
evaluate the structural content of these IRFs in the habit model. From now on, we discard the no
habit model which has been rejected by the data.

Figure 3 displays the VAR-based IRFs of output and hours to technology and non-technology
shocks under actual data (solid line) together with their confidence interval (gray area). It also
reports analog IRFs obtained by estimating the same DSVAR on simulated data from the DSGE
model (solid line with squares). Finally, it reports the theoretical IRFs implied by the DSGE
model (dashed line). This set of IRFs sheds light on the possible biases induced by DSVARs.

Figure 3 makes clear that simulated IRFs match well the empirical IRFs (see the solid lines
and solid lines with squares), which is a further illustration of the fact that the model passes
the over-identification test. Beyond this, the figure shows the huge bias induced by the DSVAR.
Indeed, the DSVAR concludes that hours decline persistently in response to a technology shock
even though the data used for estimation are generated from a model that predicts the opposite

8 In this type of calculation, we use the calibrated values of δ and a series of aggregate investment (private investment
plus durable goods expenditures) to construct a capital stock series assuming an initial capital–output ratio of 6. Using
the calibrated value of α, we determine the Solow residual from observed output and hours and the calculated capital
stock. We obtain σz = 0.0169.
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Note: The plain line corresponds to the empirical IRFs obtained from a DSVAR on actual data. The gray area is the
associated 90% asymptotic confidence interval. The line with squares corresponds to the IRFs obtained from a DSVAR
on the DSGE model simulated data. The dashed line corresponds to the theoretical IRFs implied by the DSGE model.

Fig. 3. Estimation results with Habit Model.

(see the solid lines with squares and dashed lines). Similar results obtain regarding the response
of output to a technology shock. Symmetrically, the DSVAR overestimates the contribution of
non-technology shocks to the dynamics of output and hours.

The biases induced by the DSVAR may originate from several sources:

(i) hours are over-differenced (Erceg et al., 2005);
(ii) average labor productivity is a poor proxy for total factor productivity at business cycle

frequencies (Chang and Hong, 2006);
(iii) the estimation of DSVARs is subject to small sample biases, especially with long-run re-

strictions (see Faust and Leeper, 1997);
(iv) a structural VAR with a finite number of lags may poorly approximate the dynamics of

DSGE models (Chari et al., 2005).

In our setup, the first source of bias is irrelevant. In contrast, when we use the habit model
and conduct counterfactual experiments (not reported), we confirm that the other three sources
quantitatively matter, more specifically the latter.

After having considered impulse response functions, we now turn to another set of statistics
to describe the properties of the DSVAR, namely the variance decomposition of the forecast
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Table 2
Selected US moments

Moments US Data Habit Model

σy 2.234 1.750
σc/σy 0.580 0.572
σi/σy 2.391 2.204
σn/σy 0.840 0.892
σx/σy 0.492 0.581
ρy 0.828 0.805
ρc 0.846 0.748
ρi 0.858 0.844
ρn 0.893 0.833
ρx 0.699 0.675
Corr(x,n) 0.096 −0.122

Note: Moments are obtained using the HP filter with the smoothing parameter equal to 1600.
σj for j = {y, c, i, n, x} is the standard-error of output, consumption, investment, hours and
labor productivity, respectively. ρj for j = {y, c, i, n, x} is the first order autoregressive para-
meters for the same variables. Corr(x,n) denotes the correlation between labor productivity
and hours worked. Consumption is defined as the sum of real consumption expenditures on
non-durable goods and services. Investment is the sum of real consumption expenditures on
durable goods and real private fixed domestic investment. All variables are per capita.

errors. The last two lines of Table 1 report the contribution of technology shocks to the variance
of output and hours in the estimated DSGE model. They show that technology shocks are the
dominant impulse at business cycle frequencies (they account for more than 90% of the variance
of output and more than half of the variance of hours). These results are in sharp contrast with
the predictions drawn from the DSVAR estimated on actual data (see Section 1). In this case,
the variance of output explained by technology shocks is 7%, and it is 5% for hours. This large
difference confirms that care should be taken when interpreting results from DSVAR models.

Using the Indirect Inference principle, we have shown that it is possible to select a model that
matches well a certain set of moments. Table 2 reports key business cycle moments for output,
consumption, investment, hours, and labor productivity in US data and under the habit model.
This table shows that the model with habits in leisure looks like the one generating US data in
many dimensions. Therefore, the habit model provides a good data generating process to conduct
counterfactual experiments.

4. An alternative methodology

In the previous section, the Indirect Inference estimation and testing of our habit model
showed that the DSVAR model delivers biased IRFs. A natural question emerges: What would
happen if we were to take the DSVAR evidence at face value? Such an approach would lead a
researcher to estimate and test a DSGE model by comparing directly its theoretical IRFs with
those from the DSVAR. This empirical strategy has been adopted by many business cycle stu-
dents (see Rotemberg and Woodford, 1997; Christiano et al., 2005a; Altig et al., 2005). Their
approach critically relies on the ability of SVARs to properly identify the aggregate effects of
structural shocks. We find that this approach leads to severely biased estimates of parameters.
We argue that this approach is dominated by the Sims–Cogley–Nason approach.

To assess this empirical issue, let us consider the following experiment. We use our DSGE
model with habit in leisure as our data generating process. The model is fed with the parameter



250 M. Dupaigne et al. / Review of Economic Dynamics 10 (2007) 238–255
vectors θ1 and θ2 previously calibrated and estimated. As documented in Tables 1 and 2, this
model provides an empirically plausible description of US data. We proceed as follows. For one
realization of the two structural shocks, we generate artificial data from this model. A DSVAR
is then estimated on these simulated data, and the IRFs are deduced according to the procedure
outlined in Section 1. These IRFs are taken as “structural moments” and we ask which combina-
tion of our DSGE parameters θ2 = (a, σZ,σB)′ can generate theoretical IRFs that match as well
as possible the simulated IRFs. In this experiment, the objects to be matched are the responses
of output and hours to both identified shocks.9 This estimation delivers one particular vector θ i

2.
We repeat this exercise one thousand times, thus generating a population of DSGE parameters
{θ i

2}, i = 1, . . . ,1000, that can be compared to the true value, actually used to generate the data.
The results of this simulation exercise are displayed in the top panel of Table 3. The table

reports the true values of the parameters used to generate the data, as well as the mean and
median values of parameter estimates. In addition, the table reports the standard deviation of the
estimated parameters as well as the empirical probability of finding a parameter lower than the
true value.

The first line of Table 3 shows that a, the habit parameter, is estimated with a relatively small
bias. On the contrary, the Direct Inference method severely underestimates the standard deviation
of technology shocks, σZ , and overestimates that of preference shocks, σB . This is an obvious
consequence of the bias in the DSVAR. Regarding the technology shock, the reason why we
obtain these results is simple. As shown in Fig. 3, the DSVAR underestimates the true responses
of output and hours to a technology shock. This leaves no other choice to the direct estimation
approach but to select a small standard error for these shocks. At the same time, the DSVAR

Table 3
Simulation results

Parameters True value (θ2,o) Direct Inference

Mean Median S.E. Pr(̂θ2 < θ2,o)

a 0.6383 0.6320 0.7137 0.2330 0.2530
σZ 0.0133 0.0053 0.0053 0.0027 0.9980
σB 0.0076 0.0090 0.0089 0.0009 0.0300

Parameters True value (θ2,o) Indirect Inference

Mean Median S.E. Pr(̂θ2 < θ2,o)

a 0.6383 0.6618 0.6744 0.0615 0.2460
σZ 0.0133 0.0150 0.0149 0.0025 0.2380
σB 0.0076 0.0076 0.0076 0.0007 0.5360

Note: The length of simulated series is 219 after discarding 200 initial observations. These results are obtained from
1000 experiments. For the Direct Inference, the parameters θ2 are estimated such that the IRFs from the DSGE model
are as close as possible to the IRFs from the DSVAR estimated from simulated data. For the Indirect Inference, the
parameters θ2 are estimated such that the average IRFs from the DSVAR under the DSGE model are as close as possible
to the IRFs from the DSVAR estimated from simulated data. In this latter case, the Indirect Inference uses 10 simulations
with a different seed from that used for generating our data in the first place. In both cases, the DSVAR includes four
lags.

9 Proponents of this approach usually focus only on a limited number of shocks and specialize their DSGE models
accordingly. The attractiveness of this strategy is that it is not necessary to specify the whole stochastic structure of
the model. So as to compare the performances of this approach with our Indirect Inference results, we adopt a more
demanding view and ask our model to reproduce the responses of key variables to all shocks in the DSVAR.
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Note: The length of simulated series is 219 after discarding 200 initial observations. These results are obtained from
1000 experiments. For the Direct Inference, the parameters θ2 are estimated such that the IRFs from the DSGE model
are as close as possible to the IRFs from the DSVAR estimated from simulated data. For the Indirect Inference, the
parameters θ2 are estimated such that the average IRFs from the DSVAR under the DSGE model are as close as possible
to the IRFs from the DSVAR estimated from simulated data. In this latter case, the Indirect Inference uses 10 simulations
with a different seed from that used for generating our data in the first place. In both cases, the DSVAR includes four
lags. Empirical densities are obtained from a Gaussian kernel smoother. The vertical line in each panel corresponds to
the true parameter value.

Fig. 4. Empirical density of θ2 = (a, σZ,σB).

overestimates the responses of output and hours to non-technology shocks. As a consequence,
the direct estimation will tend to overestimate the true standard error of the labor supply shock.

Figure 4 displays the empirical distribution of the parameter estimates, obtained using stan-
dard kernel methods.10 For comparison purpose, the vertical lines report the parameters true
values. Notice that an important mass at zero is found for σZ . This happens because a large num-
ber of draws are such that the responses of hours in the DSVAR are very negative, and those of
output weakly positive. Since the DSVAR-based responses are considered as structural, the only
way to match these moments is to set the standard deviation of technology shocks to zero (hence
a zero response of hours).

10 A Gaussian kernel smoother was used to compute the parameters distribution, enforcing a positive support in the
cases of σB and σZ and treating all data points symmetrically.
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Very different results emerge from the Indirect Inference approach, the population of DSGE
parameters being computed as above. Instead of trying to find a parameter vector that allows the
model’s IRFs to match directly their DSVAR counterparts, we resort to the Indirect Inference
approach, as expounded in the previous section. The simulation seed used in the estimation stage
is of course different from that used for generating our data in the first place. The results are
reported in the bottom panel of Table 3. As has already been demonstrated in simpler dynamic
models (see Gouriéroux et al., 1993), the Indirect Inference approach performs relatively well.
This is especially true for the estimated standard errors of the structural shocks, which are in
close conformity with the true values. This is further illustrated in Fig. 4.

The Indirect Inference results include the small sample bias an applied researcher would be
confronted to, as well as simulation biases. Hence Indirect Inference may serve as a benchmark
estimation method. According to our experiments, the Direct Inference method underperforms
this benchmark.

5. Conclusion

The identification of the response of hours worked after a technology shock using SVARs has
renewed the debate on the relative contributions of various shocks to the business cycle. More
precisely, the DSVAR approach documents a striking evidence against the standard RBC model:
after a positive technology shock, hours worked decrease. For researchers that use the DSVAR
approach to discriminate between competing theories of the business cycle, this evidence sug-
gests to abandon the RBC model in favor of models with important (real) frictions and (nominal)
rigidities, and to scale down the role of technology shocks. However, Chari et al. (2005) and
Erceg et al. (2005) forcefully demonstrate that DSVARs are severely biased and, if taken at face
value, can lead to incorrect inference. Accordingly, their results cast serious doubts on DSVARs
as useful guides for developing business cycle models.

In this paper, we argue that, though distorted and sometimes fallacious, DSVARs can still
prove useful for business cycle students, provided that two conditions are met:

(i) the model and actual data are treated symmetrically;
(ii) the IRFs on data simulated from the DSGE model vary appropriately with the parameters of

interest.

The paper also illustrates that a failure to treat model and data symmetrically can lead to mis-
leading conclusions. In particular, in our experiment, we find that the contribution of technology
shocks is far too small under an estimation approach seeking to select the DSGE parameters by
directly matching theoretical IRFs with IRFs drawn from a DSVAR estimated on actual data.
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Appendix A. Implementation of Indirect Inference

The estimation method is implemented as follows.

Step 1: We estimate a q-dimensional vector of IRFs, denoted ψ̂T , from actual data, where q

denotes the number of selected impulse responses (horizon × number of selected IRFs).

Step 2: From the model’s solution, and given the vector of structural parameters, θ = (θ1, θ2),
and initial conditions on capital, labor and the shocks, S simulated paths for productivity and
employment, denoted x̃i

T (θ), ñi
T (θ), i = 1, . . . , S, are recursively computed.

Step 3: From these simulations, we estimate a VAR model from the simulated data z̃i
t =

(�x̃i
t ,�ñi

t )
′,

z̃i
t = Ãi

1z̃i
t−1 + · · · + Ãi

p z̃i
t−p + ε̃i

t , E{ε̃i
t ε̃

i′
t } = �̃

i
, i = 1, . . . , S,

with the same number of lags (p = 4) as in the DSVAR on actual data from step 1. We then
compute the associated vector of IRFs, denoted ψ̃ i

T (θ) (i = 1, . . . , S) using the exact same long-
run restrictions as in step 1

z̃i
t = B̃i (L)B̃i (1)−1C̃i (1)η̃i

t ,

and we construct their average over simulations

ψ̃T ,S(θ) = 1

S

S∑
i=1

ψ̃ i
T (θ).

Step 4: An Indirect Inference estimate θ̃2,T ,S for θ2 minimizes the quadratic form

J (θ2) = g′
T ,SWT gT ,S,

where gT ,S = (ψ̂T − ψ̃T ,S(θ2)) and WT is a symmetric nonnegative matrix defining the metric.

Steps 2 to 4 are conducted repeatedly until convergence—i.e. until a value of θ2 that mini-
mizes the objective function is obtained. Let ψ0 denote the pseudo-true value of ψ and θ2,0 the
pseudo-true value of θ2. Under standard regularity conditions (see Gouriéroux et al., 1993), for
S held fixed and as T goes to infinity,

√
T (θ̃2,T ,S − θ2,0) is asymptotically normally distributed,

with a covariance matrix equal to (1 + S−1)(D′
θ WT Dθ )

−1 where Dθ = ∂gT ,S/∂θ2.
A preliminary consistent estimates of the weighting matrix WT is required for the compu-

tation of θ̃2,T ,S . It may be directly based on actual data, and corresponds to the inverse of the
covariance matrix of

√
T (ψ̂T − ψ0), which is obtained from step 1. Here, W−1

T is a diagonal

matrix with the sample variances of
√

T (ψ̂T −ψ0) along the diagonal. This choice of weighting
matrix ensures that θ2 is effectively chosen so that ψ̃T ,S(θ2) lies as much as possible inside the

confidence intervals of ψ̂T .
For the sake of identification, we impose that the number of IRFs exceeds the number of

structural parameters. This enables us to conduct a global specification test in the lines of Hansen
(1982), denoted J = T SJ (θ2)/(1+S), which is asymptotically distributed as a chi-square, with
degrees of freedom equal to the number of over-identifying restrictions (q − dim θ2).
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