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Abstract

In this article, we study the joint dynamics of the demography and the econ-

omy. We explore how economic conditions affect fertility choices, and in

return how the population growth rate affects both financial and labor mar-

kets. Our main contribution is to consider a realistic demographic setup

that allows characterizing the age at which individuals decide to give birth

to their children. In such a framework, we aim at studying the existence of

an equilibrium. We notably prove there exists a monetary steady state if the

average age of consumers is greater than the average age of producers.



1 Introduction

In demographics, there is a long tradition of modeling population dynam-

ics, dating back to the pioneer works of Alfred Lotka (1907, 1922). Stable

population theory studies the dynamics of an age distribution once fertility

and mortality patterns are held constant. Generalizations have then been

proposed to take into account deterministic or stochastic changes in fertility

and mortality. We propose to extend the traditional stable population model

to endogenous fertility behaviors hinging on a trade-off between the utility

derived from having children and the costs they induce. A key variable af-

fecting both utility and costs is the age at which women become mothers.

As pointed out by Gustafsson (2001), it is notably the age at first birth that

is the main explanatory variable for the rapid decrease in fertility in devel-

oped countries. Using the data from the Human Fertility Database (2010),

it is striking to see the negative correlation between the cohort’s mean first

maternal age and their total fertility rate. For instance, in the US, the mean

age was slightly greater than 24 for cohorts born in 1918 as well as for those

born in 1956, while it reached 22 and less for the cohorts, born between 1934

and 1940, that participated to the post-war baby-boom. In Figure 1 are rep-

resented the dynamics of the mean age at first birth and of the total fertility

rates for cohorts born between 1918 and 1966.

We consider an overlapping generations model with continuous trading

in which individuals work, consume and decide the age at motherhood. This

choice affects labor participation and aggregate economic variables. We study

the monetary equilibrium such that aggregate assets are positive. The main
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Figure 1: Evolution of cohorts’s mean age at birth and fertility, USA. Source

of data: Human Fertility Database (2010)

departure from Samuelson (1958) and the subsequent literature is that the

population growth rate is endogenous.

The inter-temporal equilibrium is shown to be the solution of a non-

linear functional differential equation of mixed-type. The dynamics is indeed

affected by discrete delays and advances. As in Boucekkine et al. (2002) and

d’Albis and Augeraud-Véron (2007), delays are generated by the vintage

structure of the population while advances rely on the expectations of the

individuals. Moreover, with an endogenous age at motherhood, some of the

delays and advances are state-dependent.

We characterize the steady states of our economy and focus on the mon-

etary steady state. It is indeed well-known in the Samuelson (1958) setting

that monetary steady states always appear as candidates for the equilibrium.

In our framework with endogenous fertility, we show that it is not necessarily
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the case and that it depends on the marginal impact of the age at motherhood

on human wealth. Moreover, we show that the condition initially exhibited

by Arthur and McNicoll (1978) in a framework with exogenous population

growth rate, still holds and is even necessary and sufficient for the existence

of the monetary steady state. This condition says that the difference between

the average age of consumers weighted by their consumptions and the aver-

age age of producers weighted by their earnings should be strictly positive.

We finally show that the population growth rate obtained at the monetary

equilibrium is always lower than the one that would be chosen by a social

planner, upon existence of this latter solution.

Section 2 presents the model describing the individual life-cycle behavior

and the aggregation of both the population and the economy. Section 3

studies the monetary equilibrium. Section 4 concludes.

2 The model

2.1 Individual behaviour

Individuals’ lifetime is deterministic1, and of length 1. Let  be the birth

date of the representative individual of generation  and +  () ∈ [ + 1]
the date at which the individual born at  gives birth to her () children.

The number of children is supposed to be a decreasing function of the age at

which the individual gives birth to her children. This assumption is captured

1We are aware that introducing some uncertain lifetime in accordance with Yaari (1965)

would be not only more realistic (Boucekkine et al., 2004, d’Albis, 2007) but also might

influence the results as argued by recent studies linking fertility to health conditions

(Kalemli-Ozcan, 2003, Boucekkine et al., 2009). Specific difficulties arising with uncertain

lifetime make nevertheless this issue beyond the scope of the paper.
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by function  which satisfies:

() = (()) ()  0  0()  0 (1)

The individual born at  derives utility from the flow of consumption

( ) for  ∈ [ + 1] and from the lifetime spent with her children, i.e.

1− (). The intertemporal utility function is:

 () =

Z +1



−(−) ( ( )) + (1− ()) (2)

where  ≥ 0 is the discount rate and where   0 is a parameter related

to the preference for living with one’s children relative to consumption. As-

sumptions about functions  and  are the following:

 () =

¯̄̄̄
¯̄̄ 1−

1
−1

1− 1


if  ∈ (0 1) ∪ (1+∞) 

ln  otherwise,

(3)

where  is the intertemporal elasticity of substitution of consumption, and

()  0 0()  0 lim
→0

0() = +∞ 00()  0 (4)

Each individual works along her entire lifetime, but her earnings are re-

duced for a given amount of time, denoted  ∈ (0 1), when she becomes a
mother. This can be explained by a decrease of the hours devoted to work

during the early ages of the children. Let e (  ()) be the wage at time
 of the individual born at time  and giving birth to her children at time

():

e (   ()) =
⎧⎨⎩ (())() if −  ∈ [()min (() +  1)] 

() otherwise.
(5)
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Function  is a decreasing and convex function of the number of children,

which is standard:

() ∈ [0 1]  0() ≥ 0 lim
→0

0() = +∞ 00() ≤ 0 (6)

Individuals have access to a competitive asset market that yields () the

interest rate. Let ( ) denote the real wealth of an individual born at time

 as of time  The instantaneous budget constraint is:

 ( )


=  ()  ( ) + e (  ())−  ( )  (7)

Individuals are born with no financial asset and cannot die indebted. There-

fore, initial and terminal conditions write ( ) = 0 and ( + 1) ≥ 0. It
is assumed that ( ) and ( ) are piecewise C1 ¡R2+¢  and that () and
() are continuous for all  ∈ [ + 1] 

The individual born at  seeks to maximize her intertemporal utility

subject to her budget constraint and her initial and terminal conditions.

The optimization problem reads:

max()()
R +1


−(−) ( ( )) + (1− ())

s.t.

¯̄̄̄
¯̄̄̄
¯̄̄̄
¯̄̄̄
¯

()


=  ()  ( ) + e (  ())−  ( ) 

e (   ()) =
⎧⎨⎩ (())() if −  ∈ [()min (() +  1)] 

() otherwise,

 ( ) ≥ 0 0 ≤  () ≤ 1

( ) = 0 ( + 1) ≥ 0
(P)

It is convenient to define the human wealth at birth as follows:

 (  ()) =

Z +1



 ( ) e (   ())  (8)
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where  ( ) = exp
¡R 


 () 

¢
is the inverse of the discount factor.

We now present the solution of the individual’s problem.

Lemma 1. The optimal consumption path, solution to problem (P), satisfies:

 ( ) =
 ( ) (  ∗ ())R +1


 ( )

1−
−(−)

 (9)

where  ∗ () ∈ (0 1) is the solution of:

 ( )
− 1

 (  ())

 ()
− 0 (1− ()) = 0 (10)

Moreover,  ∗ () is unique if:

2 (  ())

 2 ()
≤ 0 (11)

Proof. The method is similar to the one used by d’Albis and Augeraud-Véron

(2008) for endogenous retirement. The problem is solved in two steps: first,

for a given  (), the optimal path of consumption is computed; then, the

optimal age at which the agent gives birth to her children is derived.

Step 1. The optimal path of consumption for any  () (or equivalently for

a given path e (  ())) is derived from the Euler’s equation, and satisfies
at age − :

 ( ) =  ( ) ( )

−(−) (12)

while the intertemporal budget constraint is obtained by integrating forward

(7) and using the following optimal equality:  ( + 1) = 0, such that:Z +1



 ( )  ( )  =  (  ())  (13)

By replacing (12) in (13), we obtain the optimal initial consumption:

 ( ) =
 (  ())R +1


 ( )

1−
−(−)

 (14)
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With (12) and (14), we obtain (9).

Step 2. The optimal age  () is obtained by replacing (9) in (2) and solving

the following problem:

max()
R +1


−(−) ()
1− 1



1− 1


+ (1− ())

s.t.

¯̄̄̄
¯̄̄̄
¯̄̄̄
¯̄̄̄
¯̄

 ( ) = ( ) ( )

−(−)

 ( ) =
(()) +1


()1−−(−)



e (   ()) =
⎧⎨⎩ (())() if  −  ∈ [()min (() +  1)] 

() otherwise,

0 ≤  () ≤ 1
(15)

Let 1 ≥ 0 and 2 ≥ 0 be the two Kuhn and Tucker multipliers associated
to the inequality constraints on  (). The first order condition is:

 ( )
− 1

( )

()

Z +1



 ( )
−1

−(−)− 0(1− ()) + 1 − 2 = 0

i.e.

 ( )
− 1

 (  ())

 ()
− 0 (1− ()) + 1 − 2 = 0 (16)

and the two complementarity slackness conditions are:

1 ≥ 0 () ≥ 0 1 () = 0 (17)

2 ≥ 0 1− () ≥ 0 2 (1−  ()) = 0. (18)

Let us first establish the existence condition for an interior solution.

We first note that 2  0 is never optimal. Indeed, if 2  0 () = 1 and

1 = 0 and since lim()→1 0(1− ()) = +∞ we obtain a contradiction.
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We then note than 1  0 cannot be optimal either. Indeed, if 1  0

() = 0 and 2 = 0 and condition (16) reads

1 = 0(1)− lim
()→0

∙
 ( )

− 1

 (  ())

 ()

¸


According to (8) and (5), we have:

 (  ()) =

Z +()



 ( ) ()  + (())

Z +min((()+)1)

+()

 ( ) () 

+

Z +1

+min((()+)1)

 ( ) () 

Then

 (  ())

 ()
= (1− (())) [ (+ () ) (+ ())

−1−min((() + ) 1)

1− (() + )
 (+ () +  ) (+ () + )

¸
+0(())

Z +min((()+)1)

+()

 ( ) ()  (19)

As lim→0 0 () = +∞ we obtain that lim()→0  (  ())  () = +∞
and 1 → −∞ a contradiction.

Concerning the uniqueness of the interior solution, we simply need to ensure

that the left-hand side of (10) decreases with  ()  Let (()) be this left-

hand side. We have

0(()) = −1

( )−

1

−1 ( )

 ()

 (  ())

 ()

+ ( )
− 1

2 (  ())

 ()
2

+ 00 (1− ()) 

with
()

()
of the same sign as

(())

()
(see equation (14)) and 00()  0 by

assumption. Then 0(()) is strictly negative if condition (11) is satisfied.

¤
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The problem of the individual is to find the optimal trade-off between

consuming and spending time with her children. A key variable is thus the

influence of the age at motherhood on the human wealth. Due to parame-

ter , which captures the time spent raising children, this influence is not

straightforward. Indeed, for early motherhood, or equivalently for low ,

there could exist wage and interest rate profiles such that  (  ())  ()

is negative (see equation (19)). In that case, the optimal solution would be

to choose  () = 0 because it allows the individual to both consume more

and spend more time with her children. Assumption lim→0 0 () = +∞
excludes this corner solution. Finally, the concavity of human wealth with

respect to the age at motherhood is sufficient for excluding multiple local

optima to problem (P) as it implies a unique solution to equation (10).

It will be useful to compute the optimal path of asset during the lifespan.

Since the intertemporal budget constraint is:

 ( ) =

Z +1



 ( ) [ ( )− e (   ())]  (20)

one obtains:

 ( ) =  ( ) (  ∗ ())
Z +1



∙Z +1



 ( )
1−

−(−)

¸−1


−
Z +1



 ( ) e (   ())  (21)

2.2 Aggregate variables

2.2.1 The demography

The demographic structure is in overlapping generations.

Let  () be the size of the cohort born at time . Let  ()   () and

() be respectively the size of the population, the crude birth rate and the
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population growth rate such that:

 () =

Z 

−1
 () 

() =
()

 ()


() =
()−(− 1)

 ()


The relationship between the birth and the growth rates can be written as:

()− (− 1)−
 
−1 () = () (22)

which yields to a delay differential equation when differentiated once more.

The cohort born at  gives birth to a new cohort at date  + (). The size

of the latter satisfies (+ ()) = (())(), or equivalently

 (+ ()) 
 +()


() = (())() (23)

which is a differential equation with endogenous advances. Let us remark

that this framework allows for the existence of more than two generations

at the same time: for instance if ()  12, an individual will survive her

grand daughter.

2.2.2 The economy

It is supposed that the production is equal to the efficient labor force2. The

productivity of an individual without children is normalized to 1 and bearing

a child has an opportunity cost which reduces the time devoted to production.

Moreover, there is no redistribution. In this framework, wages are constant:

() = 1 for all .

2Such economies are sometime referred to as “fruit tree” or “yeoman farmer” economies.
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We assume that the cohort which decides to have children at  is the

youngest one among those who have children at . This so-called “last in,

last out” assumption is strong but it is satisfied in the neighborhood of the

steady state3.

With these assumptions, let us define total production at date :

 () =

Z max(−1)

−1
 () +

Z 

max(−1)
(()) () +

Z 



 ()  (24)

where  is the birth date of the cohort who decided to have their children at

date  and  is the birth date of the cohort who had their children at date −,
and whose productivity is not reduced anymore. The first integral in equation

(24) is, upon existence, the production of the eldest generations who do not

take care anymore of their children, the second integral is the production of

the parents generations who are still taking care of their children, while the

third integral is the production of the youngest cohorts who do not have their

children yet (they are born after ). Dates  and  respectively satisfy:

+ () =  and  + () +  =  (25)

We remark that production can equivalently be written as follows:

 (+ ()) =

Z max(+()−1)

+()−1
 () +

Z 

max(+()−1)
(()) () 

+

Z +()



 ()  (26)

which is an integral equation with endogenous lags and leads.

3Indeed, by definition, the lag  () is constant at the steady-state.
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3 Monetary equilibrium

In this section, we define the intertemporal equilibria, characterize the steady

states, and focus on the monetary one. Monetary steady states are key in the

OLG literature, where they are known to be candidates for the equilibrium.

Studying them is thus the easiest way to prove the existence of an equilibrium.

Moreover, monetary steady states are known to be optimal in the standard

framework with exogenous fertility. We show that it is not the case when the

age at motherhood is endogenous.

3.1 The intertemporal equilibrium

Denote by () () and  () the per capita aggregate consumption, produc-

tion and assets, respectively, with for instance

() =

R 
−1()( )

 ()
=

Z 

−1
()

 ()

 ()
( ) =

Z 

−1
()−

 

()( )

Definition 1. An intertemporal equilibrium is a path such that individuals

behave optimally and the goods market clears: () = (). The intertemporal

equilibrium is classical if  () = 0 and monetary if  ()  0.

The equilibrium is the solution of a system in ( ()   ()   ()   ())

composed by two "economic" equations and two demographic equations. The

economic part is featured by the optimal age at motherhood, which using

(10), (14) and the definition of  (  ()) given by (8), can be written as:Ã
 (  ())R +1


 ( )

1−
−(−)

!− 1

 (  ())

 ()
− 0 (1− ()) = 0 (27)
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and the equilibrium on the goods market:R 
−1 ()

−  

() ()(()) +1


()1−−(−)

 =

R max(−1)
−1 ()−

 

()+

R 
max(−1) (())()

−  

()+

R 

()−

 

()

(28)

where  + () =  and  + () +  = . Moreover, the two demographic

equations are given by (22) and (23). Finally, using (21), the aggregate asset

per capita is given by:

() =

Z 

−1
 () −

 

()( )

=

Z 

−1
 () −

 

()

"
 ( ) (  ())

Z +1



∙Z +1



 ( )
1−

−(−)

¸−1


#


−
Z 

−1
 () −

 

()

∙Z +1



 ( ) e (   ()) ¸ 
which turns to be:

() =

Z 

−1
 () −

 

()

"
 ( ) (  ∗ ())

Z +1



∙Z +1



 ( )
1−

−(−)

¸−1


#


−
Z max(−1)

−1
 () −

 

()

∙Z +1



 ( ) 

¸


−
Z 

max(−1)
 () −

 

()

"
(())

Z +min(()+1)



 ( ) 

+

Z +1

+min(()+1)

 ( ) 

¸


−
Z 



 () −
 

()

"Z +()



 ( ) 

+(())

Z +min(()+1)

+()

 ( )  +

Z +1

+min(()+1)

 ( ) 

#
 (29)
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3.2 Characterization of steady states

Definition 2. A steady state is an intertemporal equilibrium such that

( ()   ()   ()   ()) is constant.

Property 1. A steady state is a solution of the following system:Ã
()R 1

0
−[(1−)+]

!− 1
 ½
(1− ())

∙
− − 1−min( +  1)

1− ( + )
−(+)

¸

+0()
Z min((+)1)



−

)
− 0(1− ) = 0(30)

()−  = 0 (31)

 ()

Z 0

−1

(−)R +1


−[(1−)+]


−
"Z −min(+1)

−1
+ ()

Z −

−min(+1)
+

Z 0

−


#
= 0 (32)

with

() =

Z 

0

− + ()

Z min(+1)



− +
Z 1

min(+1)

− (33)

Proof. At steady state,  is constant, which implies that ( ) = −(−).

Equation (27) of the dynamic system, characterizing the individual choice of

  hence writes:Ã
 ( )R +1


−[(1−)+](−)

!− 1

 ( )


− 0 (1− ) = 0 (34)

Using (8), we obtain (30). Equations (22) and (23) write respectively:  =

 (1− −) and () =  . The latter is equation (31), while the former

gives the value of the birth rate  at steady state, once  has been calculated
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through system (30)—(32). Similarly, equation (28), featuring the equilibrium

condition, can be rewritten to obtain (32). ¤

We finally note that aggregate asset per capita, given by equation (29), sat-

isfies:




= ()

Z 0

−1
(−)

"Z +1

0

∙Z +1



−[(1−)+](−)

¸−1


#


−
Z −min(+1)

−1

∙Z +1

0

−

¸


−
Z −

−min(+1)


"
()

Z +min(+1)

0

− +
Z +1

+min(+1)

−

#
 (35)

−
Z 0

−


"Z +

0

− + ()

Z +min(+1)

+

− +
Z +1

+min(+1)

−

#


3.3 Existence of a monetary steady state

Lemma 2. There exists a candidate for the monetary steady state if  ≥ 1
or if   1 and lim→0  1+0 ()


= +∞. It corresponds to a positive

demographic growth rate if and only if   , where   0

Proof. For the first part of the lemma, we look for particular solutions of

system (30)—(32), such that:  = . We first check that equation (32) is

always satisfied when  = . The system then reduces to equation (30),

written for  =  and (31).

Let us first study the case of the particular solution  = 0. It is obtained for

the particular age, denoted  , which satisfies: () = 1. Define moreover the

parameter  = min( 1− ). Then,  = 0 is a solution if and only if:Ã
1− (1− ()) R 1

0
−

!− 1
 ∙
(1− ())

 − 

(1− )− 
+ 0()

¸
− 0(1− ) = 0

(36)
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which is, of course, not generic. We denote by  the unique value of the

parameter of preference for living with one’s children ensuring that equation

(36) is satisfied.

Let us then define function  as:

 () =
1− −((1−)

ln ()


+)

(1− )
ln ()


+ 

()1− ln () [0(1− )]
−

×
"
(1− ())

∙
1− 1−min( +  1)

1− ( + )
()−




¸
+ 0()

1− ()1−
min(+1)



ln ()

#
−

h
()− ()1−

1
 + (1−  ())

³
()1−

min(+1)

 − 1
´i

 (37)

where  is continuous. Equations (30) with  =  and (31) are equivalent

to  () = 0 with  6= 0 and () 6= 1. Let us study function  (). Since

 () = 0 and  (1) = (1−(1))  0, a sufficient condition for the existence
of a  ∗ which belongs to (0 ) ∪ (  1) and satisfies  ( ∗) = 0 is  (0)  0.
We have, as (0)  1:

 (0) = lim
→0

Ã
1− −[(1−)

ln (0)


+]

(1− )
ln (0)


+ 

!
(0)1− ln (0) [0(1)]−

×
∙
(1− (0)) + lim

→0
(0())

1

ln (0)

¸
 (38)

Since

lim
→0

1− −[(1−)
ln (0)


+]

(1− )
ln (0)


+ 

=

⎧⎨⎩
0, if   1
1−−


, if  = 1

+∞, if   1

we obtain that  (0)  0 if  ≥ 1. The case   1 is more complicated

because we have supposed that lim→0 0() = +∞. Hence,  (0) is either 0
or +∞. The condition lim→0  1+0 ()


= +∞ ensures that  (0) = +∞.

For the second part of the lemma, we use the fact that if  (0)  0  ∗ ≤ 

(and, consequently,  ≥ 0) if and only if  0() ≥ 0 We then compute the
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first derivative of (37) at point  such that4:

 0() =
1− −



∙
(1− ())

 − 

(1− )− 
+ 0()

¸
[0(1− )]

−
 0()

− (1− (1− ()) )  0() (39)

We thus conclude that

 0 () ≥ 0⇔  ≥  (40)

 defined by equation (36) is the threshold of the parameter of preference for

living with one’s children such that  0() ≥ 0 if and only if  ≥ . ¤

Due to the endogeneity of the demographic growth rate, the existence of a

monetary steady state is not as straightforward as in the standard case. The

problem appears when the elasticity of intertemporal substitution is lower

than one. This lowers individual savings and thus increases the interest

rate, which is at the equilibrium the demographic growth rate. This is only

possible if the age at motherhood is reduced. To reach a sufficiently large

demographic growth rate, the age should be zero, which is forbidden, as

shown in Lemma 1, by the assumption lim→0 0 () = +∞. To avoid the
incompatibility that may arise with a low savings behavior and an interior

solution for the age at motherhood we impose a condition that simply says

that the convergence of 0 () to +∞ is sufficiently fast.

The second part of the lemma is more intuitive. The preference for spend-

ing time with children must be large enough to yield a positive demographic

growth. Moreover, when the time spent raising one’s children is not too large

(  1− ), the threshold parameter above which population growth is pos-

4The proof, involving simple but very tedious calculations, is available on demand.
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itive increases with  The threshold is of course independent of  when  is

so large that the mother cannot die before having raised her children.

For the next result, it is useful to define ̄, the average age calculated

cross-sectionally such that:

̄ ≡
R 
−1 (− ) ( ) () R 1

0
 ( ) () 

 (41)

where  ( ) is a relevant characteristic. In the case  ( ) = 1 ̄1 is the

standard definition of the average age of the population. If  ( ) =  ( ) 

̄ is the average age of consumers weighted by their consumptions and equiv-

alently, if  ( ) =  ( )  ̄ is the average age of producers weighted by

their earnings. We obtain:

̄1 =

R 
−1 (− ) −(−)R 1

0
−(−)

=
1


− 1

 − 1  (42)

̄ =
1

(1− ) + 
− 1

[(1−)+] − 1  (43)

̄ =
1


− − + (1− ()) −

¡
 − ( +min ( 1− )) −min(1−)

¢
1− − − (1− ()) − (1− −min(1−))

(44)

Notice that when there is no population growth, the average age of the pop-

ulation is 12 while the average age of consumers always belongs to (0 12).

When impatience is high, agents wish to consume early in their lifespan, and

the average age of consumers is all the more lower than the average age of

the population. More generally, the average age of consumers belongs to

(0 1) and is a decreasing function of (1− ) + 5. Thus it increases with

 if   1 and decreases with  if   1. This can be explained by the

5Indeed, one has ̄ =  () =
(−1)−
(−1) where  = (1 − ) + . Function  is

decreasing, with lim→−∞ () = 1,  (0) = 12 and lim→+∞ () = 0.
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fact that  is both the growth rate of the population and the equilibrium

interest rate. Consequently, if the intertemporal elasticity of substitution is

sufficiently large, the increase of consumption over the life cycle exceeds the

change in the demographic structure and finally the average age of consumers

increases with 

Proposition 1. The candidate corresponds to a valid monetary steady state

if and only if ̄  ̄.

Proof. The candidate corresponds to a valid monetary steady state if and

only if the aggregate asset per capita is positive. When  = , equation (35)

rewrites as follows:

(1− −) = ()

∙
1

(1− ) + 
− 1

[(1−)+] − 1
¸

−() + − + (1− ()) −

× £¡1− −min(1−)
¢
 − −min(1−)min ( 1− )

¤
(45)

with

() =
1− − − (1− ()) −

¡
1− −min(1−)

¢


 (46)

Using (43) and (44), this rewrites

 = (̄ − ̄)


1− −
() (47)

¤

Among stationary solutions, the Golden Rule path, such that the inter-

est rate equals the demographic growth rate, has been extensively studied.

Since the work of Samuelson (1958), it is customary to name this solution
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the “biological interest rate”. The properties of this solution in frameworks

with a realistic demography were initially studied by Arthur and McNicoll

(1978) and Lee (1980), while recent advances have been proposed by Bom-

mier and Lee (2003) and Brito and Dilão (2010). The main difference here

hinges on the fact that the demographic growth rate is endogenous. We find

that there exists a monetary equilibrium which corresponds to positive ag-

gregate assets if and only if the average age of consumers is greater that the

average age of producers. It means that the average worker transfers some of

her endowments to the average consumer, which is the essence of aggregate

savings.

It is important to stress out that, contrary to the case with an exogenous

growth rate, the monetary equilibrium is not optimal. In order to prove this,

we study the optimal stationary path of our economy. The problem is similar

to the one studied by Samuelson (1975) and Deardorff (1976) although we

restrict ourselves to the question of characterizing the optimum and compar-

ing it to the stationary equilibrium. The optimal stationary path is solution

of the following problem:

max
()

Z 1

0

− ( ()) +  (1− )



¯̄̄̄
¯̄̄̄
¯̄

R 1
0
− ()  =

R 1
0
−̃ ( ) 

̃ ( ) =

½
 () if  ∈ [ min ( +  1)]

1, otherwise

 =
ln ()



 () ≥ 0,  ∈ [0 1] .

(O)

The social planner maximizes the steady state life-cycle utility subject to a

static budget constraint and the demographic equation linking the population

growth rate and the age at motherhood. Let us suppose that there exists an
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interior solution to Problem (O), which is the optimum6. Then:

Proposition 2. The optimal growth rate of the population is larger than the

one that prevails at the monetary equilibrium.

Proof. The resolution method for Problem (O) is the same as the one devel-

opped in Lemma 1. One may first compute the optimal consumption profile

parametrized by  and , the latter being a function of  defined as follows:

 () ≡ ln  ()  The consumption profile, denoted  (    ()), satisfies:

 (    ()) =

R 1
0
−()̃ ( ) R 1

0
−(+(1−)())

(()−)

The optimal age at motherhood hence solves:

max


Z 1

0

− ( (    ())) +  (1− ) 

The first order condition is:Z 1

0

−0 ( (    ()))

∙
 (    ())


+

 (    ())


 0 ()

¸
−0 (1− ) = 0

Let us denote ̂ , the solution of the previous equation. It compares with the

monetary equilibrium that solvesZ 1

0

−0 ( (    ()))

∙
 (    ())



¸
− 0 (1− ) = 0

and which will be denoted  ∗. Provided that the problem is concave and the

solution is interior, we therefore have:

̂ ≥  ∗ ⇔
Z 1

0

−0 ( (  ∗  ( ∗)))
 (  ∗  ( ∗))


 0 ( ∗)  ≥ 0

6Since Deardorff (1976) and Michel and Pestiau (1993), we indeed know that it is not

always the case.
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Simple computations yield to:

̂ ≥  ∗ ⇔  0 (∗) [̄ − ̄] ≥ 0

Using Proposition 1, we conclude that ̂   ∗ which implies that  (̂) 

 ( ∗)  ¤

The intuition for this result is that the equilibrium does not take into

account the positive impact of the population growth rate on life-cycle con-

sumption. Indeed, a greater growth rate implies a larger production that can

benefit to the elder. As a consequence, the equilibrium is not optimal.

4 Conclusion

Fertility choices involve three strongly interrelated decisions: the timing and

spacing of births, the number of children and the quality of children. Since

Becker (1960), the literature has extensively studied the tradeoff between

child quality and quantity, but the first decision is much less discussed, in

spite of the fact that its consequences on population growth are well docu-

mented empirically (see for instance Gustafsson, 2001). The novelty of this

paper is to propose an endogenous determination of the age at motherhood.

We represent this age by the age at first birth and suppose, in accordance to

empirical works (Heckman and Walker, 1990), that the number of children

is a decreasing function of this age. The central mechanism allowing to en-

dogenize the age at motherhood is the comparison between the enjoyment

the mother derives from spending time with her children and the opportu-

nity cost of raising them, taking the form of a wage penalty. Recent papers

endogenizing the age at motherhood have done it indirectly, considering that
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this age is a by-product of educational choices: when the mother decides to

invest in her own human capital, she postpones childbearing until she has

completed her education (de la Croix and Licandro, 2009).

This work could be extended in two directions. First, the analysis of the

dynamics of the model could allow us to get insights on the consequences of

changes in variables affecting the tempo of childbearing, as economic policies

aimed at reducing the opportunity cost of raising children. Following d’Albis

and Augeraud-Véron (2008), it is possible to conjecture that the economy

would experience long run fluctuations. Secondly, the model could be en-

riched by introducing the mother’s educational choices as in de la Croix and

Licandro (2009), and an uncertain lifetime, which would allow us to analyze

the interplay between fertility choices and mortality. The methodology devel-

oped here could then help to better understand the demographic transition
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