
Optimal Liquidity management and Hedging in the presence

of a Non-Predictable Investment Opportunity
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Abstract

In this paper, we develop a dynamic model that captures the interaction between

a firm’s cash reserves, the risk management policy and the profitability of a non-

predictable irreversible investment opportunity. We consider a firm that has assets in

place generating a stochastic cash-flow stream. The firm has a non-predictable growth

opportunity to expand its operation size by paying a sunk cost. When the opportunity

is available, the firm can finance it either by cash or by costly equity issuance. We pro-

vide an explicit characterization of the firm strategy in terms of investment, hedging,

equity issuance and dividend distribution.

1 Introduction

Both corporate liquidity management and hedging policy have been the topic of a large aca-

demic literature in the last thirty years. The literature aimed to depart from the benchmark

model of perfect capital markets (Modigliani and Miller, [14]) to explain why in practice the

management of cash holdings and hedging are key determinants of a firm’s success. Several

directions have been explored for explaining how and why firms should hold cash reserves

and hedge their risks. The literature has mainly focused on the precautionary demand of

cash holdings in order to both meet the operational needs and avoid a costly outside fund

raising in financial distress. Empirical studies have confirmed the precautionary role of

cash holdings by documenting that cash holdings represent a significant and growing share

of corporate wealth (Berk and DeMarzo [3] and Bates, Kahle, and Stulz [2]).

On the other hand, the literature on corporate finance has somewhat neglected the im-

portance of cash holdings and hedging in the determination of the optimal decision to

undertake an irreversible investment. More precisely, while it is clear from the pecking

order theory that firms prefer to use cash holdings to finance investment in order to avoid

the costs of external financing, few papers have concentrated on the order of magnitude of

the self-financing investment that firm should optimally allocate in a dynamic setting. Up

to now, the real option theory of irreversible investment under uncertainty has assumed
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that outside funds can be raised at no cost to finance investment opportunity. As a conse-

quence, the decision to invest is made independently of the firm cash holdings and of the

firm capital structure (see Dixit and Pindyck [8] for a survey). There are few papers that

model the role of cash reserves in the optimal decision to expand. The first attempt has

been made by Boyle and Guthrie [5] that considers a liquidity constrained firm that must

finance the investment internally. As a continuation of Boyle and Guthrie’s work, Decamps

and Villeneuve [7] study the interaction between dividend policy and investment decision

in a growth opportunity of a liquidity constrained firm that has no access to external funds.

They characterize situations where it is optimal to postpone dividend distribution in order

to invest at a subsequent date in the growth opportunity. Asvanunt, Broadie and Sun-

daresan (2010) develop a structural model that captures the interaction between the cash

reserves and investment opportunity for a firm that has some debt outstanding. Finally,

Guo and Pham [10] consider a model where a company has an option to invest in a way of

producing a good and can continuously adjust its production capacity.

Most importantly, our study is very related to the paper by Hugonnier, Malamud and

Morellec [12] that considers the interactions between cash holdings, dividend distribution

and capacity expansion when firms face uncertainty regarding their ability to raise external

funds and have to pay a search cost to meet outside investors. The novel part of our paper

is both incorporating the possibility of hedging and assuming that our firm’s production

function exhibits constant return to scale and thus the growth opportunity affects both

the profitability and the risk as in Bolton, Chen and Wang [4]. Unlike [7] and [12], we

also assume that the firm has access to costly external financing whenever it is needed and

that the decision maker does not have a monopoly on the investment opportunity. We are

working in the opposite situation where we assume perfect competition between firms and

thus the growth opportunity is a take-it-or-leave-it offer.

In this paper, we develop a simple model in continuous time whose objective is to

capture the dual role of cash holdings and hedging decisions. The first one is the well-

documented precautionary role of cash reserves which provide liquidity in financial distress

while the second is the frictionless financing of investment opportunities. Our analysis

shows that when capital supply is costly, irreversible real investment decision and financing

depend on the firm’s cash holdings. Poor-cash firms may be reluctant to invest in a growth

opportunity because they anticipate future financing constraints regardless of the source of

financing. In our model, the firm’s manager has to make three interrelated decisions: how

much cash to hold, whether to hedge and whether to invest with internal or external funds.

The firms find it optimal to hold cash for two motives. First, cash holdings can be used to

cover operating losses. Second, cash holdings can be used to invest in a growth opportunity.

We prove that even in the case where the firm maximizes its access to external financing

by choosing optimally the level of its internal funds, it could happen that the firm refuses

to undertake an option to expand because investment increases the liquidity risk.

Finally, the prediction of our model in terms of hedging depends on the intensity of the op-

portunity arrival. Traditionally, because cash holdings are used to avoid inefficient closure,

the shareholder value function is concave which implies a willingness to decrease the level

2



of uncertainty by using hedging instruments (see Højgaard and Taksar [11] for a rigorous

treatment of this result). For a large set of parameters, we find that the concavity feature

still holds in our model in the presence of a growth opportunity. As a consequence, the firm

is willing to buy hedging and the level of hedging policy is a decreasing function of the level

of cash holdings. Poor-cash firms are more ready to hedge and the firm’s manager ceases

to buy hedging instruments when the cash holdings are close to the threshold above which

dividend distribution is optimal. The novel implication of our model is given by situation

where the continuation shareholder value after the arrival of the investment opportunity

exhibits local convexity. The fact that the firm value may exhibit local convexity has been

already stated and proved in Decamps and Villeneuve [7] and Hugonnier, Malamud and

Morellec [12] but the contribution of our paper is twofold. First, we propose a rather gen-

eral methodology based on the maximum principle to characterize the value function and

the optimal policy, and we focus on the hedging decision resulting from the local convexity

property. In the high-intensity case, it is interesting to note that the firm hedging policy

before the arrival of the opportunity is non monotonic. The shareholders gamble by ceasing

to hedge in order to increase cash holdings to make the growth option valuable.

Using the dynamic programming principle, we solve the mixed regular/singular control

problem faced by the firm’s manager into a two-stage procedure. After the arrival date

of the investment opportunity, we solve explicitly the two control problems associated re-

spectively to the decision to invest or not. We have to solve explicitly (Proposition 3.4) a

non linear Hamilton-Jacobi-Bellman variational inequalities and to validate the optimality

of this solution by a verification theorem (Proposition 3.3). Before the arrival date of the

investment opportunity, we have to solve a non standard mixed regular/singular control

problem whose value is known at a stopping time T corresponding to the arrival of the

investment opportunity. The paper is organized as follows. Section 2 presents the model

and describes the decision variables. Section 3 is devoted to the analytical characterization

of both the value function and the optimal policy. Section 4 examines the special case of

costless hedging. Section 5 gives numerical illustration in the general case.

2 The model

Consider a probability space (Ω,F ,P) equipped with a filtration (Ft)t≥0 which satisfies the

usual conditions. Let us assume that the probability space is endowed with a standard bi

dimensional Brownian motion (Bt, B
h
t ). The firm cash reserve Mt evolves as

dMt = (r − δ)Mt dt+ dXt − ((1−Nt) + (1 + u)Nt)ψt(σhdB
h
t + p dt)− dZt + αdRt

− 11{u=1}adNt (2.1)

where the first term is the interest income, the second term is the revenue from production,

the third term is the cost of hedging, the fourth term is the dividend payout, the fifth term

is the cash inflow from external financing and the last term is the cost of self-financing.

The dividend and issuance processes are assumed to be Ft adapted, right-continuous and

non decreasing with Z0 = R0 = 0.
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To motivate the dynamics of the cash reserves, let us describe precisely the economic

environment we are considering

• Production technology

The firm uses physical capital for production. We denote by Kt the level of capital

stock at time t. At time 0, the level of capital is normalized to unity. The firm’s

operating revenue Xt at time t is proportional to its capital stock Kt, and is given by

dXt = Kt(µdt+ σdBt + σhdB
h
t ),

where (Bt, B
h
t ) is a standard bi dimensional Brownian motion.

We assume that the firm has a non predictable investment opportunity that will

appear at a Ft stopping time T which we assume to be independent of the Brownian

motion (Bt, B
h
t ). Once the investment opportunity has come, the firm has the option

to undertake it immediately or abandon it for ever. We introduce the binary control

variable u ∈ {0, 1} to model this investment decision. If the firm decides to undertake

the investment project (u = 1), we assume that the level of capital stock doubles.

Hence, the capital stock process Kt evolves as:

Kt = (1−Nt) + (1 + u)Nt,

where Nt = 11{t≥T} is the counting process that jumps from zero to unity when the

investment opportunity appears. The law of the investment appearance is assumed

both to be independent of the activity in place and to be exponentially distributed

with parameter λ, that is

P(T ≤ t) = 1− e−λt.

• Liquidity Management

When the firm runs out of cash, it has to either raise external funds to continue

operating, or it must liquidate its assets. If the firm chooses to raise external funds, it

must bear an external financing costs 1− α proportional to the amount issued. This

amounts to assume that Equation (2.1) represents the dynamics of the cash reserves

up to the default time τB defined as

τB = inf{t ≥ 0 , Mt < 0}.

We denote by Rt the firm’s cumulative external financing up to time t and by Zt the

cumulative amount of dividends distributed up to time t.

• Hedging

Inspired by the framework proposed in [4], we assume that the firm can reduce the

market risk σh by trading in future markets. We assume that the firm can choose

optimally a fraction ψ ∈ [0, 1] of the market risk σh that is sold on future markets.

We suppose that the cost of hedging is proportional to this fraction of hedged risk

leading to a cost

Ktψtp dt.

where p represents an additional cost per unit of hedged risk.
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• Financing the investment opportunity

When the firm decides to undertake the investment project, the firm management has

to choose the optimal way to finance it. In this model, we assume that the investment

opportunity entails a sunk cost I. The firm can self-finance an amount a ≤ I on its

cash reserves and issue equity on the capital market to finance the difference I − a.

We model frictions on the capital market by introducing a cost of dilution β. Even

cash-rich firms may have incentives to issue equity because a self-financing investment

strategy lowers the level of cash reserve and thus increases the probability to be in

financial distress after investment. There is a trade-off between the cost of equity

issuance to finance expansion measured by β and the cost of recapitalization α in

case of financial distress. The costs do not only represent the underwriting and

administrative fees but also asymmetric informational cost as well. We assume that

the recapitalization cost is more important than the expansion cost , namely α ≤ β.

We denote by A the set of admissible control variable π = (u, Z,R, ψ, a) and we assume

that

A = {π,Mπ
t ≥ 0, e−rtMπ

t in L1, and e−rtMπ
t → 0 p.s and in L1}.

Shareholders are risk-neutral and discount future cash-flows at the risk-free interest rate r.

Let us denote by π the set of control variables. The shareholder value function at time t is

given by ( see for instance [15])

Vt = ess sup
π

Et
(∫ τB

t
e−rs(dZs − dRs −

I − a
β

11{u=1}dNs)

)
.

In our Markovian framework, Vt is a deterministic function of both the level of cash Mt and

the indicator of the presence of the investment opportunity Nt. That is, Vt = V (Nt,Mt)

where for n = 0, 1 and m ≥ 0,

V (n,m) = sup
π∈A

E
(∫ τB

0
e−rs(dZs − dRs −

I − a
β

11{u=1}dNs)

)
In the absence of external financing costs (α = β = 1), the optimal strategy would be

to distribute the initial cash reserve M0 as dividends and to offset profits and losses by

payments to or from shareholders, in other words the firm’s operating revenue Xt would

coincide with Zt−Rt. We call this strategy first best (FB) in the sense that it corresponds

to the maximal value that the shareholders may extract from the project see Proposition

2.1. In that case, shareholders value would be computed as follows:

• If the firm invest in the opportunity.

– when n = 1,

VFB(1,m) = m+
2µ

r
,
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– when n = 0,

VFB(0,m) = m+ E
∫ T

0
e−rsµdt+ E

∫ ∞
T

e−rs2µds− IE(e−rT )

= m+
µ

r

(
1 +

λ

r + λ

)
− I λ

r + λ
.

• If the firm does not invest

VFB(0,m) = VFB(1,m) = m+
µ

r
,

As a consequence, it is optimal to invest when there is no costs of external finance if and

only if I ≤ µ
r . Hereafter, we will assume

Assumption 2.1 The investment cost is lower than the expected value of the growth op-

portunity,

I ≤ µ

r
.

Next Proposition specifies the above reasoning and gives a natural upper bound for the

shareholders value function.

Proposition 2.1 We have V (n,m) ≤ VFB(n,m) for any pair (n,m) ∈ {0, 1} × R+.

Proof: Let π ∈ A and assume that n = 0. We have since MτB = 0 on τB <∞

0 = e−rτBMπ
τB

= m+

∫ τB

0
e−rsdMs − r

∫ τB

0
e−rsMπ

s ds.

Using Equation (2.1), we obtain

0 = m+

∫ τB

0
e−rsdXs −

∫ τB

0
e−rs((1−Ns) + (1 + u)Ns)ψs(σhdW

h
s + p ds)

−
∫ τB

0
e−rs(dZt − αdRt)−

∫ τB

0
e−rs11{u=1}adNs − δ

∫ τB

0
e−rsMπ

s ds.

Because, Mπ
t , ψ and p are non negative, we get(∫ τB

0
e−rs(dZs − dRs −

I − a
β

11{u=1}dNs)

)
≤ m+

∫ τB

0
e−rsKsµds+HτB

− (1− α)

∫ τB

0
e−rsdRs

−
(
I − a
β

+ a

)
11{u=1}

∫ τB

0
e−rsdNs,

where

Ht =

∫ t

0
e−rsKsσdWs +

∫ t

0
e−rs((1−Ns) + (1 + u)Ns)(1− ψs)σhdW h

s .

Because Ks and ψs are bounded, the quadratic variation of H satisfies < H >∞< ∞ and

thus (Ht)t≥0 is uniformly integrable. Hence, E(HτB ) = 0 by the Optional sampling theorem
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([13] Theorem 3.22) .

Because (Rt)t≥0 is increasing and β ≤ 1, we get

E
(∫ τB

0
e−rs(dZs − dRs −

I − a
β

11{u=1}dNs)

)
≤ m+ E

(∫ τB

0
e−rsKsµds− Ie−rT 11{u=1}11{T<τB}

)
≤ m+ E

(
E
(∫ τB

0
e−rsKsµds|u=0

)
11{u=0}

)
+ E

(
E
(∫ τB

0
e−rsKsµds− Ie−rT |u=1

)
11{u=1}

)
.

Now,

E
(∫ τB

0
e−rsKsµds|u=0

)
≤ µ

r

and

E
(∫ τB

0
e−rsKsµds− Ie−rT |u=1

)
≤ µ

r

(
1 +

λ

r + λ

)
− I λ

r + λ
.

Therefore,

E
(∫ τB

0
e−rs(dZs − dRs −

I − a
β

11{u=1}dNs)

)
≤ max

(
m+

µ

r
,m+

µ

r

(
1 +

λ

r + λ

)
− I λ

r + λ

)
= VFB(0,m).

�

3 Analytical Characterization of the optimal policy of the

firm

In order to compute the two value functions V (0,m) and V (1,m), we will proceed recur-

sively with respect to the arrival date of the investment opportunity T .

3.1 After the arrival date of the investment opportunity

Let us first assume that the investment opportunity has already occurred, that is t ≥ T or

equivalently Nt = 1. At date T , either the firm has undertaken the investment (u = 1) or

the firm has given up the investment opportunity (u = 0). Let us characterize the value

function associated to each situation.

Assume first that the investment opportunity has not been undertaken at time T or equiv-

alently u = 0. Therefore, cash reserves evolve as

dMt = (r − δ)Mt dt+ µdt+ σdBt + σhB
h
t − ψt(σhBh

t + p dt) (3.2)

− dZt + αdRt. (3.3)

Denote by W 0 the shareholders value function associated to this scenario. That is

W 0(m) = sup
π

E
(∫ τB

0
e−rs(dZs − dRs)

)
,
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where the cash reserves process Mt follows (3.2) with M0 = m.

Next proposition gives some results about the dependence of the value function with respect

to both hedging cost p and profitability µ.

Proposition 3.2 The function W 0 is a decreasing function of p and an increasing function

of µ.

Proof: Let p > p0 . When the hedging cost is p0, the cash reserves evolve as

dMt = (r − δ)Mt dt+ µdt+ σdBt + σhB
h
t − ψt(σhBh

t + p0 dt) (3.4)

− dZt + αdRt.

We write W 0(m, p) to highlight the dependence of the value function with respect to the

hedging cost p.

Let (Zεt , R
ε
t , ψ

ε) an ε−optimal strategy for W 0 when the hedging cost is p and insert

the policy (Zεt +
∫ t

0 ψ
ε
s(p− p0) ds,Rεt , ψ

ε) in equation (3.4) to obtain

W 0(m, p0) ≥ W 0(m, p)− ε+ E
(∫ τB

0
e−rsψεs(p− p0) ds

)
≥ W 0(m, p)− ε

for arbitrarily ε.

The proof of the behavior of W 0 with respect to the profitability µ is similar and thus

omitted. �

The analytical characterization in terms of Hamilton-Jacobi-Bellman equations of mixed

singular/regular control problems is now well established (see for instance Fleming and

Soner [9]) and we expect that the value function W 0 be a solution of the free boundary

problem

max

(
max
ψ∈(0,1)

L(ψ)W, 1−Wm,Wm −
1

α

)
= 0 (3.5)

where

L(ψ)W =

{(
σ2 + (1− ψ)2σ2

h

2

)
Wmm + [(r − δ)m+ µ− ψp]Wm − rW

}
(3.6)

However, it is difficult in general to prove that there is an unique solution to (3.5) in a

classical sense. In order to prove that W 0 is a solution of (3.5), we have to use economic

intuition. Costly external finance leads shareholders to accumulate cash reserves in order

to reduce the risk of bearing these costs. However, the marginal value of these reserves is

likely to decrease (as the level of reserves increases) since external financing then becomes

less likely. This speaks for a concave value function. The concavity of the value function,

together with a marginal value bounded below by one, yields that shareholders will dis-

tribute dividends when the marginal value of the firm is exactly one. Therefore, we claim

the existence of a threshold b∗0 above which the firm distributes all the surplus as dividends.
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Based on [6], it is moreover reasonable to think that equity will be issued only when the

cash reserves are depleted. This means that we are looking for a pair (W 0, b∗0) such that

max
ψ∈(0,1]

L(ψ)W 0 = 0 for m ≤ b∗0

and

W 0
m(b∗0) = 1, W 0

mm(b∗0) = 0 and W 0
m(0) =

1

α
.

The following verification theorem establishes the desired result.

Proposition 3.3 Assume there exists a twice continuously differentiable concave function

W and a constant b∗0 such that

∀m ≤ b∗0 max
ψ∈(0,1]

L(ψ)W = 0 and Wm(m) ≥ 1,Wm(m) ≤ 1

α
(3.7)

∀m ≥ b∗0 Wm(m) = 1 and max
ψ∈(0,1]

L(ψ)W ≤ 0 (3.8)

together with the initial condition:

max(−W (0),
1

α
−Wm(0)) = 0, (3.9)

then W = W 0.

Proof: Fix a policy π ∈ A. According to Proposition 2.1, we may assume that the

random variable
∫ τB

0 e−rs(dZs−dRs) is in L1. Let us write the processes Zt = Zct +Zdt and

Rt = Rct + Rdt where Zct (resp. Rct) are the continuous part of Zt (resp. Rt) and Zdt (resp.

Rdt ) are the pure discontinuous part of Zt (resp. Rt). Let:

dMt = (r − δ)Mt dt+ µdt+ σdBt + σhdB
h
t − ψt(σhdBh

t + p dt)

− dZt + αdRt

M0 = m

be the dynamic of cash reserves under the policy (ψt, Zt, Rt). Using the generalized Itô

formula (see Dellacherie and Meyer Theorem VIII.27), we can write:

e−r(t∧τB)W (M(t∧τB)) = W (m) +

∫ (t∧τB)

0
e−rsL(ψs)W (Ms) ds

+

∫ (t∧τB)

0
e−rsWm(Ms) (σdBt + σhdB

h
t )−

∫ (t∧τB)

0
e−rsWm(Ms) dZ

c
s

+

∫ (t∧τB)

0
e−rsWm(Ms)αdR

c
s +

∑
s≤(t∧τB)

e−rs(W (Ms)−W (Ms−)),

Because W satisfies (3.7) and (3.8) the second term of the right hand side is negative.

Because Wm is bounded, (1 ≤Wm(m) ≤ 1
α) the third term is a centered square integrable
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martingale. Taking expectations, we get

E
(
e−r(t∧τB)W (Mt∧τB )

)
≤ W (m)− E

∫ t∧τB

0
e−rsWm(Ms) dZs

+ E

∫ t∧τB

0
e−rsWm(Ms)αdRs

+ E
∑

s≤t∧τB

e−rs(W (Ms)−W (Ms−)−Wm(Ms−)(Ms −Ms−)).

By concavity W (Ms) −W (Ms−) −Wm(Ms−)(Ms −Ms−) < 0. Therefore, using the fact

that −Wm ≥ − 1
α and Wm ≥ 1,

W (m) ≥ E
(
e−r(t∧τB)W (Mt∧τB )

)
+ E

∫ t∧τB

0
e−rs (dZs − dRs).

In order to end the proof, we have to get rid of the first-term of the right-hand side. But,

E
(
e−r(t∧τB)W (Mt∧τB )

)
= E

(
e−rτBW (0)11{τB<t}

)
+ E

(
e−rtW (Mt)11{τB>t}

)
.

Now, W (m) ≤W (0) +Wm(0)m by concavity therefore

E
(
e−rtW (Mt)11{τB>t}

)
≤W (0)e−rt +Wm(0)E

(
e−rtMt

)
.

Let t tend to ∞ to get (because limt→∞E
(
e−rtMt

)
= 0 for π ∈ A)

W (m) ≥ E
(
e−rτBW (0)11{τB<∞}

)
+ E

∫ τB

0
e−rs (dZs − dRs)

≥ E

∫ τB

0
e−rs (dZs − dRs) because W (0) ≥ 0.

The reverse inequality comes from the fact that the solution W of (3.7)-(3.9) is attainable

by an admissible strategy. Nevertheless, we have to distinguish the two cases W (0) = 0

and Wm(0) = 1
α . Because the associated proofs both rely on Skohorod lemma and are thus

quite similar for the two cases, we only focus on the case Wm(0) = 1
α .

Let ψ∗t be the maximizer in (3.7), and let (M∗t , Z
∗
t , R

∗
t ) be the solution of

M∗t = m+

∫ t

0
(r − δ)Ms ds+ µds+ σdWs + σhdW

h
s − ψ∗s(σhdW h

s + p ds) + αR∗t − Z∗t ,(3.10)

where

Z∗t =

∫ t

0
11M∗s=b∗0

dZ∗s

and

R∗t =

∫ t

0
11M∗s=0 dR

∗
s

whose existence is guaranteed by standard results on the Skorokhod problem. The strategy

π∗ = (Z∗t , R
∗
t , ψ

∗,∞) is admissible because M∗t = Mπ∗
t is bounded due to Equation (3.10).
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Using generalized Itô formula again and noting that the process (M∗t )t≥0 is continuous, we

obtain for m ∈ [0, b∗0]

e−rtW (M∗t ) = W (m) +

∫ t

0
e−rsL(ψ∗s)W (M∗s ) ds

+

∫ t

0
e−rsWm(M∗s ) (σdWs + σhdW

h
s )−

∫ t

0
e−rsWm(M∗s ) dZ∗s

+

∫ t

0
e−rsWm(M∗s )αdR∗s

Because M∗t ∈ [0, b∗0], the second term vanishes because L(ψ∗s)W (m) = 0 on (0, b∗0). Because

Wm is bounded, the stochastic integral is a martingale and therefore we get after taking

expectations

E
(
e−rtW (M∗t )

)
= W (m)− E

∫ t

0
e−rsWm(b∗0) dZ∗s

+ E

∫ t

0
e−rsWm(0)αdR∗s.

Using Wm(0) = 1
α , we have

W (m) = E

∫ t

0
e−rs(Wm(b∗0)dZ∗s − dR∗s) + E

(
e−rtW (M∗t )

)
.

Let t tend to +∞ to conclude by noting again that Wm(b∗0) = 1, W (M∗t ) is bounded by

W (b∗0). �

Remark 3.1 Note that the optimal issuance policy is the same as in [6] . Either, it is

optimal to never issue equity and to default the first time the cash reserves hit zero or it

is optimal to issue equity at each time the cash reserves hit zero. For the latter case, the

firm will never default. Nevertheless, the optimal equity issuance will not depend only on

the level of issuance cost α but also on the level of hedging cost p.

We will now focus on the existence of a pair (W, b∗0) that satisfies Proposition 3.3.

We first note that the operator L(ψ) can be decomposed as follows:

L(ψ)W (m) = L(0)W (m)− ψ
(
σ2
hWmm(m)(1− ψ

2
) + pWm(m)

)
.

Therefore, an optimal hedging is a maximization (assuming that W is concave) of the

parabola

−ψ
(
σ2
hWmm(m)(1− ψ

2
) + pWm(m)

)
.

The first order condition gives

ψ∗(m) = 1 +
p

σ2
h

Wm

Wmm
(m).

Two cases have to be considered:

11



1. σ2
hWmm + pWm ≥ 0. . In that case the maximum of the parabola is below 0 so

L(0)W ≥ L(ψ)W for every ψ ∈ [0, 1],

2. σ2
hWmm + pWm < 0. and the maximum of the parabola is in [0, 1] assuming W is

concave. Due to the concavity of W along with Wm ≥ 1, the optimal level of hedging

ψ∗(m) is strictly lower than one. Therefore, it is never optimal to fully hedge except

when p = 0.

We make the following guess about the features of the value function: W 0 is a concave

twice continuously differentiable function which implies since W 0
mm(b∗0) = 0 that there is

some 0 ≤ b̃0 < b∗0 such that ψ∗(b̃0) = 0 and ψ∗ = 0 on the interval (b̃0, b
∗
0). As a consequence,

we can split the computation of the value function in two stages. First, solve on (b̃0, b
∗
0)(

σ2 + σ2
h

2

)
(W )mm + [(r − δ)m+ µ]Wm − rW = 0

under the boundary conditions

Wm(b∗0) = 1, (W )mm(b∗0) = 0,

and secondly, solve on (0, b̃0) the non-linear ordinary differential equation

σ2

2
(W )mm + [(r − δ)m+ µ− p]Wm − rW −

p2

2σ2
h

W 2
m

Wmm
(m) = 0

with the boundary condition W (0) = 0 or Wm(0) =
1

α
.

Note that it could happen that b̃0 = 0. In that case, the optimal liquidity management

policy coincides with the one described in [6].

In order to prove the existence of a concave solution satisfying Proposition 3.3, we have to

introduce the following functions. Fix b ≥ 0 and denote by V b the concave (see [6]) solution

of

L(0)V b = 0 with V b
m(b) = 1 , V b

mm(b) = 0.

According to Lemma A.2 in [6], V b(0) is a strictly decreasing function of b while the

first derivative V b
m(0) is a strictly increasing function of b. Because, lim

b→0
V b(0) =

µ

r
and

lim
b→+∞

V b(0) = −∞ (see the Internet Appendix of [6]), there exists b0 such that V b0(0) = 0.

Next proposition characterizes the shareholders value function by proving the existence of

a concave solution denoted abusively W 0 of Proposition 3.3. More precisely,

Proposition 3.4 There exist a concave twice continuously differentiable function W 0 and

a threshold b∗0 that satisfy the assumptions of Proposition 3.3.

Proof: We find it helpful to organize the proof in two cases.

First Case: Assume that V b0
m (0) ≥ 1

α . According to Lemma A.2 in [6], there is some b1 > 0

such that V b1
m (0) = 1

α . Moreover, the hypothesis V b0
m (0) ≥ 1

α implies b1 ≤ b0 and thus

V b1(0) > 0. Let us define

θb1(m) = σ2
hV

b1
mm(m) + pV b1

m (m). (3.11)
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The function
V b1
m (m)

V b1
mm(m)

is decreasing because the sign of the derivative of
V b1
m (m)

V b1
mm(m)

is given

by the sign of

σ2 + σ2
h

2
((V b1

mm(m))2 − V b1
m (m)V b1

mmm(m)) = −δ(V b1
m (m))2 + rV b1

mm(m)V b1(m) < 0.

Therefore, there is at most a threshold m̃1 < b1 such that θb1(m̃1) = 0. The existence of

m̃1 is given by the sign of θb1(0) since θb1(b1) = p ≥ 0. Thus, if the hedging cost p is such

that

σ2
hV

b1
mm(0) +

p

α
≥ 0, (3.12)

then it is optimal to never hedge and the pair (V b1 , b1) satisfies Proposition 3.3.

Note that

θb(m) =
2σ2

h

σ2
h + σ2

rV b(0) +

(
p−

2σ2
hµ

σ2
h + σ2

)
V b
m(0). (3.13)

A sufficient condition on the hedging cost p to have (3.12) is thus

p ≥
2σ2

hµ

σ2
h + σ2

.

Assume now that p is such that (3.12) does not hold and note m̃1 the solution of θb1(m) = 0.

We are interested now by the existence and the uniqueness of a concave solution to the non

linear O.D.E. on (0, m̃1)

σ2

2
Wmm + [(r − δ)m+ µ− p]Wm − rW −

p2

2σ2
h

W 2
m

Wmm
(m) = 0 (3.14)

with W (m̃1) = V b1(m̃1) and Wm(m̃1) = V b1
m (m̃1). We first notice that if such a concave

solution W 0 exists then W 0
mm(m̃1) = V b1

mm(m̃1) and thus W 0 is locally strictly concave in a

left neighborhood of m̃1. In order to see this, we let m tend to m̃1 in Equation (3.14) and

use the continuous and smooth fit at m̃1 to get

0 =
pW 0

m(m̃1)

2

(
1− V b1

mm(m̃1)

W 0
mm(m̃1)

)
+
σ2

2

(
V b1
mm(m̃1)−W 0

mm(m̃1)
)
. (3.15)

Thus the local concavity of W 0 implies the continuity of W 0
mm at m̃1. If we multiply (3.14)

by W 0
mm(m), we see that W 0

mm is the root of a second order polynomial equation and thus

for every m ≥ 0

W 0
mm(m) =

rW 0(m)− ((r − δ)m+ µ− p)W 0
m(m) + ε(m)

√
∆[W 0](m)

σ2

where ε(m) = +1 or −1 and

∆[W ](m) = ((r − δ)m+ µ− p)Wm(m)− rW (m))2 + σ2 p
2

σ2
h

(Wm(m))2.

Let’s take the concave solution satisfying ε(m) = −1. We finally obtain the existence and

uniqueness of a concave solution W 0 of (3.14) on (0, m̃1) with continuous and smooth-fit
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at m̃1 by the Cauchy-Lipschitz Theorem.

At this stage, for every fixed b, we have the existence and the uniqueness of a concave and

twice continuously differentiable function W b solution of

L(0)W b = 0 on (m̃(b), b), (3.16)

and

L(ψ∗)W b = 0 on (0, m̃(b)) (3.17)

with W b
m(b) = 1, W b

mm(b) = 0 and m̃(b) is the root of σ2
hW

b
mm(m) + pW b

m(m). We must

now check that there is some b∗0 such that W
b∗0
m (0) = 1

α , W b∗0(0) ≥ 0 and prove that ψ∗

remains in [0, 1] on [0, m̃(b∗0)].

To see this, let us denote k = V b1 −W b1 and remember that m̃1 = m̃(b1). Similarly to

Equation (3.11) we introduce

Θb1(m) = σ2
hW

b1
mm(m) + pW b1

m (m) (3.18)

A straightforward computation yields that

L(0)k(m) = − (Θb1)2(m)

2σ2
hW

b1
mm(m)

on (0, m̃1) where Θb1 is given by Equation (3.18). Therefore, L(0)k ≥ 0 on (0, b1) since V b1

and W b1 coincide on (m̃1, b1) with k(m̃1) = km(m̃1) = kmm(m̃1) = 0. Let us differentiate

L(0)k(m) on (0, m̃1) to get(
σ2 + σ2

h

2

)
kmmm + (µ+ (r − δ)m)kmm − δkm = −

(
Θb1Θb1

m

σ2
hW

b1
mm

− (Θb1)2W b1
mmm

2σ2
h(W b1

mm)2

)
.

Using smooth-fit at m̃1 and Θb1(m̃1) = 0, we get kmmm(m̃1) = 0. Differentiating one more

time and letting m to m̃1, we get(
σ2 + σ2

h

2

)
k(4)(m̃1) =

−(Θb1
m)2

σ2
hW

b1
mm

≥ 0.

Therefore, k is a convex positive function in a left neighborhood of m̃1. We will prove that

the first derivative km is always non positive. Assume the contrary and denote by m0 the

highest level of cash such that km(m0) = 0. Note that k must be concave at m0 and thus

L(0)k(m0) =

(
σ2 + σ2

h

2

)
kmm(m0)− rk(m0) < 0

which contradicts L(0)k ≥ 0. Hence, W b1
m (0) ≥ 1

α .

Set Y (m) = (W (m),Wm(m)) such that Ym = F (m,Y ) with F locally Lipschitz with respect

to Y . Denote by yb =
(
µ+(r−δ)b

r , 1
)

and φ(m, b) the unique solution of the o.d.e such that

φ(b, b) = yb. By Cauchy-Lipschitz Theorem, the function φ is jointly continuous and thus

there is a b∗0 ≤ b1 such that W
b∗0
m (0) = 1

α .

Besides we know that W b∗0 is above V b1 because V b1 corresponds to an admissible hedging
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strategy, thus W b∗0 > 0.

We then decide to set W 0 = W b∗0 > 0. In order to end the proof, we need to check that the

strategy ψ∗ is admissible, that is ψ∗ is in [0, 1] on [0, m̃(b∗0)]. The solution being concave

we know that ψ∗ < 1 on [0, m̃(b∗0)].

Using the fact that

(
σ2

2
+

p2

2σ2
h

(W 0
m)2

(W 0
mm)2

)W 0
mmm = (

p2

σ2
h

+ δ)W 0
m − ((r − δ)m+ µ− p)W 0

mm,

the sign of the first derivative of ψ∗ is given by the sign of

σ2

2
((W 0

mm)2 −W 0
mW

0
mmm) = −(W 0

m)2δ + rW 0W 0
mm

which is nonpositive because W 0 is a positive concave function.

We conclude that ψ∗ is under 1, decreasing to 0 on [0, m̃(b∗0)] and thus ψ∗ satisfies the con-

straints. As a consequence, the existence of W 0 has been proved for the set of parameters

for which it is optimal to issue equity when the cash reserves are depleted.

Second Case: Assume V b0
m (0) < 1

α . In this case V b1(0) < 0. The previous arguments can be

used by replacing V b1 by V b0 to build W b0 solution to problem (3.16-3.17). Furthermore,

we get that W b0
m (0) ≥ V b0

m (0).

Two cases must be distinguished.

• First, there exists a threshold b∗0 ≤ b0 such that W
b∗0
m (0) = 1

α . Therefore, the function

W b∗0 satisfies Proposition 3.3 and thus W 0 = W b∗0 . This is an interesting case since the

possibility of hedging makes profitable equity issuance, whereas without the possibility

of hedging equity issuance is too costly to prevent the firm from going bankrupt.

• Assume now there is no threshold b ≤ b0 such that W b
m(0) = 1

α . We will prove

this implies max
b
W b
m(0) <

1

α
. To see this, suppose, reasoning by contradiction that

there is some b > b0 such that W b
m(0) = 1

α and W b
m(0) > 0. By concavity and

because W b(b) < V b0(b0) + (b − b0), we have W b
m(b0) > 1 and W b(b0) < V b0(b0).

Introducting kb = V b0 −W b
m, we have kb(0) < 0, kbm(0) < 0,kb(b0) > 0, kbm(b0) < 0

and as previously shown L(0)kb(m) = − (Θb)2(m)
2σ2
hW

b
mm(m)

≥ 0 on (0, m̃(b)), L(0)kb(m) = 0

on (m̃(b), b0) if m̃(b) ≤ b0. Applying the maximum principle on (0, b0), we obtain a

contradiction.

Thus, it is never optimal in that case to issue equity when the cash reserve are depleted

regardless of the hedging policy. To conclude, we have to prove the existence of a

function W b solution to problem (3.16-3.17) with W b(0) = 0.

To do this, let us take b = b0 + µ
δ . By concavity of W b, kb(b0) ≥ µ

r . Using the maximal

principle between 0 and b0 we get kb(0) ≥ kb(b0) and therefore µ
r−W

b(0) ≥ kb(b0) ≥ µ
r

and W b(0) ≥ 0. By continuity there exits b1 such that kb1 = 0 or equivalently

W b1(0) = 0. Finally, the arguments to prove that ψ∗ is in [0, 1] are the same.

�
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Corollary 3.1 The optimal level of cash b∗0 is an increasing function of the hedging cost p.

Proof: Let p > p0. We write W 0(m, p) to highlight the dependence of the value function

with respect to the hedging cost p. By continuity, we have

W 0(b∗0(p), p)−W 0(b∗0(p0), p0) =

(
1− δ

r

)
(b∗0(p)− b∗0(p0)) .

But using Proposition 3.2, we have

W 0(b∗0(p), p)−W 0(b∗0(p0), p0) = W 0(b∗0(p), p)−W 0(b∗0(p), p0) +W 0(b∗0(p), p0)−W 0(b∗0(p0), p0)

≤ W 0(b∗0(p), p0)−W 0(b∗0(p0), p0).

Using the concavity ofW 0 and the smooth-fit at b∗0(p0) we getW 0(b∗0(p), p0)−W 0(b∗0(p0), p0) ≤
b∗0(p)− b∗0(p0). Consequently,

δ

r
(b∗0(p)− b∗0(p0)) ≥ 0.

�

Next Corollary gives a sufficient condition to ensure that the no-hedging policy is optimal,

namely W 0 = V b0 .

Corollary 3.2 Assume that V b0
m (0) ≤ 1

α and p ≥ 2σ2
hµ

σ2
h+σ2 . Then, the value function W 0

coincides with V b0.

Proof: Using Equation (3.13), the assumption p ≥ 2σ2
hµ

σ2
h+σ2 implies that θb0(0) ≥ 0 because

V b0 is concave with V b0
m (b0) = 1. Because V b0

m (0) ≤ 1
α , it is easy to check that V b0 satisfies

the assumptions of Proposition 3.3. As a consequence, the optimal strategy is to distribute

all the surplus above b0 as dividends, to do not hedge and to default the first time the cash

reserves hit zero. �

Remark 3.2 We have an explicit bound p̄ on the hedging cost p, that is p̄ =
2σ2
hµ

σ2
h+σ2 above

which it is optimal to never hedge. For p ≥ p̄, the decision to issue equity depends only on

the level of issuance costs α. The threshold p̄ increases with the profitability µ meaning that

the most profitable firm can afford a higher hedging cost but decreases with the idiosyncratic

risk σ. Finally, p̄ increases with the market risk σh.

Figure 3.1 gives an illustration of the optimal equity issuance policy. In the yellow area,

the firm goes bankrupt when the cash reserves hit zero regardless of the hedging policy.

Namely, when α is smaller than 0.15, the issuance cost are so high that an optimal hedging

policy does not prevent the firm to default. In the brown area, the optimal hedging offsets

the issuance cost and for α between 0.15 and 0.26 there is a level p(α) of hedging cost below

which it is optimal to issue equity to avoid bankruptcy. In the dark area, the equity issuance

is always optimal regardless of the hedging policy. To conclude, Figure 3.1 highlights the

impact of an optimal hedging policy on the permanence of firms when external funding is

costly.
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(a) Emission and Hedging

Figure 1: Issuance or bankruptcy zone depending on p and α.

Assume now that the investment has been undertaken u = 1. Regardless of the level

of self-financing a, the cash holdings will evolve independently of a after the investment

decision time T as

dMt = (r − δ)Mt dt+ dXt − 2ψt(σhB
h
t + p dt)

− dZt + αdRt.

Proceeding analogously as in Proposition 3.3, we can prove that the shareholders value

function F after the investment has been made is the concave solution to

max
ψ∈(0,1]

L̃(ψ)F = max
ψ∈(0,1]

{(
2(σ2 + (1− ψ)2σ2

h)
)
Fmm + [(r − δ)m+ 2µ− 2ψp]Fm − rF

}
= 0

(3.19)

under the boundary conditions

Fm(b∗) = 1, Fmm(b∗) = 0 and max

(
−F (0), Fm(0)− 1

α

)
= 0.

In order to simplify the exposition, we will assume that α is enough closed to one in order

to have Fm(0)− 1
α = 0 and thus F (0) > 0. Again, we can decompose the operator L̃(ψ) as

follows

L̃(ψ)F (m) = L(0)F (m)− 2ψ(2− ψ)σ2
hFmm(m)− 2ψpFm(m).

In that case, the first order condition gives

ψ∗(m) = 1 +
p

2σ2
h

Fm
Fmm

(m).

Again, two cases have to be considered

1. 2σ2
hFmm(m) + pFm(m) ≥ 0 where it is optimal to not hedge.

2. 2σ2
hFmm(m) + pFm(m) ≤ 0 where it is optimal to hedge according to the policy ψ∗.
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The value function F can be split in the same manner than in the scenario u = 0 and we

have to solve first on (b̃, b∗)

2
(
σ2 + σ2

h

)
Fmm + [(r − δ)m+ 2µ]Fm − rF = 0

under the boundary conditions

Fm(b∗) = 1, Fmm(b∗) = 0,

and secondly, solve on (0, b̃) the non-linear ordinary differential equation

2σ2Fmm + [(r − δ)m+ 2µ− 2p]Fm − rF −
p2

2σ2
h

(Fm)2

Fmm
(m) = 0

with the boundary condition Fm(0) =
1

α
.

Note that under the assumption α ≤ β, there exists a level of cash mβ such that Fm(mβ) =
1
β . The value function at time T is thus V (1,MT ) where

V (1,m) = max

(
W 0(m), max

0≤a≤I∧m

(
F (m− a)− I − a

β

))
. (3.20)

For convenience, we denote the shareholder value function if the decision to invest has been

made by W 1(m) = max0≤a≤I∧m

(
F (m− a)− I−a

β

)
.

We are now in a position to determine the optimal level of self-financing a∗ as a function

of the cash reserves.

Proposition 3.5 The optimal level of self-financing is given by

a∗(m) =


0 if m ≤ mβ

m−mβ if mβ ≤ m ≤ mβ + I

I if m ≥ mβ + I

Therefore, W 1(m) can be decomposed as follows

W 1(m) =


F (m)− I

β if m ≤ mβ

F (mβ)− I
β +

m−mβ
β if mβ ≤ m ≤ mβ + I

F (m− I) if m ≥ mβ + I

Note that W 1 is a continuously differentiable function.

Proof: The first order condition gives

1

β
− Fm(m− a) =


≥ 0 if m− a ≥ mβ

= 0 if m− a = mβ

≤ 0 if m− a ≤ mβ

from which we deduce the optimal level of self-financing. �

As soon as the investment opportunity is available, the decision maker has to choose if

he undertakes the growth opportunity by comparing W 0 and W 1. Therefore, the value

function after the arrival date T is V (1,MT ) where

V (1,m) = max
(
W 0(m),W 1(m)

)
(3.21)
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3.2 Before the arrival date of the investment opportunity

Applying the dynamic programming principle, we observe that V (0,m) can be written

V (0,m) = sup
π∈A

{
E
(∫ T∧τB

0
e−rs(dZs − dRs)

)
+ E

(
e−rTV (1,M0

T )11T≤τB
)}

(3.22)

where

dM0
t = ((r − δ)M0

t + µ)dt+ (σdBt + σhdB
h
t )− ψ(σhdB

h
t + p dt)− dZt + αdRt.

But on the other hand,

W 0(m) = sup
π∈A

{
E
(∫ T∧τB

0
e−rs(dZs − dRs)

)
+ E

(
e−rTW 0(M0

T )11T≤τB
)}

.

Because V (1,m) ≥ W 0(m), we obtain that V (0,m) ≥ W 0(m) which means that ex-ante

the growth opportunity is worthwhile.

Using the arguments preceeding Proposition 3.3, we expect that the ex-ante shareholders

value function V (0,m) satisfies

max( max
ψ∈(0,1]

L(ψ)V (0,m) + λ(V (1,m)− V (0,m)), 1− Vm(0,m), Vm(0,m)− 1

α
) = 0.

under the boundary conditions

Vm(0, 0) =
1

α
.

Note that V (0,m is positive because V (0,m) ≥W 0(m) > 0 for α satisfying the assumption

of Proposition 3.3. The following proposition establishes the result.

Proposition 3.6 Assume there exists a function W (n,m) and a threshold m∗0 such that

1. W (0,m) is a twice differentiable solution on (0,∞) of

max
ψ∈(0,1]

L(ψ)W (0,m)+λ(V (1,m)−W (0,m) = 0 and Wm(0,m) ≥ 1,Wm(0,m) ≤ 1

α
for m ≤ m∗0,

(3.23)

Wm(0,m) = 1 for m ≥ m∗0, (3.24)

together with the initial condition:

W (0, 0) ≥ 0 and Wm(0, 0) =
1

α
, (3.25)

2. W(1,m)=V(1,m).

then W (0,m) = V (0,m).
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Proof: The proof relies on the same idea as in the one of Proposition 3.3. The main

difference comes from the fact that we do not assume that W (0, .) is concave. Fix a policy

π = (ψt, Zt, Rt, a, τB) ∈ A and write as usual the processes Zt = Zct +Zdt and Rt = Rct +Rdt .

Let:

dMt = (r − δ)Mt dt+ µdt+ σdBt + σhdB
h
t − ψt(σhdBh

t + p dt)

− dZt + αdRt

M0 = m

be the dynamics of cash reserves under the policy π and Nt = 11{t≥T}. Using again the

generalized Itô formula, we can write for all t ≥ 0,

e−r(t∧T∧τB)W (N(t∧T∧τB),M(t∧T∧τB)) = W (0,m) +

∫ (t∧T∧τB)

0
e−rsL(ψs)W (Ns,Ms) ds

+

∫ (t∧T∧τB)

0
e−rsWm(Ns,Ms) (σdBt + σhdB

h
t )

−
∫ (t∧T∧τB)

0
e−rsWm(Ns,Ms) dZ

c
s

+

∫ (t∧T∧τB)

0
e−rsWm(Ns,Ms)αdR

c
s

+
∑

s≤(t∧T∧τB)

e−rs(W (Ns,Ms)−W (Ns,Ms−))

+

∫ (t∧T∧τB)

0
e−rs(W (Ns,Ms)−W (Ns−,Ms))dNs,

Introducing the martingale

Ht = Nt −
∫ t∧T

0
λ ds,

We obtain

e−r(t∧T∧τB)W (N(t∧T∧τB),M(t∧T∧τB)) = W (0,m)

+

∫ (t∧T∧τB)

0
e−rs(L(ψs)W (Ns,Ms)

+ λ(W (1,Ms)−W (0,Ms))) ds

+

∫ (t∧T∧τB)

0
e−rsWm(Ns,Ms) (σdBt + σhdB

h
t )

−
∫ (t∧T∧τB)

0
e−rsWm(Ns,Ms) dZ

c
s

+

∫ (t∧T∧τB)

0
e−rsWm(Ns,Ms)αdR

c
s

+
∑

s≤(t∧T∧τB)

e−rs(W (Ns,Ms)−W (Ns,Ms−))

+

∫ (t∧T∧τB)

0
e−rs(W (Ns,Ms)−W (Ns−,Ms))dHs,

20



Using assumptions on W (0,m), the first integral is non positive and because W (0,m) has a

bounded first derivative, the two stochastic integrals are martingales. Finally, the function

W (1,m)−W (0,m) is continuous on [0,∞) with lim
m→∞

W (1,m)−W (0,m) = C where C is

a constant. Thus W (1,m) −W (0,m) is bounded and the last term is also a martingale.

Taking expectations, we get

W (0,m) ≥ E
(
e−r(t∧T∧τB)W (Nt∧T∧τB ,Mt∧T∧τB )

)
+ E

(∫ (t∧T∧τB)

0
e−rsWm(Ns,Ms) dZ

c
s

)

− E

(∫ (t∧T∧τB)

0
e−rsWm(Ns,Ms)αdR

c
s

)

+ E

 ∑
s≤(t∧T∧τB)

e−rs(W (Ns,Ms−)−W (Ns,Ms))


We assume without loss of generality that the processes Z and R have no common jumps

and write

W (Ns,Ms−)−W (Ns,Ms) = (W (Ns,Ms−)−W (Ns,Ms)) (11∆Ms=−∆Zs + 11∆Ms=α∆Rs)

=

(∫ Ms−

Ms

Wm(Ns, u) du

)
11∆Ms=−∆Zs

+

(∫ Ms−

Ms

Wm(Ns, u) du

)
11∆Ms=α∆Rs

≥ −∆Ms11∆Ms=−∆Zs +
1

α
∆Ms11∆Ms=α∆Rs

= ∆Zs −∆Rs.

Therefore,

W (0,m) ≥ E
(∫ t∧T∧τB

0
e−rs(dZs − dRs)

)
+ E

(
e−r(t∧T∧τB)W (Nt∧T∧τB ,Mt∧T∧τB )

)
Now,

E
(
e−r(t∧T∧τB)W (Nt∧T∧τB ,Mt∧T∧τB )

)
= E

(
e−rtW (Nt,Mt)11{t≤min(T,τB)}

)
+ E

(
e−rτBW (NτB ,MτB )11{τB≤min(t,T )}

)
+ E

(
e−rTW (NT ,MT )11{T≤min(t,τB)}

)
Because, (NτB ,MτB ) = (0, 0) on the set {τB ≤ T ∧ t} and because W (0, 0) is positive, the

second term of the right-hand-side is positive. Analogously, because W (0,m) has bounded

first derivative and lim
t→∞

E(e−rtMπ
t ) = 0 for π ∈ A, the first term vanishes when t tends to

∞. Finally, it is obvious that e−rTV (1,MT ) is integrable for π ∈ A and by the dominated

bounded convergence theorem, we get

W (0,m) ≥ E
(∫ T∧τB

0
e−rs(dZs − dRs)

)
+ E

(
e−rTV (1,MT )11T≤τB

)
= V (0,m).
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The other inequality can be obtained with the same arguments as in proposition 3.3.

�

4 Costless hedging

In this section, we assume that the hedging policy is costless, that is p = 0. In that case,

the cash reserves evolves as

dMt = (r − δ)Mt dt+ dXt − dZt + αdRt − 11{u=1}adNt

where

dXt = Kt(µdt+ σdBt).

Assume that we are at time T with VT = m, the manager acting in the best interest of the

shareholders has to decide if he undertakes the growth opportunity u = 1 or if he maintains

the activity in place u = 0. If he decides to invest, he has also to decide the amount a of

self-financing.

The manager will decide to maintain the activity in place if and only if the maximum value

in (3.21) is W 0. We study now a set of conditions to ensure the optimality of the investment

in the growth opportunity.

For large m, more precisely for m ≥ max(b∗0, b
∗ + I) we observe that

W 0(m) = m+
µ

r
− δ

r
b∗0,

and

W 1(m) = F (m− I) = m− I +
2µ

r
− δ

r
b∗.

A necessary condition to make the opportunity worthless (W 0 ≥W 1) is

b∗ − b∗0 ≥
µ− rI
δ

(4.26)

Note that this condition is equivalent to the condition given in [7], Proposition 2.2 and [12],

Proposition 3. Next Proposition shows that condition (4.26) is also sufficient to make the

opportunity worthless.

Proposition 4.7 The growth opportunity is worthless (W 0(m) ≥ W 1(m)) if and only if

Condition (4.26) is satisfied.

The proof of Proposition 4.7 relies on the following lemma.

Lemma 4.1 The function W 0 − F is a decreasing function.

Proof: Let k = W 0 − F . k is infinitely differentiable on (0, b∗0) under condition (4.26).

Let us define the differential operator L̃ by

L̃f = 2σ2fmm + [(r − δ)m+ 2µ] fm − δf
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Note that Fm satisfies L̃Fm = 0 on (0, b∗0). On the other hand,

L̃W 0
m = 3δW 0

m − (3(r − δ)m+ 2µ)W 0
mm.

Therefore, L̃km ≥ 0 on (0, b∗0). Because, km(0) = 0 and km(b∗0) < 0 under condition (4.26),

the maximum principle gives that km is non positive on (0, b∗0) and thus on R+. �

Proof of Proposition 4.7: It is clear that W 1 is always bounded by F (x) − I which

corresponds to the value function after T for β = 1. According to Lemma 4.1, the function

W 0−(F −I) is decreasing. Because, W 0(b∗0) ≥ F (b∗0)−I under condition (4.26), we deduce

that W 0 ≥ F − I everywhere and thus W 0 ≥W 1. �

Under condition (4.26) and assumption (2.1), we observe that the level of dividend dis-

tribution b∗ corresponding to the decision to invest is larger than the level of dividend

distribution b∗0 corresponding to the decision to not grasp the growth opportunity. Next

Proposition proves that condition (4.26) is not necessary.

Proposition 4.8 We have b∗ ≥ b∗0.

Proof: Assume the contrary and still denote k = W 0 − F . Because b∗ < b∗0 is assumed,

we have km(0) = 0, km(b∗) > 0 and kmm(b∗) < 0. Therefore, there is some y such that

kmm(y) = 0 with km(y) > 0 and kmmm(y) ≤ 0 and thus L̃km(y) < 0. But, we still have

L̃(km) = 3δW 0
m − (3(r − δ)m+ 2µ)W 0

mm ≥ 0

which yields to a contradiction. �

The last proposition deserves some comments about the impact of both profitability and

volatility on the dividend distribution. For convenience, we use the notation b∗0 = b(µ, σ)

and b∗ = b(2µ, 2σ). According to [6], we know that the optimal threshold b is an increasing

function of σ and a decreasing function of µ. Proposition 4.8 shows that the volatility effect

dominates the profitability effect when assuming constant return to scale since b(µ, σ) ≤
b(2µ, 2σ).

Next Proposition shows that the growth opportunity is worthwhile if and only if the cash

reserves are important enough which give a new insight on the role of cash reserve.

Proposition 4.9 The function W 0 −W 1 is decreasing.

Proof: Let define k = W 0 −W 1. The idea is again to apply the maximum principle

but we have to circumvent the fact that W 1 is not a twice differentiable function. The

derivative of k is a continuous function on (0, b∗0) that is C2 almost everywhere except for

m = mβ and m = mβ + I. A direct computation shows that L̃[km] is non negative at any

point m where km is twice differentiable. Indeed,

• for 0 < m < mβ, W 1(m) = F (m)− I thus L̃[(W 1)m](m) = 0. Therefore,

L̃[km] = −[3(r − δ)m+ 2µ]W 0
mm + 3δW 0

m ≥ 0.
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• for mβ < m < mβ + I, (W 1)m = 1
β and thus

L̃[km] = −[3(r − δ)m+ 2µ]W 0
mm + 3δW 0

m +
δ

β
≥ 0.

• for m > mβ + I, L̃[(W 1)m](m) = (r − δ)IFmm(m− I) and therefore

L̃[km] = −[3(r − δ)m+ 2µ]W 0
mm + 3δW 0

m − (r − δ)IFmm(m− I) ≥ 0.

We have km(0) = 0, km(mβ) = W 0
m(mβ) − 1

β ≤ 0 according to Lemma 4.1. Let introduce

φ(x) = W 0
m(mβ + x) − 1

β . Because W 0 concave, we have that φ is a decreasing function

with φ(0) ≤ 0 thus φ(I) ≤ 0 which implies that km(mβ + I) ≤ 0. Besides km(b∗ + I) ≤ 0.

We end the demonstration by applying the maximum principle on [0,mβ], [mβ,mβ + I],

and [mβ,mβ + I] separately which gives that km is negative one each interval. �

According to Proposition 4.9, there is a threshold m̃ defined by W 0(m̃) = W 1(m̃) above

which the growth opportunity is worthwhile when Condition (4.26) is not fulfilled. In the

presence of investment opportunity, m̃ can be viewed as a target level for management

above which the irreversible opportunity to double the size of asset is worthwhile.

Proposition 4.9 has also a nice consequence of the behavior of V (0,m) for large value of

cash reserves.

Proposition 4.10 We have

lim
m→+∞

V (0,m)

m
= 1.

Proof: For large m, we have W 1(m) = W 0(m)+C where C is an explicit constant. Using

Proposition 4.9, we deduce that W 1(m) ≤ W 0(m) + C for all m > 0. Using the dynamic

programming principle (3.22), we have that

V (0,m) ≤W 0(m) + C.

Using V (0,m) ≥ m, we get the result because

lim
m→+∞

W 0(m)

m
= 1.

�

Next Proposition is a first step in the explicit construction of the value function before the

arrival date of the investment opportunity. Let us define

Lλf =
σ2

2
fmm + ((r − δ)x+ µ)fm − (r + λ)f.

Proposition 4.11 There exists a twice differentiable function V̂ and a threshold b∗0,λ such

that LλV̂ + λV (1,m) = 0, (V̂ )m(b∗0,λ) = 1, (V̂ )mm(b∗0,λ) = 0 and (V̂ )m(0) = 1
α .
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Proof: If V (1,m) = W 0 then it is obvious that W 0 and b∗0 satisfies Proposition 4.11. We

thus assume that V (1, b∗ + I) = W 1(b∗ + I). We fix b > b∗ + I and define W b the solution

of

LλW
b + λV (1,m) = 0 W b

m(b) = 1W b
mm(b) = 0.

We first prove that W b is concave on (b∗ + I, b).

Because W b
mmm(b) = 2δ

σ2 , the function W b is concave in a left neighborhood of b. Assume

that there is some y ∈ (b∗+ I, b) such that W b
mm(y) = 0 and W b

mm(x) < 0 for x ∈]y, b[. We

have W b
m(y) ≥ 1 and thus

((r − δ)y + µ)− (r + λ)W b(y) + λV (1, y) ≤ 0.

On the other hand,

((r − δ)b+ µ)− (r + λ)W b(b) + λV (1, b) = 0.

Substracting the last two inequalities, we get because V (1,m) is linear on (b∗ + I, b),

W b(b)−W b(y)

b− y
≤ 1− δ

r + λ
,

which yields to a contradiction. Therefore, W b is concave on (b∗ + I, b).

Now, let us define kl = W b+l − F (. − I − l) for l > 0 where F has been extended on

[−I − l, 0]. F is a still a concave function on [−I − l, b∗] and Fm(−I − l) goes to infinity as

l goes to infinity. We have

Lλk
l = −(

3

4
(r−δ)m+

(r − δ)(I + l)

4
+
µ

2
)Fm(m−I−l)+3

4
rF (m−I−l)−λ(V 1(1,m)−F (m−I−l))

and

(Lλ + (r − δ))klm = −(
3

4
(r − δ)m+

(r − δ)(I + l)

4
+
µ

2
)Fmm(m− I − l) +

3

4
δF (m− I − l)

− λ(V 1
m(1, .)− Fm(m− I − l))

A straightforward computation yields to V 1
m(1,m)−Fm(m− I− l) = Fm(m− I)−Fm(m−

I − l) < 0 for m ≥ mβ + I,

V 1
m(1,m)− Fm(m− I) = 1/mβ − Fm(m− I − l) ≤ 0 for m ∈ (mβ,mβ + I)

and V 1
m(1,m)− Fm(m− I − l) = Fm(m)− Fm(m− I − l) < 0 for m ≤ mβ.

Therefore, (Lλ + (r − δ))klm ≥ 0. Because W b+l is strictly concave on (b∗ + I, b + l),

klmm(b∗ + I + l) < 0 and klm(b∗ + I + l) > 0. Now, two cases have to be considered.

• First case : V (1,m) = W 1(m), the maximum principle on [0, b∗ + I] implies that

klm(0) > 0 which is equivalent to W b
m(0) ≥ 1

α .

• Second case: according to the maximum principle on [m̃, b∗ + I], klm(m̃) > 0 so

W b+l
m (m̃) > Fm(m̃− I − l). Because Fm(−I − l) goes to infinity as l goes to infinity,
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Fm(m̃− I − l) > W 0
m(m̃) for l large enough. Introduce hl = W b+l −W 0. For l large

enough, the function hl satisfies

Lλh
l = 0

so

(Lλ + (r − δ))hlm = 0

and

hlm(m̃) ≥ 0

Applying again the maximum principle between 0 and m̃, we obtain that W b+l
m (0) ≥ 1

α

for l large enough.

The function b→W b
m(0) is continuous (Cauchy-Lipschitz Theorem) and because W 0

m(0) =

1 there is b∗0,λ such that W
b∗0,λ
m (0) = 1

α . �

Note that if the solution V̂ of Proposition 4.11 is concave then the shareholders value

function is V (0,m) = V̂ (m) according to Proposition 3.6. The next two Propositions give

sufficient conditions for the concavity of V̂ .

Proposition 4.12 If δ
λ ≥

1−α
α then V̂ is concave.

Proof: Assume there is some x ≤ b∗0,λ such that V̂mm(x) = 0 and V̂mm < 0 on ]x, b∗0,λ[.

Because V̂ is concave on (x, b∗0,λ), we must have V̂m(x) ≥ 1 and V̂mmm(x) ≤ 0.

First, suppose that x 6= m̃. Therefore, V (1,m) is differentiable at x and thus

σ2

2
V̂mmm(x)− (δ + λ)V̂m(x) + λVm(1, x) = 0.

This implies

Vx(1, x) ≥ 1 +
δ

λ
.

Now, suppose that x = m̃. We introduce the function

φ(m) =
λV (1,m) + [(r − δ)m+ µ]V̂m(m)

r + λ
.

By assumption, φ is differentiable on (x, b∗0,λ) and we have V̂ (b∗0,λ) = φ(b∗0,λ) and V̂ (x) =

φ(x). By Rolle’s theorem, there exists y ∈ (x, b∗0,λ) such that V̂m(y) = φm(y) yielding as in

the first case (because V̂ is concave on y ∈ (x, b∗0,λ))

Vm(1, x) ≥ 1 +
δ

λ

Using the hypothesis δ
λ ≥

1−α
α , we get Vm(1, x) ≥ 1

α which yields to a contradiction and

ends the proof. �

Proposition 4.13 If the set of parameters are such that V (1,m) = W 1(m) then V̂ is

concave and thus V (0,m) = V̂ (m).
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Proof: Assume that there is some x0 < b∗0,λ such that V̂mm(x0) = 0 and V̂mm(x) ≤ 0 for

x ∈ (x0, b
∗
0,λ). First, we will prove that V̂m(x0) < 1

α . Differentiating the o.d.e, we get

σ2

2
V̂mmm(x0)− (δ + λ)V̂m(x0) + λW 1

m(x0) = 0.

Because V̂mmm(x0) ≤ 0, we must have

V̂m(x0) ≤ λ

λ+ δ
W 1
m(x0) ≤ λ

λ+ δ

1

α
<

1

α
.

Now, the boundary condition V̂m(0) = 1
α implies that V̂ cannot be convex on (0, x0) because

V̂m(x0) < 1
α . Thus, there is some y0 < x0 such that V̂mm(y0) = 0 and V̂ strictly convex on

(y0, x0). As a consequence, V̂mmm(y0) ≥ 0. Because W 1 is concave, the function

k(x) =
σ2

2
V̂mmm(x) + ((r − δ)x+ µ)V̂mm(x)− (δ + λ)V̂m(x)

is increasing and thus k(y0) ≤ k(x0).

But,

k(y0) =
σ2

2
V̂mmm(y0)− (δ + λ)V̂m(y0) ≥ −(δ + λ)V̂m(y0),

and

k(x0) =
σ2

2
V̂mmm(x0)− (δ + λ)V̂m(x0) ≤ −(δ + λ)V̂m(x0).

Therefore, k increasing implies V̂m(x0) ≤ V̂m(y0) which contradicts V̂ strictly convex on

(y0, x0). Therefore, x0 does not exist and V̂ is concave. �

We are now in a position to prove the main result of this section. Next Proposition

establishes the existence of a solution to the free boundary problem of Proposition 3.6. Let

Lλ(ψ)f =
σ2 + (1− ψ)2σ2

h

2
fmm + ((r − δ)x+ µ)fm − (r + λ)f.

Proposition 4.14 There exists a twice differentiable function U and a threshold m∗0 such

that

max(Lλ(0), Lλ(1))U(m) + λV (1,m) = 0,

and

(U)m(m∗0) = 1, (U)mm(m∗0) = 0 and (U)m(0) =
1

α
.

Moreover, the value function V (0,m) coincides with U(m).

Proof: The proof relies on the study of the following boundary value problem

max(Lλ(0), Lλ(1))U b(m) + λV (1,m) = 0, (U b)m(b) = 1, (U b)mm(b) = 0.

First, we prove that U b is concave for b large enough. Let V b the solution of

Lλ(1)V b(m) + λV (1,m) = 0, (V b)m(b) = 1, (V b)mm(b) = 0.
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Note that if the function V b is concave then U b = V b. We know that V b is concave in

a left neighborhood of b. Assume by a way of contradiction that there is some mb such

that V b
mm(mb) = 0. Due to the Proposition 4.11, mb < b∗ + I. Thus (V b)m(m) ≥ 1 for all

m ∈ (mb, b). For b > b∗ + I > m ≥ mb,

σ2

2
V b
mm(m) =

σ2

2

(
V b
mm(m)− V b

mm(b)
)

≤
(

(r + λ)(V b(m)− V b(b))− (r − δ)(m− b) + λ(V (1, b)− V (1,m))
)

≤ (δ + λ)(m− b) + λ(V (1, b)− V (1,m))

= (δ + λ)(m− b) + λ(V (1, b)− V (1, b∗ + I) + V (1, b∗ + I)− V (1,m))

= (δ + λ)(m− b) + λ(b− (b∗ + I) + V (1, b∗ + I)− V (1,m))

< δ(b∗ + I − b) + λ(m− (b∗ + I))(1− 1

α
)

< (b∗ + I)(δ + λ(
1

α
− 1))− δb.

Therefore, for b ≥ (b∗+I)(δ+λ( 1
α
−1))

δ , (V b)mm(mb) < 0 which yields to a contradiction.

We have that U b is concave for b large enough and consequently (see Proposition 4.11)

U bm(0) ≥ 1
α for some b large enough.

Now, we prove that there is at most two threshold x0 ≤ m̃ ≤ x1 such that U bmm(xi) = 0. If

if is not the case, U bmm would vanish twice in a region where V (1,m) is concave. Proceeding

analogously as in Proposition 4.13, it is straightforward to get a contradiction by working

on each region where V (1,m) is concave .

Because the control ψ admits at most two points of discontinuity, the Cauchy-Lipschtiz

theorem applies and thus the mapping b → U bm(0) is continuous (see Arnold [1]). Conse-

quently, there is some m∗0 such that U
m∗0
m (0) = 1

α .

Finally, it remains to show that V (0,m) = Um
∗
0(m) or equivalently that U

m∗0
m (m) ≥ 1 and

U
m∗0
m (m) ≤ 1

α . Let’s show the first assertion. If ever, Um
∗
0 is concave, there is nothing to

prove. Assume thus that there is some 0 < x0 < m̃ < x1 such that Um
∗
0 is concave on

(0, x0), convex on (x0, x1) and concave on (x1,m
∗
0). Note that if we do not have U

m∗0
m ≥ 1

then by convexity it is equivalent to assume that U
m∗0
m (x0) < 1. If it is the case, let us define

k(m) = U
m∗0
m (m)−W 0

m(m). We have k(0) = 0, k(x0) < 0 and kmm(x0) ≥ 0. Thus, there is

some y < x0 such that k(y) < 0, km(y) = 0 and kmm(y) ≥ 0 which yields to a contradiction

because k satisfies on (0, x0)

σ2

2
kmm + (r − δ)m+ µ)km − (δ + λ)k = 0.

For the second assertion, the inequality U
m∗0
m ≤ 1

α can be obtained working on each region

where V (1,m) is concave similarly to Proposition 4.13.

�
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5 Algorithms and numerical results

We present in this section all the algorithms developed to compute the value function and

the management strategy in terms of hedging, investment, dividend payout and equity

issuance before and after the arrival of the investment opportunity. Then numerical results

are given and discussed to illustrate the different optimal policies.

5.1 Algorithms

After the investment opportunity arrival at date T , we have to solve Equations (3.7) and

(3.8) that both depend on the optimal hedging ψ∗. Knowing the boundary level value b∗0,

the concave solution W of proposition 3.4 satisfies the equation L(0)W = 0 near b∗0 and

can be calculated using a Runge Kutta scheme with step h starting at b∗0 with initial value

(W (b∗0),Wm(b∗0)) = (
(r−δ)b∗0+µ

r , 1) .

The solution of this equation is valid as long as it is optimal to not hedge.

All values ((W )(b∗0 − ih),Wm(b∗0 − ih)) are thus calculated for i = 0 to ĩ until the solution

reaches the domain where hedging is optimal that is when

ψ∗(b∗0 − ĩh) = 1 +
p

σ2
h

(Wm)2

(W )mm
(b∗0 − ĩh) > 0

In order to solve the equation for m < b∗0 − ĩh , we used an explicit Runge Kutta scheme :

L(0)W (m− h)− pW (m− h) =
p2

2σ2
h

(Wm)2

(W )mm
(m)

The function initial value (W (0),Wm(0)) are thus computed .

Algorithm 1 allows us to calculate the value (W b)m(0) for a given threshold b such that W b

satisfies

∀m ≤ b max
ψ∈(0,1]

L(ψ)W b = 0 and (W b)m(b) = 1, (W b)mm(b) = 0. (5.27)
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Algorithm 1 Algorithm to solve solution without investment (W b) with threshold b value

given

Require: The problem coefficient, a guess b for b∗0 value,

Ensure: Calculate the function W b and its derivatives

i = b/h− 1

Initialize W b(b) = (r−δ)b+µ
r , (W b)m(b) = 1), (W b)mm(b) = 0.

while i ≥ 0 do

Calculate pseudo hedging : Couv = 1 + p
σ2
h

((W b)m)2

(W b)mm
((i+ 1)h)

if 0 ≤ Couv then

Solve one RK step at m = ih L(0)W b(m)− pW b(m) = p2

2σ2
h

((W b)m)2

(W b)mm
(m+ h)

else

Solve one RK step at m = ih L(0)W b(m) = 0

end if

i = i− 1

end while

Because the optimal threshold b∗0 is unknown, we propose a dichotomous scheme based

on the empirically observed property that the function b −→ (W b)m(0) is increasing (recall

that the monotonous property of the initial condition is known to be true for linear operator

and seems to be true in the non linear case). Algorithm 2 gives the dichotomous procedure

to compute b∗0. In the case where the computed function W b∗0 satisfies W b∗0(0) < 0 then a

similar dichotomous scheme is used to find b∗1 such that W b∗1(0) = 0. In that case, the firm

defaults when the cash reserves hit 0.

Same algorithms are used to compute the functions F solution of Equation (3.19) and

W 1 given by Proposition 3.5.

Before the arrival date T , a different algorithm has to be used because the function

b→ (V b)m(0) where V b is solution of

∀m ≤ b max
ψ∈(0,1]

(L(ψ)− λ)V b(m) = −λV (1,m) and (V b)m(b) = 1, (V b)mm(b) = 0.

(5.28)

is very sensitive to the boundary value b. Besides we know that V b∗0,λ(0) is above W 0(0).

So we prefer to use a dichotomous scheme based on the standard shooting method. Let us

consider the initial boundary value problem

∀m ≤ ba max
ψ∈(0,1]

(L(ψ)−λ)V a(m) = −λV (1,m) and V a(0) = a, V a
m(0) =

1

α
, (V a)m(ba) = 1.

(5.29)

The function that associates (V a)mm(ba) to a is numerically increasing for a near W 0(0)

and the usual methods for finding roots may be employed here, such as Newton method.
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Algorithm 2 Algorithm to determine b∗0 value, and HJB solution associated

Require: The problem coefficient (α ...), a bound Bmax for b value, precision prec required

on derivative,

Ensure: Calculate the function W , the b∗0 value

bSup = Bmax, solve Algorithm 1 associated to bSup,

bInf = 0., Er = 1.

while Er > prec do

bEst = 0.5(bSup+ bInf) solve Algorithm 1 associated to bEst

er = |Wm(0)− 1./α|
if Wm(0) > 1./α then

bSup = bEst

else

sInf = bEst

end if

end while

The optimal a∗ such (V a∗)mm(ba∗) = 0 is close to W 0(0).

5.2 Numerical results

We present some results obtained for some set of parameters with the goal to exhibit

some special features of the value function and the hedging strategies. Keeping the same

notations as in previous sections we take the following common values for our numerical

results :

• the annual continuous risk free rate r = 0.05,

• the free cash-flow agency cost per year δ = 0.01,

• the annual volatility of unhedgeable risks associated to production gain σ = 0.2,

• the annual volatility of hedgeable risks associated to production gain σh = 0.2,

• the profitability of the cash reserves per year µ = 0.07,

• the equity issuance cost α = 0.3 (equivalent to a 16.66% interest rate for borrowing

money),

• the investment external financing cost β = 0.8 (equivalent to a 6.25% interest rate

for borrowing money)

The investment cost I will be a parameter taking values between 0.5 and 2 , λ the oppor-

tunity occurrence intensity will evolve between 0.175 to 0.7 (meaning that the opportunity

occurrence in the first year is taken equal to 16.05% and 50.34%), and p the hedging cost

will vary from 0 to 0.015 euros per year for a single unit of capital stock Kt.

The effect of hedging is illustrated on figure 2 with the comparison of the value functions
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with costless hedging and without hedging. In that case, it is always optimal to invest be-

cause the function if you invest after T is always above the function if you don’t invest after

T . We notice that the function values with hedging are always above the function values

without hedging which means that optimal hedging policies are worthwhile. As previously

shown, the value function before T is always above the value function after T when the

decision maker decides not to invest. At a first glance, the fact that the value function

before T may be above the function after T may seem odd : it only indicates that the

opportunity is a good news for the firm and it hopes that the investment opportunity will

occurs at the time where the cash level makes it very profitable.

(a) No hedge (b) Costless hedging

Figure 2: Comparing function values with and without hedge, p = 0, I = 0.5, λ = 0.175.

When the investment cost I increases, we check the obvious fact that the investment

function W 1 decreases as shown on figure 2 and 3. When the intensity of the investment

(a) I = 1 (b) I = 2

Figure 3: Comparing function values with hedge p = 0, λ = 0.175 for different I values

date λ increases, the value function converges to max(W 0,W 1) as shown on figure 4 : the

stochasticity of the opportunity occurrence’s date vanishes (this dates goes to 0 with proba-

bility one). In the limit case where λ is infinite, the investment opportunity is immediately

available and the level of cash reserves determines the optimal decision to growth. In par-

32



ticular, poor cash-firms do not invest when the two value functions W 0 and W 1 intersect.

Figure 5 gives the hedging strategy in the case of costless hedging for different values

(a) λ = 0.525 (b) λ = 0.7

Figure 4: Comparing function values with hedge p = 0, I = 2 for different λ values.

of λ. For high values of λ the optimal hedging strategy exhibits interesting features. In

particular, it is optimal to not hedge in a neighborhood of the level of cash m̃ for which

W 0(m̃) = W 1(m̃). This means that the value function is locally convex around m̃ which

may be interpreted as a gamble to push the level of cash reserve to the right in order to

make the investment valuable. This property highlights the nonlinear behavior of the opti-

mal hedging strategy when there is a high chance to catch a growth opportunity. It departs

from the usual precautionary role of cash reserves by adding a gambling effect due to the

presence of the growth opportunity. Figure 6 shows that the firm value decreases with p as

(a) λ = 0.175 (b) λ = 0.7

Figure 5: Comparing hedging strategies with p = 0, I = 2 for different λ values.

proved in Proposition 3.2. Moreover, the non linear behavior of the hedging strategy is all

the more observable that the hedging cost p is high. Figure 7,8 give the optimal hedging

strategies for different values of p. We observe that small values of p have a dramatic impact

on the hedging policy with the appearance of two different areas where it is optimal to not

hedge while it is optimal to hedge when p = 0. It has been checked numerically that in this
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Figure 6: Comparing function values before T with hedge I = 2, λ = 0.7.

two areas the value function is locally convex meaning that the option holder was eager for

risk : the cost of hedging is more important than the expected profit of undertaking the

investment with a higher cash level.

6 Conclusion

In this paper, we have characterized the optimal hedging policy of a liquidity constrained

firm that face uncertainty on its capacity expansion. We proved that the features on

the optimal liquidity management policies in terms of hedging, dividend distribution and

external funding depend crucially both of the hedging costs and of the likelihood of the

capacity expansion. In particular, when the likelihood of the growth opportunity is low, the

shareholder value function is concave before and after the arrival of the opportunity and

the hedging ratio is a decreasing function of cash level that hits zero before the threshold

of dividend distribution. The novel implication of our paper is the non-monotonic feature

of the hedging policy before the arrival of the opportunity when the likelihood of it is

high enough. The shareholder value at the time of the appearance of the opportunity

exhibits local convexity and consequently, the hedging strategy is to hedge for low level of

cash reserves, to cease to hedge for intermediate levels of cash reserves in order to make

profitable the potential growth opportunity, and finally to start hedging again for higher

levels of cash reserves.
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(a) p = 1e− 6

(b) p = 1e− 5

Figure 7: Comparing hedging strategies before T with I = 2 λ = 0.7 for p = 1e − 5 and

p = 1e− 6.
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(a) p = 5e− 3

(b) p = 1e− 2

Figure 8: Comparing hedging strategies before T with I = 2 λ = 0.7 for p = 5e − 3 and

p = 1e− 2.
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