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Abstract

For a joint model-based and design-based inference, we establish
functional central limit theorems for the Horvitz-Thompson empiri-
cal process and the Hájek empirical process centered by their finite
population mean as well as by their super-population mean in a sur-
vey sampling framework. The results apply to single-stage unequal
probability sampling designs and essentially only require conditions on
higher order correlations. We apply our main results to a Hadamard
differentiable statistical functional and illustrate its limit behavior by
means of a computer simulation.
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1 Introduction

Functional central limit theorems are well established in statistics. Much
of the theory has been developed for empirical processes of independent
summands. In combination with the functional delta-method they have be-
come a very powerful tool for investigating the limit behavior for Hadamard
or Fréchet differentiable statistical functionals (e.g., see [48] or [47] for a
rigorous treatment with several applications).

In survey sampling, results on functional central limit theorems are far
from complete. At the same time there is a need for such results. For
instance, in [22] the limit distribution of several statistical functionals is
investigated, under the assumption that such a limit theorem exists for a
design-based empirical process, whereas in [1] the existence of a functional
central limit theorem is assumed, to perform model-based inference on sev-
eral Gini indices. Weak convergence of processes in combination with the
delta method are treated in [8], [21], [9], but these results are tailor made for
specific statistical functionals, and do not apply to the empirical processes
that are typically considered in survey sampling.

Recently, functional central limit theorems for empirical processes in
survey sampling have appeared in the literature. Most of them are concerned
with empirical processes indexed by a class of functions, see [16],[44], and [7].
Weak convergence under finite population two-phase stratified sampling, is
established in [16] and [44] for an empirical process indexed by a class of
functions, which is comparable to our Horvitz-Thompson empirical process
in Theorem 3.2. Although their functional CLT allows general function
classes, it only covers sampling designs with equal inclusion probabilities
within strata that assume exchangeability of the inclusion indicators, such
as simple random sampling and Bernoulli sampling. Their approach uses
results on exchangeable weighted bootstrap for empirical processes from [40],
as incorporated in [48]. This approach, in particular the application of
Theorem 3.6.13 in [48], seems difficult to extend to more complex sampling
designs that go beyond exchangeable inclusion indicators. In [7] a functional
CLT is established, for a variance corrected Horvitz-Thompson empirical
process under Poisson sampling. In this case, one deals with a summation
of independent terms, which allows the use of Theorem 2.11.1 from [48].
From their result a functional CLT under rejective sampling can then be
established for the design-based Horvitz-Thompson process. This is due
to the close connection between Poisson sampling and rejective sampling.
For this reason, the approach used in [7] seems difficult to extend to other
sampling designs.
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Empirical processes indexed by a real valued parameter are considered
in [50], [19], and [20]. A functional CLT for the Hájek empirical c.d.f. cen-
tered around the super-population mean is formulated in [50], and a similar
result is implicitly conjectured for the Horvitz-Thompson empirical process.
Unfortunately, the paper seems to miss a number of assumptions and the ar-
gument establishing Billingsley’s tightness condition seems incomplete. As
a consequence, assumption 5 in [50] differs somewhat from our conditions
(C2)-(C4). The remaining assumptions in [50] are comparable to the ones
needed for our Theorem 4.3. [19] and [20] consider high entropy designs,
i.e., sampling designs that are close in Hellinger distance to the rejective
sampling design. Functional CLT’s are obtained for the Horvitz-Thompson
(see [19]) and Hájek (see [20]) empirical c.d.f.’s both centered around the
finite population mean.

The main purpose of the present paper is to establish functional central
limit theorems for the Horvitz-Thompson and the Hájek empirical distri-
bution function that apply to general single-stage unequal probability sam-
pling designs. In the context of weighted likelihood, the Horvitz-Thompson
empirical process is a particular case of the inverse probability weighted
empirical process which is not necessarily the most efficient, see [42]. Its
efficiency can be improved by using estimated weights, see [44]. In the
present paper we do not follow this path of the literature. We rather focus
on the Horvitz-Thompson and the Hájek empirical processes that are re-
lated to the Horvitz-Thompson and Hájek distribution function estimators
as defined for example in [24]. For design-based inference about finite pop-
ulation parameters, these empirical distribution functions will be centered
around their population mean. On the other hand, in many situations in-
volving survey data, one is interested in the corresponding model parameters
(e.g., see [34] and [12]). Recently, Rubin-Bleuer and Schiopu Kratina [43]
defined a mathematical framework for joint model-based and design-based
inference through a probability product-space and introduced a general and
unified methodology for studying the asymptotic properties of model pa-
rameter estimators. To incorporate both types of inferences, we consider
the Horvitz-Thompson empirical process and the Hájek empirical process
under the super-population model described in [43], both centered around
their finite population mean as well as around their super-population mean.
Our main results are functional central limit theorems for both empirical
processes indexed by a real valued parameter and apply to generic sampling
schemes. These results are established only requiring the usual standard
assumptions that one encounters in asymptotic theory in survey sampling.
Our approach was inspired by an unpublished manuscript from Philippe
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Fevrier and Nicolas Ragache, which was the outcome of an internship at
INSEE in 2001.

The article is organized as follows. Notations and assumptions are dis-
cussed in Section 2. In particular we briefly discuss the joint model-based
and design-based inference setting defined in [43]. In Sections 3 and 4, we
list the assumptions and state our main results. Our assumptions essentially
concern the inclusion probabilities of the sampling design up to the fourth
order and a central limit theorem (CLT) for the Horvitz-Thompson estima-
tor of a population total for i.i.d. bounded random variables. Our results
allow random inclusion probabilities and are stated in terms of the design-
based expected sample size, but we also formulate more detailed results in
case these quantities are deterministic. In Section 5 we discuss two specific
examples: high entropy sampling designs and fixed size sampling designs
with deterministic inclusion probabilities. It turns out that in these cases
the conditions used for general single-stage unequal probability sampling
designs can be simplified.

As an application of our results, in combination with the functional delta-
method, we obtain the limit distribution of the poverty rate in Section 6.
This example is further investigated in Section 7 by means of a simulation.
Finally, in Section 8 we discuss our results in relation to more complex
designs. All proofs are deferred to Section 9 and some tedious technicalities
can be found in [14].

2 Notations and assumptions

We adopt the super-population setup as described in [43]. Consider a se-
quence of finite populations (UN ), of sizes N = 1, 2, . . .. With each pop-
ulation we associate a set of indices UN = {1, 2, . . . , N}. Furthermore,
for each index i ∈ UN , we have a tuple (yi, zi) ∈ R × Rq+. We denote

yN = (y1, y2, . . . , yN ) ∈ RN and zN ∈ Rq×N+ similarly. The vector yN

contains the values of the variable of interest and zN contains informa-
tion for the sampling design. We assume that the values in each finite
population are realizations of random variables (Yi, Zi) ∈ R × Rq+, for
i = 1, 2, . . . , N , on a common probability space (Ω,F,Pm). Similarly, we
denote YN = (Y1, Y2, . . . , YN ) ∈ RN and ZN ∈ Rq×N+ . To incorporate the
sampling design, a product space is defined as follows. For all N = 1, 2, . . .,
let SN = {s : s ⊂ UN} be the collection of subsets of UN and let AN = σ(SN )
be the σ-algebra generated by SN . A sampling design associated to some
sampling scheme is a function P : AN × Rq×N+ 7→ [0, 1], such that
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(i) for all s ∈ SN , zN 7→ P (s, zN ) is a Borel-measurable function on Rq×N+ .

(ii) for all zN ∈ Rq×N+ , A 7→ P (A, zN ) is a probability measure on AN .

Note that for each ω ∈ Ω, we can define a probability measure A 7→
Pd(A,ω) =

∑
s∈A P (s,ZN (ω)) on the design space (SN ,AN ). Corresponding

expectations will be denoted by Ed(·, ω). Next, we define a product probabil-
ity space that includes the super-population and the design space, under the
premise that sample selection and the model characteristic are independent
given the design variables. Let (SN ×Ω,AN ×F) be the product space with
probability measure Pd,m defined on simple rectangles {s}×E ∈ AN ×F by

Pd,m({s} × E) =

∫
E
P (s,ZN (ω)) dPm(ω) =

∫
E
Pd({s}, ω) dPm(ω).

When taking expectations or computing probabilities, we will emphasize
whether this is with respect either to the measure Pd,m associated with the
product space (SN×Ω,AN×F), or the measure Pd associated with the design
space (SN ,AN ), or the measure Pm associated with the super-population
space (Ω,F).

If ns denotes the size of sample s, then this may depend on the specific
sampling design including the values of the design variables Z1(ω), . . . , ZN (ω).
Similarly, the inclusion probabilities may depend on the values of the design
variables, πi(ω) = Ed(ξi, ω) =

∑
s3i P

(
s,ZN (ω)

)
, where ξi is the indicator

1{s3i}. Instead of ns, we will consider n = Ed[ns(ω)] =
∑N

i=1 Ed(ξi, ω) =∑N
i=1 πi(ω). This means that the inclusion probabilities and the design-

based expected sample size may be random variables on (Ω,F,Pm). For
instance [7] considers πi = π(Zi), where the pairs (Yi, Zi) are assumed to be
i.i.d. random vectors on Ω, and [20] considers πi = nh(Zi)/

∑N
j=1 h(Zj), for

some positive function h.
We first consider the Horvitz-Thompson (HT) empirical processes, ob-

tained from the HT empirical c.d.f.:

FHT
N (t) =

1

N

N∑
i=1

ξi1{Yi≤t}

πi
, t ∈ R. (2.1)

We will consider the HT empirical process
√
n(FHT

N − FN ), obtained by
centering around the empirical c.d.f. FN of Y1, . . . , YN , as well as the HT
empirical process

√
n(FHT

N − F ), obtained by centering around the c.d.f. F
of the Yi’s. A functional central limit theorem for both processes will be
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formulated in Section 3. In addition, we will consider the Hájek empirical
c.d.f.:

FHJ
N (t) =

1

N̂

N∑
i=1

ξi1{Yi≤t}

πi
, t ∈ R, (2.2)

where N̂ =
∑N

i=1 ξi/πi is the HT estimator for the population total N .
Functional central limit theorems for

√
n(FHJ

N −FN ) and
√
n(FHJ

N −F ) will be
provided in Section 4. The advantage of our results is that they allow general
single-stage unequal probability sampling schemes and that we primarily
require bounds on the rate at which higher order correlations tend to zero
ω-almost surely, under the design measure Pd.

3 FCLT’s for the Horvitz-Thompson empirical pro-
cesses

A functional central limit theorem for
√
n(FHT

N − FN ) and
√
n(FHT

N − F ) is
obtained by proving weak convergence of all finite dimensional distributions
and tightness. In order to establish the latter for general single-stage unequal
probability sampling schemes, we impose a number of conditions that involve
the sets

Dν,N =
{

(i1, i2, . . . , iν) ∈ {1, 2, . . . , N}ν : i1, i2, . . . , iν all different
}
, (3.1)

for the integers 1 ≤ ν ≤ 4. We assume the following conditions:

(C1) there exist constants K1,K2, such that for all i = 1, 2, . . . , N ,

0 < K1 ≤
Nπi
n
≤ K2 <∞, ω − a.s.

The upper bound in (C1), which expresses the fact that the πi may not be too
large, is related to convergence of n/N . The reason is that Nπi/n ≤ N/n, so
that an upper bound on Nπi/n is immediate if one requires n/N → λ > 0.
This last condition is imposed by many authors, e.g., see [7], [15], [19], [20],
among others. The upper bound in our condition (C1) enables us to allow
n/N → 0. The lower bound in (C1) expresses the fact that πi may not be
too small. Sometimes this is taken care of by imposing πi ≥ π∗ > 0, see
for instance [7], [15]. It can be seen that conditions A3-A4 in [20] imply the
lower bound in (C1). Details can be found in [14].

There exists a constant K3 > 0, such that for all N = 1, 2, . . .:
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(C2) max(i,j)∈D2,N

∣∣∣Ed(ξi − πi)(ξj − πj)∣∣∣ < K3n/N
2,

(C3) max(i,j,k)∈D3,N

∣∣∣Ed(ξi − πi)(ξj − πj)(ξk − πk)∣∣∣ < K3n
2/N3,

(C4) max(i,j,k,l)∈D4,N

∣∣∣Ed(ξi − πi)(ξj − πj)(ξk − πk)(ξl − πl)∣∣∣ < K3n
2/N4,

ω-almost surely. These conditions on higher order correlations are commonly
used in the literature on survey sampling in order to derive asymptotic
properties of estimators (e.g., see [15], and [17]). [15] proved that they
hold for simple random sampling without replacement and stratified simple
random sampling without replacement, whereas [13] proved that they hold
also for rejective sampling. Lemma 2 from [13] allows us to reformulate the
above conditions on higher order correlations into conditions on higher order
inclusion probabilities.

Conditions (C2)-(C4) are primarily used to establish tightness of the
random processes involved. These conditions have been formulated as such,
because they are compactly expressed in terms of higher order correlations.
Nevertheless, as one of the referees pointed out, bounds on maximum corre-
lations may be somewhat restrictive, and bounds on the average correlation
are perhaps more desirable. For fixed size sampling designs with inclusion
probabilities not depending on ω, this can be accomplished by adapting
the tightness proof, see Section 5.2. Conditions (C2)-(C4) can be simplified
enormously when we consider the class of high entropy sampling designs,
see [2, 3, 19, 20]. In this case, conditions on the rate at which

∑N
i=1 πi(1−πi)

tends to infinity compared to N and n are sufficient for (C2)-(C4), see Sec-
tion 5.1.

To establish the convergence of finite dimensional distributions, for se-
quences of bounded i.i.d. random variables V1, V2, . . . on (Ω,F,Pm), we will
need a CLT for the HT estimator in the design space, conditionally on
the Vi’s. To this end, let S2

N be the (design-based) variance of the HT
estimator of the population mean, i.e.,

S2
N =

1

N2

N∑
i=1

N∑
j=1

πij − πiπj
πiπj

ViVj . (3.2)

We assume that

(HT1) Let V1, V2, . . . be a sequence of bounded i.i.d. random variables, not
identical to zero, and such there exists an M > 0, such that |Vi| ≤M
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ω-almost surely, for all i = 1, 2, . . .. Suppose that for N sufficiently
large, SN > 0 and

1

SN

(
1

N

N∑
i=1

ξiVi
πi
− 1

N

N∑
i=1

Vi

)
→ N(0, 1), ω − a.s.,

in distribution under Pd.

Note that (HT1) holds for simple random sampling without replacement if
n(N − n)/N tends to infinity when N tends to infinity (see [46]), as well
as for Poisson sampling under some conditions on the first order inclusion
probabilities (e.g., see [29]). For rejective sampling, [32] gives a somewhat
technical condition that is sufficient and necessary for (HT1). Other ref-
erences are [49], [41], among others. In [3] the CLT is extended to high
entropy sampling designs. For this class of sampling designs, simple condi-
tions can be formulated that are sufficient for (HT1), see Proposition 5.1 in
Section 5.1.

We also need that nS2
N converges for the particular case where the Vi’s

are random vectors consisting of indicators 1{Yj≤t}.

(HT2) For k ∈ {1, 2, . . .}, i = 1, 2, . . . , k and t1, t2, . . . , tk ∈ R, define Yt
ik =(

1{Yi≤t1}, . . . ,1{Yi≤tk}
)
. There exists a deterministic matrix ΣHT

k ,
such that

lim
N→∞

n

N2

N∑
i=1

N∑
j=1

πij − πiπj
πiπj

YikY
t
jk = ΣHT

k , ω − a.s. (3.3)

This kind of assumption is quite standard in the literature on survey sam-
pling and is usually imposed for general random vectors (see, for example
[23], p.379, [28], condition 3 on page 457, or [35], condition C4 on page 1014).
It suffices to require (3.3) for Yt

ik =
(
1{Yi≤t1}, . . . ,1{Yi≤tk}

)
. Moreover, if

(C1)-(C2) hold, then the sequence in (3.3) is bounded, so that by dominated
convergence it follows that

ΣHT
k = lim

N→∞

1

N2

N∑
i=1

N∑
j=1

Em
[
n
πij − πiπj
πiπj

YikY
t
jk

]
. (3.4)

This might help to get a more tractable expression for ΣHT
k .

We are now able to formulate our first main result. Let D(R) be the
space of càdlàg functions on R equipped with the Skorohod topology.
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Theorem 3.1. Let Y1, . . . , YN be i.i.d. random variables with c.d.f. F and
empirical c.d.f. FN and let FHT

N be defined in (2.1). Suppose that conditions
(C1)-(C4) and (HT1)-(HT2) hold. Then

√
n(FHT

N − FN ) converges weakly
in D(R) to a mean zero Gaussian process GHT with covariance function

EmGHT(s)GHT(t) = lim
N→∞

1

N2

N∑
i=1

N∑
j=1

Em
[
n
πij − πiπj
πiπj

1{Yi≤s}1{Yj≤t}

]
for s, t ∈ R.

Note that Theorem 3.1 allows a random (design-based) expected sample
size n and random inclusion probabilities. The expression of the covari-
ance function of the limiting Gaussian process is somewhat unsatisfactory.
When n and the inclusion probabilities are deterministic, we can obtain a
functional CLT with a more precise expression for EmGHT(s)GHT(t) under
slightly weaker conditions. This is formulated in the proposition below. Note
that with imposing conditions (i)-(ii) in Proposition 3.1 instead of (3.3), con-
vergence of nS2

N is not necessarily guaranteed. However, this is established
in Lemma B.1 in [14] under (C1) and (C2). Finally, we like to empha-
size that if we would have imposed (HT2) for any sequence Y1,Y2, . . . of
bounded random vectors, then (HT2) would have implied conditions (i)-(ii)
in the deterministic setup of Proposition 3.1.

Proposition 3.1. Consider the setting of Theorem 3.1, where n and πi, πij,
for i, j = 1, 2, . . . , N , are deterministic. Suppose that (C1)-(C4) and (HT1)
hold, but instead of (HT2) assume that there exist constants µπ1, µπ2 ∈ R
such that

(i) lim
N→∞

n

N2

N∑
i=1

(
1

πi
− 1

)
= µπ1,

(ii) lim
N→∞

n

N2

∑∑
i 6=j

πij − πiπj
πiπj

= µπ2.

Then
√
n(FHT

N − FN ) converges weakly in D(R) to a mean zero Gaussian
process GHT with covariance function µπ1F (s∧t)+µπ2F (s)F (t), for s, t ∈ R.

Conditions (i)-(ii) ensure that nS2
N converges to a finite limit (see Lemma B.1

in [14]), from which the limiting covariance structure in Proposition 3.1 can
be derived. Condition (i) also appears in [19]. Conditions similar to (ii)
appear in [33], [6], and [27]. When n/N → λ ∈ [0, 1], then conditions (i)-(ii)
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hold with µπ1 = 1−λ and µπ2 = λ− 1 for simple random sampling without
replacement. For Poisson sampling, (ii) holds trivially because the trials are
independent. For rejective sampling, (i)-(ii) together with n/N → λ ∈ [0, 1],
can be deduced from the associated Poisson sampling design. Indeed, sup-
pose that (i) holds for Poisson sampling with first order inclusion probabil-
ities p1, . . . , pN , such that

∑N
i=1 pi = n. Then, from Theorem 1 in [13] it

follows that if d =
∑N

i=1 pi(1− pi) tends to infinity, assumption (i) holds for
rejective sampling. Furthermore, if n/N → λ ∈ [0, 1] and N/d has a finite
limit, then also (ii) holds for rejective sampling.

Weak convergence of the process
√
n(FHT

N −F ), where we center with F
instead of FN , requires a CLT in the super-population space for

√
n

(
1

N

N∑
i=1

ξiVi
πi
− µV

)
, where µV = Em(Vi), (3.5)

for sequences of bounded i.i.d. random variables V1, V2, . . . on (Ω,F,Pm).
Our approach to establish asymptotic normality of (3.5) is then to decom-
pose as follows

√
n

(
1

N

N∑
i=1

ξiVi
πi
− µV

)

=
√
n

(
1

N

N∑
i=1

ξiVi
πi
− 1

N

N∑
i=1

Vi

)
+

√
n√
N
×
√
N

(
1

N

N∑
i=1

Vi − µV

)
.

(3.6)

Since the Vi’s are i.i.d. and bounded, for the second term on the right hand
side, by the traditional CLT we immediately obtain

√
N

(
1

N

N∑
i=1

Vi − µV

)
→ N(0, σ2V ), (3.7)

in distribution under Pm, where σ2V denotes the variance of the Vi’s, whereas
the first term on the right hand side can be handled with (HT1). [16] and [44]
use a decomposition similar to the one in (3.6). Their approach assumes
exchangeable ξi’s and equal inclusion probabilities n/N , which allows the
use of results on exchangeable weighted bootstrap to handle the first term
on the right hand side of (3.6). Instead, we only require conditions (C2)-
(C4) on higher order correlations for the ξi’s and allow the πi’s to vary
within certain bounds as described in (C1). To combine the two separate
limits in (3.7) and (HT1), we will need
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(HT3) n/N → λ ∈ [0, 1], ω-a.s.

One often assumes λ ∈ (0, 1) (e.g., see [7], [15], [19], [20], among others).
We like to emphasize that convergence of n/N was not needed so far in our
setup, because condition (C1) is used to control terms 1/πi. To determine
the precise limit for (3.6) we do need (HT3), but we allow λ = 0 or λ = 1.

Next, we will use Theorem 5.1(iii) from [43]. The finite dimensional
projections of the processes involved turn out to be related to a particular
HT estimator. In order to have the corresponding design-based variance
converging to a strictly positive constant, we need the following condition.

(HT4) For all k ∈ {1, 2, . . .} and t1, t2, . . . , tk ∈ R, the matrix ΣHT
k in (3.3) is

positive definite.

We are now able to formulate our second main result.

Theorem 3.2. Let Y1, . . . , YN be i.i.d. random variables met c.d.f. F and
let FHT

N be defined in (2.1). Suppose that conditions (C1)-(C4) and (HT1)-
(HT4) hold. Then

√
n(FHT

N − F ) converges weakly in D(R) to a mean zero
Gaussian process GHT

F with covariance function Ed,mGHT
F (s)GHT

F (t) given by

lim
N→∞

1

N2

N∑
i=1

N∑
j=1

Em
[
n
πij − πiπj
πiπj

1{Yi≤s}1{Yj≤t}

]
+λ
{
F (s∧ t)−F (s)F (t)

}
,

for s, t ∈ R.

Theorem 3.2 allows random n and inclusion probabilities.
As before, when the sample size n and inclusion probabilities are de-

terministic we can obtain a functional CLT under a simpler condition than
(HT4) and with a more detailed description of the covariance function of
the limiting process.

Proposition 3.2. Consider the setting of Theorem 3.2, where n and πi, πij,
for i, j = 1, 2, . . . , N , are deterministic. Suppose that (C1)-(C4), (HT1)and (HT3)
hold, but instead of (HT2) and (HT4) assume that there exist constants µπ1,
µπ2 ∈ R such that

(i) lim
N→∞

n

N2

N∑
i=1

(
1

πi
− 1

)
= µπ1 > 0,

(ii) lim
N→∞

n

N2

∑∑
i 6=j

πij − πiπj
πiπj

= µπ2.
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Then
√
n(FHT

N − F ) converges weakly in D(R) to a mean zero Gaussian
process GHT with covariance function (µπ1 +λ)F (s∧ t)+(µπ2−λ)F (s)F (t),
for s, t ∈ R.

Since 1/πi ≥ 1, we will always have µπ1 ≥ 0 in condition (i) in Propo-
sition 3.2. This means that (i) is not very restrictive. For simple random
sampling without replacement, condition (i) requires λ to be strictly smaller
than one.

Remark 3.1 (High entropy designs). Theorems 3.1 and 3.2 include high
entropy sampling designs with random inclusion probabilities, which are
considered for instance in [7] and [20], whereas Propositions 3.1 and 3.2
include high entropy designs with deterministic inclusion probabilities, for
instance considered in [19]. For such designs, the conditions can be sim-
plified considerably, in particular (C2)-(C4), see Corollary 5.1(i)-(ii) and
Corollary 5.2(i)-(ii) in Section 5.1.

4 FCLT’s for the Hájek empirical processes

To determine the behavior of the process
√
n(FHJ

N −FN ), it is useful to relate
it to the process

Gπ
N (t) =

√
n

N

N∑
i=1

ξi
πi

(
1{Yi≤t} − F (t)

)
. (4.1)

We can then write

√
n
{
FHJ
N (t)− FN (t)

}
= YN (t) +

(
N

N̂
− 1

)
Gπ
N (t), (4.2)

where

YN (t) =

√
n

N

N∑
i=1

(
ξi
πi
− 1

)(
1{Yi≤t} − F (t)

)
. (4.3)

As intermediate results we will first show that the process Gπ
N converges

weakly to a mean zero Gaussian process and that N̂/N → 1 in probability.
As a consequence, the limiting behavior of

√
n(FHJ

N −FN ) will be the same as
that of YN , which is an easier process to handle. Instead of (HT2) and (HT4)
we now need

12



(HJ2) For k ∈ {1, 2, . . .}, i = 1, 2, . . . , k and t1, t2, . . . , tk ∈ R, define Ỹt
ik =(

1{Yi≤t1} − F (t1), . . . ,1{Yi≤tk} − F (tk)
)
. There exists a deterministic

matrix ΣHJ
k , such that

lim
N→∞

n

N2

N∑
i=1

N∑
j=1

πij − πiπj
πiπj

ỸikỸ
t
jk = ΣHJ

k , ω − a.s. (4.4)

and

(HJ4) For all k ∈ {1, 2, . . .} and t1, t2, . . . , tk ∈ R, the matrix ΣHJ
k in (4.4) is

positive definite.

As in the case of (3.4), if (C1)-(C2) hold, then (HJ2) implies

ΣHJ
k = lim

N→∞

1

N2

N∑
i=1

N∑
j=1

Em
[
n
πij − πiπj
πiπj

ỸikỸ
t
jk

]
. (4.5)

Theorem 4.1. Let Gπ
N be defined in (4.1) and let N̂ =

∑N
i=1 ξi/πi. Suppose

n→∞, ω-a.s., and that there exists σ2π ≥ 0, such that

n

N2

N∑
i=1

N∑
i=1

πij − πiπj
πiπj

→ σ2π, ω − a.s. (4.6)

If in addition,

(i) (HT1) hold, then N̂/N → 1 in Pd,m probability.

(ii) (C1)-C(4), (HT1), (HT3), (HJ2) and (HJ4) hold, then Gπ
N converges

weakly in D(R) to a mean zero Gaussian process Gπ with covariance
function Ed,mGπ(s)Gπ(t) given by

lim
N→∞

1

N2

N∑
i=1

N∑
j=1

Em
[
n
πij − πiπj
πiπj

(
1{Yi≤s} − F (s)

) (
1{Yi≤t} − F (t)

)]
+ λ (F (s ∧ t)− F (s)F (t)) , s, t ∈ R.

Note that in view of condition (HT3), the condition n→∞ is immediate,
if λ > 0. We proceed by establishing weak convergence of

√
n(FHJ

N − FN ).

13



Theorem 4.2. Let Y1, . . . , YN be i.i.d. random variables with c.d.f. F and
empirical c.d.f. FN and let FHJ

N be defined in (2.2). Suppose n → ∞, ω-
a.s., and that (C1)-C(4), (HT1), (HT3), and (HJ2) hold, as well as condi-
tion (4.6). Then

√
n(FHJ

N − FN ) converges weakly in D(R) to a mean zero
Gaussian process GHJ with covariance function Ed,mGHJ(s)GHJ(t) given by

lim
N→∞

1

N2

N∑
i=1

N∑
j=1

Em
[
n
πij − πiπj
πiπj

(
1{Yi≤s} − F (s)

) (
1{Yi≤t} − F (t)

)]
,

for s, t ∈ R.

Note that we do not need condition (HJ4) in Theorem 4.2. This condition
is only needed in Theorem 4.1 to establish the limit distribution of the finite
dimensional projections of the process Gπ

N . For Theorem 4.2 we only need
that Gπ

N is tight.
As before, below we obtain a functional CLT for

√
n(FHJ

N − FN ) in the
case that n and the inclusion probabilities are deterministic. Similar to
the remark we made after Theorem 3.1, note that if we would have im-
posed (HJ2) for any sequence of bounded random vectors, then this would
imply conditions (i)-(ii) of Proposition 3.1, which can then be left out in
Theorem 4.1.

Proposition 4.1. Consider the setting of Theorem 4.2, where n and πi, πij,
for i, j = 1, 2, . . . , N , are deterministic. Suppose n → ∞ and that (C1)-
(C4), (HT1) and (HT3) hold, as well as conditions (i)-(ii) from Proposi-
tion 3.1. Then

√
n(FHJ

N − FN ) converges weakly in D(R) to a mean zero
Gaussian process GHT with covariance function µπ1 (F (s ∧ t)− F (s)F (t)),
for s, t ∈ R.

Finally, we consider
√
n(FHJ

N −F ). Again, we relate this process to (4.1)
and write

√
n
(
FHJ
N (t)− F (t)

)
=
N

N̂
Gπ
N (t). (4.7)

Since N̂/N → 1 in probability, this implies that
√
n(FHJ

N −F ) has the same
limiting behavior as Gπ

N .

Theorem 4.3. Let Y1, . . . , YN be i.i.d. random variables with c.d.f. F and
let FHJ

N be defined in (2.2). Suppose n → ∞, ω-a.s., and that (C1)-C(4),
(HT1), (HT3), (HJ2) and (HJ4) hold, as well as condition (4.6). Then

14



√
n(FHJ

N − F ) converges weakly in D(R) to a mean zero Gaussian process
GHJ
F with covariance function Ed,mGπ(s)Gπ(t) given by

lim
N→∞

1

N2

N∑
i=1

N∑
j=1

Em
[
n
πij − πiπj
πiπj

(
1{Yi≤s} − F (s)

) (
1{Yi≤t} − F (t)

)]
+ λ (F (s ∧ t)− F (s)F (t)) , s, t ∈ R.

With Theorem 4.3 we recover Theorem 1 in [50]. Our assumptions are
comparable to those in [50], although this paper seems to miss a condition
on the convergence of the variance, such as our condition (HJ2).

We conclude this section by establishing a functional CLT for
√
n(FHJ

N −
F ) in the case of deterministic n and inclusion probabilities.

Proposition 4.2. Consider the setting of Theorem 4.3, where n and πi, πij,
for i, j = 1, 2, . . . , N , are deterministic. Suppose n → ∞ and that (C1)-
(C4), (HT1) and (HT3) hold, as well as conditions (i)-(ii) from Proposi-
tion 3.2. Then

√
n(FHJ

N −F ) converges weakly in D(R) to a mean zero Gaus-
sian process GHJ with covariance function (µπ1 + λ) (F (s ∧ t)− F (s)F (t)),
for s, t ∈ R.

Remark 4.1 (High entropy designs). Remark 3.1 about simplifying the
conditions for the Horvitz-Thompson empirical process in the case of high
entropy designs, also holds for the Hájek empirical process. See Corol-
lary 5.1(iii)-(iv) and Corollary 5.2(iii)(iv) in Section 5.1.

5 Examples

5.1 High entropy designs

For the sake of brevity, let us suppress the possible dependence of a sampling
design on ZN and write P (·) = P (·,ZN ). The entropy of a sampling design
P is defined as

H(P ) = −
∑
s∈SN

P (s)Log[P (s)]

where Log denotes the Napierian logarithm, and define 0Log[0] = 0. The
entropy H(P ) represents the average amount of information contained in
design P (e.g., see [3]). Given inclusion probabilities π1, . . . , πN , the rejective
sampling design, denoted by R (see [31, 32]), is known to maximize the
entropy among all fixed size sampling designs subject to the constraint that
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the first order inclusion probabilities are equal to π1, . . . , πN . This sampling
design is defined by

R(s) = θ
∏
i∈s

αi, with αi = η
pi

1− pi

where θ is such that
∑

s∈SN R(s) = 1, η is such that
∑N

i=1 αi = 1, and

the 0 < pi < 1 are such that
∑N

i=1 pi = n and are chosen to produce the
first order inclusion probabilities πi. It is shown in [26] that for any given
set of inclusion probabilities π1, . . . , πN , there always exists a unique set
of pi’s such that the first order inclusion probabilities corresponding to R
are exactly equal to the πi’s.

An important class is formed by sampling designs P that are close to
a rejective sampling design R. Berger [3] considers such a class where the
divergence of P from R is measured by

D(P‖R) =
∑
s∈SN

P (s)Log

[
P (s)

R(s)

]
. (5.1)

In this subsection we will consider high entropy designs P , i.e., sampling
designs P for which there exists a rejective sampling design R such that

(A1) D(P‖R)→ 0, as N →∞.

A similar class is considered in [19, 20], where the Hellinger distance be-
tween P and R is used instead of (5.1). Sampling designs satisfying (A1)
are investigated in [3]. Examples are Rao-Sampford sampling and successive
sampling, see Theorems 6 and 7 in [3].

For high entropy designs P satisfying (A1), the conditions imposed in
Sections 3 and 4 can be simplified considerably. Essentially, the results in
these sections can be obtained by conditions on the rate at which

dN =
N∑
i=1

πi(1− πi) (5.2)

tends to infinity, compared to N and n. First of all condition (HT1) can be
established under mild conditions.

Proposition 5.1. Let P be a high entropy design satisfying (A1) with inclu-
sion probabilities π1, . . . , πN . Let dN and S2

N be defined by (5.2) and (3.2).
Suppose that (C1) holds and that the following conditions hold ω-almost
surely
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(B1) n/dN = O(1), as N →∞;

(B2) N/d2N → 0, as N →∞;

(B3) n2S2
N →∞, as N →∞.

Then (HT1) is satisfied.

Conditions (B1)-(B2) are immediate, if dN/N → d > 0 and n/N →
λ > 0. Moreover, nS2

N typically converges almost surely to some σ2 ≥ 0, so
that (B3) is immediate as soon as σ2 > 0 and (B1) holds.

The following corollary covers the results from Sections 3 and 4 for high
entropy designs with inclusion probabilities that possibly depend on ω. Such
designs are considered for instance in [7] and [20].

Corollary 5.1. Let P be a high entropy design satisfying (A1) with inclu-
sion probabilities π1, . . . , πN , and let dN be defined by (5.2). Suppose that
conditions (C1) and (HT1) hold. Furthermore, suppose that the following
conditions hold ω-almost surely:

(A2) dN →∞, as N →∞;

(A3) n/dN = O(1), as N →∞;

(A4) N2/(ndN ) = O(1), as N →∞.

Then

(i) if (HT2) is satisfied, then the conclusion of Theorem 3.1 holds;

(ii) if (HT2)-(HT4) are satisfied, then the conclusion of Theorem 3.2 holds.

(iii) if (HT3), (HJ2) are satisfied, and ω-almost surely,

(A5) n(N − n)2/(N2dN )→ α, as N →∞,

then the conclusion of Theorem 4.2 holds;

(iv) if (HT3), (HJ2), (HJ4), and (A5) are satisfied, then the conclusion of
Theorem 4.3 holds.

As it turns out, for the particular setting of high entropy designs, condi-
tions (A2)-(A4) together with (C1) are sufficient for (C2)-(C4), whereas (A5)
implies condition (4.6). The conditions in Corollary 5.1 have been formu-
lated as weakly as possible. They are implied by the usual conditions that
one finds in the literature. For instance, when N/dN = O(1) (e.g., see [13])
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and n/N → λ > 0, then (A2)-(A4) are immediate. Part (iii) in Corollary 5.1
is similar to Proposition 1 in [20], where the Hellinger distance between P
and R is used instead of (5.1). It can be seen that the conditions in [20] are
sufficient for our conditions (B1)-(B2) in Proposition 5.1, (C1), (A1)-(A5),
(HT3) and the existence of the almost sure limits in (HT2) and (HJ2).

Things become even easier when the high entropy design has inclusion
probabilities that do not depend on ω.

Corollary 5.2. Let P be a high entropy design satisfying (A1)-(A5) with de-
terministic inclusion probabilities π1, . . . , πN . Suppose that conditions (C1),
(HT1), and limN→∞(n/N2)

∑N
i=1

(
π−1i − 1

)
= µπ1. hold. Then

(i) the conclusion of Proposition 3.1 holds;

(ii) if (HT3) is satisfied and µπ1 > 0, then the conclusion of Proposi-
tion 3.2 holds;

(iii) if (HT3) is satisfied, then the conclusion of Proposition 4.1 holds;

(iv) if (HT3) is satisfied and µπ1 > 0, then the conclusion of Proposi-
tion 4.2 holds.

As before, conditions (A2)-(A4) together with (C1) are sufficient for
(C2)-(C4), whereas (A5) implies condition (ii) of Propositions 3.1 and 3.2.
Part (i) in Corollary 5.2 is similar to Proposition 1 in [19], where the
Hellinger distance between P and R is used instead of (5.1). It can be seen
that the conditions in [19] are sufficient for (B1)-(B2) in Proposition 5.1,
(A1)-(A5), (HT3) and (i).

5.2 Fixed size sampling designs with deterministic inclusion
probabilities

Conditions (C2)-(C4) put bounds on maximum correlations. This is some-
what restrictive, and bounds on the average correlation may be more suitable
for applications. This can indeed be accomplished to some extent for fixed
size sampling designs P , with inclusion probabilities πi that do not depend
on ω.

Suppose there exists a K > 0, such that for all N = 1, 2, . . .,

(C2∗) for all j = 1, 2, . . . , N :
n

N

∑
i 6=j

∣∣∣∣πij − πiπjπiπj

∣∣∣∣ ≤ K,

18



(C3∗)
n

N3

∑∑∑
(i,j,k)∈D3,N

∣∣∣∣πijk − πiπjπkπiπjπk

∣∣∣∣ ≤ K.

(C4∗)
n2

N4

∣∣∣∣∣∣
∑

(i,j,k,l)∈D4,N

Ed [(ξi − πi)(ξj − πj)(ξk − πk)(ξl − πl)]
πiπjπkπl

∣∣∣∣∣∣ ≤ K.

The summation in (C2∗) has a number of terms of the order N . This
means that typically the summands must decrease at rate 1/N . This is
comparable to condition (ii) in Proposition 3.1. Similarly for summands in
the summation in (C3∗). The summands in (C4∗) have to overcome a factor
of the order N2, which will typically not be the case for general sampling
designs. However, according to Lemma 2 in [13], the fourth order correlation
can be decomposed in terms of the type

(−1)4−m
πi1···im − πi1 · · ·πim

πi1 · · ·πim
, m = 2, 3, 4.

Because these terms can be both negative and positive, they may cancel
each other in such a way that (C4∗) does hold. This is for instance the case
for simple random sampling, e.g., see the discussion in Remarks (iii) and (iv)
in [15], or for rejective sampling, see Proposition 1 in [13].

By using Lemma 2 in [13] it follows that conditions (C2∗)-(C4∗) are im-
plied by (C2)-(C4). The following corollary covers the results from Sections 3
and 4 under the weaker conditions (C2∗)-(C4∗), for fixed size sampling de-
signs with deterministic inclusion probabilities.

Corollary 5.3. Let P be a fixed size sampling design with deterministic
inclusion probabilities. Suppose that (C1), (C2∗)-(C4∗), (HT1), hold, as
well as conditions (i) and (ii) from Proposition 3.1. Then

(i) the conclusion of Proposition 3.1 holds;

(ii) if (HT3) is satisfied and µπ1 > 0, then the conclusion of Proposi-
tion 3.2 holds;

(iii) if (HT3) is satisfied, then the conclusions of Propositions 4.1 and 4.2
hold.

6 Hadamard-differentiable functionals

Theorem 4.3 provides an elegant means to study the limit behavior of estima-
tors that can be described as φ(FHJ

N ), where φ is a Hadamard-differentiable
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functional. Given such a φ, the functional delta-method, e.g., see Theo-
rems 3.9.4 and 3.9.5 in [48] or Theorem 20.8 in [47], enables one to establish
the limit distribution of φ(FHJ

N ). Similarly, this holds for Theorems 3.1,
3.2, and 4.2, or Propositions 3.1, 3.2, 4.1, and 4.2 in the special case of
deterministic n and inclusion probabilities.

We illustrate this by discussing the poverty rate. This indicator has
recently been revisited by [30] and [38]. This example has also been discussed
by [22], but under the assumption of weak convergence of

√
n(FHJ

N − FN )
to some centered continuous Gaussian process. Note that this assumption
is now covered by our Theorem 4.2 and Proposition 4.1. Let Dφ ⊂ D(R)
consist of F ∈ D(R) that are non-decreasing. Then for F ∈ Dφ, the poverty
rate is defined as

φ(F ) = F
(
βF−1(α)

)
(6.1)

for fixed 0 < α, β < 1, where F−1(α) = inf {t : F (t) ≥ α}. Typical choices
are α = 0.5 and β = 0.5 (INSEE) or β = 0.6 (EUROSTAT). Its Hadamard
derivative is given by

φ′F (h) = −β f(βF−1(α))

f(F−1(α))
h(F−1(α)) + h(βF−1(α)). (6.2)

See [14] for details. We then have the following corollaries for the Horvitz-
Thompson estimator φ(FHT

N ) and the Hájek estimator φ(FHJ
N ) for the poverty

rate φ(F ).

Corollary 6.1. Let φ be defined by (6.1) and suppose that the conditions
of Proposition 3.2 hold. Then, if F is differentiable at F−1(α), the random
variable

√
n(φ(FHT

N )−φ(F )) converges in distribution to a mean zero normal
random variable with variance

σ2HT,α,β = β2
f(βF−1(α))2

f(F−1(α))2
(
γπ1α+ γπ2α

2
)

+ γπ1φ(F ) + γπ2φ(F )2 − 2β
f(βF−1(α))

f(F−1(α))
φ(F )

(
γπ1 + γπ2α

)
,

(6.3)

where γπ1 = µπ1 + λ and γπ2 = µπ2 − λ. If in addition n/N → 0, then√
n(φ(FHT

N )− φ(FN )) converges in distribution to a mean zero normal ran-
dom variable with variance σ2HT,α,β.

Corollary 6.2. Let φ be defined by (6.1). and suppose that the conditions
of Proposition 4.2 hold. Then, if F is differentiable at F−1(α), the random
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variable
√
n(φ(FHJ

N )−φ(F )) converges in distribution to a mean zero normal
random variable with variance

σ2HJ,α,β = β2
f(βF−1(α))2

f(F−1(α))2
γπ1α(1− α)

+ γπ1φ(F )
(
1− φ(F ))

)
− 2β

f(βF−1(α))

f(F−1(α))
φ(F )γπ1(1− α),

(6.4)

where γπ1 = µπ1+λ. If in addition n/N → 0, then
√
n(φ(FHJ

N )−φ(FN )) con-
verges in distribution to a mean zero normal random variable with variance
σ2HJ,α,β.

7 Simulation study

The objective of this simulation study is to investigate the performance of
the Horvitz-Thompson (HT) and the Hájek (HJ) estimators for the poverty
rate, as defined in (6.1), at the finite population level and at the super-
population level. The asymptotic results from Corollary 6.1 and 6.2 are
used to obtain variance estimators whose performance is also assessed in
this small study.

Six simulation schemes are implemented with different population sizes
and (design-based) expected sample sizes, namely N = 10 000 and 1000 and
n = 500, 100, and 50. The samples are drawn according to three different
sampling designs. The first one is simple random sampling without replace-
ment (SI) with size n. The second design is Bernoulli sampling (BE) with
parameter n/N . The third one is Poisson sampling (PO) with first order in-
clusion probabilities equal to 0.4n/N for the first half of the population and
equal to 1.6n/N for the other half of the population, where the population
is randomly ordered. The first order inclusion probabilities are determinis-
tic for the three designs and the sample size ns is fixed for the SI design,
while it is random with respect to the design for the BE and PO designs.
Moreover, the SI and BE designs are equal probability designs, while PO
is an unequal probability design. The results are obtained by replicating
NR = 1000 populations. For each population, nR = 1000 samples are drawn
according to the different designs. The variable of interest Y is generated
for each population according to an exponential distribution with rate pa-
rameter equal to one. For this distribution and given α and β, the poverty
rate has an explicit expression φ(F ) = 1− exp(β ln(1−α)). In what follows,
α = 0.5 and β = 0.6 and φ(F ) ' 0.34. These are the same values for α and
β as considered in [22].
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Table 1: RB (in %) of the HT and the HJ estimators for the finite population
φ(FN ) and the super-population φ(F ) poverty rate parameter

N = 10 000 N = 1000
n = 500 n = 100 n = 50 n = 500 n = 100 n = 50

SI HT-HJ φ(FN ) −0.17 −0.89 −1.82 −0.05 −0.84 −1.62
φ(F ) −0.20 −0.91 −1.86 −0.18 −0.72 −1.85

HT φ(FN ) −0.12 −0.66 −1.29 0.01 −0.65 −1.12
BE φ(F ) −0.15 −0.68 −1.34 −0.12 −0.54 −1.36

HJ φ(FN ) −0.17 −0.92 −1.87 −0.04 −0.88 −1.68
φ(F ) −0.20 −0.93 −1.92 −0.17 −0.76 −1.91

HT φ(FN ) −0.05 −1.05 −2.06 −0.06 −0.30 −0.37
PO φ(F ) −0.08 −1.07 −2.11 −0.19 −0.19 −0.63

HJ φ(FN ) −0.20 −1.27 −2.95 −0.04 −1.08 −1.99
φ(F ) −0.23 −1.28 −3.00 −0.17 −0.97 −2.23

The Horvitz-Thompson estimator and Hájek estimator for φ(F ) or φ(FN )
are denoted by φ̂HT and φ̂HJ, respectively. They are obtained by plugging
in the empirical c.d.f.’s FHT

N and FHJ
N , respectively, for F in expression (6.1).

The empirical quantiles are calculated by using the function wtd.quantile

from the R package Hmisc for the Hájek estimator and by adapting the func-
tion for the Horvitz-Thompson estimator. For the SI sampling design, the
two estimators are the same. The performance of the estimators for the pa-
rameters φ(F ) and φ(FN ) is evaluated using some Monte-Carlo relative bias
(RB). This is reported in Table 1. When estimating the super-population
parameter φ(F ), if φ̂ij denotes the estimate (either φ̂HT or φ̂HJ) for the ith
generated population and the jth drawn sample, the Monte Carlo relative
bias of φ̂ in percentages has the following expression

RBF (φ̂) =
100

NR nR

NR∑
i=1

nR∑
j=1

φ̂ij − φ(F )

φ(F )
.

When estimating the finite population parameter φ(FN ), the parameter de-
pends on the generated population Ni, for each i = 1, . . . , NR, and will be
denoted by φ(FNi). The Monte Carlo relative bias of φ̂ is then computed
by replacing F by FNi in the above expression. Concerning the relative
biases reported in Table 1, the values are small and never exceed 3%. As
expected, these values increase when n decreases. When the centering is rel-
ative to φ(FN ), the relative bias is in general somewhat smaller than when
centering with φ(F ). This behavior is most prominent when N = 1000 and
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Table 2: RB (in %) for the variance estimator of the HT and the HJ esti-
mators for the poverty rate parameter

N = 10 000 N = 1000
n = 500 n = 100 n = 50 n = 500 n = 100 n = 50

SI HT-HJ −2.21 −3.08 −2.97 −2.25 −3.26 −3.00

BE HT −4.15 −5.11 −4.21 −3.31 −5.11 −4.19
HJ −2.22 −3.06 −3.03 −2.26 −3.24 −3.03

PO HT −4.43 −4.96 −3.45 −3.74 −5.72 −4.59
HJ −2.36 −3.43 −3.36 −2.44 −3.75 −4.13

n = 500, which suggests that the estimates are typically closer to the pop-
ulation poverty rate φ(FN ) than to the model parameter φ(F ). The Hájek
estimator has a larger relative bias than the Horvitz-Thompson estimator
in all situations but in particular for the Poisson sampling design when the
size of the population is 1000. Note that all values in Table 1 are negative,
which illustrates the fact that the estimators typically underestimate the
population and model poverty rates.

In Table 2, the estimators of the variance of φ̂HT and φ̂HJ are obtained
by plugging in the empirical c.d.f.’s FHT

N and FHJ
N , respectively, for F in

the expressions (6.3) and (6.4). To estimate f in the variance of φ̂HJ, we
follow [5], who propose a Hájek type kernel estimator with a Gaussian ker-
nel function. For the variance of φ̂HT, we use a corresponding Horvitz-
Thompson estimator by replacing N̂ by N . Based on [45], pages 45-47, we

choose b = 0.79Rn
−1/5
s , where R denotes the interquartile range. This differs

from [5], who propose a similar bandwidth of the order N−1/5. However,
this severely underestimates the optimal bandwidth, leading to large vari-
ances of the kernel estimator. Usual bias variance trade-off computations

show that the optimal bandwidth is of the order n
−1/5
s .

For the SI sampling design, (6.3) and (6.4) are identical and can be
calculated in an explicit way using the fact that µπ1+λ = 1 and µπ2−λ = −1.
For the BE design, µπ1 + λ = 1, whereas for Poisson sampling, the value
(n/N2)

∑N
i=1 1/πi is taken for µπ1 + λ. For these designs, µπ2 − λ = −λ,

where we take n/N as the value of λ.
In order to compute the relative bias of the variance estimates, the

asymptotic variance is taken as reference. This asymptotic variance AV(φ̂)
of the estimator φ̂ (either φ̂HT or φ̂HJ) is computed from (6.3) and (6.4).
The expressions f(βF−1(α)) and f(F−1(α)) are explicit in the case of an
exponential distribution. Furthermore, for µπ1 + λ and µπ2 − λ we use the
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Table 3: Coverage probabilities (in %) for 95% confidence intervals of the
HT and the HJ estimators for the finite population φ(FN ) and the super-
population φ(F ) poverty rate parameter

N = 10 000 N = 1000
n = 500 n = 100 n = 50 n = 500 n = 100 n = 50

SI HT-HJ φ(FN ) 95.2 94.4 93.5 98.8 95.1 94.6
φ(F ) 94.6 93.2 92.2 94.7 93.2 92.0

HT φ(FN ) 94.9 94.3 94.6 98.4 94.8 94.6
BE φ(F ) 94.4 93.7 94.9 94.6 93.6 94.7

HJ φ(FN ) 95.1 94.3 93.9 98.7 94.9 94.2
φ(F ) 94.7 94.2 93.9 94.7 94.2 93.9

HT φ(FN ) 94.5 94.2 94.3 96.8 94.0 93.6
PO φ(F ) 94.5 94.0 94.3 94.6 93.6 93.5

HJ φ(FN ) 94.8 93.9 93.6 97.2 94.2 93.3
φ(F ) 94.6 93.9 93.6 94.6 93.9 93.2

same expressions as mentioned above. The Monte Carlo relative bias of the
variance estimator ÂV(φ̂) in percentages, is defined by

RB(ÂV(φ̂)) =
100

NR nR

NR∑
i=1

nR∑
j=1

ÂV(φ̂ij)−AV(φ̂)

AV(φ̂)
,

where ÂV(φ̂ij) denotes the variance estimate for the ith generated popula-
tion and the jth drawn sample.

Table 3 gives the Monte-Carlo coverage probabilities for a nominal cover-
age probability of 95% for the two parameters φ(FN ) and φ(F ), the Horvitz-
Thompson and the Hájek estimators and the different simulation schemes.
In general the coverage probabilities are somewhat smaller than 95%, which
is due to the underestimation of the asymptotic variance, as can be seen from
Table 2. The case N = 1000 and n = 500 for φ̂HJ forms an exception, which
is probably due to the fact that in this case λ = n/N is far from zero, so that
the limit distribution of

√
n(φ(FHT

N )−φ(FN )) and
√
n(φ(FHJ

N )−φ(FN )) has
a larger variance than the ones reported in Corollaries 6.1 and 6.2. When
looking at Table 2, the relative biases are smaller than 5% when n is 500.
The biases are larger for the Horvitz-Thompson estimator than for the Hájek
estimator. Again all relative biases are negative, which illustrates the fact
that the asymptotic variance is typically underestimated.
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8 Discussion

In the appendix of [36] the author remarks “To our knowledge there does
not exist a general theory on conditions required for the tightness and weak
convergence of Horvitz-Thompson processes.” One purpose of this paper has
been to obtain these type of results in such a way that they are potentially
applicable to a large class of single-stage unequal probability sampling de-
signs. Conditions (C2)-(C4) play a crucial role in this, as they establish
the tightness of the processes involved. The main motivation for the way
they are formulated is to incorporate single-stage sampling designs which
allow the sample size and/or the inclusion probabilities to depend on ω,
which will be the case if they depend on the auxiliary variables Zi. These
conditions trivially hold for simple sampling designs, but also for rejective
sampling, which enables us to obtain weak convergence of the Hájek and
Horvitz-Thompson processes under high entropy designs. Further exten-
sions to more complex designs are beyond the scope of the present investi-
gation, but we believe that results similar to those described in Sections 3,
4, and 5, would continue to hold under reasonable assumptions.

For instance multistage sampling designs deserve attention. The re-
cent paper [18] gives some asymptotic results in the case of simple random
sampling without replacement at the first stage and with arbitrary designs
at further stages. [27] gives also some consistency results for a particular
two-stage fixed sample size design. The clusters are drawn using sampling
without replacement with a probability proportional to the size design and
the secondary units are drawn using a simple random sampling without
replacement within each sampled cluster. This leads to a self-weighted de-
sign. Similar designs would be worth considering in order to generalize our
functional limit theorems to multistage sampling.

Stratified sampling is also of importance. Asymptotics in the case of
stratified simple random sampling without replacement is studied in [10],
when the number of strata is bounded and in [35] when the number of strata
tends to infinity. More recently, consistency results are obtained in [4] for
large entropy designs when the number of strata is bounded. It would be
of particular interest to generalize our functional asymptotic results to such
stratified designs.

Our results rely on the assumption that the sample selection process and
the super-population model characteristic are independent given the design
variables. It means that the sampling is non-informative [39]. Our results do
not directly generalize to informative sampling and further research is needed
for such sampling designs. Also functional CLT’s for processes correspond-
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ing to other estimators, such as regression and calibration estimators ([23])
deserve attention.

9 Proofs

We will use Theorem 13.5 from [11], which requires convergence of finite
dimensional distributions and a tightness condition (see (13.14) in [11]. To
obtain weak convergence of the finite dimensional distributions, we use con-
dition (HT1) in combination with the Crámer-Wold device, see Lemmas 9.2,
9.4, and 9.6. Details of their proofs can be found in [14].

We will now establish the tightness condition, as stated in the following
lemma.

Lemma 9.1. Let Y1, . . . , YN be i.i.d. random variables with c.d.f. F and
empirical c.d.f. FN and let FHT

N be defined according to (2.1). Let XN =√
n(FHT

N − FN ) and suppose that (C1)-(C4) hold. Then there exists a con-
stant K > 0 independent of N , such that for any t1, t2 and −∞ < t1 ≤ t ≤
t2 <∞,

Ed,m
[
(XN (t)− XN (t1))

2 (XN (t2)− XN (t))2
]
≤ K

(
F (t2)− F (t1)

)2
.

Proof. First note that

XN (t) =

√
n

N

N∑
i=1

(
ξi
πi
− 1

)
1{Yi≤t}.

For the sake of brevity, for −∞ < t1 ≤ t ≤ t2 < ∞, and i = 1, 2, . . . , N ,
we define p1 = F (t) − F (t1), p2 = F (t2) − F (t), Ai = 1{t1<Yi≤t}, and
Bi = 1{t<Yi≤t2}. Furthermore, let αi = (ξi − πi)Ai/πi and βi = (ξi −
πi)Bi/πi. Then, according to the fact that p1p2 ≤ (F (t2)− F (t1))

2, due to
the monotonicity of F , it suffices to show

1

N4
Ed,m

n2( N∑
i=1

αi

)2
 N∑
j=1

βj

2 ≤ Kp1p2. (9.1)

The expectation on the left hand side can be decomposed as follows

N∑
i=1

N∑
k=1

Ed,m
[
n2α2

i β
2
k

]
+

N∑
i=1

∑
j 6=i

N∑
k=1

Ed,m
[
n2αiαjβ

2
k

]
+

N∑
k=1

∑
l 6=k

N∑
i=1

Ed,m
[
n2α2

i βkβl
]

+

N∑
i=1

∑
j 6=i

N∑
k=1

∑
l 6=k

Ed,m
[
n2αiαjβkβl

]
.

(9.2)
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Note that by symmetry, sums two and three on the right hand side can be
handled similarly, so that essentially we have to deal with three summations.
We consider them one by one.

First note that, since 1{t1<Yi≤t}1{t<Yi≤t2} = 0, we will only have non-
zero expectations when {i, j} and {k, l} are disjoint. With (C1), we find

1

N4

N∑
i=1

N∑
k=1

Ed,m
[
n2α2

i β
2
k

]
=

1

N4

∑∑
(i,k)∈D2,N

Ed,m
[
n2α2

i β
2
k

]
=

1

N4

∑∑
(i,k)∈D2,N

Em
[
n2
AiBk
π2i π

2
k

Ed(ξi − πi)2(ξk − πk)2
]

≤ 1

K4
1

∑∑
(i,k)∈D2,N

Em
[
AiBk
n2

Ed(ξi − πi)2(ξk − πk)2
]

(9.3)

Straightforward computation shows that Ed(ξi − πi)2(ξk − πk)2 equals

(πik − πiπk)(1− 2πi)(1− 2πk) + πiπk(1− πi)(1− πk).

Hence, with (C1)-(C2) we find that

Ed(ξi − πi)2(ξk − πk)2 ≤ |Ed(ξi − πi)(ξk − πk)|+K2
2

n2

N2
= O

(
n2

N2

)
,

ω-almost surely. It follows that

1

N4

N∑
i=1

N∑
k=1

Ed,m
[
n2α2

i β
2
k

]
≤ O

(
1

N2

) ∑∑
(i,k)∈D2,N

Em [AiBk] .

Since D2,N has N(N − 1) elements and Em[AiBj ] = p1p2 for (i, j) ∈ D2,N ,
it follows that

1

N4

N∑
i=1

N∑
j=1

Ed,m
[
n2α2

i β
2
j

]
≤ Kp1p2. (9.4)

Consider the second (and third) summation on the right hand side of (9.2).
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Similarly to (9.12), we can then write

1

N4

∣∣∣∣∣∣
N∑
i=1

∑
j 6=i

N∑
k=1

Ed,m
[
n2αiαjβ

2
k

]∣∣∣∣∣∣ =
1

N4

∣∣∣∣∣∣
∑∑∑
(i,j,k)∈D3,N

Ed,m
[
n2αiαjβ

2
k

]∣∣∣∣∣∣
≤ 1

N4

∑∑∑
(i,j,k)∈D3,N

∣∣∣∣Ed,m [n2AiAjBkπiπjπ2k
(ξi − πi)(ξj − πj)(ξk − πk)2

]∣∣∣∣
≤ 1

N4

∑∑∑
(i,j,k)∈D3,N

Em
[
n2
AiAjBk
πiπjπ2k

∣∣∣Ed(ξi − πi)(ξj − πj)(ξk − πk)2∣∣∣]

≤ 1

K4
1

∑∑∑
(i,j,k)∈D3,N

Em
[
AiAjBk
n2

∣∣∣Ed(ξi − πi)(ξj − πj)(ξk − πk)2∣∣∣] .
We find that Ed(ξi − πi)(ξj − πj)(ξk − πk)2 equals

(1− 2πk)Ed(ξi − πi)(ξj − πj)(ξk − πk) + πk(1− πk)Ed(ξi − πi)(ξj − πj)

With (C1)-(C3), this means |Ed(ξi − πi)(ξj − πj)(ξk − πk)2| = O(n2/N3),
ω-almost surely. It follows that

1

N4

∣∣∣∣∣∣
N∑
i=1

∑
j 6=i

N∑
k=1

Ed,m
[
n2αiαjβ

2
k

]∣∣∣∣∣∣ = O

(
1

N3

)∑∑∑
(i,j,k)∈D3,N

Em [AiAjBk] .

Since D3,N has N(N − 1)(N − 2) elements and Ed,m[AiAjBk] = p21p2, for
(i, j, k) ∈ D3,N , we find

1

N4

∣∣∣∣∣∣
N∑
i=1

∑
j 6=i

N∑
k=1

Ed,m
[
n2αiαjβ

2
k

]∣∣∣∣∣∣ ≤ Kp1p2. (9.5)

The computations for the third summation in (9.2) are completely similar.
Finally, consider the last summation in (9.2). As before, this summation
can be bounded by

1

K4
1

∑
(i,j,k,l)∈D4,N

Em
[
AiAjBkBl

n2

∣∣∣Ed(ξi − πi)(ξj − πj)(ξk − πk)(ξl − πl)∣∣∣] .
Since D4,N has N(N−1)(N−2)(N−3) elements and Em[AiAjBkBl] = p21p

2
2,

for (i, j, k, l) ∈ D4,N , with (C4) we conclude that

1

N4

∣∣∣∣∣∣
N∑
i=1

∑
j 6=i

N∑
k=1

∑
l 6=k

Ed,m
[
n2αiαjβkβl

]∣∣∣∣∣∣ ≤ Kp1p2. (9.6)
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Together with (9.4), (9.5) and decomposition (9.2), this proves (9.1).

Lemma 9.2. Let XN =
√
n(FHT

N −FN ) and suppose that (C1)-(C2),(HT1)-
(HT2) hold. For any k ∈ {1, 2, . . .}, and t1, . . . , tk ∈ R,

(
XN (t1), . . . ,XN (tk)

)
converges in distribution under Pd,m to a k-variate mean zero normal ran-
dom vector with covariance matrix ΣHT

k given in (3.4).

Proof. The proof can be found in [14].

Proof of Theorem 3.1 We first consider XN =
√
n(FHT

N −FN ) for the case
that the Yi’s follow a uniform distribution on [0, 1]. We apply Theorem 13.5
from [11]. Lemma 9.2 provides the limiting distribution of the finite dimen-
sional projections (XN (t1), . . . ,XN (tk)), which is the same as that of the
vector (GHT(t1), . . . ,GHT(tk)), where GHT is a mean zero Gaussian process
with covariance function

EmGHT(s)GHT(t) = lim
N→∞

1

N2

N∑
i=1

N∑
j=1

Em
[
n
πij − πiπj
πiπj

1{Yi≤s}1{Yj≤t}

]
,

for all s, t ∈ R. Tightness condition (13.14) in [11] is provided by Lemma 9.1.
Since GHT is continuous at 1, the theorem now follows from Theorem 13.5
in [11] for the case that the Yi’s are uniformly distributed on [0, 1].

To extend this to a functional CLT with i.i.d. random variables Y1, Y2, . . .
with a general c.d.f. F , we can follow the argument in the proof of Theo-
rem 14.3 from [11]. First define the generalized inverse of F :

ϕ(s) = inf{t : s ≤ F (t)},

that satisfies s ≤ F (t) if and only if ϕ(s) ≤ t. This means that if U1, U2, . . .
are i.i.d. uniformly distributed on [0, 1], ϕ(Ui) has the same distribution

as Yi, so that 1{Yi≤t}
d
= 1{ϕ(Ui)≤t} = 1{Ui≤F (t)}. It follows that

XN (t) =
√
n

{
1

N

N∑
i=1

ξi1{Yi≤t}

πi
− 1

N

N∑
i=1

1{Yi≤t}

}
d
= ZN (F (t)), t ∈ R,

where

ZN (t) =

√
n

N

N∑
i=1

(
ξi
πi
− 1

)
1{Ui≤t}, t ∈ [0, 1], (9.7)

Hence, the general HT empirical process XN is the image of the HT uni-
form empirical process ZN under the mapping ψ : D[0, 1] 7→ D(R) given by
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[ψx] (t) = x(F (t)). Note that, if xN → x in D[0, 1] in the Skorohod topol-
ogy and x has continuous sample paths, then the convergence is uniform.
But then also ψxN converges to ψx uniformly in D(R). This implies that
ψxN converges to ψx in the Skorohod topology. We have established that
ZN ⇒ Z weakly in D[0, 1] in the Skorohod topology, where Z has continu-
ous sample paths. Therefore, according to the continuous mapping theorem,
e.g., Theorem 2.7 in [11], it follows that ψ(ZN )⇒ ψ(Z) weakly. This proves
the theorem for Yi’s with a general c.d.f. F . 2

The proof of Proposition 3.1 is similar to that of Theorem 3.1 and can
be found in [14].

To establish tightness for the process
√
n(FHT

N −F ) we use the following
decomposition

√
n(FHT

N − F ) =
√
n(FHT

N − FN ) +

√
n√
N
·
√
N(FN − F ). (9.8)

The first process on the right hand side converges weakly to Gaussian pro-
cess, according to Theorem 3.1. The process

√
N(FN − F ) also converges

weakly to a Gaussian process, due to the classical Donsker theorem. In
particular both processes on the right hand side are tight in D(R) with the
Skorohod metric. In general the sum of two tight processes in D(R) is not
necessarily tight. However, this will be the case if both processes converge
weakly to continuous processes (see Lemma B.2 in [14]).

Lemma 9.3. Let V1, V2, . . . be a sequence of bounded i.i.d. random variables
on (Ω,F,Pm) with mean µV and variance σ2V , and let S2

N be defined by (3.2).
Suppose (HT1) and (HT3) hold and nS2

N → σ2HT > 0 in Pm-probability.
Then,

√
n

(
1

N

N∑
i=1

ξiVi
πi
− µV

)
, (9.9)

converges in distribution under Pd,m to a mean zero normal random variable
with variance σ2HT + λσ2V .

Proof. The proof can be found in [14].

Lemma 9.4. Let XFN =
√
n(FHT

N − F ) and suppose that (C1)-(C2),(HT1)-
(HT4) hold. Then for any k ∈ {1, 2, . . .}, and t1, t2, . . . , tk ∈ R, the sequence(
XFN (t1), . . . ,XFN (tk)

)
converges in distribution under Pd,m to a k-variate

mean zero normal random vector with covariance matrix ΣF
HT = ΣHT

k +λΣF ,
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where ΣHT
k is given in (3.4) and ΣF is the k × k matrix with (q, r)-entry

F (tq ∧ tr)− F (tq)F (tr), for q, r = 1, 2, . . . , k.

Proof. The proof can be found in [14].

Proof of Theorem 3.2 The proof is completely similar to that of The-
orem 3.1. We first consider the process XFN =

√
n(FHT

N − F ) for the case
that the Yi’s follow a uniform distribution with F (t) = t. Decompose XFN as
in (9.8). By Theorem 3.1, the first process on the right hand side of (9.8)
converges weakly to a process in C[0, 1]. Due to the classical Donsker the-
orem and (HT3), the second process on the right hand side of (9.8) also
converges weakly to a process in C[0, 1]. Tightness of XFN then follows from
Lemma B.2 in [14]. Convergence of the finite dimensional distributions is
provided by Lemma 9.4. The theorem now follows from Theorem 13.5 in [11]
for the case that the Yi’s are uniformly distributed on [0, 1]. Next, this is
extended to Yi’s with a general c.d.f. F in the same way as in the proof of
Theorem 3.1. 2

To establish convergence in distribution of the finite dimensional dis-
tributions of

√
n(FHT

N − F ) under the conditions of Proposition 3.2, as in
the proof of Lemma 9.4, we will use the Cramér-Wold device. To ensure
that nS2

N still has a strictly positive limit without imposing (HT4), we will
need the following lemma. Its proof can be found in [14].

Lemma 9.5. Let F be the c.d.f. of the i.i.d. Y1, . . . , YN . For any k-tuple
(t1, . . . , tk) ∈ Rk, suppose that the values F (t1), . . . , F (tk) are all distinct
and such that 0 < F (ti) < 1. Let a, b ∈ R, such that a ≥ b. If a > 0, then
the k× k matrix M with (i, j)-th element Mij = aF (ti ∧ tj)− bF (ti)F (tj) is
positive definite.

Lemma 9.6. Let XFN =
√
n(FHT

N − F ) and suppose that n and πi, πij,
for i, j = 1, 2, . . . , N , are deterministic. Suppose that (C1)-(C2), (HT1)
and (HT3) hold, as well as conditions (i)-(ii) of Proposition 3.2. Then,
for any k ∈ {1, 2, . . .}, and t1, . . . , tk ∈ R,

(
XFN (t1), . . . ,XFN (tk)

)
converges

in distribution under Pd,m to a k-variate mean zero normal random vector
with covariance matrix ΣF

HT, with (q, r)-entry (µπ1 + λ)F (tq ∧ tr) + (µπ2 −
λ)F (tq)F (tr), for q, r,= 1, 2, . . . , k.

Proof. The proof can be found in [14].

The proof of Proposition 3.2 is similar to that of Theorem 3.2 and can
be found in [14].
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Proof of Theorem 4.1 For part (i), note that with S2
N defined in (3.2)

with Vi = 1, from (HT1) together with condition (4.6), it follows that

√
nSN ×

1

SN

(
1

N

N∑
i=1

ξi
πi
− 1

)
→ N(0, σ2π), ω − a.s.,

in distribution under Pd. This implies

√
n

(
N̂

N
− 1

)
=
√
n

(
1

N

N∑
i=1

ξi
πi
− 1

)
→ N(0, σ2π), (9.10)

in distribution under Pd,m. In particular, since n→∞, this proves part (i).
The proof of part(ii) is along the same lines as the proof of Theorems 3.1

and 3.2. First consider the case, where the Yi’s are uniform, with F (t) = t
on [0, 1]. Then, with FHT

N defined in (2.1) and XFN =
√
n(FHT

N − F ), we can
write Gπ

N (t) = XFN (t) − (XFN (t) − Gπ
N (t)). According to Theorem 3.2, the

process XFN converges weakly to a continuous process. As a consequence
of (9.10), the process

XFN (t)−Gπ
N (t) = t

√
n

(
1

N

N∑
i=1

ξi
πi
− 1

)
,

also converges weakly to a continuous process. Hence, similar to the argu-
ment in the proof of Theorem 3.2, we conclude that the process Gπ

N is tight.
Next, we establish weak convergence of the finite dimensional projections.
Details can be found in [14]. 2

Proof of Theorem 4.2 We use (4.2). From the proof of Theorem 4.1, we
know that Gπ

N is tight. Together with Theorem 4.1(i), it then follows that
the limit behavior of

√
n(FHJ

N − FN ) is the same as that of the process YN
defined in (4.3). This process can be written as

YN (t) =

√
n

N

N∑
i=1

(
ξi
πi
− 1

)
1{Yi≤t} − F (t)

√
n

N

N∑
i=1

(
ξi
πi
− 1

)
.

As in the proofs of Theorems 3.1, 3.2, and 4.1, we first consider the case of
uniform Yi’s. The first process on the right hand side is

√
n(FHT

N −FN ), which
converges weakly to a continuous process, according to Theorem 3.1, whereas
the second process also converges to a continuous process due to (9.10). As
in the proof of Theorem 3.2, one can then argue that YN , being the difference
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of these processes, is tight. Next, we prove weak convergence of the finite
dimensional projections. Details can be found in [14]. 2

The proofs of Propositions 4.1 and 4.2 are similar to those of Theo-
rems 4.2 and 4.1, respectively, and can be found in [14].

Proof of Corollary 5.1 Similar to the approach followed in [3], we first
prove the results for a rejective sampling R and then extend them to high
entropy designs.

First note that Ed(ξi−πi)(ξj−πj) = πij−πiπj . According to Theorem 1
in [13], which is an extension of Theorem 5.2 in [32], together with (C1)
and (A2), for sampling design R,

πij − πiπj = πiπj

{
− 1

dN
(1− πi)(1− πj) +O(d−2N )

}
= O(n2/(N2dN )),

(9.11)

ω-almost surely. Therefore, together with (A3), condition (C2) follows,
ω-almost surely. For condition (C3), according to Lemma 2 in [13], the
third order correlation Ed(ξi − πi)(ξj − πj)(ξk − πk) splits into terms of
the form (πij − πiπj)πk and the term πijk − πiπjπk. Similar to (9.11), to-
gether with Theorem 1 in [13], the latter term can be shown to be of the
order O(n3/(N3dN )), whereas other terms are of the same order according
to (C1)-(C2) and (A2). Again, together with (A3), condition (C3) follows,
ω-almost surely. According to Proposition 1 in [13],

|Ed(ξi − πi)(ξj − πj)(ξk − πk)(ξl − πl)| = O(d−2N ), a.s.− Pm.

Hence, together with (A4), condition (C4) follows, ω-almost surely. Theo-
rems 3.1 and 3.2 are now immediate, when either (HT2) holds or (HT2)-
(HT4), respectively, which establishes parts (i) and (ii) for the rejective
sampling design R. For parts (iii) and (iv), it can be seen that under de-
sign R,

n

N2

∑∑
i 6=j

πij − πiπj
πiπj

= − n

N2

∑∑
i 6=j

(1− πi)(1− πj)
dN

+O
(
n/d2N

)
= − n

N2dN
(N − n)2 +O(1/dN ) +O

(
n/d2N

)
→ α,

with (A2)-(A3) and (A5). Hence, Theorems 4.2 and 4.3 are now immedi-
ate with µπ2 = −α, when either (HT3) and (HJ2) hold or (HT3), (HJ2),
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and (HJ4), respectively, which establishes parts (iii) and (iv) for rejective
sampling design R.

To extend these results to high entropy designs, we use the same ap-
proach as in [7]. They use the bounded Lipschitz metric for random elements
X and Y on a metric space D:

dBL(X,Y ) = sup
f∈BL1

|Ef(Y )− Ef(X)|,

where BL1 is the class of Lipshitz functions with Lipshitz norm bounded by
one. See [48], page 73, who define the metric dBL on the space of separable
Borel measures. Weak convergence is metrizable by this metric, i.e.,

Xα  X ⇔ sup
f∈BL1

|E∗f(Xα)− Ef(X)| → 0.

Now, consider part (i) and let P be a high entropy design. Let R be some
rejective sampling design such that D(P‖R)→ 0. Given the inclusion prob-
abilities π1(P ), . . . , πN (P ), there exists a rejective sampling design R̃ such
that πi(R̃) = πi(P ). Note that D(P‖R̃) ≤ D(P‖R) → 0, according to
Lemma 3 in [3].

Consider the Horvitz-Thompson process for the design P

Gπ(P )
P (t) =

√
n

(
1

N

N∑
i=1

ξi(P )1{Yi≤t}

πi(P )
− 1

N

N∑
i=1

1{Yi≤t}

)
,

and compare this with the same process for design R̃,

Gπ(P )

R̃
(t) =

√
n

(
1

N

N∑
i=1

ξi(R̃)1{Yi≤t}

πi(P )
− 1

N

N∑
i=1

1{Yi≤t}

)
.

Then, because Ed[ξi(P )] =
∑

s∈SN P (s)δi(s), where δi(s) = 1 when i ∈ s

and zero otherwise, it follows that for Edf(Gπ(P )
P ), the argument inside f is

independent of the design P . Hence, for any f ∈ BL1, one finds∣∣∣Edf (Gπ(P )
P

)
− Edf

(
Gπ(P )

R̃

)∣∣∣ ≤ ∑
s∈P(UN )

|P (s)− R̃(s)| ≤
√

2D(P‖R̃),

using Lemma 2 in [3]. As |Ed,mf(Y )−Ed,mf(X)| ≤ Em |Edf(Y )− Edf(X)|,
it follows that dBL1(Gπ(P )

P ,Gπ(P )

R̃
) → 0. Because part (i) has already been
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established for rejective sampling design R̃, we obtain that Gπ(P )

R̃
→ G

weakly. Hence, dBL1(Gπ(P )

R̃
,G)→ 0 and therefore

dBL1(Gπ(P )
P ,G) ≤ dBL1(Gπ(P )

P ,Gπ(P )

R̃
) + dBL1(Gπ(P )

R̃
,G)→ 0

which means that Gπ(P )
P → G weakly. This establishes part(i) for high

entropy design P . Parts (ii)-(iv) are obtained in the same way. 2

Proof of Corollary 5.3 We first re-prove Lemma 9.1 under conditions
(C2∗)-(C4∗). Because n is deterministic, it can be taken out of the expec-
tation Ed,m. When also π1, . . . , πN are deterministic, this means that the
expectation Ed over the ξi’s can be separated from the expectation Em over
the Ai’s and Bj ’s in (9.2). It follows that

1

N4

N∑
i=1

N∑
k=1

Ed,m
[
n2α2

i β
2
k

]
=

n2

N4

∑∑
(i,k)∈D2,N

Ed
[
(ξi − πi)2(ξk − πk)2

]
π2i π

2
k

p1p2.

(9.12)

Straightforward computation shows that Ed(ξi − πi)2(ξk − πk)2 equals

(πik − πiπk)(1− 2πi)(1− 2πk) + πiπk(1− πi)(1− πk).

The contribution of the last term is

n2

N4

∑∑
(i,k)∈D2,N

πiπk(1− πi)(1− πk)
π2i π

2
k

≤

(
n

N2

N∑
i=1

(
1

πi
− 1

))2

= O(1),

according to condition (i) of Proposition 3.1. With (C1) and (C2∗), the
contribution of the first term is

n2

N4

∑∑
(i,k)∈D2,N

(πik − πiπk)(1− 2πi)(1− 2πk)

π2i π
2
k

≤ O
(
N2

n2

)
n2

N4
·N
∑
i 6=k

∣∣∣∣πik − πiπkπiπk

∣∣∣∣ = O

(
1

n

)
.

(9.13)

This establishes (9.4).
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For the second (and third) summation on the right hand side of (9.2),
we have

1

N4

∣∣∣∣∣∣
N∑
i=1

∑
j 6=i

N∑
k=1

Ed,m
[
n2αiαjβ

2
k

]∣∣∣∣∣∣
≤ n2

N4

∣∣∣∣∣∣
∑∑∑
(i,j,k)∈D3,N

Ed
[

(ξi − πi)(ξj − πj)(ξk − πk)2

πiπjπ2k

]∣∣∣∣∣∣ p1p2
We still have that Ed(ξi − πi)(ξj − πj)(ξk − πk)2 equals

(1− 2πk)Ed(ξi − πi)(ξj − πj)(ξk − πk) + πk(1− πk)Ed(ξi − πi)(ξj − πj).

The contribution of the last term is∣∣∣∣∣∣ n
2

N4

∑∑∑
(i,j,k)∈D3,N

(
1

πk
− 1

)
πij − πiπj
πiπj

∣∣∣∣∣∣
≤

∣∣∣∣∣∣ nN2

∑∑
(i,j)∈D2,N

πij − πiπj
πiπj

∣∣∣∣∣∣ · nN2

N∑
k=1

(
1

πk
− 1

)
= O(1),

according to conditions (i)-(ii) of Proposition 3.1. From Lemma 2 in [13],
we have that Edξi − πi)(ξj − πj)(ξk − πk) splits into

1. −(πij − πiπj)πk − (πik − πiπk)πj − (πjk − πjπk)πi.

2. πijk − πiπjπk.

According to (C1) and (C2∗), the contribution of the terms in the first
case is of the order O(1) similarly to (9.13), whereas (C1) and (C3∗) yield
that the contribution of the second case is also of the order O(1). This
establishes (9.5).

Finally,

1

N4

N∑
i=1

∑
j 6=i

N∑
k=1

∑
l 6=k

Ed,m
[
n2αiαjβkβl

]
=

n2

N4

∑
(i,j,k,l)∈D4,N

Ed [(ξi − πi)(ξj − πj)(ξk − πk)(ξl − πl)]
πiπjπkπl

p21p
2
2.

Because 0 ≤ p1, p2 ≤ 1, together with (C4∗), we obtain (9.6). Together
with (9.4), (9.5) and decomposition (9.2), this proves Lemma 9.1.
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Furthermore, at the cost of some extra technicalities, it can be seen that
Lemma B.1 in [14] holds with (C2∗) and conditions (i)-(ii) from Proposi-
tion 3.1 instead of (C2). Details can be found in [14]. From here on, the
proofs of Propositions 3.1, 3.2, 4.1, and 4.2 remain the same. 2

The proofs for Corollaries 6.1 and 6.2 are fairly straightforward and can
be found in [14].
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ment to ”functional central limit theorems for single-stage samplings
designs”. 2015.

[15] F. Jay Breidt and Jean D. Opsomer. Local polynomial regresssion
estimators in survey sampling. Ann. Statist., 28(4):1026–1053, 2000.

[16] Norman E. Breslow and Jon A. Wellner. Weighted likelihood for semi-
parametric models and two-phase stratified samples, with application
to Cox regression. Scand. J. Statist., 34(1):86–102, 2007.

[17] Hervé Cardot, Mohamed Chaouch, Camelia Goga, and Catherine
Labruère. Properties of design-based functional principal components
analysis. J. Statist. Plann. Inference, 140(1):75–91, 2010.

[18] Guillaume Chauvet et al. Coupling methods for multistage sampling.
The Annals of Statistics, 43(6):2484–2506, 2015.

[19] Pier Luigi Conti. On the estimation of the distribution function of a fi-
nite population under high entropy sampling designs, with applications.
Sankhya B, 76(2):234–259, 2014.

[20] Pier Luigi Conti, Daniela Marella, and Fulvia Mecatti. Recovering
sampling distributions of statistics of finite populations via resampling:
a predictive approach. Submitted, 2015.

38



[21] Russell Davidson. Reliable inference for the Gini index. J. Economet-
rics, 150(1):30–40, 2009.

[22] Fabien Dell and Xavier d’Haultfœuille. Measuring the evolution of com-
plex indicators: Theory and application to the poverty rate in France.
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A Proofs for results in the main text

Proof of Lemma 9.2 We will use the Cramér-Wold device. Note that
any linear combination

a1
√
n
{
FHT
N (t1)− FN (t1)

}
+ · · ·+ ak

√
n
{
FHT
N (tk)− FN (tk)

}
(A.1)

can be written as

√
n

{
1

N

N∑
i=1

ξi
πi
Vik −

1

N

N∑
i=1

Vik

}
, (A.2)

where
Vik = a11{Yi≤t1} + · · ·+ ak1{Yi≤tk} = atkYik (A.3)

with Yt
ik = (1{Yi≤t1}, . . . ,1{Yi≤tk}) and atk = (a1, . . . , ak). For the corre-

sponding design-based variance, we have

nS2
N =

n

N2

N∑
i=1

N∑
j=1

πij − πiπj
πiπj

VikVjk

= atk

 n

N2

N∑
i=1

N∑
j=1

πij − πiπj
πiπj

YikY
t
jk

ak → atkΣ
HT
k ak,

(A.4)

ω-almost surely, according to (HT2), where ΣHT
k can obtained from (3.4).

Together with (HT1), it follows that (A.1) converges in distribution to a
mean zero normal random variable with variance atkΣ

HT
k ak. We conclude

that (A.1) converges in distribution to a1N1+· · ·+akNk, where (N1, . . . , Nk)
has a k-variate mean zero normal distribution with covariance matrix ΣHT

k .
According to the Cramér-Wold device this proves the lemma. 2

Proof of Proposition 3.1 The proof is similar to that of Theorem 3.1.
First consider the case of uniform Yi’s with F (t) = t. We only have to verify
the weak convergence of the finite dimensional projections of the process
XN =

√
n(FHT

N − FN ). Consider (A.1) represented as in (A.2). From (HT1)
and Lemma B.1(ii) in [14] we conclude that (A.1) converges in distribution
to a mean zero normal random variable with variance

σ2HT = µπ1Em
[
V 2
1k

]
+ µπ2 (Em [V1k])

2

= µπ1a
t
kEm

[
Y1kY

t
1k

]
ak + µπ2a

t
k (EmY1k) (EmY1k)

t ak = atkΣkak,
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where Σk is the k×k-matrix with (q, r)-element equal to µπ1(tq∧tr)+µπ2tqtr.
We conclude that (A.1) converges in distribution to a1N1 + · · · + akNk,
where (N1, . . . , Nk) has a k-variate mean zero normal distribution with co-
variance matrix Σk. As in the proof of Lemma 9.2, by means of the Cramér-
Wold device this establishes the limit distribution of (XN (t1), . . . ,XN (tk)),
which is the same that of the vector (GHT(t1), . . . ,GHT(tk)), where GHT is a
mean zero Gaussian process with covariance function Ed,mGHT(s)GHT(t) =
µπ1(s ∧ t) + µπ2st. From here on, the proof is completely the same as that
of Theorem 3.1. 2

Proof of Lemma 9.3 We decompose as follows

1

SN

(
1

N

N∑
i=1

ξiVi
πi
− µV

)
=

1

SN

(
1

N

N∑
i=1

ξiVi
πi
− 1

N

N∑
i=1

Vi

)

+
1√
nSN

×
√
n√
N
×
√
N

(
1

N

N∑
i=1

Vi − µV

)
.

According to (HT3), the central limit theorem, Slutsky’s theorem, and the
fact that nS2

N → σ2HT > 0 in probability,

1√
nSN

×
√
n√
N
×
√
N

(
1

N

N∑
i=1

Vi − µV

)
→ N(0, λσ2V /σ

2
HT), (A.5)

in distribution under Pm, whereas, thanks to (HT1),

1

SN

(
1

N

N∑
i=1

ξiVi
πi
− 1

N

N∑
i=1

Vi

)
→ N(0, 1), ω − a.s., (A.6)

in distribution under Pd. Since the latter limit distribution does not depend
on ω, we can apply Theorem 5.1(iii) from [43]. It follows that

1

SN

(
1

N

N∑
i=1

ξiVi
πi
− µV

)
→ N

(
0, 1 + λσ2V /σ

2
HT

)
,

in distribution under Pd,m. Together with nS2
N → σ2HT in probability, this

implies that the random variable in (9.9) converges to a mean zero normal
random variable with variance σ2HT + λσ2V . 2
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Proof of Lemma 9.4 We will use the Cramér-Wold device. To this
end, we determine the limit distribution of a1XFN (t1) + · · · + akXFN (tk), for
a1, . . . , ak ∈ R fixed and atk = (a1, . . . , ak) 6= (0, . . . , 0). As in the proof of
Lemma 9.2, we consider

a1XFN (t1) + · · ·+ akXFN (tk) =
√
n

(
1

N

N∑
i=1

ξi
πi
Vik − µk

)
, (A.7)

where Vik is defined in (A.3). We want to apply Lemma 9.3. As in (A.4),

nS2
N → atkΣ

HT
k ak, ω − a.s., (A.8)

where atkΣ
HT
k ak > 0, thanks to (HT4). This means that, according to

Lemma 9.3, the right hand side of (A.7) converges in distribution under
Pd,m to a mean zero normal random variable with variance

atkΣ
HT
k ak + λ

{
Em[V 2

1k]− (Em[V1k])
2
}

= atkΣ
F
HTak,

where
ΣF

HT = ΣHT
k + λΣF . (A.9)

We conclude that (A.7) converges in distribution to a1N1+· · ·+akNk, where
(N1, . . . , Nk) has a mean zero k-variate normal distribution with covariance
matrix ΣF

HT. By the Cramér-Wold device, this proves the lemma. 2

Proof of Lemma 9.5 Without loss of generality we may assume 0 <
F (t1) < · · · < F (tk) < 1, since we can permute the rows and columns of M
without changing the determinant. For the entries of M we can distinguish
three situations:

1. if 1 ≤ j < i ≤ k, then Mij = aF (tj)− bF (ti)F (tj)

2. if 1 ≤ i = j ≤ k, then Mij = aF (ti)− bF (ti)
2

3. if 1 ≤ i < j ≤ k, then Mij = aF (ti)− bF (ti)F (tj).

Now, for 2 ≤ i ≤ k, multiply the i-th row by F (t1)/F (ti). This changes the
determinant with a factor F (t1)

k−1/F (t2) · · ·F (tk) > 0, and as a result, all
entries in column j, at positions 1 ≤ i ≤ j ≤ k, are the same: aF (t1) −
bF (t1)F (tj). Hence, if we subtract row-2 from row-1, then row-3 from row-
2, . . . , and then row-k from row-(k − 1), we get a new matrix M′ with a
right-upper triangle consisting of zero’s and a main diagonal with elements
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M ′ii = aF (t1)− aF (t1)F (ti)/F (ti+1), if 1 ≤ i ≤ k − 1, and M ′kk = aF (t1)−
bF (t1)F (tk). It follows that

det(M) =
F (t2) · · ·F (tk)

F (t1)k−1
det(M′)

= ak−1F (t1)(F (t2)− F (t1)) · · · (F (tk)− F (tk−1))(a− bF (tk)) > 0,

since a > 0, 0 < F (t1) < · · · < F (tk) < 1, and a− bF (tk) > a− b ≥ 0. 2

Proof of Lemma 9.6 The proof is similar to that of Lemma 9.4. We de-
termine the limit distribution of (A.7). Note that without loss of generality
we can assume that 0 ≤ F (t1) ≤ · · · ≤ F (tk) ≤ 1. In contrast with the proof
of Lemma 9.4, we now have to distinguish between several cases.

We first consider the situation where all F (ti)’s are distinct and such
that 0 < F (ti) < 1. From (HT1) and Lemma B.1(ii) we conclude that

nS2
N → σ2HT = µπ1Em[V 2

1k] + µπ2 (Em[V1k])
2 = atkΣkak,

where

Σk =
(
µπ1F (tq ∧ tr) + µπ2F (tq)F (tr)

)k
q,r=1

. (A.10)

First note that

µπ1 + µπ2 = lim
N→∞

n

N2

N∑
i=1

N∑
j=1

πij − πiπj
πiπj

= lim
N→∞

n

N2
Var

(
N∑
i=1

ξi
πi

)
≥ 0.

Therefore, together with condition (i) we can apply Lemma 9.5 with a = µπ1
and b = −µπ2. It follows that Σk is positive definite, so that σ2HT > 0. This
means that, according to Lemma 9.3, the right hand side of (A.7) converges
in distribution under Pd,m to a mean zero normal random variable with
variance (µπ1 + λ)Em[V 2

1k] + (µπ2 − λ) (Em[V1k])
2 = atkΣ

F
HTak, where

ΣF
HT =

(
(µπ1 + λ)F (tq ∧ tr) + (µπ2 − λ)F (tq)F (tr)

)k
q,r=1

. (A.11)

We conclude that (A.7) converges in distribution to a1N1+· · ·+akNk, where
(N1, . . . , Nk) has a mean zero k-variate normal distribution with covariance
matrix ΣF

HT. By means of the Cramér-Wold device, this proves the lemma
for the case that 0 < F (t1) < · · · < F (tk) < 1.

The case that the F (ti)’s are not all distinct, but still satisfy 0 < F (ti) <
1, can be reduced to the case where all F (ti)’s are distinct. This can be seen
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as follows. For simplicity, suppose F (t1) = · · · = F (tm) = F (t0), with
0 < F (t0) < F (tm+1) < · · · < F (tk) < 1. Then we can write (A.7) as

a0XFN (t0) + am+1XFN (tm+1) + · · ·+ akXFN (tk), (A.12)

where a0 = a1 + · · ·+ am. As before, with (HT4) and Lemma 9.5, it follows
from Lemma 9.3 that (A.12) converges in distribution to a mean zero normal
random variable with variance at0Σ

F
0 a0, where a0 = (a0, am+1, . . . , ak)

t and

ΣF
0 = γπ1Em[Y0Y

t
0] + (γπ2 − λ) (Em[Y0]) (Em[Y0])

t ,

with Y0 = (1{Yi≤t0},1{Yi≤tm+1}, . . . ,1{Yi≤tk})
t. However, note that

at0Y0 = (a1 + · · ·+ am)1{Yi≤t0} + am+11{Yi≤tm+1} + · · ·+ ak1{Yi≤tk}

= a11{Yi≤t1} + · · ·+ ak1{Yi≤tk} = atkY1k,
,

where ak = (a1, . . . , ak)
t and Y1k = (1{Yi≤t1}, . . . ,1{Yi≤tk})

t, as before.

This means that at0Σ
F
0 a0 = atkΣ

F
HTak, with ΣF

HT from (A.9). It follows
that (A.7) converges in distribution to a1N1+· · ·+akNk, where (N1, . . . , Nk)
has a mean zero k-variate normal distribution with covariance matrix ΣF

HT.
By means of the Cramér-Wold device, this proves the lemma for the case
F (t1) = · · · = F (tm) = F (t0) < F (tm+1) < · · · < F (tk) < 1. The argument
is the same for other cases with multiple F (ti) ∈ (0, 1) being equal to each
other.

Next, consider the case F (t1) = 0. In this case, 1{Yi≤t1} = 0 with
probability one. This means that the summation on the left hand side
of (A.7) reduces to a2XFN (t2) + · · ·+ akXFN (tk) and

ΣHT =


0 0 · · · 0
0
...
0

ΣHT,k−1

 , (A.13)

where ΣHT,k−1 is the matrix in (A.10) based on 0 < F (t2) < · · · < F (tk) < 1.
When atk−1 = (a2, . . . , ak) 6= (0, . . . , 0), then

σ2HT = atkΣ
F
HTak = atk−1ΣHT,k−1ak−1 > 0,

because ΣHT,k−1 is positive definite, due to (HT4) and Lemma 9.5. This
allows application of Lemma 9.3 to (A.7). As in the previous cases, we
conclude that (A.7) converges in distribution to a1N1 + · · · + akNk, where
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(N1, . . . , Nk) has a mean zero k-variate normal distribution with covariance
matrix ΣF

HT given by (A.9). When atk = (a1, 0, . . . , 0), with a1 6= 0, then
both (A.7) and a1N1 + · · · + akNk are equal to zero. According to the
Cramér-Wold device, this proves the lemma for the case F (tk) = 0.

It remains to consider the case F (tk) = 1. In this case, the (k, k)-th
element of the matrix ΣHT in (A.10) is equal to µπ1 + µπ2. We distinguish
between µπ1 +µπ2 = 0 and µπ1 +µπ2 > 0. In the latter case, from the proof
of Lemma 9.5 we find that ΣHT has determinant

µk−1π1 F (t1)

k∏
i=2

(F (ti)− F (ti−1))(µπ1 + µπ2) > 0,

using (HT4) and 0 < F (t1) < · · · < F (tk−1) < F (tk) = 1. This allows appli-
cation of Lemma 9.3 to (A.7). As before, we conclude that (A.7) converges
in distribution to a1N1+· · ·+akNk, where (N1, . . . , Nk) has a k-variate mean
zero normal distribution with covariance matrix ΣF

HT from (A.9). According
to the Cramér-Wold device, this proves the lemma for the case F (tk) = 1
and µπ1 + µπ2 > 0.

Next, consider the case F (tk) = 1 and µπ1 + µπ2 = 0. This means

ΣHT =

 ΣHT,k−1

0
...
0

0 · · · 0 0

 , (A.14)

where ΣHT,k−1 is the matrix in (A.10) corresponding to 0 < F (t1) < · · · <
F (tk−1) < 1. When atk−1 = (a1, . . . , ak−1) 6= (0, . . . , 0), then

σ2HT = atkΣHTak = atk−1ΣHT,k−1ak−1 > 0,

because ΣHT,k−1 is positive definite, due to (HT4) and Lemma 9.5. This
allows application of Lemma 9.3 to (A.7). As in the previous cases, we
conclude that (A.7) converges in distribution to a1N1 + · · · + akNk, where
(N1, . . . , Nk) has a k-variate mean zero normal distribution with covariance
matrix ΣF

HT given by (A.9). When atk = (0, . . . , 0, ak), with ak 6= 0, then
a1N1 + · · ·+ akNk = 0 and

a1XFN (t1) + · · ·+ akXFN (tk) = ak
√
n

(
1

N

N∑
i=1

ξi
πi
− 1

)
.
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converges to zero in probability. The latter follows from the fact that ac-
cording to (HT1) and Lemma B.1, we have that

√
n

(
1

N

N∑
i=1

ξi
πi
− 1

)
→ N(0, µπ1 + µπ2), (A.15)

in distribution under Pd,m. According to the Cramér-Wold device, this
proves the lemma for the case F (tk) = 1 and µπ1 + µπ2 = 0. Finally,
the argument for the case that F (t1) = 0 and F (tk) = 1 simultaneously,
either with or without repeated among the F (ti)’s, is completely similar.
This finishes the proof. 2

Proof of Proposition 3.2 The proof is similar to that of Theorem 3.2.
Tightness is obtained in the same way and the convergence of finite dimen-
sional projections is provided by Lemma 9.6. The theorem now follows from
Theorem 13.5 in [11] for the case that the Yi’s are uniformly distributed
on [0, 1]. Next, this is extended to Yi’s with a general c.d.f. F in the same
way as in the proof of Theorem 3.1. 2

Proof of Proposition 4.1 The proof is similar to that of Theorem 4.2.
We find that the limit behavior of

√
n(FHJ

N − FN ) is the same as that of the
process YN defined in (4.3). When we first consider the case of uniform Yi’s
with F (t) = t, tightness of the process YN follows in the same way as in the
proof of Theorem 4.2. It remains to establish weak convergence of the finite
dimensional projections (A.18). This can be done in the same way as in the
proof of Proposition 3.1, but this time with

Vik = a1
(
1{Yi≤t1} − t1) + · · ·+ ak(1{Yi≤tk})− tk

)
.

From (HT1) and Lemma B.1(i) we conclude that (A.19) converges in distri-
bution to a mean zero normal random variable with variance

σ2HT = µπ1Em
[
V 2
1k

]
= atkΣ̃kak,

where Σ̃k is the k× k-matrix with (q, r)-element equal to µπ1(tq ∧ tr− tqtr).
We conclude that (A.19) converges in distribution to a1N1 + · · · + akNk,
where (N1, . . . , Nk) has a k-variate mean zero normal distribution with co-
variance matrix Σ̃k. By means of the Cramér-Wold device this establishes
the limit distribution of (A.18), which is the same as that of the vector
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(GHJ(t1), . . . ,GHJ(tk)), where GHJ is a mean zero Gaussian process with
covariance function

Ed,mGHJ(s)GHJ(t) = µπ1 (s ∧ t− st) .

From here on, the proof is completely the same as that of Theorem 4.2. 2

Remainder of the proof of Theorem 4.1 It remains to prove weak
convergence of the finite dimensional projections(

Gπ
N (t1), . . . ,Gπ

N (tk)
)
. (A.16)

To this end we apply the Cramér-Wold device and consider linear combina-
tions

a1Gπ
N (t1) + · · ·+ akGπ

N (tk) =

√
n

N

N∑
i=1

ξi
πi
Vik. (A.17)

Convergence of (A.17), is obtained completely similar to that of (A.7) in
Lemma 9.4, but this time with

Vik = a1
(
1{Yi≤t1} − t1) + · · ·+ ak(1{Yi≤tk})− tk

)
,

and µk = 0. Using the fact that (HJ4) allows the use of Lemma 9.3, one can
deduce that (A.17) converges in distribution under Pd,m to a1N1+· · ·+akNk,
where (N1, . . . , Nk) has a k-variate normal distribution with covariance ma-
trix Σπ = ΣHJ

k +λΣF , where ΣHJ
k and ΣF are given in (4.5) and Lemma 9.4,

respectively. By means of the Cramér-Wold device, this proves that (A.16)
converges in distribution under Pd,m to a mean zero k-variate normal ran-
dom vector with covariance matrix Σπ. This distribution is the same as
that of

(
Gπ(t1), . . . ,Gπ(tk)

)
, where Gπ is a mean zero Gaussian process

with covariance function

lim
N→∞

1

N2

N∑
i=1

N∑
j=1

Em
[
n
πij − πiπj
πiπj

(
1{Yi≤s} − s

) (
1{Yi≤t} − t

)]
+ λ (s ∧ t− st) , s, t ∈ R.

Since Gπ is continuous at 1, the theorem then follows from Theorem 13.5
in [11] for the case of uniform Yi’s. Extension to Yi’s with a general c.d.f. F
is completely similar to the proof of Theorem 3.1.
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Remainder of the proof of Theorem 4.2 It remains to prove weak
convergence of the finite dimensional projections(

YN (t1), . . . ,YN (tk)
)
. (A.18)

As before, we apply the Cramér-Wold device and consider

a1YN (t1) + · · ·+ akYN (tk) =
√
n

{
1

N

N∑
i=1

ξi
πi
Vik −

1

N

N∑
i=1

Vik

}
, (A.19)

with
Vik = a1

(
1{Yi≤t1} − t1) + · · ·+ ak(1{Yi≤tk})− tk

)
.

Convergence of (A.19) is obtained completely similar to that of (A.2) in the
proof of Lemma 9.2. From (HT1) and (HJ2), it follows that (A.19) converges
in distribution under Pd,m to a1N1 + · · · + akNk, where (N1, . . . , Nk) has a
k-variate normal distribution with covariance matrix ΣHJ

k given in (4.5).
By means of the Cramér-Wold device, this proves that (A.18) converges
in distribution under Pd,m to a mean zero k-variate normal random vec-
tor with covariance matrix ΣHJ

k . This distribution is the same as that of(
GHJ(t1), . . . ,GHJ(tk)

)
, where GHJ is a mean zero Gaussian process with

covariance function

lim
N→∞

1

N2

N∑
i=1

N∑
j=1

Em
[
n
πij − πiπj
πiπj

(
1{Yi≤s} − s

) (
1{Yi≤t} − t

)]
,

for s, t ∈ R. As before, the theorem now follows from Theorem 13.5 in [11]
for the case of uniform Yi’s, and is then extended to Yi’s with a general
c.d.f. F . 2

Proof of Theorem 4.3 The theorem follows directly from relation (4.7)
and Theorem 4.1. 2

Proof of Proposition 4.2 From relation (4.7) and Theorem 4.1 we know
that the limit behavior of

√
n(FHJ

N −F ) is the same as that of Gπ
N . Tightness

of Gπ
N has been obtained in the proof of Theorem 4.1. It remains to establish

weak convergence of (A.16). This can be done in the same way as in the
proof of Lemma 9.6, but this time with

Vik = a1
(
1{Yi≤t1} − F (t1)

)
+ · · ·+ ak

(
1{Yi≤tk} − F (tk)

)
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and µk = 0. When 0 < F (t1) < · · · < F (tk) < 1, from (HT1) and
Lemma B.1 we find that nS2

N → µπ1Em[V 2
1k] = atkΣkak, where

Σk = µπ1

(
F (tq ∧ tr)− F (tq)F (tr)

)k
q,r=1

. (A.20)

From condition (i) of Proposition 3.2 and Lemma 9.5, it follows that Σk is
positive definite, so that atkΣkak > 0. Hence, according to Lemma 9.3, the
right hand side of (A.17) converges in distribution under Pd,m to a mean
zero normal random variable with variance (µπ1 + λ)Em[V 2

1k] = atkΣ
F
HJak,

where

ΣF
HJ =

(
(µπ1 + λ)F (tq ∧ tr)

)k
q,r=1

. (A.21)

We conclude that the right hand side of (A.17) converges in distribution to
a1N1 + · · · + akNk, where (N1, . . . , Nk) has a mean zero k-variate normal
distribution with covariance matrix ΣF

HJ. By means of the Cramér-Wold
device, this proves weak convergence of

(
Gπ
N (t1), . . . ,Gπ

N (tk)
)

for the case
that 0 < F (t1) < · · · < F (tk) < 1. As in the proof of Lemma 9.6, the case
where the F (ti)’s are not all distinct, but satisfy 0 < F (ti) < 1, the case
F (t1) = 0, and the case F (tk) = 1, can be reduced to the previous case.
From here on, the proof is completely the same as that of Theorem 4.1. 2

Proof of Proposition 5.1 The proposition only needs to be established
for the rejective sampling design, as it can be extended to high entropy
designs by means of Theorem 5 in [3]. Since the rejective sampling design
can be represented as a Poisson sampling design conditionally on the sample
size being equal to n, the proof is along the lines of the arguments used in
the proof of Theorem 3.2 in [7]. It applies results from [37] on a central limit
theorem for sums of functions of independent random variables ξ1, . . . , ξN ,
conditional on ξ1 + · · ·+ ξN = n. Details are provided in [14]. 2

Proof of Corollary 5.2 As in the proof of Corollary 5.1, we first prove the
results for rejective sampling and then extend them to high entropy designs.
Completely similar to the proof of Corollary 5.1, conditions (A2)-(A4) imply
(C2)-(C4). Furthermore, condition (ii) of Proposition 3.1 is obtained in the
same way as in the proof of Corollary 5.1, with µπ2 = −α, from conditions
(A2)-(A3) and (A5). This proves parts (i)-(iv). 2
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Proof of Corollary 6.1 The mapping φ : Dφ ⊂ D(R) 7→ R is Hadamard-
differentiable at F tangentially to the set D0 consisting of functions h ∈ D(R)
that are continuous at F−1(α). According to Theorem 3.2, the sequence√
n(FHT

N − F ) converges weakly to a mean zero Gaussian process GHT
F with

covariance structure

Ed,mGHT
F (s)GHT

F (t) = (µπ1 + λ)F (s ∧ t) + (µπ2 − λ)F (s)F (t), (A.22)

for s, t ∈ R. It then follows from Theorem 3.9.4 in [48], that the random
variable

√
n(φ(FHT

N )− φ(F )) converges weakly to

−β f(βF−1(α))

f(F−1(α))
GHT
F (F−1(α)) + GHT

F (βF−1(α)),

which has a normal distribution with mean zero and variance

σ2HT,α,β = β2
f(βF−1(α))2

f(F−1(α))2
E
[
GHT
F (F−1(α))2

]
+ E

[
GHT
F (βF−1(α))2

]
− 2β

f(βF−1(α))

f(F−1(α))
E
[
GHT
F (F−1(α))GHT

F (βF−1(α))
]
.

The precise expression can then be derived from (A.22), which proves part
one. For part two, write

√
n
(
φ(FHT

N )− φ(FN )
)

=
√
n
(
φ(FHT

N )− φ(F )
)

+

√
n√
N

√
N (φ(FN )− φ(F )) .

The process
√
N(FN − F ) converges weakly to a mean zero Gaussian pro-

cess GF . Then, Hadamard-differentiability of φ together with Theorem 3.9.4
in [48] yields that the sequence

√
N(φ(FN ) − φ(F )) converges weakly to

φ′F (GF ). As n/N → 0, the theorem follows from part one. 2

Proof of Corollary 6.2 The proof is completely the same as that of
Corollary 6.1, with the only difference that the covariance structure of the
limiting process

√
n(φ(FHJ

N )− φ(F )) is now given in Theorem 4.3. 2

B Additional technicalities

Comment about (C1) on page 6 Condition A3 in [20] requires that

lim
N,n→∞

E[πi(1− πi)] = d > 0, (B.1)
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where 0 < d ≤ 1/4. The parabola x 7→ x(1− x)− d is strictly positive for

0 <
1−
√

1− 4d

2
< x <

1 +
√

1− 4d

2
< 1.

According to condition A4 in [20], it holds that n/N → λ > 0. Suppose
that the lower bound in (C1) does not hold, so that Nπi/n can be arbitrarily
small, say

Nπi
n

<
1−
√

1− 4d

4λ
.

In that case

lim
N→∞

πi = lim
N→∞

n

N
· Nπi
n

< λ · 1−
√

1− 4d

4λ
=

1−
√

1− 4d

4
,

which lies left of the smallest zero of the parabola x(1 − x) − d. As a
consequence

lim
N,n→∞

E[πi(1− πi)] < d,

which is in contradiction with (B.1). 2

Lemma B.1. Let S2
N be defined by (3.2), where V1, V2, . . . is a sequence of

i.i.d. random variables on (Ω,F,Pm) with Em[V 4
1 ] < ∞. Suppose that n

and πi, πij, for i, j = 1, 2, . . . , N are deterministic and let Vm(S2
N ) denote

the variance of S2
N . If (C1)-(C2) hold, then n2Vm[S2

N ] = O(1/N). Then,

(i) if Em[V1] = 0 and condition (i) in Proposition 3.1 holds,

nS2
N → σ2HT = µπ1Em[V 2

1 ], in Pm-probability.

(ii) if Em[V1] 6= 0 and conditions (i)-(ii) in Proposition 3.1 hold,

nS2
N → σ2HT = µπ1Em[V 2

1 ] + µπ2 (Em[V1])
2 , in Pm-probability.

Proof. For any ε > 0, by Markov inequality we have

Pm
{
|nS2

N − Em[nS2
N ]| > ε

}
<
n2Vm[S2

N ]

ε2
, (B.2)

where Vm denotes the variance of S2
N under the super-population model. In

order to compute Vm[S2
N ], we first have

Em[S2
N ] =

1

N2

N∑
i=1

N∑
j=1

πij − πiπj
πiπj

Em(ViVj)

=
Em[V 2

1 ]

N2

N∑
i=1

1− πi
πi

+
(Em[V1])

2

N2

∑∑
i 6=j

πij − πiπj
πiπj

.

(B.3)
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From this, tedious but straightforward calculus leads to the expression for
(Em[S2

N ])2 and Em[S4
N ]. One finds

N4
(
Em
[
S2
N

])2
= a1 (Em[V1])

4 + a2Em
[
V 2
1

]
(Em [V1])

2 + a3
(
Em
[
V 2
1

])2
,

where, according to (C1)-(C2):

a1 =
∑∑∑∑
(i,j,k,l)∈D4,N

πij − πiπj
πiπj

πkl − πkπl
πkπl

+ 4
∑∑∑
(i,j,l)∈D3,N

πij − πiπj
πiπj

πil − πiπl
πiπl

+ 2
∑∑
(i,j)∈D2,N

(
πij − πiπj
πiπj

)2

=
∑∑∑∑
(i,j,k,l)∈D4,N

πij − πiπj
πiπj

πkl − πkπl
πkπl

+O(N3/n2) +O(N2/n2)

a2 = 2
∑∑∑
(i,k,l)∈D3,N

1− πi
πi

πkl − πkπl
πkπl

+ 4
∑∑

(i,k)∈D2,N

1− πi
πi

πik − πiπk
πiπk

= 2
∑∑∑
(i,k,l)∈D3,N

1− πi
πi

πkl − πkπl
πkπl

+O(N3/n2)

a3 =
∑∑
(i,j)∈D2,N

1− πi
πi

1− πj
πj

+
N∑
i=1

(
1− πi
πi

)2

=
∑∑
(i,j)∈D2,N

1− πi
πi

1− πj
πj

+O(N3/n2).

Furthermore,

N4Em
[
S4
N

]
= b1 (Em[V1])

4 + b2Em
[
V 2
1

]
(Em[V1])

2

+ b3
(
Em
[
V 2
1

])2
+ b4Em[V1]Em

[
V 3
1

]
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where

b1 =
∑∑∑∑
(i,j,k,l)∈D4,N

πij − πiπj
πiπj

πkl − πkπl
πkπl

+
N∑
i=1

(
1− πi
πi

)2

=
∑∑∑∑
(i,j,k,l)∈D4,N

πij − πiπj
πiπj

πkl − πkπl
πkπl

+O(N3/n2)

b2 = 2
∑∑∑
(i,k,l)∈D3,N

1− πi
πi

πkl − πkπl
πkπl

+ 4
∑∑∑
(i,j,l)∈D3,N

πij − πiπj
πiπj

πil − πiπl
πiπl

= 2
∑∑∑
(i,k,l)∈D3,N

1− πi
πi

πkl − πkπl
πkπl

+O(N3/n2)

b3 =
∑∑

(i,k)∈D2,N

1− πi
πi

1− πk
πk

+ 2
∑∑
(i,j)∈D2,N

(
πij − πiπj
πiπj

)2

=
∑∑

(i,k)∈D2,N

1− πi
πi

1− πk
πk

+O(N2/n2)

b4 = 4
∑∑
(i,j)∈D2,N

πij − πiπj
πiπj

1− πj
πj

= O(N3/n2).

The variance expression for S2
N is deduced easily from the previous computa-

tions. From the expression derived in [14], we find that ai− bi = O(N3/n2),
for i = 1, 2, 3, and b4 = O(N3/n2), so that

n2Vm[S2
N ] = n2Em[S4

N ]− n2
(
Em[S2

N ]
)2

= O(1/N). (B.4)

From (B.2) we conclude that nS2
N−Em[nS2

N ] tends to zero in Pm-probability.
As a consequence, statements (i) and (ii) follow from (B.3).

Proof of Lemma B.1 under (C2∗) We used (C2) to bound remainder
terms in the coefficients ai and bi, but this can also be achieved with (C2∗).
For the second term in a1 we get∣∣∣∣∣∣
∑∑∑
(i,j,l)∈D3,N

πij − πiπj
πiπj

πil − πiπl
πiπl

∣∣∣∣∣∣ ≤
∑∑
(i,j)∈D2,N

∣∣∣∣πij − πiπjπiπj

∣∣∣∣ ·∑
l 6=i,j

∣∣∣∣πil − πiπlπiπl

∣∣∣∣
= N ·O

(
N

n

)
·O
(
N

n

)
= O

(
N3

n2

)
,
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by means of (C2∗). For the third term in a1, we have

∑∑
(i,j)∈D2,N

(
πij − πiπj
πiπj

)2

≤
∑∑
(i,j)∈D2,N

|πij − πiπj |
πiπj

· πij
πiπj

= N ·O
(
N

n

)
·O
(
N

n

)
= O

(
N3

n2

)
,

by means of (C2∗) and (C1) and the fact that πij ≤ πi. For the second term
in a2 we have∣∣∣∣∣∣

∑∑
(i,k)∈D2,N

1− πi
πi

πik − πiπk
πiπk

∣∣∣∣∣∣ ≤
N∑
i=1

(
1

πi
− 1

)∑
k 6=i

|πik − πiπk|
πiπk

= O

(
N2

n

)
·O
(
N

n

)
= O

(
N3

n2

)
,

by means of condition (i) and (C2∗). For the remainder terms in b2, b3, b4
we obtain bounds for the same quantities, as the previous three. The rest
of the proof of Lemma B.1 remains the same. 2

Lemma B.2. If xN  x and yN  y in D[0, 1] with the Skorohod metric,
and x, y ∈ C[0, 1], then the sequence {xN + yN} is also tight in D[0, 1].

Proof. We can use Theorem 13.2 from [11]. The first condition follows easily
since

sup
t∈[0,1]

|xN (t) + yN (t)| ≤ sup
t∈[0,1]

|xN (t)|+ sup
t∈[0,1]

|yN (t)|.

Because xN  x and yN  y both sequences {xN} and {yN} are tight,
so that they satisfy the first condition of Theorem 13.2 individually. For
condition (ii) of Theorem 13.2 in [11], choose ε > 0. According to (12.7)
in [11], for any 0 < δ < 1/2,

w′x(δ) ≤ wx(2δ).

This means that

P
{
w′xN+yN

(δ) ≥ ε
}
≤ P {wxN+yN (2δ) ≥ ε}
≤ P {wxN (2δ) ≥ ε/2}+ P {wyN (2δ) ≥ ε/2} .

Consider the first probability. Since xN  x in D[0, 1] with the Skorohod
metric, according to the almost sure representation theorem (see, e.g., The-
orem 11.7.2 in [25]), there exist x̃n and x̃, having the same distribution as
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xN and x, respectively, such that x̃N → x̃, with probability one, in the Sko-

rohod metric. Because x̃
d
= x and x ∈ C[0, 1], also x̃ ∈ C[0, 1]. Hence, since

x̃ is continuous, it follows that

sup
t∈[0,1]

|x̃N (t)− x̃(t)| → 0, with probability one. (B.5)

We then find that

P {wxN (2δ) ≥ ε/2} = P

{
sup
|s−t|<2δ

|xN (s)− xN (t)| ≥ ε/2

}

= P

{
sup
|s−t|<2δ

|x̃N (s)− x̃N (t)| ≥ ε/2

}

≤ P

{
sup
|s−t|<2δ

|x̃(s)− x̃(t)| ≥ ε/4

}

+ P

{
sup
s∈[0,1]

|x̃N (s)− x̃(s)| ≥ ε/8

}
+ P

{
sup
t∈[0,1]

|x̃N (t)− x̃(t)| ≥ ε/8

}
.

The latter two probabilities tend to zero due to to (B.5). For the first prob-
ability on the right hand side, note that C[0, 1] is separable and complete.
This means that each random element in C[0, 1] is tight. Hence, x̃ ∈ C[0, 1]
is tight, so that according to Theorem 7.3 in [11], there exists a 0 < δ < 1/2,
such that

P

{
sup
|s−t|<2δ

|x(s)− x(t)| ≥ ε/4

}
= P {wx(2δ) ≥ ε/4} ≤ η.

We conclude that P {wxN (2δ) ≥ ε/2} → 0, and the same result for yN can
be obtained similarly. This proves the lemma.

Proof of Proposition 5.1 It suffices to prove (HT1) for rejective sam-
pling. The proof is along the lines of the proof of Theorem 3.2 in [7] and
uses results from [37]. To adapt to the notation used in [37], we will show
that

1

SN

(
1

N

N∑
i=1

ηiVi
πi
− 1

N

N∑
i=1

Vi

)
→ N(0, 1), ω − a.s., (B.6)

in distribution under Pd, where

S2
N = Vard

[
1

N

N∑
i=1

(
ηi
πi
− 1

)
Vi

]
=

1

N2

N∑
i=1

N∑
j=1

πij − πiπj
πiπj

ViVj .
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Here, the η1, . . . , ηN represent the inclusion indicators corresponding to the
rejective sampling design. The rejective sampling design can be represented
by a Poisson design conditional on the sample size being equal to n (e.g.,
see [32]) Let ξ1, . . . , ξN denote the indicators of the corresponding Poisson
design. Note that Ed[ηi] = πi and Ed[ξi] = pi, where the pi’s can be cho-
sen such that

∑N
i=1 pi = n, and that dN =

∑N
i=1 πi(1 − πi) → ∞, as a

consequence of (B2).
In order to obtain (B.6), it is more convenient to rewrite the left hand

side. To this end, note that by means of Theorem 5.1 in [32] and the fact
that

∑N
i=1 ηi =

∑N
i=1 pi = n, we can write

1

NSN

N∑
i=1

(ηi − πi)
Vi
πi

= (1 + o(1))
1

NSN

N∑
i=1

(ηi − pi)
(
Vi
pi
− θN

)
(B.7)

where

θN =
1

B2
N

N∑
i=1

Vi(1− pi),

B2
N =

N∑
i=1

pi(1− pi) = (1 + o(1))dN ,

(B.8)

according to Theorem 5.1 in [32]. The summation on the right hand side
of (B.7) is of the form

RN (η) =
N∑
m=1

fm,N (ηm), where fm,N (y) =
1

NSN
(y − pm)

(
Vm
pm
− θN

)
,

which is of the type considered in [37]. Furthermore, note that

ΛN =
N∑
m=1

Ed [fm,N (ξm)] = 0

γN =
1

B2
N

N∑
m=1

cov (fm,N (ξm), ξm) = 0.

Under suitable conditions on that we specify below

gm(y) = fm,N (y)− Edfm,N (ξm)− γN (y − Edξm) = fm,N (y),

according to Theorem 3.1 in [37],

RN (η)

σN
→ N(0, 1) (B.9)
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in distribution, where

σ2N =
N∑
m=1

Var [gm(ξm)] =
1

N2S2
N

N∑
m=1

(
Vm
pm
− θN

)2

pm(1− pm).

From Theorem 5.1 and 6.1 in [32], it follows that

σ2N = (1 + o(1))
1

N2S2
N

N∑
m=1

(
Vm
πm
−R

)2

πm(1− πm) = 1 + o(1), (B.10)

where R = d−1N
∑N

i=1 πi(1 − πi). Therefore, (B.6) is equivalent with (B.9)
and it remains to check the conditions of Theorem 3.1 in [37].

Define (as mentioned in [7], a factor
√
N after ε is missing in [37])

L1,N (ε) =
1

B3
N

N∑
m=1

Ed |ξm − pm|3 1 {|ξm − pm| ≤ εBN}

L2,N (ε) =
1

B2
N

N∑
m=1

Ed |ξm − pm|2 1 {|ξm − pm| > εBN}

L2,N (ε) =
1

σ2N

N∑
m=1

Edgm(ξm)21 {|gm(ξm)| > εσN}

MN (T ) = inf
T≤τ≤π

N∑
m=1

(
1− |Ed exp(iτξm)|2

)
,

if T ≤ π else MN (T ) =∞. If for arbitrary ε > 0,

(i) L2,N (ε)→ 0,

(ii) L2,N (ε)→ 0,

(iii) MN

(
π(4BNL1,N (ε))−1

)
→∞

(iv) min
(
BN ,
√
N
)

= o
(
MN

(
π(4BNL1,N (ε))−1

))
then (B.9) holds, according to Theorem 3.1 in [37].

ad(i). Since |Vi| ≤ K and pm/πm = 1 + o(1), according to Theorem 5.1
in [32], together with (C1) it follows that for N sufficiently large

|gm(ξm)| ≤ 2K

NSN

(
N

nK1
+

N

B2
N

)
≤ 2K

nSN

(
1

K1
+

n

B2
N

)
.
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Together, with condition (B1), there exists C > 0, such that

L2,N (ε) ≤ C

n2S2
N

1

σ2N

N∑
m=1

Edgm(ξm)2

ε2σ2N
=

C

n2S2
N

1

ε2σ2N
→ 0

according to (B3) and (B.10). This proves condition (i) in [37].
ad(ii). SinceB2

N = dN →∞, forN sufficiently large, {|ξm − pm| > εBN} ⊂
{2 > εBN} = ∅, which means that for N sufficiently large L2,N (ε) = 0. This
proves condition (ii) in [37].

ad(iii) First note that (see also [7])

|Ed exp(iτξm)|2 = 1 + 2pm(1− pm) (cos τ − 1)

so that for T ∈ [0, π],

MN (T ) = 2 inf
T≤τ≤π

(1− cos τ)
N∑
m=1

pm(1− pm) = 2B2
N (1− cosT ).

Because B2
N = dN → ∞, for N sufficiently large 1 {|ξm − pm| ≤ εBN} = 1.

This means that for N sufficiently large

L1,N (ε) =
1

B3
N

N∑
m=1

Ed |ξm − pm|3 ,

where
Ed |ξm − pm|3 = pm(1− pm)

{
1− 2pm + 2p2m

}
.

It follows that

1

2
pm(1− pm) ≤ Ed |ξm − pm|3 ≤ pm(1− pm),

so that for N sufficiently large, 2 ≤ 4BNL1,N (ε) ≤ 4, and therefore

MN

(
π(4BNL1,N (ε))−1

)
= 2B2

N (1− cos
(
π(4BNL1,N (ε))−1

)
)

≥ 2B2
N (1− cos (π/4))→∞.

This proves condition (iii) in [37].
ad(iv). From the previous computations it follows that

min(BN ,
√
N)

MN (π(4BNL1,N (ε))−1)
≤ min(BN ,

√
N)

2B2
N (1− cos(π/4))

=
1

2(1− cos(π/4))
min

(
1/BN ,

√
N/B2

N

)
→ 0

according to (B2) and the fact that B2
N = dN → ∞. This proves condi-

tion (iv) in [37]. 2
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Proof of (6.2) Following [22], one can write φ = ψ2 ◦ ψ1, where

ψ1(F ) =
(
F, βF−1(α)

)
ψ2(F, x) = F (x).

The Hadamard-derivative of φ can then be obtained from the chain rule,
e.g., see Lemma 3.9.3 in [48]. According to Lemma 3.9.20 in [48], for 0 <
α < 1 and F ∈ Dφ that have a positive derivative at F−1(α), the map ψ1 is
Hadamard-differentiable at F tangentially to the set of functions h ∈ D(R)
that are continuous at F−1(α) with derivative

ψ′1,F (h) =

(
h,−β h(F−1(α))

f(F−1(α))

)
.

It is fairly straightforward to show that for F that are differentiable at x,
the mapping ψ2 is Hadamard-differentiable at (F, x) tangentially to the set
of pairs (h, ε), such that h is continuous at x and ε ∈ R, with derivative

ψ′2,(F,x)(h, ε) = εf(x) + h(x).

Then for F ∈ Dφ that are differentiable at βF−1(α), the mapping ψ2 is
Hadamard-differentiable at ψ1(F ) =

(
F, βF−1(α)

)
. It follows from the chain

rule that φ(F ) = F
(
βF−1(α)

)
= ψ2 ◦ ψ1(F ) is Hadamard-differentiable

at F tangentially to the set D0 consisting of functions h ∈ D(R) that are
continuous at F−1(α) with derivative

φ′F (h) = −β f(βF−1(α))

f(F−1(α))
h(F−1(α)) + h(βF−1(α)).

2
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