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Introduction

The dynamic response of hours worked to a permanent technology shock identified from SVARs is

a controversial issue. The specification of hours in SVARs and the measurement of the productivity

appear crucial in the explanation of apparent conflictual results (see e.g. Gaĺı, 1999, Francis and

Ramey, 2005, Basu, Fernald and Kimball, 2006, Christiano, Eichenbaum and Vigfusson, 2004a,

2004b, Chari, Kehoe and McGrattan, 2008 and Fève and Guay, 2009). The aim of this paper is to

explain these conflicting results in SVARs using a simple statistical framework with hours worked

modelized as a locally nonstationary process. Our key result is that low–frequency movements in

hours can contaminate the identification of technology shocks when labor productivity is included

in SVARs.

In the first part of the paper, we characterize empirical evidences obtained from SVARs with US

data. These findings will then be used as basic facts to be explained by our statistical framework.

These results also echo those obtained in Gaĺı (1999), Francis and Ramey (2005), Basu, Fernald

and Kimball (2006), Christiano, Eichenbaum and Vigfusson (2004a) and (2004b). Using different

productivity measures, we compute the dynamic responses of hours worked after a technology

improvement. The main results are the following. First, when a “purified” measure of total

factor productivity (TFP) constructed by Basu, Fernald and Kimball (2006) is included in SVARs,

the specification of hours does not matter as we obtain almost the same dynamic responses:

hours decrease in short–run and thus display a positive hump–shaped pattern. Second, when

labor productivity is used, the response of hours with the LSVAR model (hours are specified in

level) is positive, but it becomes persistently negative with the DSVAR model (hours are specified

in first difference) and both differ from the ones obtained with the “purified” measure of total

factor productivity. Third, confidence bands with the LSVAR model are fairly large and thus not

informative.

Some existing works have tried to explain conflicting results obtained with LSVAR and DSVAR

models. Christiano, Eichenbaum and Vigfusson (2004a) and Gospodinov (2010) establish that the

large sampling uncertainty with the LSVAR model can arise from a weak instrument problem

when the largest root is unity or near the nonstationary boundary (stationary in small sample

but asymptotically nonstationary). A LSVAR model for such process thus leads to an inconsis-

tent estimator of the technology shocks. Using also a nearly non-stationary SVAR, Gospodinov,

Maynard and Pesavento (2011) explain that the difference in the empirical impulse responses by a

small low–frequency comovements between hours worked and productivity growth which appears
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in the LSVAR specification but disappears in the DVAR specification. While a near integrated (or

a unit root) process can provide a good statistical approximation in finite sample for a highly per-

sistent variable, as per capita hours worked (see Francis and Ramey, 2005), the maximal number

of hours that a person can work in a day is bounded and therefore its stochastic process cannot

possess a unit root asymptotically.1 No model that takes into account this physical constraint can

yield a unit root process for the logarithm of hours (see Chari, Kehoe and McGrattan, 2008, for

a discussion). Consequently, the asymptotic nonstationarity for hours cannot be considered as an

adequate representation. A characterization of the hours worked as a locally nonstationary but

asymptotically stationary persistent process seems more compatible with empirical evidence and

theoretical implications. SVAR models with a nearly stationary persistent variable seem to offer

a more appropriate representation for studying the properties of the SVAR estimators and the

associated dynamic responses in a representation including a highly persistent variable, such as

hours worked. The nearly stationary persistent process is also more in connection with equilibrium

business cycle models, in which hours worked are stationary but display high serial correlation (see

e.g. Erceg, Guerrieri and Gust, 2005, Christiano, Eichenbaum and Vigfusson, 2006, Chari, Kehoe

and McGrattan, 2008, Fève and Guay, 2009).2

The second part of the paper studies the properties of estimators and impulse response func-

tion (IRF) to a permanent shock (i.e. a technology shock), when the nonstationary variable (a

TFP measure or the labor productivity) has asymptotically an exact unit root and the other vari-

able (hours worked) follows a nearly stationary persistent process. We show that the estimated

responses from the LSVAR model are biased in finite sample if the measure of productivity is

contaminated by low frequency movements in hours. However, if the econometrician uses a proper

measure of TFP, the bias disappears. We also derive the asymptotic distribution for the struc-

tural parameters of the LSVAR model. The estimators are asymptotically consistent, but display

a nonstandard limiting distribution. This explains the large confidence interval for the dynamic

responses in the LSVAR setup. As for the LSVAR model, the estimated responses obtained from

the DSVAR model are biased in finite sample if the productivity measure (i.e. the labor produc-

tivity) includes the low–frequency movements in hours. This bias occurs because two shocks seem

to have permanent effect on labor productivity in finite sample, violating the long–run identifica-

1A stationary stochastic representation does not prevent that hours will eventually exceed any positive limit, but
the problem is all the more reinforced if they contain a unit root.

2Chang, Doh and Schorfheide (2007) consider a DSGE model with nonstationary hours and show that a level
specification of hours must be preferred to a difference specification when the model includes real frictions in the
form of labor adjustment costs.
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tion scheme. This finding explains the huge difference in the estimated IRF between the LSVAR

and DSAVR models. When the econometrician uses a “purified” measure of TFP instead of the

labor productivity, the DSVAR can yield close to consistent estimates. In this case, the long–

run restriction is valid, because the low–frequency movements in hours does not contaminate the

measure of productivity. This result explains the empirical findings that show that the LSVAR

and DSVAR models yield close dynamic responses of hours when a “purified” measure of TFP is

included in the VAR model. Our framework also explains why the dynamic responses from LSVAR

and DSVAR with a “purified” measure of TFP differ from the ones identified with the LSVAR and

DSVAR using labor productivity. These theoretical results reveal that our statistical framework

explains well the three empirical findings discussed earlier from SVARs with U.S. data. As an

alternative explanation, Gospodinov, Maynard and Pesavento (2011) propose a SVAR setup with

low–frequency comovements. These comovements, that are present in a level representation, dis-

appear in the DSVAR model. While suitable to explain why LSVAR and DSVAR models produce

different results, this setup cannot explain why the estimated dynamic responses from LSVAR and

DSVAR with labor productivity are biased in small sample as shown using simulations (Chari,

Kehoe and McGrattan, 2008 and Fève and Guay, 2010) and differ from the ones with a “purified”

measure of TFP.3 Our paper also complete theirs by showing that the variable that has the unit

root must contain a tiny portion of non–technology shocks in order to obtain accurate estimates

of the dynamic responses, as previously emphasized in Chari, Kehoe and McGrattan (2008) and

Fève and Guay (2010).

We also performs simulation experiments from an estimated DSGE model in finite sample that

illustrate and support our asymptotic results. In particular, we obtain that the low–frequency

movements in hours sizeably contribute to hours fluctuations. These movements then contaminate

the labor productivity and corrupt the identification scheme. Conversely, when the econometrician

can observe the true TFP, both LSVAR and DSVAR models consistently estimate the true response

of hours to a technology shocks. As an additional check of our setup, we evaluate the dynamic

responses of the productivity measure to a technology shocks. Our simulation experiments support

our theoretical findings and show that the estimated responses over–estimate the true ones when

3Christiano, Eichenbaum and Vigfusson (2006) obtained dynamic responses with a small bias for LSVAR using
labor productivity. At the first sight, this could appear at odds with our explanation. However, this result can be
explained by the small portion of the labor productivity’s variance explained by the non-technology shock thanks
to their parameters configuration used to perform their simulations. In fact, for the parameter values used by
Christiano, Eichenbaum and Vigfusson (2006), the resulting labor productivity is closed to be an adequate measure
of the TFP. This also holds for some results in Fève and Guay (2010) (see Table 2, case with ρχ = .99 and σχ/σχ = .5)
where parameter values are close to the ones used by Christiano, Eichenbaum and Vigfusson (2006).
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a contaminated measure of hours (and thus labor productivity) is included in SVARs.

The paper is organized as follows. In a first section, we reports estimated dynamic responses

with US data. Section 2 presents the statistical framework and an illustrative economic model

to motivate the adopted specification of hours worked. Section 3 analyzes finite sample and

asymptotic behaviors of SVARs with a nearly stationary persistent process. Section 4 reports

simulation experiments from a DSGE model. The last section concludes. Proofs are reported in

Appendix.

1 Figures with US Data

In this section, we report some figures on the short–run responses of hours worked in various

SVARs estimated with actual US data. SVARs include three different measures of productivity

that are then used for long–run identification. In each case, this variable is assumed to have

an exact unit root.4 The productivity variables considered successively are the Solow residual, a

“purified” measure of TFP and the labor productivity. All the productivity measures are specified

in logs and in first difference. Data are borrowed from Basu, Fernald and Kimball (2006). The

data frequency is annual and covers the sample period 1949–1996.5 Our measure of hours worked

is the log of non–farm business hours, divided by the population 16 and over. The data used in

this empirical analysis are reported in Figure 1. The three measures of productivity display similar

business cycle patterns, but the “purified” measure is less volatile than the other two. In addition,

the Solow residual and the labor productivity growth are imperfectly correlated with the “purified”

measure (the correlation coefficient between the growth rates is 0.31 and 0.57, respectively). As

shown in the right hand side of Figure 1, the log of hours displays persistent fluctuations over

the sample period. The estimated autocorrelation function suggests that hours worked display a

high serial correlation. We also perform an Augmented Dickey Fuller (ADF) test of unit root. We

regress the growth rate of hours on a constant, lagged level and two lags of the first difference. The

ADF test statistic is equal to −1.26 and the null hypothesis of unit root cannot be rejected at 5%.

This finding suggests that hours are nonstationary and thus must be specified in first difference in

SVARs. However, it is well known that unit root tests have lower power in small sample against

stationary alternatives, so hours are specified either in level or in first difference in SVARs.

4This is confirmed by unit root tests on each measure of productivity. The unit root on the level of each measure
is not rejected, whereas the unit root on the first difference is rejected at conventional level.

5Fernald (2009) proposes a quarterly version of these technology measures. We do not use these new data, since
they do not account for important features (time varying markups and heterogeneity) that are present in the annual
frequency data of Basu, Fernald and Kimball (1996).
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The four first SVARs (with hours either in level or in first difference) use direct measures of

TFP and correspond to the ones adopted by Basu, Fernald and Kimball (2006) and Christiano,

Eichenbaum and Vigfusson (2004b). The SVAR model with labor productivity growth and the

log of hours in level is the one adopted by Christiano, Eichenbaum and Evans (2004a), whereas

the SVAR with the log of hours in first difference is the one adopted by Gaĺı (1999), Gaĺı and

Rabanal (2004) and Francis and Ramey (2005). In all cases, we consider a bivariate VAR model

and we impose the long restriction à la Blanchard and Quah (1989) that technology shock is the

only variable that can have a permanent effect on the Solow residual, the “purified” measure of

TFP and the labor productivity. Following Basu, Fernald and Kimball (2006) and Christiano,

Eichenbaum and Evans (2004b), the lag length for each VAR model is two. Results are found

to be robust to other choices of the lag length. The confidence interval is then obtained from

standard bootstrap techniques with 1000 replications. The results are reported in Figures 2 and 3.

For comparison purpose, we set the same scale for each estimated responses. We will consider two

sets of dynamic responses. First, we focus on the dynamic responses of hours after a technology

improvement. Second, we inspect the response of the three productivity measures to a technology

shock.

Let us first consider the dynamic responses of hours, as they constitute a central and debatable

empirical issue (see Figure 2). When the Solow residual and the “purified” measure of TFP are

included in the SVAR model, the specification of hours (in level or in first difference) does not

matter a lot. On impact, hours decrease, but after two years the response becomes persistently

positive and displays an hump–shaped pattern.6 Interestingly, the discrepancy of IRFs (between

the level and the first difference specification) is less pronounced when a “purified” measure of

TFP is considered instead of the Solow residual. This finding means that when a proper measure

of productivity is available, consistent estimates of the dynamic responses of hours worked can be

obtained without wondering what is the proper specification of hours. When the growth rate of

labor productivity is included in the SVAR model, things however change dramatically. Indeed, the

LSVAR and the DSVAR models predict opposite conclusions about the dynamic responses of hours

and for both specifications the dynamic responses differ from the ones obtained by the “purified”

measure of TFP. Except on impact, the LSVAR model displays a positive hump–shaped response

whereas the DSVAR model implies a persistent decrease in hours (see Gaĺı, 1999, Christiano,

Eichenbaum and Evans, 2004a and Francis and Ramey, 2005). Finally, in the case of a level

6See also Vigfusson, 2004, for similar empirical findings.
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specification of hours, the confidence interval is so wide that the estimated IRFs of hours are not

significantly different from zero at any horizon. This is especially true when the labor productivity

growth is included in the LSVAR model. We also obtain fairly large confidence bands with direct

productivity measures. When hours worked are specified in first difference, the confidence interval

remains wide but the dynamic responses appear more precisely estimated, especially in the very

short run.7

Let us now consider the estimated dynamic responses of each productivity measure to a tech-

nology improvement. The responses are reported in Figure 3. The responses are comparable for

the three productivity measures, because each of them will permanently adjusts in the long–run

after a permanent technology shock. The “purified” measure of TFP shifts up almost immediately

and the Solow residual after one period. Notice that the specification of hours does not matter, as

the dynamic responses with these two measures are very similar. This finding is again in contrast

with those obtained from labor productivity. The LSVAR and DSVAR models display different

responses in the short–run. The DSVAR model implies a quick adjustment of labor productivity

to its new long–run value. With the LSVAR model, the labor productivity adjusts very gradually

and persistently. The long–run effect of the technology measure can be directly obtained from the

Cholesky decomposition of the long–run covariance matrix of the variables. Results are reported

in Table 1. For each measure, the long effect is almost similar whatever the specification of hours.8

Notice however, that the discrepancy is more pronounced in the case of the labor productivity.

Again, the “purified” implies the smaller difference and the Solow residual intermediate results.

Another important aspect is the sizeable difference between the “purified” measure and the labor

productivity. For example, with the DSVAR specification, the long–run effect is 1.39% with the

“purified” measure and 2.32% with the labor productivity. Using this latter variable yields larger

long–run effects of a technology improvement.

2 The Statistical Framework and an Illustrative Economic Model

We first present the specification of a nearly stationary persistent process. Second, we connect this

statistical representation to the dynamics of hours worked obtained from a standard RBC model.

7We can also complete these figures by computing the correlation of the technology innovations identified from
LSVAR and DSVAR models, for each measure of productivity. The higher correlation is obtained in the case of the
“purified” measure of TFP, 0.9860, and the lower is obtained when labor productivity is included in SVARs, 0.9082.
The Solow residual provides intermediate results with a correlation of 0.9831.

8The DSVAR model produces larger long–run responses than the LSVAR model with every productivity measure.
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2.1 SVARs with a Nearly Stationary Persistent Process

In this section we present and study our proposed specification of a highly persistent process.

This is obtained by parameterizing it as a nearly stationary persistent process. Phillips (1987)

and Chan and Wei (1987), among others, considered nearly unit-root process to investigate the

asymptotic power of the unit-root tests under a sequence of local alternatives. Since we are

interested by a highly persistent process which is asymptotically stationary, we consider a sequence

of local alternatives such that the process is locally nonstationary but asymptotically stationary

and persistent.

Let us first introduce this nearly stationary persistent process parametrization with a simple

example. For the aim of exposition, suppose the following univariate process:

(1− ρL)∆xt = ut − δTut−1

δT =
(

1− c/
√
T
)
,

with 0 < ρ < 1, c > 0 and ut is a white noise. As T increasing to infinity and for a high value

of ρ, this process becomes a stationary persistent process whereas, in finite sample, the process is

characterized by an unit root. This process is locally nonstationary but asymptotically stationary

and persistent. This characterization of the highly persistent process has two advantages. First,

it suitably represents the time series behavior of variables for which usual unit root tests cannot

reject the nonstationarity in small sample. Second, although highly persistent, the variable is

necessarily characterized by an asymptotic stationary process. Pantula (1991), Perron and Ng

(1996) and Ng and Perron (2001) consider a simplified version of this process with ρ = 0 but to

investigate the performance of unit-root tests.9 It is important to understand that this specification

adopted here must not be interpreted as a literal description of the data but as a device to

approximate the behavior of a highly persistent variable in small sample which is necessarily

stationary asymptotically.

More generally, we are interested in a bivariate representation Xt = (∆X1t, X2t) for t = 1, ..., T ,

where the variable X1t contains an exact unit root and X2t is a highly persistent variable. Both

variables in the vectorXt are asymptotically second order stationary and they admit asymptotically

the following Wold decomposition

Xt = C(L)εt, (1)

9Obviously, the parametrization adopted by these authors is not suitable in our case since such process is asymp-
totically a white noise.
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where C(L) =
∑∞

j=0Cjεt−j and C0 = I2,
∑∞

j=0C
2
j <∞. εt is a vector of white noise processes with

E(εt) = 0 and E(εtε
′
t) = Σ. The deterministic part is omitted to simplify the presentation without

altering the results below. Now consider a Structural Moving Average (SMA) representation for

Xt:

Xt = A(L)ηt, (2)

where A(L) =
∑∞

j=0Aj and ηt = (η1t, η2t)
′ is the vector of orthogonal structural shocks with

E(ηtη
′
t) = Ω a diagonal matrix. A common identification assumption is Ω = I2, the variance of

the structural shocks is then normalized to one.

Given representations (1) and (2), the error terms εt from the reduced form are related to

the structural error terms ηt as follows: εt = A0ηt which implies that Σ = A0A
′
0. The SMA

representation is identified through the identification of the relationship matrix A0. We focus

here on the identification strategy based on long-run restrictions such as proposed by Blanchard

and Quah (1989). The identification scheme uses the long-run variance-covariance matrix of the

reduced from (1) and the structural form (2) which are related by C(1)ΣC(1)′ = A(1)A(1)′ and

A0 = C(1)−1A(1). Typically a lower triangular structure is imposed to the long-run impact

matrix A(1) which can be easily obtained using a Choleski decomposition of the long-run variance-

covariance matrix C(1)ΣC(1)′. In the case where two variables are included in Xt, the first

structural shock is the only one shock that can have a permanent effect on the first variable.

Now consider for a finite sample of T observations a structural characterization of the highly

persistent variable X2t as a nearly stationary persistent process:

∆X2t = a21(L)∆η1t + a22(L)

(
1−

(
1− c√

T

)
L

)
η2t

= a21(L)∆η1t + ã22,T (L)η2t,

where ã22,T (L) = a22(L)
(

1−
(

1− c√
T

)
L
)

. By the Beveridge-Nelson decomposition, this can be

rewritten as

∆X2t = a21(L)∆η1t + ã22,T (1)η2t + ã∗22,T (L)∆η2t

with ã22,T (1) = a22(1) c√
T

and ã∗22,T (L)(1−L) = ã22,T (L)−ã22,T (1). Let us examine in more details

this specification. The SMA bivariate representation contains a difference stationary process ∆X1t

and a highly persistent process such that:[
∆X1t

∆X2t

]
=

[
a11(L) a12(L)(1− L)

a21(L)(1− L) ã22,T (L)

] [
η1t

η2t

]
. (3)
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and only η1t has a permanent effect on the first variable. The second variable X2t is asymptotically

stationary but locally nonstationary for values of c greater than zero.10 The value of c controls

the amplitude of the local nonstationarity. Moreover, for appropriate values of a21(L) and a22(L),

the process is asymptotically persistent but stationary. We also consider the case that the second

shock can have locally a permanent effect on the first variable X1t. We show below that this can

occur when the first variable is a linear function of the persistent variable X2t. For a fixed T , the

corresponding characterization of the first variable is

∆X1t = a11(L)η1t + a12(L)

(
1−

(
1− c√

T

)
L

)
η2t

= a11(L)η1t + ã12,T (L)η2t,

where ã12,T (L) = a12(L)
(

1−
(

1− c√
T

)
L
)

and c is the same as in specification of the variable

X2t. Here, the identification scheme based on the long run restriction that only the first shock

has a permanent effect is still valid asymptotically but does not hold for a finite T . The resulting

SMA bivariate representation is:[
∆X1t

∆X2t

]
=

[
a11(L) ã12,T (L)

a21(L)(1− L) ã22,T (L)

] [
η1t

η2t.

]
. (4)

An illustrative RBC model presented below motivates the proposed SMA representations (3) and

(4).

2.2 An illustrative RBC model

The SMA representations (3) and (4) nest several business cycle models wherein TFP contains an

exact unit root. To see this, let us consider the following simple dynamic model. The intertemporal

expected utility function of the representative household is given by

Et

∞∑
i=0

βi {log(Ct+i) +B (1−Ht+i)} ,

where B is a positive scale parameter, β ∈ (0, 1) denotes the discount factor and Et is the expec-

tation operator conditional on the information set available as of time t. Ct is the consumption

at t and Ht represents the household’s labor supply. Time endowment is normalized to unity.

To ease the computation of the solution, we assume that utility is linear in leisure (see Hansen,

1985). The representative firm uses capital Kt and labor Ht to produce the homogeneous final

10The case of c smaller than zero are not allowed to exclude nonfundamentalness representations of ∆X2t in finite
sample.
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good Yt. The technology is represented by the following constant returns–to–scale Cobb–Douglas

production function

Yt = Kθ
t (ZtHt)

1−θ ,

where θ ∈ (0, 1). The TFP, represented by Zt, is assumed to follow an exogenous process of the

form

log(Zt) = log(Zt−1) + (γz − 1) + σzηzt,

where γz > 1 is the gross growth rate of TFP, σz > 0 and ηzt is iid with zero mean and unit

variance. The capital stock evolves according to the law of motion

Kt+1 = (1− δ)Kt + It,

where δ ∈ (0, 1) is the constant depreciation rate and It denotes investment. Finally, the final

good can be either consumed or invested

Yt = Ct + It.

The approximate solution of the model is obtained from a log–linearization of the stationary

equilibrium conditions around their deterministic steady state (see Appendix A for more details).

This gives the following equation for hours:

(1− ϕL)ĥt = νσzηzt (5)

where a hat represents the relative deviation from steady–state. The parameter ν is positive and

ϕ ∈ (0, 1) is the stable root of the log–linear version of the model. Hours worked increase after a

technology improvement and go back steadily toward their steady–state. Notice that hours can

display persistent fluctuations, but they are stationary since ϕ < 1.

Suppose now that hours worked {ht}t=Tt=1 are observed by the econometrician for a given finite

sample T . Observed hours evolves according to the following measurement equation

ht = ĥt + hct (6)

where ht is the observed realizations of hours worked in log and in deviation from its mean, ĥt is

given by equation (5) (the solution of the business cycle model) and hct represents a low-frequency

measurement error. This low-frequency measurement error is assumed to follow a near–stationary

persistent process of the form

φ(L)∆hct =

(
1−

(
1− c√

T

)
L

)
σcηct

=
c√
T
σcηct +

(
1− c√

T

)
σc∆ηct (7)
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where c > 0, σc > 0 and and ηct is iid with zero mean and unit variance. In addition, ηct is

assumed to be orthogonal to ηzt (contemporaneously and for all leads and lags). The polynomial

φ(L) has all its roots outside the unit circle. For T finite hct contains a unit root. When T goes to

infinity for a given positive c, the process (7) reduces to

φ(L)hct = σcηct.

So, in a finite sample, observed hours are nonstationary for c > 0. This characterization of low-

frequency measurement error tries to capture the difficulty with an insufficient span of available

data to consistently estimate the mean reverting property of the underlying process. The series

seems nonstationary for the sample on hands while the underlying process is stationary as hours

worked per capita. This specification supposes that the highly persistent component which is

hardly approximated in finite sample depends on a shock orthogonal to the technology shock (ex:

a labor wedge shock). This can also capture low-frequency movements in the standard measure

of hours worked corresponding to sectoral shifts in hours and the changing age composition of

the working-age population (Francis and Ramey, 2009). According to these authors, these low-

frequency comovements must be removed from the labor productivity growth and hours worked

series.

Using the model’s solution (5), the measurement equation (6) and the measurement error (7),

hours in first difference admit the following moving–average representation

∆ht = ∆ĥt + ∆hct

=

(
ν

1− ϕL

)
σz∆ηzt +

cφ(L)−1

√
T

σcηct + φ(L)−1

(
1− c√

T

)
σc∆ηct (8)

From (8), we obtain that the technology shock has no long-run effect on hours, whereas the low

frequency shock on the measurement errors has a permanent effect on hours in finite sample.

Using this equation and other model’s variables, we can now present some illustrative examples

for SMA representations (3) and (4). Denoting η1t = ηzt and η2t = ηct, equation (8) can be

rewritten in the form of the process for X2t, where

a21(L) =

(
ν

1− ϕL

)
σz,

ã22,T (L) =
cφ(L)−1

√
T

σc + φ(L)−1

(
1− c√

T

)
σc(1− L)

This type of representation for X2t will be always maintained, i.e. hours worked represent the

locally nonstationary variable under study. The variable X1t can be interpreted in several ways,

12



but examples that we consider maintain the central assumption that X1t contains an exact unit

root.

Example 1 : ∆X1t is the growth rate of TFP. In this case, the process for X1t reduces to

a11(L) = σz and a12(L) = 0. However, ∆X1t can be a contaminated measure of TFP, but the

contamination has no long–run effect in finite sample. This case can be handle by imposing

a11(L) = σz and a12(L) = a
(0)
12 , where a

(0)
12 is a non–zero scalar. A more general formulation for

a12(L) can be also considered to account for long–lasting contamination effects.

Example 2 : ∆X1t is the output growth. Using the solution of the business cycle model (see

Appendix A), the output growth is given by

∆yt = σzηzt − µ
σz∆ηzt
1− ϕL

(9)

where µ is a constant parameter. This implies that a11(L) = σz−µσz(1−L)
1−ϕL and a12(L) = 0. Notice

that a very similar formulation can be obtained if we replace output growth by consumption or

investment growth. Measurement errors can be easily included by assuming that a12(L) is non–

zero. The central assumption that we maintain is that these measurement errors have no long–run

effects on output in a finite sample. In a more complex model, ∆yt can be affected by an other

permanent shock than the technology shock (see Gaĺı, 1999).

Example 3 An interesting case is when the nonstationary variable considered in the SVAR

model is contaminated by the highly persistent variable. For example, the productivity variable

used in most of SVARs with long–run restrictions is growth rate of the labor productivity (see Gaĺı,

1999, Christiano, Eichenbaum and Vigfusson, 2004a, Francis and Ramey, 2005). To illustrate this,

consider the case where the econometrician constructs a measure of productivity growth using the

output growth given by (9) and the observed change in hours given by (8):

∆yt −∆ht = σzηzt −
(
µ+ ν

1− ϕL

)
σz∆ηzt −

cφ(L)−1

√
T

σcηct − φ(L)−1

(
1− c√

T

)
σc∆ηct (10)

In this case, ∆X1t = ∆yt −∆ht with ∆X2t = ∆ht. Consequently, labor productivity is contami-

nated by the low–frequency component of hours. In other words, the variable X1t is now function

of the nearly stationary persistent process X2t. In finite sample, the two shocks ηzt and ηct affect

permanently the labor productivity. Francis and Ramey (2009) have already investigated this issue

by showing that long–run identifying assumption used in empirical works are valid only when labor

13



productivity are defined in efficiency unit. When they are not, labor productivity depends both

on TFP and the ratio of efficiency hours to aggregate hours. In our statistical setup, the effect

of this ratio in finite sample is captured by the near stationarity in the measurement errors. It is

important to note here that output growth does not share the low-frequency movements of hours

precluding a cointegration relationship.

3 Estimation and Inference

We now consider estimation and inference with the two specifications of the SVAR model. In prac-

tice, the reduced-form moving average representation is retrieved by performing a finite order VAR

on the data. Suppose now that the structural moving average representation can be characterized

or approximated in small sample by a finite VAR of order p.11 Consider, the following reduced

form VAR(p):

D(L)Xt = εt where D(L) = I −
p∑
i=1

DiL
i =

[
1−

∑p
i=1 d

(i)
11L

i −
∑p

i=1 d
(i)
12L

i

−
∑p

i=1 d
(i)
21L

i 1−
∑p

i=1 d
(i)
22L

i

]
.

By multiplying both sides by a matrix B0 =

[
1 −b(0)

12

−b(0)
21 1

]
= A−1

0 , we obtain the VAR in

function of the structural shocks as follows: B(L)Xt = ηt with B(L) = B0D(L). More explicitly,

the first variable is given by:

∆X1t =

(
p∑
i=1

d
(i)
11L

i − b(0)
12

p∑
i=1

d
(i)
21L

i

)
∆X1t +

(
p∑
i=1

d
(i)
12L

i + b
(0)
12

[
1−

p∑
i=1

d
(i)
22L

i

])
X2t + η1t.

Imposing the structural long-run impact matrix A(1) to be lower triangular implies that B0D(1)

is also lower triangular by A(1) = D(1)−1A0. The long-run multiplier of the variable X2t on ∆X1t

is then zero. Imposing this constraint yields

∆X1t =

(
p∑
i=1

d
(i)
11L

i − b(0)
12

p∑
i=1

d
(i)
21L

i

)
∆X1t + b

(0)
12 ∆X2t +

p−1∑
i=1

b̃
(i)
12L

i∆X2t + η1t

= b11(L)∆X1t−1 + b
(0)
12 ∆X2t + b̃12(L)∆X2t−1 + η1t

with b
(0)
12 = −d12(1)/(1− d22(1)) and b̃

(i)
12 = −

∑p
j=i+1

(
d

(j)
12 − b

(0)
12 d

(j)
22

)
. The second equation is:

X2t =

(
b
(0)
21

[
1−

p∑
i=1

d
(i)
11L

i

]
+

p∑
i=1

d
(i)
12L

i

)
∆X1t +

(
p∑
i=1

d
(i)
22L

i − b(0)
21

p∑
i=1

d
(i)
12L

i

)
X2t + η2t

11By considering the order p→ ∞ (at some rate) and p
T

→ 0, Lewis and Reinsel (1985) show that a multivariate
infinite autoregression can be arbitrarily approximated by a finite VAR of order p.
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which can be rewritten as

X2t =

(
b
(0)
21

[
1−

p∑
i=1

d
(i)
11L

i

]
+

p∑
i=1

d
(i)
12L

i

)
∆X1t + b22(1)X2t−1 +

p−1∑
i=1

b̃
(i)
22L

i∆X2t + η2t

= b021∆X1t + b21(L)∆X1t−1 + b22(1)X2t−1 + b̃22(L)∆X2t−1 + η2t

where b22(1) = d22(1)− b(0)
21 d12(1) and b̃

(i)
22 = −

∑p
j=i+1 b

(j)
22 = −

∑p
j=i+1

(
d

(j)
22 − b

(0)
12 d

(j)
12

)
.

3.1 The LSVAR Model

Let us first consider the LSVAR specification. With this specification, the second variable X2t is

included in the VAR in level. To simplify suppose that the initial condition is fixed to zero (i.e.

X20 = 0), the structural highly persistent process is rewritten in level as:

X2t = a21(L)η1t + a22(1)
c√
T

t∑
i=1

η2i + ã∗22,T (L)η2t. (11)

For a finite T and c > 0, the second structural shock has a permanent effect on the variable X2t.

The finite measure of the element (2, 2) of the matrix A(1) is then very sensitive to the value of

the parameter c. For T going to infinity and c > 0, the second term at the RHS of eq. (11) does

not disappear asymptotically but converges toward a Brownian motion. Thus,

a22(1)
c√
T

[Tr]∑
i=1

η2i
L−→ a22(1)cW (r)

where W (r) is a standard Brownian motion for r ∈ [0, 1], t = [Tr] and [·] means the integer part.

Consequently, even though 1√
T
→ 0 as T is going to infinity, the variance of X2t is still function on

the second term and in particular depends on the value c. We will show below that this introduces

an asymptotic non standard distribution for impulse responses resulting from the LSVAR. For the

first variable ∆X1t, when the specification (3) is true, the long-run restriction that only the first

structural shock has a permanent effect on the first variable is valid for all finite T . When the first

variable is contaminated by the highly persistent process X2t as labor productivity, the restrictions

is violated for a finite T as in specification (4) which introduces a potential finite sample bias of

the long-run matrix A(1) estimator. This finite sample bias is transmitted to the estimator of

A0 and the resulting impulse responses by the following relationships: A(0) = C(1)−1A(1) and

A(L) = C(L)A(0). This explains why dynamic responses from LSVAR using a “purified” measure

of TFP differ from LSVAR using labor productivity and why the latter yields biased dynamic

responses as shown in simulations by Chari, Kehoe and Mcgrattan (2008) and Fève and Guay

(2010).
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Let us now examine more precisely the asymptotic properties of the LSVAR. We are interested

by the estimation of the two following equations.

∆X1t = b11(L)∆X1t−1 + b
(0)
12 ∆X2t + b̃12(L)∆X2t−1 + η1t (12)

X2t = b021∆X1t + b21(L)∆X1t−1 + b22(1)X2t−1 + b̃22(L)∆X2t−1 + η2t. (13)

We rewrite the model as function of b
(0)
12 and b

(0)
21 whose asymptotic properties determines the

limiting behavior of the impulse responses at the impact and b∗22 defined as b22(1)− 1 above which

undermines the asymptotic properties of the dynamic of impulse responses. Thus, the model can

be rewritten up to op(1) terms as

∆X̃1t = b
(0)
12 ∆X̃2t + η1t (14)

∆X̃2t = b
(0)
21 ∆X̃1t + b∗22X̃2t−1 + η2t (15)

where ∆X̃1t, ∆X̃2t and X̃2t−1 are defined as the residuals of the projection of these variables

on the predetermined variables Wt−1 = (∆X1t−1, . . . ,∆X1t−p,∆X2t−1, . . . ,∆X2t−p−1)′ and b∗22 =

b22(1)− 1. To study the properties of the impulse responses, we consider the IV estimator of the

SVAR model proposed by Shapiro and Watson (1988). Christiano, Eichenbaum and Vigfusson

(2006) and Gospodinov (2010) employed this estimator to analyze the cases where the second

variable is difference stationary or a nearly nonstationary process, respectively. The IV estimator

of b
(0)
12 with X2t−1 as instrument is given by the following expression:

b̂
(0)
12 =

1
T

∑T
t=2X2t−1∆X̃1t

1
T

∑T
t=2X2t−1∆X̃2t

=

1
T

∑T
t=2X2t−1

[
b
(0)
12 ∆X̃2t + η1t

]
1
T

∑T
t=2X2t−1∆X̃2t

or equivalently

b̂
(0)
12 − b

(0)
12 =

1
T

∑T
t=1X2t−1η1t

1
T

∑T
t=1X2t−1∆X̃2t

+ op(1). (16)

Consider now the estimation of the structural parameter b
(0)
21 in equation (15). Since η1t and η2t

are orthogonals, the residuals η̂1t = ∆X̃1t− b̂(0)
12 ∆X̃2t can be used as instrument for the endogenous

variable ∆X̃1t. Thus, η̂1t = η1t−
(
b̂
(0)
12 − b

(0)
12

)
∆X̃2t. Let us now define zt = (η̂1t, X2t−1)′ and xt =

(∆X̃1t, X̃2t−1)′. The IV estimator of β =
(
b
(0)
21 , b

∗
22

)′
is then given by β̂ =

[
1
T

∑T
t=2 ztx

′
t

]−1 [
1
T

∑T
t=2 zt∆X̃2t

]
.

The following theorem provides the asymptotic properties for the IV estimator of b
(0)
12 , b

(0)
21 and b∗22.
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Theorem 1 Under the structural model (3) or (4) and assumptions in Lemma 1, the IV estimator

b̂
(0)
12

p→ b
(0)
12 and β̂

p→ β converges to the true value. Thus,

√
T
(
b̂
(0)
12 − b

(0)
12

)
L−→

(
ψ

1/2
2,0 ξ1 + ϑ1

)
a

(0)
22 b
∗
22ψ̃2

,

√
T
(
b̂
(0)
21 − b

(0)
21

)
L−→ ξ2

a
(0)
11

−

(
ψ

1/2
2,0 ξ1 + ϑ1

)
a

(0)
22 b
∗
22ψ̃2

.

√
T
(
b̂∗22 − b∗22

)
L−→

a
(0)
12

(
ψ

1/2
2,0 ξ1 + ϑ1

)
a

(0)
11 ψ̃2

−

[
a

(0)
12 b
∗
22

a
(0)
11

−
ψ

1/2
2,0

ψ̃2

]
ξ2 +

ϑ2

ψ̃2

where ϑ1 = a22(1)c
∫ 1

0 W2(r)dW1(r), ϑ2 = a22(1)c
∫ 1

0 W2(r)dW2(r) with ξ = (ξ1, ξ2)′ ∼ N (0, I2),

W1(r) and W2(r) are two independent Brownian motions and ψ̃2 and ψ
1/2
2,0 are defined in the

Appendix.

Theorem 1 establishes that the IV estimator of b
(0)
12 , b

(0)
21 and b∗22 are consistent. This result is not

surprising since as T goes to infinity, X2t is a second order stationary variable. The second set of

result shows that the asymptotic distribution of
√
T (̂b

(0)
12 − b

(0)
12 ) is a mixture of Gaussian distribu-

tions for c greater than zero. The first term of the asymptotic distribution is the usual asymptotic

distribution for a stationary variable X2t. The term ϑ1 has a Gaussian distribution conditional

on W2(·) since W1(·) is independent of W2(·). This component produces wider confidence interval

compared to the standard case with stationary variables by increasing the parameter c controling

the local nonstationarity. Theorem 1 also shows that the asymptotic distribution of the IV estima-

tor of b
(0)
21 is a function of the asymptotic distribution of b

(0)
12 and then shares the same asymptotic

properties. This is due to the use of the instrument which depends on the estimator b̂
(0)
12 . Finally,

the asymptotic distribution of the IV estimator of persistence parameter b∗22 is non standard and

depends on ϑ1 and ϑ2. The term ϑ2 is of an unit–root type distribution providing fat tails in the

asymptotic distribution. Larger is the value of c, wider is the non standard confidence interval.

In the light of the business cycle model, Theorem 1 states that whatever the variable used

for X1t (TFP, output or a proper measure of labor productivity), the LSVAR provides consistent

estimators. The definition of X1t does not matter a lot for the asymptotic distribution. To see this,

let us consider the case where ∆X1t is the growth rate of TFP, i.e. ∆X1,t = ∆zt. This implies that

a
(0)
12 = 0 and thus b

(0)
12 = 0. In this case, the limiting distribution of b̂

(0)
12 and b̂

(0)
21 are left unaffected.
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The sole difference concerns b̂∗22 for which the limiting distribution does not include the random

variables ζ1 and υ1. However, the asymptotic distribution is still non standard as it depends on

υ2. Again, larger values of c tends to increase the confidence interval for b̂∗22.

We now examine the asymptotic behavior of the impulse response function to the permanent

shock (e.g, η1t). According to the SMA representation (2), let a
(l)
kj =

∂Xk,t+l
∂ηjt

be the impulse

response function at l periods ahead for a normalized structural shock j for the variable Xk. Since

the estimators of b
(0)
12 , b

(0)
21 and b∗22 are consistent according to Theorem 1 and other parameters

in the VAR are also consistently estimated, we can show that estimates of impulse responses

a
(l)
kj resulting from the VAR are also consistent. However, their asymptotic distributions are non

standard due to the local nonstationarity of X2t. A simple example can give insight about the

effect of the local nonstationary on the asymptotic distribution of the impulse responses. Consider

the following VAR(1) model

∆X1t = b
(0)
12 ∆X2t + η1t

X2t = b
(0)
21 ∆X1t + b22X2t−1 + η2t.

For instance, in this case the estimator of the impulse response function of the first shock on the

second variable X2t, this is given by

â
(l)
21 =

b̂
(0)
21

(
b̂22 − b̂(0)

12 b̂
(0)
21

)l
(1− b̂(0)

12 b̂
(0)
21 )l+1

.

and b̂∗22 = b̂22 − 1. At the impact (i.e. l = 0), the asymptotic distribution depends only on

the asymptotic distribution of the parameters b
(0)
12 and b

(0)
21 which is a scaled mixed of Gaussian

distributions depending on c. For the propagation of the shocks (i.e. l > 0), the asymptotic

distribution depend also on the asymptotic distribution of b∗22 which is of the unit-root distribution

inducing fat-tails distribution for the impulse responses. In the more specific case where ∆X1t is

the growth rate of the TFP, b
(0)
12 = 0, the estimator of the impulse response function of the first

shock on the second variable X2t is given by the following simple expression

â
(l)
21 = b̂

(0)
21

(
b̂∗22 − 1

)l
.

3.2 The DSVAR Model

Let us now consider the DSVAR specification. From (4), the finite sample measure of the long-run

impact is given by:

AT (1) =

[
a11(1) a12(1)c/

√
T

0 a22(1)c/
√
T

]
.
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When the first variable ∆X1t is not function of the second variable as in (3), the term a12(1)c/
√
T

is equal to zero and the long-run restriction that only the first shock has a permanent effect on

the first variable is valid. When, the first variable corresponds to labor productivity growth, since

∆X1t = ∆yt −∆ht and ∆X2t = ∆ht implies a12(1)c/
√
T = −a22(1)c/

√
T . The linear dependence

between the labor productivity growth and ∆ht induces negative low frequency co-movements

between these variables. In contrast to small low-frequency co-movements discuss in Gospodinov,

Maynard and Pesavento (2011) which are present in the LSVAR specification but disappear in the

DSVAR specification, the negative co-movements here are present in the DSVAR specification.12

In particular, the negative low-frequency co-movements between labor productivity and hours in

the DSVAR which are absent in a DSVAR including TFP and hours explain the difference in the

estimated impulse responses between these two specifications.

As T →∞, the long-run restriction that only the first shock has a permanent effect on the first

variable is valid. However, this long-run restriction measured by the matrix A(1) is violated for a

finite T and this matrix is upper triangular instead of lower triangular. Provided c > 0 and T fixed,

two shocks have a long–run effect on X1t, the permanent shock η1t and the non–permanent η2t.

Suppose now that we use, as usual, a long-run identification scheme to uncover η1t. It follows that

the long–run effect of η2t on X1t will be attributed to η1t, leading to over–estimate the contribution

of η1t. Notice that when c increases, i.e. when the variable X2t becomes more and more persistent,

the effect of η2t on X1t increases, because the variable X1t is contaminated by X2t. Indeed, the

second shock η2t will have a permanent effect on X2t in finite sample. When the size of the local

nonstationary alternative c increases, the shock η2t will have larger permanent effect on X2t. Again,

because the long–run identification will wrongly attribute to η1t the permanent effect on X1t of

η2t, this identification scheme will conclude that the shock η1t will have a permanent effect on X2t

whose sign will depend on the sign of a12(1). Observe also as T → ∞, only the element (1,1) is

different from zero and the matrix A∞(1) is singular resulting from the over-differentiation of X2t.

The next proposition characterizes more precisely the finite sample measure at zero frequency

when a lower triangular structure is imposed to the matrix AT (1) for the DSVAR model.

12Using estimated DSVAR parameters, we can compute low-frequency co-movements between labor productivity
growth and hours worked in difference using the non-farm business sector data for a given interval of frequencies
and, in particular, for the frequency zero and its neighborhood. In fact, it exists a non negligible negative low-
frequency correlation between labor productivity growth and hours worked in difference. This is consistent with our
specification.
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Proposition 1 Consider a DSVAR model with variables ∆X1t and ∆X2t defined in eq. (4).

The finite sample measure of the long-run impact of the structural shocks by using the Choleski

decomposition is given by the following lower triangular matrix :

chol
(
AT (1)AT (1)′

)
=

(a11(1)2 + a12(1)2c2/T
)1/2

0

a12(1)a22(1)c2/T

(a11(1)2+a12(1)2c2/T )1/2

(
a22(1)2c2/T − a12(1)2a22(1)2c4/T 2

a11(1)2+a12(1)2c2/T

)1/2

 .

where chol(·) is the Choleski decomposition.

Imposing that the second shock has no long-run effect on the variable X1t yields a theoretical

(population) impulse response function of the permanent shock η1t that is biased. The finite sample

bias introduced by wrongly imposing a lower triangular matrix depends on the parameter a12(1).

First, the finite sample measure of the long-run impact of the permanent shock on the first variable

is over–stated since
(
a11(1)2 + a12(1)2c2/T

)1/2
> a11(1) for a12(1) 6= 0. Second, the finite sample

measure of the long–run impact of the first structural shock η1t on the second variable is of the same

sign as a12(1). For a negative value of a12(1) = −a22(1), which corresponds to the case of labor

productivity, the finite sample measure of the long run impact is negative. The contamination

of the finite sample measure of the long–run impact is then transmitted to the estimator of the

relationship matrix A0 by the expression : A0 = C(1)−1A(1). This result is of importance since

it establishes that the local nonstationarity of per capita hours worked may lead to a downward

bias in the estimated dynamic responses from a DSVAR model (when a12(1) is negative), despite

the fact that a first difference specification seems to be adequate in finite sample.

We can easily translate the results of the above Proposition in terms of the business cycle model.

First, consider that ∆X1t is the growth of labor productivity given by (10) and the econometrician

estimates a VAR model with a difference specification for observed hours ∆ht. From equations

(10) and (8), the finite sample measure of the long–run impact matrix is given by:

AT (1) =

 σz − cφ(1)−1
√
T

σc

0 cφ(1)−1
√
T

σc


Now, applying a Choleski decomposition to the long–run covariance matrix AT (1)AT (1)′, we

obtain the long–run effect of each structural shocks as identified by the DSVAR model:

chol(AT (1)AT (1)′) =


(
σ2
z + c2φ(1)−2σ2

c
T

)1/2
0

− c2φ(1)−2σ2
c

T

(
σ2
z+

c2φ(1)−2σ2c
T

)1/2

 c2φ(1)−2σ2
c

T − c4φ(1)−4σ4
c

T 2

(
σ2
z+

c2φ(1)−2σ2c
T

)
1/2
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First, looking at the (1,1) entry of the decomposition, it appears that the long–run effect of

identified technology shock on labor productivity is over–estimated in finite sample as long as

c > 0. Second, inspecting the (2,1) entry, the DSVAR model will predict a negative long–run

effect of technology shock on hours under a business cycle model in which this long–run effect is

zero. When T is large enough regarding c, the long–run effect tends to zero.

Another interesting results from Proposition 1 is the case where a12(L) = 0. It follows immedi-

ately that the long–run response of X2t to η1t is zero, whatever or not this variable follows a local

non–stationary process. This can be illustrated again, using the business cycle model. Consider

now that the econometrician uses a perfect measure of the TFP.13 In this case, ∆X1t = ∆zt. From

(8), the finite sample measure of the long–run impact matrix is now given by:

AT (1) =

[
σz 0

0 cφ(1)−1
√
T

σc

]
.

The Choleski decomposition of the long–run covariance matrix yields

chol(AT (1)AT (1)′) =

[
σz 0

0 cφ(1)−1
√
T

σc

]
.

The long–run responses of the TFP and hours obtained from the DSVAR model are consistent

with the business cycle model, even in finite sample. The parameter c does not affect the esti-

mated long–run response of TFP and hours to a technology shock. This results is of importance

because it corresponds to the case where b
(0)
12 = 0. As shown below, in this case, the short–run

response obtained from a DSVAR are unbiased and the dynamic responses can display small bias

if a sufficient number of lags are included in the VAR model. Coupled with estimated long–run

response, our results indicate that DSVAR can almost properly uncover the dynamic responses of

hours worked when the econometrician use a perfect measure of TFP.

To study in more details the properties of the estimators resulting for the DSVAR, the corre-

sponding estimated reduced form VAR(p) for both variables in difference is given by:

D(L)Xt = εt

where the vector Xt is now defined as Xt = (∆X1t,∆X2t)
′. By multiplying both sides by B0 =[

1 −b(0)
12

−b(0)
21 1

]
= A−1

0 , we obtain the VAR in function of the structural shocks: B(L)Xt = η∗t

with B(L) = B0D(L). Imposing the structural long-run impact matrix to be lower triangular

13Similar results for long–run responses hold when measurement errors has no long–run effect on this measure in
finite sample.
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implies that B0D(1) is also lower triangular. The long-run multiplier of the variable ∆X2t on

∆X1t is then zero. Imposing this constraint yields for the first equation,

∆X1t = b11(L)∆X1t−1 + b
(0)
12 ∆2X2t + b̃12(L)∆2X2t−1 + η∗1t (17)

and for the second equation:

∆X2t = b021∆X1t + b21(L)∆X1t−1 + b22(1)∆X2t−1 + b̃22(L)∆2X2t−1 + η∗2t. (18)

Asymptotically, the LSVAR is correctly specified while the DSVAR is misspecified. To study

the asymptotic properties of the estimators obtained with the DSVAR specification, we rewrite

the correctly specified LSVAR’s eq. (12) such that the variables X2t and its lags appear in second

difference as function of the parameter b
(0)
12 . Thus

∆X1t = b11(L)∆X1t−1 + b
(0)
12 ∆X2t + b̃12(L)∆X2t−1 + η1t

= b11(L)∆X1t−1 + b
(0)
12 ∆2X2t + b̃12(L)∆2X2t−1 + η∗1t (19)

with η∗1t = −b(0)
12 ∆X2t−1 − b̃12(L)∆X2t−2 + η1t. By comparing eq. (17) with eq. (19), we see that

the error η∗1t is function of the lagged values of ∆X2t. By rewriting also the second equation of the

LSVAR, we can compare with the second equation of the DSVAR. Thus,

X2t = b021∆X1t + b21(L)∆X1t−1 + b22(1)X2t−1 + b̃22(L)∆X2t−1 + η2t

and rewriting in difference

∆X2t = b021∆X1t + b21(L)∆X1t−1 + b22(1)∆X2t−1 + b̃22(L)∆2X2t−1 + η∗2t (20)

with η∗2t = −b021∆X1t−1 − b21(L)b22(L)∆X1t−2 + η2t − η2t−1.

As we proceed for the LSVAR,, the first equation of the DSVAR is rewritten as:

∆X̃1t = b
(0)
12 ∆2X̃2t + η∗1t (21)

where ∆X̃1t and ∆2X̃2t are defined as the residuals of the projection of these variables on the

predetermined variables (∆X1,t−1, . . . ,∆X1,t−p,∆
2X2t−1, . . . ,∆

2X2t−p−1). Using ∆X2t−1 as in-

struments, the IV estimator of b
(0)
12 in equation (21) is then given by the following expression:

b̂
(0)
12 =

1
T

∑T
t=2 ∆X2t−1∆X̃1t

1
T

∑T
t=2 ∆X2t−1∆2X̃2t

.
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Since ∆X2t−1 and η∗1t are correlated by eq. (19), the DSVAR estimator of b
(0)
12 is asymptotically

biased. Consider now the estimation of the parameters of equation (18). As in the LSVAR case,

one uses the residuals η̂∗1t = ∆X̃1t − b̂(0)
12 ∆2X̃2t as instrument for the endogenous variable ∆X1t.

Thus, η̂∗1t = η∗1t −
(
b̂
(0)
12 − b

(0)
12

)
∆2X̃2t. The estimator is obviously asymptotically biased by the

correlation between η∗1t and η∗2t as we can see by expressions derived above. The estimator of b22(1)

is also not consistent by the correlation between ∆X2t−1 and η∗2t.

Now, suppose that the DSVAR is estimated with a “purified” of TFP. In this case, the first

equation of the DSVAR is given by:

∆X1t = b11(L)∆X1t−1 + η∗1t.

The first equation of the DSVAR is now the same as the LSVAR. The IV estimator b̂
(0)
12 defined

above is then consistent and converge to zero since η∗1t = η1t in this case. The resulting residuals

η̂∗1t can be used as instruments in the second equation for the estimation of the parameter b
(0)
21 .

This also yields a consistent estimator of b
(0)
21 thanks to the absence of correlation between η̂∗1t and

η∗2t. However the estimator of b22(1) is still inconsistent. The asymptotic bias of the estimator

of b22(1) is function of the following term: limT→∞
1
T ∆X2t−1η

∗
2t. An important part of this bias

comes from the unit root in the error term ∆η2t resulting from the overdifferentiation of the second

equation of the VAR. This bias can be reduced by increasing the number of lags in the DSVAR

model (see Marcet, 2005).

4 Simulation Experiments from a DSGE Model with Real Fric-
tions

This section provides simulation experiments from an DSGE model calibrated and estimated with

US data.14 The model used for the simulations extends to one introduced in Section 2.2 by allowing

for habits in consumption and investment adjustment costs. Both mechanisms have proven useful in

accounting for the dynamics of macroeconomic variables in particular in terms of their persistence

properties (see e.g. Beaudry and Guay, 1996, Boldrin, Christiano and Fisher, 2001 and Christiano,

Eichenbaum and Evans, 2005). Intertemporal consumption choices are not time separable and the

flows of consumption services are a linear function of current and lagged consumption decisions.

14See Erceg, Guerrieri and Gust (2005), Chari, Kehoe and Mc Grattan (2008), Christiano, Eichenbaum and
Vigfusson (2006) and Fève and Guay (2009, 2010) for other simulation experiments.
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The intertemporal expected utility function of the representative household is now given by

Et

∞∑
i=0

βi

{
log(Ct+i − bCt+i−1)−

H1+ν
t+i

1 + ν

}

where ν is the inverse of the Frisch labor supply elasticity. Concerning the technology side, we

adopt exactly the same specification as the one adopted in Section 2.2. Remind that TFP is

assumed to follow a random walk process with drift. The homogenous produced good Yt can be

used for consumption Ct and investment It purposes. Capital accumulation is governed by the

following law of motion

Kt+1 = (1− δ)Kt +

[
1− S

(
It
It−1

)]
vtIt

where δ ∈ (0, 1) is the constant depreciation rate and S(.) reflects the presence of adjustment costs.

We assume that S(.) satisfies (i) S(γz) = S′(γz) = 0 and (ii) ξ = S′′(γz)γ
2
z > 0. It follows that the

steady state of the model does not depend on the parameter ξ while its dynamic properties do. As

in Smets and Wouters (2007), the variable vt represents a disturbance to the investment–specific

technology process and is assumed to follow a first order autoregressive process

log(vt) = ρv log(vt−1) + σbηv,t

where |ρv| < 1, σv > 0 and ηv,t is iid with zero mean and unit variance.

As usual, the model is deflated for the stochastic trend component Zt and log-linearized around

the deterministic steady state to obtain a state-space representation. Let Ψ denotes the whole set of

model parameters. The parameters of the state-space solution of the model depends on complicated

nonlinear functions of Ψ. We split Ψ in two vectors Ψ1 and Ψ2. The first vector Ψ1 = {β, α, δ, ν}

includes parameters which are calibrated for the US economy prior to estimation. The discount

factor β is chosen such that the steady–state annual return to capital equals 3.6%. The elasticity

of output to the labor input 1 − α equals 0.67, which corresponds to the average share of labor

income to output. The depreciation rate of physical capital δ is set equal to 0.0153. The value of

ν = 2 in the utility function is set according to previous estimates with US data (see Smets and

Wouters, 2007). All theses values are reported in the first column of Table 2. The second vector

Ψ2 = {b, ξ, γz, σz, ρv, σv, ρc, c, σc} contains the parameters which summarize the real frictions of

the model (habits in consumption b and the dynamic adjustment cost ξ), the law of motion of the

two structural shocks (γz, σz, ρv and σv) and the measurement error. As in our illustrative model,

we assume that actual hours differ from those of the model by a measurement error hct that follow
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the process

(1− ρcL)∆hct =

(
1−

(
1− c√

T

)
L

)
σcηct

where |ρc| < 1, σc > 0 and ηct is iid with zero mean and unit variance. When c > 0, this mea-

surement error is non stationary in small sample (when T is fixed), but asymptotically stationary

(when T →∞).

From the state–space representation resulting from the log-linearized version of the model and

under the assumption of Gaussian shocks, the log–likelihood function can be evaluated. The

parameters of vector Ψ2 are then estimated by maximizing this function. We use US quarterly

data covering the sample period 1948Q1–2007Q4. The observed variables are the growth rate of

the real GDP, real consumption expenditures (non–durable & services) and total hours worked

(per capita). Total hours worked are borrowed from Francis and Ramey (2009). The estimation

results are reported in the second column of Table 2. The parameters are precisely estimated

and are in the line of previous estimations for the US economy (see Smets and Wouters, 2007).

The habit persistence parameter b is positive and significant. The adjustment cost parameter ξ

takes a large value. These estimated values are crucial in replicating US data, especially the serial

correlation of output growth and the log of hours. For example, setting b = ϕ = 0 dramatically

reduces the log–likelihood and a likelihood ratio test strongly rejects this restriction. In other

words, our estimation results favor a version of the model with a sizeable amount of real frictions.

The investment shock exhibits small persistence but its standard error is significantly higher than

the one for the permanent technology shock. Finally, the estimated parameters of the measurement

error rejects a pure random–walk representation.

Using estimated values, we compute the dynamic responses of hours worked following a technol-

ogy shock implied by the model (see Figure 4). Hours worked decrease on impact and its response

turns out to be persistently positive after one year. These findings are again in accordance with

those obtained from estimated DSGE models (see Smets and Wouters, 2007), from SVAR models

(see Gali, 1999, Francis and Ramey, 2008) and direct measures of TFP (see Basu, Fernald and

Kimball, 2006). In our model, this response of hours is the result of the interplay between habit

persistence in consumption and adjustment costs on investment. As pointed out by Francis and

Ramey (2005), strong enough habit persistence induces a sluggish response of consumption. Fac-

ing a positive technology shock, households can put the extra resources on investment. However,

the high degree of adjustment cost on capital implies that an additional investment is very costly.

Consequently, households choose to spend their new wealth on the only remaining choice, i.e. they
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increase their leisure. We also use the estimated DSGE model in order to compute some statistics

which summarize the time series behavior of two measures of hours worked: the first, labeled con-

taminated hours, includes the measurement errors and the second, labeled uncontaminated hours,

is directly obtained from the estimated DSGE model. Consequently, we obtain two measures

of labor productivity depending on the hours worked measure. We evaluate the contribution of

the technology shock to labor productivity growth and change in hours worked. This shock ac-

counts for a small portion of fluctuations in contaminated hours worked since it represents 12.43%

of their variance. Interestingly, the technology shock explains 51.19% of the labor productivity

growth. This is in contrast with the uncontaminated measure of hours. In this case, the technology

shocks accounts for 73.04% of labor productivity growth. The computation of the autocorrelation

function of both measures of hours are reported in Figure 5. For comparison purpose this figure

includes the autocorrelation function of total and adjusted hours of Francis and Ramey (2009).

This figure clearly shows that the contaminated measure of hours displays more persistence than

the uncontaminated measure, in accordance with the actual data.

We now use the model to simulate artificial data, over which we replicate the different structural

VARs used in the relevant literature and in the empirical part of the paper. To compute artificial

time–series of the variables of interest, we draw S = 1000 independent random realizations of the

TFP innovation ηzt, the investment–specific technology innovation ηvt and the measurement error

innovation ηct. Using the parameters of Table 2, we compute S = 1000 equilibrium paths for the

growth rates of labor productivity and hours worked. In all experiments, the sample size is equal to

240 quarters, as in actual data. In order to reduce the influence of initial conditions, the simulated

sample includes 250 initial points which are subsequently discarded before the estimation of VAR

models. For each draw, the number of lags in VAR models is set to 4, a value typically used in

empirical studies. The results are reported in Figures 6–9.

Let us first consider the SVAR models that include labor productivity and hours (see the top

panel of Figures 6 and 7). Our main results are the following. First, the response of hours obtained

from the DSVAR model displays a downward bias when the measure of hours is contaminated

and this bias lasts in long-run (not reported in this Figure to save space). This bias decreases

when the low frequency movements are removed from hours. Second, the measurement of hours

(contaminated and uncontaminated) in the LSVAR model does not affect the estimated response

(the LSVAR over–estimates the true response). Third, the confidence interval is smaller and

decreases as the horizon of the response increases when uncontaminated hours are used instead
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the contaminated ones. Obviously, uncontaminated hours are less volatile than the contaminated

ones, since the latter includes measurement errors. However, we redo the same exercise adjusting

for the standard errors of the technology and shock investment shock, such that the volatility of

uncontaminated hours equals the one of contaminated hours. We then include this new series in

the LSVAR model and compare the response to the LSVAR with contaminated hours, as reported

in the top panel of Figure 6. We obtain a large confidence interval for the estimated response, but a

decrease with the horizon of the response. This is in contrast with the case of contaminated hours;

for which the confidence interval does not decrease with the horizon. We have also investigated the

case of stationary measurement errors (we set c = 0). We adjust the volatility of the measurement

error shock (to get similar variance of hours) and then compute contaminated hours. Again, we

obtain a confidence interval that decreases when the horizon decreases. All these findings echoes

our analytical results.

We now consider the SVAR models that include TFP and hours (see the bottom panel of Figures

6 and 7). Now, the first variable which is used to identify a technology shock is not polluted by

the low–frequency movement in the contaminated hours. In this case (as shown in the Proposition

1), the low–frequency movements in contaminated hours only affect the long–run variance of hours

worked. The figures show that when the econometrician uses a proper measure of the technology,

the specification of hours in the VAR model does not matter. Each SVAR consistently estimates

the dynamic effects of technology shocks on hours. At the same time, the previous results apply:

we obtain a smaller confidence interval if uncontaminated hours are included in the VAR model

and this confidence interval decreases with the horizon of the response.

Finally, we investigate the dynamic responses of the productivity measures (labor productivity,

TFP) to a technology innovation. These are reported in Figures 8 and 9. Following Proposition

1, the DSVAR model using labor productivity with a contaminated hours must lead to over–

estimate the true long-run response. This is reported in the bottom of the Figure 8. As previously

mentioned, two shocks increases permanently the labor productivity (technology shock and mea-

surement error) and this corrupts the long–run identification strategy. Notice that the estimated

short-run responses differs significantly from the true ones and the long-run impact is significantly

over-estimated as expected (not reported in the Figure but available on request). When these

low–frequency movements are removed from hours worked, the DSVAR model delivers dynamics

responses close to the true one. The true responses lies now in the confidence interval of the

estimated response. The simulation experiments with the LSVAR model does not deliver clear

27



cut evidence. It appears that the estimated response is less biased than those obtained from the

DSVAR model and the results seems less sensitive to low frequency movements in hours worked.

When the productivity measure in the VAR model is now the TFP, SVAR models yield more

accurate dynamic responses.

5 Conclusion

This paper studies the statistical properties of impulse response functions in SVARs with a highly

persistent variable as hours worked and long–run identifying restrictions. We show that the es-

timated responses from LSVAR and DSVAR models are biased in finite sample if the measure

of productivity is contaminated by low frequency movements in hours. However, if the econo-

metrician uses a proper measure of TFP, the bias disappears for the LSVAR and the DSVAR

specifications. We also show that the estimators from LSVAR are asymptotically consistent, but

display a nonstandard limiting distribution. This explains the large confidence interval for the

dynamic responses in the LSVAR setup. Estimation from US data and simulation experiments

from a business cycle model with real frictions confirm our theoretical results.

Our findings can serve as useful guideline to improve the reliability of SVAR models with long–

run restrictions. First, our theoretical and empirical results suggest that more efforts must be

made to obtain proper measures of TFP as done by Basu, Fernald and Kimball (2006) at annual

frequency, because including highly persistent variables in SVAR models is less problematic in this

case.15 Second, our findings show that part of the poor performances of SVARs is due to the

high persistence of hours. Some previous papers have tried to deal with this problem. Francis

and Ramey (2009) construct a corrected measure of per capita hours worked that adjusts for low

frequency movements in government employment, schooling, and the aging of population. Fève

and Guay (2010) propose a simple two step method. In a first step, a consistent estimator of the

technology shock is obtained with a SVAR excluding hours worked. The response of hours that

follows a technology improvement is estimated in a second step using different linear projections on

the estimated technology innovations. Interestingly, these three aforementioned papers find that

both level and first-difference specifications yield very similar dynamic responses in SVARs, i.e. a

short–run decline followed by a positive hump-shaped response of hours.

15Recently, Fernald (2009) proposes a quarterly version of this technology measure.
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Appendix

A Log–Linear Solution of the Model

The optimality and equilibrium conditions are given by:

1

Ct
= β

[
1− δ + θ

Yt+1

Kt+1

]
1

Ct+1

BHt = (1− θ) Yt
Ct

Kt+1 = (1− δ)Kt +Kθ
t (ZtHt)

1−θ − Ct
∆ log(Zt) = (γz − 1) + σzεz,t.

In this model, the technology shock Zt induces a stochastic trend into output, consumption,
investment and capital. Accordingly, to obtain a stationary equilibrium, these variables must be
de–trended as follows

y̆t =
Yt
Zt
, c̆t =

Ct
Zt
, ĭt =

It
Zt
, k̆t+1 =

Kt+1

Zt
.

The log–linearization of equilibrium conditions around the deterministic steady state yields

̂̆
kt+1 =

(1− δ)
γz

(
̂̆
kt − σzηzt) +

y

k
̂̆yt − c

k
̂̆ct (22)

ĥt = ̂̆yt − ̂̆ct (23)̂̆yt = θ(
̂̆
kt − σzηzt) + (1− θ)̂̆ht (24)

Et̂̆ct+1 = ̂̆ct + αβ
y

k
Et(̂̆yt+1 −

̂̆
kt+1 − σzηzt+1), (25)

where y/k = (γz − β(1 − δ))/(θβγz) and c/k = y/k − (γz + δ − 1)/γz. After substitution of (23)
into (24), one gets ̂̆yt − ̂̆kt = −σzηzt −

1− θ
θ
̂̆ct

Now, using the above expression, equations (22) and (25) rewrite

Et̂̆ct+1 = ϕ̂̆ct with ϕ =
θγz

γz − β(1− θ)(1− δ)
∈ (0, 1) (26)

̂̆
kt+1 = ν1

̂̆
kt − ν1σzηzt − ν2

̂̆ct
with ν1 =

1

βϕ
> 1 and ν2 =

γz(1− βθ2)− β(1− δ)(1− θ2)

θ2βγz
(27)

As ν1 > 1, (27) must be solved forward

̂̆
kt = σzηzt +

(
ν2

ν1

)
lim
T→∞

Et

T∑
i=0

(
1

ν1

)i ̂̆ct+i + lim
T→∞

Et

(
1

ν1

)T ̂̆
kt+T

Excluding explosive pathes, i.e. limT→∞Et (1/ν1)T
̂̆
kt+T = 0, and using (26), one gets the decision

rule on consumption: ̂̆ct =

(
ν1 − ϕ
ν2

)(̂̆
kt − σzηzt

)
(28)
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After substituting (28) into (27), the dynamics of capital is given by:

̂̆
kt+1 = ϕ

(̂̆
kt − σzηzt

)
(29)

The persistence properties of the model is thus governed by the parameter ϕ ∈ (0, 1), which
corresponds to the stable root of the log–linear version of the model. The decision rules of the
other (deflated) variables are similar to equation (28). The hours worked are given by

ĥt = ̂̆yt − ̂̆ct
= −ν

(̂̆
kt − σzηzt

)
= −ν

(
− ϕ

1− ϕL
σzεz,t−1 − σzηzt

)
= ν

(
σzηzt

1− ϕL

)
(30)

where ν = α(ν1 − ϕ − θν2)/(θν2) is a positive parameter. The latter expression shows that
hours worked (or the consumption to output ratio) follows exactly the same stochastic process (an
autoregressive process of order one) as the deflated capital log(Kt/Zt−1) in equation (29).

Using the expression for the growth rate of output

∆yt = ̂̆yt − ̂̆yt−1 + σzηzt,

we deduce

∆yt = σzηzt − µ
σz∆ηzt
1− ϕL

, (31)

where µ = 1− (1− θ)(ν1 − ϕ)/(αν2).

B Proofs

Lemma 1 Under the assumptions that
∑∞

i=0 i|a
(i)
kj | < ∞ for k, j = 1, 2 and that {ηt} is a

two dimensional i.i.d. sequence of structural shocks with zero mean, finite fourth moments and
E(ηtη

′
t) = I2, we get by Proposition 18.1 in Hamilton (1994, p.548)

1

T

T∑
t=2

(
c

t∑
i=2

η2i−1

)
η1t

L−→ c

∫ 1

0
W2(r)dW1(r)

1

T

T∑
t=2

(
c

t∑
i=2

η2i−1

)
η2t

L−→ c

∫ 1

0
W2(r)dW2(r)

1√
T

T∑
t=2

akj(L)ηjt−1ηlt
L−→ N

(
0,

∞∑
i=0

(
a

(i)
kj

)2
)

where W1(r) and W2(r) are two standardized independent Brownian motions l = 1, 2.
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B.1 Proof of Theorem 1

Let us first give the asymptotic variance of X2t with c > 0 and c = 0. For the case where c > 0,
we can show that

ψ2 = lim
T→∞

1

T

T∑
t=2

X2t−1X2t−1 =

∞∑
i=0

a2
21 +

∞∑
i=0

a2
22 + a22(1)2c2.

which depends on the parameter c. We also define ψ2,0 as the asymptotic variance of X2t but with
c = 0.

Under the structural model (3) or (4), the numerator of the IV estimator of b
(0)
12 is given by16

1

T

T∑
t=2

X2t−1η1t =
1

T

T∑
t=2

a21(L)η1t−1 + a22(1)
c√
T

t∑
j=2

η2j−1 + ã∗22,T (L)η2t−1

 η1t,

where the partial sum verify

a22(1)
c

T 1+1/2

T∑
t=2

 t∑
j=2

η2j−1

 η1t︸ ︷︷ ︸
Op(T )

p→ 0.

Asymptotically ã∗22,T (L) = a22(L) and by Lemma 1 this yields

1

T

T∑
t=2

a21(L)η1t−1η1t
p→ 0 and

1

T

T∑
t=2

ã∗22t(L)η2t−1η1t
p→ 0

which implies

1

T

T∑
t=2

X2t−1η1t
p→ 0. (32)

Let us now examine the denominator. By inverting eq. (14) and (15) and using B−1
0 = A0, we get

∆X̃1t = a
(0)
12 b
∗
22X̃2t−1 + a

(0)
11 η1t + a

(0)
12 η2t (33)

∆X̃2t = a
(0)
22 b
∗
22X̃2t−1 + a

(0)
21 η1t + a

(0)
22 η2t. (34)

This yields

1

T

T∑
t=2

X2t−1∆̃X2t =
1

T

T∑
t=2

X2t−1∆X̃2t

=
1

T

T∑
t=2

X2t−1

(
a

(0)
22 b
∗
22X̃2t−1 + a

(0)
21 η1t + a

(0)
22 η2t

)
p→ a

(0)
22 b
∗
22ψ̃2 (35)

where ψ̃2 = limT→∞
1
T

∑T
t=2 X̃2t−1X̃2t−1. Since X2t is asymptotically second order stationary and

ψ̃2 ≤ ψ2 by the projection properties, ψ̃2 is then bounded. By combining (32) and (35), we get

the result that b̂
(0)
12 − b

(0)
12

p→ 0.

16To simplify, we suppose here that the initial values are zero.
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Now we establish the convergence in distribution of b
(0)
12 . Thus

√
T
(
b̂
(0)
12 − b

(0)
12

)
=
√
T

[
1
T

∑T
t=2X2t−1η1t

1
T

∑T
t=2X2t−1∆X̃2t

]
.

For the numerator

1√
T

T∑
t=2

X2t−1η1t =
1√
T

T∑
t=2

a21(L)η1t−1 + a22(1)
c√
T

t∑
j=2

η2j−1 + ã∗22,T (L)η2t−1

 η1t.

By using Lemma 1, eq. (35) and noting that ã∗22,T (L)→ a22(L), we deduce

√
T
(
b̂
(0)
12 − b

(0)
12

)
L−→ 1

a
(0)
22 b
∗
22ψ̃2

[
a22(1)c

∫ 1

0
W2(r)dW1(r) + ψ

1/2
2,0 ξ1

]
,

where ξ1 is the normal distribution N (0, 1).
Consider now the estimator β̂

β̂ =

[
1

T

T∑
t=2

ztx
′
t

]−1 [
1

T

T∑
t=2

zt∆X̃2t

]
=

[
1

T

T∑
t=2

ztx
′
t

]−1 [
1

T

T∑
t=2

zt(x
′
tβ + η2t)

]
.

This yields

β̂ − β =

[
1

T

T∑
t=2

ztx
′
t

]−1 [
1

T

T∑
t=2

ztη2t

]
where more explicitly

1

T

T∑
t=2

ztx
′
t =

[
1
T

∑T
t=2 ∆X̃1t

[
η1t − (̂b

(0)
12 − b

(0)
12 )∆X̃2t

]
1
T

∑T
t=2 X̃2t−1

[
η1t − (̂b

(0)
12 − b

(0)
12 )∆X̃2t

]
1
T

∑T
t=2X2t−1∆X̃1t

1
T

∑T
t=2X2t−1X̃2t−1

]

=

[
G11,T G12,T

G21,T G22,T

]
,

and

1

T

T∑
t=2

ztη2t =

[
1
T

∑T
t=2

[
η1t − (̂b

(0)
12 − b

(0)
12 )∆X̃2t

]
η2t

1
T

∑T
t=2X2t−1η2t

]
. (36)

Let us examine the first term G11,T ,

G11,T =
1

T

T∑
t=2

∆X̃1tη1t −
(
b̂
(0)
12 − b

(0)
12

) 1

T

T∑
t=2

∆X̃1t∆X̃2t =
1

T

T∑
t=2

∆X̃1tη1t + op(1)

by (̂b
(0)
12 −b

(0)
12 )

p−→ 0 and 1
T

∑T
t=2 ∆X̃1t∆X̃2t = Op(1). Using eq. (33), this gives 1

T

∑T
t=2 ∆X̃1tη1t

p→
a

(0)
11 which implies G11,T

p→ a
(0)
11 . The term G21,T = 1

T

∑T
t=2X2t−1∆X̃1t

p→ a
(0)
12 b
∗
22ψ̃2 using eq. (33).

For the upper right term, we obtain

G12,T =
1

T

T∑
t=2

X̃2t−1

[
η1t − (̂b

(0)
12 − b

(0)
12 )∆X̃2t

]
=

1

T

T∑
t=2

X̃2t−1η1t + op(1)
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and 1
T

∑T
t=2 X̃2t−1η1t

p→ 0 by (32). Finally, G22,T = 1
T

∑T
t=2X2t−1X̃2t−1

p−→ ψ̃2.

Let us examine the expression (36). We have the following results 1
T

∑T
t=2 η1tη2t

p→ 0, (̂b
(0)
12 −

b
(0)
12 ) 1

T

∑T
t=2 ∆X̃2tη2t

p→ 0 and 1
T

∑T
t=2X2t−1η2t

p→ 0. We can now conclude that β̂ − β p−→ 0.

To establish the convergence in distribution of b
(0)
21 and b∗22, we use the following expression

√
T

[
b̂
(0)
21 − b

(0)
21

b̂∗22 − b∗22

]
=

1

G11,TG22,T −G21,TG12,T

[
G22,T −G12,T

−G21,T G11,T

] 1√
T

∑T
t=2

[
η1t − (̂b

(0)
12 − b

(0)
12 )∆X̃2t

]
η2t

1√
T

∑T
t=2X2t−1η2t

 .
(37)

We now examine the first term at the RHS of (37). From the results derived above, we obtain

G11,TG22,T
p→ a

(0)
11 ψ̃2 and G21,TG12,T

p→ 0. For the last term of (37), we have 1√
T

∑T
t=2 η1tη2t

L→ ξ2

where ξ2 ∼ N (0, 1) and

√
T
(
b̂
(0)
12 − b

(0)
12

) 1

T

T∑
t=2

∆X̃2tη2t
L−→

ψ
1/2
2,0

b∗22ψ̃2

ξ1 +
ϑ1

b∗22ψ̃2

,

since 1
T

∑T
t=2 ∆X̃2tη2t

p→ a
(0)
22 with ϑ1 = a22(1)c

∫ 1
0 W2(r)dW1(r) derived above. Now for the

expression 1√
T

∑T
t=2X2t−1η2t,

√
T

T

T∑
t=2

X2t−1η2t =
1

T

T∑
t=2

√
T

a21(L)η1t−1 + a22(1)
c√
T

t∑
j=2

η2j−1 + ã∗22,T (L)η2t−1

 η2t.

By using Lemma 1,

√
T

T

T∑
t=2

X2t−1η2t
L−→
[
a22(1)c

∫ 1

0
W2(r)dW2(r) + ψ

1/2
2,0 ξ2

]
.

By collecting these results, we obtain that

√
T
(
b̂
(0)
21 − b

(0)
21

)
L−→ ξ2

a
(0)
11

−
ψ

1/2
2,0

a
(0)
11 b
∗
22ψ̃2
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ϑ1

a
(0)
11 b
∗
22ψ̃2

.

Now for b̂∗22, we get

√
T
(
b̂∗22 − b∗22

)
L−→

a
(0)
12 ψ

1/2
2,0

a
(0)
11 ψ̃2

ξ1 +
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(0)
12 ϑ1

a
(0)
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−
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11
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]
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where ϑ2 = a22(1)c
∫ 1

0 W2(r)dW2.

B.2 Proof of Proposition 1

According to the structural representation (4), the finite sample measure of the long-run impact
is given by:

AT (1) =

[
a11(1) a12(1)c/

√
T

0 a22(1)c/
√
T

]
.
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This matrix is not lower triangular as imposed in the identification procedure of the SVAR. The
corresponding long–run variance-covariance matrix is then:

AT (1)AT (1)′ =

[
a11(1)2 + a12(1)2c2/T a12(1)a22(1)c2/T
a12(1)a22(1)c2/T a22(1)2c2/T

]
. (38)

Now, we wrongly impose a lower triangular form using a Choleski decomposing on (38). In that
respect, we can rewrite the expression above using equation (4.4.12) in Hamilton (1994 p.90) as

AT (1)AT (1)′ =

[
1 0

a12(1)a22(1)c2/T
a11(1)2+a12(1)2c2/T

1

][
a11(1)2 + a12(1)2c2/T 0

0 a22(1)2c2/T − a12(1)2a22(1)2c4/T 2

a11(1)2+a12(1)2c2/T

]

×

[
1 a12(1)a22(1)c2/T

a11(1)2+a12(1)2c2/T

0 1

]
.

By a Choleski decomposition for AT (1)AT (1)′ we obtain the lower triangular matrix:

chol
(
AT (1)AT (1)′

)
=

(a11(1)2 + a12(1)2c2/T
)1/2

0

a12(1)a22(1)c2/T

(a11(1)2+a12(1)2c2/T )1/2

(
a22(1)2c2/T − a12(1)2a22(1)2c4/T 2

a11(1)2+a12(1)2c2/T

)1/2

 .
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Table 1: Long–Run effect of a Technology Improvement on Productivity Measures (in %)

LSVAR model DSVAR Model

Solow Residual 1.51 1.63
[0.90;2.93] [0.86;2.48]

“Purified” Measure of TFP 1.33 1.39
[0.80;2.18] [0.78;2.09]

Labor Productivity 2.05 2.32
[1.06;3.92] [1.10;3.77]

Notes: 95% percent confidence interval in brackets obtained from a standard bootstrap technique with 1000
replications.

Table 2: Parameter values Ψ

Calibrated Ψ1 Estimated Ψ2

Parameter Value Parameter Value s.e.

β 0.9950 b 0.4063 0.0380
α 0.3300 ζ 23.8476 2.6220
δ 0.0153 γz 1.0035 0.0008
ν 2.0000 σz 0.0128 0.0006

ρv 0.3131 0.0659
σv 0.6669 0.0743
ρc 0.6893 0.1138
c 7.4120 2.0615
σc 0.0071 0.0004

Note: US quarterly data covering the sample period 1948:1–2007:4. The vector
of observed data includes the growth rate of the real GDP, real consumption
expenditures (non–durable & services) and hours worked (per capita).
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Figure 1: US Data
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Note: The left hand side of the figure reports different measures of productivity. The solid line
refers to the Solow residual, the dashed line to the purified measure of TFP and the dotted line to
the labor productivity. All are specified in logs and in first difference. The right hand side reports
the log of per capita hours worked. The data are at annual frequency and cover the sample period
1949–1996.
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Figure 2: IRFs of Hours Worked to a Technological Improvement
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Note: The DSVAR model includes alternatively the growth rate of the Solow residual, the “purified” measure
of TFP and the labor productivity, and the log of hours in first difference. The LSVAR model includes
alternatively the growth rate of the Solow residual, the “purified” measure of TFP and the labor productivity,
and the log of hours in level. The sample period is 1949–1996. Two lags are included in each VAR model. The
selected horizon for IRFs is 11. 95% percent confidence interval obtained from a standard bootstrap technique
with 1000 replications.
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Figure 3: IRFs of Technology Measures to a Technological Improvement
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Note: The DSVAR model includes alternatively the growth rate of the Solow residual, the “purified” measure
of TFP and the labor productivity, and the log of hours in first difference. The LSVAR model includes
alternatively the growth rate of the Solow residual, the “purified” measure of TFP and the labor productivity,
and the log of hours in level. The sample period is 1949–1996. Two lags are included in each VAR model. The
selected horizon for IRFs is 11. 95% percent confidence interval obtained from a standard bootstrap technique
with 1000 replications.
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Figure 4: IRF of Hours
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Figure 5: ACFs
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Figure 6: IRF of Hours: Labor Productivity and Hours
Labor Productivity and Hours
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Note: The DSVAR model includes labor productivity growth or TFP growth
and the log of hours (contaminated and uncontaminated) in first difference. The
LSVAR model includes labor productivity growth or TFP growth and the log of
hours (contaminated and uncontaminated). The selected horizon for IRFs is 13.
The number of lags in VAR model is 4. 95 % confidence interval shown.
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Figure 7: IRF of Hours: Comparison of SVARs
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Note: The DSVAR model includes labor productivity growth or TFP
growth and the log of hours (contaminated and uncontaminated) in first
difference. The LSVAR model includes labor productivity growth or TFP
growth and the log of hours (contaminated and uncontaminated). The se-
lected horizon for IRFs is 13. The number of lags in VAR model is 4.
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Figure 8: IRF of Productivity
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Note: The DSVAR model includes labor productivity growth or TFP growth
and the log of hours (contaminated and uncontaminated) in first difference. The
LSVAR model includes labor productivity growth or TFP growth and the log of
hours (contaminated and uncontaminated). The selected horizon for IRFs is 13.
The number of lags in VAR model is 4. 95 % confidence interval shown.
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Figure 9: IRF of Productivity Measure: Comparison of SVARs
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Note: The DSVAR model includes labor productivity growth or TFP
growth and the log of hours (contaminated and uncontaminated) in first
difference. The LSVAR model includes labor productivity growth or TFP
growth and the log of hours (contaminated and uncontaminated). The se-
lected horizon for IRFs is 13. The number of lags in VAR model is 4.
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