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1 Introduction

In finite dimensional markets with short-selling, conditions on agents’ utilities

insuring the existence of equilibria ( or equivalent to the existence of equilib-

ria ) are by now well understood. In particular they can be interpreted as

no-arbitrage conditions. In an uncertainty setting, where agents have differ-

ent beliefs and different risk aversions, as originally shown by Hart (1974), the

no-arbitrage conditions may be interpreted as compatibility of agent’s risk ad-

justed beliefs. There is a huge literature on sufficient and necessary conditions

for the existence of equilibria. In finite dimension, one can refer, for instance to

Page (1987), Werner (1987), Nielsen (1989), Page and Wooders (1995, 1996),

Allouch (1999), Allouch et al (2000). In infinite dimension asset markets, the

no-arbitrage condition used for finite dimension do not imply existence of equi-

librium. The standard assumption is to assume that the individually rational

utility set is compact ( see e.g. Cheng (1991), Brown and Werner (1995), Dana

and Le Van (1996), Dana et al (1997), Dana and Le Van (2000), Le Van and

Truong Xuan (2001).)

In this paper, we consider paper a model with an infinite number of states of

nature, a finite number of agents and Von Neumann - Morgenstern utilities

with different expectations.

More precisely, we consider a model where the utility of agent i is

U i(xi) =

∞∑
s=1

πisu
i(xis)

where πi is her belief and xi is her consumption. The commodity space is lp(π)

with p ∈ {1, . . . ,+∞}.
When the number of states is finite, say K states, following Werner (1987), one

can introduce for any agent i the set of useful vectors W i to obtain the set

of no-arbitrage prices denoted by Si, which are defined as the set of vectors p

which satisfy p ·w > 0 for any w ∈W i \{0}. We say that the no-arbitrage holds

if ∩iSi 6= ∅. When the utility functions are strictly concave, strictly increasing,

this condition ensures the compactness of the individually rational allocations

set. Dana and Le Van (2010) introduce for every agent i the convex cone P i

generated by the vectors {πisui′(xis)}s=1,...,K where xi ∈ RK and ui′(+∞) <

ui′(xis) < ui′(−∞), ∀s, ∀i. The no-arbitrage cone Si is proved to be the interior

of the cone P i.

In this paper, following Dana and Le Van (2010), we define no-arbitrage prices

p for agent i as follows: for any state s,

ps = λiπ
i
su
i′(xis)
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where λi > 0, xi ∈ l∞ and

ui′(+∞ < ui′(xis) < ui′(−∞)

We say that the no-arbitrage condition (NA) holds if :

λiπ
i
su
i′(xis) = λjπ

j
su
j′(xjs),∀i,∀j.

When the number of states is finite, as we said before, condition (NA) ensures

existence of equilibrium. When the number of states is infinite, this condition

only ensures the boundedness of the individually rational utility set. We give

examples where (NA) is satisfied and no equilibrium exists. The strategy is

therefore to give assumptions which imply the compactness of the individually

rational utility set and hence existence of equilibrium. Our conditions might

be considered as the weakest since we give also examples of non existence of

equilibrium when these conditions do not hold.

The paper is organized as follows. In Section 2, we set up the model and

define the equilibrium. In section 3, we introduce no-arbitrage conditions and

relate them to the problem of existence of equilibrium. We show, through

examples, that no-arbitrage conditions we introduce do not ensure existence of

equilibrium. However if we assume the compactness of the individually rational

utility set then we get an equilibrium. In Section 4, we give conditions for the

compactness of the individually rational utility set. We give examples of non-

existence of equilibrium when these conditions fail. Finally, proofs are put in

Section Appendix. We mention that our methods of proofs are inspired by the

ones in Le Van and Truong Xuan (2001). However, their model rules out the

risk-neutral agents. That is not the case in our model.

2 The model

There are m agents indexed by i = 1, . . . ,m. The belief of agent i in state s is

πis ≥ 0, and
∑∞

s=1 π
i
s = 1 . Let us denote by π the mean probability 1

m

∑
i π

i.

We first assume:

A0: πi is equivalent to πj for any i, j i.e. there exists a number h > 0 such

that h ≤ πis
πjs
≤ 1

h for all i, j, s.1

Under A0, without loss of generality, one can assume that πis > 0 for any i,

any s. In this paper, we always suppose that the condition A0 is satisfied and

πis > 0 for any i, any s.

The consumption set of agent i is Xi = lp(π) with p ∈ {1, 2, . . . ,+∞} and

agent i has an endowment ei ∈ lp(π). We assume that for each agent i there

1We observe that when all agents have the same belief as in Cheng (1991), then A0 is

satisfied.
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exists a concave, strictly increasing, differentiable function ui : R → R , such

that, for any i, the function

U i(xi) =

∞∑
s=1

πisu
i(xis)

is real-valued for any xi ∈ Xi.

Agent i has lp(π) as consumption set, ei as initial endowment and U i as

utility function, with i = 1, . . . ,m.

Definition 1 An equilibrium is a list
(
(xi∗)i=1,...,m, p

∗)
)

such that xi∗ ∈ Xi for

every i and p∗ ∈ lq+(π) \ {0} and

(a) For any i, U i(x) > U i(xi∗)⇒
∑∞

s=1 p
∗
sxs >

∑∞
s=1 p

∗
se
i
s

(b)
∑m

i=1 x
i∗ =

∑m
i=1 e

i.

Define

ai = inf
x
ui′(x) = ui′(+∞)

bi = sup
x
ui′(x) = ui′(−∞).

Let I1 be the set of indexes i such that ai < bi, and I2 be the set of indexes

such that ai = bi (the set of risk neutral agents).

We add:

Definition 2 1. The individually rational attainable allocations set A is de-

fined by

A = {(xi) ∈ (lp(π))m |
m∑
i=1

xi =

m∑
i=1

ei and U i(xi) ≥ U i(ei) for all i}.

2. The individually rational utility set U is defined by

U = {(v1, v2, ..., vm) ∈ Rm | ∃x ∈ A s.t U i(ei) ≤ vi ≤ U i(xi) for all i}.

3 No-arbitrage condition and existence of equilib-

rium

We will first introduce a notion of no-arbitrage price based on useful vectors

introduced by Werner.

A vector w ∈ lp(π) is useful for agent i if for any x ∈ Xi, we have

U i(x+ λw) ≥ U i(x), ∀λ ≥ 0, ∀x ∈ Xi
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or equivalently

∞∑
s=1

πisu
i(xs + λws) ≥

∞∑
s=1

πisu
i(xs), ∀λ ≥ 0, ∀x ∈ Xi.

Let W i denote the set of useful vectors for agent i. It is easy to check that W i

is a closed convex cone.

A vector p is a weak no-arbitrage price for agent i if it is in lq(π) and if it

there exists r ∈ lq(π) s.t.:

∀s, ps = πisrs

and
∞∑
s=1

psws > 0, for any w ∈W i \ {0}

In models with a finite number of states of nature, this is the Werner’s definition

of no-arbitrage prices.

Let σi be the set of weak no-arbitrage prices for agent i. A weak no-arbitrage

(WNA) condition will be

∩iσi 6= ∅.

In the case of a finite number of states, the existence of a Werner’s no-

arbitrage price is sufficient to ensure the existence of equilibrium. In infinite

dimension models, this property is not true.

We add another notion of arbitrage price. Let Si be the set of vectors p

in lq(π) which satisfy
∑

s≥1 π
i
sp(s)w(s) > 0 for any w ∈ W i \ {∅}. In finite

dimension, Si is called the set of no-arbitrage prices of agent i. If W i contains

no line then Si is open. In our case, since W i contains lp+(π), the set Si has an

empty interior if p > 1. However, one can show (see Dana and Le Van (2010))

that w is useful for agent i if and only if

∀x ∈ Xi,
∞∑
s=1

πisu
i′(xs)ws ≥ 0.

Observe that if ui is strictly concave then for any x ∈ Xi and w ∈ W i, the

function λ 7→ U i(x + λw) is strictly increasing. In this case, if w ∈ W i \ {0},
then

∀x ∈ Xi,

∞∑
s=1

πisu
i′(xs)ws > 0.

Following Dana and Le Van (2010), for any agent i, we consider the vectors

p ∈ lq(π) defined by

∀s, ps = λiπ
i
su
i′(xis).
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Observe that p ∈ σi.
We introduce the assumption:

There exists p ∈ l∞(π), x ∈ l∞(π), λi > 0 such that

ps = λiπisu
i′(xis) for all s.

This condition is equivalent to the following no-arbitrage condition:

(NA) λiπisu
i′(xis) = λjπjsu

j′(xjs) = λkakπ
k
s , ∀s, ∀i ∈ I1, ∀j ∈ I1, ∀k ∈ I2

with xi ∈ lp(π),∀i ∈ I1 and

∀i ∈ I1, ai < inf
s
ui′(xis) < sup

s
ui′(xis) < bi.

If we assume that for all i ∈ I1, we have ai < ui′(x) < bi, ∀ x, then in

finite dimension models, weak no-arbitrage (WNA) and no-arbitrage (NA)

are equivalent and also equivalent to the existence of equilibrium. In our model

with an infinitely countable set of natures, sufficient conditions for (NA) are

given in the following proposition.

Proposition 1 (i) If (NA) holds, then U is bounded

(ii) Assume either ui′(−∞) = +∞ for all i ∈ I1 or ui′(+∞) = 0 for all

i ∈ I1.

(ii.1) If I2 = ∅, then no arbitrage condition (NA) holds.

(ii.1) When I2 6= ∅, no arbitrage condition (NA) holds if, and only if,

πi = πj , ∀i ∈ I2,∀j ∈ I2.

Proof : See Appendix.

No-arbitrage condition (NA) does not warrant existence of equilibrium in

presence of an infinite number of states of nature. We give an example of an

economy with two agents, and with an infinitely countable number of states of

nature, where the no-arbitrage condition (NA) is satisfied, and there exists no

equilibrium.

Example 1 Consider an economy with two agents (i = 1, 2), with endowments

equal to 0. The probabilities are equivalent: π1s =
(
1
2

)s
, π2s = 1

Sα
1−αs
2s , where

1 < α < 1, and Sα =
∑

s
1−αs
2s .
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The rewarded utilities satisfy

u1′(x) = b1, ∀x ≤ 0

u1′(+∞) = 0

u1(0) = 0

u2′(x) = a2, ∀x ≥ 0

u2′(−∞) = +∞
u2(0) = 0

There exists z > 0 with u1′(z) < b1. Let x1s = z,∀s. Since u2′(−∞) = +∞,

there exists x2s < 0 which satisfies

u2′(0) = (1− αs)u2′(x2s)

One can check that

λπ1su
1′(x1s) = π2su

2′(x2s), ∀s

with λ = u2′(0)
u1′(z) ×

1
Sα
. Since

0 = u1′(+∞) < u1′(z) = u1′(x1s) < b1

a2 = u2′(0) <
u2′(0)

1− αs
= u2′(x2s) < u2′(−∞) = +∞

no-arbitrage condition (NA) is satisfied.

We now show that no equilibrium exists. Assume there exists an equilibrium

(p, (x1, x2)) with x1s = xs = −x2s. We have

∀s, λ1π1su1′(xs) = λ2π
2
su

2′(−xs)

or λπ1su
1′(xs) = π2su

2′(−xs), with λ =
λ1
λ2

For all s:

λ′
1

2s
u1′(xs) =

1− αs

2s
u2′(−xs)

or equivalently

λ′ = (1− αs)u
2′(−xs)
u1′(xs)

, ∀s

with λ′ = λSα. Since
∑

s psxs = 0 and ps > 0 for any s, one must have s0 with

xs0 ≤ 0. In this case

λ′ = (1− αs0)
a2

b1

and for any s 6= s0, xs > 0. We then obtain

u2′(−xs0+1)

u1′(xs0+1)
>
u2′(0)

u1′(0)
=
a2

b1
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since xs0+1 > 0. Now, because 1 − αs0+1 > 1 − αs0 we obtain, on the one one

hand:

λ′ = (1− αs0+1)
u2′(−xs0+1)

u1′(xs0+1)

> (1− αs0)
u2′(−xs0+1)

u1′(xs0+1)

> (1− αs0)
a2

b1

and on the other hand

λ′ = (1− αs0)
a2

b1

which is a contradiction. Then there exists no equilibrium.

In infinite dimension, with a vector space L as commodity space, Brown and

Werner [4], Dana, Le Van and Magnien [9] assume the compactness of U and

get existence of equilibrium with prices in L′. For our model, we will prove that

when the commodity space is l∞, we get an equilibrium with prices in l1(π).

Theorem 1 Assume A0. Our model has an equilibrium if we add the assump-

tion that U is compact. If Xi is lp(π) with 1 ≤ p < +∞ then the equilibrium

price p∗is in lq(π). If p = +∞, then p∗ ∈ l1(π).

Proof : Since U is compact and Xi is lp(π) there exists an equilibrium ((xi∗), p∗)

(see Dana and al (1997)) with xi∗ ∈ lp(π).

When 1 ≤ p < +∞, the price p∗ belongs to lq(π). When p = ∞ we will

show that the equilibrium price belongs to l1(π). The equilibrium price can be

written as p∗ + φ where p∗ ∈ l1(π) and φ is a purely finitely additive function.

For any i, the equilibrium allocation xi∗ solves the problem:

max
∞∑
s=1

πisu
i(xis)

s.t.

∞∑
s=1

p∗sx
i
s + φ(xi) =

∞∑
s=1

p∗se
i
s + φ(ei)

From Theorem V.3.1, page 91, in Arrow-Hurwicz-Uzawa in [2], for any i,

there exists ζi s.t.

∞∑
s=1

πisu
i(x∗is )− ζi(

∞∑
s=1

p∗sx
∗i
s + φ(xi∗)) ≥

∞∑
s=1

πisu
i(xs)− ζi(

∞∑
s=1

p∗sxs + φ(xi)).

Suppose that φ 6= 0. Since φ ≥ 0, then φ(1) > 0 , with 1 = (1, 1, 1, . . .). Define

xi(N) as:
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xis(N) = xi∗s with s = 1, 2, . . . , N.

xis(N) = xi∗s − 1 with s ≥ N + 1.

Observe that xi(N) ∈ l∞(π). We have:

∞∑
s=1

πisu
i(xi∗s )−ζi(

∞∑
s=1

p∗sx
∗i
s +φ(xi∗)) ≥

∞∑
s=1

πisu
i(xis(N))−ζi(

∞∑
s=1

p∗sx
i
s(N)+φ(xi(N))).

⇒∑
s≥N+1

πisu
i(xi∗s )−ζi(

∑
s≥N+1

p∗sx
∗i
s +φ(xi∗)) ≥

∑
s≥N+1

πisu
i(xi∗s −1)−ζi(

∑
s≥N+1

p∗s(x
i∗
s −1)+φ(xi∗−1)).

⇒∑
s≥N+1

πisu
i(xi∗s )−

∑
s≥N+1

πisu
i(xi∗s − 1)− ζi

∑
s≥N+1

p∗s ≥ ζi(φ(xi∗)− φ(xi∗ − 1)) = ζiφ(1).

Let N → ∞, the LHS converges to 0. This implies φ(1) ≤ 0: a contradiction.

Hence φ = 0.

Notice that if A is compact for the l1(π) topology, then U is compact. And

we get an equilibrium. The proof of the compactness of U uses the fact that for

all i, U i is upper semi-continuous on the projection of A on the ith-component.

4 Sufficient conditions to obtain the compactness of

U

Proposition 2 Assume (A0). If bi = +∞ for all i, the allocation set A is

l1(π)-compact.

Proof : It is given in Appendix. We prove that A which is bounded in l1(π)

satisfies Dunford-Pettis criterion. Hence it is σ(l1(π), l∞(π))-compact. We

prove however that a bounded set in l1(π) is compact for the l1(π)-topology if

and only if it is σ(l1(π), l∞(π))-compact.

Proposition 3 Assume (A0). If ai = 0 for all i, then U is compact.

Proof : See Appendix.

Remark 1 In Example 1, we have a model with two agents. Agent 1 has

a1 = 0, b1 < +∞. Agent 2 has a2 > 0, b2 = +∞. The assumptions of

Propositions 2 and 3 are not satisfied. We still have no-arbitrage condition and

we have no equilibrium in this model.
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Proposition 4 Assume (A0). Assume I2 6= ∅. If ai = 0 and bi = +∞ for all

i ∈ I1 and (NA) holds, then U is compact.

Proof : See Appendix.

We can be surprised that in presence of risk-neutral agents we have to

impose ui′(+∞) = 0 and ui′(−∞) = +∞ for any agent i ∈ I1. We give below

an example with two agents. The first is risk-neutral while the second is risk-

averse. The utility of the latter agent only satisfies either the marginal utility

at +∞ equals 0 or the marginal utility at −∞ is +∞. In this example there

exists no equilibrium.

Example 2 Consider an economy with two agents (i = 1, 2), with endowments

equal to 0. The probabilities are equivalent: π1s =
(
1
2

)s
, π2s = 1

Sα
1−αs
2s , where

1 < α < 1, and Sα =
∑

s
1−αs
2s .

Case 1

The rewarded utilities satisfy

u1′(x) = 1, ∀x ∈ R

u2′(x) = a2, ∀x ≥ 0

u2′(−∞) = +∞
u2′(x) > a2 ∀x < 0.

Assume there exists an equilibrium (p, (x1, x2)). Then x1s = −x2s = xs for any

s. There exists λ > 0 such that

λ

2s
u1′(xs) =

1− αs

Sα2s
u2′(−xs)∀s

⇔ u2′(−xs) = λ
Sα

1− αs
∀s.

Since
∑

s psxs = 0 and ps > 0 for all s, there exists xs0 ≤ 0, i.e −xs0 ≥ 0.

Then

a2 = λ
Sα

1− αs0

and ∀s 6= s0, xs > 0. Hence u2′(−xs0+1) > a2. This implies

λ
Sα

1− αs0+1
> λ

Sα
1− αs0

⇒ αs0+1 > αs0 .

A contradiction.

Case 2
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The rewarded utilities satisfy

u1′(x) = b1, ∀x ≤ 0

u1′(+∞) = 0

u1′(x) < b1 ∀x > 0

u2′(x) = 1 ∀x ∈ R.

Assume there exists an equilibrium (p, (x1, x2)). Then x1s = −x2s = xs for any

s. There exists λ > 0 such that

u1′(xs) = λ
1− αs

Sα
∀s.

Since
∑

s psxs = 0 and ps > 0 for all s, there exists xs0 ≤ 0, i.e −xs0 ≥ 0.

Then

b1 = λ
1− αs0
Sα

and ∀s 6= s0, xs > 0. Hence u1′(xs0+1) < b1. This implies

λ
1− αs0+1

Sα
< λ

1− αs0
Sα

⇒ αs0+1 > αs0 .

A contradiction.

5 Appendix

The following Lemma is required for the proofs of propositions 1, 2, 3, 4. It

basically shows that if (NA) is satisfied then, on the one hand, the projection

Ai of A on the ith− component is bounded for any i ∈ I1 and, on the other

hand, agents in I2 have the same belief.

Lemma 1 Assume (NA).

(i) For all i, j ∈ I2 we have πi = πj.

(ii) Denote by πI the same probability of belief of agents in I2. There exists a

constant C > 0 which depends only on p, x, e such that for any (x1, . . . , xm) ∈ A
we have

∞∑
s=1

πis|xis| ≤ C for all i ∈ I1

and
∞∑
s=1

πIs |
∑
i∈I2

xis| ≤ C.

(iii) U is bounded.
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Proof :

Take any (NA) price p. There exists (xi), {λi > 0}i such that for all i, s:

ps = λiπ
i
su
i′(xis).

(i) For i, j ∈ I2 we have λia
iπis = λja

jπjs, ∀s. This implies

∞∑
s=1

λia
iπis =

∞∑
s=1

λja
jπjs.

This implies λia
i = λja

j , hence πi = πj .

(ii) We firstly prove that the exists C > 0 such that:∑
i∈I1

∞∑
s=1

πis|xis| ≤ C.

Define e′ = e−
∑

i∈I2 x
i =

∑
i∈I1 x

i ∈ l1(π).

For i ∈ I1, since ai < infs u
i′(xis) ≤ sups u

i′(xis) < bi, we have xi ∈ l∞(π).

Observe that p ∈ l∞(π).

Choose η > 0 such that

ai < ui′(xis)(1 + η) < bi for (1)

for all i ∈ I1. Then we define the price q as follows: ∀i, j ∈ I1,

qs = ps(1 + η) = λiπ
i
su
i′(xis)(1 + η) = λjπ

j
su
j′(xjs)(1 + η).

It follows from (1) that, for each i ∈ I1, there exist zi such that ∀s, qs =

λiπ
i
su
i′(zis). Observe that ai < infs u

i′(zis) ≤ sups u
i′(zis) < bi, so zi ∈ l∞(π).

Observe also that ∀s, ps < qs.

Denote

x+ : =

{
x if x > 0

0 if x ≤ 0

x− : =

{
−xi if x < 0

0 if x ≥ 0

Notice that x = x+−x−, |x| = x+ +x− and u(x) = u(x+) +u(−x−)−u(0).

Now we fix N ∈ N. For i ∈ I1, from the concavity of the utility function ui

we have

λi

N∑
s=1

πisu
i(xis)− λi

N∑
s=1

πisu
i(xi+s ) ≥ λi

N∑
s=1

πisu
i′(xis)(x

i
s − xi+s )

λi

N∑
s=1

πisu
i(zis)− λi

N∑
s=1

πisu
i(−xi−s ) ≥ λi

N∑
s=1

πisu
i′(zis)(z

i
s + xi−s ).
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Therefore,

λi

N∑
s=1

πisu
i′(zis)x

i−
s ≤ λi

N∑
s=1

πis[u
i(zis) + ui(xis)− ui(xi+s )− ui(−xi−s )]

−λi
N∑
s=1

πisu
i′(zis)z

i
s + λi

N∑
s=1

πisu
i′(xis)x

i+
s − λi

N∑
s=1

πisu
i′(xis)x

i
s.

Define U iN (x) :=
∑N

s=1 π
i
su
i(xs). Note that limN→∞ U

i
N (x) = U i(x). The

above inequality implies

N∑
s=1

qsx
i−
s ≤ λi[U

i
N (zi) + U iN (xi)− U iN (xi)− U iN (0)]

−
N∑
s=1

qsz
i
s +

N∑
s=1

psx
i+
s −

N∑
s=1

psx
i
s

≤ λi[U
i
N (zi) + U iN (xi)− U iN (xi)− U iN (0)]

−
N∑
s=1

pisx
i
s −

N∑
s=1

qsz
i
s +

N∑
s=1

psx
i+
s

= CiN +
N∑
s=1

psx
i+
s

where CiN = λi[U
i
N (zi) + U iN (xi)− U iN (xi)− U iN (0)]−

∑N
s=1 p

i
sx
i
s −

∑N
s=1 qsz

i
s.

Observe that since xi et zi belong to l∞(π), the limit limN C
i
N exists.

Hence, ∀i
N∑
s=1

(qs − ps)xi−s ≤ CiN +

N∑
s=1

psx
i
s.

Thus, we have

∑
i∈I1

N∑
s=1

(qs − ps)xi−s ≤
∑
i∈I1

CiN +
∑
i∈I1

N∑
s=1

psx
i
s =

∑
i∈I1

CiN +
N∑
s=1

pse
′
s.

Since e′ ∈ l1(π),
∑

i∈I1 C
i
N +

∑N
s=1 pse

′
s converges. Now let N tends to

infinity. Notice that U iN (x)→ U i(x) for all x, and recall that U i(xi) ≥ U i(ei),

with xi, zi ∈ l∞(π). We then have

lim sup
N→∞

CiN ≤ λi[U i(zi) + U i(xi)− U i(ei)− U i(0)]−
∞∑
s=1

qsz
i
s −

∞∑
s=1

psx
i
s =: Ci.

Thus, ∑
i∈I1

∞∑
s=1

(qs − ps)xi−s ≤
∑
i∈I1

Ci +

∞∑
s=1

pse
′
s =: C1 +

∞∑
s=1

pse
′
s.

13



We also have∑
i∈I1

∞∑
s=1

(qs − ps)(xi+s − xi−s ) =
∑
i∈I1

∞∑
s=1

(qs − ps)xis =
∞∑
s=1

(qs − ps)e′s

which implies

∑
i∈I1

∞∑
s=1

(qs − ps)xi+s =

∞∑
s=1

(qs − ps)e′s +
∑
i∈I1

∞∑
s=1

(qs − ps)xi−s

≤ C1 +

∞∑
s=1

pse
′
s +

∞∑
s=1

(qs − ps)e′s

= C1 +
∞∑
s=1

qse
′
s.

Thus for i ∈ I1
∞∑
s=1

(qs − ps)|xis| ≤ 2C1 +
∞∑
s=1

(ps + qs)e
′
s

= 2C1 + (2η + 1)
∞∑
s=1

pse
′
s

= 2C1 + (2η + 1)

∞∑
s=1

pses − (2η + 1)
∑
i∈I2

∞∑
s=1

psx
i
s

= 2C1 + (2η + 1)
∞∑
s=1

pses − (2η + 1)
∑
i∈I2

λia
i
∞∑
s=1

πisx
i
s

= 2C1 + (2η + 1)
∞∑
s=1

pses − (2η + 1)
∑
i∈I2

λiU
i(xi)

≤ 2C1 + (2η + 1)

∞∑
s=1

pses − (2η + 1)
∑
i∈I2

λiU
i(ei)

= C2.

then

η
∞∑
s=1

ps|xis| ≤ C2.

Let µi := infs u
i′(x̄is) > 0, and µ := mini µi. Then

∑∞
s=1 ps|xis| ≥ µ

∑∞
s=1 π

i
s|xis|

which implies for all i ∈ I1
∞∑
s=1

πis|xis| ≤ D1

with D1 = C2/(ηµ).
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For I2 we have:

∞∑
s=1

πIs |
∑
i∈I2

xis| ≤
∞∑
s=1

πIs |es|+
∑
i∈I1

∞∑
s=1

πis|xis|

≤ D2

with D2 =
∑∞

s=1 π
I
s |es|+ |I1|D1.

We take C = max{D1, D2}.

(iii) The utility set U is bounded by Jensen inequality.

Proof of Proposition 1

(i) The proof of the boundedness of U comes from Lemma 1.

(ii.1) Consider the case where I2 = ∅.
(a) Assume ui′(−∞) = +∞, for any i. Let a satisfy a1 < u1′(a). For i > 1, let

ζis =
π1s
πis
u1′(a),∀s

Then 1
hu

1′(a) ≥ ζis ≥ hu1′(a). One can find λi s.t. ζis
λi
≥ αi > ai. Define

ui′(xis) =
ζis
λi
, ∀s

Then

ai < αi ≤ ui′(xis) ≤
1

λih
u1′(a), ∀s

Since bi = +∞, we have xi ∈ l∞. Obviously

λiπisu
i′(xis) = π1su

1′(a),∀s.

(b) Assume ui′(+∞) = 0 for all i. Let a satisfy 0 < u1′(a) < b1. Define ζis as

before. We have ζis ≤ 1
hu

1′(a). Choose λi s.t. ζis
λi
≤ βi < bi. Then define xis as

before in A.1. Using the same arguments, we have

λiπisu
i′(xis) = π1su

1′(a),∀s.

(ii.2) Now we consider the case where I2 6= ∅. If (NA) holds, from Lemma

1,πk = πl,∀k ∈ I2,∀l ∈ I2.
Conversely, assume that πk = πl = π′,∀k ∈ I2,∀l ∈ I2. Assume 1 ∈ I2. For

i ∈ I2, i 6= 1, choose λi such that λiai = a1.

Consider the case ui′(−∞) = +∞, ∀i ∈ I1.
For i ∈ I1, choose as before ζis:

1

h
a1 ≥ ζis =

a1π
′
s

πis
≥ a1h

15



There exists λi s.t.
ζis
λi
≥ αi > ai

and

ai < ui′(xis) =
ζis
λi
≤ 1

h
a1.

Since bi = +∞, we have xi ∈ l∞.

The same argument as before if ui′(+∞) = 0,∀i ∈ I1.

Lemma 2 A closed, bounded set B in l1(π) is compact if and only if B satisfies

the following property: For all ε > 0, there exists N ∈ N such that for all x ∈ B
we have ∑

s≥N
πs|xs| < ε.

Proof : Suppose that B is compact and there exists a subsequence {x(n)}n of

B, ε > 0 such that
∞∑
s=n

πs|xs(n)| > ε,∀n.

Without loss of generality, we can assume that x(n) converges to x in l1(π) or

‖x(n)− x‖l1(π) → 0.

By choosingN large enough such that ‖x(n)−x‖l1(π) < ε
2 and

∑
s≥n πs|xs| <

ε
2 for all n ≥ N . And for all n ≥ N we have

∞∑
s=n

πs|xs| ≥
∞∑
s=n

πs|xs(n)| −
∞∑
s=n

πs|xs(n)− xs|

> ε− ε

2
=
ε

2
.

A contradiction.

Now we suppose that for any ε > 0, there exists N such that ∀x ∈ B,∑∞
s=N πs|xs| < ε.

We have to prove that for any sequence x(n) ∈ B, there exists a convergent

subsequence of x(n) in l1(π).

SinceB is bounded in l1(π), there exists a > 0 such that, ∀ x ∈ B,
∑

s≥1 πs|xs| ≤
a.

Since {x(n)}n belong to a compact set for the product topology, there exists

a subsequence {x(nk)}k converges to x for the product topology. In particular

for all s, xs(nk) converges to xs when k →∞.

Fix ε > 0. We will prove that for k, l big enough, ‖x(nk)− x(nl)‖l1(π) < ε.

Choose N > 0 such that for all x ∈ B,
∑

s≥N πs|xs| <
ε
4 . Choose M such that

for all nk > M we have
∑M

s=1 πs|xs(nk) − xs| <
ε
4 . For all nk ≥ N0, nl ≥ N0

16



where N0 = max{N,M} we have
∑N0

s=1 πs|xs(nk)−xs(nl)| ≤
∑N0

s=1 πs|xs(nk)−
xs|+

∑N0
s=1 πs|xs(nk)− xs| <

ε
2 .

Then

∑
s≥1

πs|xs(nk)− xs(nl)| ≤
N0−1∑
s=1

πs|xs(nk)− xs(nl)|+
∑
s≥N0

πs|xs(nk)|+
∑
s≥N0

πs|xs(nl)|

< ε

Hence {x(nk)}k is a Cauchy sequence, then it converges in l1(π) topology. So

B is compact in l1(π) topology.

Corollary 1 1. A closed, bounded set B in l1(π) is compact for l1(π)-topology

if and only if it is compact for the weak topology σ(l1(π)), l∞(π)).

2. A closed, bounded set B in lp(π), p > 1 is compact for l1(π).

Proof : 1. Since Lemma 2 is equivalent to the Dunford-Pettis criterion, the

result follows.

2. For p > 1, a closed bounded set is σ(lp, lq)-compact. But it is also σ(l1, l∞)-

compact, since lp(π) ⊂ l1(π) and l∞ ⊂ lq(π). Apply statement 1.

Proof of Proposition 2

The idea of the proof is that, if the attainable allocation sequence does not

belong to a weakly compact set, then for some state s, there will be an agent i

such that xis tends to +∞ and an agent j such that xjs tends to −∞. Then by

reducing xis and increasing xjs, the value of U i(xi) does not diminish very much.

Because bj = +∞, the value of U j(xj) will become very large, even tends to

infinity, and that leads us to a contradiction with the bounded property of U .

Assume the contrary: A is not compact. Then from Lemma 1, there exists

a sequence {(x1(n), x2(n), ..., xm(n))}n ⊂ A, an agent i and a constant ε > 0

such that

∀ n,
∞∑
s=n

πis|xis(n)| > ε.

Denote for all k, vk := lim supn→∞ U
k(xk(n)).

By Lemma 1, A is bounded in l1(π). We can suppose, without loss general-

ity, that
∑∞

s=n π
i
s|xis(n)| → ci > 0 when n→∞. This implies limn

∑∞
s=n π

i
sx
i+
s (n)−

limn
∑∞

s=n π
i
sx
i−
s (n) = ci. The limits of these two sums exist because xi ∈ l1(π).

We know that
∑

j 6=i x
i
s(n) = es − xis(n). So, for every s, ∃j such that xjs(n) ≤

−xis(n)−|es|
m−1 . Since there is a finite number of agents j 6= i, we can assume that,

for simplicity, there exist i and j which satisfy two properties:
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1. ∃ Ein ⊂ N ∩ {s ≥ n}, xis > 0 for all s ∈ Ein and

lim
n

∑
s∈Ein

πisx
i
s(n) = ci > 0.

2. For all s ∈ Ein
xjs(n) ≤ −x

i
s(n)− |es|
m− 1

.

With each M > 0, define the set Sin ⊂ Ein as follows

Sin = {s : xis(n) > |es|+M(m− 1)}. (2)

We have an observation: limn
∑

Ein\Sin π
i
sx
i
s(n) = 0. Indeed

lim
n→∞

∑
s∈Ein\Sin

πisx
i
s(n) ≤

∑
s∈Ein\Sin

πis (|es|+M(m− 1))

≤
∞∑
s=n

πis|es|+M(m− 1)

∞∑
s=n

πis

which tends to zero, since e ∈ l1(π).

Hence we have Sin 6= ∅ for all n big enough, and

lim
n→∞

∑
s∈Sin

πisx
i
s(n) = ci.

We have

xjs(n) ≤ |es| − x
i
s(n)

m− 1
< −M. (3)

Since πi and πj are equivalent, we can assume that limn
∑

s∈Sin π
j
sxis(n) = cj >

0. Notice that these limits do not depend on M .

Define α := min(vk, vi − ui′(0)ci

m−1 ) − 1, (k = 1, . . . ,m). Define Aα the set of

(xk) ∈ l1(π) satisfies Uk(xk) ≥ α ∀k and
∑
xk = e. From Lemma 1 we know

that there exists C > 0 such that U j(xj) < C for all (x1, . . . , xm) ∈ Aα. Notice

that our sequence (xk(n)) ∈ Aα for n large enough.

Since bj = +∞ we can choose M very big such that

vj +
uj′(−M)cj

m− 1
> C.

Now consider the sequence (y1(n), y2(n), . . . , ym(n)) defined as follows

yis(n) := xis(n)− xis − |es|
m− 1

+M with s ∈ Sin,

yjs(n) := xjs(n) +
xis − |es|
m− 1

−M with s ∈ Sin.

Let yks = xks with every k 6= i, j or s /∈ Sin.
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Notice that
∑

i y
i(n) = e, and yis(n) ≤ xis(n), yjs(n) ≥ xjs(n) for all s. We

will prove that {U l(yl(n))}l=1,m is bounded below by α, but U j(yj(n)) is not

bounded above by C. And this is a contradiction.

Indeed,

U i(yi(n))− U i(xi(n)) =
∑
s∈Sin

πis(u
i(yis(n))− ui(xis(n)))

≥
∑
s∈Sin

πisu
i′(xis(n)− xis(n)− |es|

m− 1
+M)(−x

i
s(n)− |es|
m− 1

+M)

≥
∑
s∈Sin

πisu
i′(M)(− x

i
s(n)

m− 1
) + ui′(M)(

|es|
m− 1

+M)
∑
s∈Sin

πis

≥ −u
i′(M)

m− 1

∑
s∈Sin

πisx
i
s(n) + ui′(M)(

|es|
m− 1

+M)
∑
s∈Sin

πis.

When n → ∞, the second term of the right hand side term in the inequality

above tends to zero while first term tends to −ui′(M)ci

m−1 . Thus,

lim sup
n→∞

U i(yi(n)) ≥ vi − ui′(M)ci

m− 1
≥ vi − ui′(0)ci

m− 1
> α.

For n large enough, Uk(yk(n)) is bounded below by α,∀k 6= j. Then we can

estimate the limit of U j(yj(n)) when n→∞,

U j(yj(n))− U j(xj(n)) =
∑
s∈Sin

πjs(u
j(yjs(n))− uj(xjs(n)))

≥
∑
s∈Sin

πjsu
j′(xjs(n) +

xis(n)− |es|
m− 1

−M)(
xis(n)− |es|
m− 1

−M)

U j(yj(n))− U j(xj(n)) ≥
∑
s∈Sin

πjsu
j′(−M)(

xis(n)− |es|
m− 1

−M)

≥ uj′(−M)

m− 1

∑
s∈Sin

πjsx
i
s(n)−Muj′(−M)

∑
s∈Sin

πjs −
uj′(−M)

m− 1

∑
s∈Sin

|es|πjs.

Take the limit

lim sup
n→∞

U j(yj(n)) ≥ vj +
uj′(−M)cj

m− 1
> C.

A contradiction. Hence A is l1(π)-compact.

For the proof of Proposition 3, we require the following lemma
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Lemma 3 Suppose that A is bounded and (v1, v2, . . . , vm) is in the closure of

U . Suppose that there exists a sequence {x(n)}n ⊂ A such that there exists i

such that limn U
i(xi(n)) > vi, and for all j 6= i , limn U

j(xj(n)) ≥ vj. Then

(v1, v2, . . . , vm) ∈ U .

Proof : Fix t ∈ N arbitrarily. Let C > 0 be the upper bound of A in l1(π), we

know that |xjt (n)| < C

πjt
for all j and all n. Fix some j. We define the sequence

{yk(n)}k=1,...,m as follows

yk(n) = xk(n) if k 6= i, j

yis(n) = xis(n) if s 6= t

yit(n) = xit(n)− ε
yjt (n) = xjt (n) + ε

For k 6= i, j, limn U
k(yk(n)) = vk. And we have

U i(yi(n))− U i(xi(n)) = πit(u
i(yit(n))− ui(xit(n)))

≥ πit(−ε)ui′(xit(n)− ε) ≥ −επitui′(−
C

πit
− ε)

and

U j(yj(n))− U j(xj(n)) = πjt (u
j(yjt (n))− uj(xjt (n)))

≥ πjt εu
j′(xjt (n) + ε) ≥ επjtuj′(

C

πjt
+ ε).

Since lim infn U
i(xi(n)) > vi, by choosing ε small enough, the sequence {y(n)}n

will satisfy lim infn U
i(yi(n)) > vi and lim infn U

j(yj(n)) > vj .

By induction we can find a sequence {zk(n)}n ⊂ A which satisfies limn U
k(zk(n)) >

vk for all k = 1, 2, . . . ,m. Hence (v1, v2, . . . , vm) ∈ U .

Proof of Proposition 3

Since the (NA )condition holds, from Proposition 1, we know that U is

bounded. We will prove that U is closed. Suppose that (v1, . . . , vm) belong to

the closure of U and the sequence {x(n)}n ⊂ A such that limn U
i(xi(n)) = vi.

If the sequence {x(n)}n belongs to a compact set of l1(π), without loss of

generality, we can suppose that limn x
i(n) = xi in this topology. Since U i is

continuous, we have U i(xi) ≥ vi for all i. Thus (v1, . . . , vm) ∈ U .

If the sequence {x(n)}n does not belong to a compact set, we can suppose

that there exists c > 0 such that for an agent i

lim
n→∞

∞∑
s=n

πis|xis(n)| = c.
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As in the proof of Proposition 2, we can choose a pair (i, j) which satisfies

the two properties:

1. ∃ Ein ⊂ N ∩ {s ≥ n}, xis > 0 for all s ∈ Ein and

lim
n

∑
s∈Ein

πisx
i
s(n) = ci > 0.

2. For all s ∈ Ein
xjs(n) ≤ −x

i
s(n)− |es|
m− 1

.

With each M > 0, define the set Sin ⊂ Ein as follows

Sin = {s : xis(n) > |es|+M(m− 1)}. (4)

We have an observation: limn
∑

Ein\Sin π
i
sx
i
s(n) = 0. Indeed

lim
n→∞

∑
s∈Ein\Sin

πisx
i
s(n) ≤

∑
s∈Ein\Sin

πis (|es|+M(m− 1))

≤
∞∑
s=n

πis|es|+M(m− 1)
∞∑
s=n

πis

which tends to zero, since e ∈ l1(π).

Hence we have Sin 6= ∅ for all n big enough, and

lim
n→∞

∑
s∈Sin

πisx
i
s(n) = ci.

We have

xjs(n) ≤ |es| − x
i
s(n)

m− 1
< −M. (5)

Since πi and πj are equivalent, we can assume that limn
∑

s∈Sin π
j
sxis(n) = cj >

0. Notice that these limits do not depend on M .

Define α := min(vk, vi − ui′(0)ci

m−1 ) − 1, (k = 1, . . . ,m). Define Aα the set

of (xk) ∈ l1(π) satisfies Uk(xk) ≥ α ∀k and
∑
xk = e. From Lemma 1 we

know that there exists C > 0 such that U j(xj) < C for all (x1, . . . , xm) ∈ Aα.

Notice that our sequence (xk(n)) ∈ Aα for n large enough. Fix ε > 0. Since

ui′(+∞) = 0 we can choose M > 0 such that ui′(M) < (m− 1)ε/c. By similar

arguments as in the proof of Proposition 2, we can construct the sequence

(yk(n)) such that:

lim inf
n→∞

U i(yi(n)) ≥ vi − ui′(M)ci

m− 1

lim inf
n→∞

U j(yj(n)) ≥ vj +
uj′(−M)cj

m− 1

lim inf
n→∞

Uk(yk(n)) = vk for all k 6= i, j
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with ci, cj > 0 and ci < c and ci and cj do not depend on M .

So, for n large enough, U i(yi(n)) > vi − ε, and for all k 6= i, j, Uk(yk(n)) >

vk − ε whereas limn U
j(yj(n)) = vj + uj′(−M)cj

m−1 > vj + uj′(0)cj

m−1 > vj . Let ε→ 0

and by applying the Lemma 3, we have (v1, v2, . . . , vm) ∈ U .

Proof of Proposition 4

We proceed by two steps.

Step 1 We assume I2 = {i0}. Suppose that the sequence {xn} satisfies

limn U
i(xin) = vi. We prove that (v1, . . . , vm) ∈ U . If {xn} belongs to a

compact set of l1(π) topology, then lim infn U
i(xi) ≥ vi, hence v ∈ U .

Suppose that the sequence {xn} does not belong to a compact set. By us-

ing the same argument in the proof of Proposition 2, there exist i and j which

satisfy two properties:

1. ∃ Ein ⊂ N ∩ {s ≥ n}, xis > 0 for all s ∈ Ein and

lim
n

∑
s∈Ein

πisx
i
s(n) = ci > 0.

2. For all s ∈ Ein
xjs(n) ≤ −x

i
s(n)− |es|
m− 1

.

If j 6= i0, since bj = +∞, by using the same arguments in the proof of

Theorem 1 we have a contradiction.

We consider now the case j = i0. Since i 6= i0, a
i = 0, by using the same

arguments in the proof of Proposition 2, we have (v1, . . . , vm) ∈ U .

Hence U is compact.

Step 2

Claim Let f1, . . . , fn, be n vectors in lp(π), and p ∈ l∞(π). Take any

x ∈ lp(π) such that p · x = p ·
∑

i f
i. Then there exists x1, . . . , xn in lp(π) such

that
∑

i x
i = x and p · xi = p · f i for all i.

Proof of the claim. This is true for n = 1. Suppose that the claim is true for

n−1. Take any x1 such that p·x1 = p·f1. We have p·(x−x1) = p·
∑n

i=2 f
i. Using

the hypothesis of induction, there exists x2, . . . , xn such that
∑n

i=2 x
i = x− x1

and p · xi = p · f i for all i.

In the proof of Proposition 2, we have πi = πj = πI and λia
i = λja

j = ζ,

for all i, j ∈ I2. For xI ∈ l1(π) satisfying xI =
∑

i∈I2 x
i, with xi ∈ l1(π), define

U I(xI) =
∑
i∈I2

λiU
i(xi).
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We consider now the economy EI with |I1| + 1 agents, |I1| agents who are

risk averse, with endowment ei, utility function U i, and the last agent (denoted

by I) with endowment eI =
∑

i∈I2 e
i, utility function U I . It is easy to verify

that agent I is risk neutral, with

U I(xIs) = ζ

∞∑
s=1

πIsx
I
s,

and the new economy satisfies (NA) condition. By Theorem 1, this economy

has an equilibrium, denote by (p∗, x∗). For all i ∈ I1, x∗i is the solution to

max
∞∑
s=1

πisu
i(xis)

s.t.
∞∑
s=1

p∗sx
i
s =

∞∑
s=1

p∗se
i
s.

and x∗I is the solution to

maxU I(xI)

s.t.

∞∑
s=1

p∗sx
I
s =

∞∑
s=1

p∗se
I
s.

If U I(xi) > U I(x∗I), then p∗ · xi > p∗ · eI .
By the same arguments in the proof of the Theorem 1, there exists λ∗i > 0,

λI > 0 such that for i ∈ I1, p∗s = λiπ
i
su
i′(x∗is ). For I, we have p∗s = ζπIs = λia

iπIs ,

∀i ∈ I2, ∀s. The function U I is strictly increasing, so

p∗ · x∗I = p∗ · e∗I = p∗ ·
∑
i∈I2

ei.

By the claim, for all i ∈ I2 there exist x∗i ∈ lp(π) such that
∑

i∈I2 x
∗i = x∗I ,

and p∗ · x∗i = p∗ · ei, ∀i.
Fix i ∈ I2. Take xi such that U i(xi) > U i(x∗i). We prove that p∗ ·xi > p ·ei.

Indeed, we have

U i(xi) =
∞∑
s=1

aiπisx
i
s =

1

λi

∞∑
s=1

λia
iπis =

1

λi

∞∑
s=1

p∗sx
i
s.

Hence U i(xi) > U i(x∗i) implies p∗ · xi > p∗ · x∗i = p∗ · ei.
We have proved that (p∗, (x∗i)i) is an equilibrium of the model.
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