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Abstract

We study second-degree price discrimination by a two-sided monopoly platform. The

incentive constraints of the agents on the value creation side may be in conflict with

internalizing externalities on the value capture side, which may render pooling opti-

mal. Even without such conflict between the two sides, pooling may be optimal due

to type-dependent Spence effects when the preferences of the marginal agents diverge

from those of the average agents on the value capture side. We perform a welfare anal-

ysis of price discrimination and show that prohibiting price discrimination improves

welfare when there is a strong conflict between the two sides. (JEL codes: D4, D82,

L5, M3)
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1 Introduction

Many two-sided platforms practice price discrimination against one or both groups of agents. For
example, the world’s largest on-demand streaming service, YouTube, offers the ad-free “YouTube
Premium,” for a subscription fee, along with the default free version containing advertisements.
Many online newspapers provide a choice between paid unlimited access and free limited access.
In contrast, many other platforms such as Google Search, Facebook, and Instagram do not discrim-
inate between consumers based on price; instead, they provide services to consumers free of charge
and monetize their attention by selling advertising. Despite the importance of platform markets in
the modern economy, little economic analysis has yet been put forward regarding second-degree
price discrimination by a two-sided platform. Given the growing global interest in regulating and
establishing antitrust legislation for digital platforms,1 it is important to understand how the logic
and welfare consequences of second-degree price discrimination in a two-sided platform differ
from the existing analysis, which is based on one-sided logic.2

Consider a media platform which provides content to consumers and generates most revenue
by selling consumers’ attention to advertisers. For this reason, we often call the consumer side
the value creation side and the advertiser side the value capture side.3 We show that there can be
a congruence or a conflict between the two sides, in the sense that the incentive of the agents on
the value creation side may be aligned or in conflict with the platform’s incentive to internalize
externalities on the value capture side. When conflict occurs between the two sides, this may
render pooling optimal on the consumer side due to nonresponsiveness (Guesnerie and Laffont
1984). We also show that even without a conflict between the two sides, pooling can be optimal
on the consumer side, because of a conflict between the agents on the value capture side. This
conflict within the value capture side arises due to type-dependent Spence (1975) effects when the
preferences of the marginal agents diverge from those of the average agents.

The type of an agent in a two-sided market plays a dual role by determining not only her private
benefit but also the externalities she generates to the agents on the other side. This dual role of
a type is essential in understanding the optimal mechanism, for it becomes the source for nonre-

sponsiveness in our model. In standard principal-agent theory, nonresponsiveness refers to a clash
between the incentive compatible (or implementable) allocations and the allocation the principal
desires to achieve, and such a clash can arise when the agent’s type and the screening instrument

1See for instance the reports by Crémer et al. (2019), U.K. Digital Competition Expert Panel (2019), Stigler
Committee on Digital Platforms (2019), Australian Competition and Consumer Commission (2018), and Japan Fair
Trade Commission (2017).

2For in-depth reviews on nonlinear pricing, see Wilson (1993) and Armstrong (2016).
3We thank Elie Ofek for suggesting these terms.
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directly affect the principal’s payoff.4 A similar clash can occur in a two-sided platform that inter-
mediates cross-group interactions. Consider the media platform described above, and suppose that
there are two types of consumers, a high type and a low type, whereas all advertisers are homo-
geneous. The platform should design an advertising policy, that is, the amount of advertisement
for each type of consumer. Assume that a high type suffers a greater nuisance from advertisement
than a low type does, but the advertisers find reaching a high type more valuable than reaching a
low type. In this environment, a clash could arise between the incentive constraints on the con-
sumer side (which requires a high type to have less exposure to advertising than a low type) and
the platform’s incentive to maximize advertising revenue (which requires a high type to have more
exposure to advertising than a low type). If such a clash arises, pooling becomes optimal (see more
details in the application of Section 6.2).

To clearly identify various forces, we perform our analysis in a progressive manner. What is
common throughout the whole analysis is that we consider heterogeneous agents on side A (the
value creation side) and focus on the screening of the types on this side with a screening instrument,
which is called “quality.” As is clear from the example of the advertising policy described above,
the screening instrument affects not only the payoff of an agent of side A to which the instrument
is assigned but also that of the agent of side B who interacts with an agent of side A.

Section 2 describes the baseline model and several examples of real-world platforms to which
the model can be applied. In the baseline model, we consider two types of agents on side A and
homogeneous agents on side B. Section 3 characterizes the first-best and the second-best contracts,
and compares the two. Even if the marginal benefit from quality increase is higher for a high type
than for a low type, the high type can generate either more or less positive externalities to side B

than the low type does. We say that a conflict (a congruence) between the two sides arises when
a low type generates more (less) externalities than a high type does. We also say that a quality
schedule is decreasing when the quality chosen for a high type is lower than the quality for a low
type.

We find that the first-best quality schedule is decreasing when the conflict between the two
sides is larger than a threshold and that the second-best quality schedule entails pooling when the
conflict between the two sides is larger than another threshold, which is larger than the first-best
threshold. Pooling arises when the platform’s desire to internalize externalities clashes with the

4For instance, suppose the principal is a benevolent regulator who cares not only about the production cost of a
regulated firm but also about the amount of pollution the firm emits, which depends on the firm’s type as well as the
firm’s output. Incentive compatibility requires that a low-cost firm should produce more output than a high-cost firm
does. However, if the higher cost results from greater efforts to reduce pollution, then the principal may want to induce
the high-cost firm to produce more than the low-cost firm does. Such an allocation clashes with the implementability
condition.
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implementability condition that calls for an increasing schedule.5

In Section 4, we make agents on side B heterogeneous by considering binary types on each side.
Therefore, when an agent of side A interacts with an agent of side B, the benefit that each agent
obtains from the interaction depends on the types of both agents. In this general model, we identify
a new source for pooling even when there is congruence between the two sides. Note that because
of the Spence effect in a two-sided market (Weyl 2010), the first-best quality schedule is based
on the average externalities to side B, while the second-best quality schedule is determined by the
externalities to the marginal agents of side B. In our model, the Spence effect is type-dependent,
as the platform offers a menu of qualities, and both the average externalities and the marginal
externalities generated by an agent of side A depend on the agent’s type and the quality assigned to
the type. This generates a conflict within side B if the average agents’ preference, in terms of the
preferred type on side A, diverges from that of the marginal agents. For instance, even when the
average agents on side B prefer interacting with a high type of side A to a low type (hence, there is
a congruence between the two sides), if the marginal agents on side B strongly prefer interacting
with a low type of side A to a high type, this can induce the platform to desire to implement a
decreasing quality schedule, which clashes with the implementability condition and thereby leads
to pooling.

Section 5 provides a welfare analysis of price discrimination. We consider the two-type baseline
model and compare the welfare under price discrimination with the welfare without price discrim-
ination. We first confirm the intuitive result that low types are more likely to be excluded when
price discrimination is banned than when it is allowed, regardless of whether the market is one-
sided or two-sided. This result implies that price discrimination generates a higher welfare if the
exclusion of low types occurs only without price discrimination.

Another interesting welfare result is obtained when the conflict between the two sides is strong
enough. If the strong conflict leads to pooling, then welfare is not affected by prohibiting price
discrimination. However, if the outcome under price discrimination is close enough to pooling but
involves differential treatments of the types, then banning price discrimination improves welfare.
Basically, under price discrimination, there is no distortion at the top (i.e., in the quality for a high
type) and there is a downward distortion at the bottom (i.e., in the quality for a low type), but the
presence of the strong conflict implies that the first-best quality for a low type is greater than the

5We also extend the analysis of the baseline model to a continuum of types on side A (see details in Appendix
A). When the first-best quality schedule is increasing, we provide a sufficient condition that makes the second-best
quality schedule strictly increasing and hence the implementability condition never binding. When the first-best quality
schedule is not increasing, we provide three different conditions, each of which renders complete pooling optimal. In
addition, we analyze the optimal contract involving either a complete or a partial shutdown.
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one for a high type. Hence, price discrimination entails an important distortion in the quality for
a low type. Without price discrimination, the platform chooses one quality for both types, and
hence banning price discrimination entails a smaller distortion in the quality for a low type, which
dominates the effect from distortion in the quality for a high type, as this is of second order. We
also extend the welfare analysis of the baseline model to the general model with binary types on
each side.

Section 6 provides two applications to media platforms. The first applies the baseline model
to an online newspaper that bundles a fixed proportion of advertising to its articles. It discusses
when we expect a congruence or a conflict to arise between the two sides. The second application
analyzes the advertising policy of a media platform and illustrates when pooling is optimal.

1.1 Related literature

This article is related to several strands of literature. First, our paper is closely related to the second-
degree price discrimination in the principal-agent theory (e.g., Mussa and Rosen 1978; Maskin
and Riley 1984) and to the concept of nonresponsiveness. After Guesnerie and Laffont (1984)’s
pioneering work on the nonresponsiveness, Caillaud and Tirole (2004) explore it in the context of
financing an essential facility; Jeon and Menicucci (2008) apply the concept to the allocation of
talent between the public and private sectors. In this paper, we explore nonresponsiveness in two-
sided markets. Our contribution to the literature is threefold: to microfound nonresponsiveness in
a two-sided market by formalizing the notion of the congruence and conflict between two sides; to
identify a new source for nonresponsiveness generated by a conflict within the value capture side;
and to provide novel welfare results (for instance, banning price discrimination improves welfare
when there is a strong conflict between the two sides).

This article broadly contributes to the literature studying a two-sided monopoly platform (e.g.,
Caillaud and Jullien 2001; Rochet and Tirole 2003; Armstrong 2006; Rochet and Tirole 2006;
Hagiu 2009; Jeon and Rochet 2010). In particular, our paper complements Weyl (2010), who con-
siders a rich type space and identifies the Spence (1975) distortion in that the platform internalizes
cross-side externalities to marginal rather than average users of the other side when deciding the
level of participation on one side. In our model, the platform employs a menu of screening instru-
ments called qualities, which renders the Spence effect type-dependent. Our novelty is to show that
this type-dependent Spence effect can make pooling optimal when there exists a conflict among
the agents within the value capture side.

Our paper is closely related to a few recent articles studying second-degree price discrimina-
tion by a two-sided monopoly platform. Choi, Jeon, and Kim (2015) study second-degree price
discrimination in the context of the debate on network neutrality regulations. They consider two
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types of content providers and homogeneous consumers. They assume that any surplus generated
by the interaction between a content provider and a consumer is shared between the two accord-
ing to an exogenous parameter, interpreted as “business model.” They study how this parameter
crucially affects the welfare under non-neutral networks where price discrimination is allowed and
the welfare under neutral networks where price discrimination is banned. Böhme (2016) considers
a model in which there are two types on each side and each agent’s utility consists of two compo-
nents: a type-specific intrinsic utility from access to the platform and an additional type-specific
indirect network effect from interacting with agents on the opposite side of the market. We show
that the model of Choi et al. (2015) can be obtained as a special case of congruence between the
two sides in our baseline model (see Remark 1). In Böhme (2016), the externality generated by an
agent to an agent on the other side depends only on the latter’s type, such that a high type enjoys a
larger externality than a low type does. For this reason, the model of Böhme (2016) belongs to a
limit case in which there is neither congruence nor conflict (in a strict sense) between the two sides
and there is no conflict within a side (see Remark 2). As a consequence, none of the two papers
find the optimality of pooling. Hence, our result that pooling can be optimal either because of the
conflict between the two sides or because of the conflict within the value capture side cannot arise
in these papers.6 Last, Lin (2020) studies advertising policy by a media platform and obtains a
similar result as the application in Section 6.2.7 Basically, Lin extends our application in an earlier
version of this paper (Jeon et al., 2016), which considers heterogeneous consumers and advertisers,
by allowing the platform to determine, for each type of consumer, the types of advertisers who can
show advertising.8

Our paper is complementary to Gomes and Pavan (2016). They consider heterogeneous agents
on both sides and study a centralized many-to-many matching. Like us, agents have double roles
as their vertical characteristics capture “consumer value” (private benefit) and “input value” (exter-
nality) to the opposite side. The main theme of Gomes and Pavan (2016) is how matching patterns
reflect optimal cross-subsidization between sides. They identify conditions on the primitives un-
der which the optimal matching rule has a threshold structure such that each agent on one side is

6In a broad sense, our results on quality distortions both at the top and at the bottom are related to the literature
on one-sided markets with network effects (e.g., Hahn 2003; Sundararajan 2004; Csorba 2008; Meng and Tian 2008)
and the literature on countervailing incentives (e.g., Lewis and Sappington 1989; Maggi and Rodriguez-Clare 1995).

7Our application is broadly connected to a strand of the two-sided market literature on advertising/media plat-
forms. For instance, it is related to Gabszewicz, Laussel, and Sonnac (2004), Anderson and Coate (2005), Peitz and
Valletti (2008), Crampes, Haritchabalet, and Jullien (2009), Anderson and Gans (2011), Johnson (2013), Ambrus, Cal-
vano, and Reisinger (2016), etc. In particular, Angelucci and Cagé (2019) study a monopoly newspaper that practices
price discrimination by offering a choice between buying a subscription and buying individual issues.

8Jeon et al. (2016) consider a restrictive mechanism in order to focus on the question of complementarity and
substitution between price discrimination on side A and price discrimination on side B.
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matched with all agents on the other side above a threshold type. By contrast, we focus on the plat-
form’s design of menu pricing when quality provision can enhance both match values under the
assumption that all agents on one side interact with all agents on the other side, which is standard
in the literature on two-sided markets (Armstrong 2006; Rochet and Tirole 2006; Weyl 2010).9

2 The Baseline Model

We here introduce the baseline model, which focuses on nonresponsiveness in a two-sided plat-
form. A monopolistic two-sided platform mediates interactions between agents from two sides, A

and B. On each side there is a mass one of agents. We assume that all agents on any given side inter-
act with all (or a random subset of) agents on the other side, following Armstrong (2006), Rochet
and Tirole (2006), and Weyl (2010). We assume that the agents on side A are heterogeneous, but
all agents on side B are homogeneous, which will be relaxed in Section 4. Throughout this paper,
we consider screening on side A only: the platform’s mechanism design is based on a screening
instrument applied to side A, called “quality.”10 We will first provide a general framework and then
specify it to a model analyzed in Section 3.

2.1 A general framework

Let θ A ∈ R++ represent a generic type of the agents on side A and ΘA denote the set of types
on side A. Let qA ≥ 0 represent a screening instrument called “quality.” When a type θ A agent of
side A interacts with an agent of side B, the former’s gross utility from the interaction is given as

PRIVATE BENEFIT: UA(qA;θ
A),

where UA is strictly increasing and strictly concave in quality qA and satisfies the single-crossing
condition (i.e., ∂ 2UA/∂qA∂θ A > 0). Let c ≥ 0 denote the constant marginal cost of providing
quality qA.

The gross utility an agent of side B obtains from the interaction with a type θ A agent of side A,
which is regarded as externalities generated by the latter, is given by

CROSS-SIDE EXTERNALITIES: UB(qA;θ
A),

9Gomes and Pavan (2018) introduce a new dimension that agents have horizontally differentiated preferences and
focus on the issues of targeting and price customization. Since the customization cost can vary in the volume of
matches and plans selected by agents, they consider both second-degree and third-degree price discrimination.

10When there are heterogeneous agents on both sides, we can consider screening on each side and study when the
price discrimination on side B substitutes for or complements the price discrimination on side A. But we leave this
question for future research and confine the scope of this paper to screening on one side only. An earlier version of
this paper (Jeon et al. 2016) addressed the above research question with some restrictive assumptions.
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where we note that UB depends both on qA and θ A. UB can increase or decrease with qA; similarly
it can increase or decrease with θ A. Note that our framework requires qA to affect UB. Otherwise,
the dependency of UB on θ A alone plays no role in determining the optimal qA, implying that we
are back to standard second-degree price discrimination in one-sided markets.

As we consider a two-sided platform in which agents on one side obtain utilities from inter-
acting with agents on the other side, we can interpret UA as externalities from side B to side A in
the same way as we interpret UB as externalities from side A to side B. As qA affects both UA

and UB in a monotonic way, qA represents the extent of cross-side externalities and the single-
crossing condition implies that an agent of side A experiences more benefit from externalities as
θ A increases.

Since we mainly have in mind a situation in which the platform makes the most revenue from
side B, we often call side A the value creation side and side B the value capture side. In Table 1,
we provide some examples of platforms to which our framework can be applied.

Table 1: Examples of model interpretation

Platform Agents A Agents B Quality to agents A (qA) ∂UA

∂qA
∂UB

∂qA

Online newspapers Readers Advertisers Number of articles + +

Internet service providers Content providers Internet users Quality of content delivery + +

Online content platforms Users Advertisers Ad reduction + −
Social networks Users Advertisers Privacy protection level + −

In the case of online newspapers that bundle news content with advertising, side A represents
readers and side B advertisers. qA can be the number of articles a reader reads. As the amount of
advertising is proportionate to the number of articles, qA also represents the amount of advertising.
In this case, both UA and UB increase with qA. We analyze this example in the application of
Section 6.1. For Internet service providers, side A represents content providers and side B users.
qA can be service quality of content delivery. Still, both UA and UB increase with qA. Choi
et al. (2015) analyze such a situation, but our model is more general, as it can include theirs as
a particular case (see Remark 1). For online content platforms financed by advertising, side A

represents users and side B advertisers. Let a ∈ [0,a] represent the amount of advertising per user
where a > 0 is an upper bound. Then, we can define qA ≡ a−a. As users suffer from ad nuisance,
UA increases with qA but UB decreases with qA. We analyze this application in Section 6.2. Finally,
for social media such as Facebook, side A represents users and side B advertisers. qA can be the
level of privacy protection. Hence, UA increases with qA. As long as increased privacy protection
makes it more difficult to collect and use personal data for targeted advertising, UB decreases with
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qA.
Therefore, UA increases with qA in all the examples described above, whereas UB can increase

or decrease with qA. In what follows, we specify the model such that UA and UB increase with
qA. But the result on nonresponsiveness obtained from this specification is valid even when UB

decreases with qA (see Section 6.2).

2.2 Specification of the Model

As we prefer a baseline model similar to that of Mussa and Rosen (1978), for the analysis of
Section 3, we specify UA and UB as follows:

(1) UA(qA;θ
A) = θ

AuA(qA), UB(qA;θ
A) = e(θ A)uB(qA),

where e(θ A)> 0 represents the intensity of the positive externalities. We make no assumptions on
the monotonicity of the function e, but assume that both uA and uB are strictly increasing, strictly
concave, and uA(0) = uB(0) = 0. A one-sided market benchmark is captured by the special case
of e(θ A) = 0 for any θ A ∈ ΘA, which essentially makes our model collapse into the classic model
of Mussa and Rosen (1978).

Importantly, we can see the dual role played by the type, θ A. Beyond its usual role as a taste
intensity, θ A is a determinant of externalities to the agents on side B.

The platform offers on side A a menu of quality-price pairs
{
(qA(θ A), pA(θ A))

}
θ A∈ΘA , while it

offers only a subscription price pB on side B. We say a quality schedule qA : ΘA→R+ is increasing
(decreasing) if qA is a weakly increasing (decreasing) function of θ A.

In Section 3, we analyze a two-type model, whereas we analyze a model with a continuum of
types in Appendix A. Consider a two-type case: ΘA =

{
θ A

L ,θ
A
H
}

with θ A
H > θ A

L > 0 and ∆θ A ≡
θ A

H −θ A
L where a θ A

L type is called a low type and a θ A
H type is called a high type. Let νA ∈ (0,1)

represent the probability that an agent on side A has type θL.

3 Analysis of the baseline model: nonresponsiveness

In this section, we analyze the baseline model introduced in Section 2. Since there are types
only on side A, in this section we drop the superscript A for qualities, types, and payments. For
simple notations, we define qL ≡ q(θL), pL ≡ p(θL), and eL ≡ e(θL); qH , pH , and eH are similarly
defined. Hence, the menu of contracts offered by the platform on side A is {(qL, pL),(qH , pH)}.
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3.1 First-best

Given the menu {(qL, pL),(qH , pH)} and pB, the individual rationality constraints are written as
follows: for a low-type agent on side A,

(2) (IRL) θLuA(qL)− pL ≥ 0;

for a high-type agent on side A,

(3) (IRH) θHuA(qH)− pH ≥ 0;

for an agent on side B,

(IRB) ν
AeLuB(qL)+(1−ν

A)eHuB(qH)− pB ≥ 0.

In the first-best case, the platform can extract the full surplus of all agents of both sides through
the prices. Hence the platform’s profit, which is equal to the welfare W (qL,qH), is given by

W (qL,qH)≡ ν
A
(

θLuA(qL)+ eLuB(qL)− cqL

)
+(1−ν

A)
(

θHuA(qH)+ eHuB(qH)− cqH

)
.

Let
(
qFB

L ,qFB
H
)

denote the first-best quality schedule. We assume interior solutions. Then,
(
qFB

L ,qFB
H
)

is characterized by

(4) θLuA′(qFB
L )+ eLuB′(qFB

L ) = c, θHuA′(qFB
H )+ eHuB′(qFB

H ) = c.

Given a type, the first-best quality equalizes the sum of the marginal surplus generated on each
side to the marginal cost. In a one-sided market with eL = eH = 0, the first-best quality schedule
is strictly increasing, that is, qFB

L < qFB
H , since θL < θH . By contrast, in a two-sided market with

eL > 0 and eH > 0, the relationship qFB
L < qFB

H does not necessarily hold. Below, we report when
an increasing quality schedule arises in the first-best and when it does not.

Proposition 1 Consider the baseline model. The first-best quality schedule
(
qFB

L ,qFB
H
)

is deter-

mined by (4). Given (θH ,θL,eH), there is a threshold ∆FB > 0 such that qFB
L ≤ qFB

H if and only if

eL− eH ≤ ∆FB.

Example 1 Suppose uB(q) = βuA(q) for some β > 0, for each q≥ 0. Then, qFB
L ≤ qFB

H if and only

if eL− eH ≤ (θH−θL)/β .
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3.2 Second-best

In the presence of asymmetric information about θ , the platform faces incentive constraints on
the value creation side, which creates what is called the implementability condition such that the
platform can implement only increasing quality schedules, i.e., those satisfying qL ≤ qH . This
condition is not binding if eH ≥ eL holds, because then both extracting the surplus on side A and
internalizing externalities on side B require the platform to offer an increasing quality schedule.
In contrast, if eH < eL holds, internalizing externalities requires the platform to offer a decreasing
quality schedule and therefore can create a conflict with the implementability condition. Therefore,
we introduce the following definition to distinguish between two situations.

Definition (Congruence vs. Conflict between the two sides) There is a congruence (conflict)
between the value creation side and the value capture side if eH ≥ eL (eH < eL).

In what follows, we show that the optimal mechanism can differ greatly, depending on whether
there exists a congruence or a conflict between the two sides.

In the second-best, the menu of contracts {(qL, pL),(qH , pH)} offered by the platform needs
to satisfy the following incentive constraints, in addition to the individual rationality constraints
introduced previously: for a low-type agent on side A,

(5) (ICL) θLuA(qL)− pL ≥ θLuA(qH)− pH ;

for a high-type agent on side A,

(6) (ICH) θHuA(qH)− pH ≥ θHuA(qL)− pL.

The platform maximizes its profit

(7) π = ν
A (pL− cqL)+(1−ν

A)(pH− cqH)+ pB

subject to the incentive constraints (ICL) and (ICH), and the individual rationality constraints
(IRL), (IRH), and (IRB).

The platform fully extracts the surplus on side B. Standard arguments show that on side A: (i)
(IRL) and (ICH) bind in the optimum and hence pL = θLuA(qL) and pH = θHuA(qH)−∆θuA(qL);
(ii) (ICL) reduces to

(8) (M) qL ≤ qH ,
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where (M) refers to the monotonicity constraint, also called the implementability condition (Laf-
font and Martimort 2002). The monotonicity constraint means that the platform can implement
only increasing quality schedules. Then the platform’s profit is given by

(9) Π(qL,qH) = ν
A
(

θ
v
LuA(qL)+ eLuB(qL)− cqL

)
+(1−ν

A)
(

θHuA(qH)+ eHuB(qH)− cqH

)
,

where θ v
L = θL− 1−νA

νA ∆θ is the virtual valuation of the low type, and we assume θ ν
L > 0. The

platform maximizes Π with respect to (qL,qH) subject to (8). Let
(
qSB

L ,qSB
H
)

denote the second-
best quality schedule and (q∗L,q

∗
H) denote the solution that maximizes Π when the monotonicity

constraint is neglected: (q∗L,q
∗
H) satisfies the first-order conditions for the maximization of (9):

(10) θ
v
LuA′(q∗L)+ eLuB′(q∗L) = c, θHuA′(q∗H)+ eHuB′(q∗H) = c.

Comparing (4) and (10) reveals that the only difference between the two is that θL is replaced by
θ ν

L in (10), which implies q∗H = qFB
H and q∗L < qFB

L . If q∗L ≤ qFB
H , the optimal second-best quality

schedule is given as qSB
L = q∗L and qSB

H = qFB
H . Otherwise (i.e., if q∗L > qFB

H ), the monotonicity
constraint is binding and we have qSB

L = qSB
H = qP, where qP is characterized by

(11) θLuA′(qP)+(νAeL +(1−ν
A)eH)uB′(qP) = c.

Proposition 2 Consider the baseline model. The second-best quality schedule
(
qSB

L ,qSB
H
)

is char-

acterized as follows. Given (θH ,θL,eH), there is a threshold ∆SB (> ∆FB) such that:

(i) qSB
L < qSB

H (= qFB
H ) if and only if eL− eH < ∆SB, where qSB

L = q∗L is given by (10);

(ii) Otherwise, pooling is optimal: qSB
L = qSB

H = qP where qP satisfies (11).

Example 2 Suppose uA(q) = uB(q) = ln(1+ q) and c = 1. Then we have qFB
L = θL + eL− 1,

qFB
H = θH + eH − 1 and hence qFB

L ≤ qFB
H if and only if eL− eH ≤ ∆FB = ∆θ . Moreover, q∗L =

θ ν
L + eL−1≤ qFB

H if and only if eL− eH ≤ ∆SB = ∆θ

νA .

In the case of a conflict between the two sides, eL− eH measures the degree of conflict. The
proposition shows that pooling is optimal in the case of strong conflict (i.e., eL− eH ≥ ∆SB). ∆SB

> ∆FB follows from the fact that θ v
L < θL makes q∗L < qFB

L in (10). The pooling arises because
of nonresponsiveness (Guesnerie and Laffont 1984; Laffont and Martimort 2002), which refers to
a clash between the allocation the principal desires to achieve and incentive compatible (or im-
plementable) allocations. In a standard principal-agent model such a conflict may arise when the
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agent’s type and quality directly affect the principal’s utility. Our model shows that nonresponsive-
ness can arise naturally in a two-sided platform because of the double role played by an agent’s
type: an agent’s type determines not only the agent’s private benefit (as usual in the principal-agent
literature), but also the externalities the agent generates to the other side.

Comparing the first-best quality schedule with the second-best one by distinguishing different
levels of conflict between two sides yields:

Proposition 3 Consider the baseline model. When we compare the first-best quality schedule with

the second-best one, we find:

(i) In the case of a congruence or a low level of conflict between the two sides (i.e., eL− eH ≤
∆FB), qSB

L < qFB
L ≤ qSB

H = qFB
H ;

(ii) In the case of an intermediate level of conflict between the two sides (i.e., ∆FB < eL− eH <

∆SB), qSB
L < qSB

H = qFB
H < qFB

L ;11

(iii) In the case of a high level of conflict between the two sides (i.e., eL−eH > ∆SB), qFB
H < qSB

L =

qSB
H < qFB

L .

In the case of a congruence or a low level of conflict between the two sides, the first-best and
the second-best schedules have the same order (both are increasing). In contrast, in the case of an
intermediate level of conflict, the order is reversed: the first-best schedule is decreasing while the
second-best one is increasing. There is a downward distortion at the bottom (i.e., qSB

L < qFB
L ) in all

cases.12 Interestingly, there is an upward distortion at the top when pooling arises: qSB
H > qFB

H for
eL− eH > ∆SB.

Remark 1 Choi et al. (2015) consider two types of content providers on side A and homogeneous

consumers on side B. Our model captures their model as a special case as follows:

eH =
1−α

α
θH ,eL =

1−α

α
θL,

where α ∈ (0,1] is a parameter capturing the business model. They assume θH > θL, which always

leads to eH > eL. Hence, the first-best quality schedule is always strictly increasing; neither the

case of conflict nor nonresponsiveness is considered in their model.

11When eL− eH = ∆SB, we have qSB
L = qFB

H = qSB
H < qFB

L .
12Hence, we can have qSB

L = 0 < qFB
L : the exclusion of low types can occur in the second-best while it does not

in the first-best. We provide analysis of shutdown in Section 5 where we consider binary types, and in Appendix A
where we consider a continuum of types.
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4 A General Model: Type-dependent Spence Effects

We now consider a general model that extends the baseline model of Section 2 by introducing
heterogeneity on side B, so that multiple types exist on both sides. The main goal of this extension
is to show that type-dependent Spence effects can lead to pooling even if there is a congruence
between the two sides (more generally, even if the first-best quality schedule is strictly increasing),
which is not possible without the heterogeneity on side B.

On side A, we maintain the same model as the two-type case in the previous section. On side B,
we introduce two types: each agent on side B has a type θ B that belongs to the set ΘB =

{
θ B

l ,θ
B
h

}
,

where we use l (h) for a low (high) type on side B. νB ∈ (0,1) denotes the probability that θ B is
equal to θ B

l .
When a type θ A agent of side A interacts with a type θ B agent of side B and obtains quality q

from the platform, his gross surplus depends on both types θ A and θ B as follows:

b(θ A,θ B)uA(q).

Under our assumption that each agent of a given side interacts with all (or a random subset of)
agents on the other side, the total gross surplus that a type θ A agent of side A obtains from inter-
acting with all agents of side B is given by

PRIVATE BENEFIT:
[
ν

Bb(θ A,θ B
l )+(1−ν

B)b(θ A,θ B
h )
]

uA(q).

The term νBb(θ A,θ B
l ) + (1− νB)b(θ A,θ B

h ) is what matters for an agent on side A; hence with

some abuse of notation, we use θ A to denote it. This enables us to maintain the same notation as
in Section 3, where θ B

l = θ B
h . We assume 0 < θ A

L < θ A
H : a high type obtains a greater benefit of

interaction than a low type does.
On side B, the externality term depends on both types

(
θ A,θ B) and qA such that the gross utility

of an agent of side B is given by

CROSS-SIDE EXTERNALITIES: e(θ B,θ A)uB(qA),

where e(θ B,θ A)> 0.
We consider that the platform uses the following mechanism

{(
qA(θ A), pA(θ A)

)
θ A∈{θ A

L ,θ
A
H} , pB

}
where the platform chooses a single price for side B. This implies that the quality assigned to a
type θ A agent depends only on his own type but does not depend on the types of the agents on
side B. We can consider an alternative mechanism in which the quality depends on both types
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{
qA(θ A,θ B), pA(θ A), pB(θ B)

}
for θ A ∈

{
θ A

L ,θ
A
H
}

and θ B ∈
{

θ B
l ,θ

B
h

}
. Depending on the applica-

tions, one mechanism makes more sense than the other. If qA represents the number of newspaper
articles or the quality of content delivery or the level of privacy protection in Table 1 of Section 2, a
mechanism specifying qA(θ A) is appropriate. In contrast, in the case of an advertising platform in
which qA decreases with amount of advertising, a mechanism specifying qA(θ A,θ B) is appropriate
if the platform can determine the amount of advertising that a θ B type of advertiser can show to a
θ A type of consumer (see Lin (2020) for a related analysis).

Therefore, the total gross surplus that a type θ B agent of side B obtains from interacting with
all agents of side A is given by

ν
Ae(θ B,θ A

L )u
B(qA(θ A

L ))+(1−ν
A)e(θ B,θ A

H)u
B(qA(θ A

H)).

As there are two types on each side, we simplify notation by defining

e jk ≡ e(θ B,θ A) if θ
B = θ

B
j and θ

A = θ
A
k , for j = l,h and k = L,H.

For instance, elH is the externality to a low-type agent of side B from a high-type agent of side A.
Generically, either νAehL +(1−νA)ehH > νAelL +(1−νA)elH or νAehL +(1−νA)ehH < νAelL +

(1−νA)elH holds. In the latter case, we can rename types and call a low type (of side B) a high
type and vice versa. Therefore, without loss of generality, we can restrict attention to the case in
which the following inequality holds:

(12) ν
AehL +(1−ν

A)ehH > ν
AelL +(1−ν

A)elH .

The above inequality means that the total marginal surplus from a unit increase in uB is greater for
a high type than for a low type on side B.

Definition (type reversals) Given (12), we can identify three sub-cases depending on the signs of
ehH− elH and of ehL− elL. We say that on side B there is

no type reversal if ehH− elH > 0 and ehL− elL > 0;

type reversal with positive sorting if ehH− elH > 0 > ehL− elL;

type reversal with negative sorting if ehL− elL > 0 > ehH− elH .

For instance, the type reversal with positive sorting occurs if, conditional on interacting with a high
type on side A, the agent on side B prefers to have a high type, but conditional on interacting with
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a low type on side A, the agent on side B prefers to have a low type.
The total gross externalities a type θ A agent generates to all agents of side B are given by[

ν
Be(θ B

l ,θ
A)+(1−ν

B)e(θ B
h ,θ

A)
]

uB(qA(θ A)).

In what follows, we use simpler notations. First, we define

ea
L ≡ ν

BelL +(1−ν
B)ehL and ea

H ≡ ν
BelH +(1−ν

B)ehH

where ea
k represents the average externality exerted by a type k agent of side A (k = L,H). We also

succinctly notate
qL ≡ qA(θ A

L ) and qH ≡ qA(θ A
H).

4.1 First-best

The total welfare is given by

ν
A
(

θ
A
L uA(qL)+ ea

LuB(qL)− cqL

)
+(1−ν

A)
(

θ
A
HuA(qH)+ ea

HuB(qH)− cqH

)
.

The first-best quality schedule is characterized by the two first-order conditions:

(13) θ
A
L uA′(qFB

L )+ ea
LuB′(qFB

L ) = c, θ
A
HuA′(qFB

H )+ ea
HuB′(qFB

H ) = c.

which is analogous to (4), after replacing eL with ea
L and eH with ea

H . That is, in the first-best, when
one computes the marginal surplus from interaction between a given type agent of side A with all
agents of side B, one should consider the benefit of the agent on side A and the average externality

he exerts to side B. Applying Proposition 1 to (13) yields:

Proposition 4 Consider the general model in which the agents on each side are heterogeneous.

The first-best quality schedule
(
qFB

L ,qFB
H
)

is determined by (13). Given (θ A
H ,θ

A
L ,e

a
H), there is a

threshold ∆FB > 0 such that qFB
L ≤ qFB

H if and only if ea
L−ea

H ≤ ∆FB. The threshold ∆FB is identical

to the one in Proposition 1 as long as (θH ,θL,eH) = (θ A
H ,θ

A
L ,e

a
H)

4.2 Second-best

The aim of the second-best analysis is to show that pooling can arise due to conflict within the value
capture side even when the first-best quality schedule is increasing. Since pooling never arises if
the first-best quality schedule is increasing in the case of type reversal with negative sorting (see
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Lemma 2 in Appendix B), we here consider only no type reversal and type reversal with a positive
sorting and relegate the analysis of type reversal with negative sorting to Appendix B.13

Based on Proposition 4, we adapt the previous definition of congruence (and conflict) between
the two sides as follows:

Definition (Congruence vs. Conflict between the two sides) There is a congruence (conflict)
between the value creation side and the value capture side if ea

H ≥ ea
L (ea

H < ea
L).

We also define a congruence (and conflict) within side B between the average agent and the
marginal agent. We consider that in the definition, the marginal agent has the low type and later on
show that this is true.

Definition (Congruence vs. Conflict within a side)

• There is a congruence within side B between the average agent and the marginal agent if we
have either ea

H > ea
L and elH > elL, or ea

H < ea
L and elH < elL;

• There is a conflict within side B between the average agent and the marginal agent if we have
either ea

H > ea
L and elH < elL, or ea

H < ea
L and elH > elL.

The platform proposes a menu
{
(qL, pA

L),(qH , pA
H)
}

to side A and a single subscription price pB

to side B under asymmetric information about types on both sides. We assume that the platform
serves both types of agents on each side. Then the profit of the platform is given by π in (7). The
platform maximizes π subject to the incentive constraints on side A (i.e., (5) and (6)), the individual
rationality constraints on side A (i.e., (2) and (3)), and the individual rationality constraints on side
B (i.e., (IRB

h ), and (IRB
l )), where

(IRB
j ) ν

Ae jLuB(qL)+(1−ν
A)e jHuB(qH)− pB ≥ 0 for j = l,h.

As in Section 3, (qL,qH) need to satisfy the monotonicity constraint (8).
In the case of no type reversal or type reversal with positive sorting, we find that (IRB

l ) is
necessary and sufficient to induce full participation on side B, since qL ≤ qH must hold because of
(8). Therefore, the price on side B is

pB = ν
AelLuB(qL)+(1−ν

A)elHuB(qH).

13Interestingly, we show that in the case of type reversal with negative sorting, the individual rationality constraint
on side B can bind for low type only, for high type only, or for both types.
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Then the platform maximizes the following profit, subject to (8):
(14)

Π(qL,qH) = ν
A
(

θ
Av
L uA(qL)+ elLuB(qL)− cqL

)
+(1−ν

A)
(

θ
A
HuA(qH)+ elHuB(qH)− cqH

)
where θ Av

L is the same as the virtual valuation θ v
L we saw in Section 3. Let (q∗L,q

∗
H) denote the

solution that maximizes Π when (8) is neglected: (q∗L,q
∗
H) satisfies the first-order conditions:

(15) θ
Av
L uA′(q∗L)+ elLuB′(q∗L) = c, θ

A
HuA′(q∗H)+ elHuB′(q∗H) = c.

Comparing (15) with (10), the first-order conditions characterizing (q∗L,q
∗
H) in Section 3, reveals

that the only difference lies in that eL is replaced by elL and eH by elH . This is because the
externality is now evaluated with the valuation of the marginal type on side B, that is, the low type.
In contrast, under complete information on side B, the externality is evaluated with the average
valuation. This is clearer when we compare (13) with (15): then ea

L is replaced by elL and ea
H

by elH . This distortion is known as the Spence effect (1975). Weyl (2010) identifies the Spence
(1975) distortion in a two-sided platform in terms of the level of participation on one side. In our
model, the Spence effect is type-dependent because the platform offers a menu of qualities on side
A and hence the distortion in quality generated by the effect differs depending on whether q= qL or
q = qH . Our novelty is to show that this type-dependent Spence effect can render pooling optimal
even when the first-best quality schedule is increasing.14

Note that the optimal pooling quality qP is determined as follows:

(16) θ
A
L uA′(qP)+(νAelL +(1−ν

A)elH)uB′(qP) = c.

Applying Proposition 2 to (15) yields:

Proposition 5 Consider the case of no type reversal or type reversal with positive sorting in the

general model. The second-best quality schedule
(
qSB

L ,qSB
H
)

is characterized as follows. Given

(θ A
H ,θ

A
L ,elH), there is a threshold ∆SB, which is the same as the one in Proposition 2 as long as

(θH ,θL,eH) = (θ A
H ,θ

A
L ,elH), such that

(i) qSB
L < qSB

H if and only if elL− elH < ∆SB, where qSB
L = q∗L and qSB

H = q∗H from (15);

14One might wonder whether Spence distortions arise because of the assumption that the platform cannot price
discriminate side B. Suppose that we allow the platform to price discriminate side B by using a screening instrument
qB. Then, we should discuss whether qA is substitute to or independent of or complementary to qB when they enter
into the payoff function of each agent on side i (i = A,B). This adds complexity to the analysis. However, in an earlier
version (Jeon et al. 2016), we studied the case in which qA and qBenter into the payoff function in a separable way and
obtained the same first-order conditions as (15) regarding

(
qA∗

L ,qA∗
H
)
.
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(ii) Otherwise, pooling is optimal: qSB
L = qSB

H = qP, where qP satisfies (16).

From Proposition 5 (and Proposition 4), we obtain the following corollary.

Corollary 1 Consider the case of no type reversal or type reversal with positive sorting in the

general model.

(i) If elL−elH ≥ ∆SB and ea
L ≤ ea

H , pooling is optimal even if there is a congruence between the

two sides. Under the condition, there is a strong conflict within side B.

(ii) If elL−elH ≥∆SB and ea
L−ea

H <∆FB, pooling is optimal even if the first-best quality schedule

is strictly increasing.

As the congruence between the two sides implies that the first-best quality schedule is strictly
increasing, the condition in Corollary 1(i) is more restrictive than the condition in Corollary 1(ii).
The condition in Corollary 1(i) clearly shows that pooling occurs because of the conflict within
side B: even if the average agents of side B prefer interacting with a high type to interacting with
a low type, the marginal type of side B strongly prefers interacting with a low type to interacting
with a high type. This implies that q∗L is larger than q∗H and hence the platform chooses pooling.
Below, we provide an example in which pooling arises under congruence between the two sides.

Example 3 Consider uA(q) = uB(q) = ln(1+q) and c = 1 (as in Example 2). Suppose νA = 1/2,

θL = 17, θH = 18, which implies θ v
L = 16. Suppose also νB = 0.55, elL = 6, ehL = 7, elH = 3 and

ehH = 11, implying that there is no type reversal. As ea
L = 6.45 < ea

H = 6.6, there is a congruence

between the two sides and thus the first-best quality schedule is strictly increasing. Precisely, we

have qFB
L = 22.45 < qFB

H = 23.6. elL− elH = 3 >> ea
H − ea

L = 0.15 implies that there is a strong

conflict within side B.

Under asymmetric information about types, from (15), q∗L = 21 > q∗H = 20. Therefore, pooling

arises in the second-best and we have qP = 20.5. In this analysis of pooling, pB is chosen to induce

full participation of both types (i.e., the IR constraint binds for low types) on side B and the profit

is 45.463. When we consider an alternative in which pB is chosen to induce participation of high

types only on side B,15 it is optimal to choose qL = 18.15 and qH = 21.95, which generates a profit

of 44.173. Therefore, pooling with full participation on side B is optimal.

15Recall that in this section, we assume that the platform induces full participation by agents on side B. However,
in this example, we verify that full participation is indeed optimal.
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Remark 2 Böhme (2016) considers two types on both sides and screening on both sides as we

did in an earlier version of our paper (see footnote 14). He assumes that type j on side k has an

intrinsic utility θ k
j u(qk

j) from joining the platform, and an indirect network effect from interacting

with the agents on the other side, side h, which (in terms of our notation) is equal to νhek
jLqh

L+(1−
νh)ek

jHqh
H with ek

lL = ek
lH < ek

hL = ek
hH; hence, the network effect depends on the quality received

by the agent on side h he interacts with, but does not depend on that agent’s type, since ek
lL = ek

lH

and ek
hL = ek

hH . From ek
lL = ek

lH < ek
hL = ek

hH , we see that Böhme (2016) considers only a special

case of no type reversal in which no agent directly cares about the type of the agent he interacts

with. This in turn implies that there is no conflict within a side in terms of the preferred type to

interact with. Moreover, as both types generate the same level of externalities to the other side, he

considers the limit case in which neither congruence nor conflict (in a strict sense) exists between

the two sides. As a consequence, pooling never arises in his model.

5 Welfare Analysis

In this section, we study the effects of price discrimination on welfare. We first consider the
baseline model of Section 2, in which agents are heterogeneous on side A but homogeneous on
side B. Then we consider the model of Section 4, in which agents are heterogeneous on both sides.

5.1 Heterogeneous agents on side A only

We here consider the baseline model of Section 2. We first extend to a two-sided market the
conventional wisdom that prohibiting price discrimination can decrease welfare by inducing the
exclusion of some consumers. And then, we provide two other interesting welfare results.

Given (qL,qH), the welfare is given by

(17) W (qL,qH)≡ ν

(
θLuA(qL)+ eLuB(qL)− cqL

)
+(1−ν)

(
θHuA(qH)+ eHuB(qH)− cqH

)
,

where ν = νA. Under price discrimination, the quality schedule is determined by Proposition 2
and welfare is W PD ≡W (qSB

L ,qSB
H ). We compare W PD with the welfare that arises when price

discrimination is prohibited, denoted by W N . Since no difference arises if pooling is optimal in
the second-best, we focus on the case of q∗H(= qSB

H = qFB
H ) > q∗L(= qSB

L ) (see (10)) and therefore
W PD =W (q∗L,q

∗
H). Note that we consider ν > ν̂ = θH−θL

θH
> 0, so as to make the virtual valuation

θ v
L strictly positive.

We first investigate the question of how price discrimination affects the exclusion of consumers.
Consider the case of no price discrimination. Then, the platform offers a single contract (q, p) and
a type θ consumer accepts it if and only if θuA(q)− p ≥ 0. The platform can serve either both
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types or high types only.

• In the first case, p = θLuA(q). Then, the optimal q coincides with qP in (11). Let πL denote
the resulting profit:

πL ≡ θLuA(qP)+(νeL +(1−ν)eH)uB(qP)− cqP.

The corresponding welfare is
(18)

W (qP,qP) = ν

(
θLuA(qP)+ eLuB(qP)− cqP

)
+(1−ν)

(
θHuA(qP)+ eHuB(qP)− cqP

)
• In the second case, p = θHuA(q). Then, the optimal q is qFB

H . The resulting profit is (1−
ν)πH , where

πH ≡ θHuA(qFB
H )+ eHuB(qFB

H )− cqFB
H .

The corresponding welfare is equal to (1−ν)πH because of full surplus extraction on both
sides.

Therefore, the choice of the platform between the two cases is determined by the sign of D(ν) =

(1−ν)πH−πL, a function defined in the interval [ν̂ ,1).16 Immediately, we see that D(ν)< 0 if ν

is close to 1 and we show, in the proof of Proposition 6, that D is strictly decreasing in ν . Hence,
if D(ν̂)> 0, there exists a unique threshold νN ∈ (ν̂ ,1) satisfying D(ν) = 0 such that the platform
serves both types when ν ≥ νN but excludes low types when ν̂ < ν < νN . In the opposite case of
D(ν̂)≤ 0, the platform serves both types for any ν > ν̂ ; then we set νN equal to ν̂ .

In the case of price discrimination, let νPD(≥ ν̂) represent the threshold value of ν , above
which the platform serves both types. q∗L > 0 if and only if θ v

LuA′(0)+eLuB′(0)> c. Since θ v
L > 0,

eL ≥ c
uB′(0) is sufficient to make q∗L > 0. In other words, if eL ≥ c

uB′(0) , the platform serves both
types for any ν > ν̂ ; in this case, we set νPD = ν̂ . If, instead, eL < c

uB′(0) , then the inequality
θ ν

L uA′(0)+ eLuB′(0)> c is equivalent to

ν >
θH−θL

θH− c
uA′(0) +

uB′(0)
uA′(0)eL

≡ ν
PD(> ν̂).

16In order to simplify the presentation, from now on we consider the case of eL ≥ eH . But the proof of Proposition
6 also covers the case of eL < eH .
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We establish in the proof of Proposition 6(i) that

(19) ν
PD ≤ ν

N , with equality if and only if ν
PD = ν

N = ν̂ .

Therefore, if the exclusion of low types occurs under price discrimination, it also occurs without
price discrimination; but the reverse does not hold. Conditional on the exclusion of low types,
W PD = W N holds, since high types consume qFB

H in both regimes. But if the exclusion occurs
only under no price discrimination, W PD > W N holds, because high types still consume qFB

H in
both regimes but the welfare from low types’ consumption of q∗L > 0 is strictly positive under price
discrimination. Therefore, our finding extends to a two-sided market the conventional wisdom that
prohibiting price discrimination can reduce welfare by inducing the exclusion of some consumers.

We also identify another case in which W PD >W N (Proposition 6(ii)) and the opposite case in
which W PD < W N , showing that prohibiting price discrimination increases welfare (Proposition
6(iii)).

Proposition 6 Consider the baseline model with binary types on side A.

(i) If exclusion of low types occurs under price discrimination, then it occurs also without

price discrimination, and therefore banning price discrimination does not affect welfare:

W PD = W N . However, it is possible that the exclusion occurs only when price discrimina-

tion is banned. In this case, welfare is higher under price discrimination than without price

discrimination: W PD >W N .

(ii) The welfare under price discrimination is higher than the welfare without price discrimina-

tion if most agents are of a low type: W PD >W N if ν is close to 1.

(iii) Consider the case of conflict between the two sides. Then, prohibiting price discrimination

yields a higher welfare, i.e., W N >W PD if q∗L and q∗H from (10) are so close that pooling is

almost optimal under price discrimination.

Proof. See Appendix C.

Let us first explain Proposition 6(iii), which we find the most interesting. It shows that pro-
hibiting price discrimination improves welfare in the case of strong conflict between the two sides.
If the strong conflict leads to pooling under price discrimination, then prohibiting price discrim-
ination has no consequence. Hence, Proposition 6(iii) focuses on the case in which the outcome
under price discrimination is close to pooling; in this case, prohibiting price discrimination strictly
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increases welfare. To fix the ideas, consider parameters such that q∗L = q∗H , which means that pool-
ing “just” occurs with price discrimination and qP = qSB

L = qSB
H = q∗L = q∗H = qFB

H < qFB
L . Then

consider a small decrease in eL,17 and notice that this implies

(a) (under no price discrimination) a decrease in qP because νeL +(1−ν)eH decreases;

(b) (under price discrimination) (1) an even stronger decrease in qSB
L because the externality term

associated with qSB
L is eLuB(q), whereas the externality term associated with qP is (νeL+(1−

ν)eH)uB(q); (2) no change in qFB
H .

Hence, under no price discrimination, (a) implies that the small decrease in eL reduces W N

mainly through welfare reduction from low types, because welfare reduction from high types is
negligible as qP is initially equal to qFB

H . Similarly, under price discrimination, (b) implies that
the small decrease in eL reduces W PD only through welfare reduction from low types. However,
qSB

L decreases more than qP does, implying that welfare reduction in W PD is larger than welfare
reduction in W N .

Proposition 6(ii) is rather straightforward. Recall that we consider q∗L(= qSB
L ) < q∗H(= qFB

H ).
Given that ν is close to 1, we have that θ v

L is close to θL and νeL+(1−ν)eH is close to eL, implying
that both q∗L(= qSB

L ) and qP are close to qFB
L . This together with θLuA′(qFB

L )+ eLuB′(qFB
L )− c = 0

implies that welfare from low types under price discrimination is equal to welfare from low types
without price discrimination, up to a second order term in 1− ν . In contrast, welfare from high
types is maximized under price discrimination since q∗H = qFB

H , whereas without price discrimina-
tion, high types consume qp, which is strictly smaller than qFB

H . Therefore, the welfare gain from
high types generated by price discrimination is of the first order in 1−ν and dominates the second
order effect mentioned above, implying W PD >W N .

5.2 Heterogeneous agents on both sides

Consider now the model of Section 4, in which there are two types on each side. The welfare is
given as follows:

W (qL,qH) ≡ ν
A
[
θLuA(qL)+(νBelL +(1−ν

B)ehL)uB(qL)− cqL

]
+(1−ν

A)
[
θHuA(qH)+(νBelH +(1−ν

B)ehH)uB(qH)− cqH

]
.

17This requires that initially eL is positive, but in fact it is impossible to have q∗L = q∗H if eL = 0.
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It is useful to decompose the welfare as follows:

(20) W (qL,qH) =W (qL,qH)+(1−ν
B)d(qL,qH),

in which

W (qL,qH) = ν
A
(

θLuA(qL)+ elLuB(qL)− cqL

)
+(1−ν

A)
(

θHuA(qH)+ elHuB(qH)− cqH

)
d(qL,qH) = ν

A(ehL− elL)uB(qL)+(1−ν
A)(ehH− elH)uB(qH).

W (qL,qH) can be interpreted as the welfare defined in (17) when agents on side B are homoge-
neous, where the externality terms eL and eH are replaced by elL and elH . The term d(qL,qH)

represents the difference between the gross surplus of a high type and the gross surplus of a low
type on side B. Moreover, we define

W PD = W (q∗L,q
∗
H)+(1−ν

B)d(q∗L,q
∗
H);

W N = W (qP,qP)+(1−ν
B)d(qP,qP)

in which q∗L and q∗H are determined by (15), and qP satisfies (16).
By using the definition of type reversal with positive (or negative) sorting, we immediately have

the following lemma:

Lemma 1 Consider the general model with binary types on each side. Suppose that q∗L < qP < q∗H .

(i) Under type reversal with positive sorting, if price discrimination increases W (i.e., W (q∗L,q
∗
H)≥

W (qP,qP)), then price discrimination increases welfare as well (W PD >W N).

(ii) Under type reversal with negative sorting, if no price discrimination increases W (i.e.,

W (qP,qP) ≥ W (q∗L,q
∗
H)), then no price discrimination increases welfare as well (W N >

W PD).

For instance, consider the case that W (qP,qP) ≥W (q∗L,q
∗
H) and type reversal occurs with neg-

ative sorting. Because this means ehL− elL > 0 > ehH − elH and q∗L < qP < q∗H , it follows that
d(qP,qP)> d(qL,qH), which in turn implies W N >W PD.

Combining Lemma 1 with Proposition 6(ii) and (iii), we can extend the welfare results obtained
with homogeneous agents on side B to the case of heterogeneous agents on side B as Proposition
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7(ii) and (iii), below.18 Importantly, Proposition 7(i) extends Proposition 6(i) to the case of no type
reversal.

Proposition 7 Consider the general model with binary types on each side.

(i) Suppose there is no type reversal. If exclusion of low types occurs under price discrimination,

then it occurs also without price discrimination, and in this case W PD = W N . However, it

is possible that the exclusion occurs only when price discrimination is banned. In this case,

W PD >W N .

(ii) W PD >W N if ν is close to 1 and there is type reversal with positive sorting.

(iii) W N >W PD if there is type reversal with negative sorting and pooling is almost optimal under

price discrimination.

Proof. See Appendix C.

6 Applications to media platforms

In this section, we provide two applications of our baseline model to media platforms. The first
one applies the model specified in (1) to online newspapers. We assume that newspaper articles
are bundled with a fixed proportion of advertisements per article and examine when we should
see a conflict or a congruence between the two sides. The second one is different from the model
specified in (1), although it belongs to the general framework of the baseline model presented in
Section 2.1. It analyzes the advertising policy of a media platform and illustrates when pooling is
optimal. Therefore, the two applications are complementary.

6.1 Application I: online newspapers

Consider the model specified in (1). Suppose that q represents the number of articles in an online
newspaper a consumer can consume. Since newspaper articles are bundled with a fixed proportion
of advertisements per article, we here assume that the amount of advertising linearly increases with
q. Hence, for expositional simplicity, we let q represent both the number of articles and the amount
of advertising. Agents on side A are consumers and agents on side B are advertisers. Consumers
enjoy reading articles but suffer from advertising nuisance.

18By Lemma 2 in Appendix B, in order for almost pooling to be almost optimal, as required by Proposition 7(iii),
it is necessary that there is conflict between the two sides. Moreover, the fact that almost pooling is optimal implies
that (IRl) binds on side B, thus the quality schedule is determined by (15).
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We consider two types of consumers, rich and poor. Given q amount of advertising, an adver-
tiser’s ad revenue from a rich consumer is erichuB(q) and his ad revenue from a poor consumer is
epooruB(q). We assume

erich > epoor > 0.

The assumption means that a rich consumer is more valuable than a poor consumer to advertisers
is. Given q amount of articles, a consumer’s utility from reading net of ad nuisance is ηrichuA(q)

or η pooruA(q), depending on her type. Our main assumption is that ηrich and η poor can be decom-
posed as follows:

η
rich = brich−drich > 0 and η

poor = bpoor−dpoor > 0,

where for instance brich represents a rich consumer’s benefit from reading articles and drich her
disutility from exposure to advertisement; bpoor and dpoor are similarly defined. We assume

brich > bpoor and drich > dpoor

The assumption means that a rich consumer obtains a larger benefit from reading but suffers a
larger ad nuisance than a poor consumer does. However, the assumption does not allow us to
determine the sign of ηrich−η poor .

When ηrich > η poor holds, we define type H as a rich consumer and type L as a poor consumer,
and hence we have:

θH = η
rich > θL = η

poor and eH = erich > eL = epoor.

In this case, we have a congruence between the two sides. In contrast, when ηrich < η poor holds,
we define type H as a poor consumer and type L as a rich consumer, and thus we have:

θH = η
poor > θL = η

rich and eH = epoor < eL = erich.

In this case we have a conflict between the two sides.
When there is a congruence or a minor conflict between the two sides, the second-best quantity

schedule exhibits qSB
H > qSB

L , implying that high types consume more news articles and thereby have
more exposure to advertising than low types do. This is consistent with the real world practice of
newspapers. For instance, paid subscribers to the Wall street Journal and the New York Times have
unlimited access to the content and thus have more ad exposure than do unsubscribed consumers
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having limited access to content.

6.2 Application II: advertising policy of a media platform

6.2.1 The model

A media platform provides an online content service to consumers and monetizes consumers’
attention by selling advertising. We study the design of its advertising policy. The model is similar
to the baseline two-type model in Section 2. There are two types of consumers, θ(= θ A) ∈ {H,L}
of a mass one. A consumer’s type captures her sensitivity to ads nuisance. Let ν ∈ (0,1) denote
the proportion of low type consumers with θ = L. Let a ∈ [0,1] index the advertising amount per
consumer, ranging from the ad-free environment a = 0 to the highest possible number of ads a = 1.

Given a, a consumer of type θ ∈ {L,H} earns the following utility from joining the platform:

u0−Cθ (a),

where u0 > 0 is a constant surplus from consuming the content and Cθ (a) is the disutility from
ad nuisance. We assume that Cθ (·) is strictly increasing and strictly convex with Cθ (0) = 0 for
θ ∈ {L,H}.

Given a, the platform’s advertising revenue from a consumer of type θ ∈ {L,H} is given by

Rθ (a),

where we assume that Rθ (·) is strictly increasing and strictly concave in a with Rθ (0) = 0.
Regarding how a consumer type affects the disutility and the revenue, we make the following

assumptions:

(21) C′H(a)>C′L(a), for a ∈ [0,1];

(22) R′H(a)> R′L(a), for a ∈ [0,1].

On the one hand, a high type experiences a larger marginal nuisance than a low type; this implies
CH(a) > CL(a), for a ∈ [0,1]. On the other hand, advertisement to a high type generates a larger
marginal revenue than advertisement to a low type; this implies RH(a)> RL(a) for a ∈ [0,1].

To make clear the connection with the general framework presented in Section 2, we define
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qA ≡ 1−a. Then, in the application, we have

UA(qA;θ
A) = u0−Cθ A(1−qA) UB(qA;θ

A) = Rθ A(1−qA).

On side A, as in the baseline model, UA increases with qA and a high type experiences a larger
benefit from quality increase than a low type does. On side B, there are three differences with
respect to the baseline model with UB(qA;θ A) = e(θ A)uB(qA). First, UB decreases with qA in
the application, while UB increases with qA in the baseline model. Second, we make the level
of participation on side B endogenous.19 Last, by assumption, high types are more valuable than
low types to advertisers are. In other words, there is a conflict between the two sides because
maximizing externality on side B requires qA

H < qA
L , which is in conflict with the implementability

condition on side A (i.e., qA
H ≥ qA

L).
The platform proposes a menu of contracts {(tH ,aH),(tL,aL)} to consumers, where tθ is the

payment from a consumer of type θ to the platform, and aθ is the amount of advertising for a type
θ consumer. Then, the platform’s profit is

π = ν {tL +RL(aL)}+(1−ν){tH +RH(aH)} .

The timing of events is given as follows.

Stage 1: The platform proposes {(tH ,aH),(tL,aL)}.

Stage 2: Each consumer simultaneously decides to accept or reject the offer. If a consumer accepts the
offer, she chooses a contract (tθ ,aθ ) in the menu and accordingly pays tθ , and the platform
chooses the advertising level aθ .

6.2.2 First-best

Suppose that the platform knows the consumer types. Then the profit-maximizing advertising level
for type θ is a solution to the following problem:

max
aθ

[Rθ (aθ )−Cθ (aθ )]

19This is the case if there is a mass one of advertisers and each can show at most one unit of advertising per con-
sumer. Then, choosing aL (aH ) is equivalent to choosing the number of advertisers who can show ads to low (high)
type consumers. To be precise, suppose for instance that advertisers are heterogeneous only in terms of reservation
utility. Then, there is a cut-off level of reservation utility corresponding to aL (respectively, another cut-off correspond-
ing to aH ) such that all advertisers whose reservation utility is smaller than the cut-off will show ads to low (high) type
consumers, and in this sense the level of participation is endogenous.
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Let
(
aFB

L ,aFB
H
)

denote the first-best allocation, which is characterized by

(23) R′L(a
FB
L ) =C′L(a

FB
L ), R′H(a

FB
H ) =C′H(a

FB
H ).

As a high type generates a higher revenue but also suffers a higher nuisance from ads than a low
type, both aFB

L ≤ aFB
H and aFB

L > aFB
H are possible.

6.2.3 Second-best

In the presence of asymmetric information, the platform offers a menu of contracts {(tH ,aH),(tL,aL)}
to maximize its profit

(24) π = ν {tL +RL(aL)}+(1−ν){tH +RH(aH)}

subject to

IRL : u0−CL(aL)− tL ≥ 0

IRH : u0−CH(aH)− tH ≥ 0

ICL : u0−CL(aL)− tL ≥ u0−CL(aH)− tH

ICH : u0−CH(aH)− tH ≥ u0−CH(aL)− tL

Adding ICL and ICH and using (21) yields the implementability condition

(25) aH ≤ aL.

Using qA ≡ 1− a, the implementability condition (25) can be equivalently written as qA
H ≥ qA

L ,
which is exactly the condition (8) we had in Section 3.

Since CH(a)>CL(a), standard arguments show that we can neglect IRL, but IRH and ICL bind
in the optimum. From the binding constraints, we obtain an expression for tL and an expression for
tH . Inserting them into π in (24) gives the following objective function that the platform maximizes

u0 + (1−ν){RH(aH)−CH(aH)}

+ ν {RL(aL)−CL(aL)− [CH(aH)−CL(aH)]}

subject to (25).
Let (aSB

L ,aSB
H ) denote the second-best allocation, which is the solution to the maximization

problem. Let (a∗L,a
∗
H) denote the solution to the maximization problem when (25) is neglected.
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Then (a∗L,a
∗
H) satisfies

(26) a∗L = aFB
L R′H(a

∗
H) =C′H(a

∗
H)+

ν

1−ν
[C′H(a

∗
H)−C′L(a

∗
H)]

Thus, we have a∗L = aFB
L and a∗H < aFB

H .
If aFB

H ≤ aFB
L holds, we have a∗H < aFB

H ≤ a∗L = aFB
L , implying that (a∗L,a

∗
H) satisfies (25), and

hence (aSB
L ,aSB

H ) = (a∗L,a
∗
H). However, even if aFB

H > aFB
L , it is possible that the downward distor-

tion in a∗H makes (a∗L,a
∗
H) satisfy (25) and still (aSB

L ,aSB
H ) = (a∗L,a

∗
H). If, instead, a∗H > a∗L (which

requires aFB
H > aFB

L ), then (aSB
L ,aSB

H ) exhibits pooling; that is, aSB
L = aSB

H = aP, where aP is charac-
terized by

(27) (1−ν)R′H(a
P)+νR′L(a

P) =C′H(a
P)

The R.H.S. in (27) is written only with respect to the high type’s nuisance cost because IRH binds.
We have:

Proposition 8 Consider the application to the advertising policy of a media platform. The second-

best advertising schedule (aSB
L ,aSB

H ) is characterized as follows.

(i) If (a∗L,a
∗
H) in (26) satisfies the implementability condition (25), then

aSB
L = aFB

L ≥ aSB
H = a∗H (and aSB

H < aFB
H )

(ii) If (a∗L,a
∗
H) in (26) violates the implementability condition (25), then pooling is optimal:

aFB
H > aSB

H = aSB
L = aP > aFB

L ,

where aP is characterized in (27).

Consider the following quadratic setting: for θ = L,H

Cθ (a) = α
C
θ a+

1
2

a2, with α
C
θ > 0 and ∆α

C = α
C
H−α

C
L > 0;

Rθ (a) = α
R
θ a− 1

2
a2, with α

R
θ > 1 and ∆α

R = α
R
H−α

R
L > 0.

To guarantee that aFB
θ
∈ (0,1) for θ = L,H, we assume

0 < α
R
H−α

C
H < 2, 0 < α

R
L −α

C
L < 2.
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Then, we have

aFB
θ =

αR
θ
−αC

θ

2
for θ = L,H,

and
aFB

H R aFB
L if and only if ∆α

R R ∆α
C.

a∗H is given by

a∗H = aFB
H −

ν

1−ν

∆αC

2
< aFB

H .

Hence, at (a∗L,a
∗
H), (25) reduces to

∆αC

(1−ν)
≥ ∆α

R.

Given ∆αC, ∆αR measures the degree of conflict between the two sides. Hence, in the case of
strong conflict (i.e., ∆αR ≥ ∆αC

(1−ν)), pooling is optimal, with aP = νaFB
L +(1−ν)a∗H .

7 Concluding Remarks

In this article, we have studied optimal nonlinear pricing by a two-sided platform that mediates
interactions between multiple groups. In this situation, each agent in a group plays a dual role in
obtaining the private benefit from interactions and generating externalities to the agents of the other
group(s). We show that this dual role is a key to the platform’s mechanism design, particularly
regarding when the platform finds it better to offer a single contract instead of multiple contracts
to different types of agents on one side.

There are two directions in which our work can be further developed. First, it would be in-
teresting to extend our model to competing platforms with nonlinear tariffs. Second, we think
it important and interesting to study when price discrimination on one side substitutes for price
discrimination on the other side, and when they form complements. In particular, one may be in-
terested in the conflict situation in which the monotonicity constraint binds on side A under no price
discrimination on side B, but introducing a well-designed price discrimination on side B may relax
the conflict such that the implementability condition on side A is relaxed. We hope that the cur-
rent work serves as a foundation for more studies to understand price discrimination in multisided
markets.
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A Appendix: Analysis for a continuum of types

Here we consider a continuum of types: θ is a realization of a random variable, which is distributed
according to a smooth CDF F and associated density f = F ′ over the support ΘA = [θ ,θ ]. In this
case, the virtual valuation for type θ is θ v = θ − 1−F(θ)

f (θ) . We assume that θ vu > 0 for each θ and

that the hazard rate of F , f (θ)
1−F(θ) , is increasing in θ , and hence θ v is increasing.

A.1 First-best

In the first-best, the platform extracts the whole surplus from the homogeneous agents on side B

and also from the agents on side A, by setting p(θ) = θuA(q(θ)) for each θ . Hence the first-best
schedule qFB maximizes the welfare

∫
θ

θ

(
θuA(q(θ))+ e(θ)uB(q(θ))− cq(θ)

)
f (θ)dθ

and is characterized by

(A.1) qFB(θ) = argmax
q≥0

[θuA(q)+ e(θ)uB(q)− cq] for each θ ∈ [θ ,θ ]

As in the case of two types, qFB is increasing with respect to θ if e is increasing, otherwise
qFB may not be increasing. For instance, suppose that uB(q) = βuA(q) for some β > 0. Then qFB

is increasing if and only if θ +βe(θ) is increasing, which fails to hold if βe′(θ) < −1 for some
θ . This occurs when the externality generated on side B by an agent on side A is decreasing with
respect to θ and β is large, or when the externality is quickly decreasing. In the next example we
illustrate this point.

Example 4 Suppose that θ is uniformly distributed in the interval [3,5]; in the following we rep-

resent this by writing θ ∼ U [3,5]. Moreover, uA(q) = uB(q) = ln(1+ q), c = 1, and e(θ) =

10− δ
(
θ −3+ 1

2(θ −3)2) with δ ∈ (0, 5
2). It is immediate that e decreases with θ as e′(θ) =

−δ (θ −2)< 0, and that it decreases more quickly, the greater δ becomes. From (A.1) we obtain

(A.2) qFB(θ) = θ + e(θ)−1

and qFB′(θ) = 1−δ (θ −2). Therefore, qFB is increasing if δ ≤ 1
3 , is decreasing if δ ≥ 1, and is

first increasing and then decreasing if δ ∈ (1
3 ,1).

31



In what follows, we say that a quality schedule is single-peaked if in the interval [θ ,θ ] it is first
increasing and then decreasing, and we use θm to denote the peak, that is, θm is the maximum point
and q(θm) is the maximum value for the schedule.

A.2 Second-best

In the second-best, the menu of contracts {(q(θ), p(θ))}
θ∈[θ ,θ ] offered by the platform needs to

satisfy the incentive constraints:

(A.3) θq(θ)− p(θ)≥ θq(θ ′)− p(θ ′) for each θ ,θ ′ in [θ ,θ ].

It is well known from Mussa and Rosen (1978) that {(q(θ), p(θ))}
θ∈[θ ,θ ] satisfies (A.3) if and

only if q is increasing and

p(θ) = θuA(q(θ))−
∫

θ

θ

uA(q(s))ds−U(θ) for each θ in [θ ,θ ]

in which U(θ) = θq(θ)− p(θ) is the expected rent of type θ . In order to reduce the rent of the
agents on side A without violating participation constraints, it is optimal to set p(θ) such that
U(θ) = 0. Hence, p(θ) = θuA(q(θ))−

∫
θ

θ
uA(q(s))ds and the platform’s expected profit is

∫
θ

θ

(
θuA(q(θ))−

∫
θ

θ

uA(q(s))ds− cq(θ)
)

f (θ)dθ︸ ︷︷ ︸
profit from side A

+
∫

θ

θ

e(θ)uB(q(θ)) f (θ)dθ︸ ︷︷ ︸
profit from side B

(A.4)

=
∫

θ

θ

[
θ

vuA(q(θ))+ e(θ)uB(q(θ))− cq(θ)
]

f (θ)dθ .

The second-best schedule qSB maximizes (A.4) subject to q increasing. Let q∗ be the schedule that
maximizes (A.4) pointwise, that is

(A.5) q∗(θ) = argmax
q≥0

[θ vuA(q)+ e(θ)uB(q)− cq] for each θ ∈ [θ ,θ ].

If q∗ is increasing, then qSB(θ) = q∗(θ) for each θ ∈ [θ ,θ ] and qSB(θ)< qFB(θ) for each [θ ,θ),
qSB(θ) = qFB(θ). If q∗ is not increasing, then determining qSB is less immediate and requires some
“ironing” of q∗: see, for instance, Guesnerie and Laffont (1984).

Consider first the case in which qFB is increasing. In the setting with two types, we have seen
that if qFB is increasing then q∗ is also increasing so that qSB coincides with q∗. In the current
setting with a continuum of types, this implication does not hold. However, in the next proposition
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we show that qFB increasing implies that q∗ is increasing as long as uA′

uB′ is decreasing; this loosely
means that the marginal utility on side A decreases more quickly than the marginal utility on side
B.20

Proposition 9 Consider the baseline model with a continuum of types. Suppose that qFB in (A.1)

is increasing and that the hazard rate of F is increasing, that is, uA′

uB′ is decreasing. Then, q∗ in (A.5)

is increasing, and subsequently qSB(θ) = q∗(θ) for each θ ∈ [θ ,θ ].

Proof. See Appendix C.

When there are only two types, the inequality qFB
L ≤ qFB

H implies q∗L < q∗H , because q∗H = qFB
H

and q∗L is determined by using θ v
L < θL instead of θL. With a continuum of types, the above

argument applies if we compare q∗(θ) with q∗(θ), that is, the values of q∗ at the extremes of
the interval [θ ,θ ]. But when we check the monotonicity of q∗ in the interval (θ ,θ), we need to
examine how increasing θ affects θ vuA′(q)+ e(θ)uB′(q) (see (A.5)), knowing that it also affects
θuA′(q)+ e(θ)uB′(q) (see (A.1)) in such a way as to make qFB increasing.

The implicit function theorem reveals that

(a) qFB is increasing if and only if uA′(qFB(θ))
uB′(qFB(θ))

+ e′(θ)≥ 0;

(b) q∗ is increasing if and only if dθ ν

dθ

uA′(q∗(θ))
uB′(q∗(θ)) + e′(θ)≥ 0.

Given that dθ v

dθ
≥ 1 (as the hazard rate of F is increasing) and q∗(θ) < qFB(θ), if uA′

uB′ is de-
creasing, then the inequality in (a) implies the inequality in (b). But if uA′

uB′ is increasing (and dθ v

dθ
is

not much larger than one), then the inequality in (a) may hold even though the inequality in (b) is
violated.

Example 5 Continue to work with Example 4. Then (A.5) yields

(A.6) q∗(θ) = θ
v + e(θ)−1

and since θ v = 2θ −5, we have that q∗′(θ) = 2−δ (θ −2). Therefore q∗ is increasing if δ ≤ 2
3 , is

decreasing if δ ≥ 2, and is non-monotone (but single-peaked) if δ ∈ (2
3 ,2). Recall from Example

3 that qFB is increasing if δ ≤ 1
3 . Consistently with Proposition 9, δ ≤ 1

3 is a sufficient condition

for q∗ to be increasing.

20This property is equivalent to the property that uB is less concave than uA, according to the Arrow-Pratt risk
aversion measure, that is, − uB′′(q)

uB′(q) ≤−
uA′′(q)
uA′(q) for each q≥ 0.
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Consider now the situation in which qFB is decreasing in at least one interval in [θ , θ̄ ]. Then
Proposition 9 does not apply, q∗ may not be increasing and some pooling may be optimal; indeed,
complete pooling is optimal in some cases. Below we identify some sufficient conditions for qSB

to be constant.
Define G(q,θ) as follows, from (A.5):

G(q,θ)≡ θ
vuA(q)+ e(θ)uB(q)− cq

and let g(q,θ) ≡ ∂G
∂q (q,θ). Since G is strictly concave in q, g is strictly decreasing with q. Then

q∗(θ) = argmaxq≥0 G(q,θ) implies

(A.7)

 g(q,θ)> 0 if q < q∗(θ)

g(q,θ)< 0 if q > q∗(θ)

We use qk to denote the constant schedule at the quality level k, i.e., qk satisfies qk(θ) = k for each
θ ∈ [θ ,θ ]. The platform’s profit with qk is

∫
θ

θ
G(k,θ) f (θ)dθ , and we let

h(k)≡ d
dk

(∫
θ

θ

G(k,θ) f (θ)dθ

)
=
∫

θ

θ

g(k,θ) f (θ)dθ

denote the derivative of this profit with respect to the constant level of quality. In order for the
schedule qk to be optimal, it is necessary (but not sufficient) that k satisfies h(k) = 0. Using these
tools, we provide some results on the optimality of a constant schedule under the assumption that
q∗ has at most one change in monotonicity, e.g., when q∗ is single-peaked with peak at θm ∈ (θ ,θ).
In such a case, from Guesnerie and Laffont (1984) it follows that if qSB is not constant, then

(A.8) qSB(θ) =

 q∗(θ) if θ ∈ [θ ,θ ′)

z if θ ∈ [θ ′,θ ]

with θ ′ and z such that θ ′ ∈ (θ ,θm), z = q∗(θ ′), and

(A.9)
∫

θ

θ ′
g(z,θ) f (θ)dθ = 0.

Proposition 10 Consider the baseline model with a continuum of types. Under the second-best,

complete pooling is optimal under any of the following circumstances:
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(i) q∗ is decreasing in [θ , θ̄ ];

(ii) q∗ is single-peaked and h(q∗(θ))≤ 0;

(iii) q∗ is first decreasing, then increasing, and h(q∗(θ))≥ 0.

In each case (i)-(iii), q∗(θ) < q∗(θ) and the optimal schedule is qk for a unique k between q∗(θ)

and q∗(θ) such that h(k) = 0.

Proof. See Appendix C.

Note first that q∗ decreasing in an interval implies that qFB is decreasing in the same interval,
by Proposition 9, as long as the hazard rate is increasing and uA′/uB′ is decreasing. Result (i) is
straightforward. As result (iii) is symmetric to result (ii), we briefly discuss result (ii). Suppose that
q∗ is single-peaked with the peak at θm. In this case, h(q∗(θ))≤ 0 implies q∗(θ)< q∗(θ), because
if q∗(θ)≥ q∗(θ) then q∗(θ)< q∗(θ) for each θ ∈ (θ ,θ) and (A.7) imply h(q∗(θ))> 0. Therefore,
although we are not assuming that q∗ is decreasing in the whole interval [θ ,θ ], the inequality
h(q∗(θ))≤ 0 implies that q∗ is decreasing enough in (θm,θ) to make q∗(θ) smaller than q∗(θ).21

Then h(q∗(θ))≤ 0 and (A.7) imply
∫

θ

θ ′ g(q
∗(θ ′),θ) f (θ)dθ < 0 for each θ ′ ∈ (θ ,θm), hence (A.9)

cannot hold. In what follows, we apply the results of Proposition 10 to the same example we have
previously worked on.

Example 6 Consider the setting of Example 4: θ ∼ U [3,5], uA(q) = uB(q) = ln(1+ q), c = 1,

and e(θ) = 10−δ
(
θ −3+ 1

2(θ −3)2) with δ ∈ (0, 5
2).

• From Example 4, q∗ defined in (A.6) is increasing if δ ≤ 2
3 . Hence, qSB coincides with q∗.

• When δ > 2
3 , we can apply Proposition 10-(i) if q∗ is decreasing, which occurs when δ ≥ 2.

Therefore, qSB is constant if δ ≥ 2. Since h(k) = 13− 5
3 δ

k+1 − 1, it follows that qSB = qk with

k = 12− 5
3δ .

• For the intermediate case with δ ∈ (2
3 ,2), q∗ is single-peaked with the peak at θm = 2+

2
δ

and Proposition 10-(ii) applies if h(q∗(θ = 3)) is negative or zero. Since h(q∗(3)) =
1

33 (6−5δ )≤ 0 is equivalent to δ ≥ 6
5 , it follows that qSB = qk, with k = 12− 5

3δ , if δ ∈ [6
5 ,2).

Figure 1-(a) illustrates qSB and q∗ when δ = 5
4 and c = 1.

21Intuitively, we could think of the case in which θm is close to θ ; therefore, q∗ is increasing in a small interval and
then decreasing in a much wider interval.
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(a) δ = 5
4 and c = 1 (b) δ = 4

5 and c = 1

Figure A.1: Complete and partial pooling under the second-best

• Conversely, if δ ∈ (2
3 ,

6
5) then h(q∗(3))> 0 and (A.8) applies:

qSB(θ) =

 q∗(θ) if θ ∈ [3,θ ′)

z if θ ∈ [θ ′,5]

with θ ′ = 1
2 +

3
δ

, z = q∗(θ ′). Figure 1-(b) illustrates qSB and q∗ when δ = 4
5 and c = 1.

A.3 Shutdown

Up to now, we have implicitly assumed q∗(θ) > 0, which implies qFB(θ) > 0 for each θ . Here
we allow for the shutdown possibility, q∗(θ) = 0 for some θ . We show that if qFB is decreasing
in some interval in [θ ,θ ], then a complete shutdown may occur even if shutdown occurs in the
first-best only for θ very close to θ . Moreover, it is also possible that the pattern of shutdowns
changes completely such that in the first-best it occurs for θ close to θ but in the second-best it
occurs for θ close to θ .

Proposition 11 Consider the baseline model with a continuum of types.

(i) Suppose there exists θ0 ∈ (θ ,θ) such that (a) q∗(θ)> 0 for each θ ∈ [θ ,θ0) and q∗ is either

decreasing or single-peaked in [θ ,θ0); (b) q∗(θ) = 0 for each θ ∈ [θ0,θ ]. If h(0)≤ 0, then

a complete shutdown is optimal: qSB(θ) = 0 for any θ ∈ [θ ,θ ].

(ii) Suppose there exist θ0 and θ1 such that (a) for θ ∈ (θ0,θ1), q∗(θ) > 0 and q∗ is single-

peaked with the peak at θm; (b) q∗(θ)= 0 for each θ ∈ [θ ,θ0]∪[θ1,θ ]. If
∫

θ

θ0
g(0,θ) f (θ)dθ >
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0, then

(A.10) qSB(θ) =


0 if θ ∈ [θ ,θ0)

q∗(θ) if θ ∈ [θ0,θ
′]

z if θ ∈ (θ ′,θ ]

with (θ ′,z) such that θ ′ ∈ (θ0,θm), z = q∗(θ ′) and (A.9) holds. If
∫

θ

θ0
g(0,θ) f (θ)dθ ≤ 0,

then a complete shutdown is optimal: qSB(θ) = 0 for any θ ∈ [θ ,θ ].

Proof. See Appendix C.

Proposition 11(i) considers the case in which it is optimal to serve the low types (i.e., q∗(θ)> 0
for low θ ), but not the high types (q∗(θ) = 0 for high θ ) if we had neglected the monotonicity
constraint. In this situation, the monotonicity constraint can lead to a complete shutdown, i.e.,
qSB(θ) = 0 for any θ ∈ [θ ,θ ], because serving the high types without serving the low types is
not possible. This result, which requires e to decrease quickly at least for high θ , is in a stark
contrast to the usual outcome in a one-sided market where e(θ) is a constant equal to zero; then
if q∗(θ) > 0 for at least some θ , we have q∗(θ) > 0 and qSB(θ) > 0 and hence there is never
a complete shutdown. Also notice that q∗(θ) > 0 implies qFB(θ) > 0, and q∗(θ̄) = 0 requires
θuA′(0)+ e(θ)uB′(0) < c,22 which implies qFB(θ) = 0 for θ close to θ̄ . Thus it is possible that
qFB(θ)> 0 except for a set of types close to θ̄ , but nevertheless, a complete shutdown is optimal.

Proposition 11(ii) reports another interesting shutdown pattern. Suppose that the platform serves
some medium types but neither high types nor low types, when the monotonicity constraint was
neglected. Precisely, q∗(θ) = 0 for θ ∈ [θ ,θ0]∪ [θ1,θ ], hence θuA′(0) + e(θ)uB′(0) < c even
though θ vuA′(0) + e(θ)uB′(0) > c for medium values of θ , thus qFB(θ) = 0 for θ close to θ .
Proposition 11(ii) establishes circumstances under which qSB(θ) is positive and constant in an
interval that includes [θ1,θ ]. Therefore, a set of types close to θ is excluded under the first-best,
whereas only a set of types close to θ is excluded under the second-best. Hence, the exclusion
pattern is reversed as we move from the first-best to the second-best.23

22In fact, q∗(θ̄) = 0 implies θuA′(0)+ e(θ)uB′(0)≤ c, but for the sake of the argument here we consider the strict
inequality.

23A setting in which Proposition 11(i) (Proposition 11 (ii)) applies is the one of Example 3 with δ = 19
10 , c = 10

(δ = 1, c = 11.25). For space’s sake, the detailed analysis of these examples is omitted but is available from the
authors upon request.
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B Appendix: Type reversal with negative sorting

Type reversal with negative sorting is different from no type reversal or type reversal with positive
sorting in one important aspect: the most restrictive participation constraint on side B is not neces-
sarily (IRB

l ). This is because elH > ehH makes it possible that (IRB
h ) becomes more restrictive than

(IRB
l ) if qH is sufficiently larger than qL.
Consider first the case in which the first-best quality schedule is increasing. Then, we find that

pooling is never optimal in the case of type reversal with negative sorting:

Lemma 2 If the first-best quality schedule is increasing, pooling does not arise in the case of type

reversal with negative sorting.

Proof. Suppose that (IRB
h ) does not bind. Then (IRB

l ) binds, and since negative type reversal

implies ea
L > elL and elH > ea

H , from (13) and (15) we see that q∗H > q∗L; hence, no pooling occurs.

Therefore, pooling requires that (IRB
h ) binds. But still, (IRB

l ) needs to be satisfied, and this plus

(12) imply that (IRB
h ) is slack when qH = qL.

We have three cases to examine in terms of the binding participation constraint(s) on side B.

Case I. As with Section 3.2, the quality schedule determined by (15) is the second-best schedule as
long as

(B. 1) ν
AelLuB(q∗L)+(1−ν

A)elHuB(q∗H)≤ ν
AehLuB(q∗L)+(1−ν

A)ehHuB(q∗H),

which means that (IRB
h ) is satisfied given that (qL,qH) = (q∗L,q

∗
H) and (IRB

l ) is the binding
participation constraint (hence pB = νAelLuB(q∗L) + (1− νA)elHuB(q∗H)). Under negative
sorting, elL < ea

L and elH > ea
H make (15) yield a downward distortion for the low type

and an upward distortion for the high type. Hence, (B. 1) might be violated due to these
distortions.

Case II. When (B. 1) is violated, we consider the case that (IRB
h ) binds with pB = νAehLuB(qL)+

(1−νA)ehHuB(qH). The profit to maximize changes to

Π̂(qL,qH)= ν
A
(

θ
Av
L uA(qL)+ ehLuB(qL)− cqL

)
+(1−ν

A)
(

θ
A
HuA(qH)+ ehHuB(qH)− cqH

)
Let (q̂L, q̂H) be the qualities that maximize Π̂. The first-order conditions are

(B. 2) θ
Av
L uA′(q̂L)+ ehLuB′(q̂L) = c, θ

A
HuA′(q̂H)+ ehHuB′(q̂H) = c.
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(q̂L, q̂H) is established as the second-best schedule as long as

(B. 3) ν
AehLuB(q̂L)+(1−ν

A)ehHuB(q̂H)≤ ν
AelLuB(q̂L)+(1−ν

A)elHuB(q̂H)

which means that (IRB
l ) is satisfied given (qL,qH) = (q̂L, q̂H) and pB = νAehLuB(q̂L)+(1−

νA)ehHuB(q̂H). Unlike (15), now we find that ( B. 2) implies an upward distortion for the
low type and a downward distortion for the high type, which may violate (B. 3).

Case III. When both (B. 1) and (B. 3) are violated, both (IRB
l ) and (IRB

h ) bind; no agent on side B earns
any information rent. In this case the second-best schedule is determined by maximizing (14)
subject to

(B. 4) ν
A(ehL− elL)uB(qL)− (1−ν

A)(elH− ehH)uB(qH) = 0

Then the first-order conditions for qL,qH are given by
(B. 5)
θ

Av
L uA′(qL)+((1−λ )elL+λehL)uB′(qL)= c, θ

A
HuA′(qH)+((1−λ )elH +λehH)uB′(qH)= c

in which λ is the Lagrange multiplier for the constrained problem. Notice that from (B. 5)
we obtain q∗L,q

∗
H if λ = 0, q̂L, q̂H if λ = 1. In the optimum it is necessary that λ ∈ (0,1)

because

if λ ≤ 0, then (B. 5) yields qL ≤ q∗L, qH ≥ q∗H and the left-hand side of (B. 4) is negative
because (B. 1) is violated;

if λ ≥ 1, then (B. 5) yields qL ≥ q̂L, qH ≤ q̂H and the left-hand side of (B. 4) is positive
because (B. 3) is violated.

Thus, λ ∈ (0,1) is such that (B. 5) yields (qL,qH), which satisfy (B. 4). As a result, we have
qSB

L ∈ (q∗L, q̂L), qSB
H ∈ (q̂H ,q∗H).

Consider now the case in which the first-best quality schedule is decreasing. First, pooling can
be optimal when agents are homogeneous on side B by Proposition 2, and in such a case, by conti-
nuity, pooling would be still optimal even after introducing a very small degree of heterogeneity to
the agents on side B. However, pooling implies that only (IRB

l ) binds on side B under (12). Hence,
the optimal pooling contract is the one characterized by Proposition 5(ii). Second, if pooling is not
optimal, then the above analysis applies and we can have three different situations in terms of the
binding individual rationality constraint(s) on side B.
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Proposition 12 Consider type reversal with negative sorting in the general model.

(i) Consider first the case in which the first-best quality schedule is increasing. Then, pooling

is never optimal and the second-best quality schedule
(
qSB

L ,qSB
H
)

is characterized as follows.

–
(
qSB

L ,qSB
H
)

is equal to (q∗L,q
∗
H) if (B. 1) holds; in this case (IRB

l ) binds.

–
(
qSB

L ,qSB
H
)

is equal to (q̂L, q̂H) if (B. 3) holds; in this case (IRB
h ) binds.

– If both (B. 1) and (B. 3) are violated,
(
qSB

L ,qSB
H
)

is characterized by (B. 5) for a suitable

λ ∈ (0,1) such that (B. 4) holds; in this case (IRB
l ) and (IRB

h ) both bind.

(ii) Consider now the case in which the first-best quality schedule is decreasing. If the optimal

quality schedule obtained by neglecting the monotonicity constraint is strictly increasing,

then it is the second-best schedule. Otherwise, pooling is optimal and the optimal pooling

contract is the one described by Proposition 12(i).

Example 7 Suppose that uA(q) = uB(q) = ln(1+q), c = 1, νA = 1
2 , νB = 1

2 and θL = 16, θH = 20,

elL = 4, elH = 10, ehH = 5, ehL ∈ (9,19] under which (12) is satisfied, the first-best quality schedule

is increasing as qFB
H = 26.5 ≥ qFB

L = 17+ 1
2ehL, and type reversal with negative sorting occurs.

Then we can derive:

q∗L = 15, q∗H = 29,

q̂L = 11+ ehL, q̂H = 24.

• (B. 1) holds if and only if ehL ≥ 10.217; (qSB
L ,qSB

H ) = (15,29).

• (B. 3) holds if and only if ehL ≤ 9.28; (qSB
L ,qSB

H ) = (11+ ehL,24).

• If ehL belongs to the interval (9.28,10.217) then (qSB
L ,qSB

H ) = (15−4λ +λehL,29−5λ ) for

a suitable λ ∈ (0,1) such that (B. 4) holds. For instance, if ehL = 10 then λ = 0.18428 and

(qSB
L ,qSB

H ) = (16.106,28.079).24

24A case of type reversal with negative sorting in which pooling is optimal is such that uA(q) = uB(q) = ln(1+q),
c = 1, νA = 1

2 , νB = 1
2 and θL = 19, θH = 20, elL = 7, elH = 4, ehH = 3, ehL = 9. Then q∗L = 24 > q∗H = 23,

q̂L = 26 > q̂H = 22, and qSB
L = qSB

H = 23.5.
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C Appendix: Mathematical Proofs

Here we collect all mathematical proofs that are not offered in the main text and in Appendices A
and B.

Proof of Proposition 6(i) We first provide the proof for the case in which eL ≥ eH .

Step 1 The function D(ν) = (1−ν)πH−πL is strictly decreasing.

Since D′(ν) =−πH− (eL− eH)uB(qP), it is immediate that D′(ν)< 0.

In the rest of this proof, we use α = uA′(0), β = uB′(0).

Step 2 If eL ≥ c
β

, then νPD = ν̂ ≤ νN .

If eL ≥ c
β

, then θ v
Lα + eLβ ≥ c for each ν ≥ ν̂ , hence νPD = ν̂ . However, whether νN is

equal to ν̂ or νN > ν̂ depends on the parameters.25 In particular, if eL = c
β

then D(ν̂) =

(1− ν̂)πH−πL > 0, hence νN > ν̂ . Precisely,

πL = max
q

[
θLuA(q)+

((
1− θL

θH

)
c
β
+

θL

θH
eH

)
uB(q)− cq

]
< max

q

[
θLuA(q)+

(
1− θL

θH

)
c
β

βq+
θL

θH
eHuB(q)− cq

]
= max

q

[
θLuA(q)+

θL

θH
eHuB(q)− θL

θH
cq
]

=
θL

θH
max

q

[
θHuA(q)+ eHuB(q)− cq

]
= (1− ν̂)πH

Step 3 If eL < c
β

, then νPD = θH−θL

θH− c
α
+ β

α
eL

is greater than ν̂ but is smaller than νN .

We use δ to denote the difference (1−νPD)πH−πL, that is δ =D(νPD), and we show δ > 0.
Therefore, (1−ν)πH−πL > 0 at ν = νPD and νN must be larger than νPD by Step 1.

Step 3.1 δ is increasing with respect to eH .

We have that ∂δ

∂eH
= (1− νPD)(uB(qFB

H )− uB(qP)), which is positive since qFB
H > qP.

Thus ∂δ

deH
> 0, and in the following we prove that δ > 0 when eH = 0.

Step 3.2 δ > 0 given eH = 0 and eL ∈ (0, c
β
).

25In some cases with eL > c
β

, we have that (1− ν̂)πH − πL < 0, hence νN > ν̂ . Precisely, if uA(q) = uB(q) =
ln(1+ q), c = 1, θL = 7, θH = 10, eL = 4, eH = 0, then ν̂ = 0.3 and (1− ν̂)πH −πL = 0.7maxq[10ln(1+ q)− q]−
maxq[(7+0.3 ·4) ln(1+q)−q] = 9.8181−10.054 < 0.
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In order to prove that δ > 0, we pick uB(q) = βq, which increases πL but does not
affect πH since eH = 0. Hence

πL = max
q

[
θLuA(q)+ν

PDeLβq− cq
]
=

c−νPDeLβ

c
P
(

c
c−νPDeLβ

θL

)
,

with P(θ)≡maxq[θuA(q)− cq]. Thus,

δ = (1−ν
PD)

(
πH−

c−νPDeLβ

c(1−νPD)
P(bθL)

)

with b = c
c−eLνPDβ

. When eL = c
β

, we have νPD = ν̂ , c−νPDeLβ

c(1−νPD)
= 1 , bθL = θH , hence

δ = (1− ν̂)[P(θH)−P(θH)] = 0. Now we prove that −c−νPDeLβ

c(1−νPD)
P(bθL) is decreasing

with respect to eL in the interval (0, c
β
) ;

therefore δ > 0 for each eL ∈ (0, c
β
) .

First we notice that with some algebra, we have

−c−νPDeLβ

c(1−νPD)
=− κ

c(αθL + eLβ − c)
, b =

c(αθH + eLβ − c)
κ

where κ ≡ cαθH + ceLβ + eLαβθL− eLαβθH− c2. Then we have

−c−νPDeLβ

c(1−νPD)
P(bθL) =−

κ

c(αθL + eLβ − c)
P
(

c(αθH + eLβ − c)
κ

θL

)
which has derivative with respect to eL equal to

=
α2βθL(θH−θL)

c(αθL + eLβ − c)2 P(bθL)−
αβθL (θH−θL)(αθH− c)

(αθL + eLβ − c)κ
P′(bθL)

=
αβθL (θH−θL)

αθL + eLβ − c

(
α

c(αθL + eLβ − c)
P(bθL)−

αθH− c
κ

P′(bθL)

)
=

αβθL (θH−θL)

αθL + eLβ − c

[
α

c(αθL + eLβ − c)

(
bθLuA(q̃(bθL))− cq̃(bθL)

)
− αθH− c

κ
uA(q̃(bθL))

]
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in which q̃(θ)≡ argmaxq[θuA(q)− cq]. Hence

αβθL (θH−θL)

αθL + eLβ − c

[
α

c(αθL + eLβ − c)

(
bθLuA(q̃(bθL))− cq̃(bθL)

)
− αθH− c

κ
uA(q̃(bθL))

]
=

αβθL (θH−θL)

(αθL + eLβ − c)2 (u
A(q̃(bθL))−α q̃(bθL))

which is negative as uA′(0) = α and u is concave. QED

Now we provide the proof for the case of eL < eH . First we suppose that eL ≥ c
β

. Then Step 2
above establishes that no exclusion occurs under PD, for each ν ≥ ν̂ . Hence, exclusion is weakly
more frequent under no PD.

Then we suppose that eL < c
β

. In this case νPD > ν̂ , hence, exclusion occurs under PD for
each ν in [ν̂ ,νPD], and now we present a series of steps that show that exclusion occurs also
under no PD for each ν between ν̂ and νPD: (i) from the proof of Step 2 above we know that
if eL = c

β
, then D(ν̂) > 0; (ii) D(ν̂) is decreasing with respect to eL, hence, D(ν̂) > 0 for each

eL < c
β

; (iii) from the proof of Step 3 we know that D(νPD) > 0; (iv) qP from (11) is such that
dqP

dν
= (eL−eH)uB′(qP)
−θLuA′′(qP)−(νeL+(1−v)eH)uB′′(qP)

< 0 as eL < eH ; (v) from D′(ν) = −πH +(eH − eL)uB(qP)

(see Step 1 above) it follows that D is a concave function of ν ; (vi) D(ν̂) > 0, D(νPD) > 0, D

concave imply D(ν) > 0 for each ν ∈ [ν̂ ,νPD] (in fact, we can prove that there exists νN > νPD

such that exclusion under no PD occurs if and only if ν < νN). QED

Proof of Proposition 6(ii) At νA = 1, we have qP = q∗L (also equal to qFB
L ) and W PD =W N . We

prove below that ∂ (W PD−W N)
∂νA is negative at νA = 1, which implies that W PD >W N for νA close to

1. From (18) we obtain

dW N

dνA = θLuA(qP)+ eLuB(qP)− cqP− [θHuA(qP)+ eHuB(qP)− cqP]

+
((

ν
A
θL +(1−ν

A)θH

)
uA′(qP)+(νAeL +(1−ν

A)eH)uB′(qP)− c
) dqP

dνA ,

but since θLuA′(qP)+(νAeL +(1−νA)eH)uB′(qP)− c = 0, it follows that

(νA
θL +(1−ν

A)θH)uA′(qP)+(νAeL +(1−ν
A)eH)uB′(qP)− c = (1−ν

A)(∆θ)uA′(qP),
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which is zero at νA = 1. Hence, at νA = 1,

dW N

dνA = (θL−θH)uA(q∗L)+(eL− eH)uB(q∗L).

From W PD ≡W (q∗L,q
∗
H) we obtain,

dW PD

dvA = θLuA(q∗L)+ eLuB(q∗L)− cq∗L− [θHuA(qFB
H )+ eHuB(qFB

H )− cqFB
H ]

+ ν
A(θLuA′(q∗L)+ eLuB′(q∗L)− c)

dq∗L
dνA ,

but since θ v
LuA′(q∗L)+ eLuB′(q∗L)− c = 0, it follows that

ν
A(θLuA′(q∗L)+ eLuB′(q∗L)− c) = (1−ν

A)(∆θ)uA′(q∗L),

which is zero at νA = 1. Hence, at νA = 1,

dW PD

dνA = θLuA(q∗L)+ eLuB(q∗L)− cq∗L− [θHuA(qFB
H )+ eHuB(qFB

H )− cqFB
H ]

d(W PD−W N)

dνA = [θHuA(q∗L)+ eHuB(q∗L)− cq∗L]− [θHuA(qFB
H )+ eHuB(qFB

H )− cqFB
H ].

Since we are considering the case in which pooling does not arise under price discrimination, it
must be the case that q∗L < q∗H , that is, q∗L < qFB

H . Hence, by definition of qFB
H , it follows that

d(W PD−W N)
dνA < 0 when νA is close to 1. QED

Proof of Proposition 6(iii) Suppose that q∗L = q∗H ; then qP = q∗L and W N =W PD. Now we prove
that dW PD

deL
> dW N

deL
and dW N

deH
> dW PD

deH
. Precisely, we use


dqP

deH
= (1−νA)uB′(qP)
−θLuA′′(qP)−(νAeL+(1−νA)eH)uB′′(qP)

dqP

deL
= νAuB′(qP)
−θLuA′′(qP)−(νAeL+(1−νA)eH)uB′′(qP)
dq∗L
deL

=
uB′(q∗L)

−θ ν
L uA′′(q∗L)−eLuB′′(q∗L)
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dW PD

deL
= ν

AuB(q∗L)+ν
A(θLuA′(q∗L)+ eLuB′(q∗L)− c)

dq∗L
deL

= ν
AuB(q∗L)+

(1−νA)(∆θ)uA′(q∗L)u
B′(q∗L)

−θ v
LuA′′(q∗L)− eLuB′′(q∗L)

(C. 1)

dW PD

deH
= (1−ν

A)uB(qFB
H )(C. 2)

and

dW N

deL
= ν

AuB(qP)+
dW N

dqP
dqP

deL

= ν
AuB(qP)+

νA(1−νA)(∆θ)uA′(qP)uB′(qP)

−θLuA′′(qP)− (νAeL +(1−νA)eH)uB′′(qP)
(C. 3)

dW N

deH
= (1−ν

A)uB(qP)+
dW N

dqP
dqP

deH

= (1−ν
A)uB(qP)+

(1−νA)2(∆θ)uA′(qP)uB′(qP)

−θLuA′′(qP)− (νAeL +(1−νA)eH)uB′′(qP)
.(C. 4)

Given q∗L = q∗H = qP, we prove that d(W N−W PD)
deH

> 0 > d(W N−W PD)
deL

. Therefore, a small increase
in eH implies W N > W PD; by the same reasoning, a small decrease in eL implies W N > W PD.
The inequality d(W N−W PD)

deH
> 0 is immediate from (C. 2) and (C. 4), given qP = q∗L = q∗H = qFB

H .

Then we use (C. 1) and (C. 3) and again qP = q∗L to see that 0 > d(W N−W PD)
deL

is equivalent to
0 <−θHuA′′(q∗L)− eHuB′′(q∗L), which is satisfied. QED

Proof of Proposition 7

(i) In case the single contract is designed to be accepted by both types on side A, p= θLu(q) and
the profit is θLuA(q)+(νAelL +(1−νA)elH)uB(q)− cq.26 The optimal q is qP that satisfies
(16). We denote with πL the resulting profit. In this case, welfare is

W (qP,qP)+(1−ν
B)d(qP,qP).

In case the single contract is designed to be accepted only by type H on side A, then
p= θHu(q), the profit is (1−νA)(θHuA(q)+elHuB(q)−cq),27 and the optimal q is q∗H as de-

26This follows from the assumption of no type reversal, which implies that the participation constraint of type L on
side B binds.

27The assumption of no type reversal implies that on side B the participation constraint that binds is the one of type
L, hence the platform’s revenue from side B is (1−νA)elHuB(q).
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termined by (15). The resulting profit is (1−νA)πH with πH = θHuA(q∗H)+elHuB(q∗H)−cq∗H
and also welfare is equal to (1−νA)πH .

After replacing eL,eH with elL,elH , we can argue as in the proof of Proposition 6(i) to show
that if exclusion occurs under PD, then it occurs also under no PD, but the reverse is untrue.
If exclusion occurs under no PD but does not occur under PD, then

W PD = ν
A[θLuA(q∗L)+ ea

LuB(q∗L)− cq∗L]

+ (1−ν
A)[θHuA(q∗H)+ ea

HuB(q∗H)− cq∗H ]

is larger than
W N = (1−ν

A)[θHuA(q∗H)+ ea
HuB(q∗H)− cq∗H ]

because q∗L = argmaxq[θ
ν
L uA(q)+elLuB(q)−cq] and θ v

L < θL, elL < ea
L (given no type rever-

sal), hence

θLuA(q∗L)+ ea
LuB(q∗L)− cq∗L > θ

v
LuA(q∗L)+ elLuB(q∗L)− cq∗L > 0.

(ii) The proof of Proposition 6(ii) applies, after replacing eL,eH with elL,elH to show that W (q∗L,q
∗
H)>

W (qP,qP), and type reversal with positive sorting means that ehL− elL < 0 < ehH − elH .
Hence q∗L < qP < q∗H implies νA(1−νB)(ehL−elL)uB(q∗L)+(1−νA)(1−νB)(ehH−elH)uB(q∗H)>

νA(1−νB)(ehL− elL)uB(qP)+ (1−νA)(1−νB)(ehH − elH)uB(qP), and from (20) we con-
clude that W PD >W N .

(iii) The proof of Proposition 6(iii) applies, after replacing eL,eH with elL,elH to show that
W (qP,qP) > W (q∗L,q

∗
H), and type reversal with negative sorting means that ehL − elL >

0 > ehH − elH . Hence q∗L < qP < q∗H implies νA(1− νB)(ehL− elL)uB(qP)+ (1− νA)(1−
νB)(ehH−elH)uB(qP)> νA(1−νB)(ehL−elL)uB(q∗L)+(1−νA)(1−νB)(ehH−elH)uB(q∗H),
and from (20) we conclude that W N >W PD. QED

Proof of Proposition 9 We know that qFB(θ) satisfies θuA′(qFB(θ))+e(θ)uB′(qFB(θ))−c = 0,
hence, the implicit function theorem reveals that

dqFB(θ)

dθ
=

uA′(qFB(θ))+ e′(θ)uB′(qFB(θ))

−θuA′′(qFB(θ))− e(θ)uB′′(qFB(θ))
.
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Since −θuA′′(qFB(θ))− e(θ)uB′′(qFB(θ))> 0 and dqFB(θ)
dθ

≥ 0 by assumption, we deduce that

(C. 5) e′(θ)≥−uA′(qFB(θ))

uB′(qFB(θ))

Now we consider q∗(θ), which satisfies θ vuA′(q∗(θ)) + e(θ)uB′(q∗(θ))− c = 0. The implicit
function theorem implies that

dq∗(θ)
dθ

=
dθ v

dθ
uA′(q∗(θ))+ e′(θ)uB′(q∗(θ))

−θ vuA′′(q∗(θ))− e(θ)uB′′(q∗(θ))
,

and from −θ vuA′′(q∗(θ))− e(θ)uB′′(q∗(θ))> 0, uB′(q∗(θ))> 0, and (C. 5) we obtain

dq∗(θ)
dθ

≥
dθ v

dθ
uA′(q∗(θ))− uA′(qFB(θ))

uB′(qFB(θ))
uB′(q∗(θ))

−θuA′′(q∗(θ))− e(θ)uB′′(q∗(θ))

Hence, a sufficient condition for dq∗(θ)
dθ
≥ 0 is to have

dθ v

dθ
uA′(q∗(θ))− uA′(qFB(θ))

uB′(qFB(θ))
uB′(q∗(θ))≥ 0,

which can be rewritten as

dθ v

dθ
≥
(

uA′(qFB(θ))

uB′(qFB(θ))

)
/

(
uA′(q∗(θ))
uB′(q∗(θ))

)
.

This inequality holds, since (i) f (θ)
1−F(θ) increasing implies dθ v

dθ
≥ 1; (ii) qFB(θ) ≥ q∗(θ) and uA′

uB′

decreasing imply (
uA′(qFB(θ))

uB′(qFB(θ))

)
/

(
uA′(q∗(θ))
uB′(q∗(θ))

)
≤ 1.

QED

Proof of Proposition 10(ii) From Guesnerie and Laffont (1984), qSB is either given by (A.8)
or is a constant schedule. In this proof, we show that if h(q∗(θ)) > 0, then no constant sched-
ule is optimal, whereas if h(q∗(θ)) ≤ 0 then qk is optimal, with k such that h(k) = 0. Re-
call that

∫
θ

θ
G(k,θ) f (θ)dθ is the platform’s profit given the constant schedule qk, and h(k) =∫

θ

θ
g(k,θ) f (θ)dθ is the derivative of

∫
θ

θ
G(k,θ) f (θ)dθ with respect to k.

First, suppose h(q∗((θ)) > 0, and notice that h(q∗(θm)) < 0, since q∗(θ) ≤ q∗(θm) for each
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θ ∈ [θ ,θ ] (by definition of θm), hence, 0 = g(q∗(θm),θm) ≥ g(q∗(θm),θ) for each θ ∈ [θ ,θ ] by
(A.7) (the strict inequality holds for each θ 6= θm). Hence, the k that satisfies h(k) = 0 is between
q∗(θ) and q∗(θm). But qk is inferior to the following schedule q̃, which is constant only for high
values of θ :

q̃(θ) =

 q∗(θ) if θ ∈ [θ ,θ ′)

k if θ ∈ [θ ′,θ ]

In q̃, the value θ ′ ∈ (θ ,θm) is such that q∗(θ ′) = k. Precisely, with q̃ the profit is equal to

∫
θ ′

θ

G(q∗(θ),θ) f (θ)dθ +
∫

θ

θ ′
G(k,θ) f (θ)dθ ;

with qk the profit is ∫
θ ′

θ

G(k,θ) f (θ)dθ +
∫

θ

θ ′
G(k,θ) f (θ)dθ .

The former is greater than the latter as

∫
θ ′

θ

G(q∗(θ),θ) f (θ)dθ >
∫

θ ′

θ

G(k,θ) f (θ)dθ

by definition of q∗. Basically, q̃ maximizes the profit for θ in the interval [θ ,θ ′), hence it is superior
to qk for θ ∈ [θ ,θ ′). Moreover, q̃ and qk coincide for θ ∈ [θ ′,θ ].

Now suppose that h(q∗(θ)) ≤ 0. We prove that each schedule in (A.8) violates (A.9). Hence,
no schedule in (A.8) can be optimal, therefore, the optimal schedule is constant. In detail, we show
that

∫
θ

θ ′ g(z,θ) f (θ)dθ < 0 for each θ ′ ∈ [θ ,θm) and z = q∗(θ ′):

(i) ∫
θ

θ ′
g(z,θ) f (θ)dθ <

∫
θ

θ ′
g(q∗(θ),θ) f (θ)dθ

since for each θ ′ ∈ (θ ,θm), z = q∗(θ ′) is larger than q∗(θ) and g is decreasing in q;

(ii)

0≥ h(q∗(θ))=
∫

θ

θ

g(q∗(θ),θ) f (θ)dθ =
∫

θ ′

θ

g(q∗(θ),θ) f (θ)dθ +
∫

θ

θ ′
g(q∗(θ),θ) f (θ)dθ ;

(iii)
∫

θ ′

θ
g(q∗(θ),θ) f (θ)dθ > 0 by (A.7) because q∗(θ)< q∗(θ) for each θ ∈ (θ ,θ ′) and g(q∗(θ),θ)=

0 . Hence, from (ii) we see that
∫

θ

θ ′ g(q
∗(θ),θ) f (θ)dθ < 0. This, together with (i), implies∫

θ

θ ′ g(z,θ) f (θ)dθ < 0.
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Also notice that minq∗=min
θ∈[θ ,θ ] q

∗(θ)=min{q∗(θ),q∗(θ)} and (A.7) implies that h(minq∗)>

0. Since h(q∗(θ))≤ 0 by assumption, it follows that q∗(θ)> q∗(θ̄) and qSB coincides with qk for
a suitable k such that q∗(θ)< k < q∗(θ). QED

Proof of Proposition 10(iii) The proof is omitted for space’s sake because the proof proceeds as
a mirror to the proof for Proposition 10(ii).

Proof of Proposition 11(i) From Guesnerie and Laffont (1984), it follows that qSB is given by
(A.8) or is a constant schedule. Since h(0)≤ 0, then there exists no k > 0 such that h(k) = 0, and it
is impossible that qSB = qk for some k > 0. If qSB satisfies (A.8), then q∗ need to be single-peaked
in (θ ,θ0) and θm ∈ (θ ,θ0) denotes the peak, θ ′,z are such that θ ′ ∈ (θ ,θm), z = q∗(θ ′), and (A.9)
holds. We now show that this is impossible:

(i) h(0)≤ 0 implies h(q∗(θ))< 0;

(ii) for each θ ′ ∈ (θ ,θm) , h(q∗(θ)) =
∫

θ ′

θ
g(q∗(θ),θ) f (θ)dθ +

∫
θ

θ ′ g(q
∗(θ),θ) f (θ)dθ ;

(iii) from (i)-(ii) and
∫

θ ′

θ
g(q∗(θ),θ) f (θ)dθ >

∫
θ ′

θ
g(q∗(θ),θ) f (θ)dθ = 0, we obtain∫

θ

θ ′ g(q
∗(θ),θ) f (θ)dθ < 0.

Finally, z = q∗(θ ′)> q∗(θ) implies
∫

θ

θ ′ g(z,θ) f (θ)dθ <
∫

θ

θ ′ g(q
∗(θ),θ) f (θ)dθ < 0, which vi-

olates (A.9). QED

Proof of Proposition 11(ii) Since q∗(θ) = 0 in [θ ,θ0], it follows that also qSB(θ) is zero in
[θ ,θ0]. For θ > θ0, it is suboptimal to set qSB(θ) = 0 if

∫
θ

θ0
g(0,θ) f (θ)dθ > 0, as a superior

alternative is qSB(θ) = k for each θ ∈ (θ0,θ ], for a small k > 0. Since q∗ is increasing in (θ0,θm),
qSB(θ) coincides with q∗(θ) for θ ∈ (θ0,θ

′] for some θ ′ ∈ (θ0,θm) and is flat in (θ ′,θ ], with
θ ′ such that

∫
θ

θ ′ g(q
∗(θ ′),θ) f (θ)dθ = 0. If, instead,

∫
θ

θ0
g(0,θ) f (θ)dθ ≤ 0, then qSB = q0 as no

θ ′ ∈ (θ0,θm) satisfies
∫

θ

θ ′ g(q
∗(θ ′),θ) f (θ)dθ = 0. QED
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