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Abstract
When the aim is to model market-shares as a function of explanatory variables, the marketing

literature proposes some regression models which can be qualified as attraction models. They
are generally derived from an aggregated version of the multinomial logit model widely used in
econometrics for discrete choice modeling. But aggregated multinomial logit models (MNL) and the
so-called market-share models or generalized multiplicative competitive interaction models (GMCI)
present some limitations: in their simpler version they do not specify brand-specific and cross-effect
parameters. Introducing all possible cross effects is not possible in the MNL and would imply a
very large number of parameters in the case of the GMCI. In this paper, we consider alternative
models which are the Dirichlet covariate model (DIR) and the compositional model (CODA). DIR
allows to introduce brand-specific parameters and CODA allows additionally to consider cross-effect
parameters. We show that these last two models can be written in a similar fashion, called attraction
form, as the MNL and the GMCI models. As market-share models are usually interpreted in terms
of elasticities, we also use this notion to interpret the DIR and CODA models. We compare the main
properties of the models in order to explain why CODA and DIR models can outperform traditional
market-share models. The benefits of highlighting these relationships is on one hand to propose
new models to the marketing literature and on the other hand to improve the interpretation of the
CODA and DIR models using the elasticities of the econometrics literature. Finally, an application
to the automobile market is presented where we model brands market-shares as a function of media
investments, controlling for the brands average price and a scrapping incentive dummy variable.
We compare the goodness-of-fit of the various models in terms of quality measures adapted to
shares.

Keywords: Multinomial logit; Market-shares models; Compositional data analysis; Dirichlet
regression.

1 Introduction

Share data are characterized by the following constraints: they are positive and sum up to 1. By
definition shares are “compositional data”: a composition is a vector of parts of some whole which
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2 2 MODELS FOR EXPLAINING SHARES

carries relative information. For a composition of D parts, if D−1 parts are known the Dth part is
simply 1 minus the sum of the D− 1 other parts: D-compositions lie in a space called the simplex
SD. Because of these constraints, classical regression models cannot be used directly.

A large number of fields are concerned by the analysis of share data. In political economy, Elff
[6] studies voting behaviors and analyzes the relationship between the shares of political parties
and their policy positions in different groups of voters. In geology, Solana-Acosta and Dutta [21]
are interested in the lithologic composition of sandstone according to whether it is quartz, feldspar
or rock fragments. For environmental planning purposes, land use models focus on what are the
proportions of different types of uses (forest, agriculture, urban, etc...) on a given piece of land,
see for example Chakir et al. [4].

When the aim is to model market-shares as a function of explanatory variables (marketing
factors like advertising or price for example), the marketing literature proposes some regression
models which can be qualified as attraction models (Cooper and Nakanishi [5]). They are generally
inspired from an aggregated version of the multinomial logit models, widely used in econometrics
for discrete choice modeling. But aggregated multinomial logit models (MNL) and market-share
models (GMCI) present some limitations: introducing all possible cross effects is not possible in
the MNL and would imply a very large number of parameters in the case of the GMCI.

In this paper, we propose to use the Dirichlet covariate model (DIR) and the compositional
model (CODA) in order to model market-shares. These models consider the vector of shares as a
“composition” lying in the simplex. DIR allows to estimate brand-specific parameters and CODA
allows to estimate additionally cross-effect parameters. We show that these last two models can
be written in a similar fashion, called attraction form, as the MNL and the GMCI models. We
compare the main properties of the models in order to explain why CODA and DIR models can
outperform traditional market-share models.

Finally, an application to the automobile market is presented where we model brands market-
shares as a function of media investments in 6 channels (TV, press, radio, outdoor, digital, cinema),
controlling for the brands average price and a scrapping incentive dummy variable. We compare
the goodness-of-fit of the various models by cross-validation in terms of quality measures adapted
to share data. The direct elasticity of market-shares relative to the TV investments are computed
for all presented models.

The present paper is organized as follows: the models adapted to model share data are presented
in Section 2, and theoretically compared in Section 3. Section 4 presents an application to an
automobile market data set, along with an empirical comparison of the models in terms of cross-
validated goodness-of-fit measures, and an example of elasticity interpretation. Finally, the last
section concludes on the findings and on further directions to be investigated.

2 Models for explaining shares

2.1 Notations

The notations used in this paper are standardized in Table 1 depending on whether the variables
are considered in volume or in share, in the left or in the right part of the regression equation, and
if they are alternative and/or observation dependent.
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Variable Volumes Shares Coordinates
(absolute values) (relative values) (ILR)

Dependent Njt

St = (S1t, . . . , SDt)
′ =

C(N1t, . . . , NDt)
′ S∗t = N∗t

Explanatory (observation and
component characteristic)

Xjt

Zt = (Z1t, . . . , ZDt)
′ =

C(X1t, . . . , XDt)
′ Z∗t = X∗t

Explanatory (observation
characteristic only)

Wt

General notations
D Number of components (3 in the application)
j, l,m = 1, . . . , D Index of components or coordinates (brands in the application)
T Number of observations (123 in the application)
t = 1, . . . , T Index of observations (time in the application)
K,KX ,KW Number of explanatory variables / of type X / of type W
k = 1, . . . ,K Index of explanatory variables (by default)
k = 1, . . . ,KX Index of explanatory variables of type X
κ = 1, . . . ,KW Index of explanatory variables of type W
sj Theoretical mean share (expected value of Sj)
Notations for the application
C Number of media channels (6 in the application)
c = 1, . . . , C Index of media channels
Mcjt Media investment in channel c at time t for brand j
Pjt Average price at time t of brand j
It Scrapping incentive dummy at time t

Table 1: Notations

C() denotes the closure operation which transforms volumes into shares:

C(y1, . . . , yD)′ =

(
y1∑D
j=1 yj

, . . . ,
yD∑D
j=1 yj

)′

A composition S is a vector of D shares Sj potentially coming from the closure of D positive
numbers Nj and belonging to the simplex SD:

S = (S1, . . . , SD)′ = C(N1, . . . , ND)′ ∈ SD with Sj > 0 and
D∑
j=1

Sj = 1

For example, in the case we use for illustration, the dependent variable is the sales of vehicles
observed across time; among the explanatory variables we have media investments, price and scrap-
ping incentive (time dependent only). The sales can be considered in volume (number of sales) or in
share (market-shares). Similarly, media investments in volume correspond to the amount of euros
spent, whereas in share they correspond to the so-called “shares-of-voice” in marketing.
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2.2 Market-share models

Market-share models were developed in the 80’s, mainly by Cooper and Nakanishi [5]. To take
into account the competition between brands in a market, it is often of interest to model market-
shares instead of sales volumes directly. Thus, this type of model is widely used in marketing. The
aim is to model market-shares of D brands using their marketing factors (price, advertising) as
explanatory variables, with aggregated data (market-level data rather than individual-level data).
These models are called generalized multiplicative competitive interaction (GMCI) models. The so-
called market-share models are inspired from an aggregated version of the conditional multinomial
logit (MNL) models. For individual data, conditional MNL models, widely used in econometrics,
model discrete choices of individuals, i.e. the probability that an individual i chooses an alternative
j. If explanatory variables are alternative dependent (not individual dependent), one can aggregate
the data using a group variable (time for example). In that case, the resulting data may also be
modeled using a multinomial distribution.

2.2.1 GMCI attraction model

The concept of “attraction” of a brand is central in this literature, and is comparable to the “utility”
concept in discrete choice models for individual data. The specification of the attraction of brand
j is a function of the explanatory variables (marketing variables usually, like price and media for
example) describing this brand. The market-share of brand j is defined as its relative attraction
compared to competitors, i.e. as its attraction divided by the sum of attractions of all the brands
of the market.

0 < Sjt =
Ajt∑D
l=1Alt

< 1

where Ajt is the attraction of firm j at observation t such that Ajt > 0.

Cooper and Nakanishi [5] defined a general model for market-shares, called the generalized
multiplicative competitive interaction model (GMCI). It is defined as follows:

Ajt = exp(aj + εjt)

K∏
k=1

fk(Xkjt)
bk and Sjt =

Ajt∑D
l=1Alt

(1)

where exp(εjt) is a multiplicative random component, and fk is a monotonic transformation of Xk

such that fk(.) > 0. If all fk are the identity function (resp. the exponential function), it is called
the MCI specification (resp. to the MNL specification):

MNL spec.: Sjt =
exp(aj +

∑K
k=1 bkXkjt + εjt)∑D

l=1 exp(al +
∑K
k=1 bkXklt + εlt)

(2)

MCI spec.: Sjt =
exp(aj +

∑K
k=1 bk logXkjt + εjt)∑D

l=1 exp(al +
∑K
k=1 bk logXklt + εlt)

(3)

The MNL specification of the GMCI is similar to the conditional multinomial logit model (MNL),
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except that in the MNL model an intercept has to be fixed to zero for identifiability reason:

MNL model: sjt = E(Sjt|Xt) =
exp(aj +

∑K
k=1 bkXkjt)∑D

l=1 exp(al +
∑K
k=1 bkXklt)

with aD = 0 (4)

Note however that the attraction formulation of the MNL model differs from that of the GMCI
models: the GMCI attraction contains the random component εjt whereas the MNL does not since
the attraction form in that case corresponds to the expected share. We will further develop this
aspect in section 3.2.

2.2.2 Estimation by OLS

Contrary to the MNL model which is estimated by maximum likelihood based on the multinomial
distribution, Nakanishi and Cooper [17] proposed an estimation method relying on a log lineariza-
tion that they call “log-centering transformation” which is actually the log ratio between a share Sjt
and the geometric mean of all shares at observation t, S̃t, also called CLR (centered log-ratio) trans-
formation in the CODA (Compositional Data Analysis) literature. The log-centered formulations
are given by:

MNL spec.: log

(
Sjt

S̃t

)
= a1 +

D∑
l=2

(aj − a1)dl +

K∑
k=1

bk(Xkjt −Xkt) + (εjt − εt)

MCI spec.: log

(
Sjt

S̃t

)
= a1 +

D∑
l=2

(aj − a1)dl +

K∑
k=1

bk log

(
Xkjt

X̃kt

)
+ (εjt − εt)

where dl = 1 if l = j, 0 otherwise (brand dummy). St and S̃t are the arithmetic and the geometric
means of Sjt.

This OLS estimation would be correct if error terms ε∗jt = (εjt − εt) had a multivariate distri-
bution with diagonal variance covariance matrix, but indeed the ε∗jt can only follow a degenerate
multivariate normal distribution. It is suggested to use a generalized least squares (GLS) estimation
instead of an OLS estimation due to the potential heteroscedasticity and/or correlation of error
terms (if observations are time periods for example). But as stated in Cooper and Nakanishi [5],
we found that the GLS procedure, which is quite heavy in terms of implementation for this kind
of models, does not give empirically better results than the OLS procedure.

Implementation in R: the function lm() allows to fit the log-centered model by ordinary least
squares (GMCI). The package “mclogit” developped by Martin Elff [7] allows to fit conditional logit
models with count data, using the Fisher-scoring/IWLS algorithm1 (MNL).

2.3 Dirichlet covariate models

The Dirichlet distribution is the distribution of a composition obtained as the closure of a vector
of D independent gamma-distributed variables with the same scale parameter. Thus, it is another
distribution adapted for variables lying in the simplex. Let S = (S1, . . . , SD) ∼ D(α1, . . . , αD)

1For details on IWLS algorithm, see for example Green [8].
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where Sj > 0 and
∑D
j=1 Sj = 1, αj > 0 and

∑D
j=1 αj = α0. α0 is called the precision parameter.

Then, E(Sj) =
αj
α0

. Two parametrizations exist for the Dirichlet regression model: the “common
parametrization” and the “alternative parametrization”2. We focus here on the common specification.

2.3.1 Dirichlet model

Campbell and Mosimann [3] developed Dirichlet covariate models to explain a compositional de-
pendent variable, supposed to be Dirichlet distributed, by classical (non-Dirichlet) covariates. As
explained in Hijazi and Jernigan [10], “a different Dirichlet distribution is modeled for every value
of the explanatory variables, resulting in a conditional Dirichlet distribution”. The conditional
distributions St|Xt are mutually independent: St|Xt ∼ D(α1(Xt), . . . , αD(Xt)) with unknown pa-
rameters. Under the common parametrization, the parameters of the Dirichlet distribution, the
αj ’s, are allowed to depend on the explanatory variables Xk in a GLM fashion with a log link.

log(αj(Xt)) = aj +

K∑
k=1

bkjXkjt and E(Sj) =
αj(Xt)∑D

m=1 αm(Xt)
(5)

The components may have different explanatory variables (a different number of explanatory vari-
ables and/or explanatory variables which take different values for the different components), but
for the sake of simplicity X denotes the vector of explanatory variables for all components.

2.3.2 Estimation by maximum likelihood

The log-likelihood to maximize is:

logL(S|α(X)) =

T∑
t=1

log Γ

 D∑
j=1

αj(Xt)

− D∑
j=1

log Γ(αj(Xt)) +

D∑
j=1

(αj(Xt)− 1) logSjt


Implementation in R: the package “DirichReg” created by Maier [12] allows to fit Dirichlet

model for the common or alternative parametrization, by maximum likelihood.

2.4 Compositional models

Compositional data analysis was developed in the 80’s by John Aitchison [1]. The first applications
were for geological data, with the objective to analyze the composition of a rock sample in terms of
the relative presence of different chemical elements. More generally, CODA aims to analyze relative
information between the components (parts) of a composition where the total of the components
is not relevant or is not of interest.

2.4.1 The log-ratio transformation approach

The CODA approach is based on log-ratio transformations of compositions in order to obtain
coordinates which can be represented in a RD−1 Euclidean space. Then, classical methods suited

2The alternative parametrization uses the parameters µj = E(Sj) to account for the expected values of the shares,
and φ = α0 to account for the precision. See Hijazi and Jernigan [10].
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for modeling data in the Euclidean space can be used on coordinates. Several transformations are
developed: notably the CLR (centered log-ratio) and the ILR (isometric log-ratio) transformations.

- The CLR transformation leads to D coordinates instead of D − 1 for others. It is defined as
follows: clr(S) =

(
log S1

S̃
, . . . , log SD

S̃

)′
where S̃ is the geometric mean of the D components. Its

inverse transformation is: S = clr−1(clr(S)) = C(exp(clr(S)1), . . . , exp(clr(S)D))′.

- The ILR transformation consists in a projection of components in an orthonormal basis of
SD in order to obtain D − 1 orthonormal coordinates. Let {v1, . . . ,vD−1} be an arbitrary or-
thonormal basis in RD−1, then el = clr−1(vl), l = 1, . . . D − 1, represent an orthonormal ba-
sis in the simplex SD equipped with its “natural geometry” (see Pawlowsky-Glahn et al. [18]).
Considering the D × (D − 1) matrix V with columns vl = clr(el), l = 1, . . . D − 1, ILR coordi-
nates are defined as ilr(S) = S∗ = V′clr(S) = V′ log(S). Its inverse transformation is given by:
S = ilr−1(S∗) = C(exp(VS∗))′.

Example A particular ILR transformation that could be used is the following:

S∗l =

√
D − l

D − l + 1
log

Sl

(
∏D
l′=l+1 Sl′)

1
D−l

, l = 1, . . . , D − 1

S∗1 contains all the relative information of part S1 to the parts S2, . . . , SD.

If D = 3 for example, it leads to S∗1 =
√

2
3 log S1√

S2S3
=
√

2
3 logS1 − 1√

6
(logS2 + logS3) and

S∗2 =
√

1
2 log S2

S3
= 1√

2
(logS2 − logS3).

Thus, V =


√

2/3 0

−1/
√

6 1/
√

2

−1/
√

6 −1/
√

2

.
For regression as well as for other statistical analysis, the results are the same after inverse

transformation regardless of the chosen transformation. However, as CLR introduces collinearity
between coordinates, ILR is preferred for compositional regression models.

2.4.2 CODA regression models

Compositional regression models are of different types depending on whether the response variable
and/or the explanatory variables are compositional. We focus here on the case where the dependent
as well as the explanatory variables are compositional and of same dimension D (for example,
market-shares of D brands are explained by the corresponding media investments)3.
CODA models can be expressed either in terms of the initial compositional observations in the
simplex (equation (6)) or alternatively in terms of the corresponding transformed coordinates in
the Euclidean space (equation (7)), as follows:

3Note that the dependent composition and the explanatory compositions could be of different dimensions.
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- Linear CODA model in the simplex (in terms of compositions):

St = a

K⊕
k=1

Bk � Zkt ⊕ εt (6)

with S,a,Zk, ε ∈ SD and Bk ∈ RD×D such that row and column sums are equal to zero4, and the
following operations are used in the simplex:

• ⊕ is the perturbation operation, corresponding to the addition operation in the simplex: x⊕
y = C(x1y1, . . . , xDyD)′ with x,y ∈ SD, and

⊕K
k=1 corresponds to

∑K
k=1.

• � is the power transformation, corresponding to the multiplication operation in the simplex:
x� λ = C(xλ1 , . . . , xλD)′ with λ ∈ R,x ∈ SD

• � is the compositional matrix product, corresponding to the matrix product in the simplex:
B � x = C

(∏D
j=1 x

b1j
j , . . . ,

∏D
j=1 x

bDj
j

)′ with B ∈ RD×D,x ∈ SD

- Linear CODA model in the Euclidean space (in terms of ILR coordinates):

S∗jt = a∗j +

K∑
k=1

D−1∑
m=1

b∗kjmX
∗
kmt + ε∗jt ∀ j ∈ 1, . . . , D − 1 (7)

where j is the index of S’s ILR coordinates,m is the index of X’s ILR coordinates and ε∗j ∼ N (0, σ2).
Equation 7 corresponds to a system of D−1 linear models, one for each ILR coordinate of S. Note
here that compositional explanatory variables coordinates can be equivalently calculated using X

(volumes) or Z (shares).
The second presentation has the advantage to look like a classical linear model but its connection

with the original data is obscured by the transformation. On the other hand, the first presentation
in terms of the original share data is obscured by the simplex operations involved in the model
equation.

2.4.3 Estimation by OLS

After log-ratio transformation (equation (7)), the estimation is usually done with the OLS method,
separately on the D − 1 linear models expressed in coordinates5.
Then, the estimated model can be back transformed into the simplex using the inverse transforma-
tion which transforms α into a, β into b, ilr(S) into S and ilr(Z) into Z:

a = ilr−1(a∗1, . . . , a
∗
D−1) = C(exp(Va∗))

BD,D = VB∗D−1,D−1V
′

S = ilr−1(S∗1 , . . . , S
∗
D−1) = C(exp(VS∗))

with B∗ =

 b∗1,1 . . . b∗1,D−1

. . . b∗j,l . . .

b∗D−1,1 . . . b∗D−1,D−1

, and B =

 b1,1 . . . b1,D

. . . bj,l . . .

bD,1 . . . bD,D

 where b∗j,l is the parameter

4Under these conditions, B�Z is an endomorphism of the simplex SD (See Kynclova et al. [11]). Thus model (6) is
a linear model in the simplex.

5The orthonormality of coordinates allows us to estimate the D − 1 models separately.
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corresponding to the impact of Z∗l on S∗j , and bj,l is the parameter corresponding to the impact of
Zl on Sj .

Implementation in R: the packages “compositions” [23] and “robCompositions” [22] allow to
transform compositional data, to fit the compositional model by OLS on the coordinates and to
back transform the results into compositions. Implementation of CODA using R is presented in
the book of Van den Boogaart and Tolosana-Delgado [24].

3 Theoretical comparison of share models

In this section, we highlight the similarities and differences of the presented models from a the-
oretical perspective. Because these models are deeply linked with the type of applications they
have been proposed for, the following comparison refers not only to statistical properties, but also
to econometric and marketing properties. Table 2 summarizes the distributional assumptions, the
estimation methods, the properties and the complexity of each model6. These items are discussed
in detail below. Finally we highlight the fact that GMCI can be expressed in a CODA way.

3.1 Distributional assumptions

In the MNL model the dependent variable is a vector of positive numbers Nj which follow a
multinomial distribution. In the other three models the dependent variable is directly the vector of
shares Sj which are Dirichlet distributed in the case of DIR and Gaussian in the simplex distributed
for GMCI and CODA (the coordinates are Gaussian in the transformed space). Note that the
MNL model differs from the MNL specification of the GMCI model by its underlying distributional
assumptions.

MNL and Dirichlet models belong to the family of GLM (Generalized linear models): see
Peyhardi et al. [19] for MNL and Maier [12] for Dirichlet. GMCI and CODA models belong to the
family of transformation models (TRM hereafter) in which a classical linear model is postulated in
the transformed space.

3.2 Expected shares and attraction formulation

Expected value of shares Let us notice that the model formulation of the two GLM models
- MNL (4) and DIR (5) - involves the expected shares E(Sjt|Xt), while the two transformation
models formulation - GMCI (1) and CODA (6) - involves the random shares Sjt and a random
error term. The usual expected value cannot be analitically computed for the GMCI and the CODA
models. For this reason, we turn attention to the “expected value in the simplex”, defined as follows
(see Theorem 6.10 p.109 in Pawlowsky-Glahn et al. [18]):

E⊕S = C(exp(E log S)) = clr−1(Eclr(S)) = ilr−1(Eilr(S)) = ilr−1(ES∗)

This means that the expected value in the simplex of the composition of shares, E⊕S, coincides
with the ILR back transformation of expected values of the random coordinates, ES∗.

6Here the GMCI model is presented with the MNL specification. Note that if X is replaced by logX, it corresponds
to the MCI specification.



10 3 THEORETICAL COMPARISON OF SHARE MODELS

Remark: If the explanatory variables only consist of intercepts, the fitted shares are not the
same across the four models. In the case of the CODA and the GMCI models, they correspond
to the center of the compositional data, that is the closed vector of geometric means of each
component, while in the case of the MNL and the DIR models, fitted shares are the arithmetic
means of components (weighted in the case of MNL). The geometric mean, which is coherent with
the simplex geometry, is more adapted than the arithmetic mean to summarize shares data. This
is an argument in favor of CODA and GMCI models.

Attraction formulation of share models As seen before, the attraction formulations in
MNL and GMCI are different (in GMCI it includes a random error term). In order to unify
the presentation, we introduce a deterministic attraction Ajt and a random attraction ujt such
that Ajt = Ajtujt. According to equations (4), (2), (3), the deterministic attraction formulations
of MNL and the two GMCI models (GMNL for the MNL specification and GMCI for the MCI
specification) are:

AMNL
jt = exp(aj +

K∑
k=1

bkXkjt) with aD = 0 ⇔ ESjt =
AMNL
jt∑D

m=1A
MNL
mt

AGMNLjt = exp(aj +

K∑
k=1

bkXkjt) ⇔ E⊕Sjt =
AGMNLjt∑D
m=1A

GMNL
mt

AGMCIjt = exp(aj +

K∑
k=1

bk logXkjt) ⇔ E⊕Sjt =
AGMCIjt∑D
m=1A

GMCI
mt

This emphasizes the fact that the type of expected shares involved in the attraction formulation
are different between the MNL model and the MNL specification of the GMCI.

The Dirichlet model can also be expressed with an attraction formulation:

ADIRjt = exp(aj +

K∑
k=1

bkjXkjt) = αjt ⇔ ESjt =
ADIRjt∑D
m=1A

DIR
mt

This emphasizes the fact that the parameters of the DIR model are alternative-specific (they de-
pend on j), contrary to the GMCI and MNL models.

We now derive the attraction form of the compositional model, using equation (6). We first
express the market-share of brand j in the CODA model7 as:

St = at

K⊕
k=1

Bk � Zkt ⊕ εt = C

(
a1

K∏
k=1

D∏
l=1

Xbk1l
klt ε1t, . . . , aD

K∏
k=1

D∏
l=1

XbkDl
klt εDt

)

7The market-share Sjt is here expressed as a function of Xklt directly and not as a function of Zklt because Sjt is
obtained by a closure operation (dividing by the denominator), thus it can be shown that the explanatory variables can
be used in volume as they are closed at the end.
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Thus, if we let

ACODAjt = aj

K∏
k=1

D∏
l=1

X
bkjl
klt = exp

(
log(aj) +

K∑
k=1

D∑
l=1

bkjl log(Xklt))

)
(8)

then we have:

E⊕Sjt =
ACODAjt∑D
m=1A

CODA
mt

(9)

Note that taking X as explanatory variable in (6) actually corresponds to using log(X) in the
attraction formulation of the CODA model under the exponential form (8). This is similar to the
MCI specification of the GMCI model, and different from the MNL model, the MNL specification
of the GMCI and the DIR model.

3.3 Properties

We now discuss whether the properties that have been introduced and established in the literature
for a given model are valid for the other ones.

IIA and subcompositional coherence In the econometric literature, an important ques-
tion often discussed is whether or not a choice model satisfies the IIA (Independence from Irrelevant
Alternatives) property. IIA means that the ratio of shares of an alternative j with respect to an
alternative l only depends on the characteristics of j and l and is not affected by the presence or
absence of irrelevant alternatives. This property allows to simplify the models but it is not always
realistic (see the red bus - blue bus example of McFadden [14]). Without cross-effects, MNL, GMCI
and Dirichlet models satisfy IIA but CODA models do not.

In the CODA literature, the subcompositional coherence property (see Pawlowsky-Glahn [18])
means that the results of an analysis made on a subcomposition (i.e. remove some alternatives)
should not contradict the results of the analysis made on the whole composition. This is coming
from the fact that compositional data analysis is based on the use of log-ratios. However, if we
look at equation (8), we can see that the market-share of brand j is determined by the explanatory
variables of all the brands. Thus, subcompositional coherence does not imply IIA, but the reciprocal
is true. In the econometrics literature, it is considered that IIA can be a severe limitation, which
is a positive point for CODA models.

Invariance The scale invariance is the fact that multiplying the count data by a constant
does not affect the estimation results. It is a desirable property satisfied by the four models.
The permutation invariance is a desirable property corresponding to invariance through a per-
mutation of the components of a composition. It is clearly satisfied by all the described models.
The perturbation invariance corresponds to coherence when performing a change of units possi-
bly different for each component of a composition. For example, we can model brand market-shares
in terms of sales volumes or in terms of sales values (that is sales volumes perturbed by the vector
of prices). The estimated market-shares and parameters from the “volume” model should be equal
to those of the “value” model after perturbation by the vector of prices. This property is satisfied
by CODA and GMCI models. We can show empirically that it is not satisfied by MNL and DIR
models.
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3.4 Model complexity

In MNL, GMCI and DIR models, the deterministic attraction Ajt is a function of the explanatory
variables characterizing alternative j only, leading to the absence of cross-effects. But in the Dirich-
let model, parameters are alternative-specific, which increases the complexity of the model. In the
CODA model, the attraction may depend on all alternative characteristics, inducing alternative-
specific and cross-effect parameters. This is why CODA is the most complex model with the higher
number of parameters.

It is not possible to take into account all cross effects in the MNL model (see So and Kuhfeld
[20]). Cross effects can be incorporated in the GMCI model (see Cooper and Nakanishi [5]) and
in the Dirichlet models but the number of parameters dramatically increases. CODA is relatively
parsimonious in the sense that it allows to incorporate all cross effects with a number of parameters
relatively lower than the other models ((D − 1)× (D − 1) versus D ×D for others), thanks to the
constraints on the B matrix of parameters.

It is interesting to see that using the same dependent and explanatory variables, the complexity
is totally different from one model to another. For example (as in our application, see Section 4),
if the number of components (shares) of the dependent variable is D = 3, explained by KX =

7 compositions of size D = 3 and KW = 1 time-dependent variable, the number of estimated
parameters are the following: 11 for MNL, 13 for GMCI, 27 for DIR and 32 for CODA. With 32
parameters, the CODA model reflects all the cross-effects between shares whereas the DIR and the
GMCI models with cross-effects would require 69 parameters (D(1 + D ×KX +KW )). Note also
that the number of parameters increases dramatically with the number of components (brands),
especially in the CODA model. For example if D becomes equal to 5 (with KX and KW fixed),
the number of parameters become 15, 17, 45, and 120, which can be a serious limitation for the
CODA model.

3.5 Compositional form of the GMCI model

Even though the GMCI estimation procedure uses a log-ratio transformation as the CODA model,
the two models are different and we are now going to express the GMCI model in a compositional
form, which will reveal this difference.

Wang et al. [25] propose a CODA regression model for the case when both dependent and
explanatory variables are compositional which is simpler than the one presented in paragraph 2.4:
instead of having a matrix of parameters for each compositional explanatory variable, the model
has a unique real parameter for all components of the explanatory composition. This model does
not include cross effects between components contrary to the usual CODA model.

Actually Wang et al.’s model is exactly similar to the MCI model proposed by Cooper and
Nakanishi in 1988 [5], except that Wang et al. use ILR coordinates while CLR coordinates are used
in the MCI model.

From this correspondence we derive a compositional form for the GMCI model:

St = a

K⊕
k=1

bk � Zkt ⊕ εt (10)
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⇔ Sjt =
aj ·

∏K
k=1X

bk
kjt · εjt∑D

l=1 al ·
∏K
k=1X

bk
klt · εlt

=
exp(log aj +

∑K
k=1 bk logXkjt + log εjt)∑D

l=1 exp(log al +
∑K
k=1 bk logXklt + log εlt)

Equation (10) highlights the similarities and differences between GMCI and CODA models: in
place of the Bk matrix in Equation (6) of the CODA model, we now have a single bk parameter in
the GMCI model. We prove in Morais et al. [16] that the GMCI model is a particular case of the
CODA model.
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4 Empirical comparison of share models

In this section, we use the MNL, GMCI, DIR and CODA models for a concrete case study in order
to demonstrate that Dirichlet and compositional models can perform better that usual market-share
models. After presenting the application and the data of our illustrative example, a cross-validation
process is proposed based on quality measures adapted for shares models on the four types of models.
Finally, we compare the interpretation of the parameters of the four models in terms of elasticities.

4.1 Application and data

The main objective of this application is to understand the impact of media investments on brand
market-shares controlling for other factors like price and scrapping incentive. In each model speci-
fication, the interest is on the marginal impact of each media channel on relative sales, that is on
the elasticities of market-shares to media investments by channel.

We focus here on the B segment8 of the French automobile market, which represents half of
the sales in France in terms of volume. More precisely, following the subcompositional coherence
property of CODA, we focus on 3 brands of this segment: Renault, Nissan and Dacia (D = 3).

The studied period, running from June 2005 to August 2015, is characterized by the birth of
Dacia on the French automobile market, a low-cost brand belonging to Renault, at the beginning
of 2005. It is also characterized by the economic crisis which has hurt the French automobile
market a lot from 2008 to 2012. The French government tried to help this market setting up a
scrapping incentive9 which has “artificially” boosted the sales during 2009 and 2010. Note that
Dacia increased a lot its market-share during the crisis thanks to its low price. These facts have to
be kept in mind in order to understand the evolution of market-shares, and it justifies the use of a
scrapping incentive dummy as control variable.

The four models are applied to an automobile market data set coming from Renault containing
for each brand of the B segment the sales volume in units Njt, the catalog price in euros Pjt,
the media investments by canal in euros Mcjt (TV, press, radio, outdoor, digital, cinema), and
the periods of scrapping incentive It (dummy variable), monthly from June 2005 to August 2015
(T = 123 periods of observation).

The ternary diagram allows to represent compositions of 3 components in the simplex (see Van
den Boogaart and Tolosana-Delgado [24]). Figure 1 represents for example the annual market-
shares of Dacia, Nissan and Renault from 2005 to 2014. We can see easily that Dacia increases its
market-share easily at the expense of Renault from 2005 to 2010.
According to the marketing literature, it is preferable to use the logarithm of price instead of

the raw price10. Indeed, for our four models, using the log of price instead of the price gives best
in-sample fits. The media investments have to be considered with a lag with respect to sales.

8Segments of the automobile market are determined according to the size of the chassis. Segment B corresponds to
small mainstream vehicles like the Renault Clio which is the most famous of this segment in France.

9A scrapping incentive is an incentive given by a government to promote the replacement of old vehicles with modern
vehicles.

10The reason of that is linked to the shape of the elasticity of market-shares to the price. Moreover, to keep the
market-shares equal, the logged variables have to increase in the same proportion while the non-logged variables have to
increase by the same amount.
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Figure 1: Ternary diagram of annual market-shares of Dacia, Nissan and Renault

Statistically in this application, a lag of four months gave the best results on the four models11.
To avoid the problem of zeros due to the use of logarithm, when media investments at time t are
equal to zero, we replace them by one euro, which is a very small amount compared to the non-zero
investments.

4.2 A cross-validation comparison

A cross-validation process is used to compute out-of-sample goodness-of-fit measures on the four
considered models, in order to avoid an over-fitting effect and in order to compare the considered
models which do not have the same number of parameters.

1. Randomly draw a sub-sample of 100 observations among 12312, resulting in 81% (100) in-
sample observations and 19% (23) out-of-sample observations

2. Fit the 4 models to the sub-sample, store the fitted parameters

3. Apply the 4 models to the out-of-sample observations, store the fitted values of the shares

4. Compute the quality measures using the out-of-sample predicted share values

5. Iterate 100 times steps 1 to 4

6. Compute the average quality measures using the out-of-sample predicted share values over
the 100 iterations

4.3 Quality measures

The out-of-sample accuracy of the four models is compared according to a list of different indicators
adapted to shares that we found in the literature. Two categories of measures are detailed: the
R2-type measures which are based on the notion of explained variability, and the distance-type
measures which evaluate how far are the fitted values from the true values. Table 3 presents the

11In forthcoming work, we consider using an adstock function, which is a cumulative function of actual and past
investments.

12Here we want to have an efficient model all along the studied period, the aim is not to have a good predictive model
for the future. Moreover the presented models are not taking into account the potential auto-correlation of error terms.
That is the reason why the cross-validation can be made on randomly drawn dates and not on a split of the studied
period according to time.
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out-of-sample average quality measures for our four models (for each measure, the best model is in
bold), for the following measures:

• R2
T : R-squared based on the total variability, widely used in the compositional literature.

• R2
A: R-squared based on Aitchison distance, used in Hijazi [9] and Monti et al. [15]. Warning:

it can be smaller than 0 and larger than 1.

• KLC : the compositional Kullback-Leibler divergence (see Martin-Fernandez et al. [13]).

MNL GMCI DIR CODA
Mean SD Mean SD Mean SD Mean SD

R2
T 0.425 0.164 0.462 0.179 0.622 0.224 0.647 0.227

R2
A 0.196 0.270 0.155 0.325 0.373 0.235 0.084 0.433

KLC 0.139 0.034 0.137 0.032 0.117 0.071 0.134 0.034

Table 3: Out-of-sample quality measures

The out-of-sample average quality measures suggest that DIR is the most adapted model to fit
our data (27 parameters). However, according to the R2 based on total variability (R2

T ), CODA
(32 parameters) is better than the Dirichlet model. The GMCI model and the MNL model without
cross-effects are almost systematically the worst models, certainly due to their simplicity and low
number of parameters.

4.4 Interpretation of parameters

MNL and GMCI models are usually interpreted in terms of direct and cross elasticities (see Cooper
and Nakanishi [5]). In Morais et al. [16] we adapt this notion to Dirichlet and compositional models
using the attraction formulations presented in section 3.2. The (direct) elasticity of the share Sjt
relative to the media Xkjt is equal to (1 − Sjt)bkXkjt in the MNL model, DIR model and MNL
specification of the GMCI models, whereas it is equal to (1 − Sjt)bk in the MCI specification for
the GMCI, and to bkjj −

∑D
m=1 Smtbkmj for the CODA model.

For example, the direct elasticities of market-shares of the three considered brands are computed
for the TV channel, for the 123 observed periods, and the average is presented in Table 4. They
correspond to the average relative impact on the market-share of brand j, Sj , of a 1% increase of
the TV investment of brand j .

MNL GMCI DIR CODA
DACIA 0.0019 0.0028 -0.0068 -0.0046
NISSAN 0.0101 0.0152 0.0389 -0.0022

RENAULT 0.0058 0.0088 0.0145 -0.0038

Table 4: Average direct elasticities for TV investments

We observe that elasticities are not the same across models, and can even be of opposite sign. For
example, the DIR model concludes that, on average over the period 2005-2015, if Nissan increases
its TV investment by 1% , it will increase its market-share by 0.04%, whereas in CODA, it will
have a small negative impact. The CODA model, which includes all cross effects, suggests that the
impacts of TV investments of Dacia, Nissan and Renault tend to “cancel each other”, in the sense
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that all impacts are very close to zero. However, all models except CODA agree on the fact that
Nissan has the highest TV’s elasticities (in bold in the table).

5 Conclusion

Because of the constraints of shares data, classical regression models cannot be used directly to
model market-shares. Market-share models have been developed in the marketing literature, but
they fail in estimating brand-specific and cross-effect parameters in a parsimonious fashion.

In this paper, we show that the Dirichlet model (DIR) and the linear compositional regression
model (CODA), which are not usually used in this context, can perform better than usual market-
share models, thanks to their higher flexibility. We express all these models in attraction form
to ease their comparison, and we propose to interpret them in terms of elasticities. We also
prove that the generalized multiplicative competitive interaction model (GMCI) can be written
as a particular compositional model. We highlight the similarities and the differences of these
models. The multinomial logit model (MNL) and DIR are generalized linear models estimated
by maximum likelihood and centered on the arithmetic mean shares, whereas GMCI and CODA
are transformation models estimated by OLS, centered on the geometric mean shares. MNL and
GMCI models without cross-effects are very simple and parsimonious models but fail to capture
the variability of the data in our application. The CODA model is the most complex model but
it manages to capture all cross effects with a relative parsimony, compared to other models thanks
to constraints on parameters, resulting in a good fitting quality. The DIR model is very flexible
and it successfully fits the data with less parameters than the CODA model. All these models are
implemented in R, and can be interpreted in terms of elasticities.

We use the four models to understand the impact of media investments by channel on brand
market-shares in the automobile market, controlling for price and scrapping incentive. We base
our choice of models on cross-validation using quality measures adapted for shares data. In our
application, the Dirichlet model gives the best out-of-sample results, followed by the CODA model.

We intend to focus in further work on the interpretability of the CODA model. More precisely,
direct and cross elasticities have to be deeply interpreted in order to check that the models make
sense for the considered application, and to be able to use them to help decision making in practice.
Concerning our particular application, the observations are across time. Thus, the potential auto-
correlation of error terms should be tested and taken into account if necessary. Moreover, as we
measure the impact of media investments on market-shares, considering “adstock function” of media
investments instead of pointwise media investments might be more relevant. Adstock functions are
often used in the marketing literature, they are cumulative value of past and present advertising
expenditures, corresponding to the “carry-over effect” over time. Furthermore, the introduction of
random coefficients can be discussed. Such models are considered by Berry, Levinsohn and Pakes
[2] in the aggregated MNL framework in econometrics.
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