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Abstract

We address the issue of lack-of-fit testing for a parametric quantile regression. We

propose a simple test that involves one-dimensional kernel smoothing, so that the rate

at which it detects local alternatives is independent of the number of covariates. The

test has asymptotically gaussian critical values, and wild bootstrap can be applied to

obtain more accurate ones in small samples. Our procedure appears to be competitive

with existing ones in simulations. We illustrate the usefulness of our test on birthweight

data.
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1 Introduction

Quantile regression, as introduced by Koenker and Bassett (1978), has emerged as an al-

ternative to mean regression. It allows for a richer data analysis by exploring the effect

of covariates at different quantiles of the conditional distribution of the variable of inter-

est. Parametric quantile regression generalizes usual regression are is particularly valuable

if variables have asymmetric distributions or heavy tails. Koenker’s monograph (2005) and

the review of Yu et al. (2003) detail the theory and practice of quantile regression.

As in any statistical modeling exercice, it is crucial to check the fit of a parametric

quantile model. There has been a large effort devoted to testing of the fit of parametric

mean regressions, however only few lack-of-fit tests of parametric quantile regressions. He

and Zhu (2003) extend the approach of Stute (1997) and is based on a vector-weighted

cumulative summed process of the residuals. Bierens and Ginther (2002) generalize the

integrated conditional moment test of Bierens and Ploberger (1997) to quantile regression. In

both cases, the limit distribution of the test statistic is a non-linear functional of a Gaussian

process, so that implementation may require rather involved computations to obtain critical

values. Zheng (1998) use kernel smoothing over the design space, to obtain an asymptotically

pivotal test statistic. Horowitz and Spokoiny (2002) extend such an approach and propose

an adaptive procedure to choose the smoothing parameter. As in any multidimensional

nonparametric problem, the curse of dimensionality may be detrimental to the performances

of the test, see e.g. Lavergne and Patilea (2012) for illustrations.

In this paper, we introduce a new testing methodology that avoids multidimensional

smoothing, but still yield an omnibus test. Our test has three specific features. First, it

does not require smoothing with respect to all covariates under test. This allows to mitigate

the curse of dimensionality that appears with nonparametric smoothing, hence improving

the power properties of the test. Second, the test statistic is asymptotically pivotal, while

wild bootstrap can be used to obtain small samples critical values of the test. This yields

a test whose level is well controlled by bootstrapping, as shown in simulations. Third, our

test equally applies whether some of the covariates are discrete.

The paper is organized as follows. In Section 2, we present our testing procedure, we study

its asymptotic behavior under the null hypothesis and under a sequence of local alternatives,

and we establish the validity of wild bootstrap. In Section 3, we compare the small sample

behavior of our test to some existing procedures, and we illustrate its use on birthweight

data. Section 3 concludes. Section 4 gathers our technical proofs.
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2 Lack-of-Fit Test for Quantile Regression

2.1 Principle and Test

Consider modeling the quantile of a real random variable Y conditional upon covariates

Z ∈ R
q, q ≥ 1. We assume that Z = (W,X ′)′, where W is continuous and admits a density

with respect to the Lebesgue measure, while X may include both continuous and discrete

variables. Formally, if F (· | z) denotes the conditional distribution of Y given Z = z, the

τ -th conditional quantile is Qτ (z) = inf{y : F (y | z) ≥ τ}. Assuming F (· | z) is absolutely
continuous for almost all z, this is equivalent to F (Qτ (z) | z) = τ . The parametric quantile

regression model of interest posits that the conditional τ -th quantile of Y is given by g(Z; β0),

where g(·; β) is known up to the parameter vector β ∈ B ⊂ R
p, that is,

Y = g(Z; β0) + ε, F (g(Z; β0) | Z) = τ . (2.1)

The validity of our parametric quantile regression is thus equivalent to

H0 : ∃ β0 ∈ B : F (g(Z; β0) | Z)− τ = E {I{Y ≤ g(Z; β0)} − τ | Z} = 0 a.s. (2.2)

Hence testing the the correct specification of our parametric quantile regression models

reduces to testing a zero conditional mean hypothesis. The alternative hypothesis is then

H1 : P [E {I{Y ≤ g(Z; β)} − τ | Z} = 0] < 1 for any β ∈ B .

The key element of our testing approach is the following lemma. See also Lavergne et al.

(2014) for a related result. First let us introduce some notation. Hereafter, if g : Rk → R is

an integrable function, F [g] denotes its Fourier transform, that is

F [g](t) =

∫

Rk

exp(−2πit′u)g(u)du .

Lemma 2.1. Let (W1, X1, U1) and (W2, X2, U2) be two independent draws of (W, X, u),

and K(·) and ψ(·) even functions with (almost everywhere) positive Fourier integrable trans-

forms. Define

I (h) = E
[
U1U2h

−pK ((W1 −W2) /h)ψ (X1 −X2)
]
.

Then for any h > 0, E [U | W,X ] = 0 a.s.⇔ I(h) = 0.

Proof.Let 〈·, ·〉 denote the standard inner product and F [K] be the Fourier transform

of K(·). Using Fourier Inversion Theorem, change of variables, and elementary properties of

conditional expectation,

I(h) = E

[
U1U2

∫

Rp

e2πi〈t, W1−W2〉F [K] (th) dt

∫

Rq

e2πi〈s, X1−X2〉F [ψ] (s) ds

]

=

∫

Rq

∫

Rp

∣∣E
[
E [U | W,X ] e2πi{〈t,W 〉+〈s,X〉}

]∣∣2F [K] (th)F [ψ] (s) dtds .
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Since the Fourier transforms F [K] and F [ψ] are strictly positive, I(h) = 0 iff

E
[
E [U |W,X ] e2πi{〈t,W 〉+〈s,X〉}

]
= 0 ∀t, s⇔ E [U | W,X ] = 0 a.s.

From the above results, it is sufficient to test whether I(h) = 0 for any arbitrary h. We

chose to consider a sequence of h decreasing to zero when the sample size increases, which

is one of the ingredient that allows to obtain a tractable asymptotic distribution for the test

statistic. Assume we have at hand a random sample (Yi,Wi, Xi), 1 ≤ i ≤ n, from (Y,W,X).

Then we can estimate I (h) by the second-order U-statistic

In (β0) = In (β0; h) =
1

n(n− 1)

∑

1≤j 6=i≤n

Ui (β0)Uj (β0)
1

h
Kh (Wi −Wj)ψ(Xi −Xj)

where Ui(β) = I{Yi ≤ g(Zi; β)} − τ and Kh(·) = K(·/h).
For estimating β0, we follow Koenker and Bassett (1978), who showed that under (2.1)

a consistent estimator of β0 is obtained by minimizing

argmin
β

n∑

i=1

ρτ (Yi − g(Zi; β)) , (2.3)

where ρτ (e) = (τ − I(e < 0)) e is the so-called check function. While this is not a differen-

tiable optimization problem, it is convex and tractable, see e.g. Koenker (2005) for some

computational algorithms. Let us define

Tn = nh1/2
In(β̂)

vn
where v2n =

2 τ 2(1− τ)2

n(n− 1)

∑

j 6=i

h−1K2
h (Wi −Wj)ψ

2(Xi −Xj) . (2.4)

An asymptotic α-level test of H0 is then

Reject H0 if Tn ≥ zα, where zα is the (1 − α)−quantile of the standard normal

distribution.

Our test statistic is very similar to the one proposed by Zheng (1998), but the latter uses

smoothing on all components of Z while we smooth only on the first component W .

The statistic v2n is the variance of nh1/2In(β0) conditional on the Zi under H0. In general,

v2n does not consistently estimate the conditional variance of nh1/2In(β) under the alternative

hypothesis. In some cases v2n overestimates this conditional variance (this is certainly the

case for misspecified median regression model because τ(1−τ) attains the maximum value at

τ = 1/2), so that the test may suffer some power loss. In a mean regression context, Horowitz

and Spokoiny (2001) and Guerre and Lavergne (2005) proposed to use a nonparametric

estimator of the conditional variance. This might be adapted to quantile regression, but in

simulations our test appears to be well-behaved and more powerful than competitors, so we

decided in favor of the simplest estimator v2n.
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2.2 Behavior Under the Null Hypothesis

To derive the asymptotic properties of our lack-of-fit test, we introduce our set of assumptions

on the data-generating process, the parametric model (2.1), the functions K(·) and ψ(·), and
the bandwidth h.

Assumption 2.1. (a) The random vectors (ε1, Z
′
1)

′, . . . , (εn, Z
′
n)

′ are independent copies of

the random vector (ε, Z ′)′ ∈ R
1+q. The conditional τ th quantile of ε given Z = (W,X ′)′ is

equal to zero.

(b) The variable W admits an absolutely continuous density with the respect of the

Lebesgue measure on the real line.

(c) The conditional density fε(· | z) of ε given Z = z is uniformly bounded. There

exists a > 0 such that fε(· | z) is differentiable on (−a, a) for any z with |f ′
ε (0 | z)| ≤

C∞. Moreover, the derivatives f ′
ε (· | z) satisfy a uniform Hölder continuity condition,

that is there exist positive constants C2 and c independent of z such that ∀ |u1| , |u2| ≤ a,

|f ′
ε (u1 | z)− f ′

ε (u2 | z)| ≤ C2 |u1 − u2|c.

Assumption 2.2. (a) The parameter space B is a compact convex subset of Rp. β0 is the

unique solution of minB E [ρτ (Y − g(Z, β))] and is an interior point of B.

(b) The matrix

E

[
fε(0 | Z )

∂

∂β
g(Z; β0)

∂

∂β ′
g′(Z; β0)

]

is finite and nonsingular.

(c) There exists functions A (·), B (·), and D (·), with E[A4(Z )], E[B2(Z )] < ∞, and

E[D4(Z )], such that

∥∥∥∥
∂

∂β
g(z; β)

∥∥∥∥ ≤ A (z) ,

∥∥∥∥
∂

∂β
g(z; β)

∂

∂β ′
g′(z; β)

∥∥∥∥ ≤ D(z) for any β ,

∥∥∥∥
∂

∂β
g(z; β1)−

∂

∂β
g(z; β2)

∥∥∥∥ ≤ B(z) ‖β1 − β2‖ for any z, β1, β2 .

(d) The class of functions {g(Z; β) : β ∈ B} is a Vapnik-Červonenkis (VC) class.

Assumption 2.3. (a) The function K(·) is a bounded symmetric univariate density of

bounded variation with positive Fourier transform.

(b) The function ψ(·) is a bounded symmetric multivariate function with positive Fourier

transform.

(c) h→ 0 and nαh2 → ∞ for some α ∈ (0, 1) as n→ ∞.
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Our assumptions combine standard assumptions for parametric quantile regression esti-

mation and specific ones for our lack-of-fit test. Among the latter, the conditions on the

error term ε impose neither independence of ε and Z, nor a specific form of dependence

such as ε = s (Z) e with e independent of Z as in He and Zhu (2003). Assumption 2.2(d)

is a mild technical condition that guarantees suitable uniform rates of convergence for some

U−processes appearing in the proofs. This condition is satisfied for many parametric mod-

els, for instance when g(Z, β) = q(Z ′β) with q : R → R monotone or of bounded variation,

see e.g. van der Vaart and Wellner (1996, Section 2.6). Also, if there is β ∈ B such that

g(Z, β) is squared integrable, then Assumption 2.2(d) follows from 2.2(c). Assumptions on

K(·) allows for the use of a triangular, normal, logistic, Student (including Cauchy), or

Laplace densities. For ψ(·), one can choose e.g. ψ(x) = exp(−‖x‖2), or any multivariate

extension of the aforementioned densities. Restrictions on the bandwidth are compatible

with optimal choices for regression estimation, see e.g. Härdle and Marron (1985), and for

regression checks, see Guerre and Lavergne (2002) and Horowitz and Spokoiny (2002). The

following theorem states the asymptotic validity of our test.

Theorem 2.2. Under the Assumptions 2.1 to 2.3, the test based on Tn has asymptotic level

α under H0.

2.3 Behavior under Local Alternatives

We now investigate the behavior of our test when H0 does not hold, and specifically we

consider a sequence of local alternatives of the form

H1n : Y = g(Z; β0) + rnδ(Z) + ε, F (g(Z; β0) | Z) = τ , (2.5)

where rn, n ≥ 1, is a sequence of real numbers tending to zero and δ(Z) is a real-valued

function satisfying

E

[
fε(0 | Z )δ(Z)

∂

∂β
g(Z; β0)

]
= 0 and 0 < E[δ4(Z)] <∞ . (2.6)

This condition ensures that our sequence of models (2.5) does not belong to the null hypoth-

esis H0. We do not impose any smoothness restriction on the function δ(·) as is frequent in
this kind of analysis, see e.g. Zheng (1998). As shown in Lemma 4.1 in the Proofs section,

β̂ − β0 = OP(n
−1/2 + r2n) under H1n. Our next result states that these local alternatives

can be detected whenever r2nnh
1/2 → ∞. Hence our test does not suffer from the curse

of dimensionality against local alternatives, since its power is unaffected by the number of

regressors.

6



Theorem 2.3. Under Assumptions 2.1 to 2.3, the test based on Tn is consistent against the

sequence of alternatives H1n with δ(Z) satisfying (2.6) if r2nnh
1/2 → ∞.

2.4 Bootstrap Critical Values

The asymptotic approximation of the behavior of Tn may not be satisfactory in small samples

as is customary in smoothing-based lack-of-fit tests. This motivates the use of bootstrapping

for obtaining critical values. The distribution of Tn depends weakly on the distribution of

the error term ε, because I{Y ≤ g(Z; β0)}− τ under H0 is a Bernouilli random variable irre-

spective of the particular distribution of ε. The same phenomenon is noted by Horowitz and

Spokoiny (2002) for their test statistic. Their proposal is thus to naively (or nonparametri-

cally) bootstrap from the empirical distribution of the residuals. This is a valid bootstrap

procedure when errors are identically distributed, and it remains asymptotically valid for

non identically distributed errors. A first possibility is thus to adopt naive residual boot-

strap for our test. Alternatively, He and Zhu (2003) note that one could use any continuous

distribution with the τ -th quantile equal to 0. This constitutes a second possibility. While

asymptotically valid, these two methods do not account for potential heteroscedastic errors.

Thus a third possibility is the wild bootstrap method for quantile regression introduced by

Feng et al. (2011). The wild bootstrap procedure for our test works as follows.

1. Let ε̂i = Yi − g(Zi; β̂), 1 ≤ i ≤ n, and w1, · · ·wn be bootstrap weights generated

independently from a two-point mass distribution with probabilities 1 − τ and τ at

2(1− τ) and −2τ . Compute ε∗i = wi|ε̂i| and Y ∗
i = g(Zi; β̂) + ε∗i for each i = 1, ..., n.

2. Use the bootstrap data set {Y ∗
i , Zi : i = 1, ..., n} to compute the estimator β̂∗, the new

U∗
i (β̂

∗) = I{Y ∗
i ≤ g(Zi; β̂

∗)} − τ , and the new test statistic T ∗
n .

3. Repeat Steps 1 et 2 many times, and estimate the α-level critical value z∗α by the

(1− α)-th quantile of the empirical distribution of T ∗
n .

The bootstrap test then rejects H0 if Tn ≥ z∗α. Alternatively, one could resample residuals

in Step 1 by naive bootstrap, or obtain ε∗i by random draws from e.g. a uniform law on the

interval [−τ, 1 − τ ]. The following theorem yields the asymptotic validity of the bootstrap

test.

Theorem 2.4. Under the conditions of Theorem 2.2,

sup
t∈R

|P (T ∗
n ≤ t | Y1, Z1, ..., Yn, Zn)− Φ(t)| p−→0 ,

where Φ (·) is the standard normal distribution function.
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3 Numerical Evidence

3.1 Small Sample Performances

We investigated the performances of our procedure for testing lack-of-fit of a linear median

regression for two setups considered by He and Zhu (2003), namely

Y = 1 +W +X + δ
(
W 2 +WX +X2

)
+ ε , (3.1)

Y = δ log
(
1 +W 2 +X2

)
+ ε , (3.2)

where W follows a standard normal, and X independently follows a binomial of size 5 and

probability of success 0.5. For the error term, we considered the three distributions N (0, 1),

logN (0, 1)− 1 and N (0, (1 +W 2) /2).

For implementation, we chose ψ(·) as the standard normal density and K(·) as trian-

gle density with variance one. We set δ = 0 in Model (3.1) to evaluate the comparative

performances of the three possible bootstrapping procedures. Figure 1 reports ou results

based on 5000 replications for a sample size of n = 100 at nominal level 10%, when the

bandwidth is h = cn−1/5 with c varying. The three bootstrap methods yield accurate levels

for any bandwidth choice when errors are identically distributed, while the use of asymptotic

critical values yield large underrejection. In the heteroscedastic case, however, only the wild

bootstrap yield an empirical level close to 10%, while the use of naive or uniform bootstrap

results in a severely oversized test.

Next, we investigated the power of our test for Models (3.1) and (3.2) with either standard

gaussian or heteroscedastic gaussian errors. We compared our test to the one proposed by

He and Zhu (2003, hereafter HZ), based on

max
‖a‖=1

n−1
n∑

i=1

(a′Rn (Xi))
2

where Rn (t) = n−1/2
n∑

j=1

(
τ − I

[
Uj(β̂) < 0

])
ZjI (Zj ≤ t) .

We also computed the statistic proposed by Zheng (1998), which in our setup writes

hq/2

σ̃(n− 1)

∑

j 6=i

Ui(β̂)Uj(β̂)h
−qK̃

(
Wi −Wj

h
,
Xi −Xj

h

)

where

σ̃2 =
2τ 2 (1− τ)2

n(n− 1)

∑

j 6=i

h−qK̃2

(
Wi −Wj

h
,
Xi −Xj

h

)
,

and K̃ is a triangle kernel applied to the norm of its argument. We apply the wild bootstrap

procedure to compute the critical values of all tests. Figure 2 reports power curves of the
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Figure 1: Empirical rejections under H0 as a function of the bandwidth, n = 100

different tests as a function of δ based on 2500 replications. For the linear Model (3.1),

all tests perform almost similarly. Our test is a bit more powerful, especially for a larger

bandwidth, which was expected given our theoretical analysis. For the nonlinear Model

(3.2), the power advantage of our test is more pronounced. Its power can be as large as

twice the power of the test by He and Zhu (2003).

3.2 Empirical Illustration

We studied some parametric quantile models for children birthweight using data analyzed

by Abrevaya (2001) and Koenker and Hallock (2001), who gave a detailed data description.

We focused on median regression and the 10th percentile quantile regression. Models are
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Figure 2: Power curves for models (3.1) and (3.2), n = 100.
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estimated and tested on a subsample of 1168 smoking college graduate mothers. We first

analyzed the simple model considered by He and Zhu (2003), which is linear in weight gain

during pregnancy (WTGAIN), average number of cigarettes per day (CIGAR), and age

(AGE). When implementing our test, we chose age as the W variable, and we standardize

all explanatory variables. Other details are identical to what was done in simulations. For

both quantiles, HZ test does not reject this specification. Our test does not reject the linear

median regression at 10% level, but detects misspecification for the lower decile regression

when c = 2.

Since the more detailed analysis of Abrevaya (2001) and Koenker and Hallock (2001)

suggests that birthweight is quadratic in age, we then considered this variation. None of the

tests detects a misspecified model. Finally, we considered a more complete model similar to

Abrevaya (2001), where we added the explanatory binary variables BOY (1 if child is male),

BLACK (1 if mother is black), MARRIED (1 if married), and NOVISIT (1 if no prenatal

visit during the pregnancy). HZ test does not reject the model at either quantiles. Our test

however indicates a misspecified median regression model at 10% level, while it does not

reject the model for the lower decile. Our limited empirical exercice suggests that our new

test, beside existing procedures such as the test by He and Zhu (2003), is a valuable addition

to the practitioner toolbox.
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Table 1: Application: estimation results and tests p-values

τ = 0.5 τ = 0.1 τ = 0.5 τ = 0.1 τ = 0.5 τ = 0.1

CIGAR -5.35 -7.53 -5.05 -8.36 -5.07 -8.07

(2.28) (4) (2.3) (3.53) (2.36) (3.25)

WTGAIN 8.09 14.73 7.69 14.96 8.31 15.91

(1.33) (0.75) (1.32) (1.2) (1.31) (1.4)

AGE -9.34 -5.13 43.6 133.67 78.59 117.62

(3.82) (4.47) (50.59) (30.11) (45.85) (48.42)

AGESQ -0.84 -2.23 -1.38 -1.94

(0.81) (0.5) (0.72) (0.82)

BOY 137.22 -5.22

(34.35) (47.33)

BLACK -177.78 -124.18

(75.09) (69.17)

MARRIED 21.62 41.75

(48.39) (54.66)

NOVISIT -211.62 -275.15

(406.72) (112.5)

HZ 0.347 0.227 0.266 0.356 0.272 0.135

Our test c=1 0.791 0.165 0.738 0.942 0.068 0.972

Our test c=2 0.704 0.044 0.741 0.968 0.078 0.796
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4 Proofs

We first recall some definitions. For the definition of a VC-class, we refer to Section 2.6.2 of

van der Vaart and Wellner (1996). Next, let G be a class of real-valued functions on a set

S. We call G an Euclidean(c,d) family of functions, or simply Euclidean, for the envelope

G if there exists positive constants c and d with the following properties: if 0 < ǫ ≤ 1 and

λ is a measure for which
∫
G2dλ <∞, then there are functions g1, . . . , gj in G such that (i)

j ≤ cǫ−d; and (ii) for each g in G there is an gi with
∫
|g−gi|2dλ ≤ ǫ2

∫
G2dλ. The constants

c and d must not depend on λ. See e.g. Nolan and Pollard (1987) or Sherman (1994). Recall

that if F is a VC-class of functions then the class {I{f ≥ 0} : f ∈ F} is Euclidean for

the envelope F ≡ 1, see van der Vaart and Wellner (1996) Lemma 2.6.18(iii) and Theorem

2.6.7 or Pakes and Pollard (1989). Bellow, we shall use this property with the VC-classes of

functions of {ε+ g(Z, β0)− g(Z, β) : β ∈ B} and {ε+ g(Z, β0) + rnδ(Z)− g(Z, β) : β ∈ B}.
In the following, Fε (· | x) is the conditional distribution function of ε given Z = z; that

means Fε (0 | ·) ≡ τ . Below C, C1, C2,... denote constants, not necessarily the same as

before and possibly changing from line to line.

4.1 Proof of Theorem 2.2

Proof. First, we prove that if H0 holds

n
√
h
{
Wn(β̂)−Wn(β0)

}
= oP (1) . (4.1)

Let us introduce some simplifying notation:

Gi (β, β0) = g(Zi; β)− g(Zi; β0), ψij = ψ(Xi −Xj), Kh,ij = Kh (Wi −Wj) . (4.2)

Under H0

Wn(β) =
h−1

n(n− 1)

∑

j 6=i

[I{Yi ≤ g(Zi; β)} − τ ] [I{Yj ≤ g(Zj; β)} − τ ]Kh,ijψij

=
h−1

n(n− 1)

∑

j 6=i

[I{εi ≤ Gi(β, β0)} − Fε (0 | Zi)]

× [I{εj ≤ Gj(β, β0)} − Fε (0 | Zj)]Kh,ijψij .

By a Taylor expansion, decompose

Fε (0 | Zi) = Fε (Gi(β, β0) | Zi)− fε (0 | Zi) ġ
′(Zi; β0) (β − β0) +OP

(
‖β − β0‖2

)
.
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We can write Wn(β)−Wn(β0) = {W 0
1n(β)−W 0

1n(β0)}+ 2W 0
2n(β) +W 0

3n(β) +R0
n where

W 0
1n(β) =

h−1

n(n− 1)

∑

j 6=i

[I{εi ≤ Gi(β, β0)} − Fε (Gi(β, β0) | Zi)]

× [I{εj ≤ Gj(β, β0)} − Fε (Gj(β, β0) | Zj)]Kh,ijψij

W 0
2n(β) = (β − β0)

′ W̃ 0
2n(β) with

W̃ 0
2n(β) =

h−1

n(n− 1)

∑

j 6=i

[I{εi ≤ Gi(β, β0)} − Fε (Gi(β, β0) | Zi)]

×fε (0 | Zj) ġ(Zj; β0)Kh,ijψij ,

W 0
3n(β) = (β − β0)

′ W̃ 0
3n (β − β0) with

W̃ 0
3n =

h−1

n(n− 1)

∑

j 6=i

fε (0 | Zi) ġ(Zi; β0)ġ
′(Zj; β0)fε (0 | Zj)Kh,ijψij = OP(1).

The rate of W̃ 0
3n follows simply by computing its mean and variance. By Assumption 2.1(c)

and Assumption 2.2(c) it is easy to check that |R0
n| ≤ ‖β − β0‖2OP (1) . For deriving the

order of W̃ 0
2n, apply Hoeffding decomposition and write hW̃ 0

2n(β) = V 2
n (β) + V 1

n (β) with V
1
n ,

V 2
n degenerate U−processes or order 1 and 2, respectively. In view of Assumptions 2.2(d) and

2.3(a), apply Corollary 4 of Sherman (1994) and deduce that V 2
n (β) = OP (n

−1) uniformly

in β (and h). Next, if ġ(l) denotes the lth component of the vector of first-order derivatives

ġ, 1 ≤ l ≤ p, and

π(l) (Zi) = E
[
fε (0 | Zj) ġ

(l)(Zj; β0)h
−3/4Kh,ijψij | Zi

]

we can rewrite the lth component of the vector V 1
n (β) as

h3/4

n

n∑

i=1

[I{εi ≤ Gi(β, β0)} − Fε (Gi(β, β0) | Zi)]π
(l) (Zi) .

By Hölder inequality, Assumption 2.1(c), Assumption 2.2(c) and a change of variables,

∣∣π(l) (Xi)
∣∣ ≤ E

[
fε (0 | Zj)

∣∣ġ(l)(Zj; β0)
∣∣h−3/4Kh,ij |ψij | | Zi

]

≤ C1E
1/4

[
A4(Zj)

]
E
3/4

[
h−1K

4/3
h,ij | Zi

]

≤ C2,

for any 1 ≤ l ≤ p. Now, by Corollary 4 of Sherman (1994), h−3/4V 1
n (β) = OP

(
n−1/2

)

uniformly in β. Deduce that

sup
β

|W 0
2n(β)| ≤ ‖β − β0‖OP

(
h−1n−1 + h−1/4n−1/2

)
.
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Finally, by Lemma 1 of Zheng (1998), for any α ∈ (0, 1)

sup
β

|W 0
1n(β)−W 0

1n(β0)| = OP

(
h−1n−1−α/4

)

uniformly over OP

(
n−1/2

)
neighborhoods of β0. Gathering the results and using Lemma 4.1

with δ(·) ≡ 0 we obtain (4.1). Now, it remains to check that nh1/2Wn(β0)/vn converges

in law to a standard normal distribution. This result easily follows as a particular case of

Lemma 4.1 below.

4.2 Proof of Theorem 2.3

First, we state the behavior of β̂, the estimator of β0 under the sequence of local alternatives

H1n. The proof is provided in the Supplementary Materials.

Lemma 4.1. Suppose that Assumptions 2.1, 2.2 hold, let δ(·) be a function such that Con-

dition (2.6) holds, and let rn, n ≥ 1 be a sequence of real numbers such that rn → 0. If

β̂ = argminβ∈BΓn (β) with Γn (β) =
∑n

i=1 ρτ (Yi−g(Zi; β)), then underH0, β̂−β0=OP(n
−1/2)

and under H1n defined in (2.5), β̂ − βn = OP(n
−1/2) where

βn = β0 − r2n [E [fε(0 | Z )ġ(Z; β0)ġ
′(Z; β0)]]

−1
E
[
f ′
ε (0 | Z)δ2(Z)ġ(Z; β0)

]
.

Lemma 4.1 shows in particular that under H1n, β̂ − β0 = OP(n
−1/2 + r2n). To our best

knowledge, this result on the behavior of β̂ under the local alternatives is new. He and

Zhu (2003) only considered the case rn = n−1/2 while Zheng (1998) assumed β̂ − β∗ =

OP(n
−1/2) underH1n, for some fixed β∗. Our Lemma 4.1 indicates that such

√
n−convergence

assumptions on the local alternatives may be too restrictive. Below, we improve the point

(C) in the Theorem of Zheng (1998) also because we can take into account the rates of

convergence of β̂ under the alternatives slower than OP(n
−1/2).

In the case of a fixed deviation from the null hypothesis, that is rn ≡ 1, the tools used

for proving Theorem 2.3 could be easily adapted to show the
√
n−convergence of β̂ to β∗

that minimizes the map β 7→ E[ρτ (Y − g(Z, β))] = E[ρτ (g(Z, β0) + δ(Z) + ε− g(Z, β))]. The

consistency of the test is then a consequence of the fact that nh1/2In(β
∗) tends to infinity.

Let δi = δ(Zi) and let Gi (β, β0) and Kh,ij be defined as in equation (4.2). Under H1n

Wn(β) =
h−1

n(n− 1)

∑

j 6=i

[I{Yi ≤ g(Zi; β)} − τ ] [I{Yj ≤ g(Zj; β)} − τ ]Kh,ijψij

=
h−1

n(n− 1)

∑

j 6=i

[I{εi ≤ Gi(β, β0)− rnδi} − Fε (0 | Zi)]

× [I{εj ≤ Gj(β, β0)− rnδj} − Fε (0 | Zj)]Kh,ijψij .
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Let us decompose

Fε (0 | Zi) = Fε (Gi(β, β0)− rnδi | Zi)− fε (0 | Zi) {ġ′(Zi; β0) (β − β0)− rnδi}
−2−1r2nf

′
ε (0 | Zi) δ

2
i +OP

(
‖β − β0‖2 + rn ‖β − β0‖

)
+ oP

(
r2n
)
.

We can write

Wn(β) =W1n(β) + 2[W2n(β) +W3n(β) +W4n(β)] +W5n(β) + 2W6n(β) +W7n +Rn

where

W1n(β) =
h−1

n(n− 1)

∑

j 6=i

[I{εi ≤ Gi(β, β0)− rnδi} − Fε (Gi(β, β0)− rnδi | Zi)]

× [I{εj ≤ Gj(β, β0)− rnδj} − Fε (Gj(β, β0)− rnδj | Zj)]Kh,ijψij

W2n(β) = (β − β0)
′ W̃2n(β) with

W̃2n(β) =
h−1

n(n− 1)

∑

j 6=i

[I{εi ≤ Gi(β, β0)− rnδi} − Fε (Gi(β, β0)− rnδi | Zi)]

×fε (0 | Zj) ġ(Zj; β0)Kh,ijψij ,

W3n(β) =
rnh

−1

n(n− 1)

∑

j 6=i

[I{εi ≤ Gi(β, β0)− rnδi} − Fε (Gi(β, β0)− rnδi | Zi)]

×fε (0 | Zj) δjKh,ijψij ,

W4n(β) =
r2nh

−1

2n(n− 1)

∑

j 6=i

[I{εi ≤ Gi(β, β0)− rnδi} − Fε (Gi(β, β0)− rnδi | Zi)]

×f ′
ε (0 | Zj) δ

2
jKh,ijψij,

W5n(β) = (β − β0)
′ W̃5n (β − β0) with

W̃5n =
h−1

n(n− 1)

∑

j 6=i

fε (0 | Zi) ġ(Zi; β0)ġ
′(Zj; β0)fε (0 | Zj)Kh,ijψij = OP(1),

W6n(β) = (β − β0)
′ W̃6n with

W̃6n =
rnh

−1

n(n− 1)

∑

j 6=i

fε (0 | Zi) δifε (0 | Zj) ġ(Xj; β0)Kh,ijψij = OP(rn),

W7n =
r2nh

−1

n(n− 1)

∑

j 6=i

fε (0 | Zi) δ(Xi)fε (0 | Zj) δ(Zj)Kh,ijψij = C1r
2
n + oP(r

2
n)
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with C1 > 0 and Rn a reminder term that is negligible because of the properties of f ′
ε and

ġ. Note that the U−statistics W̃5n, W̃6n and W7n depend only on the Xi. Their orders are

obtained from elementary calculations of mean and variance.

Next, we can write W1n(β) = {W1n(β)−W1n(β0)} +W1n(β0). As W1n(β0) is centered,

its order in probability is given by the variance. We have

Var(W1n(β0) | Z1, ..., Zn) =
1

n2(n− 1)2

∑

i 6=j

Fε (−rnδi | Zi) [1− Fε (−rnδi | Zi)]

×Fε (−rnδj | Zj) [1− Fε (−rnδj | Zj)]h
−2K2

h,ijψij (µ)

≤ h−1

16n(n− 1)

[
1

n(n− 1)

∑

i 6=j

h−1K2
h,ijψij

]

The expectation of the last U−statistic in the display converges to a constant while the

variance tends to zero. As W1n(β0) is of zero conditional mean given the Zi, deduce that the

variance of W1n(β0) is bounded by Cn−2h−1. By Chebyshev’s inequality, W1n(β0) = oP (r
2
n),

provided that r2nnh
1/2 → ∞. Next, let

H1n(Zi, Zj, β) = [I{εi ≤ Gi(β, β0)− rnδi} − Fε (Gi(β, β0)− rnδi | Zi)]

× [I{εj ≤ Gj(β, β0)− rnδj} − Fε (Gj(β, β0)− rnδj | Zj)]Kh,ijψij , β ∈ B.

By the arguments used for Lemma 4.1 above, the class of functions {H1n(·, ·, β) : β ∈ B}
is Euclidean(c,d) for an envelope with a finite fourth moment, with c and d independent of

n. Now, we can use equation (A.11) of Zheng (1998) and his Lemma 1 with the condition

(ii) replaced by E[H1n(·, β)− H1n(·, β0)]2 ≤ Λ ‖β − β0‖. By a close inspection of the proof

of Zheng’s Lemma 1, see his equations (A.2) to (A.5), it is obvious to adapt his conclusion

and to deduce that in our setup for any 0 < α < 1

W1n(β)−W1n(β0) = OP

(
n−1h−1 ‖β − β0‖α/2

)
= OP

(
n−1h−1

{
rn + n−1/4

}α
)

uniformly over OP(r
2
n + n−1/2) neighborhoods of β0. Thus, when n

1/2r2n → ∞, we have

W1n(β̂)−W1n(β0) = OP

(
n−1h−1rαn

)
= OP

(
n−1/2

)
= oP

(
r2n
)
,

whereas in the case where n1/2r2n is bounded, use nh1/2r2n → ∞ and take α sufficiently close

to one to obtain

W1n(β̂)−W1n(β0) = OP

(
n−1−α/4h−1

)
= oP

(
r2n
)
.

The remaining terms W2n, W3n and W4n can be treated in the following way. By Hoeffd-

ing’s decomposition

r−1
n hW3n(β) = U2

n(β) + U1
n(β)
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with U1
n, U

2
n degenerate U−processes or order 1 and 2, respectively. In view of Assumption

2.2(d) and the fact that K (·) is bounded, apply Corollary 4 of Sherman (1994) to deduce

that U2
n(β) = OP (n

−1) uniformly in β. If Kh,ij (θ) = Kh((Xi −Xj)
′θ) and

ξ (Zi) = E
[
E
{
fε (0 | Zj) δ (Zj) | Z ′

jθ
}
h−3/4Kh,ijψij | Zi

]

we can write

U1
n(β) =

h3/4

n

∑

i

[I{εi ≤ Gi(β, β0)− rnδi} − Fε (Gi(β, β0)−rnδi | Zi)] ξ (Zi) .

By Hölder inequality, Assumption 2.1(c) and a change of variables,

|ξ (Zi)| ≤ E
1/4

[
δ4(Zj)

]
E
3/4

[
h−1K

4/3
h,ij | Zi

]
≤ C,

for some C > 0. Now, by Corollary 4 of Sherman (1994), h−3/4U1
n(β) = OP

(
n−1/2

)
uniformly

in β. As nh1/2r2n → ∞, deduce that

sup
β

|W3n(β)| = OP

(
rnh

−1n−1 + rnh
−1/4n−1/2

)
= oP(r

2
n).

By similar arguments, supβ |W4n(β)| = oP(r
2
n) (here apply Hölder inequality with p = q = 2)

and W3n, supβ |W̃2n(β)| = OP

(
h−1n−1 + h−1/4n−1/2

)
, and thus

sup
β

|W2n(β)| = OP(r
2
n + n−1/2)OP

(
h−1n−1 + h−1/4n−1/2

)
= oP(r

2
n).

Collecting results, under H1n, Tn ≥ Cnh1/2r2n{1 + oP(1)} or some constants C > 0. Now,

the proof is complete.

4.3 Proof of Theorem 2.4

LetW ∗
n(β) be the statistic obtained after replacing Ui (β) with U

∗
i (β) = I{Y ∗

i ≤ g(Zi; β)}−τ
in the formula of Wn(β). The proof of the bootstrap procedure consistency follows the steps

of the proof of Theorem 2.2, but requires several specific ingredients: (a) the convergence in

law of nh1/2W ∗
n(β̂)/vn conditionally upon the original sample; and (b) the OP

(
n−1/2

)
rate

for β̂∗ − β̂, and the negligibility of W ∗
n(β̂

∗) −W ∗
n(β̂) given the original sample. If S∗

1n and

S∗
2n denote bootstrapped statistics, S∗

1n is bounded in probability given the sample if

lim
M→∞

P[|S∗
1n| > M | Y1, Z1, · · · , Yn, Zn] = op(1).

while S∗
2n is asymptotically negligible given the sample if

∀ǫ > 0, P[|S∗
2n| > ǫ | Y1, Z1, · · · , Yn, Zn] = op(1).

The asymptotic normality of nh1/2W ∗
n(β̂)/vn given the sample is obtained below from a

martingale central limit theorem as stated in Hall and Heyde (1980).

18



Lemma 4.1. Under the assumptions of Theorem 2.4,

sup
t∈R

∣∣∣P
(
nh1/2W ∗

n(β̂)/vn ≤ t | Y1, Z1, ..., Yn, Zn

)
− Φ(t)

∣∣∣ → 0, in probability.

Proof. The proof is based on the Central limit Theorem (CLT) for martingale arrays, see

Corollary 3.1 of Hall and Heyde (1980). Recall that U∗
i (β̂) = I{Y ∗

i ≤ g(Zi; β̂
∗)} − τ . Define

the martingale array
{
S∗
n,m, F∗

n,m, 1 ≤ m ≤ n, n ≥ 1
}
where S∗

n,1 = 0 and S∗
n,m =

∑m
i=2G

∗
n,i

with

G∗
n,i =

2h−1/2

n− 1
U∗
i (β̂)

i−1∑

j=1

U∗
j (β̂)Kh,ijψij ,

and F∗
n,m is the σ-field generated by

{
Z, η1, . . . , ηm

}
where Z = {Y1, . . . , Yn, Z1, . . . , Zn}.

Thus nh1/2W ∗
n(β̂) = S∗

n,n. Next define

V 2∗
n =

n∑

i=2

E
[
G2∗

n,i | F∗
n,i−1

]

=
4h−1τ(1 − τ)

(n− 1)2

n∑

i=2

i−1∑

j=1

i−1∑

k=1

U∗
j (β̂)U

∗
k (β̂)Kh,ijKh,ikψijψik

=
4h−1τ(1 − τ)

(n− 1)2

n∑

i=2

i−1∑

j=1

U∗2
j (β̂)K2

h,ijψ
2
ij

+
8h−1τ(1 − τ)

(n− 1)2

n∑

i=3

i−1∑

j=2

j−1∑

k=1

U∗
j (β̂)U

∗
k (β̂)Kh,ijKh,ikψijψik

= A∗
n +B∗

n.

Recall that

v2n =
2h−1 τ 2(1− τ)2

n(n− 1)

∑

j 6=i

K2
h,ijψ

2
ij

and by standard calculations of the means and variance it could be shown to tend to a

positive constant. Next, note that

E
[
A∗

n | Z
]
=

4h−1τ(1 − τ)

(n− 1)2

n∑

i=2

i−1∑

j=1

E

[
U∗2
j (β̂) | Z

]
K2

h,ijψ
2
ij =

n

n− 1
v2n.
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Moreover,

E
[
Var

(
A∗

n | Z
)]

=
16τ 2(1− τ)2

h2(n− 1)4

×
n∑

i=2

n∑

i′=2

i∧i′−1∑

j=1

E

[
E

[
U∗4
j (β̂)− τ 2(1− τ)2|Z

]
K2

h,ijK
2
h,i′jψ

2
ijψ

2
i′j

]

=
16τ 4(1− τ)4{τ(1 − τ)(1− 3τ(1− τ))− 1}

h2(n− 1)4

×
n∑

i=2

n∑

i′=2

i∧i′−1∑

j=1

E
[
K2

h,ijK
2
h,i′jψ

2
ijψ

2
i′j

]

=
32τ 4(1− τ)4(τ(1 − τ)(1 − 3τ(1− τ))− 1)

h2(n− 1)4

×
n∑

i=3

i−1∑

i′=2

i′−1∑

j=1

E
[
K2

h,ijK
2
h,i′jψ

2
ijψ

2
i′j

]

+
16τ 4(1− τ)4(τ(1 − τ)(1− 3τ(1− τ))− 1)

h2(n− 1)4

n∑

i=2

i−1∑

j=1

E
[
K4

h,ijψ
4
ij

]

= O(n−1) +O(n−2h−1)

because ψij , E
[
h−1K4

h,ij

]
and E

[
h−2K2

h,ijK
2
h,i′j

]
are bounded for all pairwise distinct indexes

i, i′ and j. Deduce that A∗
n/v

2
n → 1 in probability. On the other hand,

E
[
B∗2

n

]
=

8τ 4(1− τ)4

h2(n− 1)4

n∑

i=3

i−1∑

j=2

j−1∑

k=1

E
[
K2

h,ijK
2
h,ikψ

2
ijψ

2
ik

]
= O(n−1)

so that V 2∗
n /v2n → 1 in probability. To use the CLT it remains to check the Lindeberg

condition. For any ǫ > 0,

E

[
n∑

i=2

E
[
G∗2

n,iI(G
∗2
n,i > ǫ) | F∗

n,i−1

]
]
≤ ǫ−4

E

[
n∑

i=2

E
[
G∗4

n,i | F∗
n,i−1

]
]

≤ 16τ 3(1− τ)3{1− 3τ(1− τ)}
ǫ4h2(n− 1)4

n∑

i=2

i−1∑

j=1

i−1∑

k=1

E
[
K2

h,ijK
2
h,ikψ

2
ijψ

2
ik

]

≤ 32τ 3(1− τ)3{1− 3τ(1− τ)}
ǫ4h2(n− 1)4

n∑

i=2

i−1∑

j=1

j−1∑

k=1

E
[
K2

h,ijK
2
h,ikψ

2
ijψ

2
ik

]

+
16τ 3(1− τ)3{1− 3τ(1− τ)}

ǫ4h2(n− 1)4

n∑

i=2

i−1∑

j=1

E
[
K4

h,ijψ
4
ij

]

= O(n−1) +O(n−2h).
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Eventually, applying the CLT for martingale arrays along the subsequences of V 2∗
n that

converge almost surely to the limit of v2n and subsequences for which the Lindeberg condition

is satisfied almost surely, the result follows.

To obtain the OP

(
n−1/2

)
rate for β̂∗ − β̂, and the negligibility of W ∗

n(β̂
∗)−W ∗

n(β̂) given

the original sample, we use a conditional version of the moment inequality for U−processes

proved by Sherman (1994). Before stating this new result that has its own interest let us

introduce some more notation: for k a positive integer let (n)k = n(n − 1)...(n − k + 1)

and let in
k
= (i1, ..., ik) be a k−tuple of distinct integers from the set {1, ..., n}. Similarly,

i2n
k

= (i1, ..., ik) denotes a k−tuples of distinct integers from {1, ..., 2n}. Moreover, a function

g on Sk is called degenerate if for each i = 1, ..., k, and all s1, ..., si−1, si+1, ..., sk ∈ S,
E[g(s1, ..., si−1, S, si+1, ..., sk)] = 0.

We state the following Lemma. The proof is provided in the Supplementary Materials.

Lemma 4.2. Let k be a positive integer and G a degenerate class of real-valued functions

on R
1+q × ... × R

1+q. Suppose G is Euclidean(c,d) for a squared integrable envelope and

some c, d > 0. Fix z1, ..., zn ∈ R
q and let u1, ..., un, un+1, ..., u2n be independent copies of

the random variable u. For i = 1, ..., n, let vi = (ui, zi) and vn+i = (un+i, zi). Define

gin
k
(ui1, . . . , uik) = g(vi1, . . . , vik) and define gi2n

k

similarly. Suppose that for any k−tuple in
k
,

the function gin
k
is degenerate as a function of ui variables (necessarily the same property

holds also for any k−tuple i2n
k
). Let

Uk
n,z1,...,zn

(g) = (n)−1
k

∑

in
k

gin
k
(ui1 , . . . , uik), Uk

2n,z1,...,zn
(g) = (2n)−1

k

∑

i2n
k

gi2n
k

(ui1, . . . , uik).

Then for any α ∈ (0, 1), there exists a constant Λ depending only on α and k (and indepen-

dent of n and the sequence z1, ..., zn) such that

E

[
sup
G

|nk/2Uk
n,z1,...,zn

(g)|
]
≤ ΛE1/2

[
sup
G
{Uk

2n,z1,...,zn
(g2)}α

]
.

To establish the rate of β̂∗− β̂ given the sample, it suffices to consider a simplified version

of our Lemma 4.1. By Lemma 4.2, supβ

∣∣n−1Γ∗
n (β)− E

[
ρτ (Y − g(Z; β)) | Z

]∣∣ is asymptoti-

cally negligible given the sample Z = {Y1, . . . , Yn, Z1, . . . , Zn}. Reconsidering the arguments

for the consistency of argmax estimators along almost surely convergent subsequences de-

pending on Z, deduce that β̂∗ − β̂ is a asymptotically negligible given the sample Z. Next,

define the empirical process

ν∗n (β) =
1√
n

n∑

i=1

{
ψτ (Y

∗
i − g(Zi; β))− E[ψτ (Yi − g(Zi; β)) | Z]

}
ġ(Zi; β)
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indexed by β. Lemma 4.2 guarantees that supβ |ν∗n (β) |, and in particular ν∗n(β̂
∗)−ν∗n(β̂), are

bounded in probability given the sample. Proceeding like in equation (4.6) of the Supple-

mentary Materials, that is using the directional derivative of Γ∗
n (β) at β̂

∗ along any direction

γ, deduce
1√
n

n∑

i=1

ψτ

(
Y ∗
i − g(Zi; β̂

∗)
)
ġ(Zi; β̂

∗)

is bounded in probability given the sample (conditional negligibility could be also derived

but boundedness given the sample suffices for the present purpose). Since for all i,

E

[
ψτ

(
Y ∗
i − g(Zi; β̂

∗)
)
| Z

]
= Fε∗

(
g(Zi; β̂

∗)− g(Zi; β̂) | Z
)
− τ,

and for any sample Z, the distribution function Fε∗(· | Z) is that of the uniform law on

[−τ, 1 − τ ], the boundedness of
√
n(β̂∗ − β̂) follows by a Taylor expansion of Fε∗(· | Z)

around the origin, exactly like in the proof of Lemma 4.1 in the case rn = 0. The case of

the wild bootstrap and linear quantile regression follows as a consequence of Theorem 1 of

Feng et al. (2011). The arguments of Theorem 1 of Feng et al. (2011) could be adapted

to nonlinear models using a linearization like in the proof of Lemma 4.1. The details are

omitted.

Finally, using Lemma 4.2, derive conditional versions of Lemma 1 of Zheng (1998) and

of Corollary 4 of Sherman in the case of constant envelopes. Combine these results with the

fact that
√
n(β̂∗ − β̂) is bounded in probability given the sample and follow the lines of the

proof of Theorem 2.2 above to deduce that for any ε > 0

P

(
nh1/2

∣∣∣W ∗
n(β̂

∗)−W ∗
n(β̂)

∣∣∣ > ε | Y1, Z1, ..., Yn, Zn

)
→ 0, in probability.
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Supplementary Material to “Powerful nonparametric checks for

quantile regression”

Lemma 4.1. Suppose that Assumptions 2.1, 2.2 hold, let δ(·) be a function such that Con-

dition (2.6) holds, and let rn, n ≥ 1 be a sequence of real numbers such that rn → 0. If

β̂ = argminβ∈BΓn (β) with Γn (β) =
∑n

i=1 ρτ (Yi−g(Zi; β)), then underH0, β̂−β0=OP(n
−1/2)

and under H1n defined in (2.5), β̂ − βn = OP(n
−1/2) where

βn = β0 − r2n [E [fε(0 | Z )ġ(Z; β0)ġ
′(Z; β0)]]

−1
E
[
f ′
ε (0 | Z)δ2(Z)ġ(Z; β0)

]
.

Proof. It is easy to check that

|ρτ (a− b)− ρτ (a)| ≤ |b|max (τ, 1− τ) ≤ |b| . (4.3)

Combine this with the Mean Value Theorem and Assumption 2.2(c) to check the conditions

of Lemma 2.13 of Pakes and Pollard (1989) and to derive the Euclidean property for an

integrable envelope for the family of functions {(y, z) 7→ρτ (y −g(z; β)) : β ∈ B} .
Next, we study the consistency of β̂ under H0. By the uniform law of large numbers,

supβ |n−1Γn (β)− E [ρτ (Y − g(Z; β))]| → 0, in probability (use for instance Lemma 2.8 of

Pakes and Pollard 1989). This uniform convergence, the identification condition in Assump-

tion 2.2(a), the continuity of g (z; ·) for any z, and usual arguments used for proving consis-

tency of argmax estimators, allow to deduce β̂−β0 = oP(1). To obtain the consistency under

the local alternatives approaching H0, it suffices to prove supβ∈B |∆n (β)| → 0 in probability,

where

∆n (β) =
1

n

n∑

i=1

{ρτ (l(εi, Zi; β) + rnδ(Zi))− ρτ (l(εi, Zi; β))}

and l(u, z; β) = u+ g(z; β0)− g(z; β). By inequality (4.3),

|∆n (β)| ≤
|rn|
n

n∑

i=1

|δ(Zi)| .

Consequently, ∆n (β) = oP(1) uniformly over β ∈ B, and thus the consistency follows.

Define ψτ (e) = τ − I(e < 0) as the derivative of ρτ . To obtain the rate of convergence of

β̂ under H1n (in particular under H0 by taking rn ≡ 0) consider the empirical process

νn (β) =
1√
n

n∑

i=1

{ψτ (Yi − g(Zi; β))− E[ψτ (Yi − g(Zi; β)) | Zi]} ġ(Zi; β)

=
1√
n

n∑

i=1

{ψτ (l(εi, Zi; β) + rnδ(Zi))− E [ψτ (l(εi, Zi; β) + rnδ(Zi)) | Zi]} ġ(Zi; β)

25



indexed by β. First, let us notice that

νn (β)− νn (β0) = oP (1) (4.4)

uniformly over oP (1) neighborhoods of β0, as a consequence of Corollary 8 of Sherman (1994).

Indeed, by Lemma 2.13 of Pakes and Pollard (1989), the class of functions {ġ(·; β) : β ∈ B} is

Euclidean for a squared integrable envelope. Next, by the VC-class property of the regression

functions {g(·; β), β ∈ B}, the class of functions {(u, z) 7→ ψτ (l(u, z; β) + rnδ(z)) : β ∈ B}
is Euclidean(c,d) for a constant envelope. See Lemma 2.12 of Pakes and Pollard (1989).

Moreover, the constants c and d can be taken independent of n, see, for instance, the proof

of Lemma 2.6.18(v) of van der Vaart and Wellner (1996). Finally, by repeated applications

of the Mean Value Theorem and Assumptions 2.1(c) and 2.2(c), for any z, β1, β2 we have

|E [ψτ (l(ε, z; β1) + rnδ(z))]− E [ψτ (l(ε, z; β2) + rnδ(z))] | (4.5)

≤ |Fε (g(z; β1)− g(z; β0)− rnδ(z) | z)− Fε (g(z; β2)− g(z; β0)− rnδ(z) | z)|
≤ fε(vn | z) |g(z; β1)− g(z; β2)|
≤ CA (z) ‖β1 − β2‖

for some vn between g(z; β1)−g(z; β0)−rnδ(z) and g(z; β2)−g(z; β0)−rnδ(z). By Pakes and

Pollard (1989, Lemma 2.13), the class of functions {z 7→ E [ψτ (l(ε, z; β) + rnδ(z))] : β ∈ B}
is Euclidean(c,d) for an envelope with a finite fourth moment, with c and d independent of

n. Deduce that the empirical process νn (β), β ∈ B, is indexed by a class of functions that is

Euclidean for a squared integrable envelope. Finally, condition (ii) of Corollary 8 of Sherman

(1994), can be checked from inequalities like in (4.5) and conditions on |ġ(z; β)− ġ(z; β0)|.
On the other hand, because β̂ minimizes Γn (β) defined in (2.3) over β, the directional

derivative of Γn (β) at β̂ along any direction γ (with ‖γ‖ = 1) is nonnegative. That is

0 ≤ lim
t→0

t−1
[
Γn(β̂ + tγ)− Γn(β̂)

]
(4.6)

= −
∑

{Yi 6=g(Zi;β̂)}
ψτ

(
Yi − g(Zi; β̂)

)
γ ′ġ(Zi; β̂)

+ lim
t→0

∑

{Yi=g(Zi;β̂)}
t−1ρτ

(
g(Zi; β̂)− g(Zi; β̂ + tγ)

)

= −
∑

{Yi 6=g(Zi;β̂)}
ψτ

(
Yi − g(Zi; β̂)

)
γ ′ġ(Zi; β̂)

−
∑

{Yi=g(Zi;β̂)}
ψτ

(
−γ ′ġ(Zi; β̂)

)
γ ′ġ(Zi; β̂)

= −D1n(β̂)−D2n(β̂).
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By Assumption 2.2, |D2n(β̂)| is bounded by
∑

{Yi=g(Zi;β̂)}A(Zi). As, for any x, the error

term u has a continuous law given Z = z, the number of observations with Yi = g(Zi; β̂) is

bounded in probability as the sample size tends to infinity. On the other hand, the moment

condition on A (·) implies that max1≤i≤nA(Zi) = oP
(
n1/2

)
. As γ is an arbitrary direction,

it follows that
1√
n

n∑

i=1

ψτ

(
Yi − g(Zi; β̂)

)
ġ(Zi; β̂) = oP (1) . (4.7)

Finally, since β̂ − β0 = oP (1) and τ = Fε(0 | Zi), deduce that

νn (β0) = νn(β̂) + oP (1) [by (4.4)]

= − 1√
n

n∑

i=1

E

[
ψτ

(
Yi − g(Zi; β̂)

)
| Zi

]
ġ(Zi; β̂) + oP (1) [by (4.7)]

=
1√
n

n∑

i=1

[
Fε

(
g(Zi; β̂ )− g(Zi; β0)− rnδ(Zi ) | Zi

)
− τ

]
ġ(Zi; β̂) + oP (1)

=

{
1

n

n∑

i=1

fε(0 | Zi)ġ(Zi; β0)ġ
′(Zi; β0)

}
√
n
(
β̂ − β0

)

−rn
{

1√
n

n∑

i=1

fε(0 | Zi)δ(Zi )ġ(Zi; β0)

}

+r2n
√
n

{
1

n

n∑

i=1

f ′
ε (0 | Zi)δ

2(Zi )ġ(Zi; β0)

}

+oP

(√
n‖β̂ − β0‖

)
+ oP

(
r2n
√
n
)
,

where the last equality is based on a local expansions of Fε (· | z) and g(z; ·). By the law of

large numbers, the central limit theorem and the fact that νn (β0) = OP (1) and the random

vector fu(0 | Z)δ(Z )ġ(Z; β0) has zero mean, we obtain

E[fε(0 | Z)ġ(Z; β0)ġ′(Z; β0)]
√
n
(
β̂ − β0

)
+ r2n

√
nE[f ′

ε (0 | Z)δ2(Z)ġ(Z; β0)] = OP(1)

from which the result follows.

Lemma 4.2. Let k be a positive integer and G a degenerate class of real-valued functions

on R
1+q × ... × R

1+q. Suppose G is Euclidean(c,d) for a squared integrable envelope and

some c, d > 0. Fix z1, ..., zn ∈ R
q and let u1, ..., un, un+1, ..., u2n be independent copies of

the random variable u. For i = 1, ..., n, let vi = (ui, zi) and vn+i = (un+i, zi). Define

gin
k
(ui1, . . . , uik) = g(vi1, . . . , vik) and define gi2n

k

similarly. Suppose that for any k−tuple in
k
,

the function gin
k
is degenerate as a function of ui variables (necessarily the same property

holds also for any k−tuple i2n
k
). Let

Uk
n,z1,...,zn

(g) = (n)−1
k

∑

in
k

gin
k
(ui1 , . . . , uik), Uk

2n,z1,...,zn
(g) = (2n)−1

k

∑

i2n
k

gi2n
k

(ui1, . . . , uik).
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Then for any α ∈ (0, 1), there exists a constant Λ depending only on α and k (and indepen-

dent of n and the sequence z1, ..., zn) such that

E

[
sup
G

|nk/2Uk
n,z1,...,zn

(g)|
]
≤ ΛE1/2

[
sup
G
{Uk

2n,z1,...,zn
(g2)}α

]
.

Proof. We sketch the steps of the proof that follows the lines of the proof of the

Main Corollary in Sherman (1994). For the sake of simplicity, we only consider the case of

Euclidean families for a constant envelope. Fix n and z1, ..., zn arbitrarily.

i) Symmetrization inequality. For each g ∈ G define g̃(in
k
) as a sum of 2k terms, each

having the form

(−1)rgin
k
(u∗i1, . . . , u

∗
ik
)

with u∗ij equal to either uij or un+ij where ij ranges over the set {1, ..., n}, and r is the number

of elements u∗i1, ..., u
∗
ik

belonging to {un+1, ..., u2n}. Independently, take a sample σ1, ..., σn

of Rademacher random variables, that is symmetric variables on the two points set {−1, 1}.
Let Φ be a convex function on [0,∞). Then

EΦ


sup

G

∣∣∣∣∣∣

∑

in
k

gin
k
(ui1 , . . . , uik)

∣∣∣∣∣∣


 ≤ EΦ


sup

G

∣∣∣∣∣∣

∑

in
k

σi1 . . . σik g̃(i
n

k
)

∣∣∣∣∣∣


 . (4.8)

The proof of this inequality is omitted as it can be derived with only formal changes from

the proof of Sherman (1994)’s symmetrization inequality. It can be also be derived from the

lines of de la Peña and Giné (1999), Theorem 3.5.3 (see also Remark 3.5.4 of de la Peña and

Giné).

ii) Maximal inequality. The following arguments are similar to those in Sherman (1994),

section 5. Define the stochastic process

Z(g) = nk/2
∑

in
k

σi1 . . . σik g̃(i
n

k
), g ∈ G

and the pseudo-metric dUk
2n
(g1, g2) = [Uk

2n,z1,...,zn(|g1 − g2|2)]1/2. Finally, let us remark that

for each g, by Cauchy-Schwarz inequality and the definitions of g̃(in
k
) and gi2n

k

we have

∑

in
k

g̃(in
k
)2 ≤ 2k

∑

i2n
k

g2
i2n
k

(ui1, ..., uik) = 2k(2n)kU
k
2n,z1,...,zn

(g2)

which is the counterpart of inequality (5) of Sherman (1994). Now, we have all the ingredients

to continue exactly as in the proof of Sherman’s maximal inequality and to deduce that for

any positive integer m

E

[
sup
G

|nk/2Uk
n,z1,...,zn

(g)|
]
≤ ΓE

[∫ δkn

0

[D(x, dUk
2n
,G)]1/2mdx

]
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where D(ǫ, dUk
2n
,G) are the packing numbers of the set G with respect to the pseudometric

dUk
2n
, δkn = supG

√
Uk
2n,z1,...,zn(g

2) and Γ is a constant depending only on m and k.

iii) Moment inequality for Euclidean families. If G is Euclidean(c,d) for a constant

envelope equal to one, then the packing number D(ǫ, dUk
2n
,G) is bounded by cǫ−d. To check

this, apply the definition of an Euclidean family for G with µ the measure that places mass

(2n)−1
k at each of the (2n)k pairs (vi, vj), 1 ≤ i 6= j ≤ 2n. Finally, our result follows using

the arguments of the Main Corollary of Sherman (1994).
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