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Abstract

In the transferable utility case, a number of authors have identified conditions on
beliefs that guarantee the existence of Bayesian incentive compatible mechanisms
with balanced transfers. We present a new, easy to interpret, condition and we show
that it is (strictly) more general than all the other conditions found in the literature.
We also study conditions guaranteeing the Bayesian implementability of all social
decision rules with balanced budget mechanisms.
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1 Introduction

In many resource allocation problems, the general properties of decentralized in-
formation structures may be exploited in the construction of decision procedures
or contracts to achieve an optimal allocation, despite market failures due to ex-
ternalities or to public goods, and despite strategic behavior, free-riding and mis-
representation of preferences.1 In the transferable utility case, and for dominant
strategy mechanisms, Green and Laffont [23] and Walker [33] have shown that it is
in general impossible to balance the budget. On the other hand, as is by now well
known, in Bayesian frameworks where the structure of agents beliefs is explic-
itly taken into account, one can find Bayesian incentive compatible mechanisms
(BIC-mechanisms) that balance the budget.2

The main purpose of this note is to clarify, in the transferable utility case, the
relationship between the conditions on beliefs that have been presented in the lit-
erature and shown to guarantee the existence of BIC-mechanisms that implement
efficient decision rules with balanced transfers3. This clarification is based on a
new condition, conditionC, that is less restrictive than previous ones. This con-
dition is easier to interpret than the already existing equivalent conditions, namely
conditionC∗ introduced4 by d’Aspremont and Ǵerard-Varet [5] and LINK intro-
duced by Johnson, Pratt and Zeckhauser [25].

ConditionC has an important consequence: it “guarantees budget balance”, in
the sense that it ensures that any BIC-mechanism can be transformed into a BIC-
mechanism that balances the budget. Since for efficient decision rules, Vickrey-
Clarke-Groves mechanisms are BIC-mechanisms and always exist, it is clear that
when conditionC holds it is possible to build a balanced budget BIC-mechanism.
Other authors have presented conditions that guarantee budget balance (pairwise
identifiability introduced by Fudenberg, Levine and Maskin [19,20] as well as As-
sumption I(i) in Aoyagi [1], rebaptizedweak regularityby Chung [11], following
Matsushima [27]). Because, as we show, conditionC is both necessary and suffi-
cient for an information structure to guarantee budget balance, it is less restrictive
that these other conditions, and, through examples, we show that it is strictly less
restrictive.

In the final section of the note, we study stronger conditions that guarantee

1The first applications belonged to public economics and to the study of collective decision mak-
ing and auctions (see [32,12,24]), but there are many other applications.

2See among others, d’Aspremont and Gérard-Varet [3,4,5], Arrow [2], Laffont and Maskin [26],
d’Aspremont, Cŕemer and Ǵerard-Varet [7], Johnson, Pratt and Zeckhauser [25].

3Here we mean balancing the budgetex post(for all states of the world). That no condition is
required to balance the budgetex anteis a known fact ([5,theorem 9]).

Also, in this paper, we shall neglect the issue of unicity of equilibrium, so that our use of terms
is different from the language in the literature on implementation (see Palfrey [28]). In [8,9], we
discuss conditions that guarantee “unique implementation” both for auctions and balanced Bayesian
mechanisms.

4It was introduced as conditionC (without a star) but can be shown equivalent to our new condi-
tion (that we will also call conditionC) by a simple duality argument.
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that all decision rules, even those that are not efficient, can be implemented while
balancing the budget, a property that might be useful in many specific problems
(typically those involving only a subset of all agents). We show that a necessary
and sufficient condition for this property is the already known5 conditionB and
that it is a weaker condition than thestrict regularity condition of Aoyagi [1].
Finally, we show that the mechanisms can easily be constructed through a “scoring
rules” method. We also show that, loosely speaking, the class of beliefs satisfying
conditionC can be partitioned into those that satisfy conditionB and those that
satisfy a (very weak) independence property.

The results presented here leave open a number of important questions, some
of which we answer in[9]. In particular, among other results, we show a) that,
even though it is a very general condition, conditionC is not necessary for imple-
mentation of efficient Bayesian mechanisms and b) that it is not true that efficient
Bayesian mechanisms always exist.

2 Bayesian Incentive Compatible Mechanisms

We consider a setN of n ≥ 3 agents6. All the private information of agenti ∈
N is represented by his typeαi which belongs to a finite set (with at least two
elements)Ai. An n-vector of possible types is denotedα and is an element ofA =∏

i∈N Ai.
The utility function of agenti of type αi is defined over a setX of public

decisions, and utility is “transferable”: forx ∈ X and a monetary transferti ∈ <,
his utility is ui(x;αi) + ti. Some of our results hold when utility functions have
the more general formui(x;α) + ti, i.e. mutually payoff-relevant([25]).

The type of agenti also determines his beliefs about the types of the other
agents. When he is of typeαi they are represented by a probability distribution over
A−i =

∏
j∈N−iAj , the set of the possible types of the other agents. A generic

element ofA−i will be denotedα−i; we will sometimes use the notationα−i−j ∈
A−i−j to denote a vector of possible types of all agents buti andj. We assume
that there exists a probability distributionp overA such that the beliefsp(α−i | αi)
of agenti of type αi are obtained by conditioningp with respect toαi (the be-
liefs are “consistent”), and thatp(αi) > 0 for all i and all αi. Similarly, for
i 6= j, the beliefs of agenti on the types of agents over than himself orj are
p (α−i−j | αi) =

∑
αj∈Aj

p(α−i | αi). The triplet(N ,A, p) is called aninfor-
mation structure. An environmentis composed of an information structure, to-
gether with a set of outcomes and utility functions for the agents and is denoted
({N ,A, p},X , {ui}i∈N ).

A public decision rules is a function fromA into X : for a vectorα of
types the public decisions(α) is taken. It isefficient if

∑
i∈N ui(s(α);αi) ≥

5See [5].
6Whenn = 2, conditionC is equivalent to independence of types, and conditionB never holds

(see [5]).
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∑
i∈N ui(x;αi) for all α ∈ A and allx ∈ X .
The problem is to implement a decision rules when the decision mechanism

must be based on private information revealed by the agents. Invoking the reve-
lation principle7, we restrict ourselves todirect mechanismsin which agents are
induced to truthfully reveal their type to the planner; such a direct mechanism is
defined by a decision rules : A → X and a transfer rulet : A → <n.

We will say that an information structure(N ,A, p) guarantees implementation
of efficient public decision rulesif for every outcome set8 X , every utility functions
ui : X × Ai −→ <, i = 1, . . . , n, and any efficient public decision rules, we can
find a transfer rulet whichbalances the budget, i.e., that satisfies

∑
i∈N ti(α) = 0,

for all α ∈ A, and such that the associated direct mechanism(s, t) satisfies the
Bayesian incentive compatibility(BIC) constraints∑

α−i∈A−i

p(α−i | αi) [ui(s(αi, α−i);αi) + ti(αi, α−i)] (1)

≥
∑

α−i∈A−i

p(α−i | αi) [ui(s(α̃i, α−i);αi) + ti(α̃i, α−i)] ,

for all i ∈ N , and allαi and α̃i ∈ A. Strict implementationis obtained when
all (BIC)-inequalities hold strictly9. If, in the preceding definition, “any efficient
decision rule” is replaced by “any decision rule”, the information structureguar-
antees implementation of all decision rules.

In this framework, most effort in the literature has been devoted to finding
information structures that guarantee implementation of efficient public decision
rules with no additional restriction on the utility functions. We keep this ap-
proach. We introduce no individual rationality constraint. However, all our re-
sults hold true if we add anex anteindividual rationality constraint of the form∑

α∈A p(α) [ui(s(α);αi) + ti(α)] ≥ 0, as long as there is a status quo decision
that guarantees each agent a utility of 0. This is appropriate for many applica-
tions in which the contract is signed before the agents acquire information about
their types. For instance, this model has been used to study agreements to reduce
pollution ([17]), joint research ventures ([10,6]), and the contracts between a firm
and suppliers ([29,30,16]). In all these cases, it is assumed that the parties have
symmetric but imperfect information before contracting, and acquire private infor-
mation aftwerwards. The same dynamic of information acquisition is supposed
in the recent theory of the core solution concept in cooperative games of incom-
plete information (e.g., [18]) using balanced Bayesian mechanisms (and some of
the conditions presented below) to represent the bargaining that takes place within
coalitions.

7For a statement and references see [21].
8Because we have only a finite set of types, only a finite subset of decisions are really relevant.

The fact that the setX varies does not create any difficulty, and we could keep it fixed without
changing the results if its cardinality was at least equal to that ofA.

9Notice that we have imposed no uniqueness of equilibrium requirement. In [8], we show how
equivalent mechanims with a single equilibrium can be constructed in nearly all environments.
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3 Conditions that guarantee implementation of efficient
decision rules

Many conditions have been introduced to guarantee implementation of efficient
public decision rules. We will review them, but we start by introducing a condition
that will turn out to be weaker than all others, and that we call conditionC because
a simple duality argument shows it to be equivalent to a condition introduced by
[5] to which we shall refer here as condition10 C∗. It simply states that beliefs are
such that we can collect from the agents any aggregate transfer, dependent on the
state of nature, without inciting them to lie.

3.1 Condition C

An information structure satisfiesconditionC if and only if for every functionR :
A → <, there exists a transfer ruletC such that for allα ∈ A∑

i∈N
tCi (α) = R(α) (2)

and such that for alli ∈ N and allαi andα̃i in Ai, αi 6= α̃i, we have∑
α−i∈A−i

tCi (α−i, αi) p(α−i | αi) ≥
∑

α−i∈A−i

tCi (α−i, α̃i) p(α−i | αi). (3)

We show next that conditionC is both necessary and sufficient to ensure that
any BIC-mechanism can be modified into a BIC-mechanism that balance the bud-
get11. To state this formally, we will say that an information structureguarantees
budget balanceif, given any setX of public decisions and any utility functions
{ui}i∈N , there exists, for any BIC-mechanism(s, t), another transfer rulet′ that
balances the budget and such that(s, t′) is also a BIC-mechanism.

Lemma 1 An information structure guarantees budget balance if and only if it
satisfies conditionC.

Proof. Given X and {ui}i∈N , consider an information structure(N ,A, p)
that satisfies conditionC and a BIC-mechanism(s, t). Let R = −

∑
i∈N ti. By

10In the consistent case, conditionC∗ is: If, ∀α ∈ A, ∀i ∈ N ,

[p (α−i | αi)
∑

α̃i 6=αi

λi (α̃i, αi)−
∑

α̃i 6=αi

λi (αi, α̃i) p (α−i | α̃i)] = κ (α) ,

for someλi : Ai × Ai → <+ (i = 1, ..., n) andκ : A → <, thenκ must be identically zero. To
obtain thecompatibility conditionof [4], just replace eachλi (α̃i, αi) by λi (αi, α̃i) on the left hand
side of the equalities. It was shown to be strictly weaker thanC∗ by [25]. Through a counterexample,
[11] shows that theregularity conditionin [27] does not imply the compatibility condition. However,
as we shall prove, it does imply conditionC∗.

11[25,Proposition 5.4] proves this result for conditionC∗, but the argument is more intricate.
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conditionC, there exists a transfer ruletC that satisfies (2) and (3). The transfer
rule t′ = t + tC balances the budget and provides the correct incentives.

To show the reverse implication, consider an information structure(N ,A, p)
that guarantees budget balance. Choose any functionR : A −→ <. Pick a payoff
structure and a decision rules such thatui(s(α); α̃i) = R(α)/n for all α and
all α̃i. It is easy to verify that if we setti(α) = −R(α)/n for all α, the inequalities
(BIC) hold (with both sides being equal to each other).

Because budget balance is guaranteed, there exists a transfer functiont̃ that
satisfies (1) (witht replaced bỹt) for all α, all α̃i and alli, as well as

∑
i t̃i(α) = 0

for all α. The transferstC , with tCi (α) = ui(s(α);αi)+t̃i(α) = (R(α)/n)+t̃i(α),
satisfy (2) and (3), which proves the result12.

Lemma 1 yields an immediate proof of the following theorem13.

Theorem 1 Any information structure that satisfies conditionC guarantees im-
plementation of efficient decision rules.

Proof. Consider anyX , any{ui}i∈N and any efficient decision rules. The
(BIC) constraints can be satisfied using transfers of the Vickrey-Clarke-Groves
type,i.e., tGi (α) =

∑
j 6=i uj(s(α);αj), since, as well known, these transfers im-

plement any efficient decision rule in dominant strategies. The result follows from
lemma 1.

Notice that the definition of conditionC, as well as the argument of the theorem
(and lemma 1) could be generalized to environments where the sets of types are not
assumed to be finite14. However, in the finite case, to verify that conditionC holds,
it is sufficient to show that it can be solved for a finite number of functionsR̃,
those which satisfy

∣∣∣R̃(α′)
∣∣∣ = 1 for someα′ ∈ A and R̃(α) = 0 for all α 6=

α′. Indeed any functionR : A −→ < is a positive linear combination of these
functionsR̃. Of course, if we are interested by a specific environment, by the
argument of lemma 1, we can simply start by constructing a BIC-mechanism(s, t),
defineR = −

∑
i∈N ti, and check whether there exists a transfer rulet̃ that satisfies

equations (2) and (3). If it exists, then the transfer rulet′ = t+t̃ balances the budget
and provides the correct incentives.

Finally, in [7], we showed that, with finitely many types, conditionC holds for
nearly all15 information structures (see also [9] for a simpler proof).

12It is clear that, with the definitions modified accordingly, this result holds for mutually payoff-
relevant utility functions. This is not true for the following theorem, which relies on Vickrey-Clarke-
Groves mechanisms.

13This result was first proved for the “compatibility condition” in [4] and for conditionC∗ in [5].
The present proof is much more immediate.

14It is much easier forC than for the dual conditionC∗ (see [5]).
15By “nearly all” we mean on an open and dense subset of the set of probability distributions

(which is itself a subset of<K , whereK =
∑

i∈N #Ai and#Ai is the cardinality ofAi.).

5



3.2 Other conditions

As known, since d’Aspremont and Gérard-Varet [3] and Arrow [2], guaranteeing
implementation of any efficient decision rule can be obtained by assuming some
form of independence of types. Formally, an agenti is said to havefree beliefs on
a pair {αi, α

′
i} if for any α−i we havep(α−i | αi) = p(α−i | α′i). Agent i has

free beliefsif he has free beliefs on all pairs of types.Independence of typesholds
when all agents have free beliefs. Independence of types implies that conditionC
holds. As shown below, it holds even if only one agent has free beliefs (Crémer
and Riordan [15] had shown directly that, in this case, it is possible to implement
efficient decision rules).

Interestingly, the other conditions introduced in the literature and shown to
guarantee implementation of efficient decision rules limit in some ways the degree
of independence between the types.

The first of these conditions is Matsushima [27]regularity condition, which
holds if, for some pair of agents(i, j), the vectors{p(α−i−j | αi)}α−i−j∈A−i−j

are linearly independent (note that, for a given pair(i, j), the dimension of these
vectors is equal to the cardinality of the setA−i−j , and their number is equal to the
cardinality ofAi).

Later, Chung [11] analyzed aweak regularitycondition, which is equivalent to
Assumption I(i) in Aoyagi [1]. It holds if there exists a pair of agents(i, j) such
that, for all pairs(αi, α

′
i) in Ai ×Ai,

{p(α−i−j | αi)}α−i−j∈A−i−j
6= {p(α−i−j | α′i)}α−i∈A−i−j .

Finally, Fudenberg, Levine and Maskin [19,20] introduced the “pairwise identi-
fiability condition”. For anyi ∈ N , anyα ∈ A, and any “deviation”̃ai(ai) (a func-
tion fromAi into itself), definep(ãi = αi, α−i) =

∑
{α′i|ãi(α′i)=αi} p(α′i, α−i),

and the|Ai||Ai| × |A| matrix Πi = [p(ãi = αi, α−i)](ãi,α) (Πi is indexed both by
the set of deviations andA). Let

Πij =
[

Πi

Πj

]
.

An information structure satisfiespairwise identifiabilityif rank Πij = rank Πi +
rank Πj − 1 for every pair of agents(i, j): deviations from truth telling by two
agents generate sufficiently different probability distributions on then-tuple of re-
ports that a deviating agent can be identified.

As the following theorem shows, conditionC is more general than all these
conditions.

Theorem 2 An information structure(N,A, p) satisfies conditionC if any of the
following conditions holds: (i) at least one agent has free beliefs, (ii) weak regular-
ity (or regularity) is satisfied, (iii) pairwise identifiability is satisfied. Furthermore
conditionC is strictly less restrictive than these three conditions.
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Proof. (i) If an agenti has free beliefs, sayp(α−i), we can easily construct
transfers to satisfy equations (2) and (3). For anyR, somei and allj 6= i, let:

ti(α) = R(α)−
∑

α′−i∈A−i
R(α′−i, αi)p(α′−i) and

tj(α) = [
∑

α−i∈A−i
R(α′−i, αi)p(α′−i)]/(n− 1).

(ii) As proved by Aoyagi [1], weak regularity (which is obviously implied by
regularity) guarantees budget balance, and therefore implies conditionC (by our
lemma 1). Furthermore, weak regularity is clearly more restrictive, since it is in-
compatible with independence of types, which impliesC.16

(iii) Furthermore, [20, lemma 1] shows that pairwise identifiability guarantees
budget balance. Hence it implies conditionC. To show thatC is strictly less re-
strictive, consider the following example. Let{N ,A, q} be an information struc-
ture, and fori = 1, 2, let Qi = [q(ãi = αi, α−i)](ãi,α−i)

. Assume that the rank of
the matrix

Q12 =
[

Q1

Q2

]
is strictly smaller thanrank Q1 + rankQ2 − 1, so thatq does not satisfy pairwise
identifiability17. Add now an agent0, so that we have a new information structure
{N ∪ {0},A×A0, p}, with p (α−0, α0) ≡ q(α−0)r(α0), wherer is a probability
distribution overA0. Defining the matricesΠ1 andΠ2 as above, it is straigthfor-
ward thatrank Π1 = rankQ1, rank Π2 = rankQ2 andrank Π12 = rankQ12.
This implies thatp does not satisfy pairwise identifiability, but it does satisfy con-
dition C, since agent0 has free beliefs.

It should be stressed, finally, that conditionC can hold even when no agent
has free beliefs (withn ≥ 3); indeed, conditionB introduced in the next section
requires that there is no free beliefs and it implies conditionC.

4 Conditions guaranteeing implementation of all decision
rules

Sometimes a mechanism designer does not only try to maximize the interests of
the participants in a mechanism; this will happen, for instance, if the participants
in the mechanisms are representatives of the agents whose welfare the mechanism
designer cares about, and if the incentives of the representatives are not perfectly
aligned with the welfare of the agents. In order to study this problem, we will use
another condition, calledconditionB, which was introduced by d’Aspremont and
Gérard-Varet [5]. It assumes that there exists a balanced tranfer ruletB such that
for all i ∈ N and allαi andα̃i in Ai, αi 6= α̃i we have:∑

α−i∈A−i

tBi (α−i, αi) p(α−i | αi) >
∑

α−i∈A−i

tBi (α−i, α̃i) p(α−i | αi). (4)

16Section 4 shows further that weak regularity is stronger thanC and no independence of types.
17Such information structures exist.
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ConditionB is important because of the following theorem (which remains
valid in the mutually payoff-relevant case).

Theorem 3 ConditionB is necessary and sufficient for an information structure
to guarantee the implementation18 of all decision rules.

Proof. It is straightforward to show that conditionB is sufficient: for any envi-
ronment one can multiply the transferstBi by a sufficiently large positive number to
ensure that the incentives for truthtelling derived from (4) dominate any incentives
from misrepresentation stemming from the desire to change the public decision.19

To prove necessity, choose any(i, α0
i ) ∈ N × Ai, and a decision rules

that satisfy20 ui(s(α−i, α
0
i );α

0
i ) = −1 for all α−i, and uj(s(α); α̃j) = 0 if

(j, αj , α̃j) 6= (i, α0
i , α

0
i ). Because the decision rules can be implemented, there

exists a balanced transfer functiont(i,α
0
i ) that satisfies∑

α−i∈A−i

p(α−i | α0
i )

[
t
(i,α0

i )
i (α−i, α

0
i )− t

(i,α0
i )

i (α−i, α̃i)
]
≥ (5)

∑
α−i∈A−i

p(α−i | α0
i )

[
ui(s (α−i, α̃i) ;α0

i )− ui(s
(
α−i, α

0
i

)
;α0

i )
]

= 1

for all α̃i 6= α0
i , and∑

α−j∈A−j

p(α−j | αj)
[
t
(i,α0

i )
j (α−j , αj)− t

(i,α0
i )

j (α−j , α̃j)
]
≥ (6)

∑
α−j∈A−j

p(α−j | αj) [uj(s (α−j , α̃j) ;αj)− uj(s (α−j , αj) ;αj)] = 0

for all (j, αj) 6= (i, α0
i ) andα̃j 6= αj .

The result is proved by repeating this construction for everyi ∈ N and ev-
ery α0

i ∈ Ai, and, using equations (5) and (6), showing that the balanced budget
transfer rule obtained by summing thet(i,α

0
i )’s over all i ∈ N and allα0

i ∈ Ai

satisfies (4).

Theorem 3 provides a characterization of the set of information structures in
which asymmetry of information does not restrict the implementation of public de-
cisions. When an information structure does not satisfy conditionB, a mechanism

18Note that theorem 3 also holds if “implementation” is replaced by “strict implementation”.
19This technique used here is similar to the techniques used by Crémer and McLean [13,14], in

the case of auctions. The mechanism designer convinces the agents to announce their true types by
making them “bet” on the announcements of the others. This can only yield truthful revelation when
the agents’ beliefs about the others depend on their own types.

20It is possible to find an environment where such a decision rule exists. ChooseX = {x0, x1},
ui(x0; α

0
i ) = −1, ui(x1; α

0
i ) = 0, ui(x; αi) = 0 for all x ∈ X and allαi 6= α0

i , uj(x; αj) = 0 for
all j 6= i, all x ∈ X and allαj . We are implementing a decision rule that minimizes the sum of the
utilities of the agents!
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designer will know that he must rely on properties of the information structure
and of the utility functions (such as knowing that the decision rule is efficient).
Theorem 3 also has a constructive side: its sufficiency part provides a method for
building BIC-mechanisms.21

It is easy to see that conditionB is incompatible with free beliefs, which would
imply that the two sides of equation (4) are equal. But conditionB is not simply a
condition on the absence of free beliefs as there exist information structures where
no agent has free beliefs, and which do not satisfy conditionB ([9]). On the other
hand, Aoyagi [1] proposes astrict regularity conditionadding to weak regularity
the requirement that no agent has free beliefs on any two types. He shows that this
condition guarantees implementation of all decision rules.

More precisely, the relationship between free beliefs, conditionB, condition
C and the strict regularity condition is summarized in the following theorem. In
the proof, to construct the transferstBi , we will use the “scoring rules” method
introduced by Good [22], discussed by Savage [31], and applied to Bayesian im-
plementation in [25].

Theorem 4 An information structure(N ,A, p) satisfies conditionB if and only if
it satisfies conditionC and there exists no agent with free beliefs on any two of his
types.

The strict regularity condition is strictly more restrictive than conditionB.

Proof. Only the “if” part remains to be proved. Assume that(N ,A, p) satisfies
C and that no agent has free beliefs on two types. Takeε small enough and define
the transfer ruleθ by θi(α) = log p(α−i | αi) if pi(α−i | αi) > 0 andθi(α) = ε
if pi(α−i | αi) = 0. Then the following strict inequalities are easily verified due to
the strict concavity of the functionlog∑

α−i∈A−i

pi(α−i | αi)θ(α−i, αi) >
∑

α−i∈A−i

pi(α−i | αi)θ(α−i, α̃i)

for all (αi, α̃i) ∈ A2
i .

DefineR by R(α) = −
∑

i∈N θi(α) for all α. Because the information struc-
ture satisfiesC, there exists a transfer ruletC satisfying equations (2) and (3). For
all α, let tBi (α) = θi(α) + tCi (α). The transfer ruletB is balanced and satisfies
equation (4), and therefore(N ,A, p) satisfies conditionB.

[1, theorem 1] shows that strict regularity of(N ,A, p) guarantees implemen-
tation of any public decision rule. Hence, by theorem 3, it satisfies conditionB. To
show that it is strictly more restrictive thanB, consider the following information
structure(N ,A, p), whereN = {1, 2, 3} andAi = {1, 2, 3} for all i. Let p be

21This constructive argument can be transposed to environments where the sets of types are not
finite, at least assuming thatsupi,α,α′

i
|ui(s(α−i, α

′
i); αi)− ui(s(α−i, αi); αi)| is bounded.

In some cases, these mechanisms might have unpleasant properties as they could require large side
payments; then, other techniques for finding mechanisms could be used.
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equal to0 if and only if exactly two of the agents have a type equal to either1 or 3;
for all other states of nature letp equal1/15 (so thatp(1, 1, 2) = p(3, 1, 3) = 0
butp(1, 1, 1) = p(1, 3, 2) = 1/15). This information structure is symmetric in the
agents and in the types1 and3 for each agent. For alli we have

{p (αj | αi = 1)}αj∈Aj
= {p (αj | αi = 3)}αj∈Aj

= (1/4, 1/2, 1/4),

which contradicts weak regularity. To show that conditionB holds, define the
transfer ruletB as follows:

tB (1, 1, 1) = tB (2, 2, 2) = tB (3, 3, 3) = (0, 0, 0) ;
tB (1, 2, 3) = (1,−2, 1) ; tB (1, 2, 2) = tB (3, 2, 2) = (8,−4,−4) ;
tB (1, 1, 2) = tB (3, 3, 2) = tB (1, 1, 3) = tB (3, 3, 1) = (−8,−8, 16) .

All other transfers are constructed by permutations on the agents (for example:
tB (2, 1, 3) = (−2, 1, 1)). The transfer ruletB is clearly balanced and may be
checked to satisfy (4). The result follows22.

As a final remark, notice that the “scoring rule” used in the theorem suggests
an easy technique to construct more generally the transfer ruletB ensuring con-
dition B. Consider an information structure(N ,A, p) and let addition and sub-
traction on the indices of agents be defined modulon so thatn + 1 ≡ 1 and
1 − 1 ≡ n. For all i, all αi, and allα̃i, we assume (and this holds generically23)
either thatpi(α−i−(i−1) | αi) 6= pi(α−i−(i−1) | α̃i) for someα−i−(i−1), or that
pi(α−i−(i+1) | αi) 6= pi(α−i−(i+1) | α̃i) for someα−i−(i+1). DefinetB(α) by

tBi (α) = [log pi(α−i−(i−1) | αi)− log pi(α−(i−1)−i | αi−1)]

+ [log pi(α−i−(i+1) | αi)− log pi(α−(i+1)−i | αi+1)].

The negative terms are constant inαi and do not influence the incentives of agenti,
but they ensure that the rule is balanced. The strict concavity of the functionlog
implies that for alli and allαi, inequality (4) holds, and therefore that conditionB
is satisfied.
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