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Abstract

In this paper we show that long run market informational ineÆciency is per-

fectly compatible with standard rational sequential trade models. We consider

a �nancial market where: (i) tradable quantities belong to a quantity grid; (ii)

traders and market makers do not have the same degree of risk aversion. We show

that as soon as traders' beliefs do not di�er too sharply, the equilibrium of the

economy is unique and non-informative. Thus, the market cannot completely ag-

gregate private information and long term mispricing occurs almost surely. We

explain the ambiguous role of the quantity grid in exacerbating or mitigating mar-

ket ineÆciency. We show that stock splits can improve the information content

of the order 
ow and consequently increase price volatility. (JEL G1, G14, D82,

D83)
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1 Introduction

One of the central roles of �nancial markets is to provide information about asset's

fundamentals through the price system. After the recent collapse of companies that were

commonly considered, and priced, as worthy and safe, investors questioned the capacity

of the market to perform this crucial task. For example, it is now clear that Enron's

fall was long time coming and that pieces of information about the company's problems

were spread among agents. Then, why have the price of Enron's shares remained for so

long far above the company's fundamental value?

In �nancial economics, it is generally accepted that when it is possible to observe

the actions of a suÆciently large number of rational investors, trading prices eventually

incorporate all the information available in the economy.1 This happens because each

investor's action discloses, at least partially, the investor's private information on funda-

mentals. This information is incorporated into the trading prices. Thus, by observing

these prices, it is ultimately possible to infer all the relevant private information that

is dispersed among market participants. In other words, in the long run, the market

is informational eÆcient. For this reason, some practitioners and �nancial economists

attributed mispricing episodes to market exuberance or investors irrationality.

In this paper we show that the price system can fail to aggregate information

even in the presence of an in�nity of privately informed rational investor. Thus, long

term mispricing is perfectly compatible with agent's rationality. To this purpose, we

generalize a standard �nancial market model to consider two features of actual �nancial

markets: tradable quantities belong to a quantity grid (in particular it is impossible to

trade fractions of a share); traders and market makers do not have the same degree of

risk aversion. We show that when these two factors are taken into account, then market

is not informational eÆcient in the long run. In other words, surprisingly, in the long

term the private information regarding the asset fundamental value cannot be completely

1This is a textbook result in �nancial economics. See for example O'Hara (1995) or Biais, Glosten

and Spatt (2001) for a recent review of the �nancial microstructure literature.

2



incorporated into trading prices. As in the model we consider, trading prices are equal

to the expected value of the risky asset given the history of trades, we can measure

the long-term-mispricing with the distance between the trading prices in the long run

and the expected value of the asset for someone who has the combined knowledge of all

traders in the economy. We show that in general this distance cannot vanishes, and that

the resulting \long term pricing error" can be large.

More precisely, the model we consider is a sequential trade model similar to Glosten

and Milgrom (1985) and Glosten (1989): in each period risk neutral market makers quote

a price schedule for a risky asset. Given the price schedule, informed risk averse traders

choose the size of their trade. The di�erence with the existing literature is that we bring

together on the one hand the existence of a grid for tradable quantities, on the other

hand, discrepancy in risk aversion between dealers and traders.

In order to have an intuition of our result, notice that a risk averse privately

informed trader's order includes two components: an informational component and an

inventory component. The �rst component comes from the trader's informational advan-

tage given by his private information on the asset's fundamental. The latter component

follows from the trader's risk aversion and is not related to the asset's fundamental. Note

that when the past history of trades provides a suÆciently precise information about the

asset's fundamental, then an additional partially informative private signal will a�ect

slightly a trader's belief. Thus, as a trader can demand only discrete quantities of the

asset, a small change in his belief will in general not be suÆcient to a�ect his demand and

so, eventually all traders' demands will only re
ect their inventory components. From

this point on, the 
ow of trades will no longer be informative, the social learning process

stops and trading prices will be bounded away from market fundamental.

In short, when the market is quite sure about the asset's fundamental value, the

equilibrium of the economy is unique and such that the 
ow of trades does not provide

any new information because orders only re
ects traders' inventory concerns. Moreover,

if the learning process stops when the market is quite sure about the asset's fundamental

but in a completely wrong direction, then prices will be trapped far away from the asset
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fundamental value, and consequently the long term pricing error will be large.

Other papers in the �nancial microstructure literature have considered separately

the discrepancy in risk aversion and discrete trading without obtaining informational

ineÆciency. For example, in Glosten and Milgrom (1985) or Easley and O'Hara (1992)

traders can only trade discrete quantities (buy 1 asset, sell 1 asset, no trade) but in

these models both market makers and informed traders are risk neutral, so trades are

always informative. In Glosten (1989), Vives (1995) and Biais et al. (2000) risk neutral

market makers face risk averse informed traders, but these models assume that it is

possible to trade a continuum of quantities of the asset so that even a tiny information

component can a�ect the trader's order, and for this reason the order 
ow is always

informative. Thus, our contribution is to show that the combination of di�erences in

risk aversion and discrete trading stops the learning process at wrong prices and this

generates informational ineÆciency. Moreover, we show that long-run-mispricing will

increase with traders' risk aversion and with the fundamental's volatility that cannot

be explained through private information. It will decrease with the precision of traders'

private signals. This recalls the �ndings in Vives (1995) where the speed of convergence

of prices to fundamentals is negatively a�ected by traders' degree of risk aversion and

positively a�ected by the precision of private information of agents. Di�erently from

Vives, we show that prices cannot converge to fundamentals as the speed of convergence

is zero as soon as traders' beliefs do not di�er too sharply.

Our main result is in line with the theoretical literature on \herd behavior" that

proves that sequential interaction of rational investors can generate rational imitative

behavior and this prevents agents from learning the market fundamental.2 However,

most of the results in this literature are based on the assumption that transaction prices

are exogenously �xed and are not a�ected by the information provided by past trades.

Therefore, the herding literature cannot be directly applied to stock markets, and it is

clearly un�t to study the issue of the informational content of prices. Herding in �nancial

markets has been studied by Avery and Zemsky (1998). They introduce multidimensional

2See Chamley (2001) for an extensive study on the causes of rational herding.
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uncertainty in a Glosten and Milgrom (1985) style model and show that herding and

short-run-mispricing can occur. However, as well as in Glosten and Milgrom (1985), in

the long term trading prices converge to the fundamental value of the asset.

Long term mispricing in the presence of endogenous price is obtained by Lee (1998).

He shows that information aggregation failure is due to the existence of exogenous trans-

action costs. When the pro�t from trade is smaller than the transaction cost, investors

stop trading and this prevents the complete learning of market fundamental. D�ecamps

and Lovo (2002) and Cipriani and Guarino (2003) show that in a model where traders

strategies are restricted (buy one lot, sell one lot, no trade) herd behavior and long run

ineÆciency can occur because of di�erences in agents' valuation for the asset.

In this paper we show that informational ineÆciency is not necessarily linked to

the presence of exogenous frictions in transaction prices due to inelastic prices (as in the

rational herding literature), transaction cost (as in Lee (1998)) or exogenous di�erence

in agents valuation for the object (as Cipriani and Guarino (2003)).

We analyze the e�ect that a change in the minimum trading unit (or lot size)3 has

on informational ineÆciency. On the one hand, an appropriate increase in the minimum

trading unit can eliminate the long run mispricing. However, the choice of such an

\informational-eÆcient lot size" is not robust to perturbations of the fundamentals of

the economy. This suggests that it can be actually diÆcult to restore eÆciency through

the choice of an appropriate grid of tradable quantities. On the other hand, decreasing

the lot size can reduce, but does not eliminate, the long term ineÆciency. The latter

observation allows to relate our analysis to the literature on stock splits. Starting from

the observation that a stock split corresponds to a reduction of the minimum trading

unit, we show that a stock splits reduce market ineÆciency. Moreover, a stock split

can temporarily restore the informativeness of trades and consequently increase price

volatility. This could give reasons for the puzzling empirical �ndings that a stock split

generates higher volatility in the stock's return (Ohlson and Penman's (1985), Koski

(1998), Lamoureux and Poon (1987) and Amihud et al. (1999)).

3The minimum trading unit corresponds to the tick of the quantity grid.
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In Section 2 the notations, the assumptions and the basic structure of the model

are presented. Section 3 shows the main result and analyzes the role of the minimum

size of trade and stock splits. Section 4 extends the ineÆciency result to a broader class

of economies. In Section 5 we provide an example. Section 6 concludes. The proofs are

in the Appendix.

2 The model

We consider a discrete time sequential trade model in the style of Glosten and Milgrom

(1985) and Glosten (1989): a single risky asset is exchanged for money among market

makers and traders. We denote with v = V + " the (ex-post) liquidation value of one

share of the risky asset. The random variable v is the sum of two components: a realized

shock V on which agents are asymmetrically informed, and a noise " that represents the

shocks on fundamental whose realization is unknown to everybody such as for example

future shocks4. For expositional clarity we introduce some simplifying assumptions on

the distribution of V and ". The general case is discussed in Section 4. We assume that

V and " are independently distributed and that V is equal to V with probability �0

and to V < V with probability 1 � �0, moreover " has zero mean and strictly positive

standard deviation �". Remark that V is an unbiased estimator of v, but knowing V is

not suÆcient to know the exact value of v.

There is a in�nite countable set of traders, each one receives a private partially

informative signal s 2 fl; hg. Signals are conditionally i.i.d. across traders and indepen-

dent from " and from the compositions of traders' portfolios. Let Pr(s =ljV = V ) =

Pr(s =hjV =V ) = p with 1=2 < p < 1. The parameter p represents the precision of

the signal. Signal l is more likely when V = V and it can be interpreted as a \Bear-

ish" signal. Similarly, s = h can be interpreted as a \Bullish" signal. In other words,

V < E[vjs = l] < E[v] < E[vjs = h] < V .5

4This way of modelling the information structure is borrowed from Biais, Martimort and Rochet

(2000). The noise " takes into account that, as in reality, uncertainty is never completely resolved.
5The results of the paper do not rely on the independence between V and ", their binomial distri-
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Trading mechanism. Trading occurs sequentially and time is discrete. Each time

interval is long enough to accommodate the trade of at most one trader. At the beginning

of each trading period a trader receives a private signal s and comes to the market with

an endowment of shares known only to him. The trader submits a market order and

market makers compete to �ll the trader's order without knowing the trader's signal and

portfolio composition. We assume that traders leave the market after they have had the

opportunity to trade. We restrict the tradable quantities to belong to a quantity grid.

We denote by Æ the minimum trading unit. In other words, a trader's market order can

be any integer multiple Q (positive or negative) of a lot of Æ shares of the asset. Our

restriction to discrete quantities re
ects the intrinsic nature of �nancial markets where

only shares of a stock can be traded. If the exchange's rules allow to trade any integer

number of shares, then Æ = 1. In this case we say that trading mechanisms allows for

odd-lot trading. By contrast, if Æ is greater than 1, we say that the trading mechanisms

is in round lots, and Æ represents the amount of shares in a round lot.6

Market participants. Market makers are risk neutral and traders are risk averse.7

A trader's expected utility obtained from a portfolio that contains an amount X of the

risky assets and M of cash is E[u(M +Xv)], where u : R ! R, u0 > 0 and u00 < 0. For

simplicity, we assume that all traders have the same utility function8 but they can di�er

for the initial compositions of their portfolios that are assumed to be independently and

identically distributed. We denote x and m the initial amounts of risky asset and money

respectively for a given trader. Note that x is an integer number (positive or negative)

as traders cannot hold fractions of shares of the asset, hence x 2 Z and m 2 R. We

will refer to x as the trader's inventory. Consider a trader that reaches the market in

a generic period t. For a set � � Z� R, we use F (�) = Pr((x;m) 2 �) to denote the

bution nor on the fact that the precision of the signal is the same for all the agents. See Section 4 for

the treatment of the general case.
6Usually, a round lot consists of a lot of 100 shares or a multiple thereof.
7Though the crucial assumption is that market makers and traders have di�erent degrees of risk

aversion, the assumption that market makers are risk neutral simpli�es the analysis.
8See Section 4 for the case of heterogenous traders.
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probability that the portfolio composition of this trader is in �. We assume that there

exist a bounded set b� � Z� R such that F
�b�� = 1.

Public and private belief. We denote Ht the history of trades (quantities and prices)

up to time t � 1. All the agents observe Ht but they do not know the identity of past

traders. As private signals provide information on the realization of V but not on the

realization of ", the learning process on the asset's fundamental only regards V. The

presence of " guarantees that the uncertainty on v remains even when the realization of

V is commonly known. We denote �t = Pr
�
V =V jHt

�
the public belief at time t. If

in period t a trader submits an order of size Q, then public belief will evolve according

to Bayes' rule: �t+1 = Pr
�
V =V jHt; Q

�
. We denote v(�t) = E[vjHt] = E[VjHt] the

expectation of v when the belief is �t. A trader re�nes public information with the one

provided by his private signal. We denote �st = Pr
�
V =V jHt; s

�
, s 2 fh; lg, an informed

traders' belief at time t. With an abuse of notation we denote v(�st ) = E[vjHt; s],

s 2 fh; lg.

Agents' behavior and equilibrium concept. At any given period t a trader comes to

the market, submits a market order and leaves the market. The trader expects a pricing

schedule PÆ(:) : Z! R , with the interpretation that if he submits a market order Q 2 Z

positive (negative), then he will buy ÆQ shares (resp. sell ÆQ shares) and pay (resp.

receive) PÆ(Q) per share. If a trader has a portfolio (x;m), received the signal s and

expects a price schedule PÆ(Q), then he will demand the quantity

Q�(x;m; PÆ; �t; s) = argmax
Q2Z

E [u (m + (x+ ÆQ)v � PÆ(Q)ÆQ) jHt; s] :

Apart from the discreteness in the tradable quantities, competition among market

makers is modeled as in Glosten (1989) or in Kyle (1985). Following these papers, as

market makers are risk neutral and compete �a la Bertrand to �ll traders' orders, any

trade of ÆQ shares must lead to a zero conditional expected pro�t. Considering that

market makers are ignorant of the portfolio composition and information of the trader

8



who is trading, at any given period t a price schedule must satisfy

PÆ(Q) = E[vjHt; Q
� = Q]: (1)

That is the market clearing price is equal to the market makers' expectation of v

conditional on what they learn about v from the past and current trades. Thus, if

period-t-trader receives signal s and holds portfolio (x;m), in equilibrium he will de-

mand Q�(x;m; PÆ; �t; s) where the price schedule PÆ(:) satis�es condition (1).

3 Informational ineÆciency

This section contains our main result showing that if: (i) traders are risk averse and

market makers are risk neutral, (ii) agents can trade only discrete quantities; (iii) all the

private information is not suÆcient to completely resolve uncertainty, i.e. �" > 0;9 then

in general the market is not informational eÆcient.

In the long run, the market is informational eÆcient if all the information dispersed

among the traders in the economy is eventually incorporated into market prices. Con-

sidering that in our model, traders' private information only regards V, E["] = 0 and

market makers are risk neutral, we have informational eÆciency if the trading prices

eventually converge to the realization of V.

De�nition 1: The market is strong-form informational eÆcient in the long run, if

lim
t!1

E[jPÆ(Q)�Vj] = 0

where PÆ(Q) = E[VjHt; Q
� = Q].

Note that trading prices re
ect the information content of past and current trades,

and that the information content of a trader's order is bounded by the information

content of the trader's private signal. As signals are not perfectly correlated with V, in

9Consequently, uncertainty cannot be completely resolved even in the long term. We show however

in Section 5 that this assumption is not necessary to generate ineÆciency.
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order to achieve full eÆciency, trades must never cease to be informative. We provide a

formal de�nition of not informative trade:

De�nition 2: A trader with portfolio (x;m) who expects a price schedule PÆ is

said to place a not informative order if the order is not a�ected by the trader's private

signal, i.e.

Q�(x;m; PÆ; �t; h) = Q�(x;m; PÆ; �t; l):

According to this de�nition, a trader's order is not informative when even knowing

the trader's portfolio composition (x;m), the observation of his order does not allow to

infer whether he received a bullish or a bearish signal. In other words, if a trade of size

Q is not informative, then Pr(Q� = QjV = V ) = Pr(Q� = QjV = V ).

We will show that under some conditions on the distribution F , if in period t

the public belief �t is suÆciently close to 1 or to 0, then the orders of all traders in

the economy will not be informative. In this instance, the learning process stops and

public belief and prices will not change anymore. Namely, trading prices will remain

at level PÆ(Q) = E[VjHt] for all Q and all following periods. This is usually referred

as an informational cascade in the herding literature (see Bikchandani, Hirshleifer and

Welch (1992)). Considering that no single order can fully reveal V, eventually belief

�t will be close either to 1 or to 0, and so an informational cascade will occur before

market makers have completely learned V. Thus, contrary to the common wisdom,

the trading prices cannot aggregate completely private information and the market is

not informational eÆcient in the sense of De�nition 1. This phenomenon can led to

important long-run mispricing episodes. When, for instance, �t is suÆciently close to 1

but the actual fundamental V is equal to V , the long term pricing error will be close to

v(�)� V ' V � V .

In order to understand why traders' orders eventually cease to be informative, it is

useful to distinguish two components in the trading motivations of a risk averse agent: the

inventory component and the information component. The inventory component re
ects
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the agent's preference for low-risk-portfolios. It increases with the agent's degree of risk

aversion, and the unresolved uncertainty about the asset's fundamental. The information

component re
ects the changes in traders' belief that follows a bearish or a bullish signal

and can be measured by �ht � �lt.
10 As signals are not perfectly informative about V,

the information component will decrease as the public belief �t approaches 0 or 1.11 In

other words, if the trader is quite sure about the realization of V, a partially informative

private signal will a�ect his belief just slightly. Now, as a trader can demand only discrete

quantities of the asset, a small change in his belief will in general not be suÆcient to

a�ect his demand 12 and so we will have Q�(x;m; PÆ; �t; h) = Q�(x;m; PÆ; �t; l). That

means that, when the public belief is suÆciently close to 0 or to 1, in general a trader's

demand only re
ects his inventory component.

The formal proof is slightly more complex. Indeed, it is always possible to imagine

risk averse traders whose demand is informative no matter how close to 1, or to 0, is the

public belief �t. Thus, in order to characterize ineÆcient markets, we proceed as follows:

�rstly we identify the traders that submit informative orders even when �t is arbitrarily

close to 1 or to 0. Secondly, we show that the market is informational ineÆcient if the

probability of observing such "informative traders" is zero.

Suppose that the belief �t is almost equal to 1, or to 0, and take a trader that

before receiving the private signal, was indi�erent between demanding an amount of Q�

lots or Q� + 1. The demand of this trader will be informative. Indeed, after receiving

a tiny informative signal this trader will demand Q� if the signal is bearish, whereas he

will demand Q� + 1 if the signal is bullish. The following lemma characterizes the set of

such traders:

Lemma 1 Take V ar[VjHt] = 0. For any n 2 Z, there exist x�(n), with Æn < x�(n) <

Æ(n + 1), such that if a trader's inventory is x�(n), then trading �n lots or �n� 1 lots

is optimal. If " is symmetrically distributed then x�(n) = Æ(n+ 1=2).

10Indeed, if signals are informative we have �lt < �t < �ht .
11That is to say, lim�t!0(�

h
t � �lt) = 0 and lim�t!1(�

h
t � �lt) = 0.

12Note that this would not be the case if traders could demand a continuum of the asset.
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In other words, when �t is almost equal to 0 or to 1, the only traders whose

orders are informative, are those whose inventories are suÆciently close to x�(n) for

some n 2 Z.13

Consequently, if the quantity grid Æ and -or- the traders' portfolio distribution F

are such that inventories of all traders are bounded away from x�(n) for all n 2 Z, then,

by a continuity argument, when the public belief will be close enough to 0 or to 1, the

demand of all traders in the economy will re
ect only the inventory component and

will provide no information on V. In this instance the 
ow of trade will be no more

informative and long run ineÆciency will occur. Now we turn to the formal statement

of our result.

Proposition 1 Suppose that for all n 2 Z the distribution of traders' portfolio composi-

tion F is such that there is a zero probability that a trader's inventory is close to x�(n).

Then there exists � > 0 and � < 1 such that if at time t the public belief �t < � or

�t > �, then in all trading periods � � t the equilibrium is unique and such that:

(i) The price schedule satis�es PÆ(Q) = E[VjHt] for all Q 2 Z,

(ii) all traders's orders at date � � t are not informative about V.

As a consequence, �� = �t for all � > t, full learning is impossible and trading prices

cannot converge to the fundamental value of the asset.

Proposition 1 shows that, when the public belief �t is suÆciently large or suÆ-

ciently small (i.e., V ar[VjHt] small) then the equilibrium exists, it is unique and non-

informative. Precisely the equilibrium price schedule must be PÆ(Q) = v(�t) for all

tradable quantities Q 2 Z. The result is fairly robust as it is obtained without speci-

fying the traders' utility function nor the precise distributions of ". Note that in these

types of models, existence of equilibrium is an issue. For instance Glosten (1989) proves

the existence and uniqueness of equilibrium for a particular range of the parameters14

13Note that even when �t = 1 or �t = 0 the asset is still risky because of the " component. Thus

traders trade in order to hedge the risk of their portfolio.
14In short, the variance of the fundamental value and the precision of private signals must be suÆ-

ciently small.
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with the further restriction of CARA utility function and normal distributions.

When the hypothesis of Proposition 1 are satis�ed, the �nancial market cannot

be informational eÆcient as the learning process stops as soon as the public belief �t

crosses one of the threshold � or �. We call the regions (0; �) and (�; 1) information

traps. Indeed if after a trading history the public belief �t belongs to one of these two

regions, it will not move anymore. In this case, all quantities of the asset will be traded

at v(�t) per share, and the trading price will not change for all the subsequent periods

� > t. This can potentially lead to highly ineÆcient markets. Namely, if V = V and

�t 2 (�; 1), then no matter the trading history observed after t, prices will remain at

level P (Q) = v(�t) much larger than V .

3.1 Rounds lots, odd lots and stock splits

One of the crucial factors that impedes the aggregation of information is the restriction

of trades to integer multiples of a minimum amount of shares Æ. The minimum unit of

trade is chosen by the exchange regulator but it can also be indirectly a�ected by the

decision of the issuer of the equity to split its stock. This section studies how the size of

the minimum unit of trade a�ects the informational eÆciency properties of the market.

The following two corollaries enlighten the role of the lot size Æ in exacerbating

and mitigating informational ineÆciency. Surprisingly, it turns out that it could be

optimal to increase Æ in order to restore the market informational eÆciency. Precisely,

Corollary 1 states that if the quantity grid is the �nest one, that is Æ = 1, then long

run informational ineÆciency occurs almost surely for all discrete distribution F of the

traders' portfolios. Corollary 2 shows that when the noise " is symmetrically distributed

it is possible to �nd a minimum unit of trade that guarantees long run informational

eÆciency.

Corollary 1 An odd-lot trading mechanism is informational ineÆcient.

Corollary 2 If " is symmetrically distributed, then in a round-lot mechanism, long run

informational eÆciency can be obtained only by choosing a minimum trading unit Æ such
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that

X
n2Z

F

��
x = Æ

�
n+

1

2

���
> 0: (2)

In order to have informational eÆciency in a round lot mechanism, the size of

the round lot Æ must be chosen so that the probability of observing informative orders

is positive also when the public belief �t reaches extreme levels. Thus, an exchange

regulator that is mainly concerned with the problem of informational eÆciency could

choose the minimum trading unit that maximizes the probability of observing orders from

traders whose inventory is x�(n). For Lemma 1, when " is symmetrically distributed, we

have x�(n) = Æ(n+1=2) that implies that the optimal Æ only depends on the distribution

function F and not on traders' utility functions. However, it is worth stressing that

a mean-preserving asymmetric perturbation of the distribution of " would change the

value x�(n) and this would restore informational ineÆciency in the economy. Roughly

speaking, informational eÆciency appears to be very fragile.

In addition to the exchange's regulation on the size of tradable lots, the minimum

unit of trade of an equity can be a�ected by the company decision to split its stock. With

a stock split a company entitles its share holders with N > 1 new shares for each old

share. In other words a stock split increases the number of shares outstanding without

increasing the company's capital and without a�ecting the ownership structure. As the

market value of a company is independent from the number of shares outstanding, in

fact, a stock split corresponds to a reduction of the minimum unit of trade. If before

the stock split the fundamental value of one unit of trade was Æv, after splitting each

share into N new shares, the fundamental value of each new share will be v0 = v=N .

Therefore, the value of one lot of Æ new shares is Æv0 = Æ
N
v. This is perfectly equivalent

to reducing the minimum unit of trade from Æ shares to Æ=N shares without splitting the

stock.

The following corollary shows that a stock split shrinks the information traps and

consequently reduces the informational ineÆciency of the market. More formally let

(0; �) and (�; 1) be the information traps for a stock traded in odd lots. Denote by
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(0; �(N)) and (�(N); 1) the new information traps after splitting each share into N new

shares, then we have

Corollary 3 Consider an odd lots trading mechanism and suppose that each share of

the stock is split into a �nite number N of new shares. If N is suÆciently large, then

0 < �(N) < � and � < �(N) < 1.

This result helps understanding the "stock split puzzle": if the market value of

a �rm's equity is independent from the number of shares outstanding, a stock splits

should not a�ect the distribution of stocks returns. However, several empirical studies

on stock splits (Ohlson and Penman (1985) and Koski (1998)) �nd that stock return

volatility increases after a stock splits. How is Corollary 3 related to price volatility?

First, note that as long as �t does not lie into an information trap, trades are informative

and trading prices can vary within a range of about v(�)� v(�). Corollary 3 shows that

a stock split increases this range and this allows a higher volatility for prices. Second,

a stock split can increase the price volatility by restoring the informativeness of trade

in case an informational cascade is happening. For example, suppose that before the

split, the public belief �t was in an information trap. Then the asset is traded only

for inventory reasons, trades do not transmit information on the asset fundamental, and

trading prices will be steady. In case of a stock split, the information traps shrink, and for

the same level of public belief �t, informativeness of trade can be temporarily restored.

Thus the volatility of trading prices increases.15 Finally, suppose that traders di�er in

their degree of risk aversion, it can be shown that for some �t close to 1 or to 0, traders

that are suÆciently risk averse will trade mainly for hedging and will submit orders that

are less informative in comparison to those coming from less risk averse traders. After a

stock split even very risk averse traders can decide to speculate on their information as

this will require a smaller investment in the stock. As a consequence the proportion of

15Besides, the same mechanism can induce managers with favorable information about their companies

to split their share in order to allow a positive reaction of prices to the order 
ow. This would provide

a further explanation to the empirical observation that stock splits lead to higher stock prices as shown

by Lamoureux and Poon (1987) and Amihud et al. (1999).
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informative trade increases, the price sensitivity to orders increases generating a larger

price volatility.

4 A general model

In order to simplify the analysis, in the previous section we assumed homogeneity of

traders' utility functions, binomial distribution for V and s, and independence between

V and ". In this section we discuss the robustness of our result when these three

assumptions are relaxed. We denote by v(Z;N) the fundamental value of the asset that

will depend on two components: a realized shock Z on which agents are asymmetrically

informed, and a noise N that represents the shocks on fundamentals whose realization

is unknown to everybody. Random variables Z and N may lay in any measurable space,

whereas v takes value in R
+ . We assume that Z is a discrete random variable and

that the aggregation of all the private information that is dispersed among investors

allows to know its realization. Still, knowing Z will not be suÆcient to completely

resolve the uncertainty on the fundamental value of the asset because of N. We denote

V =E[vjZ] the expected fundamental value of the asset after aggregating all the private

information. We assume that V is a discrete random variable that takes value in a

compact set 
 2 R+ . Let " = v �V be the remaining error. The random variable " has

zero mean and positive standard deviation �" > 0. Thus, we can assume without loss

of generality that v = V + " and that agents private information regards V but not ".

Note that the random variables V and " are not necessarily independently distributed.

Still E[V] is an unbiased estimator of v: E["] = 0 and �" > 0.

Each trader receives a partially informative private signal s that takes value in a

discrete compact set �. Without loss of generality, we assume that conditional on the

realization of V, private signals are independent. We assume that for all V 2 
 and

s 2 �, we have Pr(s = sjV = V ) > 0. That means that private signals are not perfectly

informative as each realization of the signal is compatible with all realizations of V.16

16This condition is equivalent the condition pql > 0 at page 1000 in Bikhchandani et al. (1992).
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Traders are risk averse in the sense that each trader's utility function is increasing,

twice di�erentiable and strictly concave. Apart from this assumption, traders can di�er

in their utility functions and in the composition of their portfolio that does not depends

on the private signal. In other words, for all levels of inventory x and x0 we have

E[Vja trader's inventory is x] = E[Vja trader's inventory is x0]:

This last assumption guarantees that whenever a trader exchanges only for inventory

reason his order will provide no additional information about V.

Note that, similarly to the simpler set-up of the previous section, we have market

informational eÆciency when lim
t!1

E[jPÆ(Q)�Vj] = 0, where PÆ(Q) = E[V jHt; Q = Q�].

Consequently, market informational eÆciency requires lim
t!1

V ar[VjHt] = 0.

It is possible to extend all results of Section 3 to this general framework. For

expositional simplicity we only focus the informational ineÆciency of odd lot trading

mechanisms.

Proposition 2 In an odd-lot trading mechanisms (Æ = 1), there exist & > 0 such that

if V ar(VjHt) < &, then in all trading periods � � t the equilibrium is unique and such

that:

(i) The price schedule satis�es P1(Q) = E[VjHt] for all Q 2 Z.

(ii) A trader with portfolio x will trade exactly �x no matter the signal he received.

As a consequence, full learning is impossible and trading prices cannot converge to

the fundamental value of the asset.

Proposition 2 shows that market ineÆciency does not rely on the simplifying as-

sumptions we have introduced in the previous sections. Indeed, even the less risk averse

trader who received the most precise signal, will eventually trade only for inventory rea-

son once the public beliefs are suÆciently precise about market fundamentals, i.e. once

V ar[VjHt] is suÆciently small. Thus, informational ineÆciency arises when there is a

general agreement on the asset's fundamental. In these cases, informed traders are prone

to ignore their signals and trade only for inventory reasons. The more interesting point
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is that learning can stop when V ar[VjHt] is small but the market belief are wrong, in

the sense that the actual realization of V is bounded away from E[VjHt].

Note also that our result is obtained assuming that there is a zero measure of

risk neutral traders. D�ecamps and Lovo (2002) in a simpli�ed model show that long

term mispricing can also occur when traders are risk neutral provided that dealers are

risk averse. This suggest that what lead to ineÆciency is not the absence of risk neutral

traders but the absence of traders whose utility functions are identical to those of market

makers.

5 An example

De�nition 1 and equation (1) suggest that informational eÆciency properties of the

market can be measured by the random variable LTPE = lim
t!1

jV � E[VjHt]j. For

Proposition 1, as soon as the public belief � reaches one of the two information traps, we

have PÆ(Q) = v(�) for all Q. Therefore, in the long run trading price will be either close

to v(�) or to v(�). Thus, a threshold � close to 0 and a threshold � close to 1 correspond

to a relatively eÆcient market. Indeed, on the one hand the prices can reach a region

that is relatively close to the true value of V and, on the other hand, the probability of

observing a trading history that lead the public belief into the \wrong" information trap

is low.

How is informational ineÆciency a�ected by the precision of private signals p,

the traders' degree of risk aversion and by the proportion of the fundamental volatility

that can be explained with private information? In order to answer these questions

we study a speci�cation of our model of Section 3. Namely, we consider an odd-lot

trading mechanism (Æ = 1), and we assume that traders have negative exponential

utility function (with risk aversion coeÆcient 
) and that " is normally distributed.17

Then we study how �, � and LTPE are a�ected by traders' p, 
 and �".

From Corollary 1, we already know that such a market cannot be informational

17These are the standard assumptions used in �nancial microstructure theory.
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eÆcient. The following lemma allows us to characterize the thresholds � and � and to

perform some comparative statics.

Lemma 2 Let u(W ) = �e�
W , let " ,! N(0; �") and let Æ = 1, then � (resp. �) is the

minimum � > 1=2 (resp. maximum � < 1=2) such that the following two inequalities

are satis�ed

e�
(v(�)+
�
2
"
=2) � �he�
V + (1� �h)e�
V ; (3)

e
(v(�)�
�
2
"=2) � �le
V + (1� �l)e
V : (4)

where �h = �p
�p+(1��)(1�p)

and �l = (1��)p
�(1�p)+(1��)p

.

Note �rst that if 
 is suÆciently large, then inequalities (3) and (4) will be met

for all � 2 [0; 1]18. This happens because when traders are suÆciently risk averse the

informational content of their order vanishes as they mainly trade to reduce the risk of

their portfolio.

Similarly, when the precision of private signals is small (p is close to 1/2), �h is

close to �l and inequalities (3) and (4) will be satis�ed even if �" is arbitrarily small.19

This implies that the presence of the additional noise " is not a necessary condition to

obtain informational ineÆciency. Thus, even if the aggregation of all private information

could resolve uncertainty almost completely, when traders' information is not precise,

the existence of a minimum trading size will induce traders to neglect their information

and this will impede the convergence of prices to fundamental.

Finally, remark that there exists �" suÆciently large such that no matter the level

of public belief or the information content of the private signal, the two inequalities are

satis�ed. This means that if the uncertainty coming from the noise " is suÆciently large

with respect to the information provided by the component V, then even signals that

are perfectly informative about V will not be re
ected in traders' orders. Indeed, the

18Indeed, an increase in 
 increases the convexity of the exponential. Moreover, a suÆciently large

increase in 
 reduces the left hand sides of expressions (3) and (4).
19This follows from the convexity of the exponential.
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asset will be too risky to be hold even by traders that are perfectly informed about one

component of the asset fundamental value.

To sum up, when i) the traders' risk aversion is high; or ii) the precision of private

signals is low; or iii) the volatility in market fundamental is mostly due to shocks on

which there is no information, then even an in�nite sequence of trades will not allow the

market to aggregate the relevant private information dispersed among traders.

We conclude with a numerical example that illustrates our result. Take a risky asset

whose ex-ante expected fundamental value is E[v] = 35$, and whose ex-ante standard

deviation is � =
p
�2
V
+ �2

"
= 7:5$ that is 25% of its ex-ante value, where �2

V
= 1

4
(V �

V )2. This corresponds to the magnitude of the average share price and annual volatility

in the New York Stock Exchange. And suppose that �V =� = 0:1, that means that

10% of the annual volatility of v measured by � could be explained with all the private

information available in a given period, say one trading week. Then for a level of risk

aversion 
 = 0:001 it results � = 0:983 and � = 0:017, that corresponds to a minimum

LTPE of 0.03$ and a maximum LTPE of 1.72 $ that is 4.85% of the ex-ante value of

the asset.

6 Conclusion

We studied the informational eÆciency properties of a �nancial market when one takes

into account two factors: �rst, agents can trade only integer quantities of the asset;

second, traders and market makers do not have the same degree of risk aversion. We

show that in general market fails to fully aggregate relevant private information. In other

words the long run trading prices are bounded away from the value of the asset given

all the information dispersed in the market. Indeed, when public belief are suÆciently

precise, the equilibrium is unique and such that traders' orders provide no information

about the asset's fundamental value.

We show that an appropriate increase of the minimum trading unit can restore

completely long run informational eÆciency. Still, the choice of an \eÆcient quantity
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grid" is not robust to small perturbation of the fundamentals' distribution. We show

that decreasing the minimum unit of trade can reduce but does not eliminate market

ineÆciency. This provides an alternative explanation of the empirical observation that

stock splits increase stock return volatility.

In our set-up, information aggregation failure potentially leads to large long-run

pricing errors. With an example, we show that market ineÆciency increases with traders'

risk aversion and with the proportion of fundamental's volatility that cannot be explained

with private information and it decreases with the precision of informed traders' signals.

It would be interesting to obtain experimental evidence of these predictions.

The fact that our results are obtained within a fairly general framework and by

introducing reasonable assumptions into standard microstructure models, suggests that

the informational eÆciency hypothesis is not necessarily compatible with the way �nan-

cial economists are used to model the trading process in �nancial markets.

7 Appendix

Proof of Lemma 1: Note that V ar[V jHt] = 0 implies either �t = 1 or �t = 0. Take

�t = 1, in this case PÆ(Q) = E[VjHt; Q] = V . Let U(x;Q) be a traders' expected utility

from trading Q at price V when his initial inventory is x, i.e. U(x;Q) = E[u(m+ xV +

(x+ ÆQ)")]. Then from risk aversion and from the fact that traders wealth is bounded,

we have that U(Æn;�n) > U(Æn;�(n+1)) and U(Æ(n+1);�n) < U(Æ(n+1);�(n+1)).

Thus, from the continuity of U in x there exists x�(n) 2 (Æn; Æ(n + 1)) such that if

x = x�(n), then the trader is indi�erent between trading �n lots or �(n + 1) lots.

In order to see that when x = x�(n) both these quantities are optimal, note that if

the trader could trade a continuum of quantities, then he would trade exactly �x
Æ
. The

trader is however constrained to trade integer multiples of Æ. Taking advantage from the

concavity in Q of U(x;Q), the constrained optimal tradable quantities are the closest to

�x
Æ
, that are �Æn and �Æ(n + 1). Finally if " is symmetrically distributed, then " and

�" are identically distributed and so U(Æ(n+ 1=2);�n) = U(Æ(n+ 1=2);�(n+ 1)) that
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means x�(n) = Æ(n+ 1=2). The proof for the case �t = 0 is symmetric.

Proof of Proposition 1: Note �rst that as quotes must satisfy equation (1) and

the informativeness of an order is bounded by the precision of a traders' signal, we have

that in equilibrium, at any date t, v(�lt) � PÆ(Q) � v(�ht ) for all Q 2 Z. Thus, for any

price schedule PÆ(Q) satisfying this property and for a trader with portfolio (x;m) we

have:

E
�
u
�
m+ (x + ÆQ)v � ÆQv(�ht )

�
jHt; s

�
� E [u (m + (x+ ÆQ)v � ÆQPÆ(Q)) jHt; s] �

� E
�
u
�
m + (x+ ÆQ)v � ÆQv(�lt)

�
jHt; s

�
(5)

for Q positive, and

E
�
u
�
m + (x+ ÆQ)v � ÆQv(�lt)

�
jHt; s

�
� E [u (m+ (x + ÆQ)v � ÆQPÆ(Q)) jHt; s] �

� E
�
u
�
m+ (x + ÆQ)v � ÆQv(�ht )

�
jHt; s

�
(6)

for Q negative.

Note that �st is continuous in �t and that u is a continuous function. Moreover,

when �t is close to 1 or to 0, an informative signal a�ects slightly the informed trader

belief, indeed �lt < � < �ht and lim
�t!1

(�ht � �lt) = lim
�t!0

(�ht � �lt) = 0. Thus, we have that:

lim
�t!1

E
�
u
�
m + (x+ ÆQ)v � ÆQv(�ht )

�
js
�
= lim

�t!1

E
�
u
�
m+ (x + ÆQ)v � ÆQv(�lt)

�
js
�

= E
�
u
�
m+ xV + (x + ÆQ)"

��
: (7)

From Lemma 1 we know that if x 6= x�(n) for all n 2 Z, then there exist a unique bQ,
such that for all Q 6= bQ, we have

E
h
u
�
m + xV + (x + Æ bQ)")�i > E

�
u
�
m + xV + (x+ ÆQ)"

��
:
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Thus, from expression (7), it must be that for �t suÆciently close to 1 and for all Q 6= bQ
E
h
u
�
m + (x+ Æ bQ)v � Æ bQv(�ht )� jHt; s

i
> E

�
u
�
m + (x+ ÆQ)v � ÆQv(�lt)

�
jHt; s

�
;

(8)

E
h
u
�
m + (x+ Æ bQ)v� Æ bQv(�lt)� jHt; s

i
> E

�
u
�
m + (x+ ÆQ)v � ÆQv(�ht )

�
jHt; s

�
:

(9)

Now take an informed trader whose inventory x is bounded away from x�(n) for all

n 2 Z, and suppose he expects a price schedule PÆ(Q). His maximization problem will

be:

argmax
Q2Z

E [u (m+ (x + ÆQ)v � ÆQPÆ(Q)) jHt; s] :

Then expressions (5), (6), (8) and (9) imply

E
h
u
�
m+ (x + Æ bQ)v � Æ bQPÆ( bQ)� jHt; s

i
> E [u (m+ (x + ÆQ)v � ÆQPÆ(Q)) jHt; s]

for all Q 6= bQ. That is if �t is suÆciently close to 1, this trader will trade a quantity

bQ no matter he received a bearish or a bullish signal. Therefore his action will provide

no information on V. To conclude the proof it is suÆcient to observe that because of

the hypothesis on F , for all n 2 Z there is no trader whose inventory is not bounded

away from x�(n). Thus, traders' demand is not informative, and so, from equation (1),

the price schedule must be PÆ(Q) = E[vjHt] for all Q 2 Z. In order words, when �t is

suÆciently close to 1, there exist no equilibrium where the traders orders are informative.

In order to prove that a not informative equilibrium exist, it is suÆcient to observe that

for �t close to 1, Q�(x;m; v(�t); �t; s) = bQ for all s. An identical argument applies for

�t suÆciently close to 0.

Proof of Corollary 1: Simply remark that from Lemma 1, when Æ = 1 we have

x�(n) 2 (n; n + 1). That means that when �t reaches extreme levels, the only traders

whose orders are informative are traders that hold fractions of the asset.20 However, all
20Moreover, as the traders wealth is bounded, we know that x�(n) is bounded away from n or n+ 1.
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traders in the economy hold only integer amounts of the asset, x 2 Z, and thus, from

Proposition 1, eventually trade will stop providing information on V.

Proof of Corollary 2: From Lemma 1 and Proposition 1 we know that the only

traders whose orders are informative even when �t is arbitrarily close to 0 or to 1 are

those whose inventory is equal to x�(n) for some n 2 Z. Moreover, if " is symmetrically

distributed we know that x�(n) = Æ
�
n+ 1

2

�
. Therefore Æ should be chosen such that

there exist a positive probability of observing these traders, thus the inequality (2).

Proof of Corollary 3: Notice �rst that Corollary 1 implies that after splitting

each old share into a �nite number N of new shares, there still exist information traps

(0; �(N)) and (�(N); 1).

Let �t 2 (0; 1) be the public belief at time t. In the following we denote q�(s)

the demand of an hypothetical trader that received signal s and that can trade any real

amount of the asset. That is to say, if his portfolio is (x;m), we have

q�(s) = argmax
q2R

E [u (m + (x+ q)v � qv(�t)) jHt; s] :

Note that as our hypothetical trader can trade any real quantity and signals are infor-

mative, we have � = jq�(h)� q�(l)j > 0. Without loss of generality we assume thereafter

q�(h) > q�(l).

Consider now the situation where trading is discrete and suppose that at time t,

before the stock split, it results � � �t < 1, i.e., trades are not informative. We prove

by contradiction that there is �nite integer N such that after splitting each share into

N new shares the information trap shrinks, i.e., �(N) > �. Take N � 2=�, and suppose

that after the stock split trades are still not informative. In this case P (Q) = v(�t) for

all Q, and the trader maximization problem in odd lots can be written as follows

max
Q2�

E [u (m + (x+Q)v �Qv(�t)) jHt; s]

where � = f::: � 2
N
;� 1

N
; 0; 1

N
; :::; n

N
:::g. From N � 2=� it follows that there exist at

least two tradable quantities fQ0; Q00g 2 � such that q�(l) � Q0 < Q00 � q�(h). As
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E [u (m+ (x + q)v� qv(�t)) jHt; s] reaches its maximum in q�(s) and is strictly concave

in q, it must result that

argmax
Q2�

E [u (m+ (x +Q)v �Qv(�t)) jHt; l] � Q0 < Q00 �

argmax
Q2�

E [u (m + (x+Q)v �Qv(�t)) jHt; h] :

That implies that the trader demand is informative, thus a contradiction. The proof for

� is symmetric.

Proof of Proposition 2: The proof is similar to the proof of Proposition 1.

First we show that the price schedule has an upper and a lower bound that converge to

E[VjHt] as public information becomes suÆciently precise. Then we show that, whenever

trading prices are suÆciently close to E[VjHt] and public information is suÆciently

precise, all risk averse traders order's will not be a�ected by their private signals. Thus,

the informational content of the order 
ow vanishes and prices will not converge to

fundamental.

We say that the public belief is suÆciently precise at time t if V ar(VjHt) is positive

but suÆciently close to 0. Remark that preciseness of public belief has nothing to do

with the fact that agents' belief are actually correct. Indeed, very precise public belief

can turn out to be completely wrong.

Note that, from standard property of the conditional variance we have V ar (VjHt) =

E [V ar (VjHt; s)] + V ar (E [VjHt; s]). Thus, if V ar (VjHt) < &, then it is also the case

that V ar (VjHt; s) < &. Moreover, from Pr(s = sjV = V ) > 0 for all V 2 
 and s 2 �

and from the compactness of 
 and �, we have that for any couple of signals s and s0.

It results

lim
&!0

max
V 2


jPr(V = V jHt; s)� Pr(V = V jHt; s
0)j = 0; (10)

Pr(V = V jHt; s) <
&

(V � E[VjHt; s])2
8V 2 
:

In other words, if the public belief is suÆciently precise, then public information over-

whelms private information and private signals will a�ect private beliefs just slightly.

25



Now, for any �nite history Ht it is always possible to �nd two signals in �, that with an

abuse of notation we will denote l and h, such that

E[VjHt; s = l] � E[VjHt; s = s] � E[VjHt; s = h]; 8s 2 �.

Expression (10) implies that E[VjHt; s = h]�E[VjHt; s = l] is close to 0 as V ar(VjHt)

is suÆciently close to 0.

Remark that market makers cannot infer from a trader's order more than what

the trader knows, and that a trader's inventory does not provide information about the

expectation of V. Thus, from equation (1) we have that at time t the price schedule

satis�es

E[VjHt; s = l] � P1(Q) � E[VjHt; s = h]; 8Q 2 Z:

Let ui be trader i's utility function that is continuous, strictly increasing and concave.

Let denote vlt = E[VjHt; s = l], and vht = E[VjHt; s = h]. Then equations (5) and

(6) still hold after substituting ui, v
h
t , v

l
t, and 1 to u, v(�ht ), v(�

l
t) and Æ respectively.

Moreover, from expression (10) we have

lim
&!0

E
�
ui
�
m + (x+Q)v �Qvht

�
jHt; s

�
= lim

&!0
E
�
ui
�
m + (x+Q)v �Qvlt

�
jHt; s

�
=

= E [ui (m + xE[VjHt] + (x +Q)")] : (11)

Because of risk aversion, for any constant V it results that

E[ui(m + xV + (x+Q)")]

is maximized for Q� = �x.

If V ar(V jHt) is suÆciently small, then equations (8) and (9) will still hold after

substituting ui, v
h
t , v

l
t, 1 and �x to u, v(�ht ), v(�

l
t), Æ and bQ respectively. Thus for

V ar(V jHt) suÆciently close to 0:

argmax
Q2Z

E [ui (m+ (x+Q)v �QP1(Q)) js] = �x 8s 2 �:
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That means that when public belief are suÆciently precise, traders' order only re
ect

their inventory concerns and provides no information about V.

Proof of Lemma 2: From Proposition 1 we know that when all traders' orders

are not informative, in equilibrium P1(Q) = v(�t) for all Q. From Corollary 1 we deduce

that when �t is suÆciently close to 1 or to 0 and P1(Q) = v(�t), then a trader with

inventory x 2 Z will trade exactly �x no matter he received a bullish or a bearish

signal. As the expression E[u(m+(x+ q)v� v(�t)q)jHt; s] is a strictly concave function

in the traded quantity q 2 R, then it will have a unique maximum. Thus in order to �nd

� (resp. �), it is suÆcient to �nd the minimum �t > 1=2 (resp. maximum �t < 1=2)

such that the trader prefers to trade �x rather than �x � 1 or �x + 1 for both s = h

and s = l. That is to say

u(m+ v(�t)x) > maxfE[u (m + v + (x� 1)v(�t)) jHt; s]; E[u (m� v + (x+ 1)v(�t)) jHt; s]g

(12)

for s = h and s = l. Considering that u(W ) = �e�
w and that " ,! N(0; �"), we have

that expression (12) is satis�ed only if both inequalities in Lemma 3 are met.
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