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Abstract

This paper extends the GMM method proposed by Carrasco and Florens

(2000) to handle moment conditions based on the empirical characteristic

function (e.c.f.). While the common practice of selecting a �nite number of

grid points results in a loss of e�ciency, our GMM method exploits the full

continuum of moment conditions provided by the e.c.f.. We show that our

estimator is asymptotically e�cient. Its implementation requires a smooth-

ing parameter that can be selected by minimizing the mean square error of

the estimator. An application to a convolution of distributions is discussed.

A Monte Carlo experiment shows that the �nite sample properties of our

estimator are good.
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1. Introduction

In many circumstances, the likelihood function does not have a simple tractable

expression. Examples, that will be developed later, are the convolution of distri-

butions and the stable law. In such instances, estimation using the characteristic

function o�ers a nice alternative to maximum likelihood method. The empirical

characteristic function (e.c.f.) has been used for inference as early as 1977 in a pa-

per by Feuerverger and Mureika. Feuerverger and McDunnough (1981b) show that

an e�cient estimator can be obtained by matching the e.c.f.  n with the theoretical

characteristic function  in the following manner

Z
w�(t) ( n(t)�  (t)) dt = 0

where w� is the inverse Fourier transform of the score. This weighting function

is computable for special cases like the Cauchy distribution, but is impossible to

obtain such cases as a general stable distribution. Alternatively, Feuerverger and

McDunnough propose to apply the Generalized Method of Moment (GMM) on a

�nite number of moments  
n
(t)� (t), t = t1; t2; :::; tq obtained from a discretization

of an interval of R: This research path has been followed by many authors either for

estimation (Feuerverger and McDunnough, 1981a, Feuerverger, 1990, Tran, 1998,

Singleton, 2001) or for goodness of �t tests (Koutrouvelis and Kellermeier, 1981,

Epps and Pulley, 1983). A di�culty with that method is that certain choices must

be made before estimating the parameters: the choice of (a) the number of points

q and (b) the grid t1; t2; :::; tq: For a given q; Schmidt (1982) proposes to choose

the grid that minimizes the determinant of the asymptotic covariance matrix of the

estimators. The problem of the choice of q remains. One reason for the success

of the GMM approach is that Feuerverger and McDunnough (1981b) show that

the asymptotic variance of the GMM estimator \can be made arbitrarily close to

the Cramer-Rao bound by selecting the grid su�ciently �ne and extended". This

drives them (and other researchers who followed) to conclude that their estimator is

asymptotically e�cient. This is not true. When the grid is too �ne, the covariance

matrix becomes singular and the GMM objective function is not bounded, hence

the e�cient GMM estimator can not be computed.

Our contribution is to give a tractable and relatively easy to implement method

that delivers asymptotically e�cient estimators. Instead of taking a �nite grid, we

apply GMM to the continuum of moment conditions resulting from the e.c.f., using

the method developed by Carrasco and Florens (2000) (to be referred as CaFl). In

particular, we introduce a penalization term, �n; which converges to zero with the

sample size and guarantees that the GMM objective function is always bounded.

A close investigation shows that Carrasco and Florens' results give a rationale to

Feuerverger and McDunnough's approach. Using our continuous GMM method

avoids the explicit derivation of the optimal weighting function as in Feuerverger

and McDunnough. We give a general method to estimate it from the data.
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As models frequently include explanatory variables, we discuss the e�cient es-

timation based on the conditional characteristic function. We also show that our

estimation procedure can be used to construct goodness-of-�t tests. Since the choice

of the penalization term, �n; is potentially a problem in practice, we derive a method

to choose it endogenously from the data. We propose to select the value that min-

imizes the mean square error of the estimator. As the GMM estimator is unbiased

for any value of �n; we derive a higher-order asymptotic bias.

In Section 2, we give the principal de�nitions and three examples. Section 3

reviews the results of CaFl. Section 4 explains how to obtain e�cient estimators

using the (unconditional) characteristic function. In Section 5, we turn our atten-

tion to the use of the conditional characteristic function. Section 6 discusses the

implementation of the method and the endogenous choice of the penalization term.

Section 7 presents a speci�cation test. Section 8 develops an example and discusses

the results of a limited Monte Carlo experiment. Finally, Section 9 concludes. The

list of the assumptions and the proofs of the main propositions are in the Appendix.

2. De�nitions and examples

2.1. De�nitions

Suppose X1; :::; Xn are i.i.d. realizations of the same random variableX with density

f (x; �) and distribution function F� (x) ; X is possibly multivariate so that X 2 Rp:

The parameter � 2 Rq is the parameter of interest with true value �0: Let  � (t)

denote the characteristic function of X

 
�
(t) �

Z
eit

0
xdF� (x) = E�

�
eit

0
X
�

and  
n
(t) denote the empirical characteristic function

 
n
(t) =

1

n

nX
j=1

eit
0Xj :

The focus of the paper is on moment conditions of the form

h (t; Xj; �) = eit
0
Xj �  � (t) : (2.1)

Obviously h satis�es

E� [h (t; Xj; �)] = 0 for all t in Rq:

Our aim is to use this continuum of moment conditions to obtain an e�cient esti-

mator of �:

Let � be a probability density function on Rp and L2 (�) be the Hilbert space of

complex valued functions such that

L2 (�) =

�
f : Rp! Cj

Z
jf (t)j2 � (t) dt <1

�
:
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Note that while eit
0X and  

�
(t) are not necessarily integrable with respect to Lebesgue

measure onRp, eit
0X and  � (t) belong to L

2 (�) for any probability measure � because���eit0X ��� = 1 and j 
�
(t)j �  

�
(0) = 1: A candidate for � is the standard Normal dis-

tribution. The inner product on L2 (�) is de�ned as

hf; gi =
Z
f (t) g (t)� (t) dt (2.2)

where g (t) denotes the complex conjugate of g (t) : Let k:k denote the norm in

L2 (�) : In the following, whenever f and g are l � 1�vectors of elements of L2 (�),

hf; gi denotes the l � l�matrix
R
fg0: By extension, for a vector g of elements of

L2 (�) ; kgk2 denotes the matrix

kgk2 =
Z
g (t) g (t)

0
� (t) dt: (2.3)

2.2. Examples

In this subsection, we give three motivating examples.

Example 1: Finite mixture of distributions

Finite mixture models are commonly used to model data from a population com-

posed of a �nite number of homogeneous subpopulations. Examples of applications

are the estimation of a cost function in the presence of multiple technologies of pro-

duction (Beard, Caudill, and Gropper, 1991) and the detection of sex bias in health

outcomes in Bangladesh (Morduch and Stern, 1997). Ignoring heterogeneity may

lead to seriously misleading results.

Consider the case where a population is supposed to be formed of two homoge-

neous subpopulations. Let � be the unknown proportion of individuals of type 1.

Individuals of type j have a density f(x; �j); j = 1; 2: The econometrician does not

observe the type of the individuals, so that the likelihood for one observation is

�f (x; �1) + (1� �) f (x; �2) :

Such models can be estimated using the EM algorithm or the method of moments,

see Heckman, Robb, and Walker (1990), among others. The likelihood of a �nite

mixture of normal distributions with di�erent variances being unbounded, maximum

likelihood may break down. An alternative method is to use either the moment

generating function (Quandt and Ramsey, 1978, Schmidt, 1982) or the characteristic

function (Tran, 1998) which is equal to

� 
�1
(t) + (1� �) 

�2
(t)

where  �j (t) =
R
eitxf(x; �j)dxwith j = 1; 2:
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Example 2: Convolution of distributions

Assume one observes i.i.d realizations of durations T and exogenous variables Z:

Let T0 be a latent duration and " an unmeasured person-speci�c heterogeneity such

that for an individual i, one observes

Ti = exp (� 0Zi + "i)T0i (2.4)

where "i and T0i are assumed to be independent. Lancaster's book (1990) gives

many examples of (2.4). Timay be, for instance, the unemployment spell. Taking

the logarithm, we have the regression

Xi � lnTi = �0Zi + lnT0i + "i � � 0Zi + �i + "i (2.5)

Models of this type have been more often speci�ed in terms of hazard than in terms

of regression. While (2.5) gives rise to a convolution problem, speci�cation in terms

of hazard gives rise to a mixture problem. Estimation by maximum likelihood where

the mixing distribution is integrated out can be performed using the EM algorithm

or by the Newton-Raphson algorithm. A convolution of the type (2.5) also appears

in the random-e�ect models where �i is the random, individual e�ect and "i is an

error component (Hsiao, 1986). In most cases, the likelihood will have an intractable

form whereas the characteristic function of U = � + " is easily obtained from

 U =  � �  "

where  � and  " are the characteristic functions of � and " respectively: Our results

will allow for the presence of covariates in the model.

Example 3. The stable distribution

The stable distribution is frequently applied to model �nancial data. Various

examples can be found in the survey by McCulloch (1996). Except for a few cases,

the likelihood of the stable distribution does not have a simple expression, however

its characteristic function is well known. Many authors have used the characteristic

function to estimate the parameters of the stable distribution, see Feuerverger and

McDunnough (1981b) and the references in McCulloch, but none of them have

e�ciently used a continuum of moments.

3. Brief review of GMM when a continuum of moments is

available

In this section, we summarize the results of CaFl and discuss their application to

the estimation using the c.f.. Let H = L2(�) be the Hilbert space of reference. Let

B be a bounded linear operator de�ned on H; or a subspace of H (such that h 2 H);

and Bn a sequence of random bounded linear operators converging to B. Let

hn (t; �) =
1

n

nX
j=1

h (t; Xj; �) :
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The GMM estimator is such that

�̂n = argmin
�

kBnhn (:; �)k :

Under a set of conditions listed in CaFl, this estimator is consistent and asymptoti-

cally normal. In the class of all weighting operators B, one yields an estimator with

minimal variance. This optimal B is shown to be equal to K�1=2 where K is the

covariance operator associated with h (t; X; �) :The operator K is de�ned as

K : f 2 H ! g 2 H

f (t) ! g (s) =
Z
k (s; t) f (t) � (t) dt

where

k (s; t) = E�0

h
h (s;X; �0)h (t; X; �0)

i
:

As k (s; t) = k (t; s); K is self-adjoint, which means that it satis�es hKf; gi =

hf;Kgi : Under some assumptions, K has a countable in�nity of (positive) eigen-

values decreasing to zero; as a result, its inverse is not bounded. K�1=2g does not

exist on the whole space H but on a subset of it, which corresponds to the so-called

reproducing kernel Hilbert space (RKHS) associated with K denoted H (K) : We

use the notation K�1=2g
2 = kgk2

K

where k:k
K
denotes the norm in H (K) : Because the inverse of K is not bounded, we

use a penalization term �n to guarantee the existence of the inverse. The estimation

of K and the choice of �n will be discussed in Section 6. Let K�n
n

denote the

consistent estimator of K described in Section 6. The optimal GMM estimator of �

is obtained by

�̂n = argmin
�

(K�n
n
)
�1=2

hn (:; �)
 : (3.1)

Under the assumptions of Theorem 8 in CaFl, we have the following results

�̂n ! �0 in probability,

as n and n�3=2
n

go to in�nity and �n goes to zero and

p
n(�̂n � �0)

n!1�! N
 
0;

�E�0 (5�h)
2
K

��1
!

(3.2)

as n and n�3
n
go to in�nity and �n goes to zero. Remark that

E�0 (5�h)
2
K
denotes

a matrix using the convention de�ned in (2.3).

The results of CaFl were proven in the case where � is the pdf of a Uniform

distribution on [0; T ] while here � is a pdf on Rp: Moreover in CaFl, H is a space

of real-valued functions L2 [0; T ] while here H = L2 (�) is a space of complex-valued

functions. However, all the results on operator theory and reproducing kernel Hilbert
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space remain valid (see a treatment in a very general setting by Saitoh, 1997). Hence

the results of CaFl can be transposed to our present setting by replacing L2 [0; T ]

by L2 (�) and adjusting the operations in these spaces wherever they appear. All

the needed assumptions will be carefully checked.

4. Estimation using the characteristic function

Our decision to use the c.f. is motivated by e�ciency considerations. Below, we

�rst discuss which moment conditions permit to reach e�ciency. Next, we study

the properties of the GMM estimator.

4.1. Asymptotic e�ciency

In this subsection, we assume that the result (4.3) holds. We discuss the choice

of moment conditions h for which the asymptotic variance of �̂n coincides with the

Cramer Rao e�ciency bound. Denote L2 (X; �0) the space
n
G (X) jE�0G (x)

2
<1

o
.

The covariance kernel k takes the form

k (s; t) = E�0

h
h (s;X; �0)h (t; X; �0)

i
(4.1)

where fh (t; :; �0) ; t 2 Rpg is a family of functions L2 (X; �) that satisfy E�0h (t; X; �0) =

0.

For any p�1 vector g of functions in L2 (�), we denote C (g) the set of functions

so that

C (g) =

(
G p� vectors of r.v. in L2 (X) s.t.

(
E�0G = 0;

g (t) = E�0

h
G (X)h (t; X; �0)

i
� � a:s:

) )

(4.2)

We want to characterize the norm kgk2
K
: Parzen (1970, page 25) gives a simple for-

mula to calculate the norm of a function g in the RKHS associated with a covariance

kernel k on R2: See Saitoh (1997) for the treatment of complex-valued functions and

a very general space of reference. A proof of the following result can be found in

Carrasco, Chernov, Florens, and Ghysels (2001) under very general conditions.

Proposition 4.1 (Parzen). For any function g in H (K), the following relation

holds

kgk2
K
= min

G2C(g)

h
E�0 (GG0)

i
:

Proposition 4.1 will be useful in the following to establish the asymptotic e�-

ciency of our GMM estimator �̂n. Its asymptotic variance is given by

�E�0 (5�h)
2
K

��1

the inverse of the norm of g = E�0 (5�h) : Let S be the (not necessarily closed) space

spanned by fh (t; X; �0) ; t 2 Rpg : Let �S be the closure of S: It consists of all �nite

combinations of the form
P
m

l=1 !lh (tl; X; �0) and limits in norm of these linear com-

binations. Assume that � satis�es Assumption 2.
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Proposition 4.2. The GMM estimator based on the moment conditions h (t; X; �)

reaches asymptotically the Cramer Rao e�ciency bound

(i) if and only if @ ln f (X; �) =@� belongs to �S.

(ii) if fh (t; X; �0)g is complete that is

(
E�0 [G (X)] = 0

E�0

h
G (X)h (t; X; �0)

i
= 0; � � a:s

) G = 0:

Note that if fh (t; X; �0)g is complete then the solution to Equation (4.2) is

unique. Hence, the result of (ii) follows from the fact that the score always be-

longs to C
�
E�0 (5�h)

�
. Remark that the condition satis�ed by the elements of

C
�
E�0 (5�h)

�
is basically the same condition as in Lemma 4.2 of Hansen (1985),

see also Equation 5.8 in Newey and McFadden (1994). Hansen uses this condition to

calculate the greatest lower bound for the asymptotic covariance matrix of instru-

mental variable estimators. His focus is on the optimal choice of instruments and

not on e�ciency. Proposition 4.2 gives conditions for the asymptotic e�ciency of

the estimator �̂n:What are the appropriate choices of h? Assume that h (t; x; �) can

be written as h (t; x; �) = w (t0x)�E� [w (t0X)] : Then the completeness condition is

equivalent to

E�0 [G (X)w (t0X)] = 0 for all t in Rp except on a set of measure 0

) G = 0:

The choice of function fw (t0X)g is closely related to the choice of a test function

necessary to construct conditional moment speci�cation tests (see Bierens, 1990

and Stinchcombe and White, 1998). According to Stinchcombe and White (Theo-

rem 2.3), candidates for w are any analytic functions that are nonpolynomial, this

includes w (t0x) = exp (it0x) (the characteristic function) and w (t0x) = exp (t0x) (the

moment generating function) but also the logistic cumulative distribution function.

Note that it is not enough to have E�0 [G (X) exp (it0X)] = 0 for all t in an

open subset of Rp to have G = 0: Indeed two characteristic functions may coincide

on an open interval (even including zero) but may also correspond to two di�erent

distributions. Examples are provided by Lukacs (1970, page 85). Therefore, in

general, we can not expect to reach e�ciency if we restrict our attention to the c.f.

on a subset of Rp: On the other hand, there is a large class of c.f. that are uniquely

de�ned by their values on an arbitrary interval I of R (assuming p = 1). This is the

class of analytic c.f.1 (see Remark 4.1.2, page 65 in Rossberg, Jesiak, and Siegel,

1985). As the continuation of these c.f. to the line is unique in the set of c.f, it is

not necessary to use the full real line R. Indeed, e�ciency will be reached as long as

� is positive on some arbitrary interval I of R (see Proposition 3.4.5. in Rossberg

1A c.f.  is said to be an analytic c.f. if there exists a function A (z) of the complex variable z

which is analytic in the circle jzj < �; A is continuous [��; �] \R and  (t) = A (t) for t 2 R:
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et al.). Examples of distributions with analytic c.f. include the Normal, Gamma,

and Poisson distributions, while the c.f. of the Cauchy distribution is not analytic2.

4.2. Asymptotic properties of the GMM estimator

In this subsection, we focus on moment conditions based on the e.c.f.:

hn (t; �) =
1

n

nX
j=1

�
eit

0Xj �  
�
(t)
�

=  n (t)�  � (t) : (4.3)

We will establish (in the Appendix) that
p
nhn (t; �0) converges in L

2 (�) to a Gaus-

sian process with mean zero and covariance

E�0

h
hn (s; �0)hn (t; �0)

i
= E�0

h�
eisX �  �0 (s)

� �
e�itX �  �0 (t)

�i
=  �0 (s� t)�  �0 (s) �0 (�t) :

Hence the kernel of the covariance operator is given by

k (s; t) =  
�0
(s� t)�  

�0
(s) 

�0
(�t) :

In Appendix A, we provide a set of primitive conditions under which the asymptotic

normality of our GMM estimator can be established. Assumptions 1 and 2 de�ne

the problem. Assumption 3 is an identi�cation assumption. Assumption 4 (i) to

(iii) are standard. Our task will consist of showing that the assumptions of Theorem

8 in CaFl are either satis�ed under our set of assumptions or not needed.

Proposition 4.3. Let �̂n be the estimator de�ned by (3.1) and (4.3). Under As-

sumptions 1 to 4, we have

p
n(�̂n � �0)

n!1�! N
�
0; I�1

�0

�
(4.4)

where

I�0 = E�

" 
@ ln f�

@�

! 
@ ln f�

@�

!0#�����
�=�0

as n and n�2
n
go to in�nity and �n goes to zero.

Note that �n is allowed to converge at a faster rate than that stated in Theorem

8 of CaFl. It is important to remark that the estimator will be asymptotically

e�cient for any choice of � > 0 on Rp (see the discussion of Equation (4.11) below).

However the choice of � might a�ect the small sample performance of �̂n:

To give an intuition of the proof of Proposition 4.3, we discuss some of the

assumptions of CaFl. The functions Eh and 5� are assumed to belong to H (K) :

2Other examples and su�cient conditions for the analycity of a c.f. can be found in Rossberg,

Jesiak, and Siegel (Chapter 4, 1985) and Lukacs (Chapter 7, 1970).
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Using Proposition 4.1, H (K) is easy to characterize. H (K) is the set of functions

g such that E�G2 <1; where G (X) has mean zero and satis�es

g (t) =

Z
G (x)

�
e�it

0x �  � (�t)
�
f� (x) dx: (4.5)

Assuming that f� (x) > 0 everywhere, the unique solution to Equation (4.5) is

G (x) =
1

2�

R
eit

0
xg (t) dt

f� (x)
:

Hence H (K) consists of functions g in L2 (�) which Fourier transforms F (g) � 1
2�R

eit
0xg (t) dt satisfy

kgk2
K
= EG2 =

Z jF (g)j2

f� (x)
dx <1: (4.6)

If f� vanishes, a similar conclusion holds. Let D = fx : f� (x) > 0g : Then H (K)

consists of functions of L2 (�) whose Fourier transforms vanish on Dc and such thatR
D

jF(g)j2

f�(x)
dx <1:

In the Appendix, we relax Assumption 8' of CaFl that was not satis�ed, namely

that
@ �(t)

@�j
belongs to the domain of K�1 for � = �0: This assumption would require

that there exists a function g in L2 (�) such that

@ �0 (t)

@�j
= (Kg) (t)

=

Z �
 
�0
(s� t)�  

�0
(s) 

�0
(�t)

�
g (t) � (t) dt:

Using the Fourier inversion formula several times (as in Feuerverger and McDun-

nough, 1981a), we obtain

g (t) = K�1

 
@ �0
@�j

!
(t) =

1

� (t)

1

2�

Z +1

�1

@ ln f (x; �)

@�j

�����
�=�0

eitxdx: (4.7)

As the score is not necessarily integrable, the integral does not always exist, and even

if it exists, g will not belong to L2 (�) in general. Note that this term is the optimal

instrument of Feuerverger and McDunnough (1981a) and of Singleton (2001) (to be

discussed later).

4.3. Comparison with Feuerverger and McDunnough

In Feuerverger and McDunnough (1981a) (to be referred to as FM), the space of

reference is L2 (�) ; the Hilbert space of real-valued functions that are square inte-

grable with respect to Lebesgue measure, �: They treat the real part and imaginary
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part of the c.f. as two di�erent moments, so that the moment function h is two-

dimensional but real. They show that a way to reach the e�ciency bound is to

estimate � (assumed for simplicity to be scalar) by solving

Z +1

�1

w (t) ( n (t)�  � (t)) dt = 0 (4.8)

where w (t) = g (t) � (t) and g is de�ned in (4.7). Below, we show that the expression

(4.8) is equivalent (a) to the �rst order condition of our GMM objective function

and (b) to the �rst order condition of the MLE. This shows, without using Parzen's

results, that the moment conditions based on the c.f. deliver an e�cient estimator.

Our objective function is given by

Qn =
D
K�1=2hn (:; �) ; K

�1=2hn (:; �)
E
;

where K is used instead of its estimator for simplicity. The �rst order condition is

*
K�1=2 @

@�
hn (:; �) ; K

�1=2hn (:; �)

+
= 0: (4.9)

Proceeding as if
@ �

@�
(= � @

@�
hn (:; �)) were in the range of K, (4.9) can be rewritten

as *
K�1@ �

@�
; hn (:; �)

+
= 0; (4.10)

which coincides with (4.8). Replacing w (t) by g (t) � (t) ; we see from (4.7) that � (t)

cancels out. Hence (4.10) is equivalent to

Z
1

2�

Z +1

�1

@ ln f (y; �)

@�

�����
�=�0

eitydy
1

n

nX
j=1

�
e�it

0xj �  
�
(�t)

�
dt = 0,

nX
j=1

@ ln f (xj; �)

@�

�����
�=�0

= 0 (4.11)

by a property of Fourier Transform (Theorem 4.11.12 of Debnath and Mikunsinsky).

Therefore, as long as � > 0, � will not a�ect the asymptotic e�ciency. However,

there is aw in this argument as
@ �(t)

@�j
does not belong to the domain of K�1: FM

are well aware that the score is not integrable with respect to Lebesgue measure and

they propose to replace w by a truncated integral

wm (t) =
1

2�

Z
m

�m

@ ln f (x; �)

@�

�����
�=�0

e�itxdx:

While w (t) alone is not well de�ned, the term in the left hand side of (4.8) is

bounded for all � (see proof of Assumption 9' in Appendix B). A major problem

is that w depends on the likelihood function which is, of course, unknown. FM

10



suggests to discretize an interval of R and to apply the usual GMM on the resulting

set of moment conditions. However, discretization implies a loss of e�ciency. They

argue that letting the intervals between observations, �t , go to zero, the GMM

estimator will reach the e�ciency bound. From CaFl, it is clear that the passage at

the limit requires a lot of care and that, when �t goes to zero, the dimension of the

covariance matrix increases, and its inverse is not bounded. It is therefore necessary

to stabilize the problem by including a penalization term.

5. Conditional characteristic function

In practice, models frequently include explanatory variables so that estimation has

to rely on the conditional characteristic function (c.c.f.). In this section, we explain

how to construct moment conditions without loss of e�ciency.

Assume that an i.i.d. sample Xi = (Yi; Zi) is available. Denote the characteristic

function of Y conditional on Z by

 � (tjZ) � E�
�
eitY jZ

�
:

In the sequel, � is assumed to be identi�able from the conditional distribution of Y

given Z or equivalently from the conditional c.f.. Therefore, we have the following

identi�cation condition

E�
h
eitY �  

�
(tjZ) jZ

i
= 0 for all t

implies � = �0: But Z may or may not be weak exogenous3 for �: Denote  
X
(t; s) =

E
�
eitY+isZ

�
the joint characteristic function of (Y; Z) ; KZ the conditional covari-

ance operator with kernel

kZ (t; s) = E�
h�
eitY �  

�
(tjZ)

� �
e�isY �  

�
(�sjZ)

�
jZ
i

=  
�
(t� sjZ)�  

�
(tjZ) 

�
(�sjZ) ;

and K the unconditional covariance operator with kernel

k (t; s) = E�
h�
eitY �  

�
(tjZ)

� �
e�isY �  

�
(�sjZ)

�i
= E� [ 

�
(t� sjZ)�  

�
(tjZ) 

�
(�sjZ)] :

3Z is said to be weak exogenous for � if its marginal distribution does not depend on �: So that

the joint distribution of (Y; Z) can be decomposed as

fY;Z (y; z; �; �) = fY jZ (yjz; �) fZ (z;�) :

11



Proposition 5.1. (i) The GMM estimator �̂n based on the continuum of moment

h (t; s;X; �) = eitY +isZ �  
X
(t; s) (5.1)

is asymptotically e�cient:

(ii) Assume that Z is weak exogenous, we have

*�
KZ

��1 @ � (tjZ)
@�

; eity �  � (tjZ)
+
KZ

=
@ ln f (yjZ)

@�
:

Hence solving
1

n

nX
j=1

*
@ � (tjzj)

@�
; eityj �  � (tjzj)

+
KZ

= 0

would deliver an asymptotically e�cient estimator.

The �rst set of moment conditions is based on the joint characteristic function

of X = (Y; Z) : Estimation can be implemented using results presented in CaFl and

discussed in the next section. (ii) gives a method to obtain an e�cient estimator by

inverting the conditional operator KZ: It might be tedious in practice because the

inversion has to be done for each value of Z: One way would be to use a discretization

of R and to inverse the covariance matrix instead of the covariance operator, as

suggested by Singleton (2001, page 129). The inversion of the covariance matrix

could be done using a regularization to avoid singularity when the grid is too �ne.

We now discuss a special case. Assume that

Y = �0Z + U (5.2)

where U is independent of Z. The c.f. of U denoted  
u
is known and may depend

on some parameter �. Its p.d.f is denoted fu: Denote � = (�0; �0)
0
: Z is assumed to

be weak exogenous for the parameter of interest �:

Corollary 5.2. Consider Model (5.2). The GMM estimator based on

h (t; Y; Z) = eit(Y��
0
Z) �  

u
(t) (5.3)

is asymptotically e�cient.

6. Implementation

6.1. Estimation of the covariance operator

Let f be some element of L2 (�) : It is natural to estimate K by Kn the integral

operator

(Knf) (t) =
Z
kn (t; s) f (s)� (s) ds

12



with kernel

kn (t; s) =
1

n

nX
i=1

k
�
xi; t; s

�
=

1

n

nX
i=1

ht
�
xi; �0

�
hs
�
xi; �0

�

Let �̂
1

n
be a n1=2�consistent �rst step estimate of �0:This �rst step estimator can be

obtained by minimizing
h (�) : If hi

t
denotes ht(x

i; �̂
1

n
); our estimate satis�es :

(Knf) (t) =
1

n

nX
i=1

hi
t

Z
hi
s
f(s) � (s) ds:

When s is a vector, the integral is actually multiple and � may be selected as the

product of univariate p.d.f. The operator Kn is degenerate and has at most n

eigenvalues and eigenfunctions. Let �̂l and �̂l; l = 1; :::; n denote the eigenfunctions

and eigenvalues of Kn. As explained in CaFl (Section 3), �̂
l
and �̂

l
are easy to

calculate. Let M be the n� n matrix with principal elements 1
n
mij where

mij =

Z
hi
s
hj
s
� (s) ds:

Denote �l = [�l1; :::; �
l

n
]0 and �̂

l
; l = 1; :::; n the eigenvectors and eigenvalues of M

respectively. Note thatM is self-adjoint, semi-positive de�nite, hence its eigenvalues

are real positive. The eigenfunctions ofKn are �̂l(t) = ht�
l where ht = [h1

t
; h2

t
; :::; hn

t
]

and its eigenvalues are �̂
l
. Note that eigenfunctions of a self-adjoint operator as-

sociated with di�erent eigenvalues are necessarily orthogonal, therefore �̂l need not

be orthogonalized, only normed. From now on, �̂
l
will denote the orthonormalized

eigenfunctions associated with the eigenvalues, �̂l, ranked in decreasing order.

Researchers, who have previously used characteristic functions to do inference,

worked with two sets of moments: those corresponding to the real part of the c.f.

and those corresponding to the imaginary part, see for instance Feuerverger and

McDunnough (1981a, b), Koutrouvelis and Kellermeier (1981), and also the recent

papers by Singleton (2001), Chacko and Viceira (2001), Jiang and Knight (1999).

Nowadays, most software packages (GAUSS among others) allow for complex num-

bers so that moment conditions (2.1) can be handled directly.

6.2. Expression of the objective function

The calculation of the objective function involves the computation of K�1=2 where

K�1=2 can be seen as (K�1)1=2. We �rst study the properties of K�1. K�1f is

solution of

Kg = f (6.1)

This problem is typically ill-posed. In particular, the solution, g, of (6.1) is unstable

to small changes in f: To stabilize the solution, we introduce a regularization param-

eter �n that goes to zero when n goes to in�nity. This method is called Tikhonov

13



approximation and is explained in Groetsch (1993, page 84) and CaFl. Equation

(6.1) is approximated by

(K2 + �nI)g�n = Kf:

The square root of the generalized inverse of K is

�
K̂�n
n

��1=2
f =

nX
j=1

q
�̂jq

�̂2
j
+ �n

D
f; �j

E
�j

for f in H(K): Clearly, the solution g�n should converge to K�1f when �n goes to

zero, but for �n too close to zero, the solution becomes unstable. There is a trade-o�

between the accuracy of the solution and its stability. Therefore, the right choice of

�n is crucial. The optimal GMM estimator is given by

�̂n = argmin
�

nX
j=1

�̂j

�̂2
j
+ �n

���Dhn (�) ; �̂jE
���2 :

Note that the regularization is not the only way to circumvent the instability prob-

lem. Another solution consists in truncating the sum in the objective function.

Because the eigenvalues, �̂
j
; converge to zero, the sum

P
L

j=1
1
�̂j

���Dhn (�) ; �̂jE
���2 might

diverge if the truncation parameter, L, is too large, hence the resulting estimators

may not be consistent. Therefore the choice of the optimal truncation depends on

the decay rate of the eigenvalues, which is di�cult to assess, see Cardot, Ferraty,

and Sarda (1999).

6.3. Choice of the regularization parameter �n

From Proposition 4.3, �n should converge to 0 such that n�2
n
! 1 as n goes to

in�nity. This is however not informative on how to choose �n in practice. In this

section, we propose a data-driven method for choosing �n: Let denote �̂
�

the solution

of

argmin
�

nX
j=1

�̂j

�̂2
j
+ �

���Dhn (�) ; �̂jE
���2

for any � > 0: This corresponds to minimizing hAnhn; hni where An is a bounded

weighting operator

An = (K2
n
+ �I)�1Kn:

De�ne

A = (K2 + �I)�1K:

We plan to select �n that minimizes the Mean Square Error (MSE) of �̂
�

: Because

the estimator �̂
�

is unbiased for any � (constant and positive), we need to compute

the higher order asymptotic bias of �̂
�

: In that respect, we follow a recent paper by

Newey and Smith (2001).
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Proposition 6.1. Consider moment conditions of the type (2.1). The MSE of �̂
�

satis�es

MSE
�
�̂
�
�

= E�0

��
�̂
�

� �0
�0 �

�̂
�

� �0
��

= Bias2 + V ar:

where Bias2 = 1
n2
E�0 (Q1)

0
E�0 (Q1) and V ar =

1
n
trace (V ) with

V =M�1 hA5�  �; KA5�  �iM
�1

and

Q1 = M�1
D
5� �; (K

�)
�2
hi (:)

E Z
jhi (t)j

2
� (t) dt (6.2)

+ h5�� �; AhiiM
�1 h5� �; Ahii (6.3)

�M�1
D
5� �; (K

�)
�2
hi (:)

E
h5� �; hii

0
M�1 h5� �; Ahii (6.4)

�
M�1

2

D
5� �; h5� �; Ahii

0
M�1A5��  �M

�1 h5� �; Ahii
E
: (6.5)

and M = h5� �; A5�  �i and hi = h (:; Xi; �0) :

Note that

(K�)
�2
f =

X �2
j�

�2
j + �

�2
D
f; �

j

E
�
j
;

Af =
X �

j

�2
j + �

D
f; �

j

E
�
j
:

Both (K�)
�2

and A can be estimated by replacing �j and �j by their estimators.

To estimate the bias, the expectation is replaced by a sample mean. As usual, there

is a trade-o� between the bias (decreasing in �) and the variance (increasing in �):

The term V is bounded for any � while the term E�0 (Q1)
0
E�0 (Q1) will diverge

when � goes to zero. More precisely, the terms (6.2) to (6.4) are Op (1=�) and the

term (6.5) is Op (1) and therefore can be neglected in the calculation of �: Hence

E�0 (Q1)
0
E�0 (Q1) = Op (1=�

2) : Matching the terms Bias2 which is Op (1=(n
2�2))

and V ar which is Op (1=n), we obtain n�2 = Op (1) which implies n�3=2 ! 1
(as needed for the consistency of the estimator) but not n�2 ! 1 as required in

Proposition 4.3. It means that using the MSE as criterion will deliver an �n that

converges to zero at a slightly faster rate than desired. Remark that if the moment

conditions include exogenous variables as in (5.3), E� 5� hn = E� 5� hi 6= 5� �,

the bias includes an extra term corresponding to (B.20) in the appendix. In Q1, one

needs to add:

�
M�1

n

D
5�hi � E� 5� hi; Ahi

E
:
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7. Goodness of �t test for convolution of distributions

Consider a model

Xi = � 0Zi + �i + "i

where fXi; Zig are observable. Zi is independent of �i and "i: �i is an unobserved

random e�ect and "i is an unobserved random variable. �
i
and "i are mutually

independent, i.i.d. and have zero mean. In the following, we will assume that the

distribution of "i is known and that of �
i
is unknown. Nonparametric estimation

of the density of � is possible using the deconvolution kernel, see Carroll and Hall

(1988), Stefanski and Carroll (1990), Li and Vuong (1998) among others, and also

Horowitz and Markatou (1996) and Li, Perrigne, and Vuong (2000) for applications.

However, the resulting estimator of the density has a very slow speed of convergence

especially if " is normally distributed. It might be more meaningful to select a

parametric form for the characteristic function of �; denoted  
�
(�; t) and to perform

a goodness-of-�t test.

The set of parameters � = (�0; �0)
0
is jointly estimated from the moment condi-

tions given by

E�h (�; t) � E�
h
eit(X��

0
Z) �  � (�; t) " (t)

i
= 0:

Since the model is clearly overidenti�ed, a simple speci�cation test is to check

whether the overidentifying restrictions are close to zero. This test, similar to Hansen

(1982)'s J test, is based on the GMM objective function where the parameters have

been replaced by their estimators. The only speci�city here is that the number of

moment restrictions being in�nite, Hansen's test needs to be rescaled. This test

appears in CaFl in the context of unconditional moment conditions.

De�ne

pn =
nX
j=1

�2
j

�2j + �n
; qn = 2

nX
j=1

�4
j�

�2
j + �n

�2 : (7.1)

Proposition 7.1. Assume qn
p
�n ! 1 as n goes to in�nity. Under Assumptions

1 to 4, we have

�n =
k
p
nhn

�
:; �̂
�
k2
K
�n
n
�p̂n

p
q̂n

n!1�! N (0; 1)

as �n goes to zero and n�3
n
goes to in�nity. p̂n and q̂n are the counterparts of pn

and qn where the �j have been replaced by their estimators �̂j:

This test has the advantage of being an omnibus test, which asymptotic dis-

tribution is free of nuisance parameters. Moreover, it has power against a wide

range of alternatives. Since it is not designed for a speci�c alternative, it is likely to

have a low power in small samples. Various goodness-of-�t tests based on the e.c.f.

have been previously proposed, although none of the following references deal with
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the problem of convolution: The closest test to ours (Koutrouvelis and Kellermeier,

1981) is based on the moments

 n (t)�  0 (t; �)

for values t = t1; t2; :::; tm \suitably chosen around 0". The statistic is given by

the GMM quadratic form where � has been replaced by its estimator. This is the

usual J-test and its asymptotic distribution is a chi-square with 2m� k degrees of

freedom. Epps and Pulley (1983) use as test statistic

T =

Z ��� n (t)�  0

�
t; �̂
����2 d! (t)

where �̂ is the MLE estimator of � and d! is an appropriate weight. The distribution

of this statistic is not standard and actually depends on nuisance parameters. Epps,

Singleton, and Pulley (1982) propose speci�cation tests based on the empirical mo-

ment generating function (e.g.f.). It uses the di�erence between the e.g.f. and the

true one evaluated at a single value of t;which is chosen in order to maximize the

power against a speci�c alternative. This statistic is asymptotically normal.

8. Simulations

8.1. The method

To assess the small sample performance of our estimation procedure, we simulate

samples of size n = 100. The number of repetitions is rep = 2000 for Table 1 and

rep = 1000 for the subsequent tables. For each estimator, we report the mean, the

standard deviation, and the root mean square error (RMSE). The true values of the

parameters are written below the title.

The �rst step estimator is given by

�̂
1

n
= argmin

�

khnk
2
= argmin

�

Z
hn (t; �) (hn (t; �))� (t) dt:

where hn (t; �) =
1
n

P
n

j=1 h (t; Xj; �) : The objective function is minimized using the

procedure optmum of GAUSS. Then, we compute all the eigenvalues and eigenvec-

tors of the matrix M de�ned in Section 6. However since the eigenvalues decrease

very quickly to 0, we calculate only
p
n eigenfunctions �̂

j
that correspond to the

largest eigenvalues. Because numerical integrations are time consuming, we replace

the inner products by sums on an equally-spaced grid with intervals 1/25. Finally

we use again optmum to compute �̂ = argmin� khnk
2

K
: The starting values of this

algorithm are set equal to the �rst step estimators.

The columns called \First step" and \Continuum GMM" correspond to a choice

of � as the p.d.f. of the standard normal distribution, � (t) = e�t
2
=2=
p
2� � � (t) :
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To avoid integrating over R, we use a tan transformation so that all integrations

are on [��=2; �=2], for instance

khk2 =
Z +1

�1

h (t) h (t)� (t) dt =
Z
�=2

��=2
h (tan(u))h (tan(u))� (tan(u))

1

cos (u)
2du:

The estimator in the �rst column of \Second Step" uses the penalization �n that

minimizes the MSE, using as starting values 10�6 for Tables 1 and 2 and 10�4 for

Tables 4a to c. Although the bias is continuously decreasing and the variance at

�rst increases and then attens after a certain point, the sum of the two is not

convex and it is important to choose a starting value that is su�ciently small. �n is

obtained using the Steepest Descent algorithm of the optmum procedure of GAUSS.

The median, mean, and standard deviation of �n are reported in the bottom of the

table. The next three columns correspond to various values of �n chosen �xed

a priori. The columns called Unif correspond to a choice of � as the p.d.f. of the

Uniform distribution on [�1; 1] or [�2; 2] associated with the optimal �n for Tables 1

and 2 and with the �rst step estimator for Tables 4a to c. Discrete GMM is the usual

e�cient GMM estimator based on 5 (complex) moment conditions corresponding to

t = 1; 3; 5; 7; 9; 11:We choose a coarse grid because a �ner grid would yield a singular

covariance matrix for some of the simulations. A similar grid (t = 1; 2; 3; 4; 5) was

chosen by Chacko and Viceira (2001) in their simulations. The starting values for

the discrete GMM are set equal to the �rst step continuum GMM estimator. The

starting values for MLE are the same as those used for the �rst step GMM estimator.

8.2. Estimation of a normal distribution

First we estimate a normal distribution N (�; �) with � = 1 and � = 0:5: This

exercise is intended to show how well the method works in a simple case. The

starting values for the optimization of the �rst step estimator are drawn in a Uniform

distribution around the true values: U[-1,3] for � and U[.1,.9] for �:

From Table 1, we see that:

(i) GMM is dominated by MLE.

(ii) GMM is not very sensitive to the choice of the penalization term �n:

(iii) Using the Uniform on [�1; 1] gives an estimator that seems to be more

e�cient than the GMM based on a normal �: This conclusion is reversed if one uses

a Uniform on [�2; 2]:
(iv) Discrete GMM performs very poorly relatively to the continuum GMM.

8.3. Estimation of a stable distribution

We focus on a stable distribution where the location parameter � is known and equal

to 0 and we estimate the scale c; the index �; and the skewness parameter �. The

characteristic function of a stable distribution can be parametrized as (DuMouchel,
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1975)

 � (t) = exp

�
�c jtj�

�
1� i�sign (t) tan

�
��

2

���
; � 6= 1;

= exp

�
�c jtj�

�
1 + i�

2

�
sign (t) ln (jtj)

��
; � = 1:

where 0 < � � 2; �1 � � � 1; 0 < c < 1: We consider a special case of a stable

distribution that is easy to simulate (Devroye, 1986, page 456)4 and corresponds to

� = 1=4; � = 0 and c = 1. In the estimation, we impose all the restrictions on the

parameters. The starting values for the �rst step GMM estimator are set equal to

the true values.

From Table 2, we draw two main conclusions:

(i) The second step estimator using the optimal �n is clearly better than the �rst

step and is at least as good as the other continuum GMM using �xed �n:

(ii) The continuum GMM estimators using a uniform distribution on [-1,1] or

[-2,2] for � are outperformed by that using the normal distribution on R for �.

This result goes in the opposite direction from what we found in Table 1. One

likely explanation is that the c.f. of the normal is analytic while the c.f. of a stable

distribution with exponent � < 2 is not analytic (Lukacs, 1970, page 191).

8.4. Estimation of a convolution

In this Monte Carlo experiment, we estimate a convolution of the type (2.5) given

in Example 2. In the random-e�ect literature, it is common to assume that �
i
and

"i are both normally distributed and the identi�cation of the respective variances

is guaranteed by the observation of panel data. However, using panel data on

annual earnings, Horowitz and Markatou (1996) show that, although �i is likely to

be normal, the distribution of "i exhibits thicker tails than the normal distribution.

Here we consider the case where �
i
is normal and "i is Laplace. As � is easy to

estimate by ordinary least-squares, we do not estimate � ( � is set equal to 0) and

we focus our attention on the estimation of the other parameters (except for Table

3 where � = 1).

Assume that "i � iid Laplace (�) with density

f (x) =
1

2�
exp

(
�
jxj
�

)
, � > 0; x 2 R;

E ("i) = 0 and V ("i) = 2�2 and �
i
� iidN (�; �) : Denote � = (�; �; �2)

0
: Let

u = "+ �: Since " and � are independent, we have  u =  " �  � with

 " (t) =
1

�2t2 + 1
and  � (t) = ei�te��

2
t
2
=2:

4It corresponds to N3=(2N1N
3

2
) where N1; N2, and N3 are independent N (0; 1):
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The likelihood of u has a closed-form expression. Here we give it in terms of �; �;

and � = �=� :

1

2�
exp

 
�2

2

!(
exp

 
�
(u� �)

�

!
�

 
(u� �)

��
� �

!
+ exp

�
u� �

�

�
�

 
(u� �)

��
+ �

!)
:

We maximize the likelihood of Xj � �̂ using the procedure maxlik in GAUSS.

The starting values for MLE and �rst step GMM are chosen so that � is equal to

the OLS estimator, � = S=
p
2 and � = S=2where S is the standard deviation of

the residual of the regression of X on 1: This corresponds to the case where the

contributions of " and � to the total variance are the same.

In Table 3, we compare the performance of GMM estimators based on a �nite

grid for various intervals and discretizations �t. The exogenous i.i.d. variable Z

takes only two values 1 and 2, with probabilities 1/2 and 1/2. Note that l values of

t give 2l moments because each h(t) is composed of a real and imaginary part. With

l = 2; the model is exactly identi�ed. In this case, we report the �rst step estimator

because, for numerical reasons, the second step estimator is generally not as good

as the �rst one. The best performance is obtained for a discretization with width

1/2 of the interval [0; b] for which case the model is exactly identi�ed. This result is

worth commenting on. If the grid is �ne, the moments are strongly correlated and

the GMM estimator has a large variance. Eventually, when �t goes to zero, the

covariance matrix becomes singular and the GMM procedure breaks down. Actually,

even for a �xed �t; too many moments relative to the sample size will render the

covariance matrix singular. Adding more moments does not necessarily decrease the

standard error of the estimators, contrary to what is often believed (Schmidt, 1982).

A theory on the optimal number of moments as a function of the sample size and

the properties of the weighting matrix could be developed but is beyond the scope

of this paper.

The columns Unif of Tables 4a to c report the �rst step estimator because there

is no gain in using the second step estimator. For Table 4b, the MLE had some

di�culty in converging, therefore we report the statistics on 1000 successful estima-

tions.

From Tables 4a to c, we can draw the following conclusions:

(i) The second step estimator turns out to be worse than the �rst step. This

might be due to the di�culty in estimating �n in small samples.

(ii) In general, MLE is slightly better than GMM.

(iii) GMM based on a continuum of moment conditions performs generally better

than GMM based on a discrete grid.

(iv) Although the c.f. of u is analytic5, there is no clear advantage of taking a

small interval over integrating on R.

5The c.f. of a normal is analytic with strip of regularity R while the cf of the Laplace is analytic

with strip of regularity [�1=�; 1=�]. By Theorem 5 of Wunsch (1994), the product of these two c.f.

is analytic with strip of regularity [�1=�; 1=�].
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9. Conclusion

This paper uses the empirical characteristic function for estimation. The proposed

GMM method takes advantage of the continuum of moment conditions provided by

the c.f. so that our estimator is asymptotically e�cient. We showed that the choice

of the norm (�) does not a�ect the e�ciency of the estimator as long as the interval

of integration is Rp. In the usual GMM, an important open question is the choice

of the number of the �xed grid points. Our method circumvents this problem but

instead we then need to choose a penalization term �n. We propose a data-driven

method for selecting �n:

From our limited Monte Carlo experiment, it seems that:

(i) Our GMM procedure produces estimates with good �nite sample properties.

(ii) The estimation is not very sensitive to the penalization term �n:

(iii) The GMM estimator based on an equispaced grid is less precise than that

based on a continuum of moment conditions.

(iv) When the c.f. is analytic (ex: Normal), using a continuum of moment con-

ditions on a small interval gives better results than using the full real line, whereas,

when the c.f. is not analytic (ex: Stable), using R is better.

We illustrated our method on a random-e�ect model. This type of model is

frequently encountered in microeconometrics. However, the use of the characteristic

function is not limited to a cross-sectional setting and has recently received a surge

of interest in �nance. While the likelihood of an asset pricing model is not easily

tractable, its c.c.f. has often a closed-form expression, and o�ers a way to estimate

the parameters (Chacko and Viceira, 1999, Jiang and Knight, 1999, Singleton, 2001).

We will consider the estimation of di�usions using GMM in another paper (Carrasco,

Chernov, Florens, and Ghysels 2000).
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Results of the Monte Carlo experiments

Table 1. Normal Distribution

(� = 1:0; � = 0:5)

First Second step MLE GMM Unif. Unif.

step continuum on R discrete [�1; 1] [�2; 2]
mean � 1.0020 1.0022 1.0020 1.0020 1.0021 1.0020 0.9794 1.0020 1.0021

� 0.4962 0.4938 0.4974 0.4972 0.4942 0.4957 0.4926 0.4963 0.4957

std � 0.0509 0.0511 0.0510 0.0509 0.0508 0.0498 0.8049 0.0505 0.0547

� 0.0359 0.0346 0.0358 0.0357 0.0352 0.0343 0.0592 0.0348 0.0361

RMSE � 0.0509 0.0511 0.0510 0.0510 0.0508 0.0499 0.8049 0.0505 0.0547

� 0.0361 0.0351 0.0359 0.0358 0.0356 0.0346 0.0597 0.0350 0.0363

�n med 1.6e-6 0.1 0.001 1e-5 1.8e-6 0.0006

mean 0.0015 0.1 0.001 1e-5 0.0201 0.0794

std 0.0297 0 0 0 0.1136 0.2346

Table 2. Stable Distribution

(c = 1; � = 0:25; � = 0)

First Second step GMM Unif. Unif.

step continuum on R discrete [�1; 1] [�2; 2]
mean c 1.1156 1.1121 1.1138 1.1105 1.1195 0.5506 1.1052 1.1125

� 0.3060 0.2768 0.2744 0.2763 0.2808 0.3454 0.2568 0.2580

� 0.0138 -0.0040 -0.0074 -0.0042 0.0025 -0.0051 -0.0039 0.0183

std c 0.1739 0.1528 0.1559 0.1521 0.1558 5.8205 0.1684 0.1666

� 0.1057 0.0744 0.0799 0.0755 0.0779 0.1643 0.0930 0.0865

� 0.2626 0.2050 0.2300 0.2085 0.2263 0.2779 0.2830 0.2469

RMSE c 0.2087 0.1894 0.1930 0.1879 0.1963 5.8349 0.1985 0.2010

� 0.1195 0.0790 0.0835 0.0799 0.0838 0.1899 0.0932 0.0868

� 0.2628 0.2049 0.2300 0.2085 0.2262 0.2778 0.2829 0.2475

�n med 0.0022 0.1 0.001 1e-5 0.0115 0.0121

mean 0.0569 0.1 0.001 1e-5 0.0221 0.0156

std 0.2058 0 0 0 0.0918 0.0450

Table 3. Sensitivity of GMM to discretization

(� = 1:0; � = 0:5; � = 0:5; � = 1:0; b = maxfxg=2� ' 0:9)

GMM discrete GMM

interval [0,b] [0,b] [0,b] [0,b] [0,2b] [0,2b] [0,3b]

�t �n = 0:1 1/2 1/4 1/5 1 1/2 1

t continu. .5,1 .25,.5,.75,1 0.2,...,0.8 1,2 .5,1,1.5,2 1,2,3

RMSE � 0.279 0.278 0.337 0.420 0.282 0.304 0.333

� 0.154 0.211 0.226 0.234 0.199 0.221 0.226

� 0.116 0.153 0.255 0.315 0.165 0.247 0.237

� 0.176 0.177 0.215 0.277 0.180 0.198 0.218
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Table 4a. Convolution

(� = 1:0; � = 0:5; � = 0:5)

First Second step MLE GMM Unif. Unif.

step continuum on R discrete [�1; 1] [�2; 2]
mean � 1.0063 1.0047 1.0051 1.0054 1.0043 1.0064 1.0012 1.0075 1.0057

� 0.5037 0.4751 0.5015 0.4910 0.4780 0.4748 0.4876 0.5217 0.4888

� 0.4286 0.4466 0.4109 0.4282 0.4453 0.4821 0.4373 0.4209 0.4453

std � 0.0891 0.0903 0.0903 0.0900 0.0904 0.0889 0.0958 0.0888 0.0912

� 0.2102 0.2353 0.2414 0.2371 0.2291 0.1801 0.2501 0.2313 0.2149

� 0.1983 0.2072 0.2253 0.2121 0.2099 0.1021 0.1804 0.1703 0.1776

RMSE � 0.0893 0.0904 0.0904 0.0901 0.0905 0.0891 0.0958 0.0890 0.0914

� 0.2101 0.2365 0.2413 0.2371 0.2300 0.1818 0.2503 0.2322 0.2151

� 0.2107 0.2139 0.2422 0.2238 0.2168 0.1036 0.1909 0.1877 0.1857

�n med 0.0001 0.1 0.001 1e-5

mean 0.0003 0.1 0.001 1e-5

std 0.0035 0 0 0

Table 4b. Convolution

(� = 1:0; � = 0:5; � = 0:25)

First Second step MLE GMM Unif. Unif.

step continuum on R discrete [�1; 1] [�2; 2]
mean � 1.0053 1.0046 1.0056 1.0051 1.0046 0.9984 0.9955 1.0054 1.0053

� 0.4966 0.4884 0.5122 0.5115 0.4851 0.3201 0.4649 0.5025 0.5020

� 0.1863 0.1946 0.1571 0.1557 0.1973 0.3657 0.2216 0.2020 0.1792

std � 0.0661 0.0676 0.0678 0.0676 0.0676 0.0634 0.0772 0.0650 0.0669

� 0.1249 0.1376 0.1268 0.1294 0.1414 0.1197 0.1875 0.1128 0.1228

� 0.1479 0.1586 0.1507 0.1561 0.1612 0.0558 0.1480 0.1081 0.1460

RMSE � 0.0663 0.0677 0.0680 0.0677 0.0678 0.0634 0.0773 0.0651 0.0671

� 0.1249 0.1380 0.1273 0.1298 0.1421 0.2161 0.1906 0.1128 0.1227

� 0.1609 0.1679 0.1769 0.1823 0.1695 0.1285 0.1507 0.1182 0.1622

� med 1.1e-5 0.1 0.001 1e-5

mean 0.0003 0.1 0.001 1e-5

std 0.0031 0 0 0
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Table 4c. Convolution

(� = 1:0; � = 0:25; � = 0:5)

First Second step MLE GMM Unif. Unif.

step continuum on R discrete [�1; 1] [�2; 2]
mean � 1.0046 1.0056 1.0019 1.0039 1.0065 1.0038 1.0011 1.0061 1.0040

� 0.2399 0.2229 0.2494 0.2458 0.2151 0.2538 0.2400 0.3085 0.2447

� 0.4677 0.4686 0.4477 0.4519 0.4704 0.4685 0.4506 0.4376 0.4611

std � 0.0705 0.0699 0.0704 0.0701 0.0699 0.0700 0.0752 0.0743 0.0709

� 0.1848 0.2013 0.2200 0.2127 0.2017 0.1720 0.1970 0.2129 0.1972

� 0.1033 0.1166 0.1434 0.1342 0.1247 0.0936 0.1222 0.1123 0.1051

RMSE � 0.0706 0.0701 0.0704 0.0701 0.0702 0.0700 0.0752 0.0746 0.0710

� 0.1849 0.2030 0.2199 0.2126 0.2046 0.1720 0.1972 0.2207 0.1971

� 0.1082 0.1207 0.1526 0.1425 0.1282 0.0987 0.1318 0.1284 0.1120

� med 8.8e-5 0.1 0.01 1e-5

mean 8.5e-5 0.1 0.001 1e-5

std 4.7e-5 0 0 0

A. Appendix: Assumptions

Assumption 1: The observed data fx1; :::; xng are independent and identically

distributed realizations of X: The r.v. X takes its values in Rp and has a p.d.f.

f (x; �) with � 2 � � Rq and � compact. The characteristic function of X is

denoted  � (t) :

Assumption 2: � is the p.d.f. of a distribution that is absolutely continuous

with respect to Lebesgue measure on Rp. � (x) > 0 for all x 2 Rp. L2 (�) is the

Hilbert space of complex-valued functions that are square integrable with respect to

�: Denote h:; :i and k : k the inner product and the norm de�ned on L2 (�).

Assumption 3: The equation

E�0(eit
0X)�  � (t) = 0 � � a:s:

has a unique solution �0 which is an interior point of �.

Assumption 4: (i) f (x; �) is continuously di�erentiable with respect to � =

(�1; :::; �q) on �,

(ii)
R
sup

�2�

@f(x;�)
@�

 dx <1;

(iii) I�0 = E�

��
@ ln f�
@�

� �
@ ln f�
@�

�0�����
�=�0

is positive de�nite.

B. Appendix: Proofs of propositions

Proof of Proposition 4.2. In the following, we denote C
�
E�0 (5�h)

�
by C: The

proof has three steps.

24



1. First we show that G0 =
@ ln f(X;�0)

@�
belongs to C.

2. Second we show that G0 is the element of C with minimal norm if and only

if @ ln f(X; �0)=@� 2 �S:

3. Finally, we show that fh (t; X; �0)g complete is a su�cient condition.

1. Note that Z
h (t; x; �) f (x; �) dx = 0:

Di�erentiating with respect to �, we obtain

Z
@h (t; x; �)

@�
f (x; �) dx+

Z
@f (x; �)

@�
h (t; x; �) dx = 0

by Assumption 4 (ii). Hence

E
h
G0h (t; X; �0)

i
=

Z
@f (x; �0)

@�
h (t; x; �0)dx (B.1)

= �
Z
@h (t; x; �0)

@�
f (x; �0) dx (B.2)

= �E 5� h: (B.3)

2. Let G = G0 + G1: G 2 C ) E
h
G1 (X)h (t; X; �0)

i
= 0 for all t 2 Rp: Here

and in the sequel, we omit \� � a:s:": Note also that

E [GG0] = E [G0G
0
0] + E [G1G

0
0] + E [G0G

0
1] + E [G1G

0
1] :

G0 has minimal norm

() (E [G1 (X)h (t; X; �0)] = 0 for all t 2 Rp ) E [G1G
0
0] = 0)

() (E [G1 (X)h (t; X; �0)] = 0 for all t 2 Rp ) E [G1@ ln f(X; �0)=@�] = 0)

() (8G1 ? S ) G1 ? @ ln f(X; �0)=@�)

() (@ ln f(X; �0)=@� ? S?)

() (@ ln f(X; �0)=@� 2
�
S?
�?

= S):

3. If fh (t; X; �0)g is complete, the solution to Equation (4.2) is unique. Hence,

the result of (ii) follows from the fact that the score is solution by point 1.

Before proving Proposition 4.3, we need to establish some preliminary results. In

the following, Assumptions CF1, CF2, etc refer to the assumptions of CaFl, while

Assumptions 1, 2 etc refer to our assumptions. Assumptions CF8' and CF9 are

replaced by the following.

Assumption 8": (a) hn is continuously di�erentiable with respect to �:

(b) There exists a function  such that 5�hn = 5� = E 5�  .

(c) 5� 2 H (K) for � = �0:

Assumption 9': For all integer n, the following relationship holds

@

@�0
khn (�)k

2

K�
n
= 2

*
@hn (�)

@�0
; hn (�)

+
K�
n

:
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Lemma B.1. Under Assumptions CF1, CF2, CF3, CF4', CF5, CF6, 8", 9', CF11',

CF12, CF13, CF14, we have

p
n
�
�̂n � �0

�
L!N (0; h5� ;5� iK)

as n and n�2
n
go to in�nity and �n goes to zero.

Proof of Lemma B.1. The consistency follows directly from Theorem 8 of

CaFl. We need to prove the asymptotic normality under the new assumption 8"

which replaces CF8'. Using a Taylor expansion around �0 of the �rst order condition

of the GMM minimization problem and by Assumption 9', we obtain

p
n
�
�̂n � �0

�
= �

D
(K�n

n
)
�1=2 5�  

�
�̂n
�
; (K�n

n
)
�1=2 5�  

�
�n
�E�1

(B.4)D
(K�n

n
)
�1=2 5�  

�
�̂n
�
; (K�n

n
)
�1=2p

nhn (�0)
E

(B.5)

where �n is a mean value. Assuming that �̂n converges at the speed
p
n (which will

be con�rmed later), the continuity of 5� and Theorem 7 of CaFl yieldD
(K�n

n
)
�1=2 5�  

�
�̂n
�
; (K�n

n
)
�1=2 5�  

�
�n
�E

P! h5� (�0) ;5� (�0)iK

as n and n�3=2
n

go to in�nity. Next, we consider (B.5):

D
(K�n

n
)
�1=2 5�  

�
�̂n
�
; (K�n

n
)
�1=2p

nhn (�0)
E

=
D
(K�n

n
)
�1=2 5�  

�
�̂n
�
�K�1=2 5�  (�0) ; (K

�n
n
)
�1=2p

nhn (�0)
E

(B.6)

+
D
K�1=2 5�  (�0) ; (K

�n
n
)
�1=2p

nhn (�0)
E

(B.7)

(B:6) �
(K�n

n
)
�1=2 5�  

�
�̂n
�
�K�1=2 5�  (�0)

 (K�n
n
)
�1=2

 pnhn (�0) :
By the proof of Theorem 7 in CaFl, we have

(K�n
n
)
�1=2 5�  

�
�̂n
�
�K�1=2 5�  (�0)

 = Op

0
@ 1q

n�
3=2
n

1
A ;

(K�n
n
)
�1=2

 = Op

 
1

�
1=4
n

!
:

As moreover k
p
nhn (�0)k = Op (1) ; the term (B:6) is Op

�
1=
q
n�2

n

�
= op (1) as n�

2
n

goes to in�nity by assumption.

The term (B:7) can be decomposed asD
K�1=2 5�  (�0) ; (K

�n
n
)
�1=2p

nhn (�0)
E

=
D
K�1=2 5�  (�0) ;

�
(K�n

n
)
�1=2 � (K�)

�1=2
�p

nhn (�0)
E

(B.8)

+
D
K�1=2 5�  (�0) ; (K

�n)
�1=2p

nhn (�0)
E
: (B.9)
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(B:8) �
K�1=2 5�  (�0)

 (K�n
n
)
�1=2 � (K�n)

�1=2
 pnhn (�0)

= Op

0
@ 1q

n�
3=2
n

1
A

by the proof of Theorem 7 of CaFl, therefore the term (B.8) goes to zero. It remains

to show that (B.9) is asymptotically normal.

(B:9) =
1X
j=1

1q
�2j + �n

D
5� (�0) ; �j

E Dp
nhn (�0) ; �j

E

=
nX
i=1

1X
j=1

1
p
n

1q
�2
j + �n

D
5� (�0) ; �j

E D
hi (�0) ; �j

E

�
nX
i=1

Yin:

In the following, �0 is dropped to simplify the notation. Note that Yin is i.i.d.,

E (Yin) = 0 and

V (Yin) =
1

n

X
j

1

�2
j + �n

���D5� ; �j

E���2 var hDhi; �jEi

+
2

n

X
j<k

1q
�2
j + �n

1q
�2
k
+ �n

D
5� ; �j

E
h5� ; �kicov

�D
hi; �j

E
; hhi; �ki

�
:

We have

cov
�D
hi; �j

E
; hhi; �ki

�
= E

�Z
hi (t)�j (t)� (t) dt

Z
hi (s)�k (s)� (s) ds

�

=

Z Z
E
h
hi (t)hi (s)

i
�j (t)� (t) dt�k (s)� (s) ds

=
D
K�k; �j

E

=

(
0 if k 6= j;

�j if k = j:

Hence

V (Yin) =
1

n

X
j

�
j

�2
j + �n

���D5� ; �j

E���2

and

s2
n
�
X
i

V (Yin) =
X
j

�
j

�2
j + �n

���D5� ; �j

E���2 !
n!1

h5� ;5� iK

by Step (i)1 of the proof of Theorem 7 in CaFl. To establish the asymptotic nor-

mality, we need to check the Liapunov condition:

1

s2+�
n

nX
i=1

E
h
jYinj

2+�
i
! 0:
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Let � = 2;

E
h
jYinj

4
i
�

1

n2
E

8><
>:
0
@X

j

1q
�2j + �n

���D5� ; �j

E��� ���Dhi; �jE
���
1
A

4
9>=
>;

By Cauchy-Schwartz, we have

X
j

���D5� ; �j

E��� ���Dhi; �jE
��� �

0
@X

j

���D5� ; �j

E���2
1
A

1=2 0
@X

j

���Dhi; �jE
���2
1
A

1=2

= k5� k khik :

Using
q
�2j + �n �

p
�n; we have

nX
i=1

E
h
jYinj

4
i
�

1

n�2
n

E
h
khik

4
i
k5� k

4

k5� k < 1 because k5� kK < 1 and E
h
khik

4
i
< 1 by Assumption CF13.

Hence, the upper bound converges to 0 as n�2
n
goes to in�nity. By Lindeberg

Theorem (Davidson, 1994), we have

P
i Yin

s2
n

L! N (0; 1)

or equivalently

D
K�1=2 5�  (�0) ; (K

�n)
�1=2p

nhn (�0)
E

L! N (0; h5� ;5� iK) :

Proof of Proposition 4.3. The asymptotic normality follows directly from

Lemma B.1. The e�ciency follows from Proposition 4.2. We just need to verify the

assumptions of Lemma B.1.

Assumptions CF1 and 1 are the same.

Assumption CF2: h (t; X; �0) = eit
0
X �  �0 (t) belongs to L

2 (�) under Assump-

tion 2 and is continuous in � by Assumption 4(i).

Assumptions CF2 and 3 are the same.

Assumptions CF4' requires that  
�0
(t)� 

�
(t) 2 H(K)+H(K)? for any � 2 �.

It is equivalent to check that  
�0
(t)�  

�
(t) 2 H(K) + H(K)?. Note that the

Fourier transform of  �0 (�t)�  � (�t) is

1

2�

Z
e�it

0x
�
 
�0
(t)�  

�
(t)
�
dt = [f�0 (x)� f� (x)] :

Denote

~G =
f�0 (x)� f� (x)

f�0 (x)
: (B.10)
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Using the characterization of H(K) given in (4.6),  
�0
(�t)�  

�
(�t) 2 H(K) i�

 �0 (t)�  � (t)
2
K
= E ~G2 =

Z
(f�0 (x)� f� (x))

2

f�0 (x)
dx <1

which is satis�ed as f� (x) =f�0 (x) � 1:We have proven that E�0 (h (t; X; �)) belongs

to the domain of K�1=2 also denoted H(K): Assumptions CF4' is satis�ed.

Assumption CF5 stipulates that if Eh 2 N
�
K�1=2

�
then Eh = 0. This is an

identi�cation condition. A stronger requirement would be kgk
K
= 0 ) g = 0: We

know that there is an element of C (g) such that kgk2
K
= EG2: Hence kgk2

K
= 0)

G = 0 with probability 1. Moreover we have EG (x) h (t; x) = 0 for all t hence

g (t) = 0 for all t: We have shown that N
�
K�1=2

�
= f0g : Assumption CF5 is

therefore satis�ed:

Assumption CF6: (a) hn (�) =
1
n

P
n

j=1

�
eit

0Xj �  
�
(t)
�
2 D

�
(K�

n
)
�1=2

�
is satis-

�ed because, for small n; (K�

n
)
�1=2

is bounded so its domain is L2 (�) and for n large,

it is satis�ed because E�0 (h (t; X; �)) belongs to the domain of K�1=2 as shown in

the proof of Assumption CF4'.

(b) Next we need to check that Qn (�) = khn (�)k
2

K�
n
is continuous in �. For n

small, the term

khn (�)k
2

K�
n
=

nX
j=1

D
hn (�) ; �̂j

E2
�̂j

(B.11)

is continuous because hn (�) is continuous (as  � (t) is continuous by Assumption

4(i)). For n large, we have shown in the proof of Assumptions CF4' that

E�0 (h (t; X; �))
2
K
= E�0

2
4
 
1�

f (x; �)

f (x; �0)

!2
3
5 (B.12)

which is also continuous in �:

Assumption 8': (a) h di�erentiable is satis�ed under Assumption 4(i).

(b) Note that E�0

h
@h(t;X;�)

@�j

i
=

@ �(t)

@�j
and

@E�0 [h(t;X;�)]

@�j
=

@ �(t)

@�j
; hence E�0

h
@h(t;X;�)

@�j

i
=

@E�0 [h(t;X;�)]

@�j
:

(c) We show that 5� 2 H (K) for � = �0: We apply Proposition 4.1. We need

to �nd G2 the centered solution of

5� � (�t) = E�0

h
G2 (X) e�it

0X
i

=

Z
e�it

0xG2 (x) f (x; �0) dx:

G2 (x) f (x; �0) =
1

2�

Z
eit

0x5�  � (�t) dt

=
1

2�

Z
e�it

0x5�  � (t) dt

=
@f (x; �)

@�0
:
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So that

G2 (x) =
@f (x; �)

@�0
1

f (x; �0)
(B.13)

and

EG2G
0
2 = E�0

2
4@f (x; �)

@�0

 
@f (x; �)

@�0

!0  
f (x; �)

f (x; �0)

!2
3
5

is bounded by I�0 for � 6= �0 and is equal to I�0 for � = �0 (this way we have proven

the asymptotic e�ciency again).

Assumption 9': We need to show that

@

@�0
khn (�)k

2

K�
n
= 2

*
@hn (�)

@�0
; hn (�)

+
K�
n

(B.14)

For n small, this follows from the expression of (B.11). We now turn our attention

to the limit. Note that by Equation (B.12), we have

@

@�0

E�0 (h (t; X; �))
2
K

=
@

@�0
E�0

2
4
 
1�

f (x; �)

f (x; �0)

!2
3
5

= �2
Z
@f (x; �)

@�0

 
1�

f (x; �)

f (x; �0)

!
dx:

Now we want to calculate
D
@E�0 (h(t;X;�))

@�
0 ; E�0 (h (t; X; �))

E
K
and show that both sides

of Equation (B.14) are the same. Using the expression of G2 given in (B.13) and ~G

in (B.10), Parzen (1970, page 6) implies:

*
@E�0 (h (t; X; �))

@�0
; E�0 (h (t; X; �))

+
K

= EG2
~G

= �
Z
@f (x; �)

@�0

 
1�

f (x; �)

f (x; �0)

!
dx:

This proves (B.14) at the limit.

Assumption CF11': We need to prove that

1
p
n

nX
j=1

�
eit

0Xj �  � (t)
�

converges to a Gaussian processN (0; K) in L2 (�) : This result follows from Theorem

1.8.4 of Van der Vaart and Wellner (1996, page 50) under the condition

E�
h
kh (:; X; �)k2

i
<1
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which is satis�ed because kh (:; X; �)k is bounded. Indeed

kh (:; X; �)k2 =

Z ���eit0X �  � (t)
���2 � (t) dt

=

Z �
1� 2Re

�
eit

0X � (�t)
�
+ j � (t)j

2
�
� (t) dt

= 1 +

Z
j 

�
(t)j2 � (t) dt

� 2 (B.15)

Here we see the importance that � be a p.d.f.

Assumption CF12: We need to check thatZ Z
jk (s; t)j2 � (s)� (t) dsdt <1:

Replacing k by its expression, we obtainZ Z ��� �0 (s� t)�  �0 (s) �0 (�t)
���2 � (s) � (t) dsdt

�
Z Z ���� �0 (s� t)

���+ ��� �0 (s)
��� ��� �0 (�t)

����2 � (s)� (t) dsdt
� 2

because c.f. are necessarily bounded by 1 in absolute value.

Assumption CF13: We need to check that E khk4 < 1 which holds because of

(B.15).

Assumption CF14: (a) First check that

hn � E�0 (h (�))
 = Op

 
1
p
n

!

uniformly in � on �: Note that

hn � E�0 (h (�)) =
1

n

nX
j=1

�
eit

0Xj �  
�0
(t)
�

does not depend on �: We have
1

n

nX
j=1

�
eit

0Xj �  
�0
(t)
�

2

=

Z ������
1

n

nX
j=1

�
eit

0
Xj �  �0 (t)

�������
2

� (t) dt

=
1

n2

nX
j=1

Z ���eit0Xj �  
�0
(t)
���2 � (t) dt

+
2

n2

X
j<k

Z
Re

�
eit

0Xj �  �0 (t)
� �
e�it

0Xk �  �0 (�t)
�
� (t) dt

31



which is Op

�
1
n

�
because fXjg are iid.

(b) Second check that

5�hn � E�0 (5�h (�))
 = Op

 
1
p
n

!

uniformly in � on �: Note that

5�hn � E�0 (5�h (�)) = �5�  + E�0 [5� ] = 0:

So this condition is trivially satis�ed.

Proof of Proposition 5.1. (i) The set of moment conditions (5.1) is complete

hence the e�ciency follows from Theorem 4.2.

(ii) We compute the inverse of the operator KZ for each Z at the function

@ 
�
(tjZ) =@�: Denote w (s; Z) this inverse, it is such that

@ � (tjZ)
@�

=

Z
[ 

�
(t� sjZ)�  

�
(tjZ) 

�
(�sjZ)]w (s; Z)� (s) ds:

Assume that
R
 
�
(�sjZ)w (s; Z)� (s) ds = 0: Replacing  

�
(t� sjZ) by its expres-

sion and interchanging the order of integration yields

@ � (tjZ)
@�

=

Z
eity

Z
e�isyw (s; Z)� (s) dsf (yjZ) dy

=

Z
eity w� (y; Z) f (yjZ)dy

where  
w�

(y; Z) =
R
e�isyw (s; Z)� (s) ds: Using the Fourier inversion formula yields

 
w�

(y; Z) f (yjZ) =
1

2�

Z
e�ity

@ � (tjZ)
@�

dt

=
@f (yjZ)

@�
:

Using again a Fourier inversion, we obtain

w (t; Z) =
1

� (t)

Z
eity

@ ln f (yjZ)
@�

dy:

Note that the condition
R
 
�
(�sjZ)w (s; Z)� (s) ds = 0 is indeed satis�ed. The

result follows.

Proof of Corollary 5.2. The score function @ ln f (yjz) =@� = @ ln fu (y � �0z) =@�

is spanned by the set of moment conditions S.
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Proof of Proposition 6.1.

Denote

5��hn =
@2hn

@�@�0

Derivation of the asymptotic bias of �̂
�

We follow the same steps as in Newey and Smith (2001). The GMM objective

function is given by

hhn (�) ; Anhn (�)i :

�̂
�

satis�es the �rst order condition isD
5�hn

�
�̂
�
�
; Anhn

�
�̂
�
�E

= 0:

A Taylor expansion gives

0 =
D
5�hn

�
�̂
�
�
; Anhn (�0)

E
+
D
5�hn

�
�̂
�
�
; An5� hn (�0)

�
�̂
�

� �0
�E

+
1

2

�
5�hn

�
�̂
�
�
; An

�
�̂
�

� �0
�0
5�� hn

�
�
� �
�̂
�

� �0
��

where � is a mean value. Denote

M�
n

=
D
5�hn

�
�̂
�
�
; An5� hn (�0)

E
;

Mn = h5�hn (�0) ; An5� hn (�0)i ;

M =
D
E�0 5� h (�0) ; AE

�0 5� h (�0)
E
:

0 =
D
5�hn

�
�̂
�
�
; Anhn (�0)

E
+(M�

n
�M +M)

�
�̂
�

� �0
�

+
1

2

�
5�hn

�
�̂
�
�
; An

�
�̂
�

� �0
�0
5�� hn

�
�
� �
�̂
�

� �0
��

:

�
�̂
�

� �0
�

= �M�1
D
5�hn

�
�̂
�
�
; Anhn (�0)

E
�M�1 (M�

n
�M)

�
�̂
�

� �0
�

�
1

2
M�1

�
5�hn

�
�̂
�
�
; An

�
�̂
�

� �0
�0
5�� hn

�
�
� �
�̂
�

� �0
��

= �M�1 h5�hn (�0) ; Anhn (�0)i

�M�1
D
5��hn

�
�
� �
�̂
�

� �0
�
; Anhn (�0)

E
�M�1 (M�

n
�M)

�
�̂
�

� �0
�

�
M�1

2

�
5�hn (�0) ; An

�
�̂
�

� �0
�0
5�� hn

�
�
� �
�̂
�

� �0
��

�
M�1

2

�
5��hn

�
�
� �
�̂
�

� �0
�
; An

�
�̂
�

� �0
�0
5�� hn

�
�
� �
�̂
�

� �0
��

:
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Note that the last term is Op

�
n�3=2

�
and M�

n
=Mn +Op

�
n�1=2

�
: We obtain

�
�̂
�

� �0
�

= �M�1
D
E�0 5� h (�0) ; Ahn (�0)

E
(B.16)

�M�1
h
h5�hn (�0) ; Anhn (�0)i �

D
E�0 5� h (�0) ; Ahn (�0)

Ei
�M�1

D
5��hn (�0)

�
�̂
�

� �0
�
; Anhn (�0)

E
�M�1

D�
5��hn

�
�
�
�5��hn (�0)

� �
�̂
�

� �0
�
; Anhn (�0)

E
(B.17)

�M�1 (Mn �M)
�
�̂
�

� �0
�

�
M�1

2

�
5�hn (�0) ; An

�
�̂
�

� �0
�0
5�� hn (�0)

�
�̂
�

� �0
��

�
M�1

2

�
5�hn (�0) ; An

�
�̂
�

� �0
�0 �
5��hn

�
�
�
�5��hn (�0)

� �
�̂
�

� �0
��
(B.18)

+Op

�
n�3=2

�

As (B.17) and (B.18) are Op

�
n�3=2

�
they can be included in the rest. Replacing

�̂
�

� �0 by �M�1
D
E�0 5� h (�0) ; Ahn (�0)

E
, we obtain

�
�̂
�

� �0
�

= �M�1
D
E�0 5� h (�0) ; Ahn (�0)

E
(B.19)

�M�1
D
5�hn (�0)� E�0 5� h (�0) ; Anhn (�0)

E
(B.20)

�M�1
D
E�0 5� h (�0) ; (An � A) hn (�0)

E
(B.21)

+M�1
D
E�0 5�� h (�0) ; Ahn (�0)

E
M�1

D
E�0 5� h (�0) ; Ahn (�0)

E
(B.22)

+M�1 (Mn �M)M�1
D
E�0 5� h (�0) ; Ahn (�0)

E
(B.23)

�
M�1

2

D
E�0 5� h (�0) ; (B.24)

D
E�0 5� h (�0) ; Ahn (�0)

E0
M�1AE�0 5�� h (�0)M

�1
D
E�0 5� h (�0) ; Ahn (�0)

E�

+Op

�
n�3=2

�

We want to give an expression of the bias E�0

�
�̂
�

� �0
�
that is easy to estimate.

Note that 5�hn (�0) = 5� �j�=�0 = E�0 5� h (�0) hence (B.20) is equal to zero. To

simplify the notation, we omit �0 everywhere in the sequel. Denote h (t; Xi; �0) as

hi, K
�

n
= A�1

n
= (K2

n
+ �I)K�1

n
, and K� = A�1 = (K2 + �I)K�1: The expectation

of the �rst term (B.19) is zero.

Term (B.21): Using a Taylor expansion we have

An � A = (K�

n
)
�1 � (K�

n
)
�1 ' � (K�)

�2
(K�

n
�K�) ' � (K�)

�2
(Kn �K) :
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E [(Kn �K) hn]

= E
Z 2
4 1
n

nX
j=1

hj (s)hj (t)� k (s; t)

3
5 hi (t)� (t) dt

=
1

n

Z
E
h
hi (s) jhi (t)j

2
i
� (t) dt:

Hence the expectation of term (B.21) is given by

1

n
M�1

�
5� �; (K

�)
�2
�Z

E
h
hi (:) jhi (t)j

2
i
� (t) dt

��
:

Term (B.22): The expectation of this term is simply

1

n
E
h
h5�� �; AhiiM

�1 h5� �; Ahii
i
:

Term (B.23): Note that

Mn �M = h5� �; (An � A)5�  �i

E
h
(Mn �M)M�1

D
E�0 5� h (�0) ; Ahn (�0)

Ei
= E

h
h5� �; (An � A)5�  �iM

�1 h5� �; Ahii
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�
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n
E
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5� �; (K
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hi (:)

E �Z
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�0
M�1 h5� �; Ahii

#
:

The expectation of (B.23) is given by

�
1

n
M�1E

�D
5� �; (K

�)
�2
hi (:)

E�Z
hi (s)5�  � (�s) � (ds)

�0
M�1 h5� �; Ahii
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:

Term (B.24): The expectation of this term is simply
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n

M�1

2

D
5� �; E

h
h5� �; Ahii

0
M�1A5��  �M

�1 h5� �; Ahii
iE
: (B.25)

Derivation of the asymptotic variance of �̂
�

When � is �xed, the operator A is bounded, hence we can use the expression of

the variance given in Theorem 2 of CaFl where B = A1=2. The asymptotic variance

of
p
n
�
�̂
�

� �0
�
is given by

M�1
D
A1=2E�0 5� h (�0) ;

�
A1=2KA1=2

�
A1=2E�0 5� h (�0)

E
M�1

= M�1
D
AE�0 5� h (�0) ; KAE

�0 5� h (�0)
E
M�1:
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