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Annals of Economic and Sodal MeaslIrement, 3/4, 1974

EFFICIENT ESTIMATION OF NONLINEAR
SIMULTANEOUS EQUATIONS WITH ADDITIVE DISTURBANCES

BY DALE W. JORGENSON AND JEAN-JACQUFS LAFFONT

This paper de(=elops a theory of CU AN estimation for systems of nonlinear simultaneous equal/on.\ with
additive disturbances. We first derive the Cramer-Rna lower bound for the variance ofa CUAN estimator.
The method ofmaximum likelihood can be used fa generate an estimator that allain.< this bound. We show
that minimum distance and instrumental ('ariables estimators cannot generally allain the Cramer-Rao
bound.

I. INTRODUCTION

The statistical theory of estimation for systems oflinear simultaneous equations is
based on the construction of consistent, uniformly asymptotically normal (CVAN)
estimators.! Within this class it is natural to select estimators that are, in addition,
efficient; we refer to such estimators as best consistent uniformly asymptoticaily
normal (Best eVAN) estimators. 2 The purpose of this paper is to develop a theory
ofCVAN estimation fOJ systems of nonlinear simultaneous equations with additive
disturbances. 3

The theory ofCVAN estimation for systems of linear simultaneous equations
can be summarized as follows: estimators can be constructed that attain the
Cramer-Rao lower bound for the variance of a CVAN estimator.4 The ordinary
least squares estimator for the reduced form is eVAN, but not generally Best
CVAN. Best eUAN estimators can be constructed by the method of maximum
likelihood, the minimum distance method, and the method ofefficient instrumental
variables.s

Malinvaud has developed a theory of CUAN estimation for systems of
nonlinear simultaneous equations with an explicit reduced form having additive
disturbances. 6 For this class of nonlinear systems the ordinary least squares
estimator for the reduced form is CUAN, but not generally Best eVAN; Malinvliud
shows that Best CUAN estimators can be constructed by the method of maximum
likelihood and the minimum distance method. Hausman has shown that a Best
CVAN estimator can be constructed for a closely related class of models by the
method of efficient instrumental variables. 7

Our first step in developing a theory of CUAN estimation for systems of
nonlinear simultaneous equations with additive disturbances is to derive the

1 The statistical theory of eVAN estimation is discl.!ssed by Rao (1973), pp. 344-351.
2 Best eUAN estimators are discussed by Rao (1973), pp. 350-351.
J This specification for simultaneous equations models is considered by Eisenpress and Greenstadt

(1966~

.. A complete review ofthe theory ofeUAN estimation for systems oflinear simultaneous equations
models i, presented by Malinvaud (1970), pp. 348-366, and Rcthenbcrg (B74~

, S«: Malinvaud (1970), pp. 675-678, for a discussion of maximum likelihood and twnimum
distance estimators, and Brundy and Jorgenson (1971) for a discussion ofefficient instrumental variables
estimators.

6 See Malinvaud (1970), pp. 348-366.
7 See Hausman (1974).
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Cramer-Rao lower bound to the variam:c of a CUAN estimator. The method of
maximum likelihood can be used to generate il Best eVAN estimator. As for
linear systems, the burden assoriatcd with the l:Ollventional approal:h to compu-
tation of the maximum likelihood estimator, based 011 the Newton-Raphson
method or the method of scoring, is very substantial. 8

We can distinguish two alternative lines of attack on the problem of reducing
the computational burden for Best eVAN estimation of systems of nonlinear
simultaneous equations. First the computation of the maximum likelihood
estimator can be simplified. Rothenberg and Leenders have shown that the first
step of the Newton-Raphson method is Best CVAN, provided that the initial
parameter value is a consistent estimator.9 Although Rothenberg and Leenders
apply this result only to systems of linear simultaneous equations. the proposition
holds for nonlinear systems as well.

In this paper we concentrate on a second line of allack, namely, construction
of estimators by methods. such as minimum distance or instrumental variables.
that are easier to compute. Amemiya has proposed a minimum distance estimator
for a single equation in a system of nonlinear simultaneous equations. lOWe extend
his method of estimation to systems of nonlinear simultaneous equations and
his proof that the resulting estimator is CVAN. However, we show by means
of an example that the minimum distance estimator is net generally Best CVAN.

We also develop an instrumental variables estimator for a system of nonlinear
simultaneous equations, extending the efficient instrumental variables estimator
for linear systems developed by Brundy and Jorgenson. I I We show that the result-
ing estimator is eVAN and, in fact, asymptotically equivalent to our minimum
distance estimator. Again, the efficient instrumental variables estimator is not
Best eVAN.

We conclude that minimum distance and instrumental variables estimators
can be constructed that are eVAN, but that these estimators are not generally
Best eVAN. Further research on Best eVAN estimation for systems of nonlinear
simultaneous equalions should be focused on simplifying the computation of the
maximum likelihood estimator. 12

2. THE MODEL

We consider the following system of simultaneous equations:

(1) J'lr = jl(ZIPfJ) + lilt

J'PI = jP(ZPI , {Jl + "pl

or in vector form:

t = I ... T

)', = j(z:, fJ) + II, t = I ... T

B The Newlon-Raphson method is described by Eisenpress and Greenstadt (1966).
9 See Rothenberg and Leenders (1964).
,0 See Amemiya 0974l. Minimum dislancc estimators for a single clJuation in a system of simul-

taneous equati~.msare also discussed by Edgaton (1972). Kdejian (I972l. and Zellner. Huang and Chau
(1965).

II See Brundy and Jorgenson (t971. t973).
. ~2 .tmportant progress along these lines is reported by Berndt. Hall. Hall, and Hausman elsewhere
In thIS Issue.
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with

Y, = [.rl'···· .Yp,]';
_ r 1'.

lI, - LIII,.··· .lI"IJ . I( .)= [Il( . ).... ·.fA . )]'

YIP'" ·yP/ are the endogenous variables: for each i = i, ... ,P, ZIt is a Q.-vector
ofendogenous and (nonrandom) exogenous variab!es: /J is an R-\Jector of unknown
parameters: II is a nonlinear function with continuous second derivatives (R j is
the number of elements of fi in j;l. "" t = 1. ... , T arc random vectors such that
Ellil = 0, i = I, ... , P; t = I, ... ,1; Ell/II; =n of full rank and ElI,lI; = 0 if t #- (.

This form of the model can be obtained from a model with different parameters
Pi in each equation. If there are constraints on these parameters, they are solved
to obtain a minimal set of parameters p. We assume. that the constraints can be
solved uniquely at least in a neighborhood of the true value pO. We assume further
that the parameter Pis identifiable. 13

The model is now rewritten differently to usc the simplifying Kronecker
notation. LeI Y; = LVii'· ... Yn.]', i = I. ... , P and Y= [YJ •• " • Yp ]'. Let Z be the
stacked vector of variables appearing on the right of system (l). Let 1"(Z, Pl =
[II (: 11' fi) .... .II (z II' fii .. .. ,j~(zp I' Pl· .... .f~(ZH· fi p)]'

U = [1I11, .... IIIT' ... 'IIP1' ... 'lIpT).

Then (J) can be rewritten

(2) Y=F(Z,m+ UwithEUU'=O@IT'

We choose a specific notation for the set of exogenous variables (independent of
U) which are K* in number.

IX II X 21 ...

""1
X* =

I :
LXIT Xu ... xK·l....

X will be in this Section a matrix of K variablesconstructed from X* with maXi R i ~

K ~ K*. We refer to assumptions specified in Section 2 as Ao.

3. CRAMER-RAO BOUND

3.1. Introdllctioll

The comparison of different full information methods 14 to estimate nonfinear
econometric systems with additive disturbances requires an explicit form of the
Cramer-Rao bound. In this Section. we derive the Cramer-Rao bound when the
matrix of variances and covariances of errors is unknown, completely known, or
known to be diagonal.

.3 Identifiability for systems of nonlinear simultaneous equations is discussed by Fisher (1966).
pp. 127-167.

•4 We restrict ourselves to cases without constraints a<:ross equations to allow comparisons with
the Rothenberg-Leenders (1964) results in the linear case. but there is no substantive difficulty extending
these derivations to more general C.:ises. We use lhe notation of Eisenpress-Greenstadt (1966).

617



For this Section we rewrite the model more symmetrically:

(3) a=l, ... ,P

where:

f} . K* d . d . bl
l X h k = I,.... are pre etermme vana les

{Ypl P = 1, ... , P are endogenous variables

{8",} is a R",-vector of parameters a = 1, ... , P.

We assume that the Jacobian of the system is nevervanishing (it is clearly a
strong assumption) and we assume the multinormal distribution for the errors so
that we can derive the logarithm of the likelihood function.

3.2. Unrestricted n Matrix

The logarithm of the likelihood function is:

(4)

where

PT T I .
L* = - -log 2n + llog (det Q - I) + L log Idet B,l - 2?: h/nIP/p,

2 ,~

h, = /;[Yl,'··· ,j'p" XI,,···,XKO" 8",J

and B, is the matrix of such derivatives. We concentrate the likelihood:

(5)

(6)

Substituting (6) in (4) we obtain the nonconstant part of the concentrated likelihood.

(7)

We want to obtain:

T ~
L = - "2 log (det Q) + L log Idet B,I.,

limE __1_ a2 10g L
T-+ 00 T alIao' (0' = [O'J, ... ,O~, ... ,opJ)
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which will be the inverse of the Cramer-Rao bound for the parameters 0. 1S

.0L ._ L o",L_. oOil' + " ~. ~~iPr
00. - ip iJO ip 00. f;; oB ipl DU.

(9)17

(iO)

(11)

From (6)

(12)

aL T~.- {lIPan
jp

- 2

ofijp = ~" (0/;1 . ( '. .ofPI) .ao TL. 00 lpl + lit 00
a t:z a

with the following simplifications (since /;, depends only on 0, and not on OJ with
j =# i):

(13)

(14) if i * IX

(I 5) if i =# (J. and j ". a:

(16)

with th~ following simplifications:

(17)

(18) ifi -# (J.

I S See Koopmans and Hood (I953~

16 We adopt the following convention. The differentiation of a numerical function with respect to
a column irow) vector of parameters is a column (row) vector.

11 We use the following result If A = [ajj] is a nonsingular matrix with inverse A-I = [tii]. then
iJ log Idet Al/iJai; = ai".
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Then:

(19)
"L ((1{ 'j (121'~, = _ "Qil 'I:,' . H +' BI" , H
'() L L., I. l(J L.' '(J ,C , i I (" 1" (' ,eyl ,

d d ' ' IHWe can now obtain the seeon envatives:

(20)
e2L

i)O,o()~

(21 )

We use the general formula:

~"r 1(J ip._

ao,
(1M

_ 'M,-l , __~, (\.1- 1
L-. Ih .... . ~ mp
hm cO,

(22)

(23)

(24)

using (13), (14), (15)

£~b =2(0 - 1)i, = _ L nih cnh'!!fim,
ao~ cOp hm (lOp

= _ Ifiill~?pmnm, _ IfiihanhPQP,
m cOp h aop

The first element of the right hand side of (20) is then:

! 'llillom,{J, I'. 3f..') ('f. c/p~) + ! 'llihfifl'(' r. iJ/'l') (' I' J/p,)T?- /-JiI'O /- m,cO' T~ £.,Ji'ao /-HleO'
1m ,0 '7.' P 'h I '7. I {J

()BfY.Z aB
_' =: _ \~ Bph _...!!..m.-!. , Bm,
oOp f;,' JOp ,

a2 1'
=: - LBPp_J_P"_, B m ,

m 'aopOYm '
The third element of the right hand side of (20) becomes

(25)
a2 1' a2 1'_ , BPPBm,_'J~_ , _J_p,,_

L. , ':10:l. ilO':l.pm, l! ,uYp ( pll) m

The second term of the right hand side of (20) becomes:

(26) if fJ :f. Cl

18 We do not use "prime indices", so that the sign' must always be interpreted as a transposition.
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or

(27)
C~J~r

i;O]aO~
if {i = '1.

We compute now

I a2L
limy cO aO"'] p

The first term of the right hand side of IjT(20) is:

We assume that:

(29)

From (28) we obtain:

(vector)

(30)
im

since the estimations ~1ij of nuare consistent. In matrix notation:
r"ni1nml[H. H' ]- ·_'niPn"'IH. H'L. II ml L. II mP

im im

(31)

Let
l

-I- L. nihnPI Hi1H~p
ih

............ L. niPnmPHipH;"p
'im

(32)

i = 1, ... ,P; j = i, ... , P; !Y. = I, . .. ,P.

The second term of the right hand side of (20):

(33)
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If

for j, p, Q: = I, ... , P

(35)

J
2 l' J, BIYJ iJ2fj,
jp = p,lrn T L I iJO j):

I J J p

[

" I I' ,P "1LJlpJlp LJlpJpp
C p \ P- \
3- \,PO'

\ LJp/PPJ
\p

The fourth term of the right hand side of (21):

[

" I a3
!11 0 l

I LL Bf iJD ao' iJY J
I
. I P I I PP Iffi- ,

T ',e3r

O '" BPP JPI
L L I vo ao' :'J}.

I P P pv P

(36)

(37)

where

p = 1, ... , P.for j ::: 1, ... , P;
. I, . iJ3fj,

L jp = phm T~ BfJ iJOjiJOjoyP

. I iJ2L
phrn - T 0000'

I Oiloml(HilH;"I)-- - - -- -- IOiPnml(HiIH~p)
~ im

(38)

(39)

+ I nihnPI(HiI HhP)
ill

+ 'OIIlOII(H. H' )L_ 11 111
ill -. - '-- __ --

- - -. -, n'Pnmp(H. H' )L IP mP
im

+ I nfhOPP(HjpH;'p)
III
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For the special case of the reduced form considered by Malinvaud (1970)

01.,
O()2

is nonrandom as well as

021.,
oo.oe~ .

If all the derivatives are bounded in the sample space for all i,!X = 1, ... ,P
p

so that C l -+ 0

, l'
so that C2 -+ O.

Since there is no endogenous variable on the right hlind side

0
21., = 0 iX=I, ... ,P; P=l, ... ,P; p=l, ... ,P sothatC3 =0

OOpOY p

_0
3

1., = 0 I PIP th t C 0ae20(J~oyP IX = ,... , ; p = ,... , so a 4 = .

Finally:

Malinvaud (1970) shows that the maximum likelihood estimator reaches this
Cramer-Rao bound. Similarly, the bound is attained by a minimum distance
estimator weighted by a matrix S which converge to n. When the model is linear
in parameters
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C3 is only a function of variables.

I (1 2 L ,
(41) plim - ~. --- = - ( I + C, + C 17 cOCO' .-

3.3. Restricted n Matrix

The logarithm of the likelihood is:

(42)

We first consider the case where n is known so that we have only to differentiate
with respect to o.

(43)

(44)
~ 02
o , _" ,..~

Do L log Idet Btl - L L H, 00 0 '
" I I P • ) P

0:: = L ... ,P

(45)

If~=P:

iYL __~,.$ p. ~r.., .~/~, "(}2/,,,- oBfP
00 00' - 2 L (0 + n )00 of)' + L. L iJO 0" of)'• P'" PIp "Yp II

(46)

Using (24) and (26) we obtain the matrix form:

t li2 L
lim _. -7 ~O ryO' = C2 + C~ - C3 - C4

( ,,( .
using our previous notation. Asymptotically, the gain represented by the knowledge
of Q corresponds to - C I .
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Next. we consider the case where G is known to be diagonal. The nonconstant
part of the concentrated likelihood function is then:

7' p

L = I log Idet B,I - -2 L log no",, .= I

- I
'l"" = T Ij~,f.,,

c3 and C4 will remain as in the general case. We have to compute
a P _

ooao' "'~! log Un

a I 0 _ 0" en" _f.!'''' 'l., f of..co", og 22 - • -au, - .T~ 21' ao.
o _

aolog'l., = n
p

~2 2( ,{ ir ,2j' )o .... .....::u 0J21 OJ'2' . li zt

flO iJ()' log °00 =n T I DO ao' + Ij2l'~0 00'
Ca. J i 2: ,]; I o~ 2:

r2fi ll ..!.. , I" il/J" nOli..!.. 'f, aJ;~ . 0 1
TL.Jltao L T L 01'00'

q = pliml ' I .. -0- -- -! - -- - _1__ - ;;;p~l-fj- iJfp!. , fimP '..!..f, ilfp:J

T P, 00 L. T m, ao'
POll



So that using our notation we obtain:

(46*) r
Y 'dlH "nmlHP 0 J~l llL.,.- "'I

I ;Yr. m -----._

plim - T aODO' = - L 0 2~lPPHPP ~ 1l"'PH~~

3.4. Conclusion

The general form of the Cramer-Rao bound can be decomposed in five parts:

- C 1 + C 2 + C'2 - C3 - C4

where C2 would be the t::ramer-Rao bound if there were no endogenous variables
on the right, C3 , C2, C4 represent the modification due to the existence of endog-
enous variables on the right when n is known, and - C 1 represents the additional
change due to the necessity of estimating n.

It is not difficult to specialize the results to the linear case considered by
Rothenberg and Leenders. When there is no constraint on n, it is possible in the
linear case to obtain the Cramer-Rao bound from the bound if there were no
endogenous variables on the right, by simply replacing the "endogenous variables"
by the systematic part of the reduced form associated with them. In the nonlinear
case, the derivation is much more complicated.

4. MINIMUM DISTANCE

We next consider a family of minimum distance estimators ofthe parameter p
in the system of nonlinear equations (2). We obtain the minimum distance esti-
mator by minimizing

J(p) = [Y _. F(Z,P)]'S[Y - F(Z,fJ)]
where

S = (J ® X)[Q ® X'Xr 1(/ ® X)
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with X defined above, 0 a consistent estimator of order O(T- 1/2) of n.
At. The parameter space is compact and the matrix X'X is of full rank with
probability one.
Proposition 1. Under Ao, Ai' a minimum distance estimator exists
A2. u" t = I, ... , T are identical independently distributed random vectors.

A3. lim 2- x 'x exists and is equal to the nonsingular matrix M.
T-Cfj T

A4. pHm ~X" :~' ~ n, un;[ormly in p. Then PHm~x' :{. ~ in,] = H of rank

. lH p

R uniformly in p, with the notation:

Proposition 2. Under AO, A2 to A4 a minimum distance estimator is consistent.
Proof.

(47) with Pbetween pand po.

Note that F(2, fJ) "'" Y - U. Multiplying each member of (47) by

(0 e:'xr 112(1 ~X')

gives:

(48) (
'n ® XX') -1/2 (1 ® X') (0@X'X)-1 /2(1®X'). __ U - --- ---- (F(2 Ii) _ V)T T T T ,p.

afp

op'
627



which goes to zero

I}X'U 11
X'X 110 X') I

From AJ, !ll_~n.l '[' = At and t T U = : J
l;.x'U,.

in probability when '{ ->X', by Chcbychev's theorem (A2A3). Let

a l = (~~:'-~-r li2V_~~~)u: plim!X 1 == 0
l' -, .S1

Let

(n®X'X)-l i2(/0 X') 0
(y,2 == --Y--;F- (F(Z,IJ)- Y).

By Jdinition of /J, l(fi) :s; lUlo). Then, 0 :os; (X'lCX2 :os; (l'!a l . Since (x, g. 0 a'I(:(, !'... 0,

therefore 1:('2(.(2 !:. 0 and (Xl ~ O.
The left hand side of (48) converges to 0 in probability when T -> w. Also

I "all--x --
Tall'

1 ,ofp-x --
T iJlJ".J

A6

which by A4 converges !o the full rank matrix H when T --+ w. Consequently, we
see on (48) that p~ fl.- Q.E.D.

A5 r I X' e
2

;; Gi 'r I .' {'} . I I RP:m T c1/Jj iJ7F == j unhorm y In J, I = ,... , p, j = , ... ,

XU I 9.--JT --+ .j' [0, n 0 M]

X'U p
-p-
v T

Proposition 3. Under AO to A6. P(p - po) -!. .1"[0, (H'(Q ® M) - IH) - I]
Proof.

cil" ° cil I a2
J I 0iJP / = ~ftJ l + iJpajf PcP - IJ ),

with f1 between po and p. Then:

(49)



J(fl) = [Y - F(Z,flml ® X][O-I ® (X'X)-I][1 ® X'][Y - F(Z,{;)J

(50) ~J(P> = _ 2
off

[I ® X][n- I ® (X'.:()-IJ[l ® X'][Y - F(Z,(f)]

()f~

ofJ

I
(~~

(_'1
2 J~fl)"= 2 .. ' [I ® X][a- I @ (X'X;- 1][1 ® X']

iJflDfl' l'
iJf~

efl

with

Q j = [Y - F(Z, f3)]'[l ® X][a- 1® (X'Xr 1][1 ® X']

To obtain the asymptotic distribution of /1 we will first derive the asymptotic
distribution of the pseudoestimator pobtained by replacing nby n. [J ~ J]. By
assumption a = Q + Al with AI ..... 0(1'- Ill) so

a-I = 0- 1 -- O-IAIO- I + .,. = 0- 1 - A2 withA2 ..... 0(1'-112 )

or

nu = Oij - c5 jj with c5ij ..... 0(1'-1/2) i = 1, ... , P, j = I, .... P.

For p, aj becomes:

(51)

As already shown, the first member of (51) converges in probabilit.v to zero as
T _ CJJ, the second member to the matrix 0 - 1 ® M" 1 by A3, and the third mem-
ber to the matrix
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Now,

I
L.('I I~ x'O}J
T ('I' , I T olf

I I fylJ .' X'X -I .

-plim- --lpO = phm . 1[n <29 -TJ l.2 T iJpop" .

I~ .sr~X ~ X' £~
LT op T 0ILJ

Pwhich lies bet ween Pand pO converges to po when T --+ ::IJ because of the consis-
tency of p. Then: J9

I a2
J I . 1 0

2

J I
~I~~ 7' ojJofJ' P= ~~~ T o{1o{J' Po

But:

I . I a2
J I ["J'(n fOI M)-IH- phm - -- = J H 0J - .

2 T-:c T opo[f ~o

From (50)

r
~ 01'1 X r-Ixu
Tall. ft I

I I aJ _. [X'XJ -1 :-----_. Q@
2 IfcP· T·

v l~ Ofp ;( l--Ix'U
T ap' ft P

Using A2, A3, A6, we can derive:

Var Plim[-~ ~ oJlpo] = H'(Q ® An-I.
T-co 2\/Top

FinalIy from (49) Var plim ft(fi - po) = (H'(n @ M)- IH)-l so that from A6

Ji(p - Po) !. ,Y[O,(H'(n x M)-IH)-IJ.

Let us now consider p:

t

nll .o[~X(X'X)-I XU1.. · nJP~[: X(X'X)-I XUl'l
OJlpo = -2 ull ~~~ ~ UI~
iJ{J ~~~ (Y'

~--~npp_:J_PX(X'Xl- 1XUop . I'J

= __ 2[QI!.r;IX(X'X)_IX~~~~~b~ll~dX(X'X)_IX'UI + ]

(Y' ~~ or'
QPP. 2!X(X'Xl- 1X1J P - Ow 2!:X(X'Xr I XU p

iJP op
19 Amemiya (1972), p. 10, Lemma 4: letfrfw, 8) be a measurable function on a measurable space n

and for each w in n a continuous function for 0 in a compac! set H. If fr(w. 0) converges to flO) a.e.
Lniformly fer all 0 in H and if Orlw) converges to 00 a.e., thenfr(w, Br<w)) converges to f(Oo) a.e.
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Let us consider an element iii.

/)2fl -

orl5jr

J

a2fl ~

/)PiD{lR

(J2fp

OfliNJ'

Ia2flI
DlJiiJP '

= [J/'2k1U~X(X'X)-lX' , ttl nkPu~X'(X'X)-1 X'

l (i2/I' J
cpi3p I I'pioflR

The matrix X(X'X)- J X' D2fh/rJ,fliiJlli is the projection of if1.fh/OWiJpi on X. so that
it is independent of II. Then U~X(X'X)-I X'((12fh/NJii'fJi) ..... 0(T I

12). A current
element of (]2Jlapel/' is then of the form

(Qii _ f>ii/fi XIX' X)- I x J1j _ nii . 0(T I /2) - Ni. 0(T 1!2)

(]P r3P'
or:

nij.cf~X(X'X) lX' (!.h [I +O(T 1/2)+0'T I)].
oIl lip' \

The matrix (]2JlopoP' can then be rewritten symbolically:

A(l + O( r- 112)) with A = (nij . of; X(X' X) - IX' . e!j,)
cp Dr!

Then:

so that

Po - P= [A -I - O(T- 312)](B - O(To)]

= A-I B - O{T- I) - O(T- I) - O(T- 3/2).

" ~By Cramer's theorem (1971, p. 254) P-. fl·
P-flo = P- Po + O(T- I

).
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Since J1'(p - flo) is normal, the asymptotic distribution of T '!2(f1 - IIo} is the
same as that ofJT(p - Ilo)bt:l<luscthediffcrcnccofthese two quantities ,,' TO( T' I}

has zero probability limit. QF D.

5. INSTRUMENTAL VARIABLES

To generate a family of instrumental variables estimators of the parameter II
in the system of nonline,H equations (2), we linearize the system around the true
value, say I/0 :

(52)

III

.I'll - I,(z,/'f/~) = I f, j" (fI'j - II~} + III,
L=_I
II p

YP, - fp(zp" II~) = L ./~j" (fl pj - fj~) + lI pI
j = I

1=1, ... ,T

with k, = Dt;;i7f/ij (Zi,' 1m·
In general '/;j, which depends on endogenolls variables is correlated with

errors. Consider the estimation of (52) by the instrumental variables method. 2o

We denote the set of instrumental variables

where each submatrix U~j has Rj columns. (52) can be rewritten Y = F(fI - fIO)
with

F=

o '1Ij~: I

fplT

o

The instrumental variables estimator is then

(J - 13 0 = (W'£)- I W(Y - Yo) = (W'F)-' WU

so that:

r;;; , . (1._ )-I W' ( I \-1
Var,\, T(fI - liD) = phm T W'F -1' (0 (8 I)W TF'Wj

If we choose:

W = X(O ® X'X)-IX'Fwith X = I ® X

10 It is only a pseudomodel (since po is no! known). for which we COnslruCI a psCUdocslimalor.
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we find

Ii ~(F' V'(O !Yo Y' y)- I "'F)- l~ F''''''(f"\ G\ \" YJ' - I ""'(0 R\ I) -\"0 t'Y\ v' V\ - 1-\" L'r .m T ,~.. ~. ..\ .. \ T'''- ~,~."-.-\ c, -- '-' . \. - ~/ ., .-, . r

since

xm ® I)X = (l ® X')(O ® 1)(/ 0) Xl = 0 ® X'X

It then appears that the minimum distance estimator is asymptotically equivalent
to the pseudoestimator with a specific choice of instrumental variables.

If now we can find the best set of instrumental variables ~t;*, the best choice
of X will be X* such that:

(53)

at least asymptotically so that F and 0 lan be replaced by consistent estimators.
The search for a best set of instrumental variables will reveal the nature of the
difficulty.

In the linear case an efficient set of instrumental variables is:

w.. = nijr-v
II I

where nij is a typical element ofn-1 (with Qbeing a consistent estimator of 0) and
~ is a consistent estimator of the systematic part of variables in the f-th equation
independent of the errOrs U. So, by analogy, we can attempt to constrtlct <.:ansis-
tent estimators of the systematic part of derivatives 8f/cfJil~Zit. flfl which are not
correlated with the U. It is then clear that we want X to be variables independent
of U but nevertheless as closed as possible to Of/Of%io' i = 1, .... P. Since there is
no constraint on the number of X. as many powers of X as possible seem ideal.
However, after some II the powers become probably useless. the II depending on
the degree of nonlinearity of the derivatives. Moreover, this method leads to a
huge matrix XX which we have to invert, and leads to X which are collinear. Our
suggestion is then the following one:

I. Find a consistent estimator of fJ using a NL2SLS estimator for example
with a minimum !'~! ~f.':.' !M:l~; Rii. taken as a subset (eventually) of exog-
enous variables.

2. Simulate the model to obtain values of endogenous variables.
3. Use the results of 1 and 2 to approximate the derivatives offi' i = I, ... , P.
Malinvaud (l970b) restricts himself to the lase where a reduced form is

available and shows that a minimum distance estimator with S = 0" I or a
consistent estimator of 0 gives the best minimum distance estimator. Moreover.
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if normality is assumed, it is asymptotically efficient. In his case the

oj; ~ 0
ap; (~jl' Pi )

are not correlated with the U, so that if a consistent estimator fJi of fJ? is available,
it is not necessary t9 project them to eliminate the dependence on U.

They are the best possible auxiliary variables since they obviously maximize
asymptotically

But:

PlimtriJ/;1 X(X'XfIXCf,1 =/IUj:111
T-"" CfJi Po olJ j liD OPi 110

Malinvaud tells us that asymptotically it is not worth the trouble since X = I does
as well.

6. EFFICIENCY

6.1. Introduction

We have developed an explicit form for the Cramer-Rao lower bound for the
variance of a CVAN estimator of the parameter l> in the system of nonlinear
simultaneous equations (2). This bound is attained by the full information maxi-
mum likelihood estimator. We have shown that the minimum distance and efficient
instrumental variables estimators are asymptotically equivalent. We next consider
the relative efficiency of the minimum distance estimator for a system of nonlinear
simultaneous equations and for a single equation in such a system.

6.2. Minimr4n1 Distance Verslls Maximum Likelihood

We show with an example that the minimum distance estimator of Section 4
does not generally attain the Cramer-Rao bound. It is sufficient to prove that one
element in the inverse of the matrix of variances and covariances of the minimum
distance estimator is different from the corresponding element in the inverse of
the corresponding matrix for the Cramer-Rao bound. We consider the system of
nonlinear simultaneous equations:

[
011 0]

Eu'u = with QI10n = I
o Q Z2 (Therefore Q~ I = Q u and Q22 = 0 1J)

Element (I, I) in the inverse of the Cramer-Rao bound:
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Then:

CI(l, I) = 0

with

4 I' I" 4 ~22 I' I" 2 2In = 1m -- L X 21 ""22 = 1m - L, X2,II2,
T, T l

C2(l, I) = QII[(T~ + 6fJ~lg + P~l~2]

Clearly C~ = 0 and C4 = O.
c) From (46*) we have: Ji,·Ji', +J:2·J:~:

Here:

[:~:: ::::J = [~ 2~;Y2l J[:~: ~~:J = [~ -2~llYzlJ

J: I = lim ~LHi I e
2

f" = lim ~ I IrOj = 0
T I eOlny, T l 10

J2 I' I" Blt 8
2

f" - I' I "0 [2Y21J - 012 = 1m - L, --- - 1m - L . -
T l l eo Ia},2 T l 0

Then: C3(1, I) = O.
Finally, we obtain the element (1, I) of the inverse of the Cramer-Rao matrix:

QII((T~ + 6p~lg +- P~l~2)

Element (1.1) of the inverse of the asymptotic matrix of variances and covariances
of the minimum distance estimator is:

lim~n!I[)'~'J[XI X2]['~:IXI X:'X2J[X~-J'Ld XI]
T XI -'2XI -'lX 2 X2

Let

C\ I' I,~ 2
~21 = Im T LII2lX Il

r
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· I",0" = Illn _ ) 11;,'"".' r~ - .

The clement II. I) is then:

011 4 ' ,
--------'-- .rll,(L;'I~" + L;"L 1 - 2L 222L 22I L I2)
L 2 2L I I - L i 2 L - - - '- - - - •

+ 2f/~(02IL22L221 + 022LIlL222'- 021LI2L222 - 0nLI2L22I)

+ GLLn -!- eLL, 1 - 202J822LI2]

which differs from the corresponding element of the Cramer-Rao bound.

6.3. Limited IIlformat ion Versus Full f nffl/'ll/(/( iOIl

We can also consider the relative asymptotic efllcicncy of the minimum dis-
tance estimator for a system of nonlinear simultaneous equations proposed in
Section 4 with the corresponding estimator for a single equation developed by
Amemiya (1974). We consider only the case without restrictions across equations.
A minimum distance estimator is obtained for each equation i = I. .... P by
minimizing

for a given choice of X. To each choice of X corresponds also a minimum distance
estimator as defined in Section 4. We will show that the corresponding estimator
for a system of nonlinear simultaneous equations is always asymptotically better
(or as good) as the estimator for a single equation.

The asymptotic matrix of variances and covariances of the single equation
estimator. given by Amemiya (1974). is:

f
n-1H'M'IHII I I

L 0

The asymptotic matrix of variances and covariances of the estimator for a system
of equations. given above, is:

(H'(O ® Mr I H)-- I

012H'lkr I H 2

OUR' fir 'H2 __ • _ 2
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It is then clear that if we replace i!!f/l:/ijlp" by the familiar Z j (the set of variables
on the right hand side ofthej-th structural equation), thcjormal analogy with the
classical comparison of 3SLS and 2SLS is complete. Note that here X is not neces-
sarily the set of all exogenous variables. Therefore, the usual prooffor linear systems
implies our result.

We can also deduce that the two estimators coincide when n is diagonal and
when

I ij:j
plim-_ ~' X
T-Cf. 7 flJil /lo

is invertible for i = 1, ... , P. The invertibility conditIOn means in particular that
the matrix is square. i.e.. that in each equation there are as many independent
variables X as unknowns. We have seen that A4 requires

I 0;\
Rank plim T 0i~ fJu X ;::: R,.

If the matrix X is restricted to exogenous variables. the condition we find is
similar to the just identification in the linear case. However, in the nonlinear
case we know that it is not a necessary condition of identification (Fisher, 1966).21
Since we do not have to restrict ourselves to exogenous variables and can use
powers of the X or fitted values. the condition

I ?f'.1plim T ~/i; Po X ;::: R,

is not really a constraint so long as the model is truly nonlinear. The condition

i i'rplim --' X = R·
T ('{Ji Po I

imposes a limit on the number of clements of X to use so that the two estimators
are equivalent.

We derive directly the result for the two-equations case

.1'1 = fl(:]' (i]) +:1 1

-'"2 =j~(z2,flz) + liz·

The single-equation estimator is obtained by minimizing

2. This condition has been obtained also in Edgerton 0972), as a necessary condition for the
workability of 2SLS methods suggested by Goldfeld and Quandt (1968). Note that it is not really a
constraint for the method since as many powers of the X as necessary can be introduced to satisfy it.
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and the asymptotic matrix of variances and covariances is

A .. [ r ! !L;I X(X'X) 1 K,.~.f; 11"\
u" p 1m 'f ,-:{' '{I'

" )j Ipo t i Po

We are led to compare

,- 1 Drj ry I J-IK = il11lplim -- -;;-..! X(X'X)-I X' ~+
T o{ll Po O,S 1Ipc

and the upper left corner of the inverse of

or

The upper left corner we look for is then:
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because:

and:

We inverted a matrix

rAI A2Jwhere'L is a positive definite matrix: so is K I; so is K II ; and
A3 A4

K 1 = (B + Oq-l oL 0,

B is definite positive and C is semidefinite positive, B- 1 - (B + oq- I is semi-
definite positive. If C is definite positive and 0 > 0, the minimum distance esti-
mator is strictly better than the corresponding single-equation estimator.

If n is diagonal the minimum distance estimator coincides with the single-
equation estimator. It is also true if C = o.

C = Of!1 X(X' X)-! X' ofl I - aI'l I X(X' X)- I X' af21
a/31 Po (WI Pu 0WI Po 0/3~ Po

x ~~7:1 X(X'X)-I X' af~ I .
C/32 Po a/3t Po

If X'(c12/a/3~)11J is invertible-i.e., square and nonsingular-then C = O. There are
as many exogenous variables as unknowns in the second equation; this yields
just identification in the linear case.

6.4. Conclusion

We conclude that except for the case of linearity in the variables, the minimum
distance and efficient instrumental variables estimators are eVAN but not
Best eVAN. On the other hand these estimators appear to be an interesting step
in the estimation of nonlinear systems with constraints across equations, since
they provide consistent estimators that incorporate all of the constraints. A
consistent estimator can be used to initialize a one-step linearized maximum
likelihood estimator. This estimator is asymptotically equivalent to the maximum
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likelihood estimator, just as in the case of systems of linear sim ultaneous eq uations
considered by Rothenberg and Leenders.

Harvard Uni/:ersity
alld University of Motllrea/
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