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Abstract

We consider testing the significance of a subset of covariates in a nonparamet-

ric regression. These covariates can be continuous and/or discrete. We propose

a new kernel-based test that smoothes only over the covariates appearing under

the null hypothesis, so that the curse of dimensionality is mitigated. The test

statistic is asymptotically pivotal and the rate of which the test detects local

alternatives depends only on the dimension of the covariates under the null hy-

pothesis. We show the validity of wild bootstrap for the test. In small samples,

our test is competitive compared to existing procedures.
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1 Introduction

Testing the significance of covariates is common in applied regression analysis. Sound

parametric inference hinges on the correct functional specification of the regression

function, but the likelihood of misspecification in a parametric framework cannot be

ignored, especially as applied researchers tend to choose functional forms on the basis

of parsimony and tractability. Significance testing in a nonparametric framework has

therefore obvious appeal as it requires much less restrictive assumptions. Fan (1996),

Fan and Li (1996) , Racine (1997), Chen and Fan (1999), Lavergne and Vuong (2000),

Ait-Sahalia et al. (2001), and Delgado and González Manteiga (2001) proposed tests

of significance for continuous variables in nonparametric regression models. Delgado

(1993), Dette and Neumeyer (2001), Lavergne (2001), Neumeyer and Dette (2003),

Racine et al. (2006) focused on significance of discrete variables. Volgushev et al.

(2013) considered significance testing in nonparametric quantile regression. For each

test, one needs first to estimate the model without the covariates under test, that is

under the null hypothesis. The result is then used to check the significance of extra co-

variates. Two competing approaches are then possible. In the “smoothing approach,”

one regresses the residuals onto the whole set of covariates nonparametrically, while in

the “empirical process approach” one uses the empirical process of residuals marked

by a function of all covariates.

In this work, we adopt an hybrid approach to develop a new significance test of a

subset of covariates in a nonparametric regression. Our new test has three specific

features. First, it does not require smoothing with respect to the covariates under

test as in the “empirical process approach.” This allows to mitigate the curse of

dimensionality that appears with nonparametric smoothing, hence improving the power

properties of the test. Our simulation results show that indeed our test is more powerful

than competitors under a wide spectrum of alternatives. Second, the test statistic is

asymptotically pivotal as in the “smoothing approach,” while wild bootstrap can be

used to obtain small samples critical values of the test. This yields a test whose level

is well controlled by bootstrapping, as shown in simulations. Third, our test equally

applies whether the covariates under test are continuous or discrete, showing that there

is no need of a specific tailored procedure for each situation.
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The paper is organized as follows. In Section 2, we present our testing procedure. In

Section 3, we study its asymptotic properties under a sequence of local alternatives

and we establish the validity of wild bootstrap. In Section 4, we compare the small

sample behavior of our test to some existing procedures. Section 5 gathers our proofs.

2 Testing Framework and Procedure

2.1 Testing Principle

We want to assess the significance of X ∈ Rq in the nonparametric regression of Y ∈ R

on W ∈ R
p and X . Formally, this corresponds to the null hypothesis

H0 : E [Y |W,X ] = E [Y |W ] a.s.

which is equivalent to

H0 : E [u |W,X ] = 0 a.s. (1)

where u = Y − E [Y |W ]. The corresponding alternative hypothesis is

H1 : P {E [u | W,X ] = 0} < 1.

The following result is the cornerstone of our approach. It characterizes the null hy-

pothesis H0 using a suitable unconditional moment equation.

Lemma 1. Let (W1, X1, u1) and (W2, X2, u2) be two independent draws of (W, X, u),

ν(W ) a strictly positive function on the support of W such that E[u2ν2(W )] < ∞,

and K(·) and ψ(·) even functions with (almost everywhere) positive Fourier integrable

transforms. Define

I (h) = E
[
u1u2ν (W1) ν (W2)h

−pK ((W1 −W2) /h)ψ (X1 −X2)
]
.

Then for any h > 0,

E [u |W,X ] = 0 a.s.⇔ I(h) = 0.
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Proof. Let 〈·, ·〉 denote the standard inner product. Using Fourier Inversion Theorem,

change of variables, and elementary properties of conditional expectation,

I (h)

= E

[
u1u2ν (W1) ν (W2)

∫

Rp

e2πi〈t, W1−W2〉F [K] (th) dt

×
∫

Rq

e2πi〈s, X1−X2〉F [ψ] (s) ds

]

=

∫

Rq

∫

Rp

∣∣E
[
E [u | W,X ] ν (W ) e2πi{〈t,W 〉+〈s,X〉}

]∣∣2F [K] (th)F [ψ] (s) dtds .

Since the Fourier transforms F [K] and F [ψ] are strictly positive, I(h) = 0 iff

E
[
E [u | W,X ] ν (W ) e2πi{〈t,W 〉+〈s,X〉}

]
= 0 ∀t, s .

But this is equivalent to E [u |W,X ] ν (W ) = 0 a.s., which by our assumption on ν(·)
is equivalent to H0.

2.2 The Test

Lemma 1 holds whether the covariates W and X are continuous or discrete. For now,

we assume W is continuously distributed, and we later comment on how to modify

our procedure in the case where some of its components are discrete. We however do

not restrict X to be continuous. Since it is sufficient to test whether I(h) = 0 for any

arbitrary h, we can choose h to obtain desirable properties. So we consider a sequence

of h decreasing to zero when the sample size increases, which is one of the ingredient

that allows to obtain a tractable asymptotic distribution for the test statistic.

Assume we have at hand a random sample (Yi,Wi, Xi), 1 ≤ i ≤ n, from (Y,W,X).

In what follows, f(·) denotes the density of W , r(·) = E [Y | W = ·], u = Y − r(W ),

and fi, ri, ui respectively denote f (Wi), r (Wi), and Yi − r (Wi). Since nonparametric

estimation should be entertained to approximate ui, we consider usual kernel estimators
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based on kernel L(·) and bandwidth g. With Lnik =
1
gp
L
(

Wi−Wk

g

)
, let

f̂i = (n− 1)−1
n∑

k 6=i,k=1

Lnik ,

r̂i =
1

f̂i

1

(n− 1)

n∑

k 6=i,k=1

YkLnik

so that ûi = Yi − r̂i =
1

f̂i

1

(n− 1)

n∑

k 6=i,k=1

(Yi − Yk)Lnik .

Denote by n(m) the number of arrangements of m distinct elements among n, and by

[1/n(m)]
∑

a, the average over these arrangements. In order to avoid random denomi-

nators, we choose ν (W ) = f (W ), which fulfills the assumption of Lemma 1. Then we

can estimate I (h) by the second-order U-statistic

În =
1

n(2)

∑

a

ûif̂iûj f̂jKnijψij

=
1

n(2) (n− 1)2

∑

a

∑

k 6=i

∑

l 6=j

(Yi − Yk) (Yj − Yl)LnikLnjlKnijψij ,

with Knij = 1
hpK

(
Wi−Wj

h

)
and ψij = ψ (Xi −Xj). We also consider the alternative

statistic

Ĩn =
1

n(4)

∑

a

(Yi − Yk) (Yj − Yl)LnikLnjlKnijψij .

It is clear that Ĩn is obtained from În by removing asymptotically negligible “diagonal”

terms. Under the null hypothesis, both statistics will have the same asymptotic normal

distribution, but removing diagonal terms reduces the bias of the statistic under H0.

Our statistics Ĩn and În are respectively similar to the ones of Fan and Li (1996) and

Lavergne and Vuong (2000), with the fundamental difference that there is no smoothing

relative to the covariates X . Indeed these authors used a multidimensional smooth-

ing kernel over (W,X), that is h−(p+q)K̃ ((Wi −Wj) /h, (Xi −Xj) /h), while we use

Knijψij . For In being either Ĩn or În, we will show that nhp/2In
d−→N (0, ω2) under

H0 and nhp/2In
p−→∞ under H1. By contrast, the statistics of Fan and Li (1996) and

Lavergne and Vuong (2000) exhibit a nh(p+q)/2 rate of convergence. The alternative
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test of Delgado and González Manteiga (2001) uses the kernel residuals ûi and the em-

pirical process approach of Stute (1997). This avoids extra smoothing, but a the cost

of a test statistic with a non pivotal asymptotic law under H0. Hence, our proposal

is an hybrid approach that combines the advantages of existing procedures, namely

smoothing only for the variables W appearing under the null hypothesis but with an

asymptotic normal distribution for the statistic. Given a consistent estimator ω2
n of

ω2, as provided in the next section, we obtain an asymptotic α-level test of H0 as

Reject H0 if nhp/2In/ωn > z1−α ,

where z1−α is the (1 − α)-th quantile of the standard normal distribution. In small

samples, we will show the validity of a wild bootstrap scheme to obtain critical values.

The test applies whether X is continuous or has some discrete components. The

procedure is also easily adapted to some discrete components of W . In that case, one

would replace kernel smoothing by cells’ indicators for the discrete components, so

that forW composed of continuous Wc of dimension pc and discrete Wd, one would use

h−pcK
(

Wic−Wjc

h

)
I(Wid = Wjd) instead of Knij. It would also be possible to smooth

on the discrete components, as proposed by Racine and Li (2004). To obtain scale

invariance, we recommend that observations on covariates should be scaled, say by

their sample standard deviation as is customary in nonparametric estimation. It is

equally important to scale the Xi before they are used as arguments of ψ(·) to preserve

such invariance.

The outcome of the test may depend on the choice of the kernels K(·) and L(·), while
this influence is expected to be limited as it is in nonparametric estimation. The

choice of the function ψ(·) might be more important, but our simulations reveal that

it is not. From our theoretical study, this function, as well as K(·) should possess an

almost everywhere positive and integrable Fourier transform. This is true for (products

of) the triangular, normal, Laplace, and logistic densities, see Johnson et al. (1995),

and for a Student density, see Hurst (1995). Alternatively, one can choose ψ(x) as a

univariate density applied to some transformation of x, such as its norm. This yields

ψ(x) = g (‖x‖) where g(·) is any of the above univariate densities. This is the form we

will consider in our simulations to study the influence of ψ(·).
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3 Theoretical Properties

We here give the asymptotic properties of our test statistics under H0 and some local

alternatives. To do so in a compact way, we consider the sequence of hypotheses

H1n : E [Y |W,X ] = r (W ) + δnd (W,X) , n ≥ 1,

where d(·) is a fixed integrable function. Since r (W ) = E [Y |W ], our setup imposes

E [d (W,X) |W ] = 0. The null hypothesis corresponds to the case δn ≡ 0, while

considering a sequence δn → 0 yields local Pitman-like alternatives.

3.1 Assumptions

We begin by some useful definitions.

Definition 1. (i) Up is the class of integrable uniformly continuous functions from Rp

to R;

(ii) Dp
s is the class of m-times differentiable functions from Rp to R , with derivatives

of order ⌊s⌋ that are uniformly Lipschitz continuous of order s− ⌊s⌋, where ⌊s⌋
denotes the integer such that ⌊s⌋ ≤ s < ⌊s⌋ + 1.

Note that a function belonging to Up is necessarily bounded.

Definition 2. Kp
m, m ≥ 2, is the class of even integrable functions K : Rp → R with

compact support satisfying
∫
K (t) dt = 1 and, if t = (t1, . . . , tp),

∫

Rp

tα1

1 . . . tαp

p K (t) dt = 0 for 0 <

p∑

i=1

αi ≤ m− 1, αi ∈ N ∀i

This definition of higher-order kernels is standard in nonparametric estimation. The

compact support assumption is made for simplicity and could be relaxed at the ex-

pense of technical conditions on the rate of decrease of the kernels at infinity, see e.g.

Definition 1 in Fan and Li (1996). In particular, the gaussian kernel could be allowed

for. We are now ready to list our assumptions.
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Assumption 1. (i) For any x ∈ Rq in the support of X, the vector W admits a

conditional density given X = x with respect to the Lebesgue measure in Rp, denoted

by π(· | x). Moreover, E [Y 8] <∞. (ii) The observations (Wi, Xi, Yi), i = 1, · · · , n are

independent and identically distributed as (W,X, Y ).

The existence of the conditional density given X = x for all x ∈ Rq in the support of

X implies that W admits a density with respect to the Lebesgue measure on Rp. As

noted above, our results easily generalizes to some discrete components of W , but for

the sake of simplicity we do not formally consider this in our theoretical analysis.

Assumption 2. (i) f (·) and r (·) f (·) belong to Up ∩ Dp
s , s ≥ 2;

(ii) E [u2 |W = ·] f (·), E [u4 |W = ·] f 4 (·) belong to Up;

(iii) the function ψ (·) is bounded and has a almost everywhere positive and integrable

Fourier transform;

(iv) K (·) ∈ Kp
2 and has an almost everywhere positive and integrable Fourier trans-

form, while L (·) ∈ Kp
⌊s⌋ and is of bounded variation;

(v) let σ2(w, x) = E[u2 | W = w,X = x], then σ2 (·, x) f 2 (·)π (· | x) belongs to Up for

any x in the support of X, has integrable Fourier transform, and

E [σ4 (W,X) f 4 (W )π (W | X)] <∞;

(vi) E[d2(W,X) | W = ·]f 2(·) belongs to Up, d(·, x)f (·)π (· | x) is integrable and

squared integrable for any x in the support of X, and

E [d2 (W,X) f 2 (W )π (W | X)] <∞.

Standard regularity conditions are assumed for various functions. A higher-order kernel

L(·) is used in conjunction with the differentiability conditions in (i) to ensure that the

bias in nonparametric estimation is small enough.

3.2 Asymptotic Analysis

The following result characterizes the behavior of our statistics under the null hypoth-

esis and a sequence of local alternatives.
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Theorem 1. Let In be any of the statistics În or Ĩn. Under Assumptions 1 and 2, and

if as n → ∞ (i) g, h → 0, (ii) n7/8gp/ lnn, nhp → ∞, (iii) nhp/2g2s → 0, and (iv)

h/g → 0 if In = Ĩn or h/g2 → 0 if In = În, then

(i) If δ2nnh
p/2 → C with 0 ≤ C <∞, nhp/2In

d−→N (Cµ, ω2) where

µ = E

[∫
d (w,X1) d (w,X2) f

2 (w)π (w | X1)π (w | X2)ψ (X1−X2) dw

]
> 0

and ω2 = 2

∫
K2(s) ds

E

[∫
σ2 (w,X1) σ

2 (w,X2) f
4 (w)π (w | X1)π (w | X2)ψ

2 (X1−X2) dw

]
.

(ii) If δ2nnh
p/2 → ∞, nhp/2In

p−→∞.

The rate of convergence of the test statistic depends only on the dimension of W ,

the covariates present under the null hypothesis, but not on the dimension of X , the

covariates under test. Similarly, the rate of local alternatives that are detected by the

test depends only on the dimension of W . As shown in the simulations, this yields

some gain in power compared to competing “smoothing” tests. Conditions (i) to (iv)

together require that s > p/2 for In = Ĩn and s > p/4 for In = În, so removing diagonal

terms in În allows to weaken the restrictions on the bandwidths. Condition (ii) could

be slightly weakened to ngp → ∞ at the price of handling high order U -statistics in

the proofs, but allows for a shorter argument based on empirical processes, see Lemma

3 in the proofs section.

To estimate ω2, we can either mimic Lavergne and Vuong (2000) to consider

ω̃2
n =

2hp

n(6)

∑

a

(Yi − Yk) (Yi − Yk′) (Yj − Yl) (Yj − Yl′)LnikLnik′LnjlLnjl′K
2
nijψ

2
ij ,

or generalize the variance estimator of Fan and Li (1996) as

ω̂2
n =

2hp

n(2)

∑

a

û2i f̂
2
i û

2
j f̂

2
jK

2
nijψ

2
ij .

The first one is consistent for ω2 under both the null and alternative hypothesis, but

the latter is faster to compute.
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Corollary 1. Let In be any of the statistics În or Ĩn and let ωn denote any of ω̂n or

ω̃n. Under the assumptions of Theorem 1, the test that rejects H0 when nhp/2In/ωn >

z1−α is of asymptotic level α under H0 and is consistent under the sequence of local

alternatives H1n provided δ2nnh
p/2 → ∞.

3.3 Bootstrap Critical Values

It is known that asymptotic theory may be inaccurate for small and moderate samples

when using smoothing methods. Hence, as in e.g. Härdle and Mammen (1993) or

Delgado and González Manteiga (2001), we consider a wild bootstrap procedure to

approximate the quantiles of our test statistic. Resamples are obtained from Y ∗
i =

r̂i + u∗i , where u
∗
i = ηiûi and ηi are i.i.d. variables independent of the initial sample

with Eηi = 0 and Eη2i = Eη3i = 1, 1 ≤ i ≤ n. The ηi could for instance follow the

two-point law of Mammen (1993). With at hand a bootstrap sample (Y ∗
i ,Wi, Xi),

1 ≤ i ≤ n, we obtain a bootstrapped statistic I∗n with bootstrapped observations Y ∗
i

in place of original observations Yi. When the scheme is repeated many times, the

bootstrap critical value z⋆1−α,n at level α is the empirical (1 − α)-th quantile of the

bootstrapped test statistics. The asymptotic validity of this bootstrap procedure is

guaranteed by the following result.

Theorem 2. Suppose Assumptions 1, 2, and Conditions (i) to (iii) of Theorem 1 hold.

Moreover, assume infw∈SW
f (w) > 0 and h/g2 → 0. Then for I∗n equal to any of Î∗n

and Ĩ∗n,

sup
z∈R

∣∣P
[
nhp/2I∗n/ω

∗
n ≤ z | Y1,W1, X1, · · · , Yn,Wn, Xn

]
− Φ (z)

∣∣ p−→ 0 ,

where Φ (·) is the standard normal distribution function.

4 Monte Carlo Study

We investigated the small sample behavior of our test and studied its performances

relative to alternative tests. We generated data through

Y = (W ′θ)
3 −W ′θ + δd (X) + ε

10



where W follow a two-dimensional standard normal, X independently follows a q-

variate standard normal, ε ∼ N (0, 4), and we set θ = (1, −1)′ /
√
2. The null hypothe-

sis corresponds to δ = 0, and we considered various forms for d(·) to investigate power.

We only considered the test based on Ĩn, labelled LMP, as preliminary simulation re-

sults showed that it had similar or better performances than the test based on În. We

compared it to the test of Lavergne and Vuong (2000, hereafter LV), and the test of

Delgado and Gonzalez-Manteiga (2001, hereafter DGM). The statistic for the latter

test is the Cramer-von-Mises statistic

n∑

i=1

[
n∑

j=1

ûj f̂j 1 {Wj ≤Wi} 1 {Xj ≤ Xi}
]2

,

and critical values are obtained by wild bootstrapping as for our own statistic. To

compute bootstrap critical values, we used 199 bootstrap replications and the two-

point distribution

P

(
ηi =

1−
√
5

2

)
=

5 +
√
5

10
, P

(
ηi =

1 +
√
5

2

)
=

5−
√
5

10
.

For all tests, each time a kernel appears, we used the Epanechnikov kernel applied

to the norm of its argument u, that is 0.75
(
1− ‖u‖2

)
1 {‖u‖ < 1}. The bandwidth

parameters are set to g = n−1/6 and h = c n−2.1/6, and we let c vary to investigate the

sensitivity of our results to the smoothing parameter’s choice. To study the influence

of ψ(·) on our test, we considered ψ(x) = l (‖x‖), where l(·) is a triangular or normal

density, each with a second moment equal to one.

Figure 1 reports the empirical level of the various tests for n = 100 based on 5000

replications when we let c and q vary. For our test, bootstrapping yields more accurate

rejection levels than the asymptotic normal critical values for any bandwidth factor c

and dimension q. The choice of ψ(·) does not influence the results. The empirical level

of LV test is much more sensitive to the bandwidth and the dimension. The empirical

level of the DGM test is close to the nominal one for a low dimension q, but decreases

with increasing q.

To investigate power, we considered different forms of alternatives as specified by d(·).
We first focus on a quadratic alternative, where d (X) = (X ′β − 1)2 /

√
2, with β =

(1, , 1, , . . . )′ /
√
q. Figure 2 reports power curves of the different tests for the quadratic
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alternative, n = 100, and a nominal level of 10% based on 2000 replications. We also

report the power of a Fisher test based on a linear specification in the components of

X . The power of our test, as well as the one of LV test, increases when the bandwidth

factor c increases. This is in line with theoretical findings, though we may expect this

relationship to revert for very large bandwidths. Our test always dominates LV test,

as well as the Fisher test and DGM test, for any choice of c and any dimension q.

The power of all tests decreases when the dimension q increases, but the more notable

degradation is for the DGM test. In Figure 3, we let n vary for a fixed dimension q = 5.

The power of all tests improve, but our main qualitative findings are not affected. It

is noteworthy that the power advantage of our test compared to LV test become more

pronounced as n increases. In Figure 4, we considered a linear alternative d (X) = X ′β

and a sine alternative, d (X) = sin (2X ′β). Our main findings remain unchanged.

For a linear alternative, the Fisher test is most powerful as expected. Compared to

this benchmark, the loss of power when using our test is moderate for a large enough

bandwidth factors c. For a sine alternative, our test is more powerful than the Fisher

test for c = 2 or 4.

We also considered the case of a discrete X . We generated data following

Y = (W ′θ)
3 −W ′θ + δd (W ) 1 {X = 1}+ ε

where W and ε are generated as before, and X is Bernoulli with probability of success

p = 0.6. We compared our test to two competitors. The test proposed by Lavergne

(2001) is similar to our test with the main difference that ψ(·) is the indicator function,
i.e. ψ (Xi −Xj) = 1 {Xi = Xj}. The test of Neumeyer et Dette (2003, hereafter ND)

is similar in spirit to the DGM test. The details of the simulations are similar to

above. Figures 5 and 6 report our results. Bootstrapping our test and Lavergne’s test

yield accurate rejection levels, while the asymptotic tests and the ND test underrejects.

Under a quadratic alternative, the power of our test is comparable to the one of the

ND test for a large enough bandwidth factor c. Under a sine alternative, our test

outperforms ND test in all cases.
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5 Conclusion

We have developed a testing procedure for the significance of covariates in a nonpara-

metric regression. Smoothing is entertained only for the covariates under the null

hypothesis. The resulting test statistic is asymptotically pivotal, and wild bootstrap

can be used to obtain critical values in small and moderate samples. The test is ver-

satile, as it applies whether the covariates under test are continuous and/or discrete.

Simulations reveal that our test outperforms its competitors in many situations, and

especially when the dimension of covariates is large.

6 Proofs

We here provide the proofs of the main results. Technical lemmas are relegated to the

Appendix.

In the following, for any integrable function δ(X), let FX [δ] (u) = E[e−2πi〈X, u〉δ (X)],

u ∈ Rq. Moreover, for any index set I not containing i with cardinality |I|, define

f̂ I
i = (n− |I| − 1)−1

∑

k 6=i,k /∈I

Lnik,

consistent with f̂i that corresponds to the case where I is the empty set.

6.1 Proof of Theorem 1

We first consider the case In = Ĩn. Next, we study the difference between Ĩn and În

and hence deduce the result for In = În.

Case In = Ĩn. Consider the decomposition

In =
1

n(4)

∑

a

(ui − uk) (uj − ul)LnikLnjlKnijψij

+
2

n(4)

∑

a

(ui − uk) (rj − rl)LnikLnjlKnijψij

+
1

n(4)

∑

a

(ri − rk) (rj − rl)LnikLnjlKnijψij

= I1 + 2I2 + I3,

13



where

I1 =
n− 2

n− 3

1

n(2)

∑

a

uiujfifjKnijψij +
2 (n− 2)

n− 3

1

n(2)

∑

a

ui

(
f̂ j
i − fi

)
ujfjKnijψij

+
n− 2

n− 3

1

n(2)

∑

a

ui

(
f̂ j
i − fi

)
uj

(
f̂ i
j − fj

)
Knijψij −

2

n(3)

∑

a

uifiulLnjlKnijψij

− 2

n(3)

∑

a

ui

(
f̂ j,l
i − fi

)
ulLnjlKnijψij +

1

n(4)

∑

a

ukulLnikLnjlKnijψij

− 1

n(4)

∑

a

uiujLnikLnjkKnijψij

=
n− 2

n− 3
[I0n + 2I1,1 + I1,2]− 2I1,3 − 2I1,4 + I1,5 − I1,6,

and

I2 =
1

n(3)

∑

a

uifi (rj − rl)LnjlKnijψij +
1

n(3)

∑

a

ui

(
f̂ j,l
i − fi

)
(rj − rl)LnjlKnijψij

− 1

n(4)

∑

a

uk (rj − rl)LnikLnjlKnijψij = I2,1 + I2,2 − I2,3.

In Proposition 1 we prove that, under H0, I0n is asymptotically centered Gaussian

with variance ω2, while in Proposition 2 we prove that, under H1n, I0n is asymptotically

Gaussian with mean µ and variance ω2 provided δ2nnh
p/2 converges to some positive real

number. In Propositions 3 and 4 we show that all remaining terms in the decomposition

of In are asymptotically negligible.

Proposition 1. Under the conditions of Theorem 1, nhp/2I0n
d−→N (0, ω2) under H0.

Proof. Let us define the martingale array {Sn,m,Fn,m, 1 ≤ m ≤ n, n ≥ 1} where Sn,1 =

0, and

Sn,m =

m∑

i=1

Gn,i with Gn,i =
2hp/2

n− 1
uifi

i−1∑

j=1

ujfjKnijψij , 2 ≤ i,m ≤ n,

and Fn,m is the σ−field generated by {W1, . . . , Wn, X1, . . . , Xn, Y1, . . . , Ym} . Thus
nhp/2I0n = Sn,n. Also define

V 2
n =

n∑

i=2

E
[
G2

n,i | Fn,i−1

]
=

4hp

(n− 1)2

n∑

i=2

σ2
i f

2
i

(
i−1∑

j=1

ujfjKnijψij

)2
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where σ2
i = σ2 (Wi, Xi). We can decompose V 2

n as

V 2
n =

4hp

(n− 1)2

n∑

i=2

σ2
i f

2
i

i−1∑

j=1

i−1∑

k=1

ujfjukfkKnijKnikψijψik

=
4hp

(n− 1)2

n∑

i=2

i−1∑

j=1

σ2
i f

2
i u

2
jf

2
jK

2
nijψ

2
ij

+
8hp

(n− 1)2

n∑

i=3

i−1∑

j=2

j−1∑

k=1

σ2
i f

2
i ujfjukfkKnijKnikψijψik = An +Bn.

The result follows from the Central Limit Theorem for martingale arrays, see Corollary

3.1 of Hall and Heyde (1980). The conditions required for Corollary 3.1 of Hall and Heyde

(1980), among which V 2
n

p−→ω2, are checked in Lemma 2 below. Its proof is provided

in the Appendix.

Lemma 2. Under the conditions of Proposition 1,

1. An
p−→ω2,

2. Bn
p−→ 0,

3. the martingale difference array {Gn,i, Fn,i, 1 ≤ i ≤ n} satisfies the Lindeberg con-

dition

∀ε > 0,
n∑

i=2

E
[
G2

n,iI (|Gn,i| > ε) | Fn,i−1

] p−→ 0 .

Proposition 2. Under the conditions of Theorem 1 and H1n, if δ
2
nnh

p/2 → C with

0 < C <∞, nhp/2I0n
d−→N (Cµ, ω2).

Proof. Let εi = Yi − E [Yi | Wi, Xi] and let us decompose

nhp/2I0n =
hp/2

n− 1

n∑

i=1

∑

j 6=i

uifiujfjKnijψij

=
hp/2

n− 1

n∑

i=1

∑

j 6=i

(δndi + εi) fi (δndj + εj) fjKnijψij

=
hp/2

n− 1

n∑

i=1

∑

j 6=i

εifiεjfjKnijψij +
δnh

p/2

n− 1

n∑

i=1

∑

j 6=i

difi (δndj + 2εj) fjKnijψij

= C0n + Cn.
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By Proposition 1, C0n
d−→N (0, ω2) . As for Cn, we have

E [Cn] = δ2nnh
p/2

E [difidjfjKnijψij ] = δ2nnh
p/2µn .

By repeated application of Fubini’s Theorem, Fourier Inverse formula, Dominated Con-

vergence Theorem, and Parseval’s identity, we obtain

µn = E [d1f2d1f2Kn12ψ12]

= E

[∫∫
d (w1, X1) d (w2, X2) f (w1) f (w2) f (w1|X1) f (w2|X2)

× h−pK

(
w1 − w2

h

)
dw1dw2 ψ (X1 −X2)

]

= E

[∫
F [d (·, X1)f (·)π (· | X1)](t)F [d (·, X2)f (·)π (· | X2)](−t)F [K] (ht) dt ψ (X1 −X2)

]

→ E

[[∫
F [d (·, X1) f (·)π (· | X1)] (t)F [d (·, X2) f (·)π (· | X2)] (−t) dt

]
ψ (X1 −X2)

]

= E

[∫
d (w,X1) d (w,X2) f

2 (w)π (w | X1)π (w | X2)ψ (X1 −X2) dw

]

=

∫ [∫
FX [d (w, ·)π (w | ·)] (u)FX [d (w, ·)π (w | ·)] (−u)F [ψ](u)du

]
f 2 (w) dw

=

∫∫
|FX [d (w, ·)π (w | ·)] (u)|2F [ψ](u)f 2 (w) dudw = µ .

Moreover,

Var [Cn] ≤ 4δ4nh
p

(n− 1)2

∑

a

E
[
d2i f

2
i dkdlfkflKnikKnilψikψil

]

+
2δ4nh

p

(n− 1)2

∑

a

E
[
d2i f

2
i d

2
kf

2
kK

2
nikψ

2
ik

]

+
4δ2nh

p

(n− 1)2

∑

a

E
[
difidjfjε

2
kf

2
kKnikKnjkψikψjk

]

+
4δ2nh

p

(n− 1)2

∑

a

E
[
d2i f

2
i ε

2
kf

2
kK

2
nikψ

2
ik

]

= O
(
δ4nnh

p
)
+O

(
δ4n
)
+O

(
δ2nnh

p
)
+O

(
δ2n
)
.

Therefore Cn = Cµn +Op

(
δnn

1/2hp/2
) p−→Cµ, and the desired result follows.
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Proposition 3. Under the conditions of Theorem 1,

(i) nhp/2I1,3 = δn
√
nhp/2Op (1) + op (1),

(ii) nhp/2I1,5 = op (1),

(iii) nhp/2I1,6 = δ2nnh
p/2op (1) + op (1),

(iv) nhp/2I2,1 = δn
√
nhp/2op (1) + δn

√
nhp/2gsOp (1) + op (1),

(v) nhp/2I2,3 = op (1),

(vi) nhp/2I3 = nhp/2Op (g
2s) + op (1).

Proposition 4. Under the conditions of Theorem 1,

(i) nhp/2I1,1 = δ2nnh
p/2op (1) + δn

√
nhp/2op (1) + op (1),

(ii) nhp/2I1,2 = δ2nnh
p/2op (1) + δn

√
nhp/2op (1) + op (1),

(iii) nhp/2I1,4 = δ2nnh
p/2op (1) + δn

√
nhp/2op (1) + (ngp)−1/2 op (1) + op (1),

(iv) nhp/2I2,2 = δ2nnh
p/2op (1) + δn

√
nhp/2op (1) + op (1).

The proofs of the above propositions follow the ones in Lavergne and Vuong (2000)).

For illustration, we provide in the Appendix the proofs of the first statements of each

proposition.

Case In = În. We have the following decomposition

n(4)Ĩn = n (n− 1)3 În − n(3)V1n − 2n(3)V2n + n(2)V3n (2)

where V1n =
1

n(3)

∑

a

(Yi − Yk) (Yj − Yk)LnikLnjkKnijψij ,

V2n =
1

n(3)

∑

a

(Yi − Yj) (Yj − Yk)LnijLnjkKnijψij ,

and V3n =
1

n(2)

∑

a

(Yi − Yj)
2 L2

nijKnijψij .
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Hence, to show that În has the same asymptotic distribution as Ĩn, it is sufficient to

investigate the behavior of V1n to V3n. Using Yi = ri + ui, it is straightforward to see

that the dominating terms in V1n, V2n and V3n are

V13 =
1

n(3)

∑

a

(ri − rk) (rj − rk)LnikLnjkKnijψij ,

V23 =
1

n(3)

∑

a

(ri − rj) (rj − rk)LnijLnjkKnijψij , V33 =
1

n(2)

∑

a

(ri − rj)
2 L2

nijKnijψij ,

respectively. Now

E [|V13|] = E [| (ri − rk) (rj − rk)LnikLnjkKnij|]
= O

(
g−p
)
E [|ri − rk|LnikE [|rj − rk|Knij | Zi, Zk]] = O

(
g−p
)
,

E [|V23|] = E [| (ri − rj) (rj − rk)LnijLnjkKnij |]
= E [E [|rj − rk|Lnjk | Zj] |ri − rj|LnijKnij]

= o (1)E [|ri − rj |LnijKnij] = o
(
g−p
)

E [|V33|] = E
[
(ri − rj)

2 L2
nij |Knij|

]

= O
(
g−2p

)
E
[
(ri − rj)

2Knij

]
= o

(
g−2p

)
.

It then follows that nhp/2
(
Ĩn − În

)
= Op

(
hp/2g−p

)
which is negligible if h/g2 → 0.

The asymptotic irrelevance of the above diagonal terms thus require more restrictive

relationships between the bandwidths h and g. For the sake of comparison, recall that

Fan and Li (1996) impose h(p+q)g−2p → 0 while Lavergne and Vuong (2000) require

only hp+qg−p → 0. Since we do not smooth the covariates X , we are able to further

relax the restriction between the two bandwidths.

6.2 Proof of Corollary 1

It suffices to prove ω2
n − ω2 = op(1) with ω2

n any of ω̂2
n or ω̃2

n. First we consider the

case ω2
n = ω̂2

n. A direct approach would consist in replacing the definition of ûif̂i and

ûj f̂j , writing ω̂
2
n as a U−statistic of order 6, and studying its mean and variance. A

shorter approach is based on empirical process tools. The price to pay is the stronger

condition n7/8gp/ lnn→ ∞ instead of ngp → ∞. Let ∆f̂i = f̂i− fi, ∆r̂if̂i = r̂if̂i− rifi,

and write

ûif̂i = uifi + Yi∆f̂i −∆r̂if̂i. (3)
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Lemma 3. Under Assumption 1, if r(·)f(·) ∈ Up, L(·) is a function of bounded vari-

ation, g → 0, and n7/8gp/ lnn→ ∞, then

sup
1≤i≤n

{|∆r̂if̂i|+ |∆f̂i|} = op(1).

The proof relies on the uniform convergence of empirical processes and is provided

in the Appendix. Now proceed as follows: square Equation (3), replace û2i f̂
2
i in the

definition of ω̂2
n, and use Lemma 3 to deduce that

ω̂2
n =

2hp

n(2)

∑

a(2)

u2i f
2
i u

2
jf

2
jK

2
nijψ

2
ij + op(1) .

Elementary calculations of mean and variance yield

2hp

n(2)

∑

a(2)

u2i f
2
i u

2
jf

2
jK

2
nijψ

2
ij − ω2 = op(1),

and thus ω̂2
n − ω2 = op(1).

To deal with ω̃2
n, note that ω̃2

n − ω̂2
n consists of “diagonal” terms plus a term which

is O (n−1ω̃2
n). By tedious but rather straightforward calculations, one can check that

such diagonal terms are each of the form n−1g−p times a U−statistic which is bounded

in probability. Hence ω̃2
n − ω̂2

n = op(1).

6.3 Proof of Theorem 2

Let Z denote the sample (Yi,Wi, Xi), 1 ≤ i ≤ n. Since the limit distribution is contin-

uous, it suffices to prove the result pointwise by Polya’s theorem. Hence we show that

∀t ∈ R, P
[
nhp/2I∗n/ω

∗
n ≤ t | Z

]
− Φ (t) = op(1).

First, we consider the case I∗n = Ĩn. Consider

I∗n,LV =
1

n(4)

∑

a

(ηiûi − ηkûk) (ηj ûj − ηlûl)LnikLnjlKnijψij

+
2

n(4)

∑

a

(ηiûi − ηkûk) (r̂j − r̂l)LnikLnjlKnijψij

+
1

n(4)

∑

a

(r̂i − r̂k) (r̂j − rl)LnikLnjlKnijψij

= I∗1 + 2I∗2 + I∗3
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where we can further decompose

I∗1 =
1

n(4)

∑

a

ηiûiηj ûjLnikLnjlKnijψij

− 2

n(4)

∑

a

ηjûjηkûkLnikLnjlKnijψij

+
1

n(4)

∑

a

ηkûkηlûlLnikLnjlKnijψij

= I∗1,1 + I∗1,2 + I∗1,3

with

I∗1,1 =
(n− 1)2

(n− 3) (n− 4)
× 1

n(2)

∑

a

ηiûiηjûj f̂if̂jKnijψij

− 2

n− 4
× 1

n(3)

∑

a

ηiûiηj ûjLnikLnijKnijψij

− 1

n− 4
× 1

n(3)

∑

a

ηiûiηj ûjLnikLnjkKnijψij

− 1

(n− 3) (n− 4)
× 1

n(2)

∑

a

ηiûiηj ûjL
2
nijKnijψij

= I∗0n −
2

n− 4
I∗1,1,1 −

1

n− 4
I∗1,1,2 −

1

(n− 3) (n− 4)
I∗1,1,3.

Now let D∗
n = Ĩ∗n − I∗0n and write

P

(
nhp/2Ĩ∗n
ω̃∗
n

≤ t | Z
)

= P

(
nhp/2 (I∗0n +D∗

n)

ω̃∗
n

≤ t | Z
)

= P

(
nhp/2I∗0n
ω̂n

+
nhp/2D∗

n

ω̂n

+
nhp/2 (I∗0n +D∗

n)

ω̂n

(
ω̃n

ω̂∗
n

− 1

)
≤ t | Z

)
.

It thus suffices to prove that

P

(
nhp/2I∗0n
ω̂n,FL

≤ t | Z
)
− Φ (t)

p−→ 0 ∀t ∈ R ,

nhp/2D∗
n

ω̂n,FL

= op(1) , and
nhp/2 (I∗0n +D∗

n)

ω̂n,FL

(
ω̂n,FL

ω̂∗
n,LV

− 1

)
= op (1) . (4)

The first result is stated below.
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Proposition 5. Under the conditions of Theorem 2, conditionally on the observed

sample, the statistic nhp/2I∗0n/ω̂n,FL converges in law to a standard normal distribution.

Proof. We proceed as in the proof of Proposition 1 and check the conditions for a

CLT for martingale arrays, see Corollary 3.1 of Hall and Heyde (1980). Define the

martingale array
{
S∗
n,m, F∗

n,m, 1 ≤ m ≤ n, n ≥ 1
}
where F∗

n,m is the σ-field generated

by
{
Z, η1, . . . , ηm

}
, S∗

n,1 = 0, and S∗
n,m =

∑m
i=1G

∗
n,i with

G∗
n,i =

2hp/2

n− 1
ηiûi

i−1∑

j=1

ηj ûj f̂if̂jKnijψij .

Then

I∗0n =
(n− 1)2

(n− 3) (n− 4)
× 1

n(2)

∑

a

ηiûiηjûj f̂if̂jKnijψij =
(n− 1)2

(n− 3) (n− 4)
S∗
n,n .

Now consider

V 2∗
n =

n∑

i=2

E
[
G2∗

n,i | F∗
n,i−1

]

=
4hp

(n− 1)2

n∑

i=2

i−1∑

j=1

i−1∑

k=1

û2i ηjηkûjûkf̂
2
i f̂j f̂kKnijKnikψijψik

=
4hp

(n− 1)2

n∑

i=2

i−1∑

j=1

û2i η
2
j û

2
j f̂

2
i f̂

2
jK

2
nijψ

2
ij

+
8hp

(n− 1)2

n∑

i=3

i−1∑

j=2

j−1∑

k=1

û2i ηjηkûjûkf̂
2
i f̂j f̂kKnijKnikψijψik

= A∗
n +B∗

n.

Note that E
[
A∗

n | Z
]
= [n/(n− 1)]E [ω̂2

n] and that

Var
[
Ã∗

n | Z
]

≤ 16h2pE [η4]

(n− 1)4

n∑

i=2

n∑

i′=2

i∧i′−1∑

j=1

û2i û
2
i′û

4
j f̂

2
i f̂

2
i′ f̂

4
jK

2
nijK

2
ni′jψ

2
ijψ

2
i′j

≤ 16h2pE [η4]

(n− 1)4

n∑

i=2

i−1∑

j=1

û4i û
4
j f̂

4
i f̂

4
jK

4
nijψ

4
ij

+
32h2pE [η4]

(n− 1)4

n∑

i=3

i−1∑

i′=2

i′−1∑

j=1

û2i û
2
i′ û

4
j f̂

2
i f̂

2
i′ f̂

4
jK

2
nijK

2
ni′jψ

2
ijψ

2
i′j

= Q1n +Q2n.
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On the other hand,

E
[
B∗2

n | Z
]

=
64h2p

(n− 1)4

n∑

i=3

n∑

i′=3

i∧i′−1∑

j=2

j−1∑

k=1

û2i û
2
i′û

2
j û

2
kf̂

2
i f̂

2
i′ f̂

2
j f̂

2
kKnijKni′jKnikKni′kψijψi′jψikψi′k

=
64h2p

(n− 1)4

n∑

i=3

i−1∑

j=2

j−1∑

k=1

û4i û
2
j û

2
kf̂

4
i f̂

2
j f̂

2
kK

2
nijK

2
nikψ

2
ijψ

2
ik

+
128h2p

(n− 1)4

n∑

i=4

i−1∑

i′=3

i′−1∑

j=2

j−1∑

k=1

û2i û
2
i′û

2
j û

2
kf̂

2
i f̂

2
i′ f̂

2
j f̂

2
kKnijKni′jKnikKni′kψijψi′jψikψi′k

= Q3n +Q4n.

Finally the Lindeberg condition involves

n∑

i=1

E
[
G2∗

n,iI
(∣∣G∗

n,i

∣∣ > ε
)
| F∗

n,i−1

]

≤ 1

ε4

n∑

i=1

E
[
G4∗

n,i | F∗
n,i−1

]

≤16h2pE [η4]

ε4 (n− 1)4

n∑

i=2

i−1∑

j=1

i−1∑

k=1

û4i û
2
j û

2
kf̂

4
i f̂

2
j f̂

2
kK

2
nijK

2
nikψ

2
ijψ

2
ik

≤16h2pE [η4]

ε4 (n− 1)4

n∑

i=2

i−1∑

j=1

û4i û
4
j f̂

4
i f̂

4
jK

4
nijψ

4
ij

+
32h2pE [η4]

ε4 (n− 1)4

n∑

i=3

i−1∑

j=2

j−1∑

k=1

û4i û
2
j û

2
kf̂

4
i f̂

2
j f̂

2
kK

2
nijK

2
nikψ

2
ijψ

2
ik

= Q5n +Q6n.

It thus suffices to show that Qjn = op(1), j = 1, . . . 6. Now, there exist positive random

variables γ̃1n and γ̃2n such that γ̃1n + γ̃2n = op (1) and

û2ki f̂
2k
i ≤ 32k−1

(
u2ki f

2k
i + Y 2k

i f 2k
i γ̃2k1n + γ̃2k2n

)
∀1 ≤ i ≤ n and ∀k = 1, 2 ∈ {1, 2} .

Indeed, ûif̂i = uifi + Yifif
−1
i

(
f̂i − fi

)
+
[
r̂if̂i − rifi

]
= uifi + Yifiγ1i − γ2i, where

sup1≤i≤n |γji| ≤ γ̃j and γ̃j = op (1) by Lemma 3. Hence

û2i f̂
2
i ≤ 3

(
u2i f

2
i + Y 2

i f
2
i γ̃

2
1n + γ̃22n

)
.

The inequality for k = 2 is obtained similarly. Using these inequalities, one can bound

the expectations of |Q1n| to |Q6n| and thus show that |Q1n|+ · · ·+ |Q6n| = op(1).
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Next we show (4). First we need the following.

Proposition 6. Under the conditions of Theorem 2,
ω̂n,FL

ω̂∗
n,FL

p−→ 1 and
ω̂n,FL

ω̂∗
n,LV

p−→ 1.

The proof uses the following result, which is proved in the Appendix.

Lemma 4. Under the conditions of Theorem 2, sup1≤i≤n |û∗i f̂i − u∗i f̂i| = op (1), where

u∗i = ηiûi and

û∗i = Y ∗
i −

∑
k 6=i Y

∗
k Lnik∑

k 6=i Lnik
.

Proof. Using Lemma 4, we have

ω̂∗2
n,FL = ω∗2

n + op (1)

where ω∗2
n =

2hp

n(2)

∑
a u

∗2
i u

∗2
j f̂

2
i f̂

2
jK

2
nijψ

2
ij . Notice that E

[
ω∗2
n | Z

]
= ω̂2

n,FL and that

Var
(
ω∗2
n − ω̂2

n,FL

)
= Var

(
E
[
ω∗2
n − ω̂2

n,FL | Z
])

+ E
[
Var

(
ω∗2
n | Z

)]

where the first term is zero and

Var
(
ω∗2
n | Z

)
=

8h2pVar (η2)

{n(2)}2
∑

a

û4i û
4
j f̂

4
i f̂

4
jK

4
nijψ

4
ij .

Then,
ω̂n,FL

ω̂∗
n,FL

= 1 +
ω̂n,FL − ω̂∗

n,FL

ω̂∗
n,FL

= 1 +
op (1)

ω2 [1 + op (1)]
= 1 + op(1).

Since ω̂∗
n,LV −ω̂∗

n,FL contains only diagonal terms, we deduce that ω̂n,FL/ω̂
∗
n,LV

p−→ 1.

We next have to bound D∗
n = I∗n,LV − I∗0n. For this, let us decompose

r̂i − r̂k = (r̂i − ri)− (r̂k − rk) + (ri − rk)

and replace all such differences appearing in the definition of D∗
n. First, let us look at
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I∗3 which does not contain any bootstrap variable η. We obtain

I∗3 =
1

n(4)

∑

a

(r̂i − r̂k) (r̂j − r̂l)LnikLnjlKnijψij

=
1

n(4)

∑

a

(ri − rk) (rj − rl)LnikLnjlKnijψij

+
1

n(4)

∑

a

(r̂i − ri) (r̂j − rj)LnikLnjlKnijψij

+
1

n(4)

∑

a

(r̂k − rk) (r̂l − rl)LnikLnjlKnijψij

+
2

n(4)

∑

a

(r̂i − ri) (rj − rl)LnikLnjlKnijψij

− 2

n(4)

∑

a

(r̂k − rk) (rj − rl)LnikLnjlKnijψij

− 2

n(4)

∑

a

(r̂k − rk) (r̂j − rj)LnikLnjlKnijψij

= I∗3,1 + I∗3,2 + I∗3,3 + 2I∗3,4 − 2I∗3,5 − 2I∗3,6.

Next, use the fact that

r̂i − ri = (n− 1)−1 f̂−1
i

∑

i′ 6=i

(Yi′ − ri)Lnii′

= (n− 1)−1 f̂−1
i

∑

i′ 6=i

(ri′ − ri)Lnii′ + (n− 1)−1 f̂−1
i

∑

i′ 6=i

ui′Lnii′ (5)

and further replace terms like r̂i − ri. Among the terms I∗3,1 to I∗3,6, the term I∗3,1

could be easily handled with existing results in Lavergne and Vuong (2000). Namely

nhp/2I∗3,1 = nhp/2Op (g
2s) + op (1) by Proposition 7 of Lavergne and Vuong (2000).

For the other five terms we have to control the density estimates appearing in the

denominators. For this purpose, let us introduce the notation ∆
(
f I
i

)−1
=
(
f̂ I
i

)−1

−f−1
i

and write

n− |I|
n− 1

× f̂−1
i =

(
(n− |I|) f̂ I

i

(n− 1) f̂i
− 1

)(
f̂ I
i

)−1

+
(
f̂ I
i

)−1

=

∑
k∈I Lnik

(n− 1) f̂if̂ I
i

+∆
(
f I
i

)−1
+f−1

i .

(6)
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Then, we obtain for instance

I∗3,5 =
1

n(4)

∑

a

(r̂k − rk) (rj − rl)LnikLnjlKnijψij

=
1

n(5)

∑

a(4)

∑

k′ 6=k

f−1
k (rk′ − rk) (rj − rl)Lnkk′LnikLnjlKnijψij

+
1

n(5)

∑

a(4)

∑

k′ 6=k

∆
(
f i,j,l,k′

k

)−1

(rk′ − rk) (rj − rl)Lnkk′LnikLnjlKnijψij

+
1

(n− 1)n(5)

∑

a(4)

∑

k′ 6=k

(
f̂kf̂

i,j,l,k′

k

)−1

(Lnik + Lnjk + Lnlk + Lnk′k)

× (rk′ − rk) (rj − rl)Lnkk′LnikLnjlKnijψij

+
1

n(5)

∑

a(4)

∑

k′ 6=k

f−1
k uk′ (rj − rl)Lnkk′LnikLnjlKnijψij

+
1

n(5)

∑

a(4)

∑

k′ 6=k

∆f−1
k uk′ (rj − rl)Lnkk′LnikLnjlKnijψij

+
1

(n− 1)n(5)

∑

a(4)

∑

k′ 6=k

(
f̂kf̂

i,j,l,k′

k

)−1

(Lnik + Lnjk + Lnlk + Lnk′k)

×uk′ (rj − rl)Lnkk′LnikLnjlKnijψij

= I∗3,5,1 + I∗3,5,2 + I∗3,5,3 + I∗3,5,4 + I∗3,5,5 + I∗3,5,6.

Next, if we consider for instance I∗3,5,1 that contains only terms like f−1
i appearing from

the decomposition 6, we obtain

I∗3,5,1 =
1

n(5)

∑

a(5)

f−1
k (rk′ − rk) (rj − rl)Lnkk′LnikLnjlKnijψij

+
1

n(5)

∑

a(4)

f−1
k (ri − rk) (rj − rl)L

2
nikLnjlKnijψij

+
1

n(5)

∑

a(4)

f−1
k (rj − rk) (rj − rl)LnjkLnikLnjlKnijψij

+
1

n(5)

∑

a(4)

f−1
k (rl − rk) (rj − rl)LnlkLnikLnjlKnijψij

= I∗3,5,1,1 + I∗3,5,1,2 + I∗3,5,1,3 + I∗3,5,1,4

where the terms I∗3,5,1,2 to I
∗
3,5,1,4 are called “diagonal terms”. Such terms require more

restrictions on the bandwidths. next, the terms with containing terms like ∆
(
f I
i

)−1

25



produced by the decomposition (6) can be treated like in the Propositions 8 to 11 of

Lavergne et Vuong (2000). Finally, given that I is finite and with fixed cardinal

(n− 1)−1 f̂−1
i

(
f̂ I
i

)−1∑

k∈I

Lnik = Op

(
n−1g−p

)
= op(1)

given that ‖f−1‖∞ <∞.Therefore the terms of I∗3 containing (n− 1)−1 f̂−1
i

(
f̂ I
i

)−1∑
k∈I Lnik

can be easily handled by taking absolute values. Now let us investigate the diagonal

term I∗3,5,1,2. We have

E
[
|I∗3,5,1,2|

]
= O

(
n−1
)
E
[
f−1
k |rj − rk| |rj − rl| |Lnjk||Lnik||Lnjl||Knij|

]

= O
(
n−1g−p

)
E
[
f−1
k |rj − rk| |rj − rl| |Lnjk||Lnjl||Knij|

]

= O
(
n−1g−p

)
E
[
f−1
k |rj − rk| |Lnjk|E [|rj − rl| |Lnjl| | Zj] |Knij |

]

= o
(
n−1g−p

)
E
[
f−1
k |rj − rk| |Lnjk||Knij|

]

= o
(
n−1g−p

)
.

To prove that he term I∗3,5,1,2 = op(nh
p/2) it suffices to prove E

[
|I∗3,5,1,2|

]
= o(nhp/2) and

this latter rate is implied by the condition h/g2 = o(1). This additional condition on

the bandwidths is not surprising as the bootstrapped statistic introduced “diagonal”

terms as in Fan et Li (1996) which indeed require the condition h/g2 → 0.

Let us now consider a term in the decomposition of D∗
n that involve bootstrap variables

η, namely we investigate I∗2 . The arguments for the other terms are similar. Consider

I∗2 =
1

n(4)

∑

a

(ηiûi − ηkûk) (r̂j − r̂l)LnikLnjlKnijψij

=
1

n(4)

∑

a

ηiûi (rj − rl)LnikLnjlKnijψij +
1

n(4)

∑

a

ηiûi (r̂j − rj)LnikLnjlKnijψij

− 1

n(4)

∑

a

ηiûi (r̂l − rl)LnikLnjlKnijψij −
1

n(4)

∑

a

ηkûk (rj − rl)LnikLnjlKnijψij

− 1

n(4)

∑

a

ηkûk (r̂j − rj)LnikLnjlKnijψij +
1

n(4)

∑

a

ηkûk (r̂l − rl)LnikLnjlKnijψij

= I∗2,1 + I∗2,2 − I∗2,3 − I∗2,4 − I∗2,5 + I∗2,6.

Next it suffices to use the fact that

ûi = ui − f̂−1
i

∑

i′ 6=i

ui′Lnii′ + f̂−1
i

∑

i′ 6=i

(ri − ri′)Lnii′ .
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For instance, using this identity with I∗2,1 we can write

I∗2,1 =
1

n(4)

∑

a

ηiui (rj − rl)LnikLnjlKnijψij

− 1

(n− 1)n(4)

∑

a

∑

i′ 6=i

f̂−1
i ηiui′ (rj − rl)LnikLnjlKnijψij

+
1

(n− 1)n(4)

∑

a

∑

i′ 6=i

f̂−1
i ηi (ri − ri′) (rj − rl)LnikLnjlKnijψij

=
1

n(3)

∑

a

ηiuifi (rj − rl)LnjlKnijψij

+
1

n(4)

∑

a

ηiui (rj − rl)∆f
j,l
i LnjlKnijψij

− 1

(n− 1)n(4)

∑

a

∑

i′ 6=i

f−1
i ηiui′ (rj − rl)LnikLnjlKnijψij

− 1

n(5)

∑

a

∆
(
f j,k,l,i′

i

)−1

ηiui′ (rj − rl)LnikLnjlKnijψij

− 1

(n− 1)n(4)

∑

a

∑

i′ 6=i

(
f̂if̂

j,k,l,i′

i

)−1

ηiui′ (rj − rl)LnikLnjlKnijψij

+
1

(n− 1)n(4)

∑

a

∑

i′ 6=i

f−1
i ηi (ri − ri′) (rj − rl)LnikLnjlKnijψij

+
1

n(5)

∑

a

∆
(
f j,k,l,i′

i

)−1

ηi (ri − ri′) (rj − rl)LnikLnjlKnijψij

+
1

n(5)

∑

a

(
f̂if̂

j,k,l,i′

i

)−1

ηi (ri − ri′) (rj − rl)LnikLnjlKnijψij

= I∗2,1,1 + I∗2,1,2 + I∗2,1,3 + I∗2,1,4 + I∗2,1,5 + I∗2,1,6 + I∗2,1,7 + I∗2,1,8

Handling one problem at a time, let us notice that I∗2,1,1 is a zero-mean U−statistic

of order three with kernel Hn

(
Z∗

i , Z
∗
j , Z

∗
l

)
= ηiuifi (rj − rl)LnjlKnijψij where Z∗

i =

(Yi,Wi, Xi, ηi). Using the Hoeffding decomposition of I∗2,1,1 in degenerate U−statistics,

it is easy to check that the third and second order projections are small. For the first

order degenerate U−statistic it suffices to note that E
[
Hn | Z∗

j

]
= E [Hn | Z∗

l ] = 0 and

E [Hn | Z∗
i ] = ηiuifiE [(rj − rl)LnjlKnijψij | Zi] so that

E
[
E
2 [Hn | Z∗

i ]
]

= E
[
η2i u

2
i f

2
i E

2 [(rj − rl)LnjlKnijψij | Zi]
]

= E
[
u2i f

2
i E

2 [(rj − rl)LnjlKnijψij | Zi]
]

27



which, given that ‖ψ‖∞ <∞, is similar to the term ξ1 bounded in the proof of Propo-

sition 5 of Lavergne et Vuong (2000).

Finally, let us briefly consider the case I∗n = Ĩn. Like in the decomposition (2), we have

n (n− 1)3 I∗n,FL = n(4)I∗n,LV + n(3)V ∗
1n + 2n(3)V ∗

2n − n(2)V ∗
3n

where ∀j ∈ {1, 2, 3}, the V ∗
jns are obtained by replacing the Yis by the Y ∗

i s in the Vjns.

All these terms could be handled by arguments similar to the ones detailed above. The

proof of Theorem 2 is now complete.
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Delgado, M. A. and W. González Manteiga (2001): “Significance testing in nonpara-

metric regression based on the bootstrap,” Ann. Statist., 29, 1469–1507.

Dette, H. and N. Neumeyer (2001): “Nonparametric analysis of covariance,” Annals of

Statistics, 29, 1361–1400.

Fan, J. (1996): “Test of significance based on wavelet thresholding and Neyman’s trunca-

tion,” J. Amer. Statist. Assoc., 91, 674–688.

Fan, Y. and Q. Li (1996): “Consistent Model Specification Tests: Omitted Variables and

Semiparametric Functional Forms,” Econometrica, 64, 865–90.

28



Hall, P. and C. C. Heyde (1980): Martingale limit theory and its application, New York:

Academic Press Inc. [Harcourt Brace Jovanovich Publishers], probability and Mathematical

Statistics.
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Appendix (not for publication)

We here provide proofs of technical lemmas and additional details for the proofs in the

manuscript. We define Zi = (Yi,Wi, Xi), ‖ψ‖∞ = supx∈Rq |ψ(x)|,

Knij = |Knij| =
1

hp

∣∣∣∣K
(
Wi −Wj

h

)∣∣∣∣ , and Lnij = |Lnij| =
1

gp

∣∣∣∣L
(
Wi −Wj

g

)∣∣∣∣ .

Proof of Lemma 2. 1. We have

E [An] =
4hp

(n− 1)2

n∑

i=2

i−1∑

j=1

E
[
σ2
i f

2
i σ

2
j f

2
jK

2
nijψ

2
ij

]
=

2nhp

n− 1
E
[
σ2
i f

2
i σ

2
j f

2
jK

2
nijψ

2
ij

]
,

and

Var [An] ≤ 64h2p ‖ψ‖4∞
(n− 1)4

n∑

i=3

i−1∑

j=2

j−1∑

j′=1

E
[
σ4
i f

4
i σ

2
j f

2
j σ

2
j′f

2
j′K

2
nijK

2
nij′

]

+
32h2p ‖ψ‖4∞
(n− 1)4

n∑

i=3

i−1∑

i′=1

i′−1∑

j=2

E
[
σ2
i f

2
i σ

2
i′f

2
i′u

4
jf

4
jK

2
nijK

2
ni′j

]

+
16h2p ‖ψ‖4∞
(n− 1)4

n∑

i=2

i−1∑

j=1

E
[
σ4
i f

4
i u

4
jf

4
jK

4
nij

]

= O
(
n−1
)
E
[
σ4
i f

4
i σ

2
j f

2
j σ

2
kf

2
kKnijKnik

]
+O

(
n−1
)
E
[
σ2
i f

2
i σ

2
i′f

2
i′u

4
jf

4
j KnijKni′j

]

+O
(
n−2h−p

)
E
[
σ4
i f

4
i u

4
jf

4
j Knij

]

= O
(
n−1
)
+O

(
n−2h−p

)
.

Deduce that Var [An] → 0, and hence remains to show that E[An] → ω2. We have

hp E
[
σ2
i f

2
i σ

2
j f

2
jK

2
nijψ

2
ij

]
= E

[∫
ϕXi

(t)ϕXj
(−t)F

[
K2
]
(ht)ψ2 (Xi −Xj) dt

]

where ϕx (t) = F [σ2 (·, x) f 2 (·)π (· | x)] (t). Let us note that

E

[∫ ∣∣ϕXi
(t)ϕXj

(−t)
∣∣ψ2 (Xi −Xj) dt

]
≤ ‖ψ‖∞ E

[∫
|ϕX (t)|2 dt

]

= ‖ψ‖∞ E
[
σ4 (W,X) f 4 (W )π (W | X)

]
,

by Plancherel Theorem. Moreover, F [K2] (ht) is bounded and converges pointwise to
∫
K2 (s) ds as h→ 0. Then by Lebesgue’s dominated convergence theorem,

hp E
[
σ2
i f

2
i σ

2
j f

2
jK

2
nijψ

2
ij

]
→ E

[∫
ϕXi

(t)ϕXj
(−t)ψ2 (Xi −Xj) dt

] ∫
K2 (s) ds = ω2 ,
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by Parseval’s Theorem.

2. By elementary calculations,

E
[
B2

n

]
=

64h2p

(n− 1)4

n∑

i=3

n∑

i′=3

i−1∑

j=2

i′−1∑

j′=2

j−1∑

k=1

j′−1∑

k′=1

E
[
σ2
i f

2
i σ

2
i′f

2
i′ujfjuj′fj′ukfkuk′fk′

×KnijKni′j′KnikKni′k′ψijψi′j′ψikψi′k′]

≤ 64h2p ‖ψ‖4∞
(n− 1)4

n∑

i=3

n∑

i′=3

i∧i′−1∑

j=2

j−1∑

k=1

E
[
σ2
i f

2
i σ

2
i′f

2
i′σ

2
j f

2
j σ

2
kf

2
kKnijKni′jKnikKni′k

]

=
64h2p ‖ψ‖4∞
(n− 1)4

n∑

i=3

i−1∑

j=2

j−1∑

k=1

E
[
σ4
i f

4
i σ

2
j f

2
j σ

2
kf

2
kK

2
nijK

2
nik

]

+
128h2p ‖ψ‖4∞
(n− 1)4

n∑

i=3

i−1∑

i′=3

i′−1∑

j=2

j−1∑

k=1

E
[
σ2
i f

2
i σ

2
i′f

2
i′σ

2
j f

2
j σ

2
kf

2
kKnijKni′jKnikKni′k

]

= O
(
n−1
)
E
[
σ4
i f

4
i σ

2
j f

2
j σ

2
kf

2
kKnijKnik

]
+O (hp)E

[
σ2
i f

2
i σ

2
i′f

2
i′σ

2
j f

2
j σ

2
kf

2
kKnijKni′jKnik

]

= O
(
n−1
)
+O (hp) = o(1) .

3. We have ∀ε > 0, ∀n ≥ 1, and 1 < i ≤ n,

E
[
G2

n,iI (|Gn,i| > ε) | Fn,i−1

]
≤ E

1/2
[
G4

n,i | Fn,i−1

]
E
1/2 [I (|Gn,i| > ε) | Fn,i−1]

≤ E
[
G4

n,i | Fn,i−1

]

ε2
.

Then

n∑

i=2

E
[
G2

n,iI (|Gn,i| > ε) | Fn,i−1

]
≤ 1

ε2

n∑

i=2

E
[
G4

n,i | Fn,i−1

]

≤ 1

ε2
16h2p

(n− 1)4

n∑

i=2

E
[
u4i f

4
i |Wi, Xi

]
(

i−1∑

j=1

ujKnijψij

)4

≤ 1

ε2
16κ4h

2p

(n− 1)4

n∑

i=2

(
i−1∑

j=1

ujKnijψij

)4

,

where κ4 is any constant that bounds E [u4f 4 |W, X ] . The last expression that multi-
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plies ε−2 is positive and has expectation

16κ4h
2p

(n− 1)4

n∑

i=2

i−1∑

j1=1

i−1∑
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E [uj1fj1uj2fj2uj3jj3uj4fj4

×Knij1Knij2Knij3Knij4ψij1ψij2ψij3ψij4]

=
96κ4h

2p

(n− 1)4

n∑

i=3

i−1∑

j=1

j−1∑

k=1

E
[
u2jf

2
j u

2
kf

2
kK

2
nijK

2
nikψ

2
ijψ

2
ik

]

+
16κ4h

2p

(n− 1)4

n∑

i=2

i−1∑

j=1

E
[
u4jf

4
jK

4
nijψ

4
ij

]

= O
(
n−1
)
E
[
u2jf

2
j u

2
kf

2
kKnijKnik

]
+O

(
n−2h−p

)
E
[
u4jf

4
j Knij

]

= O
(
n−1
)
+O

(
n−2h−p

)
.

The desired result follows.

The following result, known as Bochner’s Lemma (see Theorem 1.1.1. of Bochner

(1955)) will be repeatedly use in the following. We recall it for the sake of completeness.

Lemma 5. For any function l (·) ∈ Up and any integrable kernel K (·),

sup
x∈Rp

∣∣∣∣
∫
l (y)

1

hp
K

(
x− y

h

)
dy − l (x)

∫
K (u) du

∣∣∣∣→ 0.

In the following we provide the proofs for rates for the remaining terms in the de-

composition of In, see Propositions 3 and 4. For this purpose, we use the following

a decomposition for U−statistics that can be found in Lavergne and Vuong (2000): if

Un =
(
1/n(m)

)∑
aHn (Zi1 , . . . , Zim), then

E
[
U2
n

]
=

(
1

n(m)

)2 m∑

c=0

n(2m−c)

c!

(c)∑

|∆1|=c=|∆2|

I (∆1,∆2) =

m∑

c=0

O
(
n−c
) (c)∑

|∆1|=c=|∆2|

I (∆1,∆2) ,

where
∑(c) denotes summation over sets ∆1 and ∆1 of ordered positions of length c,

I (∆1,∆2) = E [Hn (Zi1 , . . . , Zim)Hn (Zj1, . . . , Zjm)]

and the i’s position in ∆1 coincide with the j’s position in ∆2 and are pairwise distinct

otherwise. Now, we will bound E [U2
n] using the ξc =

∑(c) I (∆1,∆2) and the fact that
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by Cauchy’s inequality,

I2 (∆1,∆2) = E
2 [E [Hn (Zi1 , . . . , Zim) | Zc]E [Hn (Zj1, . . . , Zjm) | Zc]]

≤ E
[
E
2 [Hn (Zi1, . . . , Zim) | Zc]

]
E
[
E
2 [Hn (Zj1, . . . , Zjm) | Zc]

]

where Zc denotes the common Zi’s.

Proof of Proposition 3. After bounding the ψij ’s by ‖ψ‖∞ the arguments are very sim-

ilar to those used in Lavergne and Vuong (2000). We prove only the first statement.

(i) I1,3 is a U-statistic with kernel Hn (Zi, Zj, Zl) = uifiulLnjlKnijψij . We need to

bound the ξc, c = 0, 1, 2, 3.

1. E [Hn] = 0, thus ξ0 = 0.

2. ξ1 = O (δ2n). Indeed, E [Hn | Zl] = δnulE [difiLnjlKnijψij | Zl] and E [Hn | Zi] =

0 = E [Hn | Zj ] . Then

E
[
E
2 [Hn | Zl]

]
≤ ‖ψ‖2∞ δ2nE

[
u2lE

2 [difiLnjlKnij | Zl]
]

= O
(
δ2n
)
E
[
u2lE

2
[
Lnjldjf

2
j | Zl

]]
= O

(
δ2n
)
.

3. ξ2 = O (g−p). Indeed, we have

E [Hn | Zi, Zj] = uifiKnijψijE [ulLnjl | Zj ] = 0,

E [Hn | Zi, Zl] = uifiulE [LnjlKnijψij | Zi, Zl] ,

E [Hn | Zj, Zl] = ulLnjlE [uifiKnijψij | Zj ] = δnulLnjlE [difiKnijψij | Zj] .

By successive applications of Lemma 5,

E
[
E
2 (Hn | Zi, Zl)

]
≤ ‖ψ‖2∞ E

[
u2i f

2
i u

2
lE [LnjlKnij | Zi, Zl]E [Lnj′lKnij′ | Zi, Zl]

]

= O
(
g−p
)
E
[
u2i f

2
i u

2
lE [LnjlKnij | Zi, Zl]E [Knij′ | Zi, Zl]

]

= O
(
g−p
)
E
[
u2i f

3
i u

2
lLnjlKnij

]
= O

(
g−p
)
,

E
[
E
2 [Hn | Zj, Zl]

]
≤ ‖ψ‖2∞ δ2nE

[
u2lL

2
njlE

2 [difiKnij | Zj]
]

≤ O
(
δ2n
)
E
[
u2lL

2
njld

2
jf

4
j

]

= O
(
δ2n
)
O
(
g−p
)
E
[
u2lLnjld

2
jf

4
j

]
= O

(
g−p
)
.

34



4. ξ3 = O (g−ph−p), as E [H2
n] equals

E
[
u2iu

2
l f

2
i L

2
njlK

2
nijψ

2
ij

]
= O

(
g−ph−p

)
E
[
u2iu

2
l f

2
i LnjlKnij

]
= O

(
g−ph−p

)
.

Collecting results, E
[(
nhp/2I1,3

)2]
= O (δ2nnh

p) +O (hp/gp) +O (n−1g−p) = o(1).

Proof of Proposition 4. As in Proposition 3, we only prove the first statement. We will

use the following lemma, which is similar to Lemma 2 of Lavergne and Vuong (2000),

and whose proof is then omitted.

Lemma 6. Let ∆f j
i = f̂ j

i −fi. If f (·) ∈ Up and ngp → ∞, E
[
∆2f j

i | Zi, Zj, Zi′, Zj′
]
=

o (1) and E
[
∆2f j,l

i | Zi, Zj, Zl, Zi′, Zj′, Zl′

]
= o (1) uniformly in the indices.

(i) Let us denote ∆f j
i = f̂ j

i − fi. We have I1,1 =
(
1/n(2)

)∑
a ui∆f

j
i ujfjKnijψij so that

E
[
I21,1
]
=

(
1

n(2)

)2
[
∑

a

ui∆f
j
i ujfjKnijψij

][
∑

a

ui′∆f
j′

i′ uj′fj′Kni′j′ψi′j′

]
, (7)

where the first (respectively the second) sum is taken over all arrangements of

different indices i and j (respectively different indices i′ and j′). Let W denote

the sample of Wi, 1 ≤ i ≤ n, and let λn = E
[
∆2f j

i | Zi, Zj, Zi′, Zj′
]
. By Lemma

6, λn = o (1) uniformly in the indices. By Equation (7), E
[
I21,1
]
is equal to a

normalized sum over four indices. This sum could split in three sums of the

following types.

1. All indices are different, that is a sum of n(4) terms. Each term in the sum

can be bounded as follows:

E

[
ui∆f

j
i ujfjKnijψijui′∆f

j′

i′ uj′fj′Kni′j′ψi′j′

]

≤ ‖ψ‖2∞ δ4nE
[
∆f j

i fj∆f
j′

i′ fj′E
[
didjdi′dj′KnijKni′j′ | W

]]

≤ ‖ψ‖2∞ δ4nE
[
fjfj′didjdi′dj′KnijKni′j′E

[
∆f j

i ∆f
j′

i′ | Zi, Zj, Zi′, Zj′

]]

≤ O(δ4nλn)E |fjfj′didjdi′dj′KnijKni′j′| = O (δ4nλn) .

2. One index is common to {i, j} and {i′, j′} , that is a sum of 4n(3) terms. For
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each of such terms we can write

(i′ = i) E

[
u2i∆f

j
i ujfjKnijψij∆f

j′

i uj′fj′Knij′ψij′

]

≤ ‖ψ‖2∞ δ2nE
[
∆f j

i fj∆f
j′

i fj′E
[
u2idjdj′KnijKnij′ |W

]]

≤ O(δ2nλn)E |fjfj′u2idjdj′KnijKnij′| = O (δ2nλn) ,

(j′ = j) E
[
ui∆f

j
i u

2
jf

2
jKnijψijui′∆f

j
i′Kni′jψi′j

]

≤ ‖ψ‖2∞ δ2nE
[
∆f j

i f
2
j ∆f

j
i′E
[
diu

2
jdi′KnijKni′j |W

]]

≤ O(δ2nλn)E
∣∣f 2

j diu
2
jdi′KnijKni′j

∣∣ = O (δ2nλn) ,

(i′ = j) E

[
ui∆f

j
i u

2
jfjKnijψij∆f

j′

j uj′fj′Knjj′ψjj′

]

≤ ‖ψ‖2∞ δ2nE
[
∆f j

i fj∆f
j′

j fj′E
[
diu

2
jdj′KnijKnjj′ |W

]]

≤ O(δ2nλn)E
∣∣fjfj′diu2jdj′KnijKnjj′

∣∣ = O (δ2nλn) .

The case j′ = i is similar to i′ = j.

3. Two indices in common to {i, j} and {i′, j′} , that is a sum of 2n(2) terms.

For each term in the sum we can write

E

[
u2iu

2
j

(
∆f j

i

)2
f 2
jK

2
nijψ

2
ij

]
= O

(
λnh

−p
)

and E
[
u2iu

2
j∆f

j
i ∆f

i
jfifjK

2
nijψ

2
ij

]
= O

(
λnh

−p
)
.

Therefore, E

[(
nhp/2I1,1

)2]
= δ4nn

2hpO (λn) + δ2nnh
pO (λn) + O (λn) = O (λn). The

result then follows from Lemma 6.

Proof of Lemma 3. We only prove the result for ∆r̂if̂i, as the reasoning is similar for

∆f̂i. We have

∆r̂if̂i =
1

(n− 1)gp

∑

k 6=i

{
YkL

(
(Wi −Wk)g

−1
)
− E

[
Y L

(
(Wi −W )g−1

)]}

+E
[
r(W )g−pL

(
(Wi −W )g−1

)]
− r(Wi)f(Wi)

= ∆1i +∆2i.

The uniform continuity of r(·)f(·) implies supi |∆2i| = op(1) by Lemma 5. For supi |∆1i|,
we use empirical process tools. Let us introduce some notation. Let G be a class of

functions of the observations with envelope function G and let

J(δ,G, L2) = sup
Q

∫ δ

0

√
1 + lnN(ε‖G‖2,G, L2(Q))dε, 0 < δ ≤ 1,
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denote the uniform entropy integral, where the supremum is taken over all finitely

discrete probability distributions Q on the space of the observations, and ‖G‖2 denotes
the norm of G in L2(Q). Let Z1, · · · , Zn be a sample of independent observations and

let

Gng =
1√
n

n∑

i=1

γ(Zi), γ ∈ G

be the empirical process indexed by G. If the covering number N(ε,G, L2(Q)) is of poly-

nomial order in 1/ε, there exists a constant c > 0 such that J(δ,G, L2) ≤ cδ
√

ln(1/δ)

for 0 < δ < 1/2. Now if Eγ2 < δ2EG2 for every γ and some 0 < δ < 1, and

EG(4υ−2)/(υ−1) < ∞ for some υ > 1, under mild additional measurability conditions,

Theorem 3.1 of van der Vaart and Wellner (2011) implies

sup
G

|Gnγ| = J(δ,G, L2)

(
1 +

J(δ1/υ,G, L2)

δ2
√
n

‖G‖2−1/υ
(4υ−2)/(υ−1)

‖G‖2−1/υ
2

)υ/(2υ−1)

‖G‖2Op(1), (8)

where ‖G‖22 = EG2 and the Op(1) term is independent of n. Note that the fam-

ily G could change with n, as soon as the envelope is the same for all n. We ap-

ply this result to the family of functions G = {Y L((W − w)/g) : w ∈ Rp} for

a sequence g that converges to zero and the envelope G(Y,W ) = Y supw∈Rp L(w).

Its entropy number is of polynomial order in 1/ε, independently of n, as L(·) is of

bounded variation, see for instance van der Vaart and Wellner (1996). Now for any

γ ∈ G, Eγ2(Y,W ) ≤ CgpEG2(Y,W ), for some constant C. Let δ = g3p/7, so that

Eγ2(Y,W ) ≤ C ′δ2EG2(Y,W ), for some constant C ′ and υ = 3/2, which corresponds

to EG8 <∞ that is guaranteed by our assumptions. The bound in (8) thus yields

sup
G

∣∣∣∣
1

gp
√
n
Gnγ

∣∣∣∣ =
ln1/2(n)

g4p/7
√
n

[
1 + n−1/2g−4p/7 ln1/2(n)

]3/4
Op(1),

where the Op(1) term is independent of n. Since n7/8gp/ lnn→ ∞, the expected result

follows.

Proof of Lemma 4. We have

û∗i f̂i =
1

n− 1

∑

k 6=i

(Y ∗
i − Y ∗

k )Lnik

= u∗i f̂i −
1

n− 1

∑

k 6=i

u∗kLnik +
1

n− 1

∑

k 6=i

(r̂i − r̂k)Lnik
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where

1

n− 1

∑

k 6=i

(r̂i − r̂k)Lnik =
1

n− 1

∑

k 6=i

(ri − rk)Lnik + (r̂i − ri) f̂i

− 1

(n− 1)2 f̂k

∑

k 6=i

∑

k′ 6=k

(rk′ − rk)Lnkk′Lnik

− 1

(n− 1)2 f̂k

∑

k 6=i

∑

k′ 6=k

uk′Lnkk′Lnik.

By Lemma 3 and the fact that f(·) is bounded away from zero, deduce that supi |r̂i −
ri| = op (1) . From this and applying several times the arguments in the proof of Lemma

3 we obtain
1

n− 1

∑

k 6=i

(r̂i − r̂k)Lnik = op (1) .

On the other hand,

∣∣∣∣∣
1

n− 1

∑

k 6=i

u∗kLnik

∣∣∣∣∣ ≤
∣∣∣∣∣

1

n− 1

∑

k 6=i

ηkukLnik

∣∣∣∣∣+
supj |r̂j − rj |

n− 1

∑

k 6=i

|ηk|Lnik

= op (1) ,

where we used again the arguments for ∆1i in the proof of Lemma 3 (here with ηkuk

and |ηk| in the place of Yk) to derive the last rate.
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Figure 1: Empirical rejections under H0 as a function of the bandwidth, n = 100
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Figure 2: Empirical power curves for a quadratic alternative, n = 100
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Figure 3: Empirical power curves for a quadratic alternative, q = 5
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Figure 4: Empirical power curves for linear and sine alternative, n = 100 and q = 5
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Figure 5: Empirical rejection under H0 as a function of the bandwidth, X Bernoulli

and n = 100
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Figure 6: Empirical power curves, X Bernoulli and n = 100
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