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Abstract

This paper studies the effects of introducing centrifugal incentives in an otherwise standard Down-

sian model of electoral competition. First, we demonstrate that a symmetric equilibrium is guaranteed

to exist when centrifugal incentives are induced by any kind of partial voter participation (such as

abstention due to indifference, abstention due to alienation, etc.) and, then, we argue that: a) this

symmetric equilibrium is in pure strategies, and it is hence convergent, only when centrifugal incentives

are suffi ciently weak on both sides; b) when centrifugal incentives are strong on both sides (when, for

example, a lot of voters abstain when they are suffi ciently indifferent between the two candidates)

players use mixed strategies - the stronger the centrifugal incentives, the larger the probability weight

that players assign to locations near the extremes; and c) when centrifugal incentives are strong on

one side only - say for example only on the right - the support of players’mixed strategies contain all

policies except from those that are suffi ciently close to the left extreme.

JEL classification codes: D71, D72.

Keywords: Electoral Competition; Spatial Model; Downs; Mixed equilibria; Centrifugal incentives;

Abstention.

1 Introduction

In a standard Downsian model of electoral competition,1 a candidate located, for example, to the left of

her competitor always has incentives to approach her competitor’s location because all voters with ideal
∗The authors would like to thank two referees, an associate editor, Philippe De Donder and Juuso Välimäki as well as

participants of CRETE2013, EPSA General Conference 2014 and the MFS 2015 Conference for excellent comments and
suggestions.
†Aix-Marseille University (Aix Marseille School of Economics, CNRS and EHESS).
‡Institut Universitaire de France and Toulouse School of Economics (University of Toulouse Capitole).
§University of Cyprus.
1We refer to Duggan (2012) and Osborne (1995) for nice surveys of the literature which originates to Hotelling’s (1929)

and Downs’s (1957) models of spatial competition.
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policies to her left will still vote for her. That is, a player in such a model unambiguously increases her

vote-share by approaching her competitor. In a sense, the standard Downsian model takes in account

existence only of centripetal incentives (understood here broadly as incentives that make one player want

to move closer to her opponent) and hence the popular convergence-to-the-center result is obtained.

But what if a share of voters located to the left (right) of the most leftist (rightist) candidate (or

party) feels alienated from the political process, and prefers to abstain or vote for extremist candidates

instead of the two main ones? What if a share of voters located in between candidates feels indifferent

and prefers to abstain from voting? In such cases it is straightforward that any motion of a candidate

towards her opponent is not unambiguously profitable - such voters’behaviors generate centrifugal incen-

tives that mitigate the centripetal ones. To quote Cox (1990), from whom we borrow this terminology,

centrifugal incentives should be expected to "lead to the advocacy of, more or less, extreme positions".2

Hence, introduction of centrifugal incentives in an otherwise standard spatial model should be expected

to destabilize the convergence-to-the-center result.

In this paper we consider a generalized Downsian model that takes in account such centrifugal in-

centives. We assume that a participating voter3 always behaves in the standard manner: she votes for

the candidate whose policy proposal is closer to her ideal policy. But the share of participating voters

of a certain preference type (that is, of voters that have the same policy preferences), is allowed to be

essentially any function of candidates’policy proposals - which may different, of course, for every distinct

voters’ type. That is, our model takes in account all kinds of cases of partial voter participation (for

example, abstention due to indifference,4 abstention due to alienation,5 etc.) and this makes us believe

that its analysis is relevant and worthwhile.

We notice that this general formulation is equivalent to having that the share of participating voters to

the left (right) of the most leftist (rightist) candidate and the share of participating voters in between the

platform of the most leftist (rightist) candidate and the ideal policy of the indifferent voter, are functions

2For a detailed exposition of possible reasons behind centrifugal incentives in electoral competition one is referred to
Adams, Merrill and Grofman (2005). We briefly discuss some of them in the end of this section.

3A participating voter is someone who votes for one of the two main competing candidates. On the contrary a non-
participating voter is a voter that does not vote for one of these two candidates: such voters could be abstaining or they
could be voting for other non-instrumental candidates. In the Appendix we provide a specific application in which non-
participating voters are assumed to vote for extremist/niche parties with fixed policy positions (non-instrumental).

4For example, Matakos et al. (2015b) introduce indifference-based abstention to a unidimensional model of electoral
competition in order to study the effect of electoral rule disproportionality on turnout (one is referred to Matakos et al.,
2015a, for a more comprehensive presentation of the formal setup) and show that it generates centrifugal incentives.

5Downs (1957) shows that alienation-based abstention reinforces centrifugal incentives (conditional on the distribution of
voters’ideal policies not being very polarized).
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of the policy platforms of the two candidates. Indeed, candidates’location choices (when they are interior

and they do not coincide) divide the space in four regions6 - two peripheral regions and two central ones

- and hence, for a given distribution of ideal policies, we essentially have four (possibly distinct) functions

that determine the share of voters that participate in the election - one function for each region.

The first contribution of the paper is to prove that for this general class of centrifugal incentives

(when, centrifugal incentives arise due to partial voter participation), the game admits a symmetric Nash

equilibrium for every possible distribution of voters’ ideal policies. Since this generalized model is a

discontinuous one (like the standard Downsian one), in order to establish this general existence result we

apply a theorem of Dasgupta and Maskin (1986). We then try to shed some light on the nature of the

symmetric equilibria that we proved to exist by focusing on the simplest class of centrifugal incentives.

That is, by focusing on the simplest kind of functions that could be used to determine the share of

participating voters in each region - the class of constant functions - and on a uniform distribution of

voters’ideal policies. Notice that the use of constant and generally different alienation functions introduces

in our model a second ingredient besides centrifugal incentives: differential party loyalty. Namely, when

the share of voters located to the left of the most leftist candidate who feel alienated from the political

process differs from the share of voters located to the right of the most rightist candidate who feel

alienated from the political process, there is generally a discontinuity of a party’s payoff function when

its rival is located at the center. This means that being identified as the leftist (or the rightist) party, by

differentiating one’s policy proposals even infinitesimally from the rival party’s policy proposals, induces

an upward (downward) jump in a party’s vote share.

In general three types of configurations may be encountered.

The first one describes the case where centripetal incentives dominate centrifugal incentives on both

sides of the strategy space (large shares of participating voters in the peripheral regions compared to the

central ones). In that case, the Downsian logic of minimal differentiation, where the two players converge

towards a point which may be more or less close to the center, depending on the degree of asymmetry

between the centrifugal incentives, applies. For the uniform distribution, the point of convergence will

belong to the interval
[

1
3 ,

2
3

]
. This is because even if centripetal incentives are dominant on both sides

they can still be asymmetric; asymmetry of these forces crucially affects the point of convergence. If, for

6The first region contains all locations to the left of the most leftist platform, the second region contains all locations
from the most leftist platform to the ideal policy of the indifferent voter (i.e. the voter whose ideal policy is equidistant from
the two platforms), the third region contains all locations in between the ideal policy of the indifferent voter and the most
rightist platform and the fourth region all locations to the right of the most rightist platform.
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example, players face stronger centrifugal incentives from the right (the share of participating voters of

the left peripheral region is larger than that of the right one), they converge to a point which belongs

on the left half of the strategy space. That is, on the side of the policy space where centrifugal incentives

are weaker - not the other way round. This is intuitively the consequence of the differential party loyalty

effect. In the previous example, when the rival party located at the center, a party would unambiguously

increase its vote-share by choosing a policy proposal just to the left of its rival’s, allowing to be identified

itself as the leftist party.7 Most importantly we show that candidates’choices in this case depend only on

the shares of participating voters in the peripheral regions.

The second configuration describes the case where centrifugal incentives dominate centripetal incen-

tives on both sides of the strategy space (small shares of participating voters in the peripheral regions

compared to the central ones). This case raises some interesting coordination problems if the players are

totally opportunistic, that is, without real attachment to the left or the right. If a coordination mechanism

is absent, there is a symmetric equilibrium in mixed strategies. Not surprisingly, the expected degree of

differentiation in this equilibrium is increasing in the degree of the centrifugal incentives. In the case

in which centrifugal incentives on both sides are of equal magnitude, there is a smooth transition from

these mixed equilibria to the pure strategy equilibrium of the strong centripetal incentives case. When

centrifugal incentives are very large, players use a dispersed mixed strategy which assigns large probability

weights to locations at the extreme of the strategy space (U-shaped density function). As the magnitude

of centrifugal incentives declines, but as long as they dominate centripetal ones, the mixed strategy that

players use assigns an increasing probability weight to central locations (inverse U-shaped density). In

this case, candidates’expected location depends only on the shares of participating voters in the central

regions.

The third configuration describes a situation where centripetal incentives are dominant on one side

and centrifugal incentives are dominant on the other side.8 Assume, for example, that centripetal forces

dominate on the left and centrifugal forces dominate on the right (large share of participating voters on

the left and small share of participating voters on the right). This configuration is non-trivial as there

is no equilibrium in pure strategies: the best reply dynamics are chaotic. We characterize a symmetric

equilibrium in mixed strategies which has a number of interesting features. The common mixed strategy

that players use in this equilibrium is such that a) the support of this mixed strategy does not contain

7Remember that, in this example, centripetal incentives (and, hence, party loyalty) are stronger on the left.
8There is some similarity between this configuration and the unidirectional Hotelling-Downs ’s model analyzed in Cancian,

Bergström and Bills (1995), Gabszewicz, Laussel and Le Breton (2008) and Xefteris (2013).
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extreme leftist locations, b) the support of this mixed strategy contains extreme rightist locations, c) the

density of the underlying distribution of this mixed strategy is decreasing and d) candidates’ expected

location depends on the shares of participating voters in both central and peripheral regions.

Of course, we are not the first ones to consider unidimensional models of electoral competition with

both centripetal and centrifugal incentives. The post-Downsian literature contains several models along

these lines. In particular, in the framework of electoral competition centrifugal incentives have been

introduced through a variety of different channels. For instance in a model with ideological candidates

and uncertainty on the location of the median voter (Roemer, 2001), the leftist candidate will balance

between moving left to please (if elected) the voter on behalf of whom he is acting and moving towards

the centre to increase the probability of winning the election. Moreover, Adams, Merrill and Grofman

(2005)9 "show that three factors, each linked to voter choice, can generate strong centrifugal pressures

on the positioning of parties: (1) the existence of non-policy considerations in voter decision making -

most notably party loyalty; (2) the capacity of voters to discount the claims of candidates concerning

the policy changes they could achieve; and (3) an unwillingness of citizens to participate in the political

process when they find that none of the existing parties or candidates are suffi ciently attractive".10 While

the authors recognize that such games generally fail to admit a Nash equilibrium in pure strategies, they

do not investigate the corresponding class of patterns to which they refer as unstable.11 Instead, they

determine conditions under which the game admits a unique Nash equilibrium in pure strategies. In

this paper we characterize a symmetric equilibrium in mixed strategies for a simple class of centrifugal

incentives, which allows us, though, to study in detail the effect of a wide range of asymmetries among

these incentives on players’equilibrium behavior.

In what follows we describe the model (section 2), we present some general results, mainly regard-

ing equilibrium existence (section 3), we conduct a detailed equilibrium analysis for the case in which

centrifugal incentives are modelled by a quadruple of constant functions and the voters’ ideal policies

are uniformly distributed on the policy space (section 4) and, finally, we conclude (section 5). In the

Appendix we provide some results about pure strategy equilibria for nonuniform distributions of voters’
9See also Merrill and Adams (2002) who analyze factors that affect candidates’ position-taking incentives in multi-

candidate and multi-party elections. For a multivariate vote model that includes a Left-Right policy component, a party
identification component and an unmeasured term that renders the vote choice probabilistic, they present theoretical and
computer simulation results that quantify candidates’incentives to shift their policies away from the center in the direction
of their partisan constituencies’mean policy preferences. Centrifugal incentives are found to increase with (1) the salience
of policies and party identification, (2) the size of the candidate field, (3) the size of a candidate’s partisan constituency and
(4) more extreme constituency policy preferences. Thus, ceteris paribus, candidates who represent large constituencies are
motivated to present more extreme policies than are candidates who represent small ones.
10Page 2.
11Page 44.
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ideal policies and also some microfoundations of the constant functions extensively analyzed in the paper.

2 The Model

We consider a model in which two players (candidates/parties), 1 and 2, simultaneously locate on the

interval [0, 1]. We denote by x (y) the location choice of player 1 (2). The ideal policies of a unit mass

of voters are distributed on [0, 1] according to a strictly increasing and absolutely continuous distribution

function, F : [0, 1]→ [0, 1]. Given a profile (x, y) ∈ [0, 1]2 , the payoffs of the two players are assumed to

be as follows

π1(x, y) =


∫ x+y

2
0 Ξ(θ, x, y)f(θ)dθ if x < y

1
2

∫ 1
0 Ξ(θ, x, y)f(θ)dθ if x = y∫ 1

x+y
2

Ξ(θ, x, y)f(θ)dθ if x > y

and the payoff of candidate 2 is given by:

π2(x, y) =


∫ x+y

2
0 Ξ(θ, x, y)f(θ)dθ if y < x

1
2

∫ 1
0 Ξ(θ, x, y)f(θ)dθ if y = x∫ 1

x+y
2

Ξ(θ, x, y)f(θ)dθ if y > x

where Ξ is integrable with respect to θ on [0, 1], takes non-negative values at most as large as one

and is symmetric - that is, Ξ(θ, x, y) = Ξ(θ, y, x) for every (x, y) ∈ [0, 1]2. The postulate behind these

payoff functions is that, given a menu of two platforms x and y, a participating voter always votes for the

candidate who proposes the policy nearer to her ideal policy, but only a fraction, Ξ(θ, x, y), of voters with

ideal policy θ actually participate in the election. Since Ξ(θ, x, y) is allowed to vary in all its arguments

the above formulation captures essentially all kinds of centrifugal incentives that may arise due to partial

voter participation. In studies which consider abstention due to indifference (see, for example, Hortala-

Vallve and Esteve-Volart 2011 and Matakos et al. 2015b), Ξ(θ, x, y) is zero (one) for every θ suffi ciently

close to (far from) x+y
2 while in studies which consider abstention due to alienation (see, for example,

Downs 1957), Ξ(θ, x, y) is zero (one) for every θ suffi ciently far from (close to) candidates’platforms.

For a given distribution F , we can define α(x, y) =
∫min{x,y}
0 Ξ(θ,x,y)f(θ)dθ

F (min{x,y}) for min{x, y} > 0 and
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α(x, y) = α ∈ [0, 1] otherwise; β(x, y) =

∫ 1
max{x,y} Ξ(θ,x,y)f(θ)dθ

1−F (max{x,y}) for max{x, y} < 1 and β(x, y) = β ∈ [0, 1]

otherwise; γ(x, y) =

∫ x+y
2

min{x,y} Ξ(θ,x,y)f(θ)dθ

F (x+y
2

)−F (min{x,y}) for x 6= y and γ(x, y) = γ ∈ [0, 1] otherwise; and δ(x, y) =∫max{x,y}
x+y
2

Ξ(θ,x,y)f(θ)dθ

F (max{x,y})−F (x+y
2

)
for x 6= y and δ(x, y) = δ ∈ [0, 1] otherwise.12 Notice that since Ξ is integrable with

respect to θ, all the above functions are guaranteed to be continuous everywhere, except possibly at their

problematic points.

Hence we can re-write the players’payoff functions as:

π1(x, y) =


α(x, y)F (x) + γ(x, y)(F (x+y

2 )− F (x)) if x < y

1
2 [β(x, y)(1− F (x)) + α(x, y)F (x)] if x = y

β(x, y)(1− F (x)) + δ(x, y)(F (x)− F (x+y
2 )) if x > y

and

π2(x, y) =


β(x, y)(1− F (y)) + δ(x, y)(F (y)− F (x+y

2 )) if x < y

1
2 [β(x, y)(1− F (x)) + α(x, y)F (x)] if x = y

α(x, y)F (y) + γ(x, y)(F (x+y
2 )− F (y)) if x > y

.

Given a) that this model incorporates a wide class of diverse cases of centrifugal incentives and b)

that this second pair of payoff functions offers an arguably more direct way of classifying these cases into

subgroups (based on how voters behave on average in each of the four distinct regions), we stick with the

latter formulation throughout our analysis.

Before we proceed though we draw attention to some features of the game that need to be emphasized.

First, notice that for a generic quadruplet (α, β, γ, δ), the game is not zero-sum. In spite of the fact that

the game is competitive, it also contains coordination dimensions. Second, the game is symmetric in the

sense that π1(x, y) = π2(y, x) for all (x, y) ∈ [0, 1]2. Third, the game is discontinuous: the function is

discontinuous on the diagonal of the square. Symmetric discontinuous games raise intricate diffi culties

as they do not necessarily admit equilibria in mixed strategies and, even if they do, they do not always

admit a symmetric equilibrium (see Fey 2012 and Xefteris 2015). In this paper, we prove existence of a

symmetric equilibrium for the general case using the Dasgupta and Maskin (1986) conditions and then we

12Setting the functions equal to some arbitrary constant at their problematic points is only made for completeness and has
no effect on formal analysis.
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construct explicitly a symmetric equilibrium for the case in which (α, β, γ, δ) is a quadruplet of constant

functions and F is uniform.

3 General Remarks

The model that we consider introduces, principally, centrifugal forces and, secondarily, differential party

loyalty. On one hand, when the centrifugal (centripetal) incentives are dominant on the left (right), the

vote-share of a party decreases (increases) when a party approaches her opponent from the left (right). On

the other hand, differential party loyalty results generally in a discontinuity of the party’s payoff function

when the party’s policy proposition becomes, at the center, identical to its rival’s one. As already argued,

this reflects the possibly different magnitudes of the centrifugal incentives on the left of the leftist party

and on the right of the rightist one.

For the sake of illustration, consider that α(x, y) = α, β(x, y) = β, γ(x, y) = γ > 0 and δ(x, y) = δ > 0

for every (x, y) ∈ [0, 1]2; and define α̂ = α/γ and β̂ = β/δ. Then, if the second player locates to the right

of the first player (x < y), we have:

∂π2

∂y
(x, y) = [(1− β̂)f(y)− 1

2
f(
x+ y

2
)]δ

and therefore:

∂π2

∂y
(x, y) < 0 if and only if (1− β̂)f(y)− 1

2
f(
x+ y

2
) < 0.

If β̂ is close to one, not surprisingly, the inequality is likely to hold true as the right player does not

lose too much voters on its right by moving to the left. On the contrary, when β̂ = 0, the condition writes

f(y) < 1
2f(x+y

2 ). If the density does not decrease too fast, it will not be satisfied. For instance, when F is

uniform, it does not hold true. Precisely, when F is uniform, the general inequality holds true if and only

if β̂ > 1
2 . For this reason when we refer to strong centrifugal (centripetal) incentives we actually mean

small (large) values of α̂ and β̂.

The conventional Hotelling-Downs model corresponds to α̂ = β̂ = 1 and, hence, it pays attention

exclusively to centripetal forces, that is, incentives pushing each player to move in the direction of its
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opponent. Centrifugal incentives are absent. On the contrary, our model takes into account a variety of

centrifugal forces. To understand the nature of these implications, we look at the payoff function of the

first player when the distribution of voters is uniform and γ = δ.

Let α̂, β̂ > 1
2 . In such a case the centripetal incentives are strong and, thus, the payoff function π1

is increasing on [0, y), decreasing on (y, 1] and displays a discontinuity at y if and only if y 6= β
α+β . The

discontinuity is as depicted in figure 1a if y > β
α+β or as depicted in figure 1b if y <

β
α+β .

Insert Figure 1 here

Now, let α̂, β̂ < 1
2 . In such a case, the centrifugal incentives are strong and, thus, the payoff function

π1 is decreasing on [0, y), increasing on (y, 1] and displays a discontinuity at y if and only if y 6= β
α+β .

Since π1(0, y) = γ y2 , π1(1, y) = δ 1−y
2 = γ 1−y

2 and π1(y, y) = γ α̂y+β̂(1−y)
2 , the best response of player 1

to y is zero if y > 1
2 and one if y <

1
2 . Indeed, since α̂ < 1

2 , we cannot have both
y
2 < α̂y+β̂(1−y)

2 and
1−y

2 < α̂y+β̂(1−y)
2 . But the value at one extreme may be smaller than the value at the discontinuity point.

The graph of π1 is as depicted in figure 1c if y >
β

α+β or as depicted in figure 1d if y <
β

α+β .

Finally, let α̂ > 1
2 > β̂. In such case, the centrifugal incentives are dominant on the right and the

centripetal incentives are dominant on the left and, thus, the payoff function π1 is increasing on [0, y),

increasing on (y, 1] and displays a discontinuity at y if and only if y 6= β
α+β . The graph of π1 is as depicted

in figure 1e if y > β
α+β or as depicted in figure 1f if y <

β
α+β .

Equilibrium existence in such discontinuous games is not straightforward. Our first task will be to

demonstrate that our game satisfies the Dasgupta and Maskin (1986) conditions which guarantee the exis-

tence of a symmetric equilibrium in mixed strategies13 in certain symmetric games with discontinuities.

Proposition 1 The game admits a symmetric Nash equilibrium in mixed strategies for every admis-

sible quadruplet of functions (α, β, γ, δ) and every absolutely continuous F .

13For a symmetric mixed Nash equilibrium to be meaningful in a political competition setting, we must have in mind
situations when there is no cost for an actor to be ultimately on the left or on the right of any other actor. There should
be no constraints on positioning and leapfrogging should not be costly. This may happen if the parties are not too much
ideological (like Aragonès and Palfrey, 2002, and Aragonès and Xefteris, 2013, who characterize mixed equilibria of the
Downsian model with a favored candidate under perfect and imperfect information) or within a party if the competition
describes primaries among candidates.
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Proof. Dasgupta and Maskin (1986) show that if a) the pure strategy space for each player is

represented by a closed interval, b) the payoff functions are continuous except on a set of measure zero,

c) the players’cumulative payoff function is upper semi-continuous, d) the range of the payoff function of

each player is bounded and e) the payoff function of each player is weakly lower semi-continuous for any

given strategy of the other player, then the game admits an equilibrium in mixed strategies. Therefore,

to prove that our game admits a Nash equilibrium in mixed strategies the only thing that we have to do

is to show that all these five conditions are met.

a) The pure strategy space for each player is [0, 1]; a closed interval.

b) π1(x, y) and π2(x, y) are continuous except for the main diagonal, that is, except for x = y. This

line obviously represents a measure zero of all the possible pure strategy profiles which are given by [0, 1]2.

c) π1(x, y)+π2(x, y) = α(x, y)F (min{x, y})+γ(x, y)[F (x+y
2 )−F (min{x, y})]+δ(x, y)[F (max{x, y}−

F (x+y
2 ))] + β(x, y)(1−F (max{x, y})) is a continuous function since it is a sum of continuous functions.14

That is, it is upper semi-continuous as well.

d) 0 ≤ π1(x, y) ≤ 1 and 0 ≤ π2(x, y) ≤ 1 for any (x, y) ∈ [0, 1]2. That is, the players’payoffs are

bounded.

e) π1(x, y) is weakly lower semi-continuous in x if ∀x ∈ [0, 1], ∃λ ∈ [0, 1] such that for y = x,

λ lim inf
x→−y

π1(x, y) + (1− λ) lim inf
x→+y

π1(x, y) ≥ π1(x, y).

If y ∈ (0, 1) then observe that for y = x, π1(x, y) = α(y,y)F (y)+β(y,y)(1−F (y))
2 , lim infx→−y π1(x, y) =

α(y, y)F (y) and lim infx→+y π1(x, y) = β(y, y)(1 − F (y)). It is evident that for λ = 1
2 the required weak

inequality becomes an equality for any quadruplet of continuous functions (α, β, γ, δ) and any absolutely

continuous F and, thus, always holds. If y ∈ {0, 1} (say for example that y = 0) then for y = x, π1(x, y) =

β(0,0)
2 and lim infx→+y π1(x, y) = β(0, 0). In this case the definition of weak lower semi-continuity requires

that lim infx→+y π1(x, y) ≥ π1(x, y) which holds for any any quadruplet of continuous functions (α, β, γ, δ)

14The function α(x, y)F (min{x, y}) is continuous everywhere because when min{x, y} > 0 both α(x, y) and F (min{x, y})
are continuous and when min{x, y} = 0 we have α(x, y)F (min{x, y}) = 0 and limmin{x,y}→0 α(x, y)F (min{x, y}) = 0.
Equivalently, one can show that β(x, y)(1−F (max{x, y})), γ(x, y)[F (x+y

2
)−F (min{x, y})] and δ(x, y)[F (max{x, y}−F (x+y

2
))]

are continuous everywhere.
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and any absolutely continuous F. That is, π1(x, y) (and equivalently π2(x, y)) is weakly lower semi-

continuous and the game admits a Nash equilibrium in mixed strategies.

Finally, Dasgupta and Maskin (1986) prove (Lemma 7) that if a game that satisfies the above conditions

is moreover symmetric and discontinuities are restricted on the main diagonal,15 then this game should

admit a symmetric Nash equilibrium in mixed strategies. Since the game that we study is symmetric, it

follows that it should admit a symmetric equilibrium. �

To have a better understanding about how introduction of centrifugal incentives affects the nature of

equilibria in the Downsian model, we explicitly analyze in the next section symmetric equilibria for the

case in which (α, β, γ, δ) is a quadruplet of constant functions and F is uniform.

4 Equilibria

In this section, we study symmetric Nash equilibria of the game for all quadruplets (α, β, γ, δ) of admissible

strictly positive constant functions when F is a uniform distribution on [0, 1]. When these functions are

constant we can define α̂ = α/γ and β̂ = β/δ. For easier presentation of the results and without loss of

generality, we assume throughout this section that α̂ ≥ β̂. We distinguish three broad cases according

to the nature of the existing forces: centripetal (α̂ > 1
2 and β̂ ≥

1
2), mixed (α̂ >

1
2 > β̂) and centrifugal

(α̂ ≤ 1
2 and β̂ <

1
2) ones.

16

Before we go to a detailed study of each case we make an observation that will prove helpful in our

equilibrium exercise.

Remark 1 The discontinuity in own strategies of π1(x, y) at y 6= β
α+β and of π2(x, y) at x 6= β

α+β implies,

whenever α + β > 0, that the two players’ strategies cannot have an atom at the same point x 6= β
α+β

because each player would obtain a strictly larger payoff by choosing a platform just to the right or to the

15See the discussion in page 7 of their paper.
16For the sake of completeness we present here the equilibria of the limit case where the centrifugal and centripetal incentives

balance exactly, i.e. α̂ = β̂ = 1
2
. Clearly this case represents a measure zero of all possible combinations of parameters values.

If α̂ = β̂ = 1
2
, then it is easy to check that there is a continuum of Nash equilibria. Precisely, up to interchangeability,

(x, y) with x ≤ y is a pure strategy Nash equilibrium if and only if x ≤ 1
2
and y ≥ 1

2
. The Nash equilibria are Pareto ranked:

the smaller the x and the larger the y, the larger are the payoffs of both players.
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left of such an x. This rules out symmetric pure strategy equilibria other than x = y = β
α+β as well as

symmetric atomic mixed strategy equilibria.

Case 1 - Centripetal incentives (α̂ > 1
2 and β̂ ≥

1
2).

This case corresponds to a scenario in which both players increase their payoffs by approaching one

another.

Proposition 2 If α̂ > 1
2 and β̂ ≥ 1

2 then the pure strategy profile ( β
α+β ,

β
α+β ) is the unique pure

strategy equilibrium of the game.

Proof. Consider that the first player locates strictly to the left of the second player; x < y. Then:

∂π1
∂x (x, y) = γ(α̂− 1

2) > 0.

That is, the first player has incentives to further approach the second player and hence there is no

equilibrium in pure strategies such that the two players locate at distinct locations.

Now consider that both players locate at the same location; x = y = x̄. In this case we have:

π1(x̄, x̄) = π2(x̄, x̄) = 1
2(β(1− x̄) + αx̄).

If x̄ > β
α+β then the first player, by deviating to x̃ = x̄− ε, gets a payoff of:

π1(x̃, x̄) = γ[α̂(x̄− ε) + (2x̄−ε
2 − (x̄− ε))] = γ(1

2ε+ α̂x̄− α̂ε)→ αx̄ for ε→ 0.

Observe that x̄ > β
α+β =⇒ αx̄ > β(1− x̄) =⇒ αx̄ > 1

2(β(1− x̄) + αx̄) and hence one may always find

ε > 0 small enough for such a deviation to be profitable. One can use a symmetric argument and show

12



that when both players locate at x̄ < β
α+β , the first player is better off by deviating marginally to the

right. Therefore, there is no equilibrium in pure strategies such that x = y 6= β
α+β .

If x̄ = β
α+β one can show using the same formal arguments as before that any deviation to the left or

to the right of β
α+β benefits none of both players. That is, ( β

α+β ,
β

α+β ) is the unique equilibrium of the

game in pure strategies for these parameter values. �

For this case, the unique pure strategy equilibrium that we identified is a quite robust prediction.

Both due to the fact that the equilibrium is the unique in pure strategies and because it is symmetric -

coordination issues should not interfere with the result. Note that while the game is competitive, it need

not be strictly competitive17 (Aumann 1961; Friedman 1983). To see this, consider that γ = δ = 1 and

observe that π1(0, 1) = π2(0, 1) = 1
2 while π1( β

α+β ,
β

α+β ) = π2( β
α+β ,

β
α+β ) = αβ

α+β <
1
2 as α+β > α2 +β2 ≥

2αβ when 0 < α, β < 1. This means that in such cases we have a prisoner’s dilemma-like situation: a

Nash equilibrium which is Pareto dominated. While not necessarily strictly competitive, the game still

exhibits some competitive features and we conjecture that even in these cases there is no equilibrium in

mixed strategies.

As far as comparative statics of this equilibrium are concerned we observe that the players’common

location ( β
α+β ) is strictly decreasing (increasing) in α (β) but it is bounded from below by 1

3 . That is, in

our two-player non-cooperative scenario, when centripetal forces are strong from both sides but somehow

stronger from the left side, players converge to a moderate-left location ( β
α+β ∈ (1

3 ,
1
2 ]) as the peripheral

voters’loyalty to the leftist party is greater. Finally, we note that in this case, candidates’location choices

depend only on the values of α and β and not on the exact voters’behavior in the central regions.

Case 2 - Mixed incentives (α̂ > 1
2 > β̂).

In this case best response dynamics are non-trivial: if the first player is located to the left of the

second one, then the first one has incentives to approach the second player while the second player has

17A game is strictly competitive if all possible outcomes are Pareto-optimal.
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incentives to move away from her opponent. These diverse incentives that players face rule out existence

of Nash equilibria in pure strategies.

Proposition 3 If α̂ > 1
2 > β̂ then a) there is no pure strategy equilibrium and b) there exists a unique

continuously differentiable atomless equilibrium (G,G) with a convex support. When 2α+ 2β 6= γ + δ:

G(x ) =



(2α−γ)
(2α+2β−γ−δ) + (2β−δ)

(2α+2β−γ−δ)(β(x−1)+αx
α )

γ+δ
2(α+β)

−1 if x ∈


β+

α
−−2α−2β+γ+δ

2(α+β) (−2β+δ)
2α−γ

−
2(α+β)

−2α−2β+γ+δ

α+β , 1



0 if x ∈

0,

β+

α
−−2α−2β+γ+δ

2(α+β) (−2β+δ)
2α−γ

−
2(α+β)

−2α−2β+γ+δ

α+β



and when 2α+ 2β = γ + δ:

G(x ) =


γ+δ+(2β−δ)[lnα−ln(β(x−1)+αx)]

γ+δ if x ∈
[
β+αe

γ+δ
2β−δ

α+β , 1

]

0 if x ∈
[

0, β+αe
γ+δ
2β−δ

α+β

]

Proof. Consider that the first player locates strictly to the right of the second player; x < y. Then:

∂π1
∂x (x, y) = γ(α̂− 1

2) > 0 and ∂π2
∂y (x, y) = δ(β̂ − 1

2) > 0.

That is, the first player has incentives to approach the location of the second player and hence there

is no pure strategy equilibrium in which players choose distinct locations.

Now consider that both players locate at the same interior point; x = y = x̄ ∈ (0, 1). In this case we

have:

14



π1(x̄, x̄) = π2(x̄, x̄) = 1
2(β(1− x̄) + αx̄).

As made clear by Remark 1, for (x̄, x̄) to be an equilibrium it must be the case that x̄ = β
α+β . At

this point it holds that β(1 − x̄) = αx̄. That is, for every positive α and β this point is strictly smaller

than one and since limy→x̄+ π2(x̄, y) = β(1− x̄) and ∂π2
∂y (x̄, y) > 0 for every y > x̄, the second player has

incentives to deviate to the right - no Nash equilibrium in pure strategies may exist.

If there exists a symmetric Nash equilibrium (G,G) in mixed strategies such that G is atomless and

continuously differentiable with convex support [g, ḡ] ⊆ [0, 1] (G(g) = 0 and G(ḡ) = 1), it must be the

case that the first player is indifferent among all locations in [g, ḡ], that is:

π1(x,G) =
x∫
g

[δ(x− x+y
2 ) + β(1− x)]dG(y) +

ḡ∫
x

[γ(x+y
2 − x) + αx]dG(y) = π for x ∈ [g, ḡ]

and that she is never better off by locating out of [g, ḡ], that is, π1(x,G) ≤ π for x /∈ [g, ḡ]. If there

is such a G then ∂π1
∂x (x,G) = 0 for x ∈ [g, ḡ] which is equivalent (since G is assumed to be continuously

differentiable) to the differential equation:

1
2(2α− γ)(1−G(x))− 1

2(2β − δ)G(x) + β(1− x)G′(x)− αxG′(x) = 0 for x ∈ [g, ḡ].

which has a unique solution up to a constant of integration. We notice that ḡ must be equal to one.

This is so because when x > y we have that ∂π1
∂x (x, y) = γ(1

2 − β̂) > 0. So if ḡ < 1, then the first

player has incentives to locate to the right of ḡ because ∂π1
∂x (x,G) = γ

ḡ∫
g

(1
2 − β̂)dG(y) = (1

2 − β̂) > 0 for

any x > ḡ. That is, ḡ is not a best response to G and, thus, a symmetric continuously differentiable

equilibrium (G,G) with ḡ < 1 is not possible. From this observation we get that G(1) = 1. Using this

information, we solve the above differential equation and we get the expression presented in the statement

of the proposition.

Next we set G(g) = 0 and we find:
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g =

β +

(
α
−−2α−2β+γ+δ

2(α+β) (−2β+δ)
2α−γ

)− 2(α+β)
−2α−2β+γ+δ

α+ β
>

β

α+ β
> 0 when 2α+ 2β 6= γ + δ and

g =
β + αe

γ+δ
2β−δ

α+ β
>

β

α+ β
> 0 when 2α+ 2β = γ + δ.

We know that when x < y we have that ∂π1
∂x (x, y) = γ(α̂ − 1

2) > 0. So if g > 0 then ∂π1
∂x (x,G) =

γ
1∫
g

(α̂− 1
2)dG(y) = γ(α̂− 1

2) > 0 for any x < g. That is, if the second player plays G then the first player

strictly prefers g to any x < g and is indifferent among any of the locations in [g, 1]; playing G is a best

response of the first player to the second player playing G. This concludes the argument. �

It is important to note that the density is decreasing and therefore that the CDF is concave. Examples

of such mixed strategies are provided on figure 2.

Insert Figure 2 here

We have assumed α̂ > 1
2 > β̂, that is, strong centripetal incentives from the left and strong centrifugal

incentives from the right. As we observe, the support of G excludes locations at the extreme left but

contains locations at the extreme right; the support of G suggests that players will never locate at the

extreme on whose side incentives are centripetal. Moreover, since both g and one belong to the support

of G it should hold that π1(g,G) = π2(1, G) and hence that αg+
∫ 1
g γ(

y+g

2 − g)dG(y) =
∫ 1
g δ

1−y
2 dG(y)⇔∫ 1

0 ydG(y) =
δ−2αg+γg

γ+δ . That is, the expected location of each player in this equilibrium depends on how

voters behave both in central and in peripheral regions.

Case 3 - Centrifugal incentives (α̂ ≤ 1
2 and β̂ <

1
2).

This case obviously corresponds to the opposite scenario of the first case. Here each player has

incentives to move away from the other player when they find themselves located at distinct points.
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Proposition 4 If α̂ ≤ 1
2 and β̂ <

1
2 , then there exists a unique piecewise continuously differentiable

atomless equilibrium (G,G) with a convex support. It is given by:

G(x) =


(2α−γ)

(2α+2β−γ−δ) −
(2α−γ)

(2α+2β−γ−δ)(β(1−x)−αx
β )

γ+δ
2(α+β)

−1 if x ∈ [0, β
α+β )

(2α−γ)
(2α+2β−γ−δ) + (2β−δ)

(2α+2β−γ−δ)(β(x−1)+αx
α )

γ+δ
2(α+β)

−1 if x ∈ [ β
α+β , 1]

Proof. The derivation of the general form of G(x) is performed as before. The big difference here is

that, unlike the α̂ > 1
2 > β̂ case, the support [g, ḡ] ⊆ [0, 1] of a symmetric atomless equilibrium in this

case should be such that [g, ḡ] = [0, 1]. This is so because, if ḡ < 1(one can offer an equivalent argument

to exclude the g > 0 case), then ∂π1
∂x (x,G) = γ

ḡ∫
g

(1
2 − β̂)dG(y) = γ(1

2 − β̂) > 0 for any x > g. That is,

playing g is not a best response of the first player to the second player playing such a mixed strategy.

Therefore, if a symmetric atomless equilibrium with convex support exists, it should satisfy [g, ḡ] = [0, 1],

G(0) = 0 and G(1) = 1. Since in this case α̂ + β̂ 6= 1, the general form of G(x) on any interval where G

is continuously differentiable is:

G(x) =
(2α− γ)

(2α+ 2β − γ − δ) + C(|β(1− x)− αx|)
γ+δ

2(α+β)
−1
.

If we define:

GA(x) =
(2α− γ)

(2α+ 2β − γ − δ) −
(2α− γ)

(2α+ 2β − γ − δ)(
β(1− x)− αx

β
)

γ+δ
2(α+β)

−1

and

GB(x) =
(2α− γ)

(2α+ 2β − γ − δ) +
(2β − δ)

(2α+ 2β − γ − δ)(
β(x− 1) + αx

α
)

γ+δ
2(α+β)

−1

we observe that GA(x) = GB(x) if and only if x = β
α+β . Moreover we have that GA(0) = 0, ∂GA∂x > 0

for any x ∈ [0, β
α+β ], ∂GB

∂x > 0 for any x ∈ [ β
α+β , 1] and G(1) = 1. In other words G, as defined in
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the statement of this proposition, is a piecewise continuously differentiable strictly increasing cumulative

distribution function with full support in [0, 1].

So if the first player uses this strategy then π2(G, y) = π̄ for any y ∈ [0, 1] - G is a best response of

the second player to the first player playing G.

Now assume that there exists another piecewise continuously differentiable Ĝ 6= G which defines

another atomless symmetric equilibrium. Then, the first piece of Ĝ should also be identical to GA

because, otherwise, Ĝ would not be equal to zero for x = 0 and strictly positive for every x > 0; and,

hence, Ĝ would either have an atom at zero (and, therefore, it would not define an atomless equilibrium)

or its support would not coincide with [0, 1] (this contradicts the arguments in the beginning of this

proof). Moreover, Ĝ may not have a piece distinct to GA which starts before
β

α+β . If this were true Ĝ

would have a discontinuity at the point at which the new piece starts; and this would contradict the fact

that it defines an atomless equilibrium. This is so because:

(2α− γ)

(2α+ 2β − γ − δ) + C ′(|β(1− x)− αx|)
γ+δ

2(α+β)
−1 6= (2α− γ)

(2α+ 2β − γ − δ) + C ′′(|β(1− x)− αx|)
γ+δ

2(α+β)
−1
,

for every x < β
α+β when C

′ 6= C ′′.

Equivalently, we can show that Ĝmay not have a piece distinct to GB which ends after
β

α+β . Therefore,

G must be the unique piecewise continuously differentiable function that defines a symmetric atomless

equilibrium. �

To discuss some of the qualitative features of this equilibrium we focus on the case in which γ = δ = 1.

That is, in the case in which all voters located in the central regions vote for one of the two players.

Different shapes of the density may appear, as illustrated on figure 3.

Insert Figure 3 here

If α+β is less than 1
2 , the probability mass will be more on the extremes with a density first decreasing

and then increasing (figures 3a and 3b). If α+ β = 1
2 , then G is uniform (figure 3c). Finally, if α+ β is
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larger than 1
2 , then the probability mass is more concentrated in the center with a density first increasing

and then decreasing (figure 3d).

Remark 2 There is a smooth transition from the pure symmetric Nash equilibria of Proposition 2 to the

mixed ones of Proposition 4. For the sake of illustration take α = β and γ = δ = 1. When α ∈ (0, 1
4 ], the

mass of 1
2 on both sides of the center of the policy space is located around the two extremes, and tends to

1
2ζ0 + 1

2ζ1
18 when α tends to 0. That is, when (α, β) converges to (0, 0) a symmetric mixed equilibrium of

the game converges to the diagonal profile of mixed strategies (G,G) where G = 1
2ζ0 + 1

2ζ1. In contrast,

when α ∈ (1
4 ,

1
2 ], the mass of 1

2 on both sides of
1
2 is located around

1
2 and tends to ζ 12

when α tends to 1
2 .

Since both zero and one belong to the support of G it should hold that π1(0, G) = π2(1, G) and hence

that
∫ 1

0 γ
y
2dG(y) =

∫ 1
0 δ

1−y
2 dG(y) ⇔

∫ 1
0 ydG(y) = δ

γ+δ . That is, the expected location of each player in

this equilibrium depends only on how voters in the central regions behave.

To sum up we have that when centrifugal forces are very weak from both sides, expected equilibrium

location depends only on how voters in the peripheral regions behave; when centrifugal forces are strong

from on side and weak from the other, then expected equilibrium location is sensitive on how voters in

both kinds of regions behave, and, finally, when centrifugal forces are strong on both sides, expected

equilibrium location depends only on how voters in central regions behave.

When centrifugal incentives dominate on both sides there also exist two asymmetric pure strategy

equilibria and many asymmetric equilibria in mixed strategies.

Proposition 5 If α̂, β̂ < 1
2 then the pure strategy profiles (0, 1) and (1, 0) are the unique pure strategy

equilibria of the game.

Proof. Consider that the first player locates strictly to the left of the second player; x < y. Then:

∂π1
∂x (x, y) = γ(α̂− 1

2) < 0 and ∂π2
∂y (x, y) = δ(1

2 − β̂) > 0.

18By ζz we denote the Dirac mass in z.
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That is, if there are pure strategy equilibria such that players locate at distinct locations, then they

should be such that x = 0 and y = 1 or x = 1 and y = 0. To validate that these strategy profiles

are indeed equilibria we only have to show that when one player locates at one extreme, then the other

player prefers to locate at the opposite extreme rather than to the same as her opponent. We notice that

π1(0, 1) = π2(1, 0) = γ
2 > α

2 = π1(1, 1) = π2(1, 1) and hence when the second (first) player locates at

the right extreme, the unique best response of the first (second) player is to locate to the left extreme.

In a similar manner one can establish that when one player locates at the left extreme the unique best

response of the other player is to locate at the right extreme.

Finally, from remark 1 we know that if there is a convergent pure strategy equilibrium it should be

such that both players locate at β
α+β . Given that the payoff function of the first player is continuous in

own strategy when the second player locates at β
α+β and that

∂π1
∂x (x, β

α+β ) < 0 (> 0) for any x < β
α+β

(x < β
α+β ) it follows that we cannot have convergent pure strategy equilibria in this case. �

One can further show that a variety of asymmetric mixed equilibria exists when centrifugal incentives

dominate in both directions. To demonstrate this, we consider for simplicity that γ = δ = 1 and we

construct asymmetric equilibria of the game. Let R be the mixed strategy pζ0 +(1−p)ζ1 where p ∈ [0, 1].

Since π1(x,R) = p(x2 + β(1− x)) + (1− p)(αx+ 1−x
2 ) for all x ∈ (0, 1), we obtain that it does not depend

upon x if and only if:

p =
1

2
× 1− 2α

1− β − α

In such cases, since π1(0, R) = pβ2 + (1 − p)1
2 and π1(1, R) = p1

2 + (1 − p)α2 are strictly smaller

than π1(x,R) for all x ∈ (0, 1), we obtain that any x ∈ (0, 1) is a best response to R. In particular,

1
2 is a best response to R. Since both 0 and 1 are best responses to 1

2 , we have demonstrated that(
1
2 , R

)
and

(
R, 1

2

)
are Nash equilibria. Consider also as before the off-diagonal profile (U,R) where U

denotes the uniform probability on [0, 1]. What is the best response of player 2 to U ? Since π2(U, y) =(
1
2 − α− β

)
y2 +

(
α+ β − 1

2

)
y+ 1

4 is convex and symmetric around
1
2 if α = β and α < 1

4 , 0 and 1 are the

best responses. Therefore, if α = β and α < 1
4 , (U,R) is also a Nash equilibrium. Finally, consider the

strategy profile (G,R) where G is the absolutely continuous mixed strategy identified in Proposition 4.

We argued that any x ∈ (0, 1) is a best response to R and, thus, G is a best response to R. Moreover we

know that any y ∈ [0, 1] is a best response to G. That is, (G,R) is also an equilibrium for (α, β) ∈ (0, 1
2)2.
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5 Concluding Remarks

We have analyzed equilibrium behavior in a general spatial competition model which we believe to be

relevant especially in electoral competition. Our results indicate that an equilibrium exists in the spatial

competition model for a general class of centrifugal incentives (essentially any centrifugal incentives that

may arise due to partial voter participation). We moreover show that standard convergent equilibrium

behavior is robust to introducing low to mild centrifugal forces in one or both directions but it collapses

once centrifugal forces become strong even in only one direction. Analysis of a symmetric equilibrium for

the simplest parametrization of our model (constant functions and uniform distribution) gives us a hint

of what are most probable outcomes of such games and proves that, in this model, there are no sudden

changes in equilibrium behavior when parameter values change smoothly despite the fact that we may

have transitions from equilibria in pure strategies to ones in mixed strategies.
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6 Appendix

In this appendix we provide some discussion of pure strategy equilibria when the distribution of vot-

ers in nonuniform and some microfoundations of the constant functions’quadruple (α, β, γ, δ) that was

extensively used throughout the paper.

6.1 Nonuniform distributions

In the case of a uniform distribution, when α̂ = β̂, the game admits Nash equilibria in pure strategies:

(1
2 ,

1
2), no differentiation, when α̂ > 1

2 and (0, 1), maximal differentiation, when when α̂ < 1
2 . The

existence of a local19 Nash equilibrium exhibiting no differentiation when α̂ > 1
2 and differentiation when

α̂ < 1
2 continues to hold for a large class of distributions. Consider a distribution described by the density

f which will be assumed differentiable, symmetric with respect to 1
2 (that is, f(x) = f(1 − x) for all

x ∈
[
0, 1

2

]
) and strictly increasing on

[
0, 1

2

]
(and so strictly decreasing on

[
1
2 , 1
]
). Let (x, y) be a profile

of locations such that: x < 1
2 ≤ y . Without loss of generality20 assume that x+y

2 ≤ 1
2 . For the player

located on the left, moving on the right leads to a gain of γ2f(x+y
2 ) and to a loss of γ(1− α̂)f(x). If α̂ ≥ 1

2 ,

then the gain is always larger than the cost and the equilibrium is defined by x = y = 1
2 . If otherwise

α̂ < 1
2 , a marginal equilibrium is obtained when the marginal rate of substitution

1
2
f(x+y

2
)

(1−α̂))f(x) is equal to 1,

that is,

19We have not investigated the general conditions on f under which this LNE is a (global) Nash equilibrium.
20 If x+y

2
≥ 1

2
, conduct the same argument from the perspective of the player on the right.
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1

2
f(
x+ y

2
) = (1− α̂)f(x)

or

f(x) =
1

2 (1− α̂)
f(
x+ y

2
)

Let us test when the symmetric profile (x, 1− x) with x < 1
2 is a (local) Nash equilibrium.

21 From

above, the first order condition writes:

f(x) =
1

2 (1− α̂)
f(

1

2
)

If f(0) = 0, then the above equation has a unique solution x∗. We may also check that the (local)

second order condition is satisfied. Indeed the second derivative at x∗

1

4
f ′(

1

2
) + (α̂− 1)f ′(x∗) = (α̂− 1)f ′(x∗)

is negative as α̂ < 1. For the sake of illustration, consider the (symmetric) Beta distribution22:

f(x) =
Γ(2ξ)

Γ(ξ)2
(x (1− x))ξ−1 over [0, 1]

with ξ > 1. In such case, x∗ is the solution of the equation:

x(1− x) =
1

4

(
1

2 (1− α̂)

) 1
ξ−1

We obtain:
21Since we have assumed f strictly increasing, this argument does not apply to the uniform distribution. In fact, for the

uniform distribution the marginal rate of substitution at any profile (x, y) is equal to 1
2(1−α̂) .

22Γ denotes the Gamma function. In particular Γ(n) = (n− 1)! for any integer n.
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x∗ =
1

2
−

√
1−

(
1

2(1−α̂)

) 1
ξ−1

2

As we observe differentiation (defined by 1−2x∗ (α̂, ξ)) is reduced when F is more concentrated around

the center (large values of ξ) and when the centrifugal incentives are less intense (large values of α̂). This

is illustrated on table 1 for α̂ = 0 and on table 2 for α̂ = 1
4 .

ξ 2 10 100

x∗ 0.14645 0.36387 0.45824

Table 1

ξ 2 10 100

x∗ 0.21132 0.39506 0.46803

Table 2

6.2 An application

In this section we develop a model of electoral competition among four parties, two instrumental and two

parametric ones, and we demonstrate that it is a particular case of the general model studied above. Let

{l, 1, 2, r} be the set of political parties and [0, 1] the policy space. The policy platforms of the extremist

parties, l and r, are fixed exogenously and are 0 and 1 respectively.23 Parties 1 and 2 - which we call

mainstream - strategically decide their policy platforms, x and y, in order to maximize their vote-share

and voters’ideal policies are distributed uniformly on the interval [0, 1].

We consider a two-stage extended form game of perfect information and, naturally, the solution concept

that we apply is subgame perfection. In the first stage, the two mainstream parties decide their policy

platforms and then the voters observe (x, y) ∈ [0, 1]2 and they vote. We allow both pure and mixed

strategies for any of our players. Let (σ1, σ2) denote a pair of mixed strategies for the two mainstream

candidates (probability distributions such that their support is a subset of [0, 1]) and σ̂i(x, y) denote a

23Another example of an electoral competition model with non-instrumental extremist parties is Indridason (2013).

25



mixed strategy of a voter with ideal policy i ∈ [0, 1] (probability distribution such that its support is a

subset of {l, 1, 2, r}) when the voter observes that the policy platforms of the two mainstream parties

are given by (x, y) ∈ [0, 1]2. Then a strategy profile in our game is given by σ = {(σ1, σ2), σ̂ such that

σ̂(x, y) ∈ σ̂ for all (x, y) ∈ [0, 1]2} where σ̂(x, y) is such that σ̂i(x, y) ∈ σ̂(x, y) for every i ∈ [0, 1] and each

possible subgame (x, y) ∈ [0, 1]2.

Each extremist/niche party is assumed to promote a cause that is independent of the main policy issue

and which voters’may find attractive or repulsive.24 Voters’valuation of a cause promoted by a party is

captured by an attraction/repulsion parameter φk ∈ R for k ∈ {l, 1, 2, r}. If φk > 0 then the promoted

goal is attractive and if φk < 0 it is repulsive (we assume that mainstream parties do not promote such

causes and hence φ1 = φ2 = 0).

Our voters are expressive and sophisticated at the same time; they know that they cannot individually

influence the outcome of elections - hence they derive utility only from voting for the party that they

prefer - but they are able to take in account expectations about the voting behavior of their fellow citizens

whenever this is relevant. We consider that the payoff of a voter with ideal policy i ∈ [0, 1] who votes

for a party k ∈ {l, 1, 2, r} with policy platform ψk ∈ [0, 1] when we are in subgame (x, y) ∈ [0, 1]2 and all

other voters are expected to behave according to σ̂−i(x, y) = σ̂(x, y)− {σ̂i(x, y)} is given by:

ui(ψk, φk, σ̂
−i(x, y)) = − |ψk − i|+ φk × vk(σ̂−i(x, y))

where vk(σ̂−i(x, y)) is the expected vote-share of party k ∈ {l, 1, 2, r} when all other voters are expected

to vote according to σ̂−i(x, y).

Notice that the component of the above utility function which does not relate to the position of the

party on the main political issue is not fixed25 as in Groseclose (2001) or Aragonès and Palfrey (2002)

but it also depends on the "electoral power" of each party. This is so because, if the cause that a niche

party k ∈ {l, r} promotes is attractive for the voters then the impact of this niche party on government

policy outputs - and hence on the voters welfare - will be increasing in the niche party’s vote-share and

vice versa.

Consider that we are in subgame (x, y) ∈ [0, 1]2 with x < y and that σ̂(x, y) is such that both

24We also have results, which are available upon request, for a case in which voters’are allowed to have heterogeneous
valuations on the goal promoted by an extremist/niche party and which are in line with the present analysis.
25Glazer, Grofman and Owen (1998) also consider voters who evaluate a party differently depending on who else is expected

to vote for it. In their case the externality is not anonymous while in our case it is.
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mainstream parties get a strictly positive vote-share. Then, if σ̂(x, y) is a Nash equilibrium of the (x, y) ∈

[0, 1]2 subgame there should exist il1 ∈ [0, x] such that:26

uil1(0, φl, σ̂
−il1(x, y)) = uil1(x, φ1, σ̂

−il1(x, y))

which is equivalent to

il1 = 1
2−φl

x

because when F is uniform, x < y and σ̂(x, y) is a Nash equilibrium of the (x, y) ∈ [0, 1]2 subgame

such that all parties get a strictly positive vote-share, it must be the case that vl(σ̂−il1(x, y)) = il1.

Equivalently, one can show that in a Nash equilibrium of the (x, y) ∈ [0, 1]2 subgame in which all

parties get positive vote-shares there should also exist i12 ∈ [x, y] and i2r ∈ [y, 1] such that:

ui12(x, φ1, σ̂
−i12(x, y)) = ui12(y, φ2, σ̂

−i12(x, y))

and

ui2r(y, φ2, σ̂
−i2r(x, y)) = ui2r(1, φr, σ̂

−i2r(x, y))

which are equivalent to

i12 = x+y
2

and

i2r = 1+y−φr
2−φr

26 It is worth mentioning that in an equilibrium of an (x, y) ∈ [0, 1]2 subgame in which both mainstream parties get a
positive vote-share it should be the case that centrist voters (voters with ideal policies between x and y) never vote for
extremist parties. This is so because if ui(0, θl, σ̂−i(x, y)) > uil(x, θ1, σ̂

−i(x, y)) for some i ∈ [x, y] then it should also hold
that every voter prefers party l to party 1 and hence, the vote-share of party 1 must be zero.
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It is straightforward that if the attraction parameter of the leftist niche party is suffi ciently large

(φl ≥ 1) then in any Nash equilibrium of any subgame (x, y) ∈ [0, 1]2, it should be the case that no

mainstream party gets any votes and, hence, our game becomes trivial: the mainstream parties are

indifferent among all available strategies. This obviously holds for the attraction parameter of the rightist

niche party too. Therefore, we focus on attraction parameters which make our game non-trivial: φl, φr < 1.

If the attraction parameters of the niche parties are small enough, φl, φr < 1, then for every subgame

(x, y) ∈ [0, 1]2 there exists a unique Nash equilibrium such that both mainstream parties get a positive

vote-share. The payoff of mainstream party 1 in this Nash equilibrium of any (x, y) ∈ [0, 1]2 subgame is

given by:

π1(x, y) =


x(1−φl

2−φl
) + y−x

2 if 0 ≤ x < y ≤ 1

1
2(x1−φl

2−φl
+ (1− x)1−φr

2−φr
) if x = y

(1− x)1−φr
2−φr

+ x−y
2 if 0 ≤ y < x ≤ 1

and the payoff of mainstream party 2 is given by:

π2(x, y) =


y(1−φl

2−φl
) + x−y

2 if 0 ≤ y < x ≤ 1

1
2(y 1−φl

2−φl
+ (1− y)1−φr

2−φr
) if y = x

(1− y)1−φr
2−φr

+ y−x
2 if 0 ≤ x < y ≤ 1

Hence, this two player game is identical to the one we extensively analyzed in the previous section for

α = 1−φl
2−φl

, β = 1−φr
2−φr

and γ = δ = 1. When both extremist parties promote repulsive causes φl, φr < 1

(strong centripetal incentives from both sides) we have a unique convergent equilibrium to the side of

the more repulsive extremist party, when one extremist party promotes a repulsive cause and the other

extremist party promotes an attractive cause (mixed incentives) then we have a symmetric equilibrium in

mixed strategies such that mainstream parties locate (in expected terms) to the side of the extremist party

which promote the repulsive cause and when both extremist parties promote attractive causes, there is a

symmetric equilibrium in mixed strategies such that the mainstream parties locate (in expected terms)

in the center of the policy space.
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a) α=3/4, β=2/3, γ=δ=1 and y=1/2 

 
b) α=3/4, β=2/3, γ=δ=1  and y=1/4 

 
c) α=1/4, β=1/4, γ=δ=1  and y=2/3 

 
d) α=1/4, β=1/4, γ=δ=1  and y=1/7 



 
e) α=3/4, β=1/3, γ=δ=1 and y=2/3 

 
f) α=3/4, β=1/3, γ=δ=1  and y=1/4 

 

Figure 1. The payoff of the first player as a function of x for various values of α, β and y. 

 

 

 

 

 

 

 

 



 

 

 

 

 
a) α1 and β0 

 
b) α=0.7 and β=0.3 

 

Figure 2. CDF (Blue) and PDF (Red) of G for α>0.5>β when γ=δ=1. 

 

 



 
a) α=0.05 and β=0.05 

 
b) α=0.2 and β=0.2 

 
c) α=0.25 and β=0.25 

 

 
d) α=0.3 and β=0.3 

 

Figure 3. CDF (Blue) and PDF (Red) of G for α,β<0.5 when γ=δ=1. 
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