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Abstract

We study a continuous-time principal-agent model in which a risk-neutral agent
with limited liability must exert unobservable effort to reduce the likelihood of large
but relatively infrequent losses. Firm size can be decreased at no cost, or increased
subject to adjustment costs. In the optimal contract, investment takes place only if a
long enough period of time elapses with no losses occurring. Then, if good performance
continues, the agent is paid. As soon as a loss occurs, payments to the agent are
suspended, and so is investment if further losses occur. Accumulated bad performance
leads to downsizing. We derive explicit formulae for the dynamics of firm size and its
asymptotic growth rate, and we provide conditions under which firm size eventually
goes to zero, or grows without bounds.
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1 Introduction

Industrial and financial firms are subject to large risks: the former are prone to accidents

and the latter are exposed to sharp drops in the value of their assets. Preventing these

risks requires managerial effort. Systematic analyses of industrial accidents point to the

role of human deficiencies and inadequate levels of care.1 A striking illustration is offered

by the explosion at the BP Texas refinery in March 2005. After investigating the case,

the Baker Panel concluded: “BP executive and corporate refining management have not

provided effective process safety leadership.”2 Similarly, the large losses incurred by banks

and insurance companies during the recent financial crisis were in part due to insufficient

risk control. These large risks present a major challenge to firms, investors and citizens.

This paper studies the design of incentives to mitigate them.

One way to stimulate the prevention of large risks would be to make managers and

firms bear the social costs that they generate. Yet, this is often impossible in practice,

because total damages often exceed the wealth of managers and even the net worth of firms,

while the former are protected by limited liability and the latter by bankruptcy laws.3 This

curbs managers’ incentives to reduce the risk of losses that exceed the value of their own

assets.4 Of course, if the risk prevention activities undertaken by managers were observable,

it would be straightforward to design compensation schemes that would induce them to take

socially optimal levels of risk. To a large extent, however, these activities are unobservable

by external parties, which leads to a moral hazard problem.

Besides informational asymmetries, another important aspect of large risks lies in their

timing. Large losses are relatively rare events that contrast with day-to-day firm operations

and cash-flows.5 It is therefore natural to study large risk prevention in a dynamic set-up,

where the timing of losses differs from that of operations. To do so, we focus on the simplest

1See for instance Leplat and Rasmussen (1984), Gordon, Flin, Mearns and Fleming (1996) or Hollnagel
(2002).

2“The Report of the BP U.S. Refineries Independent Safety Review Panel,” January 16, 2007. Also,
Chemical Safety Board Chairman Carolyn W. Merritt stated that “BP’s global management was aware
of problems with maintenance, spending, and infrastructure well before March 2005. [...] Unsafe and
antiquated equipment designs were left in place, and unacceptable deficiencies in preventative maintenance
were tolerated,” “CSB Investigation of BP Texas City Refinery Disaster Continues as Organizational Issues
are Probed,” CSB News Release, October 30, 2006.

3For instance, Katzman (1988) report that “In Ohio v. Kovacs (U.S.S.C. 83–1020), the U.S. Supreme
Court unanimously ruled that an industrial polluter can escape an order to clean up a toxic waste site under
the umbrella of federal bankruptcy.” Similarly, the social losses created by the recent financial crisis exceeded
by far the assets one could withhold from financial executives.

4Shavell (1984, 1986) discusses how a party’s inability to pay for the full magnitude of harm done dilutes
its incentives to reduce risk.

5From now on, we shall generically refer to any realization of a large risk as a loss.
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model: operating cash-flows are constant per unit of time, while losses occur according to a

Poisson process whose intensity depends on the level of risk prevention.

In this context, we study the optimal contract between a principal and an agent that

provides the latter with appropriate incentives to reduce the risk of losses under dynamic

moral hazard. The agent, who can be thought of as an entrepreneur or a manager running a

business, is risk-neutral and protected by limited liability. She can exert effort to reduce the

instantaneous probability of losses.6 Effort is costly to the agent and unobservable by other

parties. The project run by the agent can expand, through investment, or shrink, through

downsizing. While downsizing is unconstrained, we assume that the pace of investment is

limited by adjustment costs, in the spirit of Hayashi (1982) or Kydland and Prescott (1982).

We also assume constant returns to scale, in that downsizing and investment affect by the

same factor the operating profits of the project, the social costs of accidents, and the private

benefits that the agent derives from shirking. This assumption implies that the principal’s

value function is homogeneous in size and enables us to characterize the optimal contract

explicitly. However, as discussed in the paper, some of our key qualitative results are robust

to relaxing the constant returns to scale assumption.

The optimal contract maximizes the expected value that the principal derives from an

incentive feasible risk prevention policy. It relies on two instruments: positive payments to

the agent, and project size management through downsizing and investment. While these

decisions are functions of the entire past history of the loss process, this complex history

dependence can be summarized by two state variables: the size of the project, and the

continuation utility of the agent. The former reflects the history of past downsizing and

investment decisions, while the latter reflects the prospect of future payments to the agent.

The evolution of the agent’s continuation utility mirrors the dynamics of losses, and thus

serves as a track record of the agent’s performance.7 We characterize the compensation and

size management policy arising in the optimal contract.

First consider the compensation policy. To motivate the agent, the optimal contract

relies on the promise of payments after good performance and the threat of reductions in

her continuation utility after losses. When the track record of the agent is relatively poor,

there is a probation phase during which she does not receive any payment. As long as no

loss occurs, the size-adjusted continuation utility of the agent increases until it reaches a

6Unlike in Shapiro and Stiglitz (1984) or Akerlof and Katz (1989), effort in our model merely makes losses
less likely, but does not eliminate them altogether. As a result, losses do occur on the equilibrium path, and
it is no longer optimal to systematically terminate the principal-agent relationship following a loss.

7That the optimal contract exhibits memory is a standard feature of dynamic moral hazard models, see
for instance Rogerson (1985).
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threshold at which she receives a constant wage per unit of time and size of the project,

such that her size-adjusted continuation utility remains constant. As soon as a loss occurs,

the continuation utility of the agent undergoes a sharp reduction and the contract reverts to

the probation phase. The magnitude of that reduction in the agent’s continuation utility is

pinned down by the incentive compatibility constraint. The more severe the moral hazard

problem, and the larger the project, the greater the punishment. The induced sensitivity of

the agent’s continuation utility to the random occurrence of losses is socially costly because

the principal’s value function is concave in that state variable. Therefore, it is optimal to

set the reduction in the agent’s continuation utility following a loss to the minimum level

consistent with incentive compatibility.

Next consider the dynamics of the size of the project. In the first-best, there is no need

for downsizing. Since the project has positive net present value, investment then always

takes place at the highest feasible rate in order to maximize the size of the project. In the

second-best, however, the size of the project is lower than in the first-best. The intuition is

the following. As mentioned above, the agent is partly motivated by the threat of reductions

in her continuation utility in case of bad performance. Yet, when the continuation utility of

the agent is low, the threat to reduce it further has limited bite, because of limited liability.

To cope with this limitation, it can be necessary to lower the agent’s temptation to shirk by

reducing the scale of operations after losses. Apart from such circumstances, and in particular

when no loss occurs, the project is never downsized. In addition to downsizing, moral hazard

also affects the size of the project through its impact on investment. Since increases in the

size of the project raise the temptation to shirk, investment can take place only when the

agent has enough at stake in the project, that is, when her track record has been good

enough for her continuation utility to reach a given threshold. While payments when they

occur are costly for the principal, investment benefits both parties. As long as investment

takes place, the total size of the pie grows, which in turn makes delaying the compensation

of the agent less costly. Thus it is efficient to invest before actually compensating the agent.

Note that the sequencing of compensation and investment is reversed in the first-best. This

is because the agent, who is assumed to be more impatient than the principal, then receives

all her compensation at time zero, before any investment actually takes place.

We obtain an explicit formula mapping the path of the agent’s size-adjusted continuation

utility into the size of the project. If one interprets the latter as firm size, this formula exactly

spells out how firm size grows, stays constant or declines over time. Relying on asymptotic

theory for Markov ergodic processes, we then characterize the long-run growth rate of the
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firm. In the first-best, firm size goes to infinity at a constant rate. Our formula for the

long-run growth rate of the firm shows how, in the second-best, this trend in firm size is

reduced by downsizing and possibly lower investment rates. When the adjustment costs are

high, firm size eventually goes to zero. By contrast, when both the adjustments costs and

the frequency of losses are low, firm size eventually goes to infinity, although more slowly

than in the first-best.

Our paper belongs to the rich and growing literature on dynamic moral hazard that uses

recursive techniques to characterize optimal dynamic contracts.8 One of our contributions

relative to this literature is to study the case where moral hazard is about large but relatively

infrequent risks. As illustrated by recent industrial accidents or by the recent financial

crisis, preventing such risks is a major challenge. We show that optimal contracts that

mitigate the risk of infrequent but large losses differ markedly from those prevailing when

fluctuations in the output process are frequent but infinitesimal. In the latter, as illustrated

by the Brownian motion models of DeMarzo and Sannikov (2006), Biais, Mariotti, Plantin

and Rochet (2007) or Sannikov (2008), the continuation utility of the agent continuously

fluctuates until it reaches zero, an event that is predictable. At this point, the project is

liquidated. In contrast, with Poisson risk, the continuation utility of the agent increases

smoothly most of the time, but incurs sharp decreases when losses occur. In this context,

incentive compatibility together with limited liability imply unpredictable downsizing, unlike

in the Brownian case.

Another contribution of this paper relative to the literature is to analyze the interplay

between incentives considerations and firm size dynamics, and in particular to study the long-

run impact of downsizing and investment on firm size under moral hazard. Our analysis of

the interactions between incentives and investment is in line with DeMarzo and Fishman

(2007a). In a finite horizon, discrete-time framework, they derive a number of predictions

regarding the relationship between current investment, current and past cash-flows, and the

agent’s compensation. They show that these predictions are relatively insensitive to the

specific nature of the agency problem, provided its static version has a certain structure.

Thanks to the finiteness of the horizon, these results are derived recursively, starting from

the final period. Our analysis first differs from DeMarzo and Fishman’s (2007a) in that

our starting point is a stationary continuous-time model, which raises further conceptual

8See for instance Green (1987), Spear and Srivastava (1987), Thomas and Worrall (1990) or Phelan and
Townsend (1991) for seminal contributions along these lines. By focusing on the case where the agent is
risk-neutral, with limited liability, our model is in line with the recent papers by Clementi and Hopenhayn
(2006) and DeMarzo and Fishman (2007a, 2007b).
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and technical difficulties. Second, in order to derive sharper implications from the analysis,

we consider a particular type of informational friction, namely a moral hazard problem

with Poisson uncertainty. This modeling approach enables us to precisely characterize the

properties of the optimal contract, to provide an explicit formula for the dynamics of firm

size, and ultimately to conduct an asymptotic analysis of its long-run evolution and that of

the agent’s utility. In particular, a key insight of our analysis is that, when investment is

taken into account, it need not be the case that the firm eventually vanishes and that the

agent’s utility eventually goes to zero. This contrasts with the classic immiseration result

of Thomas and Worrall (1990). This also contrasts with the contemporaneous work by

DeMarzo, Fishman, He and Wang (2008), who study the dynamics of average and marginal

q in a Brownian model of agency and investment with convex adjustment costs and constant

returns to scale. In their model, as in ours, the agent’s continuation utility and the current

capital stock are sufficient statistics for the optimal contract. But an important difference

is that, in DeMarzo, Fishman, He and Wang (2008), the firm will eventually be liquidated

when the agent’s size-adjusted utility reaches zero, which occurs with probability one. By

contrast, in our Poisson model, the size-adjusted utility of the agent is bounded away from

zero, and incentives are provided by partial downsizing instead of outright liquidation. As

a result, the firm can grow without bounds when adjustment costs are low enough so that

investment outweighs downsizing.

In the context of a political economy model, Myerson (2008) contemporaneously offers an

analysis of dynamic moral hazard in a Poisson framework. A distinctive feature of our paper

is that we analyze the impact of investment on the principal-agent relationship. Moreover,

Myerson (2008) considers the case where the principal and the agent have identical discount

rates. This case, however, is not conducive to continuous-time analysis, as an optimal

contract does not exist. To cope with this difficulty, Myerson (2008) imposes an exogenous

upper bound on the continuation utility of the agent. By contrast, we do not impose such a

constraint on the set of feasible contracts. Instead, we consider the case where the principal

is less impatient than the agent. While this makes the formal analysis more complex, this

also restores the existence of an unconstrained optimal contract.

Sannikov (2005) also uses a Poisson payoff structure. A key difference with our analysis

lies in the way output is affected by the jumps of the Poisson process. In Sannikov (2005),

jumps correspond to positive cash-flow shocks, while in our model they correspond to losses

that are less likely to occur if the agent exerts effort.9 This leads to qualitatively very

9Thus jumps in our model are bad news in the sense of Abreu, Milgrom and Pearce (1991).
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different results. While downsizing is a key feature of our optimal contract, as it ensures

that incentives can still be provided following a long sequence of losses, it plays no role

in Sannikov (2005). Liquidation in his model is still required to provide incentives, but it

corresponds to a predictable event: if a sufficiently long period of time elapses during which

the agent reports no cash-flow, the firm is liquidated. By contrast, downsizing in our model

is unpredictable.10

Our paper is also related to the literature on accident law. Shavell (1986, 2000) argues

that the desirability of liability insurance depends on the ability of insurers to monitor the

firm’s prevention effort, and to link insurance premia to the observed level of care. If insurers

cannot observe the firm’s level of care, making full liability insurance mandatory results in

no care at all being taken.11 In our dynamic analysis, the optimal contract ties the firm’s

allowed activity level to its performance record: following a series of losses, the firm can be

forbidden to engage at full scale in its risky activity. These instruments provide the manager

of the firm with dynamic incentives to exert the appropriate risk prevention effort, although

the latter is not observed by the principal.

The paper is organized as follows. Section 2 presents the model. Section 3 formulates

the incentive compatibility and limited liability constraints. Section 4 characterizes the

optimal contract under maximal risk prevention. Based on this analysis, Section 5 studies

the dynamics of firm size. Section 6 discusses the robustness of our results. Section 7 derives

some empirical implications of our theoretical analysis. Section 8 concludes. Sketches of

proofs are provided in the appendix. Complete proofs are available in the supplement to

this paper (Biais, Mariotti, Rochet and Villeneuve (2009)).

2 The Model

There are two players, a principal and an agent. The agent can run a potentially profitable

project for which she has unique necessary skills.12 However, this project entails costs, and

the agent has limited liability and no initial cash. By contrast, the principal has unlimited

liability and is able to cover the costs. One can think of the agent as an entrepreneur or a

manager running a business, and of the principal as a financier, an insurance company, or

10Poisson processes have also proved useful in the theory of repeated games with imperfect monitoring,
see for instance Abreu, Milgrom and Pearce (1991), Kalesnik (2005) and Sannikov and Skrzypacz (2009).
Our focus differs from theirs in that we consider a full commitment contracting environment, in which we
explicitly characterize the optimal incentive compatible contract.

11See Jost (1996) and Polborn (1998) for important extensions and qualifications of this argument.
12Empirically, this assumption is particularly relevant in the case of small businesses, where the

entrepreneur-manager is often indispensable for operating the firm efficiently (Sraer and Thesmar (2007)).
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society at large.

Time is continuous and the project can be operated over an infinite horizon. The two

players are risk-neutral. The principal discounts the future at rate r > 0 and the agent at rate

ρ > r, which makes her more impatient than the principal. This introduces a wedge between

the valuation of future transfers by the principal and the agent, and rules out indefinitely

postponing payments to the latter. Without loss of generality, we normalize to 0 the set-up

cost of the project.

At any time t, the size Xt of the project can be scaled up or down. There are no

constraints on downsizing: any fraction of the assets between 0 and 1 can be instantaneously

liquidated. For simplicity, we normalize the maximal possible initial size of the project to 1,

and assume that the liquidation value of the assets is 0. The project can also be expanded, at

unit cost c ≥ 0. The rate at which such investments can take place is constrained, however.

This reflects for instance that new plants cannot be built instantaneously, or that the inflow

of new skilled workers is constrained by search and training. Consistent with this, we shall

assume that the instantaneous growth rate gt of the project is at most equal to γ ∈ (0, r).

This is in line with the macroeconomic literature emphasizing the delays and costs associated

with investment, such as time-to-build constraints (Kydland and Prescott (1982)) or convex

adjustment costs (Hayashi (1982)). Our formulation corresponds to a simple version of the

adjustment cost model in which there are no adjustment costs up to an instantaneous size

adjustment Xtγdt, and infinite adjustment costs beyond this point.

Operating profits per unit of time are equal to Xtµ, where µ > 0 is a constant representing

day-to-day size-adjusted operating profits. While such profits are constant, the project is

subject to the risk of large losses. In the case of a manufacturing firm, such losses can be

generated by a severe accident. In the case of a financial firm, they can result from a sudden

and sharp decrease in the value of the assets that the firm invested in. The occurrence of

these losses is modeled as a point process N = {Nt}t≥0, where for each t ≥ 0, Nt is the

number of losses up to and including time t. Denote by (Tk)k≥1 the successive random times

at which these losses occur. A loss generates costs that are borne by the principal rather

than by the agent. For example, an oil spill imposes huge damages on the environment and

on the inhabitants of the affected region, but has limited direct impact on the manager of

the oil company. Or, in the case of financial firms, the losses incurred by many banks in 2007

and 2008 exceeded what they could cope with, and governments and taxpayers had to bear

the costs. To capture this in our model, we assume that the agent has limited liability and

cannot be held responsible for these losses in excess of her current wealth, so that it is the
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principal who has to incur the costs. We assume that, like operating profits, losses increase

linearly with the size of the project. Thus, if there is a loss at time t, the corresponding cost

is XtC, where C > 0 is the size-adjusted cost. Overall, the net output flow generated by the

project during the infinitesimal time interval (t, t + dt] is Xt(µdt− CdNt).

By exerting effort, the agent affects the probability with which losses occur: a higher

effort reduces the probability Λtdt that a loss occurs during (t, t + dt]. For simplicity, we

consider only two levels of effort, corresponding to Λt = λ > 0 and Λt = λ + ∆λ, with

∆λ > 0. To model the cost of effort, we adopt the same convention as Holmström and

Tirole (1997): if the agent shirks at time t, that is if Λt = λ + ∆λ, she obtains a private

benefit XtB; by contrast, if the agent exerts effort at time t, that is if Λt = λ, she obtains

no private benefit. This formulation is similar to one in which the agent incurs a constant

cost per unit of time and per unit of size of the project when exerting effort, and no cost

when shirking.

Remark It is natural to assume that operating profits and losses are increasing in the size

of the project. It is also natural to assume that the opportunity cost of risk prevention

is increasing in the size of the project: it takes more time, effort and energy to check

compliance and monitor safety processes in two plants than in a single plant, or for a large

trading room with many traders than for a small one. Observe however that we require

more than monotonicity, since we assume that operating profits, losses and private benefits

are linear in the size of the project. This constant returns to scale assumption is made

for tractability. As shown in Section 4, it implies that the value function solution to the

Hamilton–Jacobi–Bellman equation (23) is homogeneous of degree one, which considerably

simplifies the characterization of the optimal contract. Yet, even without this assumption,

some of the qualitative features of our analysis are upheld, as discussed in Section 6.

We assume throughout the paper that

(1)
µ− λC

r
> c

and that

(2) ∆λC > B.

The left-hand side of (1) is the present value of the net expected cash-flow generated by one

unit of capacity over an infinite horizon when the agent always exerts effort. The right-hand

side of (1) is the cost of an additional unit of capacity. Condition (1) implies that the project

has positive net present value and that investment is desirable when the agent always exerts
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effort. The left-hand side of (2) is the size-adjusted expected social cost of increased risk

when the agent shirks. The right-hand side of (2) is the size-adjusted private benefit from

shirking. Condition (2) implies that in the absence of moral hazard, it is socially optimal to

require the agent to always exert effort. The first-best policy can therefore be characterized

as follows: first, the project is initiated at its maximal capacity of 1, and then it grows at

the maximal feasible rate γ with no downsizing ever taking place; second, a maximal risk

prevention policy is implemented in which the agent always exerts effort.

From now on, we focus on the case where there is asymmetric information. Specifically,

we assume that, unlike profits and losses, the agent’s effort decisions are not observable by

the principal. This leads to a moral hazard problem, whose key parameters are B and ∆λ.

The larger the size-adjusted private benefit B is, the more attractive it is for the agent to

shirk. The lower ∆λ is, the more difficult it is to detect shirking. The contract between

the principal and the agent is designed and agreed upon at time 0. The agent reacts to this

contract by choosing an effort process Λ = {Λt}t≥0. We assume that the players can fully

commit to a long-term contract.

Remark We thus abstract throughout from imperfect commitment problems and focus on

a single source of market imperfection: moral hazard in risk prevention. This assumption

is standard in the dynamic moral hazard literature, see for instance Rogerson (1985), Spear

and Srivastava (1987) or Phelan and Townsend (1991). More precisely, our analysis is in

line with Clementi and Hopenhayn (2006), DeMarzo and Sannikov (2006), Biais, Mariotti,

Plantin and Rochet (2007), DeMarzo and Fishman (2007a, 2007b) or Sannikov (2008), where

limited liability reduces the ability to punish the agent. This compels the principal to replace

such punishments by actions, such as downsizing or liquidation, that are ex-post inefficient.13

When the principal is more patient than the agent and there is no investment, as in DeMarzo

and Sannikov (2006) and Biais, Mariotti, Plantin and Rochet (2007), this leads to the result

that the firm eventually ceases to exist. By contrast, in the present model, this negative

trend can be outweighed by investment.

A contract specifies downsizing, investment and liquidation decisions, as well as payments

to the agent, as functions of the history of past losses. The size process X = {Xt}t≥0 is

positive, with initial condition X0 ≤ 1. The size of the project can be decomposed as:

(3) Xt = X0 + Xd
t + X i

t

13For a discussion of renegotiation in this context, see Quadrini (2004), DeMarzo and Sannikov (2006,
Section IV.B) or DeMarzo and Fishman (2007a, Appendix B2, 2007b, Section 2.9).
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for all t ≥ 0, where Xd = {Xd
t }t≥0, the cumulative downsizing process, is decreasing, and

X i = {X i
t}t≥0, the cumulative investment process, is increasing. Our assumptions imply

that X i is absolutely continuous with respect to time, that is:

(4) X i
t =

∫ t

0

Xsgs ds,

where the instantaneous growth rate of the project satisfies

(5) 0 ≤ gt ≤ γ

for all t ≥ 0. Because of limited liability, the process L = {Lt}t≥0 describing the cumulative

transfers to the agent is positive and increasing. The time at which liquidation occurs is

denoted by τ . We allow τ to be infinite and we let Xt = 0 and Lt = Lτ for all t > τ .

At any time t prior to liquidation, the sequence of events during the infinitesimal time

interval [t, t + dt] can heuristically be described as follows:

1. The size Xt of the project is determined, that is, there is downsizing, or investment,

or the size remains constant.

2. The agent takes her effort decision Λt.

3. With probability Λtdt, there is a loss, in which case dNt = 1; otherwise dNt = 0.

4. The agent receives a positive transfer dLt.

5. The project is either liquidated or continued.

According to this timing, the downsizing and effort decisions are taken before knowing the

current realization of the loss process. Formally, the processes X and Λ are FN–predictable,

where FN = {FN
t }t≥0 is the filtration generated by N . By contrast, payment and liquidation

decisions at any time are taken after observing whether or not there was a loss at this time.

Hence L is FN–adapted and τ is an FN–stopping time.14 An effort process Λ generates

a unique probability distribution PΛ over the paths of the process N . Denote by EΛ the

corresponding expectation operator.

Given a contract Γ = (X,L, τ) and an effort process Λ, the expected discounted utility

of the agent is

(6) EΛ

[∫ τ

0

e−ρt(dLt + 1{Λt=λ+∆λ}XtB dt)

]
,

14See for instance Dellacherie and Meyer (1978, Chapter IV, Definitions 12, 49 and 61) for definitions of
these concepts.
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while the expected discounted profit of the principal is15

(7) EΛ

[∫ τ

0

e−rt{Xt[(µ− gtc)dt− CdNt]− dLt}
]
.

An effort process Λ is incentive compatible with respect to a contract Γ if it maximizes the

agent’s expected utility (6) given Γ. The problem of the principal is to find a contract Γ and

an incentive compatible effort process Λ that maximize its expected discounted profit (7),

subject to delivering to the agent a required expected discounted utility level. It is without

loss of generality to focus on contracts Γ such that the present value of the payments to the

agent is finite, that is:

(8) EΛ

[∫ τ

0

e−ρtdLt

]
< ∞.

Indeed, by inspection of (7), if the present value of the payments to the agent were infinite,

the fact that ρ > r would imply infinitely negative expected discounted profits for the

principal. The latter would be better off proposing no contract altogether.

3 Incentive Compatibility and Limited Liability

To characterize incentive compatibility, we rely on martingale techniques similar to those

introduced by Sannikov (2008). When taking her effort decision at a time t, the agent

considers how it will affect her continuation utility, defined as:

(9) Wt(Γ, Λ) = EΛ

[∫ τ

t

e−ρ(s−t)(dLs + 1{Λs=λ+∆λ}XsBds) |FN
t

]
1{t<τ}.

Denote by W (Γ, Λ) = {Wt(Γ, Λ)}t≥0 the agent’s continuation utility process. Note that,

by construction, W (Γ, Λ) is FN–adapted. In particular, Wt(Γ, Λ) reflects whether or not

there was a loss at time t. To characterize how the agent’s continuation utility evolves over

time, it is useful to consider her lifetime expected utility, evaluated conditionally upon the

information available at time t, that is:16

Ut(Γ, Λ) = EΛ

[∫ τ

0

e−ρs(dLs + 1{Λs=λ+∆λ}XsBds) |FN
t

]

(10)

=

∫ t∧τ−

0

e−ρs(dLs + 1{Λs=λ+∆λ}XsBds) + e−ρtWt(Γ, Λ).

15All integrals are of the Lebesgue–Stieltjes kind. For each s and t, we write
∫ t

s
for

∫
[s,t]

and
∫ t−

s
for

∫
[s,t)

.
16For each x and y, we denote by x ∧ y the minimum of x and y, and by x ∨ y the maximum of x and y.
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Since Ut(Γ, Λ) is the expectation of a given random variable conditional on FN
t , the process

U(Γ, Λ) = {Ut(Γ, Λ)}t≥0 is an FN–martingale under the probability measure PΛ. Its last

element is Uτ (Γ, Λ), which is integrable by (8).

Relying on this martingale property, we now offer an alternative representation of U(Γ, Λ).

Consider the process MΛ = {MΛ
t }t≥0 defined by

(11) MΛ
t = Nt −

∫ t

0

Λs ds

for all t ≥ 0. Equation (11) is best understood when Λ is a constant process. In that case,

MΛ
t is simply the number of losses up to and including time t, minus its expectation. More

generally, a basic result from the theory of point processes is that MΛ is an FN–martingale

under PΛ. Changes in the effort process Λ induce changes in the distribution of losses,

which essentially amount to Girsanov transformations of the process N . The martingale

representation theorem for point processes then implies the following lemma.17

Lemma 1 The martingale U(Γ, Λ) satisfies

(12) Ut(Γ, Λ) = U0(Γ, Λ)−
∫ t∧τ

0

e−ρsHs(Γ, Λ) dMΛ
s

for all t ≥ 0, PΛ–almost surely, for some FN–predictable process H(Γ, Λ) = {Ht(Γ, Λ)}t≥0.

Along with (11), (12) implies that the lifetime expected utility of the agent evolves in

response to the jumps of the process N . At any time t, the change in Ut(Γ, Λ) is equal to the

product between a FN–predictable function of the past, namely e−ρtHt(Γ, Λ), and a term

−dMΛ
t reflecting the events occurring at time t. This term is in turn equal to the difference

between the instantaneous probability Λtdt of a loss, and the instantaneous change dNt in

the total number of losses, which is equal to 0 or 1. Equations (10) and (12) imply that the

continuation utility of the agent evolves as:

(13) dWt(Γ, Λ) = [ρWt(Γ, Λ)− 1{Λt=λ+∆λ}XtB]dt + Ht(Γ, Λ)(Λtdt− dNt)− dLt

for all t ∈ [0, τ). Equation (13) states that, net of private benefits and wages, the expected

instantaneous change in the continuation utility of the agent is equal to her discount rate ρ,

while H(Γ, Λ) is the sensitivity to losses of this utility. Building on this analysis, and letting

b = B/∆λ, we obtain the following result, in line with Sannikov (2008, Proposition 2).

17See for instance Brémaud (1981, Chapter III, Theorems T9 and T17, and Chapter VI, Theorems T2
and T3) for the relevant results.
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Proposition 1 A necessary and sufficient condition for the effort process Λ to be incentive

compatible given the contract Γ = (X,L, τ) is that

(14) Λt = λ if and only if Ht(Γ, Λ) ≥ Xtb

for all t ∈ [0, τ), PΛ–almost surely.

It follows from (13) that, if there is a loss at some time t ∈ [0, τ), the agent’s continuation

utility must be instantaneously reduced by an amount Ht(Γ, Λ).18 Proposition 1 states that,

in order to induce the agent to choose a high level of risk prevention, this reduction in

her continuation utility must be at least as large as Xtb. This is because Xtb reflects the

attractiveness of the private benefits obtained by the agent when shirking. To reason in

size-adjusted terms, let ht = Ht/Xt. The incentive compatibility condition (14) under which

Λt = λ then rewrites as:

(15) ht ≥ b.

It is convenient to introduce the notation Wt−(Γ, Λ) = lims↑t Ws(Γ, Λ) to denote the left-

hand limit of the process W (Γ, Λ) at t > 0. While Wt(Γ, Λ) is the continuation utility of

the agent at time t after observing whether or not there was a loss at time t, Wt−(Γ, Λ) is

the continuation utility of the agent evaluated before such knowledge is obtained.19 Observe

that, while the process W (Γ, Λ) is FN–adapted, the process W·−(Γ, Λ) = {Wt−(Γ, Λ)}t≥0 is

FN–predictable. Combining the fact that the continuation utility of the agent must remain

positive according to the limited liability constraint, with the fact that it must be reduced

by an amount Ht(Γ, Λ) if there is a loss at time t according to (13), one must have

(16) Wt−(Γ, Λ) ≥ Ht(Γ, Λ)

for all t ∈ [0, τ). To simplify notation, we shall drop the arguments Γ and Λ in the remainder

of the paper.

4 Optimal Contracting with Maximal Risk Prevention

While in the previous section we considered general effort processes, in the present section

we characterize the optimal contract that induces maximal risk prevention, that is Λt = λ

18In full generality, one should also allow for jumps in the transfer process. For incentive reasons, it is
however never optimal to pay the agent when a loss occurs. Moreover, it will turn out that the optimal
transfer process is absolutely continuous, so that payments do not come in lump-sums. To ease the exposition,
we therefore rule out jumps in the transfer process in the body of the paper. The possibility of such jumps
is explicitly taken into account below in the verification theorem.

19W0−(Γ, Λ) is defined by (6).
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for all t ∈ [0, τ). This is in line with most of the literature on the principal-agent model,

which offers more precise insights into how to implement given courses of actions at minimal

cost than into which course of actions is, all things considered, optimal for the principal.20

In Section 6.1, however, we shall provide sufficient conditions under which it is optimal for

the principal to request maximal risk prevention from the agent. The optimal contract that

we derive in this section can be described with the help of two state variables: the size of

the project, resulting from past downsizing and investment decisions, and the continuation

utility of the agent, reflecting future payment decisions. To build intuition, we first provide a

heuristic derivation of the principal’s value function and of the main features of the optimal

contract. Next, we verify that this candidate value function is indeed optimal, and we fully

characterize the optimal contract.

4.1 A Heuristic Derivation

In this heuristic derivation, we suppose that transfers are absolutely continuous with respect

to time, and that no payment is made after a loss, that is:

(17) dLt = Xt`t1{dNt=0}dt

where

(18) `t ≥ 0

for all t ≥ 0. Here {`t}t≥0, is assumed to be an FN–predictable process representing the

size-adjusted transfer flow to the agent. We will later verify that this conjecture is correct at

the optimal contract. Now consider project size. Downsizing is suboptimal in the first-best,

and, as we will later verify, it remains so in the second-best as long as no losses occur. After

losses, however, downsizing may prove necessary in the second-best. This reflects that, for

incentive purposes, it is necessary to reduce the agent’s continuation utility after each loss

by an amount that is proportional to her private benefits from shirking. The latter, in turn,

are proportional to the size of the project. When the continuation utility of the agent is low,

the incentive compatibility constraint is compatible with the limited liability constraint only

if the size of the project is itself low enough.

To see this more precisely, suppose that, at the outset of time t, the size of the project is

Xt and the continuation utility of the agent is Wt− . If there is a loss at time t, the agent’s

continuation utility must be reduced from Wt− to Wt = Wt− − Xtht. At this point, the

20See for instance Laffont and Martimort (2002, Chapters 4 and 8) for a recent overview of that literature.
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question arises whether this loss implies that the project should be downsized. Denote by

Xt+ = lims↓t Xs ∈ [0, Xt] the size of the project just after time t. Since effort is still required

from the agent, Proposition 1 implies that, if there were a second loss, arbitrarily close to the

first, the continuation utility of the agent would have to be reduced further by at least Xt+b.

This would be consistent with limited liability only if Wt− −Xtht ≥ Xt+b, or, equivalently,

letting wt = Wt−/Xt and xt = Xt+/Xt, if

(19)
wt − ht

b
≥ xt.

Hence, downsizing is necessary after the first loss, that is xt < 1, whenever the initial size-

adjusted continuation utility wt of the agent is so low that (wt − ht)/b < 1.

We are now ready to characterize the evolution of the continuation value F (Xt,Wt−) of

the principal. Since the principal discounts the future at rate r, his expected flow of value

at time t is given by

(20) rF (Xt,Wt−).

This must be equal to the sum of the expected instantaneous cash-flows and of the expected

rate of change in his continuation value. The former are equal to the expected net cash-flow

from the project, minus the cost of investment and the expected payment to the agent. By

(4) and (17), this yields

(21) Xt[µ− λC − gtc− `t(1− λdt)].

To evaluate the expected rate of change in the principal’s continuation value, we use the

dynamics (3) of the project’s size along with that of the agent’s continuation utility, setting

Λt = λ in (13). Applying the change of variable formula for processes of bounded variation,

which is the counterpart of Itô’s formula for these processes, this yields21

(22)
[ρWt− + Xt(λht − `t)]FW (Xt,Wt−) + XtgtFX(Xt,Wt−)

−λ[F (Xt,Wt−)− F (Xtxt, Wt− −Xtht)].

The first term arises because of the drift of W·− , the second corresponds to investment, and

the third reflects the possibility of jumps in the project’s size and in the agent’s continuation

utility due to losses. Adding (22) to (21), identifying to (20), and letting dt go to 0, we obtain

21See for instance Dellacherie and Meyer (1982, Chapter VI, Section 92).
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that the value function of the principal satisfies the Hamilton–Jacobi–Bellman equation

(23)

rF (Xt,Wt−) = Xt(µ− λC) + max {−Xt`t + [ρWt− + Xt(λht − `t)]FW (Xt,Wt−)

+ Xtgt[FX(Xt,Wt−)− c]

−λ[F (Xt,Wt−)− F (Xtxt, Wt− −Xtht)]},

where the maximization in (23) is over the set of controls (gt, ht, `t, xt) that satisfy constraints

(5), (15), (18) and (19).

To get more insight into the structure of the solution, we impose further restrictions on

the function F , that we will later check to be satisfied at the optimal contract. First, because

of constant returns to scale, it is natural to require F to be homogenous of degree 1,

F (X, W ) = XF

(
1,

W

X

)
= Xf

(
W

X

)

for all (X,W ) ∈ R++ × R+. Intuitively, f maps the size-adjusted continuation utility wt of

the agent into the size-adjusted continuation value of the principal. Second, we require f

to be globally concave. This property, which will be formally established in the verification

theorem below, has the following economic interpretation. As argued above, while downsizing

is inefficient in the first-best, it is necessary in the second-best to provide incentives to the

agent when wt is low. When this is the case, the principal’s value reacts strongly to bad

performance because the latter significantly raises the risk of costly downsizing. By contrast,

when wt is large, bad performance has a more limited impact on downsizing risk. This greater

sensitivity to shocks when wt is low than when it is large is reflected in the concavity of the

size-adjusted value function f . Finally, we set

f(w) =
f(b)

b
w

for all w ∈ [0, b]. This is just by convention, and to simplify the notation, since, by (14) and

(16), wt never enters the interval [0, b).

We can now derive several properties of the optimal controls in the Hamilton–Jacobi–

Bellman equation. Optimizing with respect to `t and using the homogeneity of F yields

(24) f ′(wt) = FW (Xt,Wt−) ≥ −1,

with equality only if `t > 0. Intuitively, the left-hand side of (24) is the increase in the

principal’s continuation value due to a marginal increase in the agent’s continuation utility,

while the right-hand side is the marginal cost to the principal of making an immediate
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payment to the agent. It is optimal to delay payments as long as they are more costly than

utility promises, that is, as long as the inequality in (24) is strict. The concavity of f implies

that this is the case when wt is below a given threshold, which we denote by wp. The optimal

contract thus satisfies the following property.

Property 1 Payments to the agent are made only if her size-adjusted continuation utility

is at least wp. The payment threshold wp satisfies

(25) f ′(wp) = −1.

In the first-best, all the payments to the agent would be made at time 0, as she is more

impatient than the principal. By contrast, in the second-best, payments must be delayed

and made contingent to a long enough record of good performance, in order to provide

incentives to the agent. Since f is concave, it follows from (24) and (25) that f ′(w) = −1

for all w ≥ wp. If one were to start from that region, the optimal contract would entail the

immediate payment of a lump-sum w − wp to the agent, counterbalanced by a drop of her

size-adjusted continuation utility to wp.

Suppose that wt is below the threshold wp, implying that `t = 0. Then, using the

homogeneity of F , one can rewrite (23) as follows:

(26)

rf(wt) = µ− λC + max

{
(ρwt + λht)f

′(wt) + gt[f(wt)− wtf
′(wt)− c]

−λ

[
f(wt)− xtf

(
wt − ht

xt

)]}
.

Since f is concave and vanishes at 0, the mapping xt 7→ xtf((wt − ht)/xt) is increasing. It

is thus optimal to let xt be as high as possible in (26), reflecting that downsizing is costly

since the project is profitable. Using (19) along with the fact that xt ≤ 1 then leads to the

second property of the optimal contract.

Property 2 If there is a loss at time t, the optimal downsizing policy is

(27) xt =
wt − ht

b
∧ 1.

This property of the optimal contract reflects that, for a given level of incentives as

measured by ht, downsizing is imposed only as the last resort. Using our convention that f

is linear over [0, b], one can substitute (27) into (26) to obtain

(28)
rf(wt) = µ− λC + max {(ρwt + λht)f

′(wt) + gt[f(wt)− wtf
′(wt)− c]

−λ[f(wt)− f(wt − ht)]}.
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The concavity of f implies that it is optimal to let ht be as low as possible in (28), which

according to the incentive compatibility condition (15) leads to the third property of the

optimal contract.

Property 3 The sensitivity to losses of the agent’s continuation utility is given by

(29) ht = b.

Intuitively, (29) reflects that because the principal’s continuation value is concave in the

agent’s continuation utility, it is optimal to reduce the agent’s exposure to risk by letting ht

equal the minimal value consistent with her exerting effort. In particular, downsizing takes

place following a loss at date t if and only if wt < 2b, that is, if and only if it is absolutely

necessary in order to maintain the consistency between the incentive compatibility constraint

and the limited liability constraint.

Finally turn to investment decisions. Note that the size-adjusted social value of the

project, f(w)+w, is increasing in w until wp and flat afterwards. A necessary and sufficient

condition for investment to ever be strictly profitable is that the maximal size-adjusted social

value of the project be larger than the unit cost of investment:

(30) f(wp) + wp > c.

If (30) did not hold, the value of investment would be lower than its cost, so that it would

be suboptimal to invest.22 Thus, as will be checked below in the verification theorem, there

is some investment in the optimal contract only if c is not too high. Optimizing in (28) with

respect to gt under constraint (5), we obtain that gt = γ if

(31) f(wt)− wtf
′(wt) > c,

and gt = 0 otherwise. The left-hand side of (31) is the marginal benefit of an additional

capacity unit, while the right-hand side is the unit cost of investment. Scale expansion is

optimal when the former is greater than the latter. In that case, because of the linearity in

the technology, size grows at the maximal feasible rate γ. The concavity of f implies that

(31) holds when wt is above a given threshold, which we denote by wi. The optimal contract

thus satisfies the following property.

22If (30) held as an equality, whether or not investment take place would be indifferent from a social
viewpoint. Since, fixing the other parameters of the model, this can only occur for a single value of c, we
shall ignore that possibility in the remainder of the paper.
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Property 4 Investment takes place, at rate γ, if and only if the size-adjusted continuation

utility of the agent is above wi. The investment threshold wi satisfies

(32) wi = inf {w > b |f(w)− wf ′(w) > c}.

In the first-best, because of condition (1), investment always takes place at the maximal

rate γ. By contrast, in the second-best, if c is not too low, this is the case only if a long

enough record of good performance has been accumulated. This is because increasing the

size of the project raises the private benefits from shirking and thus worsens the moral hazard

problem. This jeopardizes incentives, except if the agent has enough at stake to still prefer

high effort, that is, only if wt is large enough. An important alternative scenario arises

whenever c is low enough. In that case, inequality (31) is satisfied for all wt > b, so that

wi = b and it is always optimal to invest, even in the second-best. Formally, this is reflected

in the fact that the function f is not differentiable at b, with f ′−(b) = f(b)/b > f ′+(b), so that

f(b)− bf ′+(b) > c for c close enough to 0.

The dynamics of the principal’s size-adjusted continuation value depends on whether or

not there is investment. In the no investment region (b, wi], one has

(33) rf = µ− λC + Lf,

where the delay differential operator L is defined by

(34) Lf(w) = (ρw + λb)f ′(w)− λ[f(w)− f(w − b)].

In the investment region (wi, wp], one has

(35) (r − γ)f = µ− λC − γc + Lγf,

where the delay differential operator Lγ is defined by

(36) Lγf(w) = [(ρ− γ)w + λb]f ′(w)− λ[f(w)− f(w − b)].

Comparing equations (35) and (36) to equations (33) and (34) reveals that, besides the

decrease γc in the size-adjusted cash-flow, the impact of investment at rate γ is comparable

to that of a decrease γ in both the principal’s and the agent’s discount rates. Intuitively,

this reflects that investment makes delaying payments less costly, because the total size of

the pie grows while the players wait. Thus, although incentive considerations imply that

both investment and payments should be delayed relative to the first-best, investment takes

place before payments do, as stated now.
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Property 5 If investment is strictly profitable, the investment threshold wi is strictly lower

than the payment threshold wp.

This follows from evaluating (31) at wp, which yields f(wp) − wpf ′(wp) > c because of

(25) and (30). While investment takes place in a region where the size-adjusted social value

of the project is strictly increasing, payments are made to the agent when the size-adjusted

social value of the project reaches its maximum, so that it is inefficient to delay payments

any longer. At the payment threshold wp, transfers are constructed in such a way that the

agent’s continuation utility stays constant until there is a loss. That is, they are set to

the highest level consistent with the size-adjusted social value remaining at its maximum.

This level can be computed as follows. Setting Λt = λ in (13) and making use of (17) and

Property 3, we obtain that

(37) dWt = (ρWt + Xtλb)dt−XtbdNt −Xt`t1{dNt=0}dt.

Suppose now that wt = wp, so that the size-adjusted social value of the project is at its

maximum, and that dNt = 0, so that there is no loss at time t. Then Wt = Xtw
p and

dXt = Xtγdt. Substituting in (37), we obtain the following property.

Property 6 If there is no loss at time t, the size-adjusted transfer flow is

(38) `t = [(ρ− γ)wp + λb]1{wt=wp}.

According to (38), when payments are made at the payment threshold wp, they come in

a steady flow in size-adjusted terms until a loss occurs.

The above conjectures about the structure of the optimal contract are illustrated on

Figure 1.

—Insert Figure 1 Here—

Because of constant returns to scale, there are four regimes in the (Xt,Wt−)–plane separated

by straight lines, reflecting that downsizing, investment or transfers take place depending on

the position of the agent’s size-adjusted continuation utility relative to the thresholds b, wi

and wp. Because b ≤ wt ≤ wp for all t > 0, (Xt,Wt−) stays away from the interiors of the

downsizing and transfer regions after time 0.
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4.2 The Verification Theorem

We now show that the above heuristic characterization does correspond to the optimal

contract. To do this, we first show that there exists a size-adjusted value function f such

that Properties 1 to 6 hold.

Proposition 2 Suppose that

(39) µ− λC > (ρ− r)b
(
2 +

r

λ

)
.

Then there exists a constant c > 0 such that if

(40) c < c,

the delay differential equation

(41)





f(w) = f(b)
b

w if w ∈ [0, b],

rf(w) = µ− λC + Lf(w) if w ∈ (b, wi],

(r − γ)f(w) = µ− λC − γc + Lγf(w) if w ∈ (wi, wp],

f(w) = f(wp) + wp − w if w ∈ (wp,∞)

has a maximal solution f, where the thresholds wp and wi are endogenously determined by

(25) and (32), with wp > wi, and the operators L and Lγ are defined as in (34) and (36).

The function f is globally concave and continuously differentiable except at b.

If condition (39) did not hold, the solution would be degenerate, with downsizing taking

place after each loss. This would arise because the private benefits from shirking would

be large relative to the expected cash-flow from the project, making the agency problem

very severe. Condition (40) ensures that the investment cost is low enough so that there

are circumstances in which it is strictly optimal to increase the size of the project. If the

investment cost c were strictly larger than c, the optimal contract would be similar to that

described above, except that the investment region would be empty. The threshold value c

corresponds to the maximum of the size-adjusted social value of the project arising in this

no investment situation.

The next step of the analysis is to show that the function constructed in Proposition 2

yields the maximal value that can be obtained by the principal, and to explicitly construct
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the optimal contract. To do so, fix an initial project size X0 and an initial expected utility

W0− for the agent, and consider the processes {wt}t≥0 and {lt}t≥0 solutions to

wt = w0 +

∫ t−

0

{
[(ρ− γ1{ws>wi})ws + λb] ds− b

(
ws − b

b
∧ 1

)
dNs − dls

}
,(42)

lt = (w0 − wp) ∨ 0 +

∫ t

0

[(ρ− γ)wp + λb]1{ws+=wp} ds(43)

for all t ≥ 0, where w0 = W0−/X0, and wi and wp are defined as in Proposition 2. For

the moment, we simply take these processes as given. Yet, consistent with the heuristic

derivation of Section 4.1, it will eventually turn out in equilibrium that, at any time t, wt

is the initial size-adjusted continuation utility of the agent, while lt represents cumulative

size-adjusted transfers up to and including time t. The following proposition is central to

our results.

Proposition 3 Under conditions (39) and (40), the optimal contract Γ = (X, L, τ) that

induces maximal risk prevention and delivers the agent an initial expected discounted utility

W0− given initial firm size X0 is as follows:

(i) The project is downsized by a factor [(wTk
− b)/b] ∧ 1 at any time Tk at which there is

a loss. Moreover, the size of the project grows at rate γ as long as wt > wi, and at rate

0 otherwise. As a result, the size of the project is

(44) Xt = X0

Nt−∏

k=1

(
wTk

− b

b
∧ 1

)
exp

(∫ t

0

γ1{ws>wi} ds

)

at any time t ≥ 0.23

(ii) The flow of transfers to the agent is Xt[(ρ− γ)wp +λb] as long as wt = wp and no loss

occurs. As a result, the cumulative transfers to the agent are

(45) Lt = X0l0 +

∫ t

0

Xs dls

at any time t ≥ 0.24

(iii) Liquidation occurs with probability 0 on the equilibrium path:

(46) τ = ∞,

P–almost surely.

23By convention,
∏
∅ = 1.

24Observe from (42) and (43) that wt+ = wp if and only if wt = wp and there is no loss at time t.
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The value to the principal of this contract is F (X0,W0−) = X0f(W0−/X0), with f constructed

as in Proposition 2.

As shown in the proof of Proposition 3, the optimal contract entails at any time t a

continuation utility Wt = lims↓t Xsws for the agent. The process W obtained in this way

satisfies (13) with Λt = λ and Ht = Xtb, and thus induces maximal risk prevention. As

conjectured in Section 4.1, the optimal contract involves two state variables, the size of the

project, Xt, and the size-adjusted continuation utility of the agent, wt, or, equivalently, her

beginning-of-period continuation utility Wt− = Xtwt.

The main features of the optimal contract are also in line with the heuristic derivation

of Properties 1 to 6. First consider transfers, as given by (43) and (45). If w0 > wp, an

initial lump-sum is immediately distributed to the agent. Then, at time t > 0, transfers take

place if and only if wt = wp and there is no loss, and they are constructed in such a way

that the agent’s size-adjusted continuation utility stays constant until a loss occurs. This is

consistent with Properties 1 and 6.

Next consider the size of the project, as given by (44). The first term on the right-hand

side of (44) is the initial size of the firm. The second term on the right-hand side of (44)

reflects downsizing, which takes place only after losses occur at the random times Tk and

when (wTk
− b)/b < 1. This is consistent with Properties 2 and 3. The third term on the

right-hand side of (44) reflects that investment takes place, at rate γ, if and only if wt > wi.

This is consistent with Properties 4 and 5.

Finally consider the size-adjusted continuation utility of the agent, as given by (42). Its

dynamics is somewhat complicated, as it reflects the joint effect of direct changes in the

agent’s continuation utility and indirect changes due to the variations in the project’s size.

It follows from (42) that, if a loss occurs at a time Tk such that wTk
≥ 2b, no downsizing takes

place, and the size-adjusted continuation utility of the agent drops by an amount b. This is

consistent with Property 3. By contrast, if a loss occurs at a time Tk such that b ≤ wTk
< 2b,

the project is downsized by a factor (wTk
− b)/b, and the size-adjusted continuation utility

of the agent drops by an amount wTk
− b. Thus, in any case, the sensitivity to losses of the

agent’s size-adjusted continuation utility is (wTk
− b) ∧ b.

It should be emphasized that liquidation plays virtually no role in the optimal incentive

contract, as reflected by (46). Indeed, as can be seen from (42), wt = Wt−/Xt always remains

strictly greater than b. As a result, Wt, which is in the worst case equal to Wt− − Xtb if

there is a loss at time t, always remains strictly positive.25 This is in sharp contrast with

25Exceptions arise only with probability 0, for instance if W0− = X0b and there is a loss at time 0.

23



the Brownian models studied by DeMarzo and Sannikov (2006), Biais, Mariotti, Plantin

and Rochet (2007) and Sannikov (2008), in which the optimal contract relies crucially on

liquidation and involves no downsizing. Admittedly, even in the context of our Poisson

model, an alternative way to provide incentives to the agent in case of bad performance

would be to threaten her to randomly liquidating the project, as is customary in discrete-

time models (see for instance Clementi and Hopenhayn (2006) or DeMarzo and Fishman

(2007b)). But in contrast with what happens in Brownian models, liquidation would then

necessarily have to be both stochastic (as it would depend on the realization of a lottery at

each potential liquidation time) and unpredictable (as it would take place only after a loss).

When modeled in this way, liquidation allows the principal to achieve the same value as

under downsizing. This would however be less tractable analytically, and less conducive to

a realistic implementation of the optimal contract. Besides, and more importantly, allowing

for downsizing gives rise to a richer dynamics for the size of the project, which can increase

but also decrease over time following good or bad performance.

Proposition 3 describes the optimal contract for a given initial project size X0 and a

given initial expected discounted utility W0− for the agent. In Biais, Mariotti, Rochet and

Villeneuve (2009, Section D.3), we examine how these are determined at time 0 whenever

the principal is competitive. That is, we look for a pair (X0,W0−) that maximizes utilitarian

welfare under the constraint that the principal breaks even on average. As soon as f takes

strictly positive values, it is optimal to start operating the project at full scale, X0 = 1.26

When the participation constraint of the principal is slack, the contract is initiated at the

payment threshold w0 = wp, so that the agent is immediately compensated. By contrast,

when the participation constraint of the principal binds, it is necessary to initiate the contract

at a lower level w0 < wp, so that it is optimal to wait before compensating the agent.

5 Firm Size Dynamics

In this section, we build on the above analysis to study size dynamics under maximal risk

prevention. Because of downsizing and investment, the scale of operations varies over time

in the optimal contract. These variations can be interpreted as the dynamics of firm size.

Our model generates a rich variety of possible paths for such dynamics. Over its life cycle,

the firm can grow, stagnate or decline.

To illustrate this point, consider the following typical path, depicted on Figure 2.

26Otherwise it is optimal to let X0 = W0− = 0 and not to operate the project.
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—Insert Figure 2 Here—

Firm size starts at the level X0. As long as there is no loss, the size-adjusted continuation

utility of the agent rises, and eventually reaches the investment threshold wi. From this

point on, investment takes place at rate γ and the firm grows. However, if a loss occurs

at time Tk, the size-adjusted continuation utility of the agent drops from wTk
to wT+

k
=

(wTk
− b) ∨ b. If this lower utility level is below wi, investment stops and firm size remains

constant. Furthermore, if wT+
k

< 2b and there is another loss shortly afterwards, downsizing

is necessary. The corresponding path in the (Xt,Wt−)–plane is depicted on Figure 3.

—Insert Figure 3 Here—

While, in the short-run, firm size can grow, stagnate or decline, it is unclear how it is likely

to behave in the long run. Will downsizing bring it down to 0? Or will the firm grow

indefinitely thanks to investment? To address this issue, we study the limit as t goes to

∞ of the average growth rate of the firm until time t. For simplicity set X0 to 1. Then

Proposition 3 implies that this average growth rate is equal to

(47)
ln(Xt)

t
=

1

t

[ Nt−∑

k=1

ln

(
wTk

− b

b
∧ 1

)
+

∫ t

0

γ1{ws>wi} ds

]
.

Now, let µw be the unique invariant measure associated to the process {wTk
}k≥1 of the

agent’s size-adjusted continuation utility just before losses, let µw+ be the unique invariant

measure associated to the process {wT+
k
}k≥1 of the agent’s size-adjusted continuation utility

just after losses, and let λ be the exponential distribution with parameter λ. Then, using an

appropriate law of large numbers for Markov ergodic processes, one can derive the following

result.27

Proposition 4 Under conditions (39) and (40), the long-run growth rate of the firm is

lim
t→∞

ln(Xt)

t
= λ

∫

[b,2b)

ln

(
w − b

b

)
µw(dw)

(48)

+ γ

[
1− λ

∫

[b,wi)×R+

(tw,wi ∧ s) µw+⊗λ(dw, ds)

]
,

P–almost surely, where

tw,wi =
1

ρ
ln

(
ρwi + λb

ρw + λb

)

27See for instance Stout (1974, Theorem 3.6.7).
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is the time it takes for the agent’s size-adjusted continuation utility to reach wi when starting

from w ∈ [b, wi), if there are no losses in the meanwhile.

The first term of the right-hand size of (48) reflects the impact of downsizing. Downsizing

takes place when losses occur, which is more likely if the intensity λ of the loss process N

is high, and when the size-adjusted continuation utility of the agent lies in the region [b, 2b)

where downsizing cannot be avoided whenever a loss occurs.

The second term of the right-hand size of (48) reflects the impact of investment. The

latter takes place, at rate γ, when the size-adjusted continuation utility of the agent is above

the investment threshold wi. The term within brackets multiplying γ on the right-hand

side of (48) is the frequency with which the size-adjusted continuation utility of the agent is

above wi. To build intuition about this term, consider the time interval (Tk, Tk+1] between

two consecutive losses. There is no investment during this time interval as long as the size-

adjusted continuation utility of the agent stays below wi. The probability of that event

depends on the value of the continuation utility of the agent at the beginning of the time

interval, wT+
k
, as well as on the length Tk+1 − Tk of this time interval. This is why there

is a double integral in (48), with respect to the invariant measures µw+ and λ of these

two independent random variables. The interpretation of the term in parentheses inside the

double integral is that there is no investment during (Tk, Tk+1] if Tk+1 − Tk < tw
T+

k
,wi , that

is, if a loss occurs before the size-adjusted continuation utility of the agent had the time to

reach wi starting from wT+
k

< wi.

To gain more insights into the long-run behavior of the size of the firm, consider for

tractability the case where c is small, so that

(49) f(b)− bf ′+(b) ≥ c.

In that case, the optimal contract stipulates that investment should continuously take place

at rate γ, and we obtain the following result.

Proposition 5 Under conditions (39), (40) and (49), if γ is close to 0, then

(50) lim
t→∞

Xt = 0,

P–almost surely, while if γ > λ2/(ρ− γ + λ), then

(51) lim
t→∞

Xt = ∞,

P–almost surely.
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First consider (50). In that case, the maximal feasible growth rate γ of the firm is low,

so that the impact of investment is negligible. Now, to maintain incentive compatibility and

limited liability, downsizing must take place when losses occur and the agent’s size-adjusted

continuation utility is close to its lower bound b. Because the stochastic process describing

the agent’s size-adjusted continuation utility is Markov ergodic over [b, wp], this situation

will prevail an infinite number of times with probability 1. As a result, the size of the firm

and the continuation utility of the agent must eventually go to 0.

Next consider (51). In that case, the frequency λ of losses is low relative to the maximal

feasible growth rate γ of the firm, so that the positive effect of investment dominates the

negative effect of downsizing. Thus, in the long run, the firm becomes infinitely large. Note

however that, even in this case, the long-run growth rate of the firm remains strictly lower

than in the first-best, because of downsizing.

These two asymptotic results differ from the classic immiseration result of Thomas and

Worrall (1990). In their model, the agent’s continuation utility eventually diverges to −∞.

But the reason why this outcome obtains differs from the reason why, in our model, firm

size goes to 0 when γ is low. Indeed, in Thomas and Worrall (1990), the period utility

function of the agent is concave and unbounded below. Consequently, providing incentives

is cheaper, the lower the agent’s continuation utility is. This reflects the fact that the cost of

obtaining a given spread in the agent’s continuation utility is then lower. The principal thus

has an incentive to let the agent’s utility drift to −∞. By contrast, in our model, the cost

of incentive compatibility is high when the agent’s continuation utility is low. This reflects

the fact that limited liability makes it then more difficult to induce large variations in the

agent’s continuation utility. Yet, firm size can go to 0 if γ is low relative to λ, so that the

effect of downsizing overcomes that of investment. If γ is high relative to λ, firm size goes to

infinity. Now, the continuation utility of the agent is equal to her size-adjusted continuation

utility, which by construction lives in [b, wp], multiplied by firm size. Hence in that case the

continuation utility of the agent grows unboundedly, which is exactly the opposite of the

immiseration result.

Proposition 5 provides parameter restrictions under which firm size Xt unambiguously

goes to 0 or ∞ with probability 1 when t goes to ∞. More generally, for all parameter

values, including those under which (49) does not hold, the following holds.

Proposition 6 Under conditions (39) and (40), each of the events {limt→∞ Xt = 0} and

{limt→∞ Xt = ∞} has either a probability 0 or 1 of occurring.

The intuition for this result is twofold. First, as can be seen from (44), the events that
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firm size Xt goes to 0 or to ∞ are tail events. That is, whether or not they occur depends

on what happens in the long run, and not on what happens over any finite horizon. Second,

the stochastic processes that drive the evolution of firm size satisfy a mixing property, which

implies that tail events have either probability 0 or 1. Note that Proposition 6 does not assert

that one of the events {limt→∞ Xt = 0} and {limt→∞ Xt = ∞} must occur with probability

1: both of them may have probability 0. What it rules out, for instance, is a scenario in

which, with probability p, the size of the firm eventually vanishes, while with probability

1− p it eventually explodes, for some p ∈ (0, 1).

This asymptotic result sharply differs from that arising in Clementi and Hopenhayn

(2006). In their long-run analysis, either the firm is eventually liquidated, or the first-best

is eventually attained and the firm is never liquidated. Each of these absorbing outcomes

has a strictly positive probability in the stationary distribution. This difference with our

results stems from the fact that, in their model, the principal and the agent have identical

discount rates, while in ours the agent is more impatient than the principal.28 In Clementi

and Hopenhayn (2006), because the principal and the agent are equally patient, it is costless

to delay the agent’s consumption while capitalizing it at the common discount rate. Hence,

it is optimal to try and accumulate pledges to the agent until her savings are so high that she

can buy the firm and implement the first-best policy. With some probability, the agent is

lucky enough that such high performance is achieved and the first-best is attained. With the

complementary probability, the agent is not as lucky, and liquidation eventually occurs. By

contrast, in our model, delaying consumption is costly, since the agent is more impatient than

the principal. It is therefore optimal to let her consume before the first-best is attained. This

reduces the growth in the accumulated pledge to the agent, which, in turn, raises the risk

of downsizing. Whenever the maximal investment rate is low, such downsizing eventually

brings firm size to 0 with probability 1. Whenever the maximal investment rate is high, firm

size tends to grow so fast that it eventually explodes in spite of downsizing. Note however

that, in that case, the first-best is not attained, even in the long run, because moral hazard

still slows down the rate at which the firm grows.

28In Clementi and Hopenhayn’s (2006) discrete-time model, unlike in our continuous-time model, identical
discount rates for the principal and the agent do not preclude the existence of an optimal contract. A further
difference is that they assume that capital fully depreciates from one period to the next, while there is no
capital depreciation in our model.

28



6 Robustness

In this section, we discuss the robustness of our results. We first provide sufficient conditions

for the optimality of maximal risk prevention. Then, we briefly examine the case of non

constant returns to scale.

6.1 Optimality of Maximal Risk Prevention

So far, our analysis has focused on the optimal contract under maximal risk prevention. We

now investigate under which circumstances it is actually optimal for the principal to require

such a high level of effort from the agent. For simplicity, we conduct this analysis in the case

where there is no investment, that is γ = 0.

Note that the contract characterized in Proposition 3 depends on B and ∆λ only through

their ratio b = B/∆λ. Hence there is one degree of freedom in the parameters of the model,

as one can scale B and ∆λ up or down while keeping b constant, leaving the optimal contract

under maximal risk prevention unaffected. Intuition suggests that when ∆λ gets large, it is

optimal to prevent losses as much as possible. To see why, observe that if a contract induced

shirking during some infinitesimal time interval [t, t + dt), the agent’s continuation utility

would not need to be affected were a loss to occur at time t. That is, one should have Ht = 0

in (13). Since it is optimal to make no transfers over [t, t + dt) as the agent is shirking, (13)

then implies that this would result in a change

(52) dwt = (ρwt −B)dt

in the agent’s size-adjusted continuation utility. To determine whether requiring the agent

to always exert effort is optimal, we compare the continuation value of the principal under

maximal risk prevention to its counterpart when the agent shirks during [t, t + dt) and then

reverts to exerting effort. The former is greater than the latter if

(53) f(wt) ≥ [µ− (λ + ∆λ)C]dt + e−rdtf(wt + dwt),

where dwt is given by (52). The first term on the right-hand side of (53) reflects the increased

intensity of losses over [t, t + dt) due to shirking, while the second term corresponds to the

continuation value to the principal from requesting maximal risk prevention from time t+dt

on. Given (52), a first-order Taylor expansion in (53) leads to

(54) rf(wt) ≥ µ− (λ + ∆λ)C + (ρwt −B)f ′(wt).
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Unlike in (33), there is no delay term on the right-hand side of (54), because the agent’s

continuation utility is not sensitive to losses during the time interval [t, t+dt). Maximal risk

prevention is optimal if (54) holds for any value of wt > b. One has the following result.

Proposition 7 Suppose that γ = 0, and fix all the parameters of the model except B and

∆λ, for which only the ratio b = B/∆λ is fixed, so that an increase in B is compensated by

a proportional increase in ∆λ. Then there exists a threshold ∆λ > 0 such that the optimal

contract involves maximal risk prevention for all ∆λ > ∆λ.

The intuition for this result is as follows. Both B and ∆λ affect the magnitude of the

moral hazard problem and therefore the cost of incentives. However, under maximal risk

prevention, they do so only via their ratio b; formally, this is reflected in the fact that

the function f depends on B and ∆λ only through b. Now, while an increase in ∆λ makes

shirking easier to detect, and raises the value to the principal of a high level of risk prevention

effort, an increase in B leaves this value unaffected. Hence, when one keeps b and thus the

cost of incentives constant, increasing ∆λ raises the benefit of effort for the principal without

affecting its cost. As a result, when ∆λ is sufficiently high, it is optimal for the principal to

require the agent to always exert effort.

6.2 Non Constant Returns to Scale

Our analysis relies on the assumption that there are constant returns to scale. What can be

said when one relaxes this assumption? Suppose for instance that the private benefits from

shirking are equal to some increasing function B(X) of firm size X, and, for simplicity, keep

all our other assumptions unchanged. Incentive compatibility conditions are basically the

same in that extension. The continuation utility of the agent writes as:

Wt(Γ, Λ) = EΛ

[∫ τ

t

e−ρ(s−t)[dLs + 1{Λs=λ+∆λ}B(Xs)ds] |FN
t

]
1{t<τ},

and the underlying martingale is still MΛ, so that the martingale representation theorem

applies and Lemma 1 continues to hold. Similarly, Proposition 1 is essentially unchanged,

except that the incentive compatibility condition under which the agent exerts effort is now

Ht(Γ, Λ) ≥ B(Xt)

∆λ
.

Suppose now that the principal wants to implement maximal risk prevention. Then, like

when returns to scale are constant, it will be necessary to downsize the project after a loss

if the agent’s continuation utility is too low. To see this more precisely, suppose that, at
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the outset of time t, the size of the project is Xt and the continuation utility of the agent is

Wt−(Γ, Λ). If there is a loss at time t, incentive compatibility requires that the continuation

utility be reduced by at least B(Xt)/∆λ. Downsizing can be avoided at this point only if the

new level of continuation utility is high enough that it is still possible to provide incentives

while satisfying the limited liability constraint, that is, if

Wt−(Γ, Λ)− B(Xt)

∆λ
≥ B(Xt)

∆λ
.

Thus downsizing must take place whenever Wt−(Γ, Λ) < 2B(Xt)/∆λ and there is a loss at

time t. Yet, it is hard to push the analysis of the optimal contract much further without

assuming constant returns to scale. Indeed, the Hamilton–Jacobi–Bellman equation now

writes as:

(55)

rF (Xt,Wt−) = Xt(µ− λC) + max{−Xt`t + (ρWt− + λHt −Xt`t)FW (Xt, Wt−)

+ Xtgt[FX(Xt,Wt−)− c]

−λ[F (Xt,Wt−)− F (Xtxt,Wt− −Ht)]},

where the maximization in (55) is over the set of controls (gt, Ht, `t, xt) that satisfy (5), (18)

and the two constraints

(56)

Ht ≥ B(Xt)

∆λ
,

Wt− −Ht ≥ B(Xtxt)

∆λ
.

The first of these constraints is the agent’s date t incentive compatibility constraint, while

the second, which parallels (19), expresses the fact that if a loss occurs at date t, reducing

by Ht the continuation utility of the agent, it must still be possible to provide incentives

after this loss, which requires being able to further reduce the agent’s utility by B(Xtxt)/∆λ,

where Xtxt is the size of the firm after the date t loss. Unlike in the constant returns to

scale case, the non-linearity of B(X) with respect to X makes it impossible to reduce the

delay partial differential equation (55) to a delay ordinary differential equation.

While it is difficult to rigorously study the system (55) to (56) when B(X) is not linear in

X, one can perform a heuristic analysis similar to that of Section 4.1 for a small perturbation

of the private benefits function:

Bε(X) = BX + εXφ(X),

where ε is a small number and φ a bounded function. This analysis, which can be found

in the supplement to this paper (Biais, Mariotti, Rochet and Villeneuve (2009)), suggests
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that, under regularity conditions, one can reasonably expect the qualitative properties of the

optimal contract to be upheld for such a small perturbation. The optimal contract could

then be depicted on a figure similar to Figure 1. The differences would be that the boundary

of the downsizing region would be the non-linear function Bε(X)/∆λ of firm size X instead

of the linear function Xb, and that the upper and lower boundaries of the Investment/No

transfers region would also presumably be non-linear functions of X.

7 Empirical Implications

While, in the first-best, firms in our model should always invest, in the second-best the

optimal contract stipulates that firms can invest only after a long enough record of good

performance, at least when the unit cost of investment is not too low.29 Such clauses are

consistent with the empirical results of Kaplan and Strömberg (2004), who find that venture

capital funding for new investment is contingent on financial and non-financial milestones.

They also find that such conditioning is more frequent when the proxy for agency problems

is more severe.

In our model, the optimal contract specifies that after good performance agents will

be compensated, while after bad performance the firm will be partial liquidated. This is

in line with the contractual clauses documented by Kaplan and Strömberg (2003). The

circumstances in which downsizing takes place in the optimal contract can be interpreted

as financial distress. This is in line with the empirical findings of Denis and Shome (2005),

who report that financially distressed firms are often downsized.

In our model, small firms tend to be below the investment threshold. They are thus likely

to be exposed to financial constraints on investment, as documented by Beck, Demirgüç-Kunt

and Maksimovic (2005). Our model also predicts that small firms are relatively more fragile,

since a few negative shocks are enough to drive them into the zone where further losses

would trigger downsizing. Conversely, large firms that have enjoyed long periods of sustained

investment are more likely to have long records of good performance, which pushes them

away from that zone. Overall, the probability of downsizing is decreasing in firm size. This is

in line with the empirical findings of Dunne, Roberts and Samuelson (1989), who report that

failure rates decline with increases in firm or plant size. Note however that the same logic

implies that, according to our model, large firms should tend to have higher growth rates

than smaller ones, while data suggest that on average the opposite is true, see Evans (1987a,

1987b) and Dunne, Roberts and Samuelson (1989). Interestingly, though, Dunne, Roberts

29Throughout this section, we assume that f(b)− bf ′+(b) < c < c, so that wi > b.
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and Samuelson (1989) find that this pattern is reversed in the case of multiplant firms: mean

growth rates for plants owned by such firms tend to increase with size, reflecting that the

tendency for growth rates of plants to decline with size is outweighed by a substantial fall

in their failure rates. This evidence suggests that our analysis is particularly relevant for

multiplant firms. A further testable implication of our model is that downsizing decisions

should typically be followed by relatively long periods during which no investment takes

place, corresponding to the time it takes for the firm to reach the investment threshold again

and resume growing.

Gabaix and Landier (2008) note that different theoretical explanations have been offered

for variations in CEO pay. While some analyses emphasize incentive problems, Gabaix and

Landier (2008) propose to focus on firm size. Empirically, they find that CEO pay increases

with firm size. Consistent with these results, our incentive theoretic analysis implies that the

size of the firm and the compensation of the agent ought to be positively correlated: after a

long stream of good performance, the scale of operations is large, and so are the payments

to the agent. Conceptually, our analysis suggests that explanations based on size should

not be divorced from explanations based on incentives, and that investment and managerial

compensation are complementary incentive instruments, in line with the empirical findings

of Kaplan and Strömberg (2003).

8 Conclusion

This paper analyzes the dynamic moral hazard problem arising when agents with limited

liability must exert costly unobservable effort to reduce the likelihood of large but relatively

infrequent losses. We characterize the optimal downsizing, investment and compensation

policies and provide explicit formulae for firm size and its asymptotic growth rate.

Our analysis generates policy and managerial implications for the prevention of large

risks. Losses in our model are negative externalities, since they affect society beyond the

managers’ or the firms’ ability to pay for the damages they cause. It is therefore natural

to think of the optimal dynamic contract as a regulatory tool. For instance, in the context

of financial institutions, our analysis suggests that, to prevent large losses, downsizing and

investment decisions should be made contingent on accumulated performance. This notably

provides a rationale for prudential regulations requesting that the scale at which financial

firms operate be proportionate to their capital. In particular, such regulations imply that

banks or insurance companies should be downsized if their capital before large losses is close

to the regulatory requirement. This is similar to our optimal contract, provided one interprets
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W as a proxy for capital, which is natural since both increase after good performance and

decrease after bad performance. Yet, our analysis suggests that such capital requirements

are not sufficient to induce an optimal level of risk prevention: they should be complemented

by an appropriate regulation of managerial compensation. More specifically, the managers’

compensation should be based on long-term track records, and it should be reduced after

large losses by an amount that increases with the private benefits from shirking and the

extent to which shirking is difficult to detect.

Our analysis also generates implications for firm size dynamics. Simon and Bonini (1958)

and Ijiri and Simon (1964) analyze the link between the stochastic process according to

which firms grow and the size distribution of firms. While these early works do not rely

on the characterization of optimal investment policies, they have been embedded within the

neoclassical framework, see for instance Lucas (1978) or Luttmer (2007, 2008). In these

models, firm growth is limited by technology. In Lucas (1978) managerial skills are assumed

to exhibit diminishing returns to scale, while in Luttmer (2008) it is assumed that, when

ideas are replicated, their quality depreciates. Our modeling framework offers an opportunity

to revisit these issues in a context where the endogenous limits to firm growth result from

moral hazard. A key issue in models of the size distribution of firms is whether Gibrat’s

law holds, that is, whether firm growth is independent of firm size. This is not the case

in our model, since firm size and downsizing and investment decisions are correlated in the

optimal contract, being all functions of the agent’s size-adjusted continuation utility process.

It would be interesting, in further research, to analyze the implications of our analysis for

the size distribution of firms.

Appendix: Sketches of Proofs

In this appendix, we shall merely outline the structure of the proofs. The interested reader

will find complete proofs in the supplement to this paper (Biais, Mariotti, Rochet and

Villeneuve (2009)). All the references thereafter made to sections and auxiliary results

correspond to this supplementary document.

Proof of Lemma 1 (sketch). The predictable representation (12) of the martingale

U(Γ, Λ) follows from Brémaud (1981, Chapter III, Theorems T9 and T17). The factor

e−ρs in (12) is just a convenient rescaling. Q.E.D.

Proof of Proposition 1 (sketch). The proof extends Sannikov’s (2008, Proposition 2)

arguments to the case where output is modeled as a point process. Q.E.D.

34



Proof of Proposition 2 (sketch). It turns out to be more convenient to work with the

size-adjusted social value function, defined by v(w) = f(w) + w for all w ≥ 0. Just as f , the

function v is linear over [0, b]. From (33) and (35), one has

(57) rv(w) = µ− λC − (ρ− r)w + Lv(w)

for all w ∈ (b, wi], and

(58) (r − γ)v(w) = µ− λC − γc− (ρ− r)w + Lγv(w)

for all w ∈ (wi, wp]. The investment threshold wi satisfies

(59) wi = inf {w > b |v(w)− wv′(w) > c},

while the payment threshold wp satisfies

(60) v′(wp) = 0.

Finally, v is constant and equal to v(wp) over [wp,∞). The proof consists of two main parts.

In the first part of the proof (Section C.1), we first suppose that investment is not feasible,

that is γ = 0. This allows us to pin down the constant c in (40), and provides key insights

into the properties of the solution to (41) in the no investment region (b, wi]. In the second

part of the proof (Section C.2), we suppose that investment is feasible, that is γ > 0, and

we use the results of the first part of the proof to solve (41).

Part 1 In the no investment case, we look for the maximal solution to (57) that satisfies

(60) at some payment threshold. Note that the only unknown parameter is the slope of that

solution over [0, b]. To determine that slope, we use the following shooting method. For each

β ≥ 0, denote by vβ the function that is linear with slope β over [0, b] and then satisfies

(57) over (b,∞). One can show that vβ can be decomposed over R+ as u1 + βu2, where u2

is a positive function with strictly positive derivative.30 This implies that the derivatives of

the functions (vβ)β≥0 are strictly increasing with respect to β (Proposition C.1.1). We then

prove that the ratio −u′1/u
′
2 attains a maximum β0 over (b,∞), which implies that vβ0 is the

maximal function in the family (vβ)β≥0 whose derivative has a zero in (b,∞) (Proposition

C.1.2). Thus vβ0 is the desired maximal solution. Let wp
β0

be the first point at which v′β0

vanishes. The last step of the proof then consists in showing that vβ0 is concave over [0, wp
β0

],

and strictly so over [b, wp
β0

] (Proposition C.1.3). As explained in the text, the cost threshold

c below which investment is strictly profitable is vβ0(w
p
β0

). For c > c, the size-adjusted social

value function is vβ0 ∧ vβ0(w
p
β0

) (Section D.2, Remark).

30The functions u1, u2 and vβ are continuously differentiable except at b.
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Part 2 In the investment case, we look for the maximal solution to (57) and (58) that

satisfies (59) and (60) at some investment and payment thresholds. As in Part 1, the only

unknown parameter is the slope of v over [0, b]. To determine that slope, which must clearly

be higher than β0, we use the following shooting method. For each β ≥ β0, denote by vβ,γ

the function that is linear with slope β over [0, b] and then satisfies (57) over (b, wi
β] and (58)

over (wi
β,∞), where wi

β = inf {w > b | vβ,γ(w) − wv′β,γ(w) > c}. One may have wi
β = b, in

which case the region (b, wi
β] is empty. We first show that vβ,γ is well-defined, and that the

threshold wi
β belongs to [b, wp

β0
) and continuously decreases as β increases (Lemma C.2.1).

Key to this result is the fact that u2 is strictly concave over [b,∞). We then show that,

in analogy with the functions (vβ)β≥0, the derivatives of the functions (vβ,γ)β≥β0 are strictly

increasing with respect to β (Proposition C.2.1). The next step of the proof, which is crucial,

consists in showing that there exists a maximal function vβγ ,γ in the family (vβ,γ)β≥β0 whose

derivative has a zero in (b,∞) (Proposition C.2.2). To establish this result, we first show

that the set of β ≥ β0 such that v′β,γ has a zero over (b,∞) is a nonempty interval I that

contains β0 (Lemma C.2.2). Second, we show that I has a finite upper bound βγ, so that v′β,γ

has no zero in (b,∞) when β > βγ (Lemma C.2.3). Third, letting wp
β,γ be the first point at

which v′β,γ vanishes for any given β ∈ I, we show that wp
β,γ is strictly increasing with respect

to β over I and converges to a finite limit when β converges to βγ from below (Lemma

C.2.4). Fourth, we show that the derivatives of the functions (vβ,γ)β≥β0 vary continuously

with β, which in turn implies that I contains its upper bound βγ (Lemma C.2.5). Thus

vβγ ,γ is the desired maximal solution, and wp
βγ ,γ is the first point at which v′βγ ,γ vanishes.

The last step of the proof then consists in showing that vβγ ,γ is concave over [0, wp
βγ ,γ], and

strictly so over [b, wp
βγ ,γ] (Proposition C.2.3). Key to this result is the fact that βγ > β0 and

that the maximal solution vβ0 derived in the no investment case is concave over [0, wp
β0

] as

established in Proposition C.1.3. Finally, letting f(w) = vβγ ,γ(w)∧ vβγ ,γ(w
p
βγ ,γ) for all w ≥ 0

and writing wi = wi
βγ

and wp = wi
βγ ,γ to simplify notation, it is immediate to check that the

triple (f, wi, wp) satisfies all the properties stated in Proposition 2. Q.E.D.

Proof for Proposition 3 (sketch). The argument follows somewhat standard lines in

optimal control theory. In the first step of the proof, we establish that F provides an upper

bound for the expected payoff that the principal can obtain from any incentive compatible

contract inducing maximal risk prevention, that is:

(61) F (X0,W0−) ≥ E

[∫ τ

0

e−rt{Xt[(µ− gtc)dt− CdNt]− dLt}
]

for any contract Γ = (X,L, τ) inducing maximal risk prevention. For any such contract, the
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dynamics of the agent’s continuation utility W is given by (13), for a process H that satisfies

the incentive compatibility condition (14). Substituting X and L from Γ into the function

F , and applying the change of variable formula for processes of locally bounded variation

(Dellacherie and Meyer (1982, Chapter VI, Section 92)) yields

F (X0,W0−) = e−rT F (XT+ ,WT ) −
∫ T

0

e−rt[(ρWt− + λHt)FW (Xt,Wt−)− rF (Xt,Wt−)] dt

−
∫ T

0

e−rtFX(Xt,Wt−) (dXd,c
t + Xtgt dt)

(62)

+

∫ T

0

e−rtFW (Xt,Wt−) dLc
t

−
∑

t∈[0,T ]

e−rt[F (Xt+ ,Wt)− F (Xt, Wt−)]

for all T ∈ [0, τ), where Xd,c and Lc stand for the pure continuous parts of Xd and L.

Imposing limited liability and incentive compatibility, along with the homogeneity of F , the

concavity of f and the fact that f ′+ ≥ −1, we show that, in expectation, the right-hand side

of (62) is greater than that of (61).

In the second step of the proof, we establish that the contract described in Proposition 3

yields the principal a value F (X0,W0−). This contract must therefore be optimal, since, from

the first step of the proof, F (X0,W0−) is an upper bound for the value that the principal

can derive from any contract that induces maximal risk prevention. Specifically, we start

from (62) and we use the properties of the contract spelled out in Properties 1 to 6, and

more precisely described in Proposition 3, to show that, in expectation, the right-hand side

of (62) is in this case equal to that of (61). Q.E.D.

Proof for Proposition 4 (sketch). In the first step of the proof, we establish that the

process {wTk
}k≥1 is Markov ergodic and then rely on the strong law of large numbers for

Markov ergodic processes (Stout (1974, Theorem 3.6.7)) to show that

(63) lim
t→∞

1

t

Nt−∑

k=1

ln

(
wTk

− b

b
∧ 1

)
= λ

∫

[b,2b)

ln

(
w − b

b

)
µw(dw),

P–almost surely. The main technical difficulty consists in proving that the integral on the

right-hand side of (63) is finite.

In the second step of the proof, we establish that

(64) lim
t→∞

1

t

∫ TN
t−

0

1{ws>wi} ds = 1− λ

∫

[b,wi)×R+

(tw,wi ∧ s) µw+⊗ λ(dw, ds),
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P–almost surely. The argument goes as follows. Consider for each k ≥ 1 the integral

Ik =
∫ Tk

Tk−1
1{ws>wi} ds, where T0 = 0 by convention. If wT+

k−1
≥ wi, then ws > wi for all

s ∈ (Tk−1, Tk], and thus Ik = Tk − Tk−1. If wT+
k−1

< wi and Tk − Tk−1 ≤ tw
T+

k−1
,wi , then

ws ≤ wi for all s ∈ (Tk−1, Tk], and thus Ik = 0. Last, if wT+
k−1

< wi and Tk−Tk−1 > tw
T+

k−1
,wi ,

then ws > wi for all s ∈ (Tk−1 + tw
T+

k−1
,wi , Tk], and thus Ik = Tk − Tk−1 − tw

T+
k−1

,wi . Summing

over k = 1, . . . , n and rearranging yields

(65)
1

n

∫ Tn

0

1{ws>wi} ds =
1

n

n∑

k=1

(Tk − Tk−1)− 1

n

n∑

k=1

[
tw

T+
k−1

,wi ∧ (Tk − Tk−1)
]
1{w

T+
k−1

<wi}

for all n ≥ 1. Since the random variables (Tk − Tk−1)k≥1 are independently and identically

distributed according to the exponential distribution λ, it follows from the strong law of

large numbers that the sequence
(

1
n

∑n
k=1(Tk−Tk−1)

)
n≥1

converges P–almost surely to 1/λ.

Furthermore, we show that the process {(wT+
k−1

, Tk − Tk−1)}k≥1 is Markov ergodic, with

invariant measure µw+⊗λ over [b, wp]× R+. Since the function (w, s) 7→ (tw,wi ∧ s)1{w<wi}

is measurable, positive and bounded above by (w, s) 7→ s, and hence µw+⊗λ–integrable,

it follows from the strong law of large numbers for Markov ergodic processes (Stout (1974,

Theorem 3.6.7)) that the sequence
(

1
n

∑n
k=1

[
tw

T+
k−1

,wi ∧ (Tk−Tk−1)
]
1{w

T+
k−1

<wi}
)

n≥1
converges

P–almost surely to

∫

[b,wp]×R+

(tw,wi ∧ s)1{w<wi} µw+⊗λ(dw, dt) =

∫

[b,wi)×R+

(tw,wi ∧ s) µw+⊗λ(dw, dt).

Using the fact that Nt−/t converges P–almost surely to λ as t goes to ∞ by the strong law

of large numbers for the Poisson process then yields (64).

In the last step of the proof, we establish that

(66) lim
t→∞

1

t

∫ t

TN
t−

1{ws>wi} ds = 0,

P–almost surely. Merging (63), (64) and (66) finally leads to (48). Q.E.D.

Proof of Proposition 5 (sketch). We first check that (49) holds uniformly in γ whenever

c is close enough to 0. This implies that the expression (48) for the long-run growth rate of

the firm simplifies to

(67) lim
t→∞

ln(Xt)

t
= λ

∫

[b,2b)

ln

(
w − b

b

)
µw(dw) + γ.

The remainder of the proof consists in constructing upper and lower bounds for the integral

on the right-hand side of (67).
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To construct the upper bound we first define wp = (µ − λC)/(ρ − r) and show that

wp < wp uniformly in γ. We then define auxiliary processes {wt}t≥0 and {lt}t≥0 by

wt = w0 +

∫ t−

0

{
(ρws + λb) ds− b

(
ws − b

b
∧ 1

)
dNs − dls

}
,

lt = max{w0 − wp, 0}+

∫ t

0

(ρwp + λb)1{ws+= wp} ds

for all t ≥ 0, that are independent of γ. It is easy to check that wt ≤ wt for all t ≥ 0 and

that {wTk
}k≥1 has a unique stationary initial distribution µw. Furthermore

∫

[b,2b)

ln

(
w − b

b

)
µw(dw) ≤

∫

[b,2b)

ln

(
w − b

b

)
µw(dw) < 0,

uniformly in γ, which yields the desired upper bound. The strict inequality follows from

the fact that for each k ≥ 1 and w ∈ (b, wp], there is a strictly positive probability that

wTk+1
< w given that wTk+1

≥ w, which implies that the lower bound of the support of the

stationary initial distribution µw of {wTk
}k≥1 is b. Therefore, for γ close enough to 0,

λ

∫

[b,2b)

ln

(
w − b

b

)
µw(dw) + γ < 0,

which establishes (50).

The lower bound is provided by the fact that
∫
[b,2b)

ln((w − b)/b) µw(dw) is finite (Section

E, Proof of Proposition 4, Claim 1, Step 2). Specifically, one can show that

∫

[b,2b)

ln

(
w − b

b

)
µw(dw) ≥ − λ

ρ− γ + λ
,

uniformly in γ. Therefore, if γ > λ2/(ρ− γ + λ),

λ

∫

[b,2b)

ln

(
w − b

b

)
µw(dw) + γ > 0,

which establishes (51). Q.E.D.

Proof for Proposition 6 (sketch). Consider for each k ≥ 1 the σ–fields

Fk
1 = σ((w0, T1 − T0), (wT1 , T2 − T1), . . . , (wTk−1

, Tk − Tk−1)),

F∞
k = σ((wTk−1

, Tk − Tk−1), (wTk
, Tk+1 − Tk), . . .),

and denote by

T =
∞⋂

k=1

F∞
k
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the corresponding tail σ–field. The first step of the proof consists in showing that for each

E ∈ T , either P[E] = 0 or P[E] = 1. To establish this zero-one law, we first show that, for

each ε > 0, there exists n0 ≥ 1 such that

(68)

∆(k, n, w, t, A) = P[(wTk+n−1
, Tk+n − Tk+n−1) ∈ A |(wTk−1

, Tk − Tk−1) = (w, t)]

−P[(wTk+n−1
, Tk+n − Tk+n−1 ∈ A)]

≤ ε

for all k ≥ 1, n ≥ n0, (w, t) ∈ [b, wp] × R+ and A ∈ B([b, wp] × R+). Following Bártfai and

Révész (1967, Example 2), one can then show that a consequence of condition (68) is that

for each ε > 0, there exists n0 ≥ 1 such that the following mixing property holds:

(69) P[E |Fk
1 ]−P[E] ≤ ε

for all k ≥ 1, n ≥ n0, and E ∈ F∞
k+n, P–almost surely. Fix some E ∈ T , so that in particular

E ∈ F∞
k+n for all n ≥ n0. Since ε is arbitrary, the mixing property (69) then implies that

P[E |Fk
1 ] ≤ P[E] for all k ≥ 1, P–almost surely. From Doob (1953, Chapter VII, Theorem

4.3), it follows that P[E |∨∞
k=1Fk

1 ] ≤ P[E], P–almost surely. Since E ∈ T ⊂ ∨∞
k=1Fk

1 , one

finally has P[E] =
∫

E
P[E |∨∞

k=1Fk
1 ] dP ≤ ∫

E
P[E] dP = P[E]2. Thus either P[E] = 0 or

P[E] = 1, as claimed.

The second step of the proof consists in showing that each of the events {limn→∞ XTn = 0}
and {limn→∞ XT+

n
= ∞} belongs to T . First consider {limn→∞ XTn = 0}. Fix some k0 ≥ 1.

For each n ≥ k0 + 1, one has

XTn = X0

N
T−n∏

k=1

(
wTk

− b

b
∧ 1

)
exp

(∫ Tn

0

γ1{ws>wi} ds

)

= X0

n−1∏

k=1

(
wTk

− b

b
∧ 1

)

exp

(
γ

{
n∑

k=1

(Tk − Tk−1)−
n∑

k=1

[
tw

T+
k−1

,wi ∧ (Tk − Tk−1)
]
1{w

T+
k−1

<wi}

})

= XTk0

n−1∏

k=k0

(
wTk

− b

b
∧ 1

)

exp

(
γ

{
n∑

k=k0+1

(Tk − Tk−1)−
n∑

k=k0+1

[
tw

T+
k−1

,wi ∧ (Tk − Tk−1)
]
1{w

T+
k−1

<wi}

})
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with
∏
∅ = 1 by convention, where the second equality follows from (65) and from the

fact that NT−n = n − 1. Since XTk0
is a strictly positive random variable, it follows that

{limn→∞ XTn = 0} ∈ F∞
k0+1. Since k0 is arbitrary, {limn→∞ XTn = 0} ∈ T . The proof for

{limn→∞ XT+
n

= ∞} is similar, observing that

XT+
n

= XT+
k0

n∏

k=k0+1

(
wTk

− b

b
∧ 1

)

exp

(
γ

{
n∑

k=k0+1

(Tk − Tk−1)−
n∑

k=k0+1

[
tw

T+
k−1

,wi ∧ (Tk − Tk−1)
]
1{w

T+
k−1

<wi}

})

and that XT+
k0

is a finite random variable.

Finally, to conclude the proof, one verifies that {limt→∞ Xt = 0} = {limn→∞ XTn = 0}
and {limt→∞ Xt = ∞} = {limn→∞ XT+

n
= ∞}. Q.E.D.

Proof of Proposition 7. Define wp
β0

as in the proof of Proposition 2. One can show that

(70) rf(wt) ≥ µ− λC + (ρwt + λb)f ′(wt)− λ[f(wt)− f(wt − b)]

for any value of wt > b, with equality if wt ∈ (b, wp
β0

] (Section D.2, Remark). Hence a

sufficient condition for (54) to hold is that the right-hand side of (70) be larger than the

right-hand side of (54), which is the case if

(71) ∆λ[C + bf ′(wt)] ≥ λ[f(wt)− f(wt − b)− bf ′(wt)]

since b = B/∆λ. The right-hand side of (71) is positive by concavity of f , and it is bounded

as f is affine over (wp
β0

,∞). Consider next the left-hand side of (71). By (2), one has C > b,

reflecting that maximal risk prevention is socially optimal in the first-best.31 Since f ′ ≥ −1,

this implies that the mapping C +bf ′ is positive and bounded away from 0. Since f depends

on B and ∆λ only through their ratio b, it follows that (71) is satisfied for any value of

wt > b when ∆λ is high enough, while B is proportionally adjusted so as to keep b constant.

The result follows. Q.E.D.
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Figure 1 This figure depicts the four regions that characterize the optimal contract. We
have represented a situation in which the contract is initiated at a point (X0,W0−) that lies
in the interior of the transfer region; when transfers take place later on, the state variables
move along the straight line Wt− = Xtw

p.
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Figure 2 The top panel depicts a sample path for the agent’s size-adjusted continuation
utility. The bottom panel depicts the corresponding path for the evolution of firm size.
Investment takes place as long as wt > wi. Losses occur at times T1 to T5. Because at T1,
T2 and T3, wTk

> 2b, losses at these times induce a drop of b in continuation utility and no
downsizing. By contrast, at T4 and T5, wTk

< 2b, so that losses at these times induce a drop
of wTk

−b in continuation utility, and downsizing by an amount XTk
−X+
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= (2−wTk

/b)XTk
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Figure 3 This figure depicts the joint evolution of firm size and of the agent’s continuation
utility for the sample path of the agent’s size-adjusted continuation utility illustrated on
Figure 2. Dashed curves correspond to downward jumps in the agent’s continuation utility
triggered by losses at times T1 to T5, and horizontal dashed lines correspond to downsizing
at times T4 and T5. Arrows indicate the direction of evolution of the state variables as long
as no losses occur.
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