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Abstract

This article examines how �rms facing volatile input prices and holding some degree of market

power in their product market link their risk management and their production or pricing

strategies. This issue is relevant in many industries ranging from manufacturing to energy

retailing, where risk averse �rms decide on their hedging strategies before their product

market strategies. We �nd that hedging modi�es the pricing and production strategies

of �rms. This strategic e¤ect is channelled through the risk-adjusted expected cost, i.e.,

the expected marginal cost under the probability measure induced by shareholders� risk

aversion. It has opposite e¤ects depending on the nature of product market competition:

hedging toughens quantity competition while it softens price competition. Finally, if �rms

can decide not to commit on their hedging position, this can never be an equilibrium outcome:

committing is always a best response to non committing. In the Hotelling model, committing

is a dominant strategy for all �rms.

JEL Classi�cation: L13, G32

Keywords: Risk Management, Price and Quantity Competition.

Corresponding Author: Jean-Charles Rochet, University of Zürich, Department of

Banking and Finance, Plattenstrasse 32, CH-8032 Zürich, Phone +41 446344055.



1 Introduction

Most formal analyses of corporate risk management decisions consider price-taking �rms that

face volatile cash �ows. For example, small �rms producing commodities or raw materials

(e.g., metals and minerals, oil and gas, electric power) face output price volatility. They can

use derivatives contracts to hedge against �uctuations of the output prices. This standard,

"non-strategic" risk management logic also applies to �rms facing input price volatility,

provided they do not exert market power in either their input or product markets.

However, when �rms facing input price volatility have some degree of market power in

their product market, their strategies become more elaborate. A �rm�s hedging modi�es its

realized input cost, hence its product market strategy. Thus, the �rm alters the competitive

dynamics in its industry, and must take into account the behavior of its competitors.

This situation occurs in many industries. For example, electricity retailers purchase power

on wholesale markets and resell it to their retail customers. In Britain, the electricity and

gas regulatory agency (Ofgem (2008), page 10) indicates that: "there is evidence that the

(6 largest suppliers) seek to benchmark their hedging strategies against each other in order

to minimize the risk of their wholesale costs diverging materially from the competition".

Suppliers thus appear to include their competitors�hedging strategy in their own hedging

strategy, and ultimately their product market strategy.

Airlines also constitute a relevant example. Carter et al. (2006) report that, over the

period 1992 � 2003, fuel price represented more than 13% of airlines operating costs, and

exhibited annualized volatility of 27%. Airlines do not exert market power in the fuel market,

yet they are an oligopoly on speci�c routes (see for example Gerardi and Shapiro (2009)).

The food processing industry provides another example. Food processing �rms are ex-

posed to volatile feedstock prices (e.g., grains, tobacco). They may not exert market power

in the feedstock markets, however most empirical studies document market power in their

product markets: see for example the survey by Sheldon and Sperling (2001).

As the examples above suggest, the interaction between hedging and product market
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strategies is relevant for multiple industries. Yet, the academic literature on the strategic

aspects of hedging is small, for, in most cases, a separation (or dichotomy) property exists:

hedging is found to have no impact on product market strategy (see for example the references

in Dionne and Santugini (2013)). This article is among the few that explicitly establishes a

link between hedging and product market strategy when �rms compete in quantity (Cournot)

and in price (di¤erentiated Bertrand).

We focus the analysis on risk-averse �rms that hedge before deciding their product market

strategies. The empirical relevance of this choice is justi�ed in Section 3. Formally, we use

two-stage games: �rms �rst determine their hedging strategy, then determine their product

market strategy (quantity or price), conditional on their �rst-stage choice.

We �rst analyze quantity competition. We prove that the �rst-order conditions charac-

terizing the equilibrium of the (second-stage) production game are similar to the standard

Cournot case, except that risk-adjusted expected costs replace marginal costs. The intuition

is that investors value a marginal cost increase using the probability measure induced by

their marginal utility of wealth in each state of the world, and not the physical probability

measure. This risk-adjusted expected marginal cost is determined in equilibrium, and is

decreasing in own hedging. Thus, a �rm that increases its hedging becomes more aggressive

(Lemma 2).

An equilibrium of the production game always exists. If �rms�absolute risk aversion is

constant (or does not vary too much), this equilibrium is unique, and an increase in own

hedging reduces the other �rm�s equilibrium output (Proposition 2). If a symmetric equilib-

rium of the (�rst-stage) hedging game exists, hedging toughens quantity competition: �rms

hedge more than their (anticipated) equilibrium production, thus committing to produce

more than if their costs were constant and equal to the expected cost under the physical

probability measure (Proposition 3).

We establish similar results for price competition, although we reach the opposite con-

clusion: hedging softens price competition. As with quantity competition, risk-adjusted
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expected marginal costs, determined in equilibrium, replace constant marginal costs in the

�rst-order conditions characterizing the equilibrium of the pricing game. Since risk-adjusted

expected costs are decreasing in own hedging, a �rm that increases its hedging becomes more

aggressive (Lemma 3).

As with quantity competition, an equilibrium of the pricing game always exists. If ab-

solute risk aversion is constant, the equilibrium is unique, and an increase in own hedging

reduces the other �rm�s equilibrium price. The crucial di¤erence with quantity competition

is that hedging softens pricing competition: �rms hedge less than their (anticipated) equi-

librium production, thus committing to a price higher than if their cost was constant and

equal to the expected cost under the physical probability measure (Proposition 5).

Finally, we examine the strategic incentives to commit to a hedging position (Proposition

6). The above results are derived under the assumption that Boards of Directors impose that

�rms commit to their hedging position. This is usually meant to limit speculation by traders.

Ignoring that objective, does commitment arise in equilibrium?

We show that, whether �rms compete in quantity or in price, committing is a �rm�s

best response to the other not committing. Thus universal non commitment never arises

as an equilibrium. Furthermore, in the particular case of the Hotelling model (where �rms

compete in price and total demand is inelastic) commitment is a dominant strategies for all

�rms.

This article is structured as follows: Section 2 discusses the links with the literature.

Section 3 presents the model. Section 4 analyzes quantity competition. Section 5 analyzes

price competition. Section 6 examines incentives to commit to hedging decisions. Technical

proofs are presented in the Appendix.

2 Literature Review

As mentioned previously, only a few articles examine the interaction between hedging and

product market strategies. They are reviewed below.
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Dionne and Santugini (2013) examine a two-stage game related to ours. In the �rst

stage, �rms decide to enter the market (or not). In the second stage, risk averse �rms facing

a volatile input price compete à la Cournot in their output market, and simultaneously

determine their hedging strategy. As they solve the game backwards, Dionne and Santugini

(2013) �nd that both hedging and product market strategies depend on the number of �rms in

the market. The latter is then determined in equilibrium, and is a function of the volatility

of input price, the level of forward prices, and �rms� risk aversion. There are two main

di¤erences with our model: we consider a mature market where the number of active �rms

is �xed, while Dionne and Santugini (2013) look at markets where new �rms can enter. The

second di¤erence is that in our model �rms commit ex ante to their hedging strategies (more

on this in the next section) while in Dionne and Santugini (2013) hedging and quantities are

jointly determined: �rms use hedging as a strategic commitment device in our model, while

they use market entry in Dionne and Santugini (2013).

Allaz and Villa (1993) look at �rms that are large enough to exert market power on both

the spot and the forward markets. There is no uncertainty. In the spot market (stage 2), a

�rm that has already sold a share of its output faces lower incentives to withhold output. In

the forward market (stage 1), �rms face a prisoner dilemma, and cannot resist selling output

forward. Thus the existence of forward contracts reduces �rms�market power. This result

is very similar to our Proposition 6, even though the setting is di¤erent: �rms in Allaz and

Villa sell output in spot and forward markets where they exert market power, while in ours,

�rms exert no market power in the spot and forward markets for input.

Adam, Dasgupta, and Titman (2007) examine two-period games in the presence of �nan-

cial constraints: �rms�hedging decision in the �rst-period a¤ects their investment capacity,

hence their pro�tability in the second period. They show that asymmetric equilibria arise:

in equilibrium, some �rms hedge, while others do not. In their model, the presence of �-

nancial constraints and the resulting potential underinvestment is the conduit for strategic

interaction. Similarly, Loss (2012) examines the interaction between hedging demand and
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the characteristics of investment opportunities in the presence of �nancial constraints. Us-

ing a reduced form for pro�t functions, he �nds that a �rm�s hedging demand is high when

investments are strategic substitutes, and low when they are strategic complements. In this

article, by contrast, prices and outputs are endogenized together with hedging positions.

Bodnar, Dumas, and Marston (2002) consider a duopoly with asymmetric exposure to an

exchange rate, and determine the optimal pass-through and related exposure. While the

problem is related to the one examined here, the analytical approach is very di¤erent: they

treat the exchange rate as a �xed input price, not as a stochastic variable. Recently, Nocke

and Thanassoulis (forthcoming) examine how credit constraints, making �rms endogenously

risk averse, impact vertical relationships in the supply chain. They �nd that, in the short

run, the optimal supply contract involves risk sharing and double marginalization.

This article also is methodologically related to the literature on the strategic impact of

�rms��nancial structure1, that was initiated by Brander and Lewis (1986). Brander and

Lewis (1986) examine a two stage game. In the �rst stage, �rms determine their debt level.

In the second stage, they compete à la Cournot, facing uncertainty on their pro�tability.

Brander and Lewis (1986) �nd that, in the states of the world where marginal pro�tability

is higher, an increase in debt increases the equilibrium output, which echoes our Proposition

2. They also �nd that the equilibrium level of debt is excessive from the industry�s point of

view, which echoes our Proposition 6.

Our analytical approach, namely the use of two-stage games, is identical to Brander

and Lewis (1986). However, we examine a di¤erent decision by �rms: hedging and not

capital structure. Speci�cally, we show that �rms can use risk management as a strategic

instrument, as powerful as debt.

1A review of this literature can be found in Tirole (2006), Chapter 7.
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3 Quantity Competition: the Model

Consider two identical �rms, indexed by i = 1; 2, competing à la Cournot. Firm i produces qi

units of output, total production is Q = q1+ q2, and inverse demand P (Q). The technology

is linear: each unit of input, that costs ~c, is transformed into one unit of output. Firm i�s

commercial pro�t is thus:

�C (qi; qj; ~c) = qi (P (Q)� ~c) :

3.1 Uncertainty on input costs and risk management

Ex ante, the input cost ~c is a random variable, with a cumulative distribution function G (:)

on a bounded support. Firms can hedge some of their risk on input cost ~c by buying forward

contracts at (unit) price F . To eliminate speculative motives for hedging, we assume that

F = E [~c]. There are no transaction costs associated with hedging. Thus, at t = 2 (i.e., once

the input cost ~c is known), the pro�t function of �rm i that has purchased forward quantity

Hi at price F is:

�i=� (qi; qj; Hi; ~c) = qi (P (Q)� ~c) +Hi (~c� F )

= qi (P (Q)� F )� (qi �Hi) (~c� F ) :

The �rst expression for �rm i0s pro�t corresponds to adding to its commercial pro�t the

net gain (or loss) on its forward position Hi. The second expression shows an equivalent

decomposition: �rm i can consider that its production cost is F , and its net (unhedged)

exposure to input price �uctuations (qi �Hi).

Firms do not have market power in the spot and forward markets for input, even though

they do exert market power in their product market. We also assume that �rms choose their

outputs (or prices) before input costs are realized. This is the case for most manufacturing

industries2: producers (e.g., car manufacturers) commit to a product price or volume for

2This assumption does not apply to industries where output price is �exible. For example delivery services
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the relevant period (typically one or two quarters). During that period, input prices (e.g.,

aluminum and steel prices) vary. This assumption also holds for the electricity supply in-

dustry. For example in the United Kingdom, electricity retail rates typically change only 3

or 4 times a year, while wholesale power prices vary continuously.

Two other assumptions are crucial for risk management to have any strategic value. First,

each �rm must be able to publicly commit to its hedging decision. Second, �rms must be

"risk averse", in the sense that shareholder value can be measured by the expectation of

some concave function of pro�t. We now motivate these assumptions.

3.2 Public commitment to the hedging decision

Except for Section 6, we assume throughout this article that �rms publicly commit to their

hedging decisions (H1; H2) before they select their output (or prices). This assumption can

be justi�ed as follows.

First, �nancial regulations require �rms to publish, in their quarterly statements, a de-

scription of their portfolio of forward purchases and sales. While some discretion still exists

in disclosure, an outside party can get a close picture of a �rm�s hedging portfolio. For

example, Jin and Jorion (2007) were able to compute the delta-equivalent of the forward

portfolio for US oil and gas companies. Also, as previously mentioned, electricity suppliers

in Britain infer each other�s hedging portfolio from �nancial statements and other public

information.

Second, industrial �rms can �and in practice do �commit to a hedging strategy through

their risk management policy. Forward sales and purchases, that require the use of deriv-

atives, are usually handled with extreme caution by Board of Directors, concerned about

(e.g., Fedex and UPS) explicitly include in their published rate a fuel surcharge schedule, that depends on
the price of an oil index. Similarly, electricity suppliers in Norway o¤er retail contracts explicitly adjusted
to the wholesale power price.
When �rms set production after the input price is realized, the pro�t from the hedge is known before

the production decision is made, thus has no impact on it. Firms cannot do any better than standard
deterministic pro�t maximization. Knowing that, when �rms make the hedging decision, they follow the
"standard" non-strategic risk management logic.
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potential speculative behavior by traders. Boards then require management to de�ne and

follow a clear hedging strategy. As mentioned earlier, this position is communicated to

investors and regulators. Management has then limited discretion to deviate from it.

Without commitment on hedging, no strategic interaction would arise and there would

be a dichotomy between hedging and production. Suppose indeed that �rms select output,

then hedge. Reasoning backwards, consider �rst the hedging decision, once production is

known. Since (i) �rms are risk averse, and (ii) there are no transaction costs nor expected

gain from hedging (i.e., E [~c] � F = 0), full hedging is the optimal strategy. Consider now

the production decision. Knowing that input costs will be perfectly covered at the forward

price, �rms play a symmetric Cournot game with constant marginal costs equal to F . The

same reasoning holds for price competition.

Thus, this article is focussed on situations where risk-averse �rms hedge before making

their production (or price) decision.

3.3 Objective function

To obtain a strategic impact of risk management, a crucial ingredient is that �rms be risk-

averse. Thus, we assume that each �rm i maximizes some expected utility U (�i) of its

pro�ts �i, where U (:) is increasing, concave and exhibits non-increasing absolute risk aversion

�(�) � �U 00
U 0 (�). This is a natural assumption when the �rm is owned by a small number of

shareholders who cannot fully diversify. This is also a convenient reduced form for widely

held �rms when there are �nancial frictions3. These �nancial frictions can take the form

of a wedge between the costs of external and internal �nance (Froot, Scharfstein, and Stein

(1993)), transaction costs on primary security markets (Décamps et al. (2011)), or agency

costs (DeMarzo and Sannikov (2006), Biais et al. (2007)). In each of these cases, shareholder

3If �nancial markets were complete and frictionless, the Modigliani and Miller theorem would apply. In
particular risk management would not create any value for shareholders.
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value can be represented as the expectation of a concave function4 of future pro�ts. For

simplicity, we consider a symmetric model where U (:) is the same for all �rms. At date

t = 0, the shareholder value of �rm i is then

vi = v (qi; qj; Hi) = E [U (� (qi; qj; Hi; ~c))] = E [U (qi (P (Q)� F ) + (Hi � qi) (~c� F ))] :

We look for subgame perfect equilibria of the two-stage game played by �rms. We use

backward induction: we �rst determine the second-stage equilibrium (q� (H1; H2) ; q
� (H2; H1)),

and then compute the �rst-stage payo¤functions Vi = V (Hi; Hj) � vi(q
� (Hi; Hj) ; q

� (Hj; Hi) ; Hi).

4 Strategic use of hedging

4.1 An illustrative example

Before turning to the general Cournot model, we illustrate the main insights with a simple

example: (i) Constant Absolute Risk Aversion (CARA), i.e. U (x) = 1 � exp (��x), (ii)

linear inverse demand P (Q) = 1 � Q, and (iii) normally distributed5 input cost ~c, with

mean F and standard deviation �. In this case,

v (qi; qj; Hi) = E [1� exp (�� (qi (P (Q)� F ) + (Hi � qi) (~c� F )))] = 1�exp (��m (qi; qj; Hi))

where

mi = m (qi; qj; Hi) = qi (1�Q� F )� � (Hi � qi)
2 �2

2

is the certainty equivalent of �rm i0s pro�t. Maximizing vi is equivalent to maximizing mi.

Now
@mi

@qi
= 1� 2qi � qj � F + ��2 (Hi � qi) :

First note that @mi

@qi
is decreasing in qi (which means that mi is concave in qi) and in qj

4We take U as exogenous. A fully dynamic model, with explicit modelling of �nancial frictions, would
allow to endogenize U . This is done by Rochet and Villeneuve (2011) in a non-strategic context. Extending
it to a strategic context would be di¢ cult and is outside the scope of the present paper.

5Assuming normal distributions has the usual drawback that costs can take arbitrarily large (or negative)
values, and thus equilibrium prices or quantities can be negative, which of course is meaningless from the
economic viewpoint. However, for reasonable values of the parameters, the probability of negative prices
and quantities is essentially zero, and our equilibria are essentially identical to the fully correct ones that
would have been obtained with appropriately truncated normal distributions.
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(which means that quantities are strategic substitutes: �rm i produces less if its competitor

produces more). Note again that if hedging Hi was determined simultaneously with output

qi; �rms would choose complete hedging Hi = qi and we would be back to the Cournot model

with deterministic cost F . Thus our assumption that hedging is determined before output

is decided is crucial for risk management to play any strategic role.

The �rst-order necessary and su¢ cient conditions characterizing the equilibrium are

qi
�
2 + ��2

�
+ qj = 1� F + ��2Hi (i = 1; 2); (1)

which yields the unique equilibrium of the second-stage game:

q�i = q� (Hi; Hj) =
1� F + ��2

1+��2
[(2 + ��2)Hi �Hj]

3 + ��2
(i = 1; 2):

Thus V (Hi; Hj) = 1� exp (��M (Hi; Hj)), where

Mi =M (Hi; Hj) = m (q� (Hi; Hj) ; q
� (Hj; Hi) ; Hi) ;

is the certainty equivalent of �rm i0s pro�t in the production game (stage 1). Now6,

@Mi

@Hi

=
@mi

@qi

@q�i
@Hi

+
@mi

@qj

@q�j
@Hi

+
@mi

@Hi

=

�
q�i P

0
(Q)

@q�j
@Hi

� (Hi � q�i ) ��
2

�
=���2[Hi �

�
1 +

1

(3 + ��2) (1 + ��2)

�
q�i ]:

The necessary �rst-order conditions of the hedging game (stage 1) are then:

H�
i =

�
1 +

1

(3 + ��2) (1 + ��2)

�
q�i (i = 1; 2):

Since M is concave in its �rst argument, these conditions are also su¢ cient. Replacing q�i
6Note that @mi

@qi
= 0 by the equilibrium condition of the second-stage game.
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by q� (Hi; Hj) and solving for the �rst stage equilibrium yields a unique solution, which is

symmetric (q�i = q�j = q�; H�
i = H�

j = H�), characterized by

H� = q�(1 +
1

(3 + ��2) (1 + ��2)
) > q�; and q� =

1� F

3� ��2

(3+��2)(1+��2)

>
1� F

3
:

Note that 1�F
3
would be the equilibrium output of each �rm in the absence of commitment

on hedging. These results are summarized in the next proposition.

Proposition 1 Assume that �rms compete in quantities, have a constant absolute risk aver-

sion, demand is linear, and costs are normally distributed. Then the two-stage game has a

unique subgame perfect equilibrium, which is symmetric. Firms over hedge and produce more

than in the absence of commitment on hedging.

Thus, with our simple speci�cation, committing ex-ante on their hedging positions makes

Cournot competitors more aggressive. If hedging was done after (or together with) output

decisions, shareholders would be collectively better-o¤: prices and pro�ts would be higher

and �rms would be perfectly hedged against input price �uctuations7. As we now see, these

features also hold under more general conditions on utility, demand, and cost distribution.

4.2 The general case

In order to extend the analysis to a more general speci�cation, we �rst need to guarantee

the existence and unicity of a Cournot equilibrium in the second stage of the game, for any

couple of hedging strategies (Hi; Hj) of the �rst stage. For this we impose classical conditions

that give existence and uniqueness of a Cournot equilibrium when �rms have di¤erent costs

(see for example Vives (2001)).

7However, we show in Section 6 that it is never privately optimal for the shareholders of each of the �rms
not to commit on their hedging positions. This is a prisoners�dilemma type of situation.
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Assumption 1 For all Q � 0, the inverse demand function P (:) satis�es

QP 00 (Q)

(�P 0 (Q)) < 1 (2)

and

lim
Q!1

A (Q) = 0 and lim
Q!0

A (Q) = lim
Q!0

P (Q) = +1

where

A (Q) = 2P (Q) +QP
0
(Q) :

Under Assumption 1 the Cournot game with deterministic (but di¤erent) costs (ci; cj)

has natural properties that we will use in the sequel. In this game, �rm i�s pro�t function

is:

�C (qi; qj; ci) = qi (P (Q)� ci) :

Thus:
@�Ci
@qi

= (P (Q)� ci) + qiP
0
(Q) = 0; (3)

and
@2�Ci
(@qi)

2 = 2P
0
(Q) + qiP

00
(Q) :

Lemma 1 Assumption 1 implies that, for all (c1; c2) there exists a unique Cournot equilib-

rium
�
qC (c1; c2) ; q

C (c2; c1)
�
. When this equilibrium is interior

�
qCi = qC (ci; cj) > 0 for i = 1; 2

�
,

it satis�es @qCi
@ci

< 0 and
@qCj
@ci

> 0 for i = 1; 2.

Proof. The result is standard. For the reader�s convenience, the proof is presented in

Appendix A.1.

Thus, an increase in �rm i0s marginal cost induces a reduction in its Cournot equilibrium

output qCi and an increase in the equilibrium output of its competitor q
C
j . This property will

be crucial for our results.
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We now return to the random cost case. The shareholder value of �rm i is

vi = E [U (�i)] = E [U (qi (P (Q)� F ) + (Hi � qi) (~c� F ))] ;

and thus

@vi
@qi

=E
�
U 0 (�i)

@�i
@qi

�
= E

h
U 0 (�i)

�
P (Q)� ~c+ qiP

0
(Q)
�i

=E [U 0 (�i)]
�
P (Q) + qiP

0
(Q)� bc (qi; qj; Hi)

�
;

where

bc � bc(qi; qj; Hi) =
E [U 0 (� (qi; qj; Hi; ~c)) ~c]

E [U 0 (� (qi; qj; Hi; ~c))]
= F +

cov [U 0 (� (qi; qj; Hi; ~c)) ; ~c]

E [U 0 (� (qi; qj; Hi; ~c))]
(4)

is the risk-adjusted expected cost8 of �rm i. Note that v (qi; qj; Hi) is concave in qi since

@2vi

(@qi)
2 = E

"
U

00
(�i)

�
@�i
@qi

�2
+ U

0
(�i)

@2�i

(@qi)
2

#
< 0:

Therefore, if an interior Nash equilibrium
�
q�i ; q

�
j

�
exists, it is determined by the �rst order

conditions

P (Q�) + q�i P
0
(Q�)� bc �q�i ; q�j ; Hi

�
= 0; (i = 1; 2): (5)

Before proving existence of a Nash equilibrium and deriving su¢ cient conditions for unic-

ity, we examine system (5). The interaction between hedging and production is channelled

through the expected risk-adjusted cost bc (qi; qj; Hi), determined in equilibrium. If �rm i pro-

duces one more unit at random cost ~c; the impact on shareholder value is E [U 0 (�i) ~c] . More

generally, the marginal certainty equivalent of a random cash �ow x (~c) for the shareholders

8The notion of risk-adjusted expectation is borrowed from mathematical �nance, where it is used in
particular to price derivative contracts.
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of �rm i is given by its risk-adjusted expectation:

bEi [x (~c)] = E [U 0 (� (qi; qj; Hi; ~c))x (~c)]

E [U 0 (� (qi; qj; Hi; ~c))]
:

For example in the case of constant absolute risk aversion and normal distribution of

costs, the risk adjusted expected cost of �rm i does not depend on its competitor output.

It is just equal to the expected cost F plus a risk premium that increases linearly with

unhedged output9 (qi �Hi) :

bc(qi; Hi) �
E [U 0 (�i) ~c]
E [U 0 (�i)]

= F + ��2 (qi �Hi)

It is increasing in qi, decreasing in Hi, and lower than the expected cost F if and only if

Hi > qi. When �rms�absolute risk aversion �(�) =
�U 00(�)
U 0(�) is not constant, bci also depends

on the output of the other �rm, which complicates the analysis10: bci � bc(qi; qj; Hi): However

the properties derived above are robust:

Lemma 2 :
@bc
@qi

�
q�i ; q

�
j ; Hi

�
� 0; and @bci

@Hi

< 0: (6)

bci � F , Hi � qi:

@bci
@qj

= �qiP
0
(Q) ccovi [� (�i) ; ~c] ; (7)

thus 8><>:
@bci
@qj
= 0 if � (�) is constant

@bci
@qj

< 0, Hi > qi if � (�) is decreasing
: (8)

Proof. See Appendix A.2.
9This can be seen by computing vi = E[U(�i)] = U(mi) in two di¤erent ways:
@Ui
@Hi

= E[U 0(�i) @�i@Hi
] = E[U 0(�i)(ec� F )] = E[U 0(�i)][bci � F ] and

@Ui
@Hi

= U 0(mi)
@mi

@Hi
= E[U 0(�i)]��2(qi �Hi):

10Dependency of bci with respect to qj is indirect. It is channelled through variations in absolute risk
aversion.
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At equilibrium, expected risk-adjusted marginal cost increases in qi as if there were

decreasing returns to scale. Increasing Hi reduces �rm i0s risk-adjusted expected marginal

cost. This comes from the fact that a marginal increase in hedging decreases ex-post marginal

cost when ~ci > F and increases it when ~ci < F . Since favorable realizations are weighted by

a lower marginal utility, overall the risk-adjusted expected cost decreases.

We now turn to existence and unicity of the equilibrium of the production game. Since

we ultimately focus on symmetric equilibria (where H�
1 = H�

2 = H, q�1 = q�2 = q�, bc1 = bc2),
we restrict our attention to the case where jH1 �H2j is small enough that the equilibrium

of the production game is interior.

(q�1; q
�
2) is thus a �xed point of the function �, de�ned from R2 into R2 by

8><>:�1 (q1; q2) = qC (bc (q1; q2; H1) ;bc (q2; q1; H2))

�2 (q1; q2) = qC (bc (q2; q1; H2) ;bc (q1; q2; H1))
:

Proposition 2 For any (H1; H2) close enough to the diagonal, an equilibrium of the pro-

duction game exists. If absolute risk aversion is constant, this equilibrium is unique, and

denoted11 by q�i = q� (Hi; Hj) for i = 1; 2: Furthermore, a marginal increase in �rm i�s

hedging reduces �rm j�s equilibrium output:
@q�j
@Hi

< 0:

Proof. For existence, we apply Brouwer�s �xed point theorem to the mapping �. Since by

assumption ec is bounded above by some constant c;
bc (qi; qj; Hi) =

E [U 0 (� (qi; qj; Hi; ~c)) ~c]

E [U 0 (� (qi; qj; Hi; ~c))]
� c

for all (qi; qj; Hi). Now, since
@qC

@cj
(ci; cj) � 0 and @qC

@ci
(ci; cj) � 0:

qC (bc (qi; qj; Hi) ;bc (qj; qi; Hj)) � qC (0; c) � qC :

Thus, we can limit our search to (qi; qj) 2
�
0; qC

�2
. Since qC (x; y) and bc (x; y; :) are contin-

11Unicity of the equilibrium and symmetry of the game imply symmetry of the equilibrium.
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uous in (x; y), and de�ned on a compact and convex set of R2, Brouwer�s theorem implies

the existence of an equilibrium.

If absolute risk aversion is constant, we prove in Appendix A.3 that the real parts of the

eigenvalues of the Jacobian matrix

J (q�1; q
�
2; H1; H2) =

264 @qC1
@q1
� 1 @qC1

@q2

@qC2
@q1

@qC2
@q2
� 1

375
are always negative, which implies that the equilibrium is unique. Finally, constant absolute

risk aversion also implies @bc
@qj

�
q�i ; q

�
j ; Hi

�
= 0 by Lemma 2. Firms play a familiar Cournot

game with marginal costs bci increasing in qi at the equilibrium, and decreasing in Hi. We

prove in Appendix A.4 that, since increasing hedging reduces a �rm�s cost, it makes it more

aggressive, and reduces its competitor�s output.

Proposition 2 shows that a marginal increase inHi reduces q�j , and thus increases q
�
i , since

quantities are strategic substitutes. Another way to see this is that a marginal increase in Hi

reduces the risk-adjusted expected cost, because it decreases the unhedged input (qi �Hi) ;

and thus increases q�i . Thus a marginal increase in Hi commits �rm i to a higher output.

If risk aversion varies with pro�t, a "revenue e¤ect" arises. Equilibrium of the quantity

game may not always be unique. However, this e¤ect is of second-order importance if risk

aversion does not vary too much, and our basic conclusions remain valid12.

4.3 Equilibrium of the hedging game

Suppose a symmetric interior equilibrium of the hedging game (H�; H�) exists. Then we

have:

Proposition 3 1. H� is characterized by the �rst-order condition:

bc (q�; q�; H�)� F + P
0
(Q�) q�

@q�j
@Hi

(H�; H�) = 0: (9)

12Proofs are available from the authors upon request.
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2. If absolute risk aversion is constant, hedging toughens quantity competition: �rms over-

hedge (H� > q�), and produce more than if they did not commit to their hedging

position: q� > qC (F; F ) :

Proof.

1. For i = 1; 2 ,the �rst-order conditions characterizing equilibrium hedging volumes H�
i

are:

E
�
U 0 (��i )

�
@�i
@Hi

+
@�i
@qj

@q�j
@Hi

+
@�i
@qi

@q�i
@Hi

��
= 0:

Since @�i
@Hi

= ~c � F , @�i
@qj

= P
0
(Q) qi, and @�

@qi

�
q�i ; q

�
j ; Hi

�
= 0 by de�nition of q�i , this

condition becomes

E[U 0 (��i )
�
~c� F + P

0
(Q�) q�i

@q�j
@Hi

�
] = 0:

Dividing by E [U 0 (��i )] > 0 and setting H
�
i = H�

j = H� yields equation (9).

2. Since
@q�j
@Hi

(H�; H�) < 0, equation (9) yields bc (q�; q�; H) < F , H� > q�:Thus, at a

symmetric equilibrium, equation (5) yields

P (2q�) + q�P
0
(2q�) = bc (q�; q�; H) < F = P

�
2qC (F; F )

�
+ qC (F; F )P

0 �
2qC (F; F )

�
:

Assumption 2 implies that P (2q) + qP
0
(2q) is decreasing:

�
P (2q) + qP

0
(2q)

�0
=

3P 0 (2q) + qP 00(2q) = [�P 0][ qP 00�P 0 � 3] < 0. Thus the above condition is equivalent

to q� > qC (F; F ) :

A marginal increase in Hi has two e¤ects on �rm i�s expected utility. First, a direct e¤ect

on expected cost : the �rm substitutes input at known cost F for input at uncertain cost

~c. When taking the risk-adjusted expectation, this substitution is worth bc (qi; qj; Hi) � F .

Second, an indirect e¤ect, through the change in the other �rm�s production: P
0
(Q�) q�i

@q�j
@Hi
.
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At equilibrium, both e¤ects exactly cancel out for both �rms, which produces equilibrium

conditions (9).

Thus, since
@q�j
@Hi

(H�; H�) < 0 and P
0
(Q�) q�i < 0, �rms set bc �q�i ; q�j ; H�

i

�
< F . They

over hedge, i.e., hedge more than their (anticipated) production, so that their risk-adjusted

expected marginal cost is lower than their "physical" expected marginal cost E [~c] = F . This

leads them to become more aggressive, and produce more than if they were perfectly hedged.

Finally, combining �rst-order conditions (5) and (9) yields:

P (Q�) + q�P
0
(Q�) = F � P

0
(Q�) q�

@q�j
@Hi

(H�; H�) ; (i = 1; 2) :

Comparing with �rst-order condition (3) for ci = F , an additional term
�
�P 0

(Q�) q�
@q�j
@Hi

< 0
�

is added, that captures the strategic impact of �rm i�s hedging on �rm j�s production de-

cision. Since this term is negative, each �rm will be "tougher" in the second-stage. In the

subgame perfect equilibrium, �rms "invest" too much in hedging, in order to be tough in

the quantity game13.

5 Price competition

We now turn to price competition. As in the previous Section, we analyze the subgame

perfect equilibria of a two-stage game. In the �rst stage, �rms choose their hedging positions

(Hi;Hj): In the second stage, they compete in prices. We will show that the strategic impact

of hedging on price competition is exactly opposite to the one it has on quantity competition.

Since the method of resolution is similar in both cases, results are stated brie�y. We only

emphasize the di¤erences with quantity competition. As in the previous Section, we start

by illustrating the basic properties on a simple case.

13This is reminiscent of the "top dog e¤ect" in the taxonomy of Fudenberg and Tirole (1984).
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5.1 An illustrative example

Consider a standard Hotelling model, where the demand faced by �rm i is Di = D (pi; pj) =

1
2
+

pj�pi
2t
. The pro�t functions are

�i=

�
1

2
+
pj � pi
2t

�
(pi � ~c) +Hi (~c� F )

=

�
1

2
+
pj � pi
2t

�
(pi � F ) + (Hi �

1

2
+
pj � pi
2t

) (~c� F ) :

Shareholder value of �rm i is vi = v (pi; pj; Hi) = E [U (�i)]. If absolute risk aversion �

is constant and costs are normally distributed with mean F and standard deviation �, the

certainty equivalent of �rm i�s pro�t is

mi = (
1

2
+
pj � pi
2t

)(pi � F )� ��2

2
(Hi �

1

2
� pj � pi

2t
)2:

Note again that if hedging was selected simultaneously with price, each �rm would hedge

completely and we would be back to the Hotelling model with deterministic costs F: The

situation is di¤erent here since �rms commit on their hedging positions before competing in

prices. We have:

@mi

@pi
=
1

2
+
pj � pi
2t

+
F � pi
2t

� ��2

2t
(Hi �

1

2
� pj � pi

2t
):

@mi

@pi
is decreasing in pi (indicating that mi is concave in pi) and increasing in pj (indicating

that prices are strategic complements: �rm i charges a higher price if �rm j does). Intro-

ducing the notation ��2

2t
= ", the �rst order condition characterizing the price equilibrium

is

pi = F + t+ "t[1� 2Hi]� (1 + ")(pj � pi); (i = 1; 2):

19



Taking the di¤erence between these two equations and simplifying, we obtain

pi � pj =
2"t

3 + 2"
(Hj �Hi);

and thus

p�i � p�(Hi; Hj) = F + t+ "t[1� 2Hi �
2(1 + ")

3 + 2"
(Hj �Hi)]; (i = 1; 2):

To compute the certainty equivalentMi of �rm i0s pro�t in the hedging game, we replace

p�i by its expression in the formula giving mi. We obtain:

Mi = t

�
1

2
� "

3 + 2"
(Hj �Hi)

��
1 + "

�
1� 2Hi �

2(1 + ")

3 + 2"
(Hj �Hi)

��
�"t

�
Hi �

1

2
+

"

3 + 2"
(Hj �Hi)

�2
:

Mi is quadratic in (Hi; Hj) and strictly concave in Hi: Thus, there exists a unique Nash

equilibrium of the �rst-stage game, characterized by the �rst order conditions. It is easy to see

that this equilibrium is symmetric: H�
i = H�

j = H�, where H�satis�es: 1� 2H� = 1+"
3+2"

> 0:

Compared with the case where �rms would hedge perfectly, equilibrium price and share-

holder value are higher:

p�i = p�j = F + t+ "t
1 + "

3 + 2"
> F + t:

M�
i =M�

j =
t

2
[1 +

"(5 + 8"+ 3"2)

2(3 + 2")2
] >

t

2
:

These results are summarized in the next proposition:

Proposition 4 In the Hotelling model with normally distributed costs and constant absolute

risk aversion, there is a unique subgame perfect equilibrium. It is symmetric (H�
i = H�

j = H�;

p�i = p�j = p�): Firms under hedge (H� < 1
2
), charge a higher price (p� > F + t), and have

higher shareholder value than if they did not commit on hedging.
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Thus in the normal-Constant Absolute Risk Aversion case, commitment on risk manage-

ment allows Hotelling �rms to compete less aggressively and secure higher margins. As we

now see, these features also hold more generally for di¤erentiated Bertrand competition.

5.2 The general model

Consider the general case of two symmetric �rms that compete in prices. Firm i faces

demand Di = D (pi; pj), decreasing in its own price and increasing in the other �rm�s price.

As in the Cournot case, we make assumptions that ensure that the second stage game has

a unique interior equilibrium. These assumptions bear on the asymmetric Bertrand game

where �rms have di¤erent costs ci and cj; and �rm�s i pro�t function is

�Bi = �B (pi; pj; ci) = D (pi; pj) (pi � ci) :

Assumption 2 : D (pi; pj) is such that:

(i) �B is concave in its �rst argument: @2�B

(@pi)
2 < 0 for all (pi; pj; ci) ;

(ii) for all (ci; cj) close enough to the diagonal14, the pricing game has a unique interior

equilibrium
�
pB (ci; cj) ; p

B (cj; ci)
�

(iii) prices are strategic complements: @2�B

@pi@pj
> 0 ;and

(iv) the own price e¤ect on demand is stronger than the other �rm�s price e¤ect: @Di
@pi
+

@Di
@pj

� 0 and @2Di
(@pi)

2 +
@2Di
@pi@pj

� 0 for all (pi; pj) :

Assumption 2 is met for example in the Hotelling model considered above. In this case

equilibrium prices are: pB (ci; cj) = t+
2ci+cj
2

:

Concavity of the objective function and strategic complementarity of prices are met by

many demand functions. Unicity of equilibrium with deterministic input costs is required to

establish unicity with stochastic input costs. We prove in Appendix B.1 that when the own

price e¤ect is stronger than the other�s price e¤ect, an increase in one �rm�s cost increases

both prices: @pB

@ci
(ci; cj) > 0 and

@pB

@ci
(cj; ci) > 0:

14As in the Cournot case, jc1 � c2j must be small enough to avoid a corner equilibrium.
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5.3 Strategic hedging

As before, we assume that the shareholder value of each �rm equals the expected utility of

its pro�t:

vi = v (pi; pj; Hi) = E [U (�i)] = E[UfD (pi; pj) (pi � ec) +Hi(ec� F )g]:

Thus

@vi
@pi

= E
�
U 0 (�i)

@�i
@pi

�
= E

�
U 0 (�i) �

�
Di + (pi � ~c)

@Di

@pi

��
= E [U 0 (�i)]

�
Di + (pi � bci) @Di

@pi

�
;

where

bci = bc (pi; pj; Hi) �
E [U 0 (� (pi; pj; Hi; ~c)) ~c]

E [U 0 (� (pi; pj; Hi; ~c))]
= F +

cov [U 0 (�) ; ~c]

E [U 0 (�)]

is the risk-adjusted expected cost of �rm i. We prove in Appendix B.2 that this risk-adjusted

expected cost has similar (but not identical) properties to the Cournot case:

Lemma 3 :
@bc
@pi

�
p�i ; p

�
j ; Hi

�
� 0; and @bci

@Hi

< 0:

bci � F , Hi � D (pi; pj) :

@bci
@pj

=
@Di

@pj

n
(pi � bci) bE [� (�i) (bci � ~c)] + bE �� (�i) (bci � ~c)2�o :

Since @2vi
@p2i

= E
�
U 00 (�i)

�
@�i
@pi

�2
+ U 0 (�i)

@2�i
@p2i

�
< 0; v (pi; pj; Hi) is concave in pi: Thus if

an interior Nash equilibrium of the pricing game (p�1; p
�
2) (H1; H2) exists, it is characterized

by the system of necessary �rst-order conditions:

�
p�i � bc �p�i ; p�j ; Hi

�� @D
@pi

�
p�i ; p

�
j

�
+D

�
p�i ; p

�
j

�
= 0; (i = 1; 2): (10)
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As will be proven below, this equilibrium of the pricing game exists, and, under certain

conditions, is unique, hence of the form (p� (Hi; Hj) ; p
� (Hj; Hi)). The expected value of �rm

i for its shareholders is Vi = V (Hi; Hj) = v (p� (Hi; Hj) ; p
� (Hj; Hi) ; Hi). The equilibrium

of the two-stage game is then characterized as follows:

Proposition 5 1. For any (Hi; Hj) close enough to the diagonal, there exists an interior

equilibrium (p�1; p
�
2) (H1; H2) of the pricing game. It is characterized by system (10):

2. If absolute risk aversion is constant, this equilibrium is unique, and a marginal hedging

increase by �rm i reduces �rm j�s equilibrium price:
@p�j
@Hi

< 0:

3. Any interior equilibrium
�
H�
i ; H

�
j

�
of the hedging game satis�es

bc �p�i ; p�j ; Hi

�
= F +

@D
@pj

�
p�i ; p

�
j

�
@D
@pi

�
p�i ; p

�
j

�D �p�i ; p�j� @p�j@Hi

�
H�
i ; H

�
j

�
; (i = 1; 2): (11)

4. If a symmetric interior equilibrium exists, and absolute risk aversion is constant, hedg-

ing softens price competition: �rms under-hedge in order to induce higher prices than

if marginal costs were constant and equal to F :

H� < D (p�; p�) and p� > pB (F; F ) :

Proof. The proof follows the steps of Propositions 2 and 3. The risk-adjusted costs are

bounded, thus the set in which we look for a �xed point is compact and convex in R2. Since

all functions are continuous, Brouwer�s �xed point theorem guarantees the existence of an

equilibrium. If absolute risk aversion is constant, then Assumption 2 guarantees unicity of

the equilibrium and allows to sign the direction of the strategic e¤ect. Equation (11) is derived

similarly to equation (9). Comparison of equations (11) and (10) shows that hedging softens

price competition. Detailed proofs are available from the authors upon request.
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Combining the �rst-order conditions yields:

(p� � F )
@Di

@pi
(p�; p�) +D (p�; p�)� @Di

@pj
(p�; p�)D (p�; p�)

@p�j
@Hi

(H�; H�) = 0:

Hedging has indeed a strategic e¤ect, captured by the term
@p�j
@Hi
. Keeping some input price

exposure uncovered commits �rms to be less aggressive. This commitment then yields a

higher equilibrium price : p� > pE (F; F ). The direction of the strategic e¤ect is reversed

compared to Cournot competition: here, �rms under-hedge, hence the equilibrium price is

increased. This stark di¤erence is best understood by comparing the �rst-order conditions

(after appropriate transformations):

bci � F +
@�i
@qj

@q�j
@Hi

= 0;

in the Cournot case, and

bci � F +

@Di
@pj

(�@Di
@pi
)
D
�
p�i ; p

�
j

� @p�j
@Hi

= 0

in the case of di¤erentiated Bertrand. In both cases, when �rm i increases hedging, �rm j

reduces her strategic variable (quantity or price). If �rms compete in quantity, when �rm

j increases output, this reduces �rm i�s pro�t
�
@�i
@qj

< 0
�
: Therefore, at the equilibrium,

�rm i over-hedges to set her risk-adjusted expected cost below F , and thus becomes more

aggressive. Conversely, if �rms compete in price, when �rm j raises his price, this increases

the demand faced by �rm i0s
�
@Di
@pj

> 0
�
, hence �rm i under-hedges to set her risk-adjusted

expected cost above F , and thus becomes less aggressive.

6 Incentives to commit on a hedging position

We have argued that �rms commit to their hedging strategy because their Boards of Directors

do not want them to speculate: risk managers are not allowed to signi�cantly deviate from

24



their pre-announced hedging position. This restriction has clear advantages in terms of

monitoring the activity of traders. However, we have seen that it is not always pro�table for

shareholders. In this Section, we set aside governance problems, and assume that �rms are

free to decide ex-ante whether or not they want to commit to the hedging positions. This is

done by adding a prior stage to our sequential games.

The timing is now as follows: at t = 0, each �rm decides either to Commit (C) or Not

Commit (NC) to its hedging position. At t = 1, �rms that have chosen C publicly announce

their hedging position. At t = 2, �rms compete (in quantities or in prices), and the �rms

that have chosen (NC) decide on their hedging position. Finally, at t = 3, input cost is

realized, and pro�ts are determined. We assume that there is a unique sub-game perfect

equilibrium at t = 1; independently of the commitments decisions made at t = 0 (this is the

case for example if �rms have constant absolute risk aversion). The shareholder value of �rm

i that plays strategy Xi 2 fC;NCg while �rm j plays strategy Xj 2 fC;NCg is denoted

S (Xi; Xj) :

To focus on the strategic impact of hedging, we continue to assume that (i) there are

no transaction costs associated with hedging, and (ii) the forward price F is equal to the

expected spot price E [~c].

Proposition 6 1. Not Committing cannot be sustained in equilibrium. Whether �rms

compete in quantity or in price: S (C;NC) > S (NC;NC) :

2. If �rms compete in quantity, universal Not Commitment dominates universal Commit-

ment: S (NC;NC) > S (C;C) :

3. If �rms compete à la Hotelling, have constant absolute risk aversion, and input costs are

normally distributed, universal Commitment dominates universal Non Commitment:

S (C;C) > S (NC;NC) and is a dominant strategy for all �rms S (C;C) > S (NC;C) :

Proof. We �rst prove point 1 if �rms compete in quantity. Suppose �rm 2 plays NC. If

�rm 1 also plays NC, the shareholder value of both �rms is S (NC;NC). Suppose now
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that �rm 1 plays C. At t = 2, both �rms select their output. Then, �rm 2, which did not

commit, optimally selects complete hedging, while �rm 1 has committed to H1. Assuming the

equilibrium (q1 (H1) ; q2 (H1)) is interior, it is characterized by the �rst-order conditions:8><>: q2P
0
(q1 + q2) + P (q1 + q2)� F = 0

q1P
0
(q1 + q2) + P (q1 + q2)� bc (q1; q2; H1) = 0

At t = 1, �rm 1 selects H1 to maximize Z (H1) = V (q1 (H1) ; q2 (H1) ; H1). If �rm 1 selects

H1 = qC (F; F ), then q1 = q2 = qC (F; F ) is a solution of the system, hence is the unique

Cournot equilibrium for H1 = qC (F; F ). It yields the expected payo¤ S (NC;NC). Thus

when �rm 2 does not commit, �rm 1 can guarantee itself at least S (NC;NC) by committing

to H1 = qC (F; F ). This implies that S (C;NC) � S (NC;NC). We now show that this

inequality is strict.

dZ

dH1

�
qC (F; F )

�
= E

�
U

0
(�1)

�
q1P

0 �
Q
� dq2
dH1

+ (~c� F )

��
= q1P

0 �
Q
� dq2
dH1

E
h
U

0
(�1)

i

since bc �qC (F; F ) ; qC (F; F ) ; qC (F; F )� = F . Then, since H1 = q1,
@bc1
@q2
= 0, hence dq2

dH1
< 0.

Thus, dZ
dH1

�
qC (F; F )

�
> 0, which implies that maxH1 Z(H1) > Z

�
qE (F; F )

�
� S (NC;NC).

Thus: S (C;NC) > S (NC;NC) :

The proof of point 1 proceeds along the same lines if �rms compete in price, and is pre-

sented in Appendix C, along with the formal proof of the other points. As expected, when

�rms compete in quantity, (C;C) yields lower prices and higher volatility, hence lower ex-

pected utility than (NC;NC). However if �rms compete à la Hotelling, the expected pro�t

increase more than compensates for the loss coming from increased volatility, hence (i) uni-

versal Commitment dominates universal Non Commitment: S (C;C) > S (NC;NC), and

(ii) is a dominant strategy for all �rms: S (C;C) > S (NC;C).

Even though universal Non Commitment dominates when �rms compete in quantity,

each �rm prefers to Commit when the other does not. Thus, whether �rms compete in
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quantity or in price, universal non Commitment can never be an equilibrium.

7 Concluding remarks

This article examines how �rms facing volatile input prices and holding some degree of market

power in their product market link their risk management and their production or pricing

strategies. This issue is relevant in many industries ranging from manufacturing to energy

retailing, where risk averse �rms decide on their hedging strategies before their product

market strategies. We �nd that hedging modi�es the pricing and production strategies

of �rms. This strategic e¤ect is channelled through the risk-adjusted expected cost, i.e.,

the expected marginal cost under the probability measure induced by shareholders� risk

aversion. It has opposite e¤ects depending on the nature of product market competition:

hedging toughens quantity competition while it softens price competition. Finally, if �rms

can decide not to commit on their hedging position, this can never be an equilibrium outcome:

committing is always a best response to non committing. In the Hotelling model, committing

is a dominant strategy for all �rms.

This paper could be extended in di¤erent directions. For example it would be interesting

to examine asymmetric situations, where one �rm is market leader and announces its hedging

strategy before the other, or when di¤erent �rms have di¤erent costs. Another possibility

would be to endogenize pricing �exibility, i.e., to determine when it is optimal for �rms not

to adjust their output prices to re�ect the realization of their input costs.

Finally, another avenue of research is to bring the model to the data, and in particular to

test the predictions as to how �rms�hedging decisions in�uence their and their competitors�

pricing strategies. For econometricians, this naturally leads to the question : which model

of competition (Cournot vs. Bertrand) is best suited to describe the industry of interest?

This is an empirical question. As clearly articulated by Fudenberg and Tirole (1984), these

two models should not be taken literally as resulting from a di¤erent choice of strategies

(price vs. quantity). Instead, they have to be interpreted as two reduced forms models for
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the joint determination of prices and outputs. The choice between the two must be guided

by the best �t to the data in the particular industry under study.
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A Quantity competition

A.1 Deterministic input cost (Lemma 1)

Condition 2 guarantees that @2�Ci
(@qi)

2 < 0. Thus, if an interior Cournot equilibrium exists, it is

characterized by the necessary �rst-order conditions (3). Assumption 1 guarantees that, for

all c > 0, the equation

A (Q) = 2P (Q) +QP 0 (Q) = c

admits a unique solution QC (c). When the equilibrium is interior
�
qCi > 0 for i = 1; 2

�
, the

equilibrium quantities are:

qC (ci; cj) =
P
�
QC (ci + cj)

�
� ci

(�P 0 (QC (ci + cj)))
:

Finally, we verify that:

@qCi
@ci

=
@qC (ci; cj)

@ci
=

2P
0 �
QC
�
+ qCj P

00 �
QC
�

P 0 (QC)
�
3P 0 (QC) +QCP

00
(QC)

� < 0 (12)

and
@qCj
@ci

=
@qC (cj; ci)

@ci
= �

P
0 �
QC
�
+ qCi P

00 �
QC
�

P 0 (QC)
�
3P 0 (QC) +QCP

00
(QC)

� > 0: (13)

A.2 Properties of the risk-adjusted expected cost (Lemma 2)

Note �rst that for any variable x :

@bci
@x
=
E [U 0 (�i)]E

�
U 00 (�i)

@�i
@x
~c
�
� E [U 0 (�i) ~c]E

�
U 00 (�i)

@�i
@x

�
(E [U 0 (�i)])2

=�
E
h
U 0 (�i)

�
�U 00(�i)

U 0(�i)
@�i
@x
~c
�i

E [U 0 (�i)]
+
E [U 0 (�i) ~c]
E [U 0 (�i)]

E
h
U 0 (�i)

�
�U 00(�i)

U 0(�i)
@�i
@x

�i
E [U 0 (�i)]

=�bEi �� (�i) @�i
@x
~c

�
+ bcibEi �� (�i) @�i

@x

�
= bEi �� (�i) @�i

@x
(bci � ~c)� :
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For any (Hi; Hj), the equilibrium
�
q�i ; q

�
j

�
(Hi; Hj) of the Cournot game satis�es

P
�
q�i + q�j

�
+ q�i P

0 �
q�i + q�j

�
= bc �q�i ; q�j ; Hi

�
:

Thus, @�
@qi

�
q�i ; q

�
j ; Hi; ~c

�
= P

�
q�i + q�j

�
+q�i P

0 �
q�i + q�j

�
�~c = bc �q�i ; q�j ; Hi

�
�~c: Using the above

formula with x = qi;we obtain:

@bc
@qi

�
q�i ; q

�
j ; Hi

�
= bEi h� �� �q�i ; q�j ; Hi

�� �bc �q�i ; q�j ; Hi

�
� ~c
�2i

> 0;

which establishes the �rst part of (6).

Now

bci � F =
E [U 0 (�i) ~c]
E [U 0 (�i)]

� E [~c] = cov [U 0 (�i) ; ~c]

E [U 0 (�i)]

Since (i) U 0 (:) is non-increasing in �i, and (ii) �i increases in ~c if and only if Hi > qi, we

have bci � F , Hi � qi.

Moreover, @�i
@Hi

= (~c� F ), thus using again the above formula with x = Hi

@bci
@Hi

= bEi [� (�i) (~c� F ) (bci � ~c)] = �bEi �� (�i) (~c� bci)2�+ (bci � F ) bEi [� (�i) (bci � ~c)]
=�

�bEi �� (�i) (~c� bci)2�+ cov [U 0 (�i) ; ~c] � ccovi [� (�i) ; ~c]
E [U 0 (�i)]

�

Now bEi [� (�i) (bci � ~c)] = bEi h� (�i)�bEi [~c]� ~c�i = �ccovi [� (�i) ; ~c] :
Since �(:) is, like U 0(:); non-increasing in �i, cov [U 0 (�i) ; ~c] and ccovi [� (�i) ; ~c] have the same
sign. Hence @bci

@Hi
< 0: This establishes the second part of (6).

Similar algebra yields

@bci
@qj

= bEi �� (�i) @�i
@qj

(bci � ~c)� = qiP
0
(Q) bEi [� (�i) (bci � ~c)] = �qiP 0

(Q) ccovi [� (�i) ; ~c] :
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which establishes (7). (8) follows from (7).

A.3 Unicity of equilibrium (Proposition 2)

As mentioned in the main text, the equilibrium of the production game (q�1; q
�
2) (H1; H2) is

unique if the real parts of the eigenvalues of the Jacobian J (q�1; q
�
2; H1; H2) are negative,

where

J (q�1; q
�
2; H1; H2) =

264 @qE1
@q1
� 1 @qE1

@q2

@qE2
@q1

@qE2
@q2
� 1

375 :
This is an application of Lyapunov stability theorem (see for example Khalil (2002)). The

eigenvalues are the roots of �2 � �Tr + Det = 0;where Tr is the trace of J and Det its

determinant. The roots are: �� = Tr�
p
Tr2�4Det
2

. If Tr2 � 4Det < 0, the two roots are

complex and conjugate. Their real part is negative if and only if Tr < 0. If Tr2� 4Det � 0,

the two roots are real. Tr+
p
Tr2 � 4Det < 0 requires Tr < 0 and Det > 0. Thus, we have

to show that Tr < 0 and Det > 0. We have:

Tr =

�
@qC1
@q1

+
@qC2
@q2

� 2
�
:

By de�nition, qCi = qC (bc (qi; qj; Hi) ;bc (qj; qi; Hj) ; Hi) ;for i = 1; 2, thus

@qCi
@qi

=
@qCi
@ci

@bci
@qi

+
@qCi
@cj

@bcj
@qi

; (14)

and
@qCi
@qj

=
@qCi
@ci

@bci
@qj

+
@qCi
@cj

@bcj
@qj

: (15)

Thus, Tr = @qC1
@c1

@bc1
@q1
+

@qC1
@c2

@bc2
@q1
+

@qC2
@c2

@bc2
@q2
+

@qC2
@c1

@bc1
@q2
� 2:

Lemma 2 shows that, when � is constant, @bc1
@q2
= @bc2

@q1
= 0: Thus

Tr (q�1; q
�
2; H1; H2) =

@qC1
@c1
�

@bc1
@q1
+

+
@qC2
@c2
�

@bc2
@q2
+

� 2 < �2:
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We now examine Det (q�1; q
�
2; H1; H2).

Det =

�
@qC1
@q1

� 1
��

@qC2
@q2

� 1
�
� @qC1
@q2

@qC2
@q1

=
@qC1
@q1

@qC2
@q2

� @qC1
@q2

@qC2
@q1

� @qC1
@q1

� @qC2
@q2

+ 1

Substituting @qCi
@qi

and @qCi
@qj

from equations (14) and (15), and simplifying yields

@qC1
@q1

@qC2
@q2

� @qC1
@q2

@qC2
@q1

=

�
@qC1
@c1

@qC2
@c2

� @qC1
@c2

@qC2
@c1

��
@bc1
@q1

@bc2
@q2

� @bc1
@q2

@bc2
@q1

�
:

Now, substituting in @qCi
@ci

and
@qCj
@ci

from equations (12) and (13), and simplifying yields

@qC1
@c1

@qC2
@c2

� @qC1
@c2

@qC2
@c1

=
1

P 0 (QE)
�
3P 0 (QE) +QP

00
(QE)

� :
Thus,

Det =

@bc1
@q1

@bc2
@q2
� @bc1

@q2

@bc2
@q1

P 0 (QC)
�
3P 0 (QC) +QCP

00
(QC)

� � Tr � 1:

Then, with � constant, we know that @bc2
@q1

= @bc1
@q2

= 0: Moreover, @bc1
@q1

< 0 and @bc2
@q2

< 0: Thus

Det > �Tr � 1 > 1:

A.4 Impact ofHi on q�j with constant absolute risk aversion (Propo-

sition 2)

De�ne  (qi; qj; Hi) = P (Q)� bc (qi; qj; Hi) + qiP
0
(Q) :

The �rst order conditions characterizing the unique equilibrium of the production game

can be written as  
�
q�i ; q

�
j ; Hi

�
=  

�
q�j ; q

�
i ; Hj

�
= 0: Total di¤erentiation of these conditions

with respect to Hi yields:8><>:
�
 1

@q�i
@Hi

+  2
@q�j
@Hi

+  3

� �
q�i ; q

�
j ; Hi

�
= 0�

 1
@q�j
@Hi

+  2
@q�i
@Hi

� �
q�j ; q

�
i ; Hj

�
= 0

;
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where 8>>>><>>>>:
 1 (qi; qj; Hi) = 2P

0
(qi + qj) + qiP

00
(qi + qj)�@bci

@qi

 2 (qi; qj; Hi) = P
0
(qi + qj) + qiP

00
(qi + qj)� @bci

@qj

 3 (qi; qj; Hi) = � @bci
@Hi

> 0

:

The determinant of the above linear system is

� =  1
�
q�i ; q

�
j ; Hi

�
 1
�
q�j ; q

�
i ; Hj

�
�  2

�
q�i ; q

�
j ; Hi

�
 2
�
q�j ; q

�
i ; Hj

�
;

thus 8><>:
@q�

@Hi
(Hi; Hj) = �

 1(q�j ;q�i ;Hj)
�

 3
�
q�i ; q

�
j ; Hi

�
@q�

@Hi
(Hj; Hi) =

 2(q�j ;q�i ;Hj)
�

 3
�
q�i ; q

�
j ; Hi

� :

If � is constant, @bci
@qj
= 0, thus

 2 (qi; qj; Hi) = P
0
(qi + qj) + qiP

00
(qi + qj)<0:

Then:

�=

�
2P

0
(Q�) + q�i P

00
(Q�)�@bci

@qi

��
2P

0
(Q�) + q�jP

00
(Q�)�@bcj

@qj

�
�
�
P

0
(Q�) + qiP

00
(Q�)

��
P

0
(Q�) + qjP

00
(Q�)

�
=

�
P

0
(Q�)�@bci

@qi

��
P

0
(Q�)�@bcj

@qj

�
+

�
P

0
(Q�)�@bci

@qi

��
P

0
(Q�) + q�jP

00
(Q�)

�
+

�
P

0
(Q�)�@bcj

@qj

��
P

0
(Q�) + q�i P

00
(Q�)

�
:

Since all terms in parentheses are negative, � > 0. Thus

@q�j
@Hi

=
@q�

@Hi

(Hj; Hi) =
 2
�
q�j ; q

�
i ; Hi

�
�

 3
�
q�i ; q

�
j ; Hi

�
< 0:

34



B Price competition

De�ne  (pi; pj; Hi) =
@D
@pi
(pi; pj) (pi � bc (pi; pj; Hi)) +D (pi; pj) ; where

bci � bc (pi; pj; Hi) �
E [U 0 (� (pi; pj; Hi; ~c)) ~c]

E [U 0 (� (pi; pj; Hi; ~c))]

is the risk-adjusted expected cost of �rm i. Suppose a unique interior equilibrium of the pric-

ing game (p�1; p
�
2) (H1; H2) exists. The �rst-order conditions characterizing this equilibrium

are

 
�
p�i ; p

�
j ; Hi

�
=  

�
p�j ; p

�
i ; Hj

�
= 0:

Assuming � =  1
�
p�i ; p

�
j ; Hi

�
 1
�
p�j ; p

�
i ; Hj

�
�  2

�
p�i ; p

�
j ; Hi

�
 2
�
p�j ; p

�
i ; Hj

�
6= 0;

8><>:
@p�i
@Hi

= @p�

@Hi
(Hi; Hj) = �

 1(p�j ;p�i ;Hj)
�

 3
�
p�i ; p

�
j ; Hi

�
@p�j
@Hi

= @p�

@Hi
(Hj; Hi) =

 2(p�j ;p�i ;Hj)
�

 3
�
p�i ; p

�
j ; Hi

� ;

where 8>>>><>>>>:
 1 (pi; pj; Hi) = 2

@Di
@pi
+ (pi � bci) @2Di

(@pi)
2 � @Di

@pi

@bci
@pi

 2 (pi; pj; Hi) =
@Di
@pj
+ (pi � bci) @2Di

@pi@pj
� @Di

@pi

@bci
@pj

 3 (pi; pj; Hi) = �@Di
@pi

@bci
@Hi

:

:

B.1 Impact of ci on pCi and pCj (constant input costs)

Suppose �rst the marginal costs are constant:

 (pi; pj; ci) =
@D (pi; pj)

@pi
(pi � ci) +D (pi; pj)

and 8>>>><>>>>:
 1 (pi; pj; ci) = 2

@Di
@pi
+ (pi � ci)

@2Di
(@pi)

2

 2 (pi; pj; ci) =
@Di
@pj
+ (pi � ci)

@2Di
@pi@pj

 3 (pi; pj; ci) = �@Di
@pi

:
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Assumption 2 guarantees (i) existence and unicity of an equilibrium
�
pB (ci; cj) ; p

B (cj; ci)
�
,

(ii)  1 (pi; pj; ci) < 0, since �
B (pi; pj; ci) is concave in pi, (iii)  2

�
pB (ci; cj) ; p

B (cj; ci) ; ci
�
>

0, since prices are strategic complements, and (iv) ( 1 +  2)
�
pB (ci; cj) ; p

B (cj; ci) ; ci
�
< 0

since the own price e¤ect dominates. Thus

�B =  1
�
pBi ; p

B
j ; ci

�
 1
�
pBj ; p

B
i ; cj

�
�  2

�
pBi ; p

B
j ; ci

�
 2
�
pBj ; p

B
i ; cj

�
> 0

and 8>>><>>>:
@pBi
@ci

= @pB

@ci
(ci; cj) =

@Di
@pi

 1(pBj ;pBi ;cj)
�E

= @Di
@pi

2
@Dj
@pj

+(pj�cj)
@2Dj

(@pj)
2

�E
> 0

@pBj
@ci

= @pB

@ci
(cj; ci) = �@Di

@pi

 2(pBj ;pBi ;cj)
�E

= �@Di
@pi

@Dj
@pi

+(pj�cj)
@2Dj
@pi@pj

�E
> 0

:

B.2 Properties of the risk-adjusted expected cost (Lemma 3)

For any (pi; pj; Hi) ; the same derivation as for Cournot competition yields:

@bci
@Hi

= bEi [� (�i) (~c� F ) (bci � ~c)] = �bEi �� (�i) (bci � ~c)2�+ (bci � F ) bEi [� (�i) (bci � ~c)] :
=�

 bEi �� (�i) (bci � ~c)2�+ cov
�
U

0
(�i) ; ~c

�
� ccovi [� (�i) ; ~c]

E [U 0 (�i)]

!
:

Since (i) � (:) and U
0
(:) are both non-increasing, and (ii) �i increases in ~c if and only if

Hi > D (pi; pj), we have (i) cov
�
U

0
(�i) ; ~c

�
� ccovi [� (�i) ; ~c] � 0, thus @bci

@Hi
< 0, and (ii) and

bci � F , Hi � D (pi; pj). Similarly,

@bci
@pj

= bEi �� (�i) @�i
@pj

(bci � ~c)� = @Di

@pj
bEi [� (�i) (pi � ~c) (bci � ~c)]

=
@Di

@pj

n
(pi � bci) bEi [� (�i) (bci � ~c)] + bEi �� (�i) (bci � ~c)2�o :

Thus: @bc
@pj

�
p�i ; p

�
j ; Hi

�
= @Di

@pj

�
Di
@Di
@pi

ccovi [� (�i) ; ~c] + bEi �� (�i) (bci � ~c)2�� : Then:
Hi > D

�
p�i ; p

�
j

�
, ccovi [� (�i) ; ~c] < 0) @bc

@pj

�
p�i ; p

�
j ; Hi

�
> 0:
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Finally:
@bci
@pi

= bEi �� (�i) @�i
@pi

(bci � ~c)� :
Then, @�

@pi
=
�
(bci � ~c) @Di@pi

� �
p�i ; p

�
j ; Hi

�
and thus @bc

@pi
= @D

@pi
bEi �� (�i) (bci � ~c)2� < 0.

C Strategic incentives to commit (Proposition 6)

C.1 Comparing S (C;NC) and S (NC;NC) when �rms compete in

price

Suppose �rm 2 plays NC, while �rm 1 plays C. At t = 2, �rm 2 chooses H2 = D (p2; p1),

after �rms simultaneously select prices (p1 (H1) ; p2 (H1)) that solve:8><>:D (p1; p2) + (p1 � bc (p1; p2; H1))
@D
@p1
(p1; p2) = 0

D (p2; p1) + (p2 � F ) @D
@p2
(p2; p1) = 0

At t = 1, �rm 1 selects H1 that maximizes Z (H1) = E [U (� (p1 (H1) ; p2 (H1) ; H1))]. As

in the Cournot case, if �rm 1 chooses H1 = D
�
pB (F; F ) ; pB (F; F )

�
= D0=2, p1 = p2 =

pB (F; F ) is a solution of the system, hence the unique equilibrium. The shareholder value

of both �rms is S (NC;NC). Thus �rm 1 can guarantee itself at least S (NC;NC),which

implies that S (C;NC) � S (NC;NC). To prove that the inequality is strict, it su¢ ces to

show that dZ
dH1

(D0=2) 6= 0: This is easy, since

dZ

dH1

(D0=2) =
@D1

@p2

�
pB (F; F )� F

� @p2
@H1

E
h
U

0
(�1)

i
< 0:

Thus, if the �rm hedges
�
D0
2
� "
�
where " > 0 is arbitrarily small, it can obtain Z

�
D0
2
� "
�
>

Z
�
D0
2

�
. Thus, S (C;NC) > S (NC;NC).
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C.2 Comparing S (C;C) and S (NC;NC) if �rms compete in quan-

tity

S (C;C) = E
�
U

�
(P (Q�)� F )

Q�

2
+ (H� �Q�) (! � F )

��
< U

�
(P (Q�)� F )

Q�

2

�
since U (:) is concave, and

S (NC;NC) = U
��
P
�
2qC (F; F )

�
� F

�
qC (F; F )

�
:

For x � 0, denote f (x) = (P (2x)� F )x. Condition 2 implies that f (:) is globally concave

and admits a unique maximum x� de�ned by f
0
(x�) = P (2x�)�F +2x�P 0

(2x�) = 0. Then,

f
0 �
qC (F; F )

�
= �qC (F; F )P 0 �

2qC (F; F )
�
+2qC (F; F )P

0 �
2qC (F; F )

�
= qC (F; F )P

0 �
2qC (F; F )

�
< 0;

hence qE (F; F ) > x�. Then, f
�
qE (F; F )

�
> f (q�) since q� > qE (F; F ) and f (:) is decreas-

ing for x � x�. Thus: S(C;C) < U (f (q�)) < U
�
f
�
qC (F; F )

��
= S (NC;NC) :

C.3 Hotelling competition

We have seen in the text that

S (C;C) =
t

2
[1 +

"(5 + 8"+ 3"2)

2(3 + 2")2
] >

t

2
= S (NC;NC) :

Suppose that �rm 2 plays NC, while �rm 1 plays C and chooses hedging H1. We

prove that S (C;C) > S (NC;C). The equilibrium prices (p1 (H1) ; p2 (H1)) are given by the

Hotelling formula:

8><>:p1 = t+ 1
3

�
2
�
F + ��2

�
p2�p1
2t

+ 1
2
�H1

��
+ F

�
= t+ F + 4t"

3

�
p2�p1
2t

+ 1
2
�H1

�
p2 = t+ 1

3

�
2F +

�
F + ��2

�
p2�p1
2t

+ 1
2
�H1

���
= t+ F + 2t"

3

�
p2�p1
2t

+ 1
2
�H1

� :
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Taking the di¤erence, we obtain

p2 � p1 = �
2t"

3

�
p2 � p1
2t

+
1

2
�H1

�

thus

p2 � p1 = �2t
"

3 + "

�
1

2
�H1

�
and

D1 �H1 =
p2 � p1
2t

+
1

2
�H1 =

3

3 + "

�
1

2
�H1

�
:

Equilibrium prices are given by

p1 � F = t
�
1 + 4"

3+"

�
1
2
�H1

��
p2 � F = t

�
1 + 2"

3+"

�
1
2
�H1

��
Note that

@p2
@H1

= � 2t"

3 + "
< 0:

Maximization of M1 over H1 yields:

1

2t

�
p1 � F + ��2 (H1 �D1)

� @p2
@H1

� ��2 (H1 �D1) = 0

or �nally
1

2
�H1 =

3 + "

2 (9 + 4")
:

This implies that p2 � F = t
�
1 + "

9+4"

�
and D (p2; p1) =

1
2

�
1 + "

9+4"

�
:Thus

S (NC;C) =

�
1 +

"

9 + 4"

�2
t

2
:
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Finally,

S (C;C) > S (NC;C)() 1 +
"(5 + 8"+ 3"2)

2(3 + 2")2
> 1 +

9"(2 + ")

(9 + 4")2

()

(5 + 8"+ 3"2) (9 + 4")2 > 18(2 + ")(3 + 2")2

which is veri�ed for all " � 0.
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Abstract

This article examines how �rms facing volatile input prices and holding some degree of market

power in their product market link their risk management and their production or pricing

strategies. This issue is relevant in many industries ranging from manufacturing to energy

retailing, where risk averse �rms decide on their hedging strategies before their product

market strategies. We �nd that hedging modi�es the pricing and production strategies

of �rms. This strategic e¤ect is channelled through the risk-adjusted expected cost, i.e.,

the expected marginal cost under the probability measure induced by shareholders� risk

aversion. It has opposite e¤ects depending on the nature of product market competition:

hedging toughens quantity competition while it softens price competition. Finally, if �rms

can decide not to commit on their hedging position, this can never be an equilibrium outcome:

committing is always a best response to non committing. In the Hotelling model, committing

is a dominant strategy for all �rms.
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1 Introduction

Most formal analyses of corporate risk management decisions consider price-taking �rms that

face volatile cash �ows. For example, small �rms producing commodities or raw materials

(e.g., metals and minerals, oil and gas, electric power) face output price volatility. They can

use derivatives contracts to hedge against �uctuations of the output prices. This standard,

"non-strategic" risk management logic also applies to �rms facing input price volatility,

provided they do not exert market power in either their input or product markets.

However, when �rms facing input price volatility have some degree of market power in

their product market, their strategies become more elaborate. A �rm�s hedging modi�es its

realized input cost, hence its product market strategy. Thus, the �rm alters the competitive

dynamics in its industry, and must take into account the behavior of its competitors.

This situation occurs in many industries. For example, electricity retailers purchase power

on wholesale markets and resell it to their retail customers. In Britain, the electricity and

gas regulatory agency (Ofgem (2008), page 10) indicates that: "there is evidence that the

(6 largest suppliers) seek to benchmark their hedging strategies against each other in order

to minimize the risk of their wholesale costs diverging materially from the competition".

Suppliers thus appear to include their competitors�hedging strategy in their own hedging

strategy, and ultimately their product market strategy.

Airlines also constitute a relevant example. Carter et al. (2006) report that, over the

period 1992 � 2003, fuel price represented more than 13% of airlines operating costs, and

exhibited annualized volatility of 27%. Airlines do not exert market power in the fuel market,

yet they are an oligopoly on speci�c routes (see for example Gerardi and Shapiro (2009)).

The food processing industry provides another example. Food processing �rms are ex-

posed to volatile feedstock prices (e.g., grains, tobacco). They may not exert market power

in the feedstock markets, however most empirical studies document market power in their

product markets: see for example the survey by Sheldon and Sperling (2001).

As the examples above suggest, the interaction between hedging and product market
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strategies is relevant for multiple industries. Yet, the academic literature on the strategic

aspects of hedging is small, for, in most cases, a separation (or dichotomy) property exists:

hedging is found to have no impact on product market strategy (see for example the references

in Dionne and Santugini (2013)). This article is among the few that explicitly establishes a

link between hedging and product market strategy when �rms compete in quantity (Cournot)

and in price (di¤erentiated Bertrand).

We focus the analysis on risk-averse �rms that hedge before deciding their product market

strategies. The empirical relevance of this choice is justi�ed in Section 3. Formally, we use

two-stage games: �rms �rst determine their hedging strategy, then determine their product

market strategy (quantity or price), conditional on their �rst-stage choice.

We �rst analyze quantity competition. We prove that the �rst-order conditions charac-

terizing the equilibrium of the (second-stage) production game are similar to the standard

Cournot case, except that risk-adjusted expected costs replace marginal costs. The intuition

is that investors value a marginal cost increase using the probability measure induced by

their marginal utility of wealth in each state of the world, and not the physical probability

measure. This risk-adjusted expected marginal cost is determined in equilibrium, and is

decreasing in own hedging. Thus, a �rm that increases its hedging becomes more aggressive

(Lemma 2).

An equilibrium of the production game always exists. If �rms�absolute risk aversion is

constant (or does not vary too much), this equilibrium is unique, and an increase in own

hedging reduces the other �rm�s equilibrium output (Proposition 2). If a symmetric equilib-

rium of the (�rst-stage) hedging game exists, hedging toughens quantity competition: �rms

hedge more than their (anticipated) equilibrium production, thus committing to produce

more than if their costs were constant and equal to the expected cost under the physical

probability measure (Proposition 3).

We establish similar results for price competition, although we reach the opposite con-

clusion: hedging softens price competition. As with quantity competition, risk-adjusted
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expected marginal costs, determined in equilibrium, replace constant marginal costs in the

�rst-order conditions characterizing the equilibrium of the pricing game. Since risk-adjusted

expected costs are decreasing in own hedging, a �rm that increases its hedging becomes more

aggressive (Lemma 3).

As with quantity competition, an equilibrium of the pricing game always exists. If ab-

solute risk aversion is constant, the equilibrium is unique, and an increase in own hedging

reduces the other �rm�s equilibrium price. The crucial di¤erence with quantity competition

is that hedging softens pricing competition: �rms hedge less than their (anticipated) equi-

librium production, thus committing to a price higher than if their cost was constant and

equal to the expected cost under the physical probability measure (Proposition 5).

Finally, we examine the strategic incentives to commit to a hedging position (Proposition

6). The above results are derived under the assumption that Boards of Directors impose that

�rms commit to their hedging position. This is usually meant to limit speculation by traders.

Ignoring that objective, does commitment arise in equilibrium?

We show that, whether �rms compete in quantity or in price, committing is a �rm�s

best response to the other not committing. Thus universal non commitment never arises

as an equilibrium. Furthermore, in the particular case of the Hotelling model (where �rms

compete in price and total demand is inelastic) commitment is a dominant strategies for all

�rms.

This article is structured as follows: Section 2 discusses the links with the literature.

Section 3 presents the model. Section 4 analyzes quantity competition. Section 5 analyzes

price competition. Section 6 examines incentives to commit to hedging decisions. Technical

proofs are presented in the Appendix.

2 Literature Review

As mentioned previously, only a few articles examine the interaction between hedging and

product market strategies. They are reviewed below.
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Dionne and Santugini (2013) examine a two-stage game related to ours. In the �rst

stage, �rms decide to enter the market (or not). In the second stage, risk averse �rms facing

a volatile input price compete à la Cournot in their output market, and simultaneously

determine their hedging strategy. As they solve the game backwards, Dionne and Santugini

(2013) �nd that both hedging and product market strategies depend on the number of �rms in

the market. The latter is then determined in equilibrium, and is a function of the volatility

of input price, the level of forward prices, and �rms� risk aversion. There are two main

di¤erences with our model: we consider a mature market where the number of active �rms

is �xed, while Dionne and Santugini (2013) look at markets where new �rms can enter. The

second di¤erence is that in our model �rms commit ex ante to their hedging strategies (more

on this in the next section) while in Dionne and Santugini (2013) hedging and quantities are

jointly determined: �rms use hedging as a strategic commitment device in our model, while

they use market entry in Dionne and Santugini (2013).

Allaz and Villa (1993) look at �rms that are large enough to exert market power on both

the spot and the forward markets. There is no uncertainty. In the spot market (stage 2), a

�rm that has already sold a share of its output faces lower incentives to withhold output. In

the forward market (stage 1), �rms face a prisoner dilemma, and cannot resist selling output

forward. Thus the existence of forward contracts reduces �rms�market power. This result

is very similar to our Proposition 6, even though the setting is di¤erent: �rms in Allaz and

Villa sell output in spot and forward markets where they exert market power, while in ours,

�rms exert no market power in the spot and forward markets for input.

Adam, Dasgupta, and Titman (2007) examine two-period games in the presence of �nan-

cial constraints: �rms�hedging decision in the �rst-period a¤ects their investment capacity,

hence their pro�tability in the second period. They show that asymmetric equilibria arise:

in equilibrium, some �rms hedge, while others do not. In their model, the presence of �-

nancial constraints and the resulting potential underinvestment is the conduit for strategic

interaction. Similarly, Loss (2012) examines the interaction between hedging demand and
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the characteristics of investment opportunities in the presence of �nancial constraints. Us-

ing a reduced form for pro�t functions, he �nds that a �rm�s hedging demand is high when

investments are strategic substitutes, and low when they are strategic complements. In this

article, by contrast, prices and outputs are endogenized together with hedging positions.

Bodnar, Dumas, and Marston (2002) consider a duopoly with asymmetric exposure to an

exchange rate, and determine the optimal pass-through and related exposure. While the

problem is related to the one examined here, the analytical approach is very di¤erent: they

treat the exchange rate as a �xed input price, not as a stochastic variable. Recently, Nocke

and Thanassoulis (forthcoming) examine how credit constraints, making �rms endogenously

risk averse, impact vertical relationships in the supply chain. They �nd that, in the short

run, the optimal supply contract involves risk sharing and double marginalization.

This article also is methodologically related to the literature on the strategic impact of

�rms��nancial structure1, that was initiated by Brander and Lewis (1986). Brander and

Lewis (1986) examine a two stage game. In the �rst stage, �rms determine their debt level.

In the second stage, they compete à la Cournot, facing uncertainty on their pro�tability.

Brander and Lewis (1986) �nd that, in the states of the world where marginal pro�tability

is higher, an increase in debt increases the equilibrium output, which echoes our Proposition

2. They also �nd that the equilibrium level of debt is excessive from the industry�s point of

view, which echoes our Proposition 6.

Our analytical approach, namely the use of two-stage games, is identical to Brander

and Lewis (1986). However, we examine a di¤erent decision by �rms: hedging and not

capital structure. Speci�cally, we show that �rms can use risk management as a strategic

instrument, as powerful as debt.

1A review of this literature can be found in Tirole (2006), Chapter 7.
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3 Quantity Competition: the Model

Consider two identical �rms, indexed by i = 1; 2, competing à la Cournot. Firm i produces qi

units of output, total production is Q = q1+ q2, and inverse demand P (Q). The technology

is linear: each unit of input, that costs ~c, is transformed into one unit of output. Firm i�s

commercial pro�t is thus:

�C (qi; qj; ~c) = qi (P (Q)� ~c) :

3.1 Uncertainty on input costs and risk management

Ex ante, the input cost ~c is a random variable, with a cumulative distribution function G (:)

on a bounded support. Firms can hedge some of their risk on input cost ~c by buying forward

contracts at (unit) price F . To eliminate speculative motives for hedging, we assume that

F = E [~c]. There are no transaction costs associated with hedging. Thus, at t = 2 (i.e., once

the input cost ~c is known), the pro�t function of �rm i that has purchased forward quantity

Hi at price F is:

�i=� (qi; qj; Hi; ~c) = qi (P (Q)� ~c) +Hi (~c� F )

= qi (P (Q)� F )� (qi �Hi) (~c� F ) :

The �rst expression for �rm i0s pro�t corresponds to adding to its commercial pro�t the

net gain (or loss) on its forward position Hi. The second expression shows an equivalent

decomposition: �rm i can consider that its production cost is F , and its net (unhedged)

exposure to input price �uctuations (qi �Hi).

Firms do not have market power in the spot and forward markets for input, even though

they do exert market power in their product market. We also assume that �rms choose their

outputs (or prices) before input costs are realized. This is the case for most manufacturing

industries2: producers (e.g., car manufacturers) commit to a product price or volume for

2This assumption does not apply to industries where output price is �exible. For example delivery services
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the relevant period (typically one or two quarters). During that period, input prices (e.g.,

aluminum and steel prices) vary. This assumption also holds for the electricity supply in-

dustry. For example in the United Kingdom, electricity retail rates typically change only 3

or 4 times a year, while wholesale power prices vary continuously.

Two other assumptions are crucial for risk management to have any strategic value. First,

each �rm must be able to publicly commit to its hedging decision. Second, �rms must be

"risk averse", in the sense that shareholder value can be measured by the expectation of

some concave function of pro�t. We now motivate these assumptions.

3.2 Public commitment to the hedging decision

Except for Section 6, we assume throughout this article that �rms publicly commit to their

hedging decisions (H1; H2) before they select their output (or prices). This assumption can

be justi�ed as follows.

First, �nancial regulations require �rms to publish, in their quarterly statements, a de-

scription of their portfolio of forward purchases and sales. While some discretion still exists

in disclosure, an outside party can get a close picture of a �rm�s hedging portfolio. For

example, Jin and Jorion (2007) were able to compute the delta-equivalent of the forward

portfolio for US oil and gas companies. Also, as previously mentioned, electricity suppliers

in Britain infer each other�s hedging portfolio from �nancial statements and other public

information.

Second, industrial �rms can �and in practice do �commit to a hedging strategy through

their risk management policy. Forward sales and purchases, that require the use of deriv-

atives, are usually handled with extreme caution by Board of Directors, concerned about

(e.g., Fedex and UPS) explicitly include in their published rate a fuel surcharge schedule, that depends on
the price of an oil index. Similarly, electricity suppliers in Norway o¤er retail contracts explicitly adjusted
to the wholesale power price.
When �rms set production after the input price is realized, the pro�t from the hedge is known before

the production decision is made, thus has no impact on it. Firms cannot do any better than standard
deterministic pro�t maximization. Knowing that, when �rms make the hedging decision, they follow the
"standard" non-strategic risk management logic.
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potential speculative behavior by traders. Boards then require management to de�ne and

follow a clear hedging strategy. As mentioned earlier, this position is communicated to

investors and regulators. Management has then limited discretion to deviate from it.

Without commitment on hedging, no strategic interaction would arise and there would

be a dichotomy between hedging and production. Suppose indeed that �rms select output,

then hedge. Reasoning backwards, consider �rst the hedging decision, once production is

known. Since (i) �rms are risk averse, and (ii) there are no transaction costs nor expected

gain from hedging (i.e., E [~c] � F = 0), full hedging is the optimal strategy. Consider now

the production decision. Knowing that input costs will be perfectly covered at the forward

price, �rms play a symmetric Cournot game with constant marginal costs equal to F . The

same reasoning holds for price competition.

Thus, this article is focussed on situations where risk-averse �rms hedge before making

their production (or price) decision.

3.3 Objective function

To obtain a strategic impact of risk management, a crucial ingredient is that �rms be risk-

averse. Thus, we assume that each �rm i maximizes some expected utility U (�i) of its

pro�ts �i, where U (:) is increasing, concave and exhibits non-increasing absolute risk aversion

�(�) � �U 00
U 0 (�). This is a natural assumption when the �rm is owned by a small number of

shareholders who cannot fully diversify. This is also a convenient reduced form for widely

held �rms when there are �nancial frictions3. These �nancial frictions can take the form

of a wedge between the costs of external and internal �nance (Froot, Scharfstein, and Stein

(1993)), transaction costs on primary security markets (Décamps et al. (2011)), or agency

costs (DeMarzo and Sannikov (2006), Biais et al. (2007)). In each of these cases, shareholder

3If �nancial markets were complete and frictionless, the Modigliani and Miller theorem would apply. In
particular risk management would not create any value for shareholders.
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value can be represented as the expectation of a concave function4 of future pro�ts. For

simplicity, we consider a symmetric model where U (:) is the same for all �rms. At date

t = 0, the shareholder value of �rm i is then

vi = v (qi; qj; Hi) = E [U (� (qi; qj; Hi; ~c))] = E [U (qi (P (Q)� F ) + (Hi � qi) (~c� F ))] :

We look for subgame perfect equilibria of the two-stage game played by �rms. We use

backward induction: we �rst determine the second-stage equilibrium (q� (H1; H2) ; q
� (H2; H1)),

and then compute the �rst-stage payo¤functions Vi = V (Hi; Hj) � vi(q
� (Hi; Hj) ; q

� (Hj; Hi) ; Hi).

4 Strategic use of hedging

4.1 An illustrative example

Before turning to the general Cournot model, we illustrate the main insights with a simple

example: (i) Constant Absolute Risk Aversion (CARA), i.e. U (x) = 1 � exp (��x), (ii)

linear inverse demand P (Q) = 1 � Q, and (iii) normally distributed5 input cost ~c, with

mean F and standard deviation �. In this case,

v (qi; qj; Hi) = E [1� exp (�� (qi (P (Q)� F ) + (Hi � qi) (~c� F )))] = 1�exp (��m (qi; qj; Hi))

where

mi = m (qi; qj; Hi) = qi (1�Q� F )� � (Hi � qi)
2 �2

2

is the certainty equivalent of �rm i0s pro�t. Maximizing vi is equivalent to maximizing mi.

Now
@mi

@qi
= 1� 2qi � qj � F + ��2 (Hi � qi) :

First note that @mi

@qi
is decreasing in qi (which means that mi is concave in qi) and in qj

4We take U as exogenous. A fully dynamic model, with explicit modelling of �nancial frictions, would
allow to endogenize U . This is done by Rochet and Villeneuve (2011) in a non-strategic context. Extending
it to a strategic context would be di¢ cult and is outside the scope of the present paper.

5Assuming normal distributions has the usual drawback that costs can take arbitrarily large (or negative)
values, and thus equilibrium prices or quantities can be negative, which of course is meaningless from the
economic viewpoint. However, for reasonable values of the parameters, the probability of negative prices
and quantities is essentially zero, and our equilibria are essentially identical to the fully correct ones that
would have been obtained with appropriately truncated normal distributions.
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(which means that quantities are strategic substitutes: �rm i produces less if its competitor

produces more). Note again that if hedging Hi was determined simultaneously with output

qi; �rms would choose complete hedging Hi = qi and we would be back to the Cournot model

with deterministic cost F . Thus our assumption that hedging is determined before output

is decided is crucial for risk management to play any strategic role.

The �rst-order necessary and su¢ cient conditions characterizing the equilibrium are

qi
�
2 + ��2

�
+ qj = 1� F + ��2Hi (i = 1; 2); (1)

which yields the unique equilibrium of the second-stage game:

q�i = q� (Hi; Hj) =
1� F + ��2

1+��2
[(2 + ��2)Hi �Hj]

3 + ��2
(i = 1; 2):

Thus V (Hi; Hj) = 1� exp (��M (Hi; Hj)), where

Mi =M (Hi; Hj) = m (q� (Hi; Hj) ; q
� (Hj; Hi) ; Hi) ;

is the certainty equivalent of �rm i0s pro�t in the production game (stage 1). Now6,

@Mi

@Hi

=
@mi

@qi

@q�i
@Hi

+
@mi

@qj

@q�j
@Hi

+
@mi

@Hi

=

�
q�i P

0
(Q)

@q�j
@Hi

� (Hi � q�i ) ��
2

�
=���2[Hi �

�
1 +

1

(3 + ��2) (1 + ��2)

�
q�i ]:

The necessary �rst-order conditions of the hedging game (stage 1) are then:

H�
i =

�
1 +

1

(3 + ��2) (1 + ��2)

�
q�i (i = 1; 2):

Since M is concave in its �rst argument, these conditions are also su¢ cient. Replacing q�i
6Note that @mi

@qi
= 0 by the equilibrium condition of the second-stage game.
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by q� (Hi; Hj) and solving for the �rst stage equilibrium yields a unique solution, which is

symmetric (q�i = q�j = q�; H�
i = H�

j = H�), characterized by

H� = q�(1 +
1

(3 + ��2) (1 + ��2)
) > q�; and q� =

1� F

3� ��2

(3+��2)(1+��2)

>
1� F

3
:

Note that 1�F
3
would be the equilibrium output of each �rm in the absence of commitment

on hedging. These results are summarized in the next proposition.

Proposition 1 Assume that �rms compete in quantities, have a constant absolute risk aver-

sion, demand is linear, and costs are normally distributed. Then the two-stage game has a

unique subgame perfect equilibrium, which is symmetric. Firms over hedge and produce more

than in the absence of commitment on hedging.

Thus, with our simple speci�cation, committing ex-ante on their hedging positions makes

Cournot competitors more aggressive. If hedging was done after (or together with) output

decisions, shareholders would be collectively better-o¤: prices and pro�ts would be higher

and �rms would be perfectly hedged against input price �uctuations7. As we now see, these

features also hold under more general conditions on utility, demand, and cost distribution.

4.2 The general case

In order to extend the analysis to a more general speci�cation, we �rst need to guarantee

the existence and unicity of a Cournot equilibrium in the second stage of the game, for any

couple of hedging strategies (Hi; Hj) of the �rst stage. For this we impose classical conditions

that give existence and uniqueness of a Cournot equilibrium when �rms have di¤erent costs

(see for example Vives (2001)).

7However, we show in Section 6 that it is never privately optimal for the shareholders of each of the �rms
not to commit on their hedging positions. This is a prisoners�dilemma type of situation.
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Assumption 1 For all Q � 0, the inverse demand function P (:) satis�es

QP 00 (Q)

(�P 0 (Q)) < 1 (2)

and

lim
Q!1

A (Q) = 0 and lim
Q!0

A (Q) = lim
Q!0

P (Q) = +1

where

A (Q) = 2P (Q) +QP
0
(Q) :

Under Assumption 1 the Cournot game with deterministic (but di¤erent) costs (ci; cj)

has natural properties that we will use in the sequel. In this game, �rm i�s pro�t function

is:

�C (qi; qj; ci) = qi (P (Q)� ci) :

Thus:
@�Ci
@qi

= (P (Q)� ci) + qiP
0
(Q) = 0; (3)

and
@2�Ci
(@qi)

2 = 2P
0
(Q) + qiP

00
(Q) :

Lemma 1 Assumption 1 implies that, for all (c1; c2) there exists a unique Cournot equilib-

rium
�
qC (c1; c2) ; q

C (c2; c1)
�
. When this equilibrium is interior

�
qCi = qC (ci; cj) > 0 for i = 1; 2

�
,

it satis�es @qCi
@ci

< 0 and
@qCj
@ci

> 0 for i = 1; 2.

Proof. The result is standard. For the reader�s convenience, the proof is presented in

Appendix A.1.

Thus, an increase in �rm i0s marginal cost induces a reduction in its Cournot equilibrium

output qCi and an increase in the equilibrium output of its competitor q
C
j . This property will

be crucial for our results.
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We now return to the random cost case. The shareholder value of �rm i is

vi = E [U (�i)] = E [U (qi (P (Q)� F ) + (Hi � qi) (~c� F ))] ;

and thus

@vi
@qi

=E
�
U 0 (�i)

@�i
@qi

�
= E

h
U 0 (�i)

�
P (Q)� ~c+ qiP

0
(Q)
�i

=E [U 0 (�i)]
�
P (Q) + qiP

0
(Q)� bc (qi; qj; Hi)

�
;

where

bc � bc(qi; qj; Hi) =
E [U 0 (� (qi; qj; Hi; ~c)) ~c]

E [U 0 (� (qi; qj; Hi; ~c))]
= F +

cov [U 0 (� (qi; qj; Hi; ~c)) ; ~c]

E [U 0 (� (qi; qj; Hi; ~c))]
(4)

is the risk-adjusted expected cost8 of �rm i. Note that v (qi; qj; Hi) is concave in qi since

@2vi

(@qi)
2 = E

"
U

00
(�i)

�
@�i
@qi

�2
+ U

0
(�i)

@2�i

(@qi)
2

#
< 0:

Therefore, if an interior Nash equilibrium
�
q�i ; q

�
j

�
exists, it is determined by the �rst order

conditions

P (Q�) + q�i P
0
(Q�)� bc �q�i ; q�j ; Hi

�
= 0; (i = 1; 2): (5)

Before proving existence of a Nash equilibrium and deriving su¢ cient conditions for unic-

ity, we examine system (5). The interaction between hedging and production is channelled

through the expected risk-adjusted cost bc (qi; qj; Hi), determined in equilibrium. If �rm i pro-

duces one more unit at random cost ~c; the impact on shareholder value is E [U 0 (�i) ~c] . More

generally, the marginal certainty equivalent of a random cash �ow x (~c) for the shareholders

8The notion of risk-adjusted expectation is borrowed from mathematical �nance, where it is used in
particular to price derivative contracts.
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of �rm i is given by its risk-adjusted expectation:

bEi [x (~c)] = E [U 0 (� (qi; qj; Hi; ~c))x (~c)]

E [U 0 (� (qi; qj; Hi; ~c))]
:

For example in the case of constant absolute risk aversion and normal distribution of

costs, the risk adjusted expected cost of �rm i does not depend on its competitor output.

It is just equal to the expected cost F plus a risk premium that increases linearly with

unhedged output9 (qi �Hi) :

bc(qi; Hi) �
E [U 0 (�i) ~c]
E [U 0 (�i)]

= F + ��2 (qi �Hi)

It is increasing in qi, decreasing in Hi, and lower than the expected cost F if and only if

Hi > qi. When �rms�absolute risk aversion �(�) =
�U 00(�)
U 0(�) is not constant, bci also depends

on the output of the other �rm, which complicates the analysis10: bci � bc(qi; qj; Hi): However

the properties derived above are robust:

Lemma 2 :
@bc
@qi

�
q�i ; q

�
j ; Hi

�
� 0; and @bci

@Hi

< 0: (6)

bci � F , Hi � qi:

@bci
@qj

= �qiP
0
(Q) ccovi [� (�i) ; ~c] ; (7)

thus 8><>:
@bci
@qj
= 0 if � (�) is constant

@bci
@qj

< 0, Hi > qi if � (�) is decreasing
: (8)

Proof. See Appendix A.2.
9This can be seen by computing vi = E[U(�i)] = U(mi) in two di¤erent ways:
@Ui
@Hi

= E[U 0(�i) @�i@Hi
] = E[U 0(�i)(ec� F )] = E[U 0(�i)][bci � F ] and

@Ui
@Hi

= U 0(mi)
@mi

@Hi
= E[U 0(�i)]��2(qi �Hi):

10Dependency of bci with respect to qj is indirect. It is channelled through variations in absolute risk
aversion.
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At equilibrium, expected risk-adjusted marginal cost increases in qi as if there were

decreasing returns to scale. Increasing Hi reduces �rm i0s risk-adjusted expected marginal

cost. This comes from the fact that a marginal increase in hedging decreases ex-post marginal

cost when ~ci > F and increases it when ~ci < F . Since favorable realizations are weighted by

a lower marginal utility, overall the risk-adjusted expected cost decreases.

We now turn to existence and unicity of the equilibrium of the production game. Since

we ultimately focus on symmetric equilibria (where H�
1 = H�

2 = H, q�1 = q�2 = q�, bc1 = bc2),
we restrict our attention to the case where jH1 �H2j is small enough that the equilibrium

of the production game is interior.

(q�1; q
�
2) is thus a �xed point of the function �, de�ned from R2 into R2 by

8><>:�1 (q1; q2) = qC (bc (q1; q2; H1) ;bc (q2; q1; H2))

�2 (q1; q2) = qC (bc (q2; q1; H2) ;bc (q1; q2; H1))
:

Proposition 2 For any (H1; H2) close enough to the diagonal, an equilibrium of the pro-

duction game exists. If absolute risk aversion is constant, this equilibrium is unique, and

denoted11 by q�i = q� (Hi; Hj) for i = 1; 2: Furthermore, a marginal increase in �rm i�s

hedging reduces �rm j�s equilibrium output:
@q�j
@Hi

< 0:

Proof. For existence, we apply Brouwer�s �xed point theorem to the mapping �. Since by

assumption ec is bounded above by some constant c;
bc (qi; qj; Hi) =

E [U 0 (� (qi; qj; Hi; ~c)) ~c]

E [U 0 (� (qi; qj; Hi; ~c))]
� c

for all (qi; qj; Hi). Now, since
@qC

@cj
(ci; cj) � 0 and @qC

@ci
(ci; cj) � 0:

qC (bc (qi; qj; Hi) ;bc (qj; qi; Hj)) � qC (0; c) � qC :

Thus, we can limit our search to (qi; qj) 2
�
0; qC

�2
. Since qC (x; y) and bc (x; y; :) are contin-

11Unicity of the equilibrium and symmetry of the game imply symmetry of the equilibrium.
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uous in (x; y), and de�ned on a compact and convex set of R2, Brouwer�s theorem implies

the existence of an equilibrium.

If absolute risk aversion is constant, we prove in Appendix A.3 that the real parts of the

eigenvalues of the Jacobian matrix

J (q�1; q
�
2; H1; H2) =

264 @qC1
@q1
� 1 @qC1

@q2

@qC2
@q1

@qC2
@q2
� 1

375
are always negative, which implies that the equilibrium is unique. Finally, constant absolute

risk aversion also implies @bc
@qj

�
q�i ; q

�
j ; Hi

�
= 0 by Lemma 2. Firms play a familiar Cournot

game with marginal costs bci increasing in qi at the equilibrium, and decreasing in Hi. We

prove in Appendix A.4 that, since increasing hedging reduces a �rm�s cost, it makes it more

aggressive, and reduces its competitor�s output.

Proposition 2 shows that a marginal increase inHi reduces q�j , and thus increases q
�
i , since

quantities are strategic substitutes. Another way to see this is that a marginal increase in Hi

reduces the risk-adjusted expected cost, because it decreases the unhedged input (qi �Hi) ;

and thus increases q�i . Thus a marginal increase in Hi commits �rm i to a higher output.

If risk aversion varies with pro�t, a "revenue e¤ect" arises. Equilibrium of the quantity

game may not always be unique. However, this e¤ect is of second-order importance if risk

aversion does not vary too much, and our basic conclusions remain valid12.

4.3 Equilibrium of the hedging game

Suppose a symmetric interior equilibrium of the hedging game (H�; H�) exists. Then we

have:

Proposition 3 1. H� is characterized by the �rst-order condition:

bc (q�; q�; H�)� F + P
0
(Q�) q�

@q�j
@Hi

(H�; H�) = 0: (9)

12Proofs are available from the authors upon request.
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2. If absolute risk aversion is constant, hedging toughens quantity competition: �rms over-

hedge (H� > q�), and produce more than if they did not commit to their hedging

position: q� > qC (F; F ) :

Proof.

1. For i = 1; 2 ,the �rst-order conditions characterizing equilibrium hedging volumes H�
i

are:

E
�
U 0 (��i )

�
@�i
@Hi

+
@�i
@qj

@q�j
@Hi

+
@�i
@qi

@q�i
@Hi

��
= 0:

Since @�i
@Hi

= ~c � F , @�i
@qj

= P
0
(Q) qi, and @�

@qi

�
q�i ; q

�
j ; Hi

�
= 0 by de�nition of q�i , this

condition becomes

E[U 0 (��i )
�
~c� F + P

0
(Q�) q�i

@q�j
@Hi

�
] = 0:

Dividing by E [U 0 (��i )] > 0 and setting H
�
i = H�

j = H� yields equation (9).

2. Since
@q�j
@Hi

(H�; H�) < 0, equation (9) yields bc (q�; q�; H) < F , H� > q�:Thus, at a

symmetric equilibrium, equation (5) yields

P (2q�) + q�P
0
(2q�) = bc (q�; q�; H) < F = P

�
2qC (F; F )

�
+ qC (F; F )P

0 �
2qC (F; F )

�
:

Assumption 2 implies that P (2q) + qP
0
(2q) is decreasing:

�
P (2q) + qP

0
(2q)

�0
=

3P 0 (2q) + qP 00(2q) = [�P 0][ qP 00�P 0 � 3] < 0. Thus the above condition is equivalent

to q� > qC (F; F ) :

A marginal increase in Hi has two e¤ects on �rm i�s expected utility. First, a direct e¤ect

on expected cost : the �rm substitutes input at known cost F for input at uncertain cost

~c. When taking the risk-adjusted expectation, this substitution is worth bc (qi; qj; Hi) � F .

Second, an indirect e¤ect, through the change in the other �rm�s production: P
0
(Q�) q�i

@q�j
@Hi
.
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At equilibrium, both e¤ects exactly cancel out for both �rms, which produces equilibrium

conditions (9).

Thus, since
@q�j
@Hi

(H�; H�) < 0 and P
0
(Q�) q�i < 0, �rms set bc �q�i ; q�j ; H�

i

�
< F . They

over hedge, i.e., hedge more than their (anticipated) production, so that their risk-adjusted

expected marginal cost is lower than their "physical" expected marginal cost E [~c] = F . This

leads them to become more aggressive, and produce more than if they were perfectly hedged.

Finally, combining �rst-order conditions (5) and (9) yields:

P (Q�) + q�P
0
(Q�) = F � P

0
(Q�) q�

@q�j
@Hi

(H�; H�) ; (i = 1; 2) :

Comparing with �rst-order condition (3) for ci = F , an additional term
�
�P 0

(Q�) q�
@q�j
@Hi

< 0
�

is added, that captures the strategic impact of �rm i�s hedging on �rm j�s production de-

cision. Since this term is negative, each �rm will be "tougher" in the second-stage. In the

subgame perfect equilibrium, �rms "invest" too much in hedging, in order to be tough in

the quantity game13.

5 Price competition

We now turn to price competition. As in the previous Section, we analyze the subgame

perfect equilibria of a two-stage game. In the �rst stage, �rms choose their hedging positions

(Hi;Hj): In the second stage, they compete in prices. We will show that the strategic impact

of hedging on price competition is exactly opposite to the one it has on quantity competition.

Since the method of resolution is similar in both cases, results are stated brie�y. We only

emphasize the di¤erences with quantity competition. As in the previous Section, we start

by illustrating the basic properties on a simple case.

13This is reminiscent of the "top dog e¤ect" in the taxonomy of Fudenberg and Tirole (1984).
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5.1 An illustrative example

Consider a standard Hotelling model, where the demand faced by �rm i is Di = D (pi; pj) =

1
2
+

pj�pi
2t
. The pro�t functions are

�i=

�
1

2
+
pj � pi
2t

�
(pi � ~c) +Hi (~c� F )

=

�
1

2
+
pj � pi
2t

�
(pi � F ) + (Hi �

1

2
+
pj � pi
2t

) (~c� F ) :

Shareholder value of �rm i is vi = v (pi; pj; Hi) = E [U (�i)]. If absolute risk aversion �

is constant and costs are normally distributed with mean F and standard deviation �, the

certainty equivalent of �rm i�s pro�t is

mi = (
1

2
+
pj � pi
2t

)(pi � F )� ��2

2
(Hi �

1

2
� pj � pi

2t
)2:

Note again that if hedging was selected simultaneously with price, each �rm would hedge

completely and we would be back to the Hotelling model with deterministic costs F: The

situation is di¤erent here since �rms commit on their hedging positions before competing in

prices. We have:

@mi

@pi
=
1

2
+
pj � pi
2t

+
F � pi
2t

� ��2

2t
(Hi �

1

2
� pj � pi

2t
):

@mi

@pi
is decreasing in pi (indicating that mi is concave in pi) and increasing in pj (indicating

that prices are strategic complements: �rm i charges a higher price if �rm j does). Intro-

ducing the notation ��2

2t
= ", the �rst order condition characterizing the price equilibrium

is

pi = F + t+ "t[1� 2Hi]� (1 + ")(pj � pi); (i = 1; 2):
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Taking the di¤erence between these two equations and simplifying, we obtain

pi � pj =
2"t

3 + 2"
(Hj �Hi);

and thus

p�i � p�(Hi; Hj) = F + t+ "t[1� 2Hi �
2(1 + ")

3 + 2"
(Hj �Hi)]; (i = 1; 2):

To compute the certainty equivalentMi of �rm i0s pro�t in the hedging game, we replace

p�i by its expression in the formula giving mi. We obtain:

Mi = t

�
1

2
� "

3 + 2"
(Hj �Hi)

��
1 + "

�
1� 2Hi �

2(1 + ")

3 + 2"
(Hj �Hi)

��
�"t

�
Hi �

1

2
+

"

3 + 2"
(Hj �Hi)

�2
:

Mi is quadratic in (Hi; Hj) and strictly concave in Hi: Thus, there exists a unique Nash

equilibrium of the �rst-stage game, characterized by the �rst order conditions. It is easy to see

that this equilibrium is symmetric: H�
i = H�

j = H�, where H�satis�es: 1� 2H� = 1+"
3+2"

> 0:

Compared with the case where �rms would hedge perfectly, equilibrium price and share-

holder value are higher:

p�i = p�j = F + t+ "t
1 + "

3 + 2"
> F + t:

M�
i =M�

j =
t

2
[1 +

"(5 + 8"+ 3"2)

2(3 + 2")2
] >

t

2
:

These results are summarized in the next proposition:

Proposition 4 In the Hotelling model with normally distributed costs and constant absolute

risk aversion, there is a unique subgame perfect equilibrium. It is symmetric (H�
i = H�

j = H�;

p�i = p�j = p�): Firms under hedge (H� < 1
2
), charge a higher price (p� > F + t), and have

higher shareholder value than if they did not commit on hedging.
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Thus in the normal-Constant Absolute Risk Aversion case, commitment on risk manage-

ment allows Hotelling �rms to compete less aggressively and secure higher margins. As we

now see, these features also hold more generally for di¤erentiated Bertrand competition.

5.2 The general model

Consider the general case of two symmetric �rms that compete in prices. Firm i faces

demand Di = D (pi; pj), decreasing in its own price and increasing in the other �rm�s price.

As in the Cournot case, we make assumptions that ensure that the second stage game has

a unique interior equilibrium. These assumptions bear on the asymmetric Bertrand game

where �rms have di¤erent costs ci and cj; and �rm�s i pro�t function is

�Bi = �B (pi; pj; ci) = D (pi; pj) (pi � ci) :

Assumption 2 : D (pi; pj) is such that:

(i) �B is concave in its �rst argument: @2�B

(@pi)
2 < 0 for all (pi; pj; ci) ;

(ii) for all (ci; cj) close enough to the diagonal14, the pricing game has a unique interior

equilibrium
�
pB (ci; cj) ; p

B (cj; ci)
�

(iii) prices are strategic complements: @2�B

@pi@pj
> 0 ;and

(iv) the own price e¤ect on demand is stronger than the other �rm�s price e¤ect: @Di
@pi
+

@Di
@pj

� 0 and @2Di
(@pi)

2 +
@2Di
@pi@pj

� 0 for all (pi; pj) :

Assumption 2 is met for example in the Hotelling model considered above. In this case

equilibrium prices are: pB (ci; cj) = t+
2ci+cj
2

:

Concavity of the objective function and strategic complementarity of prices are met by

many demand functions. Unicity of equilibrium with deterministic input costs is required to

establish unicity with stochastic input costs. We prove in Appendix B.1 that when the own

price e¤ect is stronger than the other�s price e¤ect, an increase in one �rm�s cost increases

both prices: @pB

@ci
(ci; cj) > 0 and

@pB

@ci
(cj; ci) > 0:

14As in the Cournot case, jc1 � c2j must be small enough to avoid a corner equilibrium.
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5.3 Strategic hedging

As before, we assume that the shareholder value of each �rm equals the expected utility of

its pro�t:

vi = v (pi; pj; Hi) = E [U (�i)] = E[UfD (pi; pj) (pi � ec) +Hi(ec� F )g]:

Thus

@vi
@pi

= E
�
U 0 (�i)

@�i
@pi

�
= E

�
U 0 (�i) �

�
Di + (pi � ~c)

@Di

@pi

��
= E [U 0 (�i)]

�
Di + (pi � bci) @Di

@pi

�
;

where

bci = bc (pi; pj; Hi) �
E [U 0 (� (pi; pj; Hi; ~c)) ~c]

E [U 0 (� (pi; pj; Hi; ~c))]
= F +

cov [U 0 (�) ; ~c]

E [U 0 (�)]

is the risk-adjusted expected cost of �rm i. We prove in Appendix B.2 that this risk-adjusted

expected cost has similar (but not identical) properties to the Cournot case:

Lemma 3 :
@bc
@pi

�
p�i ; p

�
j ; Hi

�
� 0; and @bci

@Hi

< 0:

bci � F , Hi � D (pi; pj) :

@bci
@pj

=
@Di

@pj

n
(pi � bci) bE [� (�i) (bci � ~c)] + bE �� (�i) (bci � ~c)2�o :

Since @2vi
@p2i

= E
�
U 00 (�i)

�
@�i
@pi

�2
+ U 0 (�i)

@2�i
@p2i

�
< 0; v (pi; pj; Hi) is concave in pi: Thus if

an interior Nash equilibrium of the pricing game (p�1; p
�
2) (H1; H2) exists, it is characterized

by the system of necessary �rst-order conditions:

�
p�i � bc �p�i ; p�j ; Hi

�� @D
@pi

�
p�i ; p

�
j

�
+D

�
p�i ; p

�
j

�
= 0; (i = 1; 2): (10)
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As will be proven below, this equilibrium of the pricing game exists, and, under certain

conditions, is unique, hence of the form (p� (Hi; Hj) ; p
� (Hj; Hi)). The expected value of �rm

i for its shareholders is Vi = V (Hi; Hj) = v (p� (Hi; Hj) ; p
� (Hj; Hi) ; Hi). The equilibrium

of the two-stage game is then characterized as follows:

Proposition 5 1. For any (Hi; Hj) close enough to the diagonal, there exists an interior

equilibrium (p�1; p
�
2) (H1; H2) of the pricing game. It is characterized by system (10):

2. If absolute risk aversion is constant, this equilibrium is unique, and a marginal hedging

increase by �rm i reduces �rm j�s equilibrium price:
@p�j
@Hi

< 0:

3. Any interior equilibrium
�
H�
i ; H

�
j

�
of the hedging game satis�es

bc �p�i ; p�j ; Hi

�
= F +

@D
@pj

�
p�i ; p

�
j

�
@D
@pi

�
p�i ; p

�
j

�D �p�i ; p�j� @p�j@Hi

�
H�
i ; H

�
j

�
; (i = 1; 2): (11)

4. If a symmetric interior equilibrium exists, and absolute risk aversion is constant, hedg-

ing softens price competition: �rms under-hedge in order to induce higher prices than

if marginal costs were constant and equal to F :

H� < D (p�; p�) and p� > pB (F; F ) :

Proof. The proof follows the steps of Propositions 2 and 3. The risk-adjusted costs are

bounded, thus the set in which we look for a �xed point is compact and convex in R2. Since

all functions are continuous, Brouwer�s �xed point theorem guarantees the existence of an

equilibrium. If absolute risk aversion is constant, then Assumption 2 guarantees unicity of

the equilibrium and allows to sign the direction of the strategic e¤ect. Equation (11) is derived

similarly to equation (9). Comparison of equations (11) and (10) shows that hedging softens

price competition. Detailed proofs are available from the authors upon request.
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Combining the �rst-order conditions yields:

(p� � F )
@Di

@pi
(p�; p�) +D (p�; p�)� @Di

@pj
(p�; p�)D (p�; p�)

@p�j
@Hi

(H�; H�) = 0:

Hedging has indeed a strategic e¤ect, captured by the term
@p�j
@Hi
. Keeping some input price

exposure uncovered commits �rms to be less aggressive. This commitment then yields a

higher equilibrium price : p� > pE (F; F ). The direction of the strategic e¤ect is reversed

compared to Cournot competition: here, �rms under-hedge, hence the equilibrium price is

increased. This stark di¤erence is best understood by comparing the �rst-order conditions

(after appropriate transformations):

bci � F +
@�i
@qj

@q�j
@Hi

= 0;

in the Cournot case, and

bci � F +

@Di
@pj

(�@Di
@pi
)
D
�
p�i ; p

�
j

� @p�j
@Hi

= 0

in the case of di¤erentiated Bertrand. In both cases, when �rm i increases hedging, �rm j

reduces her strategic variable (quantity or price). If �rms compete in quantity, when �rm

j increases output, this reduces �rm i�s pro�t
�
@�i
@qj

< 0
�
: Therefore, at the equilibrium,

�rm i over-hedges to set her risk-adjusted expected cost below F , and thus becomes more

aggressive. Conversely, if �rms compete in price, when �rm j raises his price, this increases

the demand faced by �rm i0s
�
@Di
@pj

> 0
�
, hence �rm i under-hedges to set her risk-adjusted

expected cost above F , and thus becomes less aggressive.

6 Incentives to commit on a hedging position

We have argued that �rms commit to their hedging strategy because their Boards of Directors

do not want them to speculate: risk managers are not allowed to signi�cantly deviate from
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their pre-announced hedging position. This restriction has clear advantages in terms of

monitoring the activity of traders. However, we have seen that it is not always pro�table for

shareholders. In this Section, we set aside governance problems, and assume that �rms are

free to decide ex-ante whether or not they want to commit to the hedging positions. This is

done by adding a prior stage to our sequential games.

The timing is now as follows: at t = 0, each �rm decides either to Commit (C) or Not

Commit (NC) to its hedging position. At t = 1, �rms that have chosen C publicly announce

their hedging position. At t = 2, �rms compete (in quantities or in prices), and the �rms

that have chosen (NC) decide on their hedging position. Finally, at t = 3, input cost is

realized, and pro�ts are determined. We assume that there is a unique sub-game perfect

equilibrium at t = 1; independently of the commitments decisions made at t = 0 (this is the

case for example if �rms have constant absolute risk aversion). The shareholder value of �rm

i that plays strategy Xi 2 fC;NCg while �rm j plays strategy Xj 2 fC;NCg is denoted

S (Xi; Xj) :

To focus on the strategic impact of hedging, we continue to assume that (i) there are

no transaction costs associated with hedging, and (ii) the forward price F is equal to the

expected spot price E [~c].

Proposition 6 1. Not Committing cannot be sustained in equilibrium. Whether �rms

compete in quantity or in price: S (C;NC) > S (NC;NC) :

2. If �rms compete in quantity, universal Not Commitment dominates universal Commit-

ment: S (NC;NC) > S (C;C) :

3. If �rms compete à la Hotelling, have constant absolute risk aversion, and input costs are

normally distributed, universal Commitment dominates universal Non Commitment:

S (C;C) > S (NC;NC) and is a dominant strategy for all �rms S (C;C) > S (NC;C) :

Proof. We �rst prove point 1 if �rms compete in quantity. Suppose �rm 2 plays NC. If

�rm 1 also plays NC, the shareholder value of both �rms is S (NC;NC). Suppose now
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that �rm 1 plays C. At t = 2, both �rms select their output. Then, �rm 2, which did not

commit, optimally selects complete hedging, while �rm 1 has committed to H1. Assuming the

equilibrium (q1 (H1) ; q2 (H1)) is interior, it is characterized by the �rst-order conditions:8><>: q2P
0
(q1 + q2) + P (q1 + q2)� F = 0

q1P
0
(q1 + q2) + P (q1 + q2)� bc (q1; q2; H1) = 0

At t = 1, �rm 1 selects H1 to maximize Z (H1) = V (q1 (H1) ; q2 (H1) ; H1). If �rm 1 selects

H1 = qC (F; F ), then q1 = q2 = qC (F; F ) is a solution of the system, hence is the unique

Cournot equilibrium for H1 = qC (F; F ). It yields the expected payo¤ S (NC;NC). Thus

when �rm 2 does not commit, �rm 1 can guarantee itself at least S (NC;NC) by committing

to H1 = qC (F; F ). This implies that S (C;NC) � S (NC;NC). We now show that this

inequality is strict.

dZ

dH1

�
qC (F; F )

�
= E

�
U

0
(�1)

�
q1P

0 �
Q
� dq2
dH1

+ (~c� F )

��
= q1P

0 �
Q
� dq2
dH1

E
h
U

0
(�1)

i

since bc �qC (F; F ) ; qC (F; F ) ; qC (F; F )� = F . Then, since H1 = q1,
@bc1
@q2
= 0, hence dq2

dH1
< 0.

Thus, dZ
dH1

�
qC (F; F )

�
> 0, which implies that maxH1 Z(H1) > Z

�
qE (F; F )

�
� S (NC;NC).

Thus: S (C;NC) > S (NC;NC) :

The proof of point 1 proceeds along the same lines if �rms compete in price, and is pre-

sented in Appendix C, along with the formal proof of the other points. As expected, when

�rms compete in quantity, (C;C) yields lower prices and higher volatility, hence lower ex-

pected utility than (NC;NC). However if �rms compete à la Hotelling, the expected pro�t

increase more than compensates for the loss coming from increased volatility, hence (i) uni-

versal Commitment dominates universal Non Commitment: S (C;C) > S (NC;NC), and

(ii) is a dominant strategy for all �rms: S (C;C) > S (NC;C).

Even though universal Non Commitment dominates when �rms compete in quantity,

each �rm prefers to Commit when the other does not. Thus, whether �rms compete in
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quantity or in price, universal non Commitment can never be an equilibrium.

7 Concluding remarks

This article examines how �rms facing volatile input prices and holding some degree of market

power in their product market link their risk management and their production or pricing

strategies. This issue is relevant in many industries ranging from manufacturing to energy

retailing, where risk averse �rms decide on their hedging strategies before their product

market strategies. We �nd that hedging modi�es the pricing and production strategies

of �rms. This strategic e¤ect is channelled through the risk-adjusted expected cost, i.e.,

the expected marginal cost under the probability measure induced by shareholders� risk

aversion. It has opposite e¤ects depending on the nature of product market competition:

hedging toughens quantity competition while it softens price competition. Finally, if �rms

can decide not to commit on their hedging position, this can never be an equilibrium outcome:

committing is always a best response to non committing. In the Hotelling model, committing

is a dominant strategy for all �rms.

This paper could be extended in di¤erent directions. For example it would be interesting

to examine asymmetric situations, where one �rm is market leader and announces its hedging

strategy before the other, or when di¤erent �rms have di¤erent costs. Another possibility

would be to endogenize pricing �exibility, i.e., to determine when it is optimal for �rms not

to adjust their output prices to re�ect the realization of their input costs.

Finally, another avenue of research is to bring the model to the data, and in particular to

test the predictions as to how �rms�hedging decisions in�uence their and their competitors�

pricing strategies. For econometricians, this naturally leads to the question : which model

of competition (Cournot vs. Bertrand) is best suited to describe the industry of interest?

This is an empirical question. As clearly articulated by Fudenberg and Tirole (1984), these

two models should not be taken literally as resulting from a di¤erent choice of strategies

(price vs. quantity). Instead, they have to be interpreted as two reduced forms models for
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the joint determination of prices and outputs. The choice between the two must be guided

by the best �t to the data in the particular industry under study.
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A Quantity competition

A.1 Deterministic input cost (Lemma 1)

Condition 2 guarantees that @2�Ci
(@qi)

2 < 0. Thus, if an interior Cournot equilibrium exists, it is

characterized by the necessary �rst-order conditions (3). Assumption 1 guarantees that, for

all c > 0, the equation

A (Q) = 2P (Q) +QP 0 (Q) = c

admits a unique solution QC (c). When the equilibrium is interior
�
qCi > 0 for i = 1; 2

�
, the

equilibrium quantities are:

qC (ci; cj) =
P
�
QC (ci + cj)

�
� ci

(�P 0 (QC (ci + cj)))
:

Finally, we verify that:

@qCi
@ci

=
@qC (ci; cj)

@ci
=

2P
0 �
QC
�
+ qCj P

00 �
QC
�

P 0 (QC)
�
3P 0 (QC) +QCP

00
(QC)

� < 0 (12)

and
@qCj
@ci

=
@qC (cj; ci)

@ci
= �

P
0 �
QC
�
+ qCi P

00 �
QC
�

P 0 (QC)
�
3P 0 (QC) +QCP

00
(QC)

� > 0: (13)

A.2 Properties of the risk-adjusted expected cost (Lemma 2)

Note �rst that for any variable x :

@bci
@x
=
E [U 0 (�i)]E

�
U 00 (�i)

@�i
@x
~c
�
� E [U 0 (�i) ~c]E

�
U 00 (�i)

@�i
@x

�
(E [U 0 (�i)])2

=�
E
h
U 0 (�i)

�
�U 00(�i)

U 0(�i)
@�i
@x
~c
�i

E [U 0 (�i)]
+
E [U 0 (�i) ~c]
E [U 0 (�i)]

E
h
U 0 (�i)

�
�U 00(�i)

U 0(�i)
@�i
@x

�i
E [U 0 (�i)]

=�bEi �� (�i) @�i
@x
~c

�
+ bcibEi �� (�i) @�i

@x

�
= bEi �� (�i) @�i

@x
(bci � ~c)� :
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For any (Hi; Hj), the equilibrium
�
q�i ; q

�
j

�
(Hi; Hj) of the Cournot game satis�es

P
�
q�i + q�j

�
+ q�i P

0 �
q�i + q�j

�
= bc �q�i ; q�j ; Hi

�
:

Thus, @�
@qi

�
q�i ; q

�
j ; Hi; ~c

�
= P

�
q�i + q�j

�
+q�i P

0 �
q�i + q�j

�
�~c = bc �q�i ; q�j ; Hi

�
�~c: Using the above

formula with x = qi;we obtain:

@bc
@qi

�
q�i ; q

�
j ; Hi

�
= bEi h� �� �q�i ; q�j ; Hi

�� �bc �q�i ; q�j ; Hi

�
� ~c
�2i

> 0;

which establishes the �rst part of (6).

Now

bci � F =
E [U 0 (�i) ~c]
E [U 0 (�i)]

� E [~c] = cov [U 0 (�i) ; ~c]

E [U 0 (�i)]

Since (i) U 0 (:) is non-increasing in �i, and (ii) �i increases in ~c if and only if Hi > qi, we

have bci � F , Hi � qi.

Moreover, @�i
@Hi

= (~c� F ), thus using again the above formula with x = Hi

@bci
@Hi

= bEi [� (�i) (~c� F ) (bci � ~c)] = �bEi �� (�i) (~c� bci)2�+ (bci � F ) bEi [� (�i) (bci � ~c)]
=�

�bEi �� (�i) (~c� bci)2�+ cov [U 0 (�i) ; ~c] � ccovi [� (�i) ; ~c]
E [U 0 (�i)]

�

Now bEi [� (�i) (bci � ~c)] = bEi h� (�i)�bEi [~c]� ~c�i = �ccovi [� (�i) ; ~c] :
Since �(:) is, like U 0(:); non-increasing in �i, cov [U 0 (�i) ; ~c] and ccovi [� (�i) ; ~c] have the same
sign. Hence @bci

@Hi
< 0: This establishes the second part of (6).

Similar algebra yields

@bci
@qj

= bEi �� (�i) @�i
@qj

(bci � ~c)� = qiP
0
(Q) bEi [� (�i) (bci � ~c)] = �qiP 0

(Q) ccovi [� (�i) ; ~c] :
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which establishes (7). (8) follows from (7).

A.3 Unicity of equilibrium (Proposition 2)

As mentioned in the main text, the equilibrium of the production game (q�1; q
�
2) (H1; H2) is

unique if the real parts of the eigenvalues of the Jacobian J (q�1; q
�
2; H1; H2) are negative,

where

J (q�1; q
�
2; H1; H2) =

264 @qE1
@q1
� 1 @qE1

@q2

@qE2
@q1

@qE2
@q2
� 1

375 :
This is an application of Lyapunov stability theorem (see for example Khalil (2002)). The

eigenvalues are the roots of �2 � �Tr + Det = 0;where Tr is the trace of J and Det its

determinant. The roots are: �� = Tr�
p
Tr2�4Det
2

. If Tr2 � 4Det < 0, the two roots are

complex and conjugate. Their real part is negative if and only if Tr < 0. If Tr2� 4Det � 0,

the two roots are real. Tr+
p
Tr2 � 4Det < 0 requires Tr < 0 and Det > 0. Thus, we have

to show that Tr < 0 and Det > 0. We have:

Tr =

�
@qC1
@q1

+
@qC2
@q2

� 2
�
:

By de�nition, qCi = qC (bc (qi; qj; Hi) ;bc (qj; qi; Hj) ; Hi) ;for i = 1; 2, thus

@qCi
@qi

=
@qCi
@ci

@bci
@qi

+
@qCi
@cj

@bcj
@qi

; (14)

and
@qCi
@qj

=
@qCi
@ci

@bci
@qj

+
@qCi
@cj

@bcj
@qj

: (15)

Thus, Tr = @qC1
@c1

@bc1
@q1
+

@qC1
@c2

@bc2
@q1
+

@qC2
@c2

@bc2
@q2
+

@qC2
@c1

@bc1
@q2
� 2:

Lemma 2 shows that, when � is constant, @bc1
@q2
= @bc2

@q1
= 0: Thus

Tr (q�1; q
�
2; H1; H2) =

@qC1
@c1
�

@bc1
@q1
+

+
@qC2
@c2
�

@bc2
@q2
+

� 2 < �2:
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We now examine Det (q�1; q
�
2; H1; H2).

Det =

�
@qC1
@q1

� 1
��

@qC2
@q2

� 1
�
� @qC1
@q2

@qC2
@q1

=
@qC1
@q1

@qC2
@q2

� @qC1
@q2

@qC2
@q1

� @qC1
@q1

� @qC2
@q2

+ 1

Substituting @qCi
@qi

and @qCi
@qj

from equations (14) and (15), and simplifying yields

@qC1
@q1

@qC2
@q2

� @qC1
@q2

@qC2
@q1

=

�
@qC1
@c1

@qC2
@c2

� @qC1
@c2

@qC2
@c1

��
@bc1
@q1

@bc2
@q2

� @bc1
@q2

@bc2
@q1

�
:

Now, substituting in @qCi
@ci

and
@qCj
@ci

from equations (12) and (13), and simplifying yields

@qC1
@c1

@qC2
@c2

� @qC1
@c2

@qC2
@c1

=
1

P 0 (QE)
�
3P 0 (QE) +QP

00
(QE)

� :
Thus,

Det =

@bc1
@q1

@bc2
@q2
� @bc1

@q2

@bc2
@q1

P 0 (QC)
�
3P 0 (QC) +QCP

00
(QC)

� � Tr � 1:

Then, with � constant, we know that @bc2
@q1

= @bc1
@q2

= 0: Moreover, @bc1
@q1

< 0 and @bc2
@q2

< 0: Thus

Det > �Tr � 1 > 1:

A.4 Impact ofHi on q�j with constant absolute risk aversion (Propo-

sition 2)

De�ne  (qi; qj; Hi) = P (Q)� bc (qi; qj; Hi) + qiP
0
(Q) :

The �rst order conditions characterizing the unique equilibrium of the production game

can be written as  
�
q�i ; q

�
j ; Hi

�
=  

�
q�j ; q

�
i ; Hj

�
= 0: Total di¤erentiation of these conditions

with respect to Hi yields:8><>:
�
 1

@q�i
@Hi

+  2
@q�j
@Hi

+  3

� �
q�i ; q

�
j ; Hi

�
= 0�

 1
@q�j
@Hi

+  2
@q�i
@Hi

� �
q�j ; q

�
i ; Hj

�
= 0

;
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where 8>>>><>>>>:
 1 (qi; qj; Hi) = 2P

0
(qi + qj) + qiP

00
(qi + qj)�@bci

@qi

 2 (qi; qj; Hi) = P
0
(qi + qj) + qiP

00
(qi + qj)� @bci

@qj

 3 (qi; qj; Hi) = � @bci
@Hi

> 0

:

The determinant of the above linear system is

� =  1
�
q�i ; q

�
j ; Hi

�
 1
�
q�j ; q

�
i ; Hj

�
�  2

�
q�i ; q

�
j ; Hi

�
 2
�
q�j ; q

�
i ; Hj

�
;

thus 8><>:
@q�

@Hi
(Hi; Hj) = �

 1(q�j ;q�i ;Hj)
�

 3
�
q�i ; q

�
j ; Hi

�
@q�

@Hi
(Hj; Hi) =

 2(q�j ;q�i ;Hj)
�

 3
�
q�i ; q

�
j ; Hi

� :

If � is constant, @bci
@qj
= 0, thus

 2 (qi; qj; Hi) = P
0
(qi + qj) + qiP

00
(qi + qj)<0:

Then:

�=

�
2P

0
(Q�) + q�i P

00
(Q�)�@bci

@qi

��
2P

0
(Q�) + q�jP

00
(Q�)�@bcj

@qj

�
�
�
P

0
(Q�) + qiP

00
(Q�)

��
P

0
(Q�) + qjP

00
(Q�)

�
=

�
P

0
(Q�)�@bci

@qi

��
P

0
(Q�)�@bcj

@qj

�
+

�
P

0
(Q�)�@bci

@qi

��
P

0
(Q�) + q�jP

00
(Q�)

�
+

�
P

0
(Q�)�@bcj

@qj

��
P

0
(Q�) + q�i P

00
(Q�)

�
:

Since all terms in parentheses are negative, � > 0. Thus

@q�j
@Hi

=
@q�

@Hi

(Hj; Hi) =
 2
�
q�j ; q

�
i ; Hi

�
�

 3
�
q�i ; q

�
j ; Hi

�
< 0:
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B Price competition

De�ne  (pi; pj; Hi) =
@D
@pi
(pi; pj) (pi � bc (pi; pj; Hi)) +D (pi; pj) ; where

bci � bc (pi; pj; Hi) �
E [U 0 (� (pi; pj; Hi; ~c)) ~c]

E [U 0 (� (pi; pj; Hi; ~c))]

is the risk-adjusted expected cost of �rm i. Suppose a unique interior equilibrium of the pric-

ing game (p�1; p
�
2) (H1; H2) exists. The �rst-order conditions characterizing this equilibrium

are

 
�
p�i ; p

�
j ; Hi

�
=  

�
p�j ; p

�
i ; Hj

�
= 0:

Assuming � =  1
�
p�i ; p

�
j ; Hi

�
 1
�
p�j ; p

�
i ; Hj

�
�  2

�
p�i ; p

�
j ; Hi

�
 2
�
p�j ; p

�
i ; Hj

�
6= 0;

8><>:
@p�i
@Hi

= @p�

@Hi
(Hi; Hj) = �

 1(p�j ;p�i ;Hj)
�

 3
�
p�i ; p

�
j ; Hi

�
@p�j
@Hi

= @p�

@Hi
(Hj; Hi) =

 2(p�j ;p�i ;Hj)
�

 3
�
p�i ; p

�
j ; Hi

� ;

where 8>>>><>>>>:
 1 (pi; pj; Hi) = 2

@Di
@pi
+ (pi � bci) @2Di

(@pi)
2 � @Di

@pi

@bci
@pi

 2 (pi; pj; Hi) =
@Di
@pj
+ (pi � bci) @2Di

@pi@pj
� @Di

@pi

@bci
@pj

 3 (pi; pj; Hi) = �@Di
@pi

@bci
@Hi

:

:

B.1 Impact of ci on pCi and pCj (constant input costs)

Suppose �rst the marginal costs are constant:

 (pi; pj; ci) =
@D (pi; pj)

@pi
(pi � ci) +D (pi; pj)

and 8>>>><>>>>:
 1 (pi; pj; ci) = 2

@Di
@pi
+ (pi � ci)

@2Di
(@pi)

2

 2 (pi; pj; ci) =
@Di
@pj
+ (pi � ci)

@2Di
@pi@pj

 3 (pi; pj; ci) = �@Di
@pi

:
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Assumption 2 guarantees (i) existence and unicity of an equilibrium
�
pB (ci; cj) ; p

B (cj; ci)
�
,

(ii)  1 (pi; pj; ci) < 0, since �
B (pi; pj; ci) is concave in pi, (iii)  2

�
pB (ci; cj) ; p

B (cj; ci) ; ci
�
>

0, since prices are strategic complements, and (iv) ( 1 +  2)
�
pB (ci; cj) ; p

B (cj; ci) ; ci
�
< 0

since the own price e¤ect dominates. Thus

�B =  1
�
pBi ; p

B
j ; ci

�
 1
�
pBj ; p

B
i ; cj

�
�  2

�
pBi ; p

B
j ; ci

�
 2
�
pBj ; p

B
i ; cj

�
> 0

and 8>>><>>>:
@pBi
@ci

= @pB

@ci
(ci; cj) =

@Di
@pi

 1(pBj ;pBi ;cj)
�E

= @Di
@pi

2
@Dj
@pj

+(pj�cj)
@2Dj

(@pj)
2

�E
> 0

@pBj
@ci

= @pB

@ci
(cj; ci) = �@Di

@pi

 2(pBj ;pBi ;cj)
�E

= �@Di
@pi

@Dj
@pi

+(pj�cj)
@2Dj
@pi@pj

�E
> 0

:

B.2 Properties of the risk-adjusted expected cost (Lemma 3)

For any (pi; pj; Hi) ; the same derivation as for Cournot competition yields:

@bci
@Hi

= bEi [� (�i) (~c� F ) (bci � ~c)] = �bEi �� (�i) (bci � ~c)2�+ (bci � F ) bEi [� (�i) (bci � ~c)] :
=�

 bEi �� (�i) (bci � ~c)2�+ cov
�
U

0
(�i) ; ~c

�
� ccovi [� (�i) ; ~c]

E [U 0 (�i)]

!
:

Since (i) � (:) and U
0
(:) are both non-increasing, and (ii) �i increases in ~c if and only if

Hi > D (pi; pj), we have (i) cov
�
U

0
(�i) ; ~c

�
� ccovi [� (�i) ; ~c] � 0, thus @bci

@Hi
< 0, and (ii) and

bci � F , Hi � D (pi; pj). Similarly,

@bci
@pj

= bEi �� (�i) @�i
@pj

(bci � ~c)� = @Di

@pj
bEi [� (�i) (pi � ~c) (bci � ~c)]

=
@Di

@pj

n
(pi � bci) bEi [� (�i) (bci � ~c)] + bEi �� (�i) (bci � ~c)2�o :

Thus: @bc
@pj

�
p�i ; p

�
j ; Hi

�
= @Di

@pj

�
Di
@Di
@pi

ccovi [� (�i) ; ~c] + bEi �� (�i) (bci � ~c)2�� : Then:
Hi > D

�
p�i ; p

�
j

�
, ccovi [� (�i) ; ~c] < 0) @bc

@pj

�
p�i ; p

�
j ; Hi

�
> 0:
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Finally:
@bci
@pi

= bEi �� (�i) @�i
@pi

(bci � ~c)� :
Then, @�

@pi
=
�
(bci � ~c) @Di@pi

� �
p�i ; p

�
j ; Hi

�
and thus @bc

@pi
= @D

@pi
bEi �� (�i) (bci � ~c)2� < 0.

C Strategic incentives to commit (Proposition 6)

C.1 Comparing S (C;NC) and S (NC;NC) when �rms compete in

price

Suppose �rm 2 plays NC, while �rm 1 plays C. At t = 2, �rm 2 chooses H2 = D (p2; p1),

after �rms simultaneously select prices (p1 (H1) ; p2 (H1)) that solve:8><>:D (p1; p2) + (p1 � bc (p1; p2; H1))
@D
@p1
(p1; p2) = 0

D (p2; p1) + (p2 � F ) @D
@p2
(p2; p1) = 0

At t = 1, �rm 1 selects H1 that maximizes Z (H1) = E [U (� (p1 (H1) ; p2 (H1) ; H1))]. As

in the Cournot case, if �rm 1 chooses H1 = D
�
pB (F; F ) ; pB (F; F )

�
= D0=2, p1 = p2 =

pB (F; F ) is a solution of the system, hence the unique equilibrium. The shareholder value

of both �rms is S (NC;NC). Thus �rm 1 can guarantee itself at least S (NC;NC),which

implies that S (C;NC) � S (NC;NC). To prove that the inequality is strict, it su¢ ces to

show that dZ
dH1

(D0=2) 6= 0: This is easy, since

dZ

dH1

(D0=2) =
@D1

@p2

�
pB (F; F )� F

� @p2
@H1

E
h
U

0
(�1)

i
< 0:

Thus, if the �rm hedges
�
D0
2
� "
�
where " > 0 is arbitrarily small, it can obtain Z

�
D0
2
� "
�
>

Z
�
D0
2

�
. Thus, S (C;NC) > S (NC;NC).
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C.2 Comparing S (C;C) and S (NC;NC) if �rms compete in quan-

tity

S (C;C) = E
�
U

�
(P (Q�)� F )

Q�

2
+ (H� �Q�) (! � F )

��
< U

�
(P (Q�)� F )

Q�

2

�
since U (:) is concave, and

S (NC;NC) = U
��
P
�
2qC (F; F )

�
� F

�
qC (F; F )

�
:

For x � 0, denote f (x) = (P (2x)� F )x. Condition 2 implies that f (:) is globally concave

and admits a unique maximum x� de�ned by f
0
(x�) = P (2x�)�F +2x�P 0

(2x�) = 0. Then,

f
0 �
qC (F; F )

�
= �qC (F; F )P 0 �

2qC (F; F )
�
+2qC (F; F )P

0 �
2qC (F; F )

�
= qC (F; F )P

0 �
2qC (F; F )

�
< 0;

hence qE (F; F ) > x�. Then, f
�
qE (F; F )

�
> f (q�) since q� > qE (F; F ) and f (:) is decreas-

ing for x � x�. Thus: S(C;C) < U (f (q�)) < U
�
f
�
qC (F; F )

��
= S (NC;NC) :

C.3 Hotelling competition

We have seen in the text that

S (C;C) =
t

2
[1 +

"(5 + 8"+ 3"2)

2(3 + 2")2
] >

t

2
= S (NC;NC) :

Suppose that �rm 2 plays NC, while �rm 1 plays C and chooses hedging H1. We

prove that S (C;C) > S (NC;C). The equilibrium prices (p1 (H1) ; p2 (H1)) are given by the

Hotelling formula:

8><>:p1 = t+ 1
3

�
2
�
F + ��2

�
p2�p1
2t

+ 1
2
�H1

��
+ F

�
= t+ F + 4t"

3

�
p2�p1
2t

+ 1
2
�H1

�
p2 = t+ 1

3

�
2F +

�
F + ��2

�
p2�p1
2t

+ 1
2
�H1

���
= t+ F + 2t"

3

�
p2�p1
2t

+ 1
2
�H1

� :
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Taking the di¤erence, we obtain

p2 � p1 = �
2t"

3

�
p2 � p1
2t

+
1

2
�H1

�

thus

p2 � p1 = �2t
"

3 + "

�
1

2
�H1

�
and

D1 �H1 =
p2 � p1
2t

+
1

2
�H1 =

3

3 + "

�
1

2
�H1

�
:

Equilibrium prices are given by

p1 � F = t
�
1 + 4"

3+"

�
1
2
�H1

��
p2 � F = t

�
1 + 2"

3+"

�
1
2
�H1

��
Note that

@p2
@H1

= � 2t"

3 + "
< 0:

Maximization of M1 over H1 yields:

1

2t

�
p1 � F + ��2 (H1 �D1)

� @p2
@H1

� ��2 (H1 �D1) = 0

or �nally
1

2
�H1 =

3 + "

2 (9 + 4")
:

This implies that p2 � F = t
�
1 + "

9+4"

�
and D (p2; p1) =

1
2

�
1 + "

9+4"

�
:Thus

S (NC;C) =

�
1 +

"

9 + 4"

�2
t

2
:
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Finally,

S (C;C) > S (NC;C)() 1 +
"(5 + 8"+ 3"2)

2(3 + 2")2
> 1 +

9"(2 + ")

(9 + 4")2

()

(5 + 8"+ 3"2) (9 + 4")2 > 18(2 + ")(3 + 2")2

which is veri�ed for all " � 0.
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