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Suppose for example that I see one billiard ball moving in a

straight line towards another: even if the contact between

them should happen to suggest to me the idea of motion in

the second ball, aren’t there a hundred different events that

I can conceive might follow from that cause? May not both

balls remain still? May not the first bounce straight back

the way it came, or bounce off in some other direction?

All these suppositions are consistent and conceivable. Why

then should we prefer just one, which is no more consistent

or conceivable than the rest? Our a priori reasonings will

never reveal any basis for this preference. In short, every

effect is a distinct event from its cause. So it can’t be

discovered in the cause, and the first invention or conception

of it a priori must be wholly arbitrary. Also, even after it

has been suggested, the linking of it with the cause must

still appear as arbitrary, because plenty of other possible

effects must seem just as consistent and natural from

reason’s point of view. So there isn’t the slightest hope of

reaching any conclusions about causes and effects without

the help of experience.

(David Hume, Enquiry Concerning Human Under-

standing)
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“Thoughts without contents are empty.

Opinions without concepts are blind.”

Immanuel Kant

To my parents, Angela e Nando
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Abstract

This thesis deals with the broad problem of causality and endogeneity in econometrics when the

function of interest is estimated nonparametrically. It explores this problem in two separate frame-

works.

In the cross sectional, iid setting, it considers the estimation of a nonlinear additively separable

model, in which the regression function depends on an endogenous explanatory variable. Endo-

geneity is, in this case, broadly defined. It can relate to reverse causality (the dependent variable

can also affects the independent regressor) or to simultaneity (the error term contains information

that can be related to the explanatory variable). Identification and estimation of the regression

function is performed using the method of instrumental variables. In the time series context, it

studies the implications of the assumption of exogeneity in a regression type model in continuous

time. In this model, the state variable depends on its past values, but also on some external co-

variates and the researcher is interested in the nonparametric estimation of both the conditional

mean and the conditional variance functions.

This first chapter deals with the latter topic. In particular, we give sufficient conditions under

which the researcher can make meaningful inference in such a model. It shows that noncausality

is a sufficient condition for exogeneity if the researcher is not willing to make any assumption

on the dynamics of the covariate process. However, if the researcher is willing to assume that

the covariate process follows a simple stochastic differential equation, then the assumption of

noncausality becomes irrelevant.

Chapters two to four are instead completely devoted to the simple iid model. The function of

interest is known to be the solution of an inverse problem which is ill-posed and, therefore, it needs

to be recovered using regularization techniques.

In the second chapter, this estimation problem is considered when the regularization is achieved

using a penalization on the L2−norm of the function of interest (so-called Tikhonov regulariza-
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tion). We derive the properties of a leave-one-out cross validation criterion in order to choose the

regularization parameter.

In the third chapter, coauthored with Jean-Pierre Florens, we extend this model to the case in

which the dependent variable is not directly observed, but only a binary transformation of it. We

show that identification can be obtained via the decomposition of the dependent variable on the

space spanned by the instruments, when the residuals in this reduced form model are taken to have

a known distribution. We finally show that, under these assumptions, the consistency properties

of the estimator are preserved.

Finally, chapter four, coauthored with Frédérique Fève and Jean-Pierre Florens, performs a nu-

merical study, in which the properties of several regularization techniques are investigated. In

particular, we gather data-driven techniques for the sequential choice of the smoothing and the

regularization parameters and we assess the validity of wild bootstrap in nonparametric instru-

mental regressions.



Résumé

Cette thèse porte sur les problèmes de causalité et d’endogénéité avec estimation non-paramétrique

de la fonction d’intérêt. On explore ces problèmes dans deux modèles différents.

Dans le cas de données en coupe transversale et iid, on considère l’estimation d’un modèle additif

séparable, dans lequel la fonction de régression dépend d’une variable endogène. L’endogénéité est

définie, dans ce cas, de manière très générale : elle peut être liée à une causalité inverse (la variable

dépendante peut aussi intervenir dans la réalisation des régresseurs), ou à la simultanéité (les

résidus contiennent de l’information qui peut influencer la variable indépendante). L’identification

et l’estimation de la fonction de régression se font par variables instrumentales.

Dans le cas de séries temporelles, on étudie les effets de l’hypothèse d’exogénéité dans un modèle de

régression en temps continu. Dans un tel modèle, la variable d’état est fonction de son passé, mais

aussi du passé d’autres variables et on s’intéresse à l’estimation nonparamétrique de la moyenne et

de la variance conditionnelle.

Le premier chapitre traite de ce dernier cas. En particulier, on donne des conditions suffisantes pour

qu’on puisse faire de l’inférence statistique dans un tel modèle. On montre que la non-causalité

est une condition suffisante pour l’exogénéité, quand on ne veut pas faire d’hypothèses sur les

dynamiques du processus des covariables. Cependant, si on est prêt à supposer que le processus

des covariables suit une simple équation différentielle stochastique, l’hypothèse de non-causalité

devient immatérielle.

Les chapitres de deux à quatre se concentrent sur le modèle iid simple. Etant donné que la fonction

de régression est solution d’un problème mal-posé, on s’intéresse aux méthodes d’estimation par

régularisation.

Dans le deuxième chapitre, on considère ce modèle dans le cas d’un régularisation sur la norme

L
2 de la fonction ( régularisation de type Tikhonov). On dérive les propriétés d’un critère de

validation croisée pour définir le choix du paramètre de régularisation.

ix
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Dans le chapitre trois, coécrit avec Jean-Pierre Florens, on étend ce modèle au cas oú la variable

dépendante n’est pas directement observée mais où on observe seulement une transformation binaire

de cette dernière. On montre que le modèle peut être identifié en utilisant la décomposition de

la variable dépendante dans l’espace des variables instrumentales et en supposant que les résidus

de ce modèle réduit ont une distribution connue. On démontre alors, sous ces hypothèses, qu’on

préserve les propriétés de convergence de l’estimateur non-paramétrique.

Enfin, le chapitre quatre, coécrit avec Frédérique Fève et Jean-Pierre Florens, décrit une étude

numérique, qui compare les propriétés de diverses méthodes de régularisation. En particulier, on

discute des critères pour le choix adaptatif des paramètres de lissage et de régularisation et on

teste la validité du bootstrap sauvage dans le cas des modèles de régression non-paramétrique avec

variables instrumentales.
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Introduction

The assessment of causality in economic phenomena is one of the crucial, albeit among the most

challenging, tasks of a researcher.

Since Economics is the science of choices and decisions, it is essential to uncover the determinants

of these decisions and their causes. The difficulty of this task steams from the fact that the same

effect can have different causes. The job of the economist is, therefore, to provide a meaningful

theory that can reasonably exclude the irrelevant ones.

The job of the econometrician is slightly different and, perhaps, somehow a little easier. Given

an effect and a cause, we often ask ourselves what are the meaningful assumptions to be made in

order to retrieve the structural relation between the two.

Sometimes an economic model is straightforward about the relation between two phenomena,

especially when the cause involves natural facts that cannot be affected by economic decisions.

However, in many interesting cases, it is impossible to distinguish the effect from its cause. A

famous example is the one about the estimation of demand functions: a change in price affects

the quantity demanded, although a shift in the quantity supplied also impacts the final price.

Therefore, a very simple economic model, leaves the econometrician with a puzzling egg-chicken

problem, and the feeling that something shall be done about it in order to effectively assess the

impact on price changes on the quantity demanded.

The time dimension offers often a solution to this problem. A cause-effect relation can unfold in

time and give us further information about how to glue the puzzle. However, this brings in a new

spectrum of problems related to the assumptions we can meaningfully make on the dynamics of

the processes of interest.

There is a vast debate on the definition of exogeneity (in all its different nuances) and causality in

econometrics (see, for instance Florens and Heckman, 2003; Klein, 1990; Pearl, 2000).

This thesis does not contribute directly to this debate, as its author yet lacks of enough experience

1
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to enter it. By contrast, it tries to give a set of conditions and tools, in a particular class of models,

under which a researcher can carry nonparametric estimation, when assumptions about exogeneity

and causality (or noncausality) are made. Nonparametric estimation is considered here because of

its flexibility and the fact that many structural economic relations should be uncovered, at least in

a first step, using the information coming from the data and not from some arbitrary parametric

model.

When exogeneity breaks down, the assessment of causality requires to separate the common causes

underlying two phenomena from the true causal relation. These common causes are often unob-

served by the econometrician, and therefore left into the error term. Thus, endogeneity is defined,

in econometrics, as the failure of some type of independence condition between the cause and the

unobserved component. In this particular case, the structural relation between the cause and the

effect cannot be properly captured, as it is contaminated by the residuals.

Instrumental variables are standard tools to achieve identification and carry on estimation in

econonometric models with endogeneity. The underlying concept behind instrumental variables is

to remove the common causes from the econometric model in a way that the researcher is able to

extract the, hopefully, true relation between the cause and the effect.

In the standard iid setting, when an additive separable specification is considered and when the

researcher wants to estimate the structural relation nonparametrically, the function of interest

is known to be solution of an ill-posed inverse problem (see, for instance Darolles et al., 2011a;

Horowitz, 2011, and references therein). The illposedness arises from the fact that the mapping

defining the function has a noncontinuous inverse and, therefore, the solution cannot be found unless

this inverse mapping is transformed into a continuous one. This regularization of the mapping can

be done in several ways and many of them are considered in this thesis. However, regularization

boils down to the choice of a single constant parameter which slightly modifies the mapping. In

practice, in the context of nonparametric estimation of instrumental variable regressions, we lack

of data-driven methods to select this parameter, and applied researchers lack of guidance to apply

them.

The contribution of the second part of this thesis to this literature (chapters two to four) is thus

threefold:
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(i) It provides an optimal data-driven criterion for the selection of this regularization parameter

under a very specific regularization scheme (so-called Tikhonov regularization).

(ii) Extend the framework of nonparametric instrumental regressions to the case in which the

dependent variable is not directly observed, but only a binary transformation of it.

(iii) It provides a detailed explanation and gives practical tools to implement these regularization

methods, when the researcher wants to use nonparametric estimation with instrumental

variables.

The second contribution of this thesis is to link the concepts of causality and exogeneity in contin-

uous time models. In this kind of models, which were borrowed from mathematics, the dependent

state variable, that can be univariate or multivariate, follows a nonlinear stochastic differential

equation, driven by a Brownian noise and it is only affected by its past values. However, in eco-

nomics, we would like to be a little more general than that. We are interested in a state variable

that can depend on its past and on other covariates. This modelling device has been used in sev-

eral contributions to the theoretical and applied literature, but, to the best of our knowledge, no

existing work has dug into the main assumption that underlies meaningful inference. Exogeneity

is often assumed in a näıve way by considering mean independence conditions of the Brownian

component with respect to the covariate process. The question we ask, in the first chapter of this

thesis, is whether this assumption can stand still by itself or if it needs to be supported by further

hypotheses. The answer we provide is double edged. This assumption is meaningful only if we are

willing to completely specify the dynamics of the covariate process. In particular, if the covariate

process follows a simple stochastic differential equation, then the exogeneity assumption is valid.

However, if the researcher does not want to specify any particular dynamics for the covariate pro-

cess, then the assumption of noncausality of the state variable onto the covariate process is needed

to back exogeneity. Therefore, it is shown that noncausality is a sufficient condition for exogeneity

in continuous time regression models and that, in some particular cases, it can allow to consider

the covariate process to be long memory.

The exposition of the results of this research has privileged a temporal unfolding. Chapter 1 has

been the first to be written by the author and presents the latter contribution of this thesis.
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Chapters 2, 3 and 4 present instead the contribution to the nonparametric instrumental variable

literature in the iid setting. Chapter 2 discusses the results about the data-driven selection of

the regularization parameter in nonpametric instrumental regressions and it proves its optimality.

Chapter 3, coauthored with Jean-Pierre Florens, extends the nonparametric instrumental variable

framework to binary response models. Finally, Chapter 4, coauthored with Frédérique Fève and

Jean-Pierre Florens, presents the investigation about the small sample properties of various regu-

larization schemes and show the validity of wild bootstrap. Although Chapter 2 has been the last

one to be started, as it was inspired by some empirical observation when working on chapters 3

and 4, its results are used in the latter part of this work and are therefore presented first.



Chapter 1

Nonparametric Nonstationary Regressions in
Continuous Time

5
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Abstract

This paper extends nonparametric estimation to time homogeneous nonstationary diffusion pro-

cesses where the drift and the diffusion coefficients are function of a multivariate exogenous time

dependent variable Z. We base our estimation framework on a discrete sampling of data, following

a recent stream of literature. We prove almost sure convergence and normal asymptotic distri-

bution using the concept of multivariate occupation densities, in order to make the multivariate

kernel estimation meaningful in the context of nonstationary time processes. We widely discuss the

noncausality assumption in such a context and provide an extension in which Z is a long memory

process of dimension 1.

1.1 Introduction

In economics, a time homogeneous diffusion process in dimension one is often used to characterize

the behaviour of a given variable Yt, called the state variable (e.g., a stock price, the interest or

the exchange rate). The structural model is written under the form:

dYt = µ(Yt)dt + σ(Yt)dB∗
t (1.1.1)

where dB∗
t is the time increment of a standard Brownian motion, that is normally distributed with

zero mean and variance equal to the time increment dt1. The two functions µ(Yt) and σ(Yt) are

called the drift and the diffusion coefficient, respectively.

This paper copes with a more general structural form of the model, where the drift and the diffusion

coefficients can possibly be function of a time dependent variable Zt. Our data generating process

(DGP ) can therefore be written in the following way:

dYt = µ(Yt, Zt)dt + σ(Yt, Zt)dBt (1.1.2)

where dBt is the Brownian motion associated to the covariate depending process. This model can

1For a review of the properties of a standard Brownian motion, see Karatzas and Shreve (1991) and Øksendal
(2003)
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be interpreted as a general location scale model in continuous time. In particular, in this regression

model, the objects of interest are both the location and the scale function.

This structural model is interesting in different respects. First of all, it generalizes to continuous

Markov processes the economic idea that a given phenomenon may not be self-explanatory. Other

factors may intervene in determining the outcome of the state today. This may be summarized in

the concept of causality, which is central in econometrics but which has not yet been extensively

studied, to the best of our knowledge, in the case of continuous time diffusions. Furthermore, Zt

may be thought as a set of parameters which varies over time. The latent stochastic volatility model

can be therefore encompassed in this more general framework (e.g. see Bandi and Reno, 2009).

Finally, this model uses higher level assumption than a simple univariate diffusion, as the state

variable needs to be only conditionally Markov; and it is not reducible to a multivariate diffusion,

as we are not making any assumption about the structure of the covariate process Zt, which is

allowed to be any continuous Feller process. In that sense, we also allow for greater flexibility and

we discuss a particular case in which Zt exhibits long memory.

The approach of this paper is not completely new either to theoretical or to applied literature.

It belongs, in fact, to the more general class of semimartingale regression models, as defined in

Aalen (1980). Some authors have considered the estimation of the drift term in (1.1.2). A recent

nonparametric approach is presented in Stone and Huang (2003), who use a free knots regression

splines estimator, when continuous realizations of the process are observed and the diffusion term

is assumed to be known. Park (2008) proposes a parametric minimum distance estimator of the

drift, under a time change approach.

Applications of this model also counts several contributions, both in macroeconomics and in finance.

Creedy and Martin (1994) and Creedy et al. (1996) develop a framework in which the variable

Z represents market fundamentals that influence the behaviour of prices and US/UK exchange

rate respectively2. These papers however use parametric methods (i.e. maximum likelihood) and

maintain the assumption of stationarity. In a more recent paper, Fernandes (2006) generalizes the

same framework in order to supply a model for forecasting financial crashes, under the assumption

of a constant diffusion term, where Y denotes market indexes or long-term interest rate and Z

2For a more recent application see also Jäger and Kostina (2005)
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represents market fundamentals (i.e. dividends, short-term interest rate).

Beside ergodic stationarity, the existing theoretical and applied literature overlooks the assumption

of strict exogeneity in such models. While it is easy to interpret exogeneity in discrete time, when

it comes to continuous time models, exogeneity strictly relates to the causality of the state variable

Y onto the covariate process Z. In this paper, we show that noncausality is a sufficient but not

necessary condition for correct statistical inference in model (1.1.2). We give explicit examples in

which the failure of noncausality does not harm our nonparametric estimators and other examples

in which it does.

For instance, in a monetarist model, one may reasonably expect exchange rate dynamics to affect

money demand and supply if the country under study is big enough. This would lead to a two-

way causality between exchange rate and its covariates. Therefore, the underlying assumptions

about the dynamics of money demand and supply and the type of causality arising between these

covariates and the exchange rate become essential to prove the goodness of our inference.

The novelty of this work is thus twofold. On the one hand, it clearly defines the assumption of

strict exogeneity in such a continuous time context. On the other hand, it focuses on nonpara-

metric estimation of both the location and the scale parameter while relaxing the assumption of

stationarity, following a recent stream of literature (Bandi and Phillips, 2003; Bandi and Nguyen,

2003, among others)3. Finally, it presents and discusses a very simple approach to the uncovered

interest parity of such a nonparametric approach.

Nonparametric estimation of stochastic diffusion processes hinges on a considerably rich literature.

The main objects of interest being the drift and the diffusion coefficients, it may be difficult to

identify them without further assumptions when the data are discretely sampled, because of the

so-called aliasing problem (Phillips, 1973; Hansen and Sargent, 1983). Furthermore, while the drift

term is of order dt, the diffusion term is of order
√
dt, which means that much of the infinitesimal

variation in the process reflects the latter more than the former. This entails the impossibility to

show consistency of the drift estimator as the sample frequency increases, i.e. dt → 0 (so-called

infill asymptotics).

3Interested readers are referred to Bandi and Phillips (2010), for a complete review of the existing econometric
literature on Nonparametric Estimation for Nonstationary Processes in Continuous Time.
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A possible way to correctly identify both the diffusion and the drift coefficient is to assume that

the process is time stationary, so that a time invariant density π(y) exists. The backward and the

forward Kolmogorov equations allow then to specify a relation between this density, the drift and

the diffusion coefficients.

Nevertheless, the assumption of stationarity seems somehow too restrictive and it does not take

into account many interesting phenomena in economics. Relaxing the assumption of stationarity

requires careful handling of kernel estimators, which is not meaningful any more as an estimator of

the invariant density. An interpretation of the kernel estimator in time series, both in the univariate

and multivariate case, may be given in terms of occupation densities (Geman and Horowitz, 1980).

Namely, in the univariate case, Phillips and Park (1998) show the convergence of the nonparametric

kernel estimator to the chronological local time of the stochastic process (see, e.g. Revuz and Yor,

1999, Ch. VI, for a review of the properties of local time).

Bandi and Phillips (2003) are then able to overcome the identification issues without assuming

stationarity. Harris recurrence, which is a substantially milder assumption, is required instead. To

ensure consistency of the drift term, they couple infill asymptotics with lengthening time span of

observations, i.e. T →∞ (so-called long span asymptotics).

In related papers, Locherbach and Loukianova (2008) and Bandi and Moloche (2008) use the same

framework under the assumption of Harris recurrence for the joint process to prove convergence of

such an estimator in the multivariate case.

In this paper, we show that their convergence results can be extended to the nonparametric esti-

mator of the drift and the diffusion in model (1.1.2).

However, while we show the properties of our estimation for any dimension d of the covariate

process, we run simulations for the case in which d = 1. As pointed out by Schienle (2011), Harris

recurrence is a property which is rarely satisfied when the dimension of the process increases. We

do not tackle this question here, as it goes beyond the scope of the present paper. We therefore

acknowledge the limited applicability of this framework that may be a topic for further research.

The paper is structured as follows. Section 1.2 set up the general framework. Section 1.3 overviews

the theoretical foundations on which this work is based upon. Section 1.4 provides the main
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estimation framework and the asymptotic properties. Section 1.5 discusses an extension to long

memory processes. Section 1.6 includes a simulation study which draws the finite sample properties

of the estimator. Finally, section 1.6 outlines the practical relevance of our approach by discussing

an application to the Uncovered Interest Parity.

1.2 Motivations and theoretical foundations

The possibility to meaningfully define conditional moments for continuous time processes is a

necessary condition to perform statistical inference based on sample analogues. Diffusion type

processes are extremely convenient in this respect, as the definition of conditional moments is

straightforward under the Markov property. The goal of this section is therefore to show that,

under suitable assumptions on the conditional and the marginal process, we can make our data

generating process being a diffusion process.

We suppose here to observe a multivariate Markov continuous time process {Zt ∶ t ≥ 0} of given

dimension d; and a scalar process {Yt ∶ t ≥ 0} which is Markov conditionally on Zt. We denote by

Xt the joint process {Yt, Zt} which takes value in a Polish space (E,E).

Define (Ωz,Z,Pz) and {Zt}t≥0 the probability space and the natural filtration associated to the

process Zt, respectively.

We further consider a univariate Brownian motion {Bt ∶ t ≥ 0} defined on the probability space

(ΩB,FB,PB) and adapted to a filtration {FBt }t≥0. We assume Bt to be a Zt−adapted martingale,

so that E [dBt∣Zt] = 0.

The joint filtration, generated by the process {Xt ∶ t ≥ 0} is set as follows:

Xt ∶= Yt ∨Zt = σ(y0) ∨Zt ∨FBt = σ (y,Zs,Bs; 0 ≤ s ≤ t) (1.2.1)

where y0 is the starting value of the process Y , which is assumed to be independent of Z. We

assume all filtrations satisfy the usual conditions (or hypotheses), i.e. they contain all the sets of

zero measure for t = 0 and they are right-continuous.

In our framework, the filtration generated by the process Zt enters the construction of the filtration
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under which the process Yt is defined. To ensure exogeneity of the joint process, we need to impose

some conditions on the marginal process Z.

Definition 1.2.1 (Strong global noncausality, Florens and Fougere, 1996). Xt does not

strongly cause Zt given Zs if:

Zt á Xs∣Zs ∀s, t ∈ [0, T ] ∎

This properties is trivially satisfied if t ≤ s. Nevertheless, if Xt does not strongly cause Zt, every

Zt-adapted martingale is also a {Xt}-martingale (Florens and Fougere, 1996, Theorem 2.2).

The assumption of strong global noncausality is simply stating that, conditionally on the observa-

tion of the process Z at time s, the joint process is not delivering any additional information about

the marginal process Zt, ∀t. However, the most important implication of this hypothesis is that it

immediately entails the preservation of the martingale property of Bt under the joint filtration.

It is also important to notice that, in this context, the assumption of global noncausality is equiv-

alent to the assumption of instantaneous noncausality (in a Granger sense) and to any other

noncausality assumption, as Z is also the conditioning filtration (see, Comte and Renault, 1996;

Florens and Fougere, 1996). Therefore, using the most restrictive assumption of noncausality only

serves maintaining the martingale property.

Under the conditional markovianity of Yt and noncausality, we can give to our regression model

the attribute of a stochastic differential equation (Karatzas and Shreve, 1991). The conditional

diffusion process is thus defined as::

dYt = µ(Yt, Zt)dt + σ(Yt, Zt)dBt (1.2.2)

where µ(⋅, ⋅) ∶ R × Rd → R and σ(⋅, ⋅) ∶ R × Rd → R, which are our objects of interest in what

follows. This model can be considered as an extension of the conditional mean model studied in

Park (2008). We extend his model in two respects. First of all, we allow the volatility term to

also depend on Zt. Second, we allow for any (possibly nonlinear) specification of the drift and the

diffusion term4.
4Park (2008) considers as an error term in his model any continuous martingale with bounded variations. How-
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Remark 1. Noncausality is a sufficient but not necessary condition for correct inference in a con-

ditional continuous time model. For instance, consider Zt, a Brownian motion; Zt its natural

filtration; and Wt another Brownian motion, adapted to Zt. Then, we can generate Bt so that:

Bt = ρZt +
√

1 − ρ2Wt

where ρ ∈ (0,1). In this case, we generate instantaneous causality in the sense of Comte and

Renault (1996). However, since dBt are iid increments independent of any filtration, instantaneous

causality does not harm inference in model (1.2.3). ∎

Remark 2 (Simultaneous equations in continuous time). Consider the previous example and our

conditional diffusion process. Suppose, Zt and Bt are correlated Brownian motions and we are

interested in the estimation of the drift term. However the true DGP writes as:

dYt = µ(Yt, Zt)dt + σ(Yt, dZt)dBt

where dZt is the infinitesimal increment of Zt. In this particular example, instantaneous causality is

coupled with predictability of Zt with respect to the joint filtration Xt, i.e. dBt is not a martingale

on Xt, as a part of it can be predicted through dZt. In this case, our approach cannot deliver

a consistent estimation of the drift. We can consider this model as an extention of simultaneous

equations in continuous time.

For ease of notations, we write our DGP as follows:

dYt = µ(Xt)dt + σ(Xt)dBt (1.2.3)

where Xt denotes the joint process.

We assume the following conditions to hold in studying (1.2.3).

Assumption 1. The functions µ(⋅) and σ(⋅) satisfy the following assumptions:

(i) They are measurable on the σ-field generated by all the Borel sets on E and they are at least

ever, up to a time change, any continuous martingale can be rewritten as a Dambis-Dubins-Schwarz Brownian
motion.



13

twice continuously differentiable with respect to both their arguments;

(ii) They satisfy local Lipschitz and growth conditions in Xt, i.e. for every compact set B ∈ E,

there exists a constant, C, such that, for any realization x1 and x2 in B,

∥µ(x1) − µ(x2)∥ + ∥σ(x1) − σ(x2)∥ ≤ C∥x1 − x2∥ (1.2.4)

and

∥µ(x1)∥2 + ∥σ(x1)∥2 ≤ C2 (1 + ∥x1∥2) (1.2.5)

(iii) Nondegeneracy (ND) - σ2(⋅) > 0 on E

(iv) Local Integrability (LI) with respect to Yt, for any realization of the process Zt = z:

∀(y1, z) ∈ E,∃δ > 0 such that ∫
y1+δ

y1−δ

∣µ(ζ, z)∣dζ
σ2(ζ, z) <∞ ∎ (1.2.6)

Conditions (ii) and (iii) (Karatzas and Shreve, 1991, Theorem 2.2, p. 289) ensure the existence of

a strong solution to equation (1.2.3). We can therefore write the usual Itô’s stochastic differential

equation, which is the solution of our DGP in the following form:

Yt = y + ∫
t

0
µ(Xs)ds + ∫

t

0
σ(Xs)dBs (1.2.7)

where y is an initial condition independent of the Brownian motion Bt and Yt is adapted to the

filtration Yt ∨Zt.

The drift and the diffusion coefficients can be thus defined as in the standard framework. Take any

function f ∈ C2 of Yt, so to preserve the semimartingale properties of our solution (see Protter, 2003,

Theorem 32, p. 174). Using Itô’s lemma and taking expectation over any couple of realizations

(y, z), the infinitesimal generator L of equation (1.1.2) can be defined as:

lim
t→0

1

t
Ex [f(Yt) − f(y)] = (Lf)(y) (1.2.8)

Taking f(Yt) = Yt, we obtain the drift coefficient as the conditional instantaneous change in the
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process:

Ex [Yt − y] = tµ(x) + o(t) (1.2.9)

while, taking f(Yt) = (Yt − y)2, we obtain the diffusion coefficient as the conditional instantaneous

change in the volatility of the process,

Ex [(Yt − y)2] = tσ2(x) + o(t) (1.2.10)

We can then proceed as in any standard nonparametric inference problem for conditional moments,

using sample analogues to identify conditional expectations over infinitesimal time distances. In

practise, the exogenous case is encompassed in the existing literature for stochastic processes. In

the next sessions, we show that the asymptotic properties of the drift and the diffusion term are

equivalent to those of a multivariate diffusion when the dimension is equal to d + 1.

1.3 Additive Functionals and Occupation Density

Before to explicitly derive the nonparametric estimators of the drift and the diffusion coefficient, we

need to set up the main definitions and theorems which allow us to meaningfully define a standard

kernel estimator in such a nonstationary context.

We assume the following conditions about the joint process to hold.

Assumption 2. (i) Xt is Harris recurrent;

(ii) Under Xt, Xt is a special semi-martingale and it admits a Doob-Meyer decomposition of the

type:

Xt =Ht +Mt ∀t ∈ (0, T ]

where Ht is a Xt-predictable process and Mt is a Xt-local martingale such that E(Mt∣Xs) =

0,∀s < t. ∎

In particular, since every Xt-martingale can be written as a time changed Dambis-Dubins-Schwarz

Brownian motion (Revuz and Yor, 1999, Ch. V, Theorem 1.6), Xt is a Brownian semimartingale.
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Condition (i) is the minimal requirement to perform nonparametric inference on the joint process.

It is possible to show that conditional stationarity of Y given Z and Harris recurrence of Z are

sufficient conditions to obtain Harris recurrence of the joint process (see the Appendix). However,

it is not possible to assume a more general structure on the conditional process and still to obtain

condition (i).

Example 1. Consider a conditional Ornstein-Uhlembeck process, where the drift function µ is

linear and the diffusion function is a constant:

dYt = (θ1(Zt) − θ2Yt)dt + θ3dBt

where θ2 > 0 (so that the process is mean reverting) and any function θ1 of Zt. This process has

a stationary distribution given Z = z. Therefore, for Z being Harris recurrent, the joint process

(Y,Z) will also be Harris recurrent. ∎

For any measurable Borel set B ⊂ E , we choose a measure m. This measure is invariant if and only

if,

m(B) = ∫
E
P (X(x)

t ∈ B)m(dx) (1.3.1)

where X
(x)
t denotes the realization of the joint process at time t for a given initial condition x.

In particular, Harris recurrence is a sufficient condition for the existence of an invariant measure,

unique up to multiplication by a constant and absolutely continuous with respect to the Lebesgue

measure λ on Rd+1 (i.e. m ≪ λ). The absolute continuity of m further implies that m admits

a density with respect to the Lebesgue measure, i.e. a random function pt(⋅) such that m(dx) =

pt(x)λ(dx).

Definition 1.3.1 (Höpfner and Löcherbach, 2003). An additive functional of X is a process A =

(At)t≥0, such that:

(i) A is X−adapted, A0 = 0;

(ii) All paths of A are nondecreasing and right-continuous;
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(iii) For all s, t ≥ 0, we have At+s = At +As ∗ θt, where θt is a family of shift operators for X. ∎

We focus our attention here to integrable additive functionals. For every Borel set B, the measure

ν defined by the functional A for each t is equal to:

νA(B) = Em (∫
1

0
1B(Xs)dAs) =

1

t
Em (∫

t

0
1B(Xs)dAs)

A functional is termed integrable when:

∥ νA ∥= νA(E) = Em(A1) <∞

In particular, when the functional At = t, for each Borel set B, we can define:

ηBt = ∫
t

0
1B(Xs)ds , t ≥ 0

which heuristically counts the amount of times for which Xs belong to B, for T → ∞. In this

particular case, we obtain that:

Em (∫
1

0
1B(Xs)ds) =m(B)

which defines the occupation measure for the set B (Geman and Horowitz, 1980), i.e. the time

spent by the process in the set B up to time t. Therefore, the measure defined by the constant

functional on each subset of E is equivalent to the invariant measure of Xt. Since the invariant

measure admits a density with respect to the Lebesgue measure, there exists a random function

pt(⋅), such that:

m(B) = ∫
B
pt(x)λ(dx)

We define , following this terminology, pt(⋅) to be the occupation density of X. In dimension 1,

the invariant measure is defined to be the sojourn time of a given process X (Park, 2005), while

the random function pt(x) corresponds to the local time of the process (Borodin, 1989). This is

formally defined as the Radon-Nykodim derivative of the sojourn time with respect to the Lebesgue

measure. Our approach can be thus considered a generalization of the univariate case.
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Remark 3. For the stationary case we have that:

∫ pt(x)λ(dx) = 1

so that pt(x) = π(x) is the invariant stationary density of Xt. ∎

The following theorem gives the condition for weak convergence of additive functionals of a Harris

recurrent process X:

Theorem 1.3.2 (Höpfner and Löcherbach, 2003). For a given constant α ∈ (0,1] and a function

l(⋅) slowly varying at infinity5, the following are equivalent:

(i) For every nonnegative measurable function g(⋅) with 0 <m(g) <∞, one has regular variation

at 0 of resolvants6 in X if

(R1/tg)(x) = Ex (∫
∞

0
e−

1
t
sg(Xs)ds) ∼ tα

l(t)m(g) , t→∞ (1.3.2)

(ii) every additive functional A of X with 0 < Em(A1) <∞, one has:

(At)t≥0

tα/l(t) → Em(A1)Wα as t→∞ (1.3.3)

under the Skorohod topology, where Wα is the Mittag-Leffler process of index α7. ∎

Remark 4. Equation 1.3.2 simply states that we are restricting our attention to null recurrent

diffusions with regular variation of the resolvent at 0. In the more general case, one should define

the kernel estimator for any function vt = Em [∫ t0 g(Xs)ds] (Locherbach and Loukianova, 2008).

In our case we take vt = tα/l(t). Moreover, equation 1.3.2 is equivalent to the condition given by

Bandi and Moloche (2008, Theorem 2), where CX =m(g) <∞. ∎

Remark 5. For stationary processes, we simply set α = 1, l(t) = 1 and the Mittag-Leffler process

W 1 = Id (the deterministic process) by definition. Thus, for any measurable bounded function

5A function f ∶ [a,∞) → (0,∞), a > 0 is said to be slowly-varying at infinity in the sense of Karamata if
limx→∞ f(λx)/f(x)→ 1, for λ > 0.

6For α > 0 and a continuously differentiable function g(⋅), we define the resolvent operator Rα, by (Rαg)(x) =
Ex (∫

∞
0 e−αsg(Xs)ds). Rαg is a bounded continuous function (Øksendal, 2003, Definition 8.1.2 and Lemma 8.1.3,

pg. 135).
7Interested readers are referred to Höpfner and Löcherbach (2003), for general definition and properties of Mittag-

Leffler processes.
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f(⋅), we obtain convergence by equation 1.3.3, i.e.:

1

T
∫

T

0
f(Xs)ds

pÐ→ ∫ f(x)π(x)dx = E(f(x))

where π(⋅) is the invariant stationary probability density. ∎

1.4 Estimation and Asymptotic Properties

For simplicity, we suppose that the process {Xt, t ≥ 0} is sampled at equispaced times in the interval

[0, T ], where T is a strictly positive number. If n is the sample size in [0, T ], we obtain that the

time lag between two observations is equal to ∆n,T = T
n . The observed sample is therefore denoted

as Xi∆n,T
for all i = 1,⋯, n.

Under these hypotheses and following the definitions given in equations (1.2.9) and (1.2.10), we

can estimate the drift and the diffusion coefficients as follows:

µ̂n,T (x) =
1

∆n,T

1
hd+1
n,T

n−1

∑
i=1

Khn,T (Xi∆n,T
− x) (Y(i+1)∆n,T

− Yi∆n,T
)

1
hd+1
n,T

n

∑
i=1

Khn,T (Xi∆n,T
− x)

(1.4.1)

σ̂2
n,T (x) =

1

∆n,T

1
hd+1
n,T

n−1

∑
i=1

Khn,T (Xi∆n,T
− x) (Y(i+1)∆n,T

− Yi∆n,T
)2

1
hd+1
n,T

n

∑
i=1

Khn,T (Xi∆n,T
− x)

(1.4.2)

where,

Khn,T (Xi∆n,T
− x) =K

⎛
⎜
⎝
Yi∆n,T

− y
h
(y)
n,T

⎞
⎟
⎠

d

∏
j=1

K
⎛
⎜
⎝
Zj,i∆n,T

− zj
h
(z)
n,T

⎞
⎟
⎠

where h
(y)
n,T and h

(z)
n,T are two bandwidths parameters for the process Yt and Zt respectively. For

notational brevity, we also suppose that h
(y)
n,T = h

(z)
n,T . For further ease of notations, we denote

x = (y, z).

The kernel functions K(⋅) and K(⋅) satisfy the following conditions.

Assumption 3. - (Pagan and Ullah, 1999; Bandi and Moloche, 2008; Ruppert and Wand, 1994)
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(i) The function K(⋅) is a non negative, bounded, continuous, and symmetric function such that:

∫
∞

−∞
K(u)du = 1 ∫

∞

−∞
K2(u)du <∞ and ∫

∞

−∞
u2K(u)du <∞

(ii) The function K(⋅) is a bounded kernel, such that ∫ uu′K(u)du = ρ2(K)I, where ρ2(K) ≠ 0 is

a scalar and I is the identity matrix of dimension d + 1.

(iii) The function K(⋅) is locally Lipschitz, i.e.

∣K(x) −K(v)∣ ≤D(v, ε)∥x − v∥ (1.4.3)

where:

D(v, ε) ∶= sup{∣K(x) −K(v)∣
∥x − v∥ , s.t. ∥x − v∥ ≤ ε} (1.4.4)

is the non negative local-Lipschitz constant function, such that:

lim
ε→0

Em (D(v, ε)) <∞ ∎ (1.4.5)

While many of these assumptions are standard in the nonparametric literature, assumption (iii)

deserves some additional discussion. The multivariate kernel function is often supposed to satisfy

some global regularity condition, e.g. some Hölder type of continuity. However, in the nonsta-

tionary case, any function which satisfies such a kind of global uniform continuity will explode as

T → ∞, when it is integrated with respect to time. Therefore, we require the kernel function to

satisfy this uniform condition only locally in an open ball of radius ε. In particular,we suppose

that local-Lipschitz constant function (as defined e.g. in Borwein et al., 2003) is itself a random

variable and that it is integrable with respect to the invariant measure 8.

Under assumption (3), we can thus define the kernel estimator of the occupation density of X:

L̂X(T,x) = ∆n,T

hd+1
n,T

n

∑
i=1

Khn,T (Xi∆n,T
− x) (1.4.6)

8This assumption can be considered a stronger version of the joint Hölder continuity of the occupation density
for Gaussian field. For a review on this topic see, e.g., Dozzi (2003, p. 146).
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Using theorem 1.3.2, it is possible to show the weak convergence of this estimator towards the

Radon-Nikodym derivative of m with respect to the Lebesgue measure on Rd+1.

Corollary 1.4.1. Consider the following additive functional of Xs:

Φt = ∫
t

0

1

hd+1
n,T

Khn,T (Xs − x)ds

which is strictly positive and integrable ∀t ≥ 0. The kernel estimator (1.4.6) converges almost surely

to Φt for n,T →∞, provided that:

L̂X(T,x)
hd+1
n,T

(∆n,T log(1/∆n,T ))1/2 a.s.ÐÐ→ 0

Moreover, when hn,T → 0, we obtain:

Φt

tα/l(t) → Cp∞(x)Wα as t→∞

by theorem 1.3.2, where C is a process specific constant.

Proof. See the Appendix. ∎

Remark 6. Under stationarity, (1.4.6) is a well defined estimator of the stationary density, as

L̂X(T,x)
T

pÐ→ π(x). ∎

Remark 7. The estimator presented here has been firstly proposed by Bandi and Moloche (2008)

and it is a generalization to multivariate processes of the local time estimator for scalar diffusion

process presented in Florens-Zmirou (1993).

1.4.1 Estimation and asymptotic distribution of the drift coefficient

In this section we report the convergence properties of the drift estimator.

Theorem 1.4.2. Almost sure convergence of the drift estimator.

Suppose that:

L̂X(T,x)
hd+1
n,T

(∆n,T log(1/∆n,T ))1/2 a.s.ÐÐ→ 0
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with L̂X(T,x)hd+1
n,T → ∞ with ∆n,T → 0, hn,T → 0 and n,T → ∞, then the estimator of equation

(1.4.1) converges almost surely to the drift coefficient. I.e.:

µ̂n,T (x)
a.s.ÐÐ→ µ(x) (1.4.7)

Proof. See the Appendix. ∎

Theorem 1.4.3. Asymptotic distribution of the drift estimator.

Suppose that:

L̂X(T,x)
hd+1
n,T

(∆n,T log(1/∆n,T ))1/2 a.s.ÐÐ→ 0

L̂X(T,x)hd+1
n,T

a.s.ÐÐ→∞

with hn,T = Oa.s (L̂X(T,x)− 1
d+1 ), ∆n,T → 0, hn,T → 0 and n,T → ∞, then the estimator described

in equation (1.4.1) converges in distribution to a Gaussian random variable.

√
L̂X(T,x)hd+1

n,T (µ̂n,T (x) − µ(x) − Γµ(x))
dÐ→ σ(x)N (0,(∫ K2(u)du))

(1.4.8)

where Γµ(x) is a bias term, equal to:

Γµ(x) = h2
n,Tρ2(K) (tr {Dµ,p(x)} +

1

2
tr {Hµ(x)}) (1.4.9)

where,

Hµ(x) = (∂
2µ(x)
∂xj∂xl

)
d+1

j,l=1

Dµ,p(x) = (∂µ(x)
∂xj

∂pt(x)
∂xl

)
d+1

j,l=1

Instead if, everything being equal:

L̂X(T,x)hd+5
n,T

a.s.ÐÐ→ 0

the bias term disappears asymptotically.

Proof. See the Appendix. ∎

Remark 8. The random speed of covergence of the drift estimator depends on the occupation

density of the joint process. This is a natural consequence of considering the occupation density as
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the number of visits of the process in a small set which diverges to infinity as the time span grows.

Therefore, the higher the dimension d of the covariate process, the slower the speed of convergence.

Together with the standard dimensionality problem in nonparametric statistics, Bandi and Moloche

(2008) refer to it as double curse of dimensionality.

Remark 9 (Bandwidth choice). The asymptotic mean squared error (AMSE) is equal to:

O (h4
n,T ) +O

⎛
⎝

1

hd+1
n,T L̂

X(T,x)
⎞
⎠

This suggests the bandwidth parameter for the drift term being set proportionally to L̂X(T,x)− 1
d+5 .

As already pointed out in related papers, drift bandwidth selection is locally adapted in order to

account for the number of visits to the point in which the estimation is performed.

Remark 10 (Stationary case). In the stationary case, we showed that L̂X(T,x) pÐ→ Tπ(x). There-

fore, our result can be restated as follows:

√
Thd+1

n,T (µ̂n,T (x) − µ(x) − Γµ(x)) dÐ→ σ(x)N (0,(∫ K2(u)du
π(x) ))

as Thd+1
n,T →∞. The bias term is now equal to:

h2
n,T

π(x)ρ2(K)
⎛
⎝
tr

⎧⎪⎪⎨⎪⎪⎩
(∂µ(x)
∂xj

∂π(x)
∂xl

)
d+1

j,l=1

⎫⎪⎪⎬⎪⎪⎭
+ 1

2
tr

⎧⎪⎪⎨⎪⎪⎩
(∂

2µ(x)
∂xj∂xl

)
d+1

j,l=1

⎫⎪⎪⎬⎪⎪⎭

⎞
⎠

This is a standard results in conditional moments estimation (see, e.g. Pagan and Ullah, 1999, p.

101).

1.4.2 Estimation and asymptotic distribution of the diffusion coefficient

In this section we report the convergence properties of the diffusion estimator.

Theorem 1.4.4. Almost sure convergence of the diffusion estimator.

Suppose that:

L̂X(T,x)
hd+1
n,T

(∆n,T log(1/∆n,T ))1/2 a.s.ÐÐ→ 0

with ∆n,T → 0, hn,T → 0 and n,T → ∞, then the estimator of equation (1.4.2) converges almost
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surely to the diffusion coefficient. I.e.:

σ̂2
n,T (x)

a.s.ÐÐ→ σ2(x) (1.4.10)

Proof. See the Appendix. ∎

Theorem 1.4.5. Asymptotic distribution of the diffusion estimator.

Suppose that:

L̂X(T,x)
hd+1
n,T

(∆n,T log(1/∆n,T ))1/2 a.s.ÐÐ→ 0

L̂X(T,x)hd+1
n,T

a.s.ÐÐ→∞

with ∆n,T → 0, hn,T → 0 and n,T →∞, so that:

¿
ÁÁÁÀhd+5

n,T L̂
X(T,x)

∆n,T

a.s.ÐÐ→ 0

then the estimator described in equation (1.4.2) converges in distribution to a Gaussian random

variable.

¿
ÁÁÁÀ L̂X(T,x)hd+1

n,T

∆n,T
(σ̂2

n,T (x) − σ2(x))

dÐ→ 2σ2(x)N (0,(∫ K2(u)du))

(1.4.11)

If, instead, ¿
ÁÁÁÀhd+5

n,T L̂
X(T,x)

∆n,T
= Oa.s.(1)

then, there is an asymptotic bias term Γσ
2(x), equal to:

Γσ
2(x) = h2

n,Tρ2(K) (tr {Dσ2,p(x)} +
1

2
tr {Hσ2(x)}) (1.4.12)

where,

Hσ2(x) = (∂
2σ2(x)
∂xj∂xl

)
d

j,l=1

Dσ2,p(x) = (∂σ
2(x)
∂xj

∂pt(x)
∂xl

)
d

j,l=1
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Proof. See the Appendix. ∎

Remark 11. It is also possible to identify the diffusion term for any fixed time horizon T . This

has been already pointed out in Bandi and Moloche (2008) and goes back to a result first shown

in Brugière (1993). The general results can also be applied to our setting. In the fixed T case, if

one is ready to assume that:

hd+1
n,T = Oa.s. (

√
∆n,T log(1/∆n,T ))

it is possible to show the consistency and asymptotic normality of the diffusion estimator. In

particular, for ∆n,T , h
d+1
n,T → 0 and n→∞, it is possible to show that:

¿
ÁÁÀ hd+1

n,T

∆n,T
(σ̂2

n,T (x) − σ2(x)) ∼MN (0,
4σ4(x)
L̂X(T,x)

)

where, MN denotes a mixed normal distribution, with mixing factor L̂X(T,x). ∎

Remark 12. The asymptotic mean squared error (AMSE) is equal to:

O (h4
n,T ) +O

⎛
⎝

∆n,T

hd+1
n,T L̂

X(T,x)
⎞
⎠

This suggests to use again an adaptive scheme to set the bandwidth for the diffusion term. In

particular, we oversmooth in areas that are less visited by the process and undersmooth in areas

that are often visited. The diffusion bandwidth is therefore set proportionally to ( L̂
X(T,x)
∆n,T

)
− 1
d+5

.

However, as long as the diffusion term can be identified for fixed T , we can also choose a constant

bandwidth which is going to be proportional to n−1/(d+5). ∎

1.5 An extension to long memory processes

The results presented so far are obtained under the assumption that the joint process Xt is a

Markov process. However, it is possible to extend this model to allow for the marginal process

Zt to be a long memory process (e.g. fractional Brownian motion, fBM, or stochastic differential

equations driven by a fBM), at least when Zt is defined on the real line.



25

The problem which arises in this case is that processes driven by fBM are not semi-martingales

and are not Markov9. Therefore our assumption 2 would completely fail.

Let {BH
t , t ≥ 0} to be a fBM, with Hurst parameter equal to H ∈ (0,1) and suppose that Zt follows

a stochastic differential equation driven by a BH
t ,

Zt = ∫
t

0
ψ(s)ds + ∫

t

0
ξ(s)dBH

t

where {ψ(t), t ≥ 0} is a Zt-adapted process and ξ(t) is a non-vanishing deterministic function. Al-

though Zt is not a semimartingale in this case, one can associate to it a semi-martingale {Jt, t ≥ 0},

called the fundamental semi-martingale such that the natural filtration Jt of the process J coin-

cides with Zt (Kleptsyna et al., 2000). Therefore, one can perform inference on Yt in model 1.2.3

using Jt instead of Zt without losing any information.

Define, for 0 < s < t:

kH (t, s) = κ−1
H s

1
2
−H(t − s)

1
2
−H , κH = 2HΓ(3

2
−H)Γ(H + 1

2
)

wHt = λ−1
H t

2−2H , λH =
2HΓ (3 − 2H)Γ (H + 1

2
)

Γ (3
2 −H)

MH
t = ∫

t

0
kH (t, s)dBH

s

where MH
t is referred to as the fundamental martingale associated to the fBM BH

t , whose quadratic

variation is nothing but the function wHt (Norros et al., 1999).

Finally suppose that the sample paths of the function ξ−1(t)ψ(t) are smooth enough and define:

QHt = d

dwHt
∫

t

0
kH (t, s) ξ−1(s)ψ(s)ds, t ∈ [0, T ]

We can therefore define the process Jt as:

Jt = ∫
t

0
kH (t, s) ξ−1(s)dZs

9For an extensive review of the properties of fBM and stochastic diffusions driven by fBM (see, e.g. Biagini et al.,
2008; Rao, 2010)
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such that (see Kleptsyna et al., 2000):

(i) Jt is a semi-martingale which admits the following decomposition:

Jt = ∫
t

0
QHt (s)dwHs +MH

t

(ii) Zt admits a representation as a stochastic integral with respect to Jt.

(iii) the natural filtrations Zt and Jt coincide.

We can therefore define the joint process X∗
t = (Yt, Jt) onto the natural filtration X ∗

t . Under the

fundamental semi-martingale result and definition 1.2.1 of noncausality, the filtrations Xt and X ∗
t

coincide.

This equivalence between the two filtrations allows us to perform inference on Yt by means of the

process X∗
t , as long as the information carried by Zt and Jt is the same. We can therefore restate

assumption 2 as follows:

Assumption 2a. (i) X∗
t ∈R2 is Harris recurrent.

(ii) Under X ∗
t , X∗

t is a special semi-martingale and it admits a Doob-Meyer decomposition of the

type:

X∗
t =H∗

t +M∗
t ∀t ∈ (0, T ]

where H∗
t is a X ∗

t -predictable process and M∗
t is a X ∗

t -local martingale such that E(M∗
t ∣X ∗

s ) =

0,∀s < t. ∎

Under this assumption, our inference results can be used to deal with the case of Zt being a long

memory process in R.

The two following equations would be used to theoretically identify the drift and the diffusion

coefficient:

Ex
∗ [Yt − y] = tµ(x) + o(t) (1.5.1)

Ex
∗ [(Yt − y)2] = tσ2(x) + o(t) (1.5.2)
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where x∗ = (y, j). Under assumption 2a, we can apply the same estimation technique and asymp-

totic theory presented in previous sections.

Example 2 (Instantaneous noncausality when Zt is a long memory process). Consider Zt a fBM

of given Hurst index H, and the fundamental martingale MZ
t , associated to Zt. It is possible to

show that (see, Norros et al., 1999):

WZ
t = 2H√

wH
∫

t

0
sH−

1
2dMZ

s

is a standard Brownian motion. We set:

dYt = µ(Yt, Zt)dt + σ(Yt, Zt)dBt

with:

dBt = ρdWZ
t +

√
1 − ρ2dWt

where Wt is another Brownian motion, independent of WZ
t . Using the fundamental martingale

result, our inference results extend verbatim. ∎

1.6 Simulations

Notwithstanding the curse of dimensionality problem which is common to nonparametric inference

and which can be even more severe in the case of nonstationary diffusion processes, because of

the random divergence of the occupation density, we provide here a simulation study in which the

diffusion process is a function of a scalar covariate Z. This is the minimal framework that can be

use to prove the reliability of our estimation procedure in finite samples. Programming has been

conducted in Matlab and codes are available upon request.

We consider the following true data generating processes:

dY
(1)
t = (θ1(Zt) − θ2Y

(1)
t )dt + dB(1)

t (1.6.1a)

dY
(2)
t = (θ1(Zt) − θ2Y

(2)
t )dt + ζ (Y (2)

t +Zt)dB(2)
t (1.6.1b)
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where θ2 = 2 and ζ = 0.4. The former process is a generalization of a Ornstein-Uhlenbeck process,

where the drift only is function of Z and the diffusion is a constant (taken equal to one for

simplicity); while the latter is a CKLS model (Chan et al., 1992), generalized to encompass the

dependence on the covariate. The process Z has been taken as follows:

Z
(1)
t =Wt (1.6.2a)

Z
(2)
t = BH=0.2

t (1.6.2b)

Z
(3)
t = BH=0.7

t (1.6.2c)

where {Wt}t≥0 is a standard Wiener process and {BH
t }t≥0 is a fractional Brownian motion, with

Hurst index equal to 0.2 and 0.7, respectively. Namely, the latter numerical schemes have been

chosen to assess the performance of our estimate where Z is a long memory process. For the sake

of simplicity, we consider θ1(Zt) = Z2
t in all replications. We draw 250 paths of the processes in

(1.6.1a) and (1.6.1b), using a Milstein scheme which reaches an order of approximation equal to

one (Iacus, 2008).

Remark 13. Following Phillips (1973), because of the aliasing problem in the estimation of stochas-

tic diffusions, when data are discretely sampled, it is not possible to identify a nonlinear drift

without imposing any structural restrictions on the model. In our simulating equations, structural

restrictions are coming both from the additive form of the drift and from the dependence on Z.

∎

The goal of this exercise is to recover an estimate of the functional form of θ1(⋅).

If we hope to correctly identify both the drift and the diffusion term, we have to construct a finite

sample in which dt is sufficiently small and T is sufficiently large. We therefore set ∆n,T = 1/52

and n = 4800. In practical application, this would imply weekly observations over roughly 100

years time span. However, the scope of this exercise is to check that our estimators have desirable

properties. Research on the applicability of this method is in progress.

To the best of our knowledge, there is not a general theory for choosing a bandwidth parame-

ter to estimate the occupation density of multidimensional nonstationary processes in continuous

time. Moreover, the bandwidth parameter depends on the recurrence properties of the underlying
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stochastic process which are difficult to assess. Following Schienle (2011), we set the bandwidth

according to an adaptive scheme. For each evaluation point, we count the number of neighbours

in a small interval around that point. That is, for a fixed interval Ij around the point xj :

hn,T (xj) = (
n

∑
i=1

1(Xi∆n,T
∈ Ij))

− 1
d+5

(1.6.3)

The estimators for the drift and the diffusion coefficient have been computed using (1.2.9) and

(1.2.10), respectively. In order to recover the functional form of θ1(⋅), a semiparametric method

has been applied. In particular, we first project the estimated drift on Yt and Zt using a simple

linear regression model. We obtain a first estimate of θ2, say θ̂
(1)
2 . We then use this estimate to

compute:

θ̂
(1)
1 (z) =

n−1

∑
i=1

Kh (Zi∆n,T
− z) (µ̂(Zi∆n,T

, Yi∆n,T
) − θ̂(1)2 Yi∆n,T

)
n

∑
i=1

Kh (Zi∆n,T
− z)

We then plug the nonparametric estimate into the first step regression in order to get a new value

of θ2, say θ̂
(2)
2 , and we iterate until convergence.

The drift bandwidth parameter has been set according to the theoretical proportionality rule i.e.:

hdrn,T = cdriftL̂X(T,x)−
1
d+5

for a given constant cdrift.

Remark 14. Bandi and Moloche (2008) suggest applying a correction factor in order to undersmooth

and center at zero the asymptotic distribution. However, we do not find this correction factor

having any impact in our simulation study. ∎

The diffusion bandwidth has instead been taken constant and proportional to the sample size.

That is:

hdfn,T = n−
1
d+5

We report separately the results for the estimation of the drift, for models 1.6.1a and 1.6.1b. We

also draw simulated confidence bands over the interval 2.5% − 97.5%.
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Figure 1.1: Estimation of θ1(⋅) when Zt is drawn from 1.6.2a, with 250 simulated paths.
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(a) Model 1.6.1a
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Figure 1.2: Estimation of θ1(⋅) when Zt is drawn from 1.6.2b, with 250 simulated paths.
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(a) Model 1.6.1a
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Figure 1.3: Estimation of θ1(⋅) when Zt is drawn from 1.6.2c, with 250 simulated paths.
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(a) Model 1.6.1a
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As it can be seen from figures 1.1 and 1.2, estimation of the drift is rather satisfactory, despite a

poorer behaviour at the boundaries.

In order to complete our simulation study, we analyse the case in which the assumption of non-

causality does not hold and our inference procedure fails. For simplicity, we only consider the case

in which Yt is generated according to (1.6.1b); and Zt is a plain brownian motion. Bandwidths are

chosen as before.

Consider the example of simultaneous equation models in continuous time:

dY
(2)
t = (θ1(Zt) − θ2Y

(2)
t )dt + ζ (Y (2)

t + dZt√
dt

)dB(2)
t

where Zt a standard Brownian motion, and

dB
(2)
t = ρdZt +

√
1 − ρ2dWt

with ρ = −0.8 and Wt another standard Brownian motion independent of Zt
10. In this case, Zt

is predictable in Xt, so that B
(2)
t is not a martingale on the joint filtration. Results are reported

in figure (1.4) and we can clearly see that there is a sort of endogeneity bias in the estimation.

For completeness, we have also plotted the function which is actually estimated (with improper

terminology we call it endogenous function). The bias in the estimation is exactly equal to ζρ/
√
dt.

Figure 1.4: Estimation of θ1(⋅) when Zt is a predictable BM correlated with the brownian incre-
ments, with 250 simulated paths.
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10dZt has been rescaled by
√
dt only to make the effect more visible in the figure. This does not alter our result.
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1.7 An Application to Uncovered Interest Parity

In continuous time, the Uncovered Interest Parity (UIP) may be expressed as the first order

stochastic differential equation:

E (dst∣St) = rtdt

where dst is the instantaneous change in the log exchange rate, St is the filtration of s up to time

t, and rt is the yield differential between domestic and foreign currency denominated debt. We can

use our model to test for UIP to hold by using the generic specification:

dst = µ(rt)dt + σ(rt)dBt (1.7.1)

It is often standard to assume that the interest rate differential follows a random-walk. However,

there is no consensus in the literature about it being I(0) or I(1)11. Here, we do not make any

assumption about the DGP followed by rt. Instead, we assume that the interest rate differential

is globally not caused by the exchange rate. Notice that this is a higher level assumption, as it

encompasses the case in which rt is a random walk; and that our inference is robust to the case in

which rt has long memory. Finally, we assume that the joint process (st, rt) is Harris recurrent.

We collected data about the one-week Eurocurrency rates in the US, the UK and Japan. The

exchange rate are collected weekly, and denominated in dollars per unit of foreign currency (British

Pound or Japanese Yen). Data spans from August 3rd 1978 to May 10th 2012. All series have been

downloaded from Datastream.

The bandwidths for the drift and the diffusion estimation in equation (1.7.1) have been chosen

adaptively, as in section (1.6), using a preliminary estimator of the local time of the process rt.

Figure 1.6 depicts the results of our estimation. The estimator of the drift coefficient (left panel)

clearly rejects the UIP, both for the UK and Japan, as the curves are negatively sloped. This result

is consistent with the so-called forward premium anomaly, which has been widely reported by the

existing literature (see, e.g. Backus et al., 2001), i.e. the tendency of high interest rate currency to

11This property is usually tested by verifying that the spot and forward exchange rate are cointegrated. Evans
and Lewis (1995) cannot reject that the interest rate differential is I(1), while, e.g., Zivot (2000) do reject. Baillie
and Bollerslev (1994) conclude that the interest rate differential has long memory properties, with Hurst parameter
between 0.5 and 1.
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Figure 1.5: Data on Eurocurrency rates for the US, the UK and Japan.

1975 1980 1985 1990 1995 2000 2005 2010 2015
−0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

year

 

 
US
UK
Japan

(a) Rates

1975 1980 1985 1990 1995 2000 2005 2010 2015
−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

year

 

 
UK
Japan

(b) Yield differential with respect to the US

appreciate, when the UIP predicts instead that such currencies should depreciate. The estimators

of the diffusion coefficient (right panel) are instead substantially different. The black curve for the

UK suggests a linear diffusion coefficient; while the grey line for Japan suggests the diffusion being

constant. This difference might be explained as a consequence of central bank interventions in the

foreign exchange market, as argued in Mark and Moh (2007). However, given the historically low

level of interest rates in Japan, the conditional volatility of the exchange rate can be related to

different factors but the yield differential.

Figure 1.6: Nonparametric Estimation of 1.7.1 for UK and Japan.
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1.8 Conclusions

We propose in this paper a methodological approach to conditional nonstationary diffusion models

in continuous time. Our goal is to provide a wider set of hypothesis on the conditional and marginal

process such that a simple nonparametric inference can be applied. In particular, we argue that our

approach is flexible as it allows the marginal process Zt to be any Harris recurrent Feller process

and, in some particular case, also a long memory process.

We also believe that our theoretical results improve what has been done so far in the literature on

Harris recurrent stochastic processes, by tuning some of the underlying assumptions.

Finally, we stress that this framework can be of interest both in finance and macroeconomics. Our

final application on UIP briefly depicts how our approach can be relevant in practice.
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1.9 Appendix

1.9.1 General Definitions, Corollaries and Theorems.

Definition 1.9.1 (Harris Recurrence Azéma et al., 1969). A strongly Markov process X

taking values in a Polish space (E,E) is Harris recurrent, if there exists some σ−finite measure m

on (E,E), such that:

m(A) > 0⇒ ∀x ∈ E ∶ Px (∫
∞

0
1A(Xs)ds =∞) = 1

This process is also called m − irreducible. ∎

Definition 1.9.2 (Höpfner and Löcherbach, 2003). A Harris recurrent process X, taking values

in a Polish space (E,E), with invariant measure m is called positive recurrent (or ergodic) if

m(E) <∞, null recurrent if m(E) =∞. ∎

Theorem 1.9.3 (Ratio Limit Theorem Azéma et al., 1969). If a process X is Harris recurrent

with invariant measure m and A and B are two integrable additive functionals and if ∥ νB ∥> 0,

then:

(i) limt→∞
Ex(At)
Ex(Bt) =

∥νA∥
∥νB∥ m − a.s.,

(ii) limt→∞
At
Bt

= ∥νA∥
∥νB∥ Px − a.s., ∀x.

∎

Definition 1.9.4 (Modulus of Continuity of Multivariate Brownian Semimartingales).

Suppose X is a special multivariate Brownian semimartingale, and denote:

κn,T = sup
∣t−s∣<∆n,T ,[0≤s<t≤T ]

∣Xt −Xs∣

to be its modulus of continuity. We can then write (McKean, 1969):

P
⎡⎢⎢⎢⎣
lim sup

∆n,T→0

κn,T√
∆n,T (1/∆n,T )

= max
t≤T

√
2γ(Xt)

⎤⎥⎥⎥⎦
= 1
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where γ(Xt) is the biggest eigenvalue of the covariance matrix of the process X. ∎

1.9.2 Proof of Lemma (1.4.1)

We want to prove that:

∆n,T

hd+1
n,T

n

∑
i=1

Khn,T (Xi∆n,T
− x) a.s.ÐÐ→ 1

hd+1
n,T
∫

T

0
Khn,T (Xs − x)ds

We start by writing:

RRRRRRRRRRR

∆n,T

hd+1
n,T

n

∑
i=1

Khn,T (Xi∆n,T
− x) − 1

hd+1
n,T
∫

T

0
Khn,T (Xs − x)ds

RRRRRRRRRRR

≤
RRRRRRRRRRR

1

hd+1
n,T

n−1

∑
i=0
∫

(i+1)∆n,T

i∆n,T

[Khn,T (Xi∆n,T
− x) −Khn,T (Xs − x)]ds

− ∆n,T

hd+1
n,T

Khn,T (X0∆n,T
− x) + ∆n,T

hd+1
n,T

Khn,T (Xn∆n,T
− x)

RRRRRRRRRRR

≤ 1

hd+1
n,T

∣
n−1

∑
i=0
∫

(i+1)∆n,T

i∆n,T

[Khn,T (Xi∆n,T
− x) −Khn,T (Xs − x)]ds∣ +O

⎛
⎝

∆n,T

hd+1
n,T

⎞
⎠

≤ 1

hd+1
n,T

n−1

∑
i=0
∫

(i+1)∆n,T

i∆n,T

D
⎛
⎝
Xs − x
hd+1
n,T

,
κn,T

hd+1
n,T

⎞
⎠

RRRRRRRRRRR

Xi∆n,T
−Xs

hd+1
n,T

RRRRRRRRRRR
ds

≤κn,T
hd+1
n,T
∫

T

0

1

hd+1
n,T

D
⎛
⎝
Xs − x
hd+1
n,T

,
κn,T

hd+1
n,T

⎞
⎠
ds

by the triangle inequality and assumption (3). Finally using the Ratio Limit theorem, we have

that:

∫
T

0

1

hd+1
n,T

D
⎛
⎝
Xs − x
hd+1
n,T

,
κn,T

hd+1
n,T

⎞
⎠
ds = Oa.s.

⎛
⎝

1

hd+1
n,T
∫

T

0
Khn,T (Xs − x)ds

⎞
⎠

By theorem (1.3.2), we now have that, for n,T →∞:

1
hd+1
n,T
∫ T0 Khn,T (Xs − x)ds

tα/l(t) → Em
⎛
⎝

1

hd+1
n,T
∫

T

0
Khn,T (Xs − x)ds

⎞
⎠
Wα

Therefore, to prove our final result, we only need to prove that:

Em
⎛
⎝

1

hd+1
n,T
∫

T

0
Khn,T (Xs − x)ds

⎞
⎠
= Cpt(x) (1.9.1)
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By the strong version of the Ratio Limit Theorem, for any couple of integrable functions f(⋅) and

g(⋅), we have that:

Em(f)
Em(g) = m(f)

m(g)

which implies:

Em(f) = Cm(f) where C = m(g)
Em(g)

We can then write:

Em
⎛
⎝

1

hd+1
n,T
∫

T

0
Khn,T (Xs − x)ds

⎞
⎠
= C ∫

E

1

hd+1
n,T

Khn,T (Xs − x)m(dXs)

=∫
E

1

hd+1
n,T

Khn,T (Xs − x)p∞(Xs)λ(dXs) = ∫
E

1

hd+1
n,T

K(u)p∞(uhn,T + x)λ(hn,Tdu)

=∫
E

K(u)p∞(uhn,T + x)λ(du)

where we use the continuity of m wrt λ and the properties of the Lebesgue measure (Billingsley,

1979, Theorem 12.2, p.172). Finally, as hd+1
n,T → 0:

∫
E

K(u)pt(uhd+1
n,T + x)λ(du)→ p∞(x)∫

E
K(u)λ(du) = p∞(x)

By the relation between Riemann and Lebesgue integration and assumption (3). This concludes

the proof.

1.9.3 Proof of Theorem (1.4.2)

We want to prove that:

µ̂n,T (x)
a.s.ÐÐ→ µ(x)

We start by writing the drift estimator of equation (1.4.1) as follows:

µ̂n,T (x)

=

1
hd+1
n,T

n−1

∑
i=1

Khn,T (Xi∆n,T
− x)∫

(i+1)∆n,T

i∆n,T

µ(Xs)ds

∆n,T

hd+1
n,T

n

∑
i=1

Khn,T (Xi∆n,T
− x)

(1.9.2)
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+

1
hd+1
n,T

n−1

∑
i=1

Khn,T (Xi∆n,T
− x)∫

(i+1)∆n,T

i∆n,T

σ(Xs)dBs

∆n,T

hd+1
n,T

n

∑
i=1

Khn,T (Xi∆n,T
− x)

(1.9.3)

We start with the numerator of equation (1.9.2). We want to prove that:

1

hd+1
n,T

n−1

∑
i=1

Khn,T (Xi∆n,T
− x)∫

(i+1)∆n,T

i∆n,T

µ(Xs)ds

a.s.ÐÐ→ 1

hd+1
n,T
∫

T

0
Khn,T (Xs − x)µ(Xs)ds

(1.9.4)

We start by writing:

RRRRRRRRRRR

1

hd+1
n,T

n−1

∑
i=1

Khn,T (Xi∆n,T
− x)∫

(i+1)∆n,T

i∆n,T

µ(Xs)ds −
1

hd+1
n,T
∫

T

0
Khn,T (Xs − x)µ(Xs)ds

RRRRRRRRRRR

≤
RRRRRRRRRRR

1

hd+1
n,T

n−1

∑
i=0
∫

(i+1)∆n,T

i∆n,T

[Khn,T (Xi∆n,T
− x) −Khn,T (Xs − x)]µ(Xs)ds

− ∆n,T

hd+1
n,T

Kh (X0∆n,T
− x)µ(X0∆n,T

)
RRRRRRRRRRR

≤
RRRRRRRRRRR

1

hd+1
n,T

n−1

∑
i=0
∫

(i+1)∆n,T

i∆n,T

[Khn,T (Xi∆n,T
− x) −Khn,T (Xs − x)]µ(Xs)ds

RRRRRRRRRRR

+
RRRRRRRRRRR

∆n,T

hd+1
n,T

Kh (X0∆n,T
− x)µ(X0∆n,T

)
RRRRRRRRRRR

≤κn,T
hd+1
n,T

RRRRRRRRRRR

1

hd+1
n,T
∫

T

0
D

⎛
⎝
Xs − x
hd+1
n,T

,
κn,T

hd+1
n,T

⎞
⎠
µ(Xs)ds

RRRRRRRRRRR
+Oa.s.

⎛
⎝

∆n,T

hd+1
n,T

⎞
⎠

≤κn,T
hd+1
n,T

⎛
⎝

1

hd+1
n,T
∫

T

0
D

⎛
⎝
Xs − x
hd+1
n,T

,
κn,T

hd+1
n,T

⎞
⎠
∣µ(Xs)∣ds

⎞
⎠
+Oa.s.

⎛
⎝

∆n,T

hd+1
n,T

⎞
⎠

by the triangle inequality, the continuity of µ(⋅), and assumption (3). Finally using the Ratio Limit

theorem, we have that:

1

hd+1
n,T
∫

T

0
D

⎛
⎝
Xs − x
hd+1
n,T

,
κn,T

hd+1
n,T

⎞
⎠
∣µ(Xs)∣ds = Oa.s.

⎛
⎝

1

hd+1
n,T
∫

T

0
Khn,T (Xs − x)ds

⎞
⎠



39

We are now left with the following expression:

1
hd+1
n,T
∫ T0 Khn,T (Xs − x)µ(Xs)ds +Oa.s. (

(∆n,T log(1/∆n,T ))1/2
L̂X(T,x)

hd+1
n,T

)

1
hd+1
n,T
∫ T0 Khn,T (Xs − x)ds +Oa.s. (

(∆n,T log(1/∆n,T ))1/2
L̂X(T,x)

hd+1
n,T

)

We have now to prove that this converges to the true functional form of the drift coefficient. We

denote the true functional as µ(x) and write the following equation:

1
hd+1
n,T
∫ T0 Khn,T (Xs − x) (µ(Xs) − µ(x))ds

1
hd+1
n,T
∫ T0 Khn,T (Xs − x)ds

We want to show that the numerator converges almost surely to 0. To do so, we exploit the

Lipschitz continuity property of the drift function. Write:

RRRRRRRRRRR

1

hd+1
n,T
∫

T

0
Khn,T (Xs − x) (µ(Xs) − µ(x))ds

RRRRRRRRRRR
≤ 1

hd+1
n,T
∫

T

0
∣Khn,T (Xs − x)∣ ∣µ(Xs) − µ(x)∣ds

≤ C

hd+1
n,T
∫

T

0
∣Khn,T (Xs − x)∣ ∣Xs − x∣ds ≤ C(κn,T )

1

hd+1
n,T
∫

T

0
Khn,T (Xs − x)ds

= C(κn,T )Oa.s.
⎛
⎝

1

hd+1
n,T
∫

T

0
Khn,T (Xs − x)ds

⎞
⎠

which gives the desired result.

In order to prove that equation (1.9.3) converges to zero almost surely, we proceed as follows. We

notice that, as in Bandi and Phillips (2003), the numerator of the equation can be embedded in a

continuous time martingale for any value of Xi∆n,T
. As a matter of fact we have:

β(i+1)∆n,T
= ∫

(i+1)∆n,T

i∆n,T

σ(Xs)dBs

is a stochastic integral which is Y(i+1)∆n,T
∨Z(i+1)∆n,T

-measurable and such that E [β(i+1)∆n,T
] = 0.

Moreover by Itô isometry (see Øksendal, 2003, Lemma 3.15, p. 26):

var(β(i+1)∆n,T
) = E [∫

(i+1)∆n,T

i∆n,T

σ(Xs)dBs]
2

= E [∫
(i+1)∆n,T

i∆n,T

σ2(Xs)ds] <∞
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We can therefore construct the following continuous martingale:

M
Xi∆n,T (r) =

√
hd+1
n,T

⎛
⎝

1

hd+1
n,T

[(n−1)r]
∑
i=1

Khn,T (Xi∆n,T
− x)∫

(i+1)∆n,T

i∆n,T

σ(Xs)dBs
⎞
⎠

= 1√
hd+1
n,T

[(n−1)r]
∑
i=1

Khn,T (Xi∆n,T
− x)∫

(i+1)∆n,T

i∆n,T

σ(Xs)dBs
(1.9.5)

whose quadratic variation is equal to:

[MXi∆n,T (r)] = 1

hd+1
n,T

[(n−1)r]
∑
i=1

K2
h (Xi∆n,T

− x)∫
(i+1)∆n,T

i∆n,T

σ2(Xs)ds (1.9.6)

Using the same method applied for equation (1.9.2) and using the Ratio Limit theorem, we can

show that:

[MXi∆n,T (1)] = Oa.s.
⎛
⎝

1

hd+1
n,T
∫

T

0
Khn,T (Xs − x)ds

⎞
⎠

(1.9.7)

Finally, as in Phillips and Ploberger (1996), expanding the probability space as needed:

(MXi∆n,T (1))
2
/ [MXi∆n,T (1)] = Oa.s.(1)

which gives:

√
L̂X(T,x)hd+1

n,T

⎛
⎜⎜⎜⎜⎜
⎝

1
∆n,T

∆n,T

hd+1
n,T

n−1

∑
i=1

Khn,T (Xs − x)∫
(i+1)∆n,T

i∆n,T

σ(Xs)dBs

∆n,T

hd+1
n,T

n

∑
i=1

Khn,T (Xs − x)

⎞
⎟⎟⎟⎟⎟
⎠

= Oa.s.(1)

Therefore, the term in equation (1.9.3) converges almost surely to zero, provided that L̂X(T,x)hd+1
n,T

a.s.ÐÐ→

∞. This completes the proof.

1.9.4 Proof of Theorem (1.4.3)

We start by decomposing the estimator into a bias and a variance component:

(1.9.2) − µ(x)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

BIAS

+ (1.9.3)
´¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¶

VARIANCE
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We start by analyzing the variance term. We use again the fact that this term can be written

as a sequence of martingale components. Namely, we know that every martingale array can be

written as a time changed Dambis, Dubins-Schwartz Brownian motion. We call τ , the time change

associated to M
Xi∆n,T (1). This implies:

M
Xi∆n,T
τ (1)¿

ÁÁÀ∆n,T

hd+1
n,T

n

∑
i=1

Khn,T (Xs − x)

dÐ→ N
⎛
⎜⎜⎜⎜
⎝

0,
[M

Xi∆n,T
τ (1)]

∆n,T

hd+1
n,T

n

∑
i=1

Khn,T (Xs − x)

⎞
⎟⎟⎟⎟
⎠

Using dominated convergence and the Ratio Limit Theorem, we can show that the numerator of

the variance of M
Xi∆n,T
τ (1) converges to:

1

hd+1
n,T

n−1

∑
i=1

K2
h (Xi∆n,T

− x)∫
(i+1)∆n,T

i∆n,T

σ2(Xs)ds

a.s.ÐÐ→ σ2(x) (∫ K2(u)du)
(1.9.8)

Now, we turn to the bias term. Write the bias term in the following way:

1
hd+1
n,T
∫ T0 Khn,T (Xs − x) (µ(Xs) − µ(x))ds

1
hd+1
n,T
∫ T0 Khn,T (Xs − x)ds

a.s.ÐÐ→
1

hd+1
n,T
∫ K(u) (µ(x + uhn,T ) − µ(x))pt(x + uhn,T )λ(du)

1
hn,T ∫ K(u)p(x + uhd+1

n,T )λ(du)

We therefore compute the Taylor expansion of this function around x.

∫ K(u)
⎡⎢⎢⎢⎢⎣
hn,T

d+1

∑
j=1

∂µ(x)
∂xj

uj +
h2n,T

2

d+1

∑
j,l=1

∂2µ(x)
∂xj∂xl

ujul

⎤⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎣
pt(x) + hn,T

d+1

∑
j=1

∂pt(x)
∂xj

uj
⎤⎥⎥⎥⎦
λ(du)

∫ K(u)
⎡⎢⎢⎢⎣
pt(x) + hn,T

d+1

∑
j=1

∂pt(x)
∂xj

uj + o(hn,T )
⎤⎥⎥⎥⎦
λ(du)

Using the symmetry of kernels and neglecting terms of order higher than h2
n,T leads to:

∫ K(u)
⎡⎢⎢⎢⎢⎢⎣
h2
n,T

⎛
⎜
⎝

d+1

∑
j,l=1

∂µ(x)
∂xj

∂pt(x)
∂xl

pt(x)
ujul

⎞
⎟
⎠
+
h2
n,T

2

⎛
⎝
d+1

∑
j,l=1

∂2µ(x)
∂xj∂xl

ujul
⎞
⎠

⎤⎥⎥⎥⎥⎥⎦
λ(du)
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We define

Hµ(x) = (∂
2µ(x)
∂xj∂xl

)
d

j,l=1

Dµ,p(x) = (∂µ(x)
∂xj

∂pt(x)
∂xl

)
d

j,l=1

where Hµ(x) is the symmetric hessian matrix of the function µ and we rewrite the bias term as

follows:

h2
n,T tr {∫ K(u)u′ (Dµ,p(x) +

1

2
Hµ(x))uλ(du)}

=h2
n,T tr {(Dµ,p(x) +

1

2
Hµ(x))∫ K(u)uu′λ(du)}

=h2
n,Tρ2(K) (tr {Dµ,λ(du)p(x)} +

1

2
tr {Hµ(x)})

using the properties of the trace operator, the relation between Lebesgue and Riemann integration

and assumption (3).

1.9.5 Proof of Theorem (1.4.4)

We want to prove that:

σ̂2
n,T (x)

a.s.ÐÐ→ σ2(x)

Using Itô’s lemma, we can show that (Y(i+1)∆n,T
− Yi∆n,T

)2 satisfies the following SDP:

(Y(i+1)∆n,T
− Yi∆n,T

)2 =∫
(i+1)∆n,T

i∆n,T

(2(Ys − Yi∆n,T
)µ(Xs) + σ2(Xs))ds

+∫
(i+1)∆n,T

i∆n,T

2(Ys − Yi∆n,T
)σ(Xs)dBs

This leads us to decompose equation (1.4.2) as follows:

σ̂2
n,T (x)

= 1

∆n,T

∆n,T

hd+1
n,T

n−1

∑
i=1

Khn,T (Xi∆n,T
− x)∫

(i+1)∆n,T

i∆n,T

σ2(Xs)ds

∆n,T

hd+1
n,T

n

∑
i=1

Khn,T (Xi∆n,T
− x)

(1.9.9)

+ 1

∆n,T

∆n,T

hd+1
n,T

n−1

∑
i=1

Khn,T (Xi∆n,T
− x)∫

(i+1)∆n,T

i∆n,T

2(Ys − Yi∆n,T
)σ(Xs)dBs

∆n,T

hd+1
n,T

n

∑
i=1

Khn,T (Xi∆n,T
− x)

(1.9.10)
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+ 1

∆n,T

∆n,T

hd+1
n,T

n−1

∑
i=1

Khn,T (Xi∆n,T
− x)∫

(i+1)∆n,T

i∆n,T

2(Ys − Yi∆n,T
)µ(Xs)ds

∆n,T

hd+1
n,T

n

∑
i=1

Khn,T (Xi∆n,T
− x)

(1.9.11)

In order to prove consistency of the diffusion term, we treat the drift as a nuisance parameter.

As in the proof of theorem (1.4.2), using dominated convergence, the properties of the diffusion

function and the Ratio Limit Theorem, we can prove that equation (1.9.9) almost surely converges

to the true value of the diffusion term, as long as
L̂X(T,x)
hd+1
n,T

(∆n,T log(1/∆n,T ))1/2 = Oa.s.(1).

For equation (1.9.10) and equation (1.9.11), we follow Florens-Zmirou (1993) and Bandi and

Phillips (2003). The term in (Ys−Yi∆n,T
) is a semi-martingale, so that we can use Burkholder-Davis-

Gundy inequality (see,e.g. Protter, 2003, Theorem 48, p. 193) to show that its expectation can be

bounded by the square root of its quadratic variation which converges at a rate equal to
√

∆n,T .

Therefore, following the proof of theorem (1.4.2), the component in equation (1.9.10) can be em-

bedded in a continuous martingale whose expectation converges to zero as long as

√
L̂X(T,x)hd+1

n,T

∆n,T

diverges to infinity. In the same way, the term in (1.9.11) is bounded as long as

√
L̂X(T,x)hd+1

n,T

∆n,T

diverges (Bandi and Phillips, 2003; Bandi and Moloche, 2008).

1.9.6 Proof of theorem (1.4.5)

Using the same procedure as in theorem (1.4.3), we decompose our estimator into a bias and a

variance component:

(1.9.9) − σ2(x)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

BIAS

+ (1.9.10) + (1.9.11)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

VARIANCE

For the variance, the component in equation (1.9.11) converges to zero almost surely as noted in

the previous proof. Using the Ratio Limit theorem we can prove that equation (1.9.10) converges

in distribution to a normal with variance equal to:

4σ4(x) (∫ K2(u)du) (1.9.12)
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We then turn to the bias term. We can follow the same procedure that for theorem (1.4.3). Define:

Hσ2(x) = (∂
2σ2(x)
∂xj∂xl

)
d

j,l=1

Dσ2,p(x) = (∂σ
2(x)
∂xj

∂pt(x)
∂xl

)
d

j,l=1

where Hσ(x) is the symmetric hessian matrix of the function σ. Then the bias term is equal to:

h2
n,Tρ2(K) (tr {Dσ2,p(x)} +

1

2
tr {Hσ2(x)})

1.9.7 Additional Proofs

Theorem 1.9.5. Suppose Yt is a stationary process conditionally on Zt and Zt is Harris Recurrent.

Then Xt = (Yt, Zt) is a joint Harris Recurrent process.

Proof. Remember that Xt lies in a Polish space (E,E). We have to show that there exists a

measure m, such that:

0 <m(A) <∞ ∀A ⊂ E

i.e. a σ−finite measure on E, such that X is m-irreducible (see Definition 1.9.1).

We start to show that, for every set A and t → ∞, if a measure exists, it is σ−finite. Take any

set A ⊂ E , such that A = B × C, where B and C are compact, with Zs+1 ∈ B and Ys+1 ∈ C. We

denote by φz the invariant measure of the process Zt and by π(y∣z) the stationary probability

measure of Y given Z. We can write down the transition probability for the joint process, under

the markovianity of X, as:

∫
∞

0
P (Xs+1 ∈ A∣Xs)ds

= ∫
∞

0
P (Zs+1 ∈ B,Ys+1 ∈ C ∣Zs, Ys)ds

= ∫
∞

0
P (Zs+1 ∈ B∣Zs)P (Ys+1 ∈ C ∣Zs, Ys, Zs+1 ∈ B)ds

≤ (∫
∞

0
P (Zs+1 ∈ B∣Zs)ds)(∫

∞

0
P (Ys+1 ∈ C ∣Zs, Ys, Zs+1 ∈ B)ds)

= (∫ P (Zs+1 ∈ B)φz(dz))(∫
∞

0
P (Ys+1 ∈ C ∣Zs, Ys, Zs+1 ∈ B)ds)

= (∫ P (Zs+1 ∈ B)φz(dz))(∫ P (Ys+1 ∈ C ∣Zs+1 ∈ B)π(dy∣z))
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with a straightforward application of Bayes’ theorem. Finally:

φz(B) = ∫ P (Zs+1 ∈ B)φz(dz) <∞

since A is bounded, and:

π(y ∈ C ∣z ∈ B) = ∫ P (Ys+1 ∈ C ∣Zs+1 ∈ B)π(dy∣z) ∈ (0,1]

This implies:

∫
∞

0
P (Xs+1 ∈ A∣Xs)ds <∞ (1.9.13)

Therefore, for every set A, there exists a σ−finite measure for X. This concludes the first part of

the proof.

Now, denote τA = inf{t ≥ 0,Xt ∈ A}, the hitting time of set A, for a given realization of Xt,

x = (z, y) ∉ A. For any arbitrary measure m:

Px(τA <∞) = 1 (1.9.14)

implies m(A) > 0 (Revuz, 1984). We set τ zB = inf{t ≥ 0, Zt ∈ B} and τyC = inf{t ≥ 0, Yt ∈ C}. Then

define:

Px(τA <∞) = Px(τ zB <∞, τyC <∞)

= Px(τ zB <∞)Px(τyC <∞∣τ zB <∞)

where the conditional probability is well defined since τ zB is a stopping time and {τ zB < ∞} ∈ Z∞

(Protter, 2003). Since Y is stationary conditional on Z, we have that:

Ex(τyC ∣τ
z
B <∞) <∞

which implies:

{ sup
t≥0,τzB<∞

τyC} <∞ → Px(τyC <∞∣τ zB <∞) = 1



46

We then obtain (1.9.14), from the Harris recurrence of Z.

Therefore, for every set A, X is m-irreducible and m is a σ−finite measure by (1.9.13). By definition

(1.9.1), X is Harris recurrent. This concludes the proof. ∎



Chapter 2

On the Choice of the Regularization
Parameter in Nonparametric Instrumental
Regressions

47
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Abstract

This paper discusses in details the implementation of nonparametric instrumental regressions with

adaptive choice of the regularization parameter when a Tikhonov scheme is used to estimate the

unknown function of the endogenous variable. A leave-one-out cross validation criterion is proposed

which is rate optimal in mean squared error, upon some regularity conditions on the regression

function. This result is further extended to the general case of the estimation of functional deriva-

tives of any order. A numerical simulation shows that this selection criterion outperforms available

methodologies for different penalization schemes and smoothness properties of the function of in-

terest. Using the 1995 wave of the U.K. Family Expenditure Survey, an illustration is presented

about the estimation of the Engel curve for several type of goods. This application emphasizes the

properties, the flexibility and the simplicity of the methodology presented in this work, irrespective

of the nonparametric approach chosen to estimate the conditional mean functions.

2.1 Introduction

Econometricians and economists are often interested in causal relations between variables. These

causal relations are usually modeled as functional dependencies. The response (or endogenous,

dependent) variable is usually written as an unknown function of the predictors (or regressors,

or exogenous, independent variables) and an unobservable random error term, which, according

to the setting under study, is supposed to satisfy some independence condition with respect to

the predictors. These independence conditions enable to write down the unknown function as a

(conditional) moment of the response, and, ultimately, they allow the researcher to make inference

on it.

However, in certain cases, these conditions may fail to hold. Because, for instance, the error term

contains unobservable regressors that are likely to be correlated with the observed independent

variables; or because the causality structure between the response and the predictors is reversed,

i.e. the dependent variable is somehow affecting the regressors. In econometrics, this problem is

usually referred as endogeneity of the predictors, i.e., the dependent and the independent variables

are simultaneously determined by the unobservables. This endogeneity issue does not allow to
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write down the unknown function as a moment of the response variable, and it therefore requires

to be properly taken into account for correct identification and inference.

Suppose, for instance, that the relation between the response variable Y , the predictors Z and a

random error U could be defined by the following additively separable model:

Y = ϕ(Z) +U (2.1.1)

with ϕ being a smooth function. In the standard setting, when Z is exogenous, the mean indepen-

dence condition E (U ∣Z = z) = 0, implies that:

E (Y ∣Z = z) = ϕ(z)

Hence, ϕ is the conditional expectation of the response variable Y given the predictor Z. However,

if the mean independence condition does not hold anymore, the unknown function ϕ cannot be

defined as such.

Instrumental variables are a standard approach in econometrics to identify and estimate functional

dependency in the presence of endogenous regressors. The main idea is to suppose to observe a

set of variables, defined as W and called instruments, such that they enjoy some correlation with

the endogenous predictors and they satisfy the independence condition with respect to the random

component. In the example of the separable model (4.2.1a), one has:

E(U ∣W = w) = 0

i.e., the error term in (4.2.1a) has mean 0 on the space spanned by W (see,e.g. Newey and Powell,

2003; Hall and Horowitz, 2005; Carrasco et al., 2007; Darolles et al., 2011a; Horowitz, 2011; Chen

and Pouzo, 2012, among others).

This assumption allows to eliminate the noise term in (4.2.1a), by taking the expectation with

respect to W . Hence, our object of interest, the function ϕ, is now implicitly defined by the

equation:

E(ϕ(Z)∣W ) = r (2.1.2)
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where r = E(Y ∣W ).

As an example of an application of this framework, consider the estimation of the shape of the

Engel curve for a given commodity (or group of commodities; see, e.g., Blundell et al., 2007;

Hoderlein and Holzmann, 2011; Horowitz, 2011). The Engel curve describes the expansion path

for commodity demands as the household’s budget increases. Therefore, to estimate its shape, it

would be sufficient to regress the share of the household’s budget spent for this given commodity,

the response variable Y , over the total household’s budget, the predictor Z. However, the latter is

likely to be jointly determined with individual demands, and hence it has to be considered as an

endogenous regressor in the estimation of consumer expansion paths. Therefore, empirical studies

that aim at obtaining meaningful results about the structural shape of the Engel curve shall take

this endogeneity problem into account for identification.

As discussed in Blundell et al. (2007), the allocation model of income to individual consumption

goods and savings suggests exogenous sources of income to provide a suitable instrumental variable

for total expenditure, as they are likely to be related to the total household expenditure and not

to be jointly determined with individual’s budget shares. Hence, the shape of the Engel curve can

be identified by using gross income as an instrument for total expenditure.

Nonetheless, estimation may represent an important additional layer of difficulty when considering

models with instrumental variables. A parametric specification of the function of interest ϕ could

be easily handled, for instance, with classical two stage least squares (2SLS) regressions. However,

this imposes several restrictions on the shape of ϕ, that may or may not be justified by the economic

theory.1 For instance, the recent empirical study by Blundell et al. (2007) shows that nonlinearities

in the total expenditure variable may be required to capture the observed microeconomic behavior

in the estimation of the Engel curve (see also Hausman et al., 1991; Lewbel, 1991; Banks et al.,

1997). Therefore, a parametric specification might not be appropriate for the empirical application

discussed above. More generally, the researcher would like to maintain some flexibility in the

specification of the function ϕ. Hence, this paper focuses on the fully nonparametric estimation of

the regression function (Hall and Horowitz, 2005; Darolles et al., 2011a).

1See, for instance, Horowitz (2011) for an insightful discussion about the trade-off between parametric and
nonparametric specifications.
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In the framework of instrumental variables, flexibility comes at the cost of a more cumbersome

estimation methodology. While it is straightforward to obtain a nonparametric estimator of r,

the right hand side of equation (3.2.2), a direct estimation of ϕ is not feasible as it requires to

disentangle ϕ from its conditional expectation with respect to W . Namely, equation (3.2.2) can be

rewritten as:

∫ ϕ(z)f(z∣w)dz = r (2.1.3)

where f(z∣w) is the conditional distribution of Z given W and it defines a Fredholm integral

equation of the first kind (Kress, 1999). The main issue in the estimation of this equation is that

its solution may not exist or may not be a continuous function of r. In this sense, ϕ is a solution

of a problem that is ill-posed.2

A naif way to look at the ill-posedness of the inverse problem is to imagine the integral operator in

equation (2.1.3) as an infinite dimensional matrix. This matrix is one-to-one and therefore invert-

ible, so that the solution ϕ is uniquely defined. However, its smallest eigenvalues are getting arbi-

trarily close to zero so that, in practice, the direct inversion leads to an explosive, non-continuous

solution. Moreover, the fact that r is not observed and should be estimated introduces a further

error which renders the ill-posedness of the problem even more severe.

The classical way to circumvent ill-posedness is to regularize the integral operator. Regularization,

in this context, boils down to choose a constant parameter which transform the ill-posed into a

well-posed inverse problem.

Therefore, in the application to nonparametric instrumental variable regressions, the implementa-

tion of these regularization methods requires, beside the usual issues related to the nonparametric

estimation (e.g., selection of the smoothing parameters), also the selection of this regularization

parameter. A sound criterion for the choice of this parameter is extremely important, as an erro-

neous alternative can lead to misleading conclusions about the shape of the function of interest. In

particular, it would be necessary to provide data-driven procedures for this choice, which, in many

cases, remains arbitrary.

2In 1923, Hadamard postulated three requirements for problems in mathematical physics: a solution should exist,
the solution should be unique, and the solution should depend continuously on the data. A problem satisfying all
three requirements is called well-posed. Otherwise, it is called ill-posed.
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The aim of this article is to discuss the selection of the regularization parameter in nonparametric

instrumental variable regressions when the so-called Tikhonov regularization is applied (Darolles

et al., 2011a). In particular, a leave-one-out cross validation criterion is proposed here and its

properties discussed. Moreover, its advantages in relation to existing procedures are examined

(see, e.g. Fève and Florens, 2010). Finally, the article provides an application to the estimation of

the Engel curve for food, fuel and leisure, using a sample of UK households.

Under a different regularization technique (Galerkin), Marteau and Loubes (2012) discuss the prop-

erties of the adaptive selection of the regularization parameter when the conditional expectation

operator in (2.1.3) is known. They prove an Oracle inequality for their minimization criterion.

Horowitz (2012) extends their framework in the case the conditional expectation operator is in-

stead estimated, which is more relevant for econometrics. Recently, Breunig and Johannes (2011)

have provided similar results for the estimation of linear functionals of the function ϕ.

The closest in spirit to this work is Fève and Florens (2010). They discuss and prove the properties

of a data driven selection of the regularization parameter under Tikhonov regularization. In order

to obtain a rate optimal value of the parameter, they minimize the sum of squared residuals from

the estimated counterpart of equation (3.2.2), which is penalized in order to admit a minimum.

This work shows that their criterion generally regularizes the function too much, therefore inducing

a larger regularization bias. Furthermore, when the function of interest is not smooth enough (in

a sense that will be made more precise below), their criterion may not have a solution.

Cross Validation (CV) has been already advocated as a viable solution to choose the regularization

parameter in case of penalized Ridge regressions (Wahba, 1977), and for ill-posed solutions of

integral equations of the first kind (Vogel, 2002). Similarly, Golub et al. (1979); Lukas (1993,

2006) discuss the application of Generalized Cross Validation (GCV) to Ridge regressions and to

the linear inverse problem in mathematical statistics respectively. GCV is generally preferred to

CV as it does not require the computation of the estimator at each sample point and, therefore,

reduces computation time tremendously. However, it ignores the weight of each single data point

in the prediction and the minimization of the objective criterion can be extremely ill-conditioned

in presence of outliers.

To the best of our knowledge, there is not a theoretical work that discusses the properties of CV
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in the case of nonparametric instrumental regressions. This paper fills this gap.

In particular, it provides a detailed discussion about the selection of the regularization parameter

and its relation to the so-called source condition. Finally, it presents a numerical simulation in

which the robustness of the cross validation procedure is shown with respect to the smoothness

properties of the function ϕ for a given joint distribution of Z and W .

2.2 The main framework

Let (Y,Z,W ) a random vector in R ×Rp ×Rq, such that:

Y = ϕ(Z) +U with E(U ∣W ) = 0 (2.2.1)

For simplicity, the assumption that W and Z are defined on the unit hypercube of dimension p+ q

is maintained. Suppose further that ϕ ∈ L2
Z , the space of square integrable functions of Z. Define

T , the conditional expectation operator which maps L2
Z into L2

W , and its adjoint T ∗. Further

denote by {ϕi, ψi, i ≥ 0}, two orthonormal sequences in L2
Z and L2

W , respectively. In the following,

Y is supposed to be observed, although the results of this paper applies also to the case in which

Y is latent and the researcher observes Ỹ = 1(Y > 0), a binary transformation of it (see Centorrino

and Florens, 2013).

Our framework needs the following high level assumption.

Assumption 4. The joint distribution of the instruments W and the endogenous variable Z is

dominated by the product of the marginal distributions and its density, fZ,W (z,w), is square inte-

grable with respect to the product of the marginals.

Notice that this assumption implies that T and T ∗ are Hilbert–Schmidt operators. This is a

sufficient condition for compactness of T , T ∗ and TT ∗ (Carrasco et al., 2007). Moreover it implies

the following (see, e.g. Kress, 1999; Conway, 2000).

Proposition 2.2.1. There exists a singular value decomposition (SVD). That is, there is a non-

increasing sequence of nonnegative numbers {λi, i ≥ 0}, such that:
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(i) Tϕi = λiψi

(ii) T ∗ψi = λiϕi

The existence of a SVD implies that the λi’s are the eigenvalues of the operators T and T ∗ and ϕi

and ψi the corresponding eigenfunctions. Therefore, for any function g ∈ L2
Z and h ∈ L2

W , one can

write:

(Tg)(w) =
∞
∑
i=1

λi⟨g,ϕi⟩ψi(w)

(T ∗h)(z) =
∞
∑
i=1

λi⟨h,ψi⟩ϕi(z)

Using operator’s notations, equation (3.2.2) can be rewritten as follows:

Tϕ = r (2.2.2)

The ill-posedness of the inverse problem arises because of the compactness of T and T ∗, λi → 0 as

i→∞ and therefore the inversion of the operator T would lead to the noncontinuous solution:

ϕ = T −1r =
∞
∑
i=1

⟨r,ψi⟩
λi

ϕi

As stressed in Darolles et al. (2011a), Assumption (4) is not a simplifying assumption but describes

a realistic framework. The continuous spectrum of the operator depends on the joint distribution

and it cannot be bounded from below by a strictly positive quantity. The following example clarifies

the matter.

Example 3 (The Normal Case). Suppose that (Z,W ) ∈ R2 is jointly normal with mean 0 and

variance matrix given by:

⎛
⎜⎜
⎝

1 ρ

ρ 1

⎞
⎟⎟
⎠

, with ∣ρ∣ < 1. Then the conditional distribution of Z given W = w

is normal with mean equal to ρw and variance 1 − ρ2. Therefore, the eigenvectors associated to

the operator T are Hermite polynomials and its eigenvalues are given by (
√
ρ2)j . Notice that, as

j →∞, the eigenvalues are converging to 0, which causes the ill-posedness of the problem.

Finally assume that all other necessary identification conditions are satisfied (Andrews, 2011;
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Darolles et al., 2011a; D’Haultfoeuille, 2011). In particular, the following completeness condition

is supposed to hold throughout the paper:

Tϕ
a.s.= 0 ⇒ ϕ

a.s.= 0 ∀ϕ ∈ L2
z

This condition is related to the concept of completeness in statistics. In particular, this condition

implies that every non-constant and square integrable function of Z is correlated with some square

integrable function of W .

To cope with the noncontinuity of the inverse problem, this paper follows the framework of Darolles

et al. (2011a) and considers ϕ as the solution of the following penalized criterion:

ϕα = arg min
ϕ∈L2

Z

∥Tϕ − r∥2 + α∥ϕ∥2 (2.2.3)

where α is called the penalization (or regularization) parameter. Therefore:

ϕα = (αI + T ∗T )−1
T ∗r

The idea behind Tikhonov regularization is to control via α the rate of the decay of the eigenvalues

of T to 0. This introduces a regularization bias which converges to 0 with α. The rate of decrease to

0 of this bias depends on two main factors: the speed of decay of the λi’s to 0; and the smoothness

of the function ϕ. In particular, the former is related to the properties of the joint density of the

vector (Z,W ) and determines how severe the inverse problem is.

Following Darolles et al. (2011a), these features are summarized in a single parameter β > 0.

Assumption 5 (Source condition). For some real β > 0, and a set of functions g ∈ L2
Z and h ∈ L2

W ,

one has:
∞
∑
i=1

⟨g,ϕi⟩
λ2β
i

<∞ and
∞
∑
i=1

⟨h,ψi⟩
λ2β
i

<∞

An equivalent way of stating this assumption is to say that, for a given v ∈ L2
z:

ϕ = (T ∗T )
β
2 v , i.e. ϕ ∈R((T ∗T )

β
2 )
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which clearly links the properties of the function ϕ with the ones of the joint distribution of (Z,W )

(see also Chen and Reiss, 2011).

Under this assumption, one obtains that the rate of convergence of the regularization bias is the

following:

∥ϕα − ϕ∥2 = Op (αmin(β,2))

The term min(β,2) arises because Tikhonov regularization cannot take advantage of an order of

regularity higher than 2. This is related to the so-called qualification of a regularization method

(see Engl et al., 2000). It is possible to increase the qualification of Tikhonov regularization, by

considering an iterative approach (Fève and Florens, 2010), i.e.:

ϕα(1) = (αI + T ∗T )−1
T ∗r

⋮

ϕα(k) = (αI + T ∗T )−1 (T ∗r + αϕα(k−1))

⋮

This iterative method allows to exploit higher orders of regularity of the function ϕ. In fact:

∥ϕα(k) − ϕ∥
2 = Op (αmin(β,2k)) ∀k ≥ 1 (2.2.4)

In the following, ϕα(1) = ϕ
α and it is referred to as the non-iterated Tikhonov solution of (2.2.3).

2.3 Nonparametric estimation and the choice of α

Suppose to observe {(yi, zi,wi) , i = 1, . . . ,N}, an iid realization of the random variables (Y,Z,W ).3

For simplicity of exposition, only the local constant nonparametric estimation of the function ϕ is

analyzed here. Consider the class of continuous bounded kernels Kh of order ρ ≥ 2 with bandwidth

3As usual, this assumption could be relaxed to extend the framework to stationary mixing time series, see Hansen
(2008)
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parameter h.4 For simplicity, the same bandwidth hN is used for both Z and W . The estimation

of ϕ consists of 3 main steps:

(i) Estimate r, the conditional expectation of Y given W . Note that this gives also an estimator

of the conditional expectation operator T , which corresponds to the matrix of kernel weights

(Fève and Florens, 2010). This can be achieved using the classical Nadaraya-Watson kernel

estimator, i.e.:

r̂ =

N

∑
i=1

yiKhN (wi −w)

N

∑
i=1

KhN (wi −w)
= T̂ y

(ii) In the same way, an estimator of the operator T ∗ is obtained as the conditional expectation

of r̂ given Z, i.e.:

T̂ ∗r̂ =

N

∑
i=1

r̂iKhN (zi − z)

N

∑
i=1

KhN (zi − z)

(iii) Finally, for a given sample value of the parameter α, say αN , the Tikhonov regularized

estimator of ϕ is retrieved as:

ϕ̂αN = (αNI + T̂ ∗T̂)−1
T̂ ∗r̂

The following theorem contains the rate of convergence in MSE for the estimator ϕ̂αN .

Theorem 2.3.1 (Darolles et al. 2011a). Under assumptions (4) and (5), and the convergence of

the regularization bias given in (2.2.4):

∥ϕ̂αN − ϕ∥2 = OP [ 1

α2
( 1

N
+ h2ρ

N ) + ( 1

Nhp+qN

+ h2ρ
N )αmin(β−1,0)

N + αmin(β,2)
N ] (2.3.1)

Darolles et al. (2011a) discuss the assumptions that make this upper bound for the MSE converging

to 0, upon some premises on the convergence of the bandwidth parameter to 0 as the sample size

grows. Namely, they suppose that the bandwidth can be chosen to be bounded in probability by

4For a more general theoretical presentation, see Darolles et al. (2011a).
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N−1/2ρ, to exploit the parametric rate of convergence of the first term in (2.3.1). They discuss the

choice of the regularization parameter, given this particular bandwidth selection.

Here, the choice of the bandwidth is instead supposed to be a function of the dimension of the

endogenous variable and the instrument, p, q, and of the order of the kernel ρ, i.e.:

h2ρ
N ≈ N−γ(p,q,ρ), with 0 < γ(p, q, ρ) ≤ 1

where γ(⋅) is a real function. For instance, if the bandwidth is chosen such that the bias and the

variance of the nonparametric regression converge at the same rate, one has:

γ(p, q, ρ) = 2ρ

2ρ + p + q

In the following, for simplicity, define γ ≡ γ(p, q, ρ). Heuristically, αN has to be chosen to converge

to 0 at some rate, which depends on the sample size. When β ≥ 1, the result is straightforward, as

the middle term in the decomposition does not depend on α. Otherwise, the rate of convergence

depends on the choice of the bandwidth parameter, i.e. on the choice of γ.

The optimal rate of convergence for αN , which makes the MSE in (2.3.1) asymptotically 0 can

therefore be expressed in terms of β and γ.

Corollary 2.3.2 (Convergence of the upper bound to 0 and rate optimal αN ). The rate optimal

value of αN , for which (2.3.1) a.s.→ 0, is such that:

(i) If β ≥ 1 and 0 < γ ≤ 1, so that Nγα2
N →∞, and Nhp+qN →∞, then:

αN ≈ N− γ
min(β,2)+2

(ii) If β < 1 and

γ ≤ 2ρ

2ρ + p + q ,

in a such a way that Nγα2
N →∞, and Nhp+qN →∞, then:

αN ≈ N− γ
β+2
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(iii) If β < 1 and

γ ∈ ( 2ρ

2ρ + p + q ,
2ρ(β + 2)

(p + q)(β + 2) + 2ρ
)

in a such a way that Nγα2
N →∞, and Nhp+qN →∞, then:

αN ≈ N− γ
β+2

Otherwise, if:

γ ∈ [ 2ρ(β + 2)
(p + q)(β + 2) + 2ρ

,
2ρ

p + q)

in a such a way that Nhp+qN α1−β
N →∞, then:

αN ≈ N−1+ p+q
2ρ
γ

Proof. (i) If β ≥ 1, the second term of the upper bound in (2.3.1) is independent of α. Therefore,

the optimal choice of the regularization parameter is obtained by making the variance and

the bias term converging at the same speed, which trivially gives the result.

(ii) If β < 1 and

γ < 1 − p + q
2ρ

γ,

this implies that:

γ < 2ρ

2ρ + p + q ,

and the second term converges at the speed Nγα1−β
N . Therefore, upon the assumption that

Nγα2
N →∞, the second term converges to infinity faster, and the bias-variance trade-off gives

the rate of convergence for αN .

(iii) If β < 1 and

γ ≥ 1 − p + q
2ρ

γ,

this implies that:

γ ≥ 2ρ

2ρ + p + q ,
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Moreover, to obtain convergence of the MSE to 0, the additional condition:

1 − p + q
2ρ

γ > 0

gives the upper bound for γ:

γ < 2ρ

p + q

However, upon the restrictions on the rate of convergence of the bandwidth, it is not clear

if the second term still converges faster to infinity than the first term. Compute the corre-

sponding bias-variance trade-off for the two terms:

1

Nγα2
N

≈ αβN → αN ≈ N− γ
β+2

1

N
1− p+q

2ρ
γ
α1−β
N

≈ αβN → αN ≈ N−1+ p+q
2ρ
γ

Then, by equalizing the two rates of convergences, one has:

γ = 2ρ(β + 2)
(p + q)(β + 2) + 2ρ

Hence, for γ lower than this threshold, the rate of convergence of the first term is lower than

the one of the second term. Otherwise, the rate of the second term is lower than the first

term.

∎

Notice, in particular, that, when β ≥ 1, the MSE converges to 0, independently of the choice of the

bandwidth. Nonetheless, it would be necessary to choose the bandwidth parameter in such a way

to balance the variance and the bias of the nonparametric estimator. Therefore:

γ = 2ρ

2ρ + p + q (2.3.2)

On the one hand, this generally slows down the convergence of α to 0, by a factor which is

proportional to γ. On the other hand, following the arguments in Darolles et al. (2011a), with

γ = 1, the variance term in α converges faster to 0. However, this generates higher variance in
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the nonparametric estimation (second term of the upper bound in 2.3.1). Moreover, it requires

additional constraints on the value of ρ. In fact, in order to avoid the variance term of the

nonparametric estimation to diverge, it is necessary to assume, with γ = 1:

ρ > p + q
2

(2.3.3)

This constraint hardly matters in practice when the dimensions of the endogenous variable and

the instruments are small. For instance, when p and q are both equal to 1. Nevertheless, when

the researcher has the possibility to use more instruments, she needs to employ higher order

kernels, that are seldomly used in practice. A different approach would be to use local polynomials

estimation, with the order of the polynomial that increases with the number of instrument used.

A similar reasoning applies if the value of γ is chosen too small. In this case, the bias in the

nonparametric estimation is going to play the role of further slowing down the convergence of

(2.3.1) to 0.

When β < 1, the choice of the bandwidths impacts directly the convergence to 0 of the regularization

parameter. The case β < 1 arises for example when the instruments are not very strong; but also

when the function of interest is not sufficiently smooth or when the inverse problem is more severely

ill-posed. As a matter of fact, for given smoothness characteristics of the function of interest, if

the decay of the eigenvalues of T is faster, a smaller β is implied by the source condition given in

Assumption (5). If γ is taken equal to 1, point iii of Corollary (2.3.2) shows again that one needs

condition (2.3.3) in order to obtain a value of α that does not diverge with the sample size. The

optimal selection of the bandwidth for nonparametric regressions instead guarantees the bias and

the variance to be balanced and appears to be, in this case too, the most reasonable choice.

A last important remark about the rate of convergence is related to the dimension of the instrument

W . In standard nonparametric regression, the larger the dimension of the conditioning variable,

the slower the rate of convergence of the estimator (so-called curse of dimensionality). In the

instrumental variable setting, this seems a contradictory result: the more instruments added, the

more precise should be the estimation of the function of interest ϕ. Hence, the result of Theorem

(2.3.1) is designed in a such a way that the dimension of the instrument does not matter for
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the speed of convergence of the estimator when the bandwidth is chosen proportional to N−1.

However, Corollary (2.3.2) shows that the dimension of W matters independently of the choice of

the bandwidth. If γ is chosen equal to 1, in order to exploit the parametric rate of convergence

of the first term in (2.3.1) and for a given dimension of the endogenous variable Z, constraint

(2.3.3) binds the number of instruments that can be used for a given order of the kernel. In the

same way, an optimal choice of h, in the sense of nonparametric regressions, takes into account the

dimension of W and deteriorates the rate of convergence of ϕ̂α toward its true value. The latter

approach, while it has clear disadvantages in terms of rate of convergence, still ensures that the

estimator does not diverge when more instruments are used for inference. Furthermore, equation

(2.2.2) defines the function ϕ with respect to the conditional expectation of the dependent variable

Y given W , defined as r. Heuristically, the more precise the estimation of r, the more precise the

estimation of ϕ.

In the following, it is therefore assumed that the bandwidth is chosen fixing γ as in (2.3.2). Methods

like cross validation or the improved Akaike Information Criterion of Hurvich et al. (1998) are

known to deliver such optimal selection (see, e.g., Li and Racine, 2007).

Upon the choice of the bandwidth parameter, the main objective of this work is to devise a method

which delivers a rate optimal value of αN and that works reasonably well in practice, i.e. it adapts

to the characteristics of the data at hand. This paper considers criteria of the form:

P (αN)∥T̂ ϕ̂αN − r̂∥2 (2.3.4)

where P (αN) is a penalization function. These criteria selects αN as the minimizer of the sum of

squared residuals in (2.2.2).

Fève and Florens (2010) propose a data-driven method for the choice of αN which is based on the

minimization of the following criterion:

SSR(αN) = 1

αN
∥T̂ ϕ̂αN(2) − r̂∥

2 (2.3.5)
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where ϕ̂αN(2) is twice iterated Tikhonov estimator, i.e.:

ϕ̂αN(2) = (αNI + T̂ ∗T̂)−1 (T̂ ∗r̂ + αN ϕ̂αN(1)) = (αNI + T̂ ∗T̂ )−1 [I + αN (αNI + T̂ ∗T̂ )−1] T̂ ∗r̂

This criterion belongs to family (2.3.4), where P (αN) = 1/αN . Although, in their framework,

estimation is carried on using a simple non-iterated Tikhonov approach, the twice iterated Tikhonov

serves the scope of increasing the qualification and, therefore, reduces the regularization bias. Fève

and Florens (2010) prove, in the case of transformation models, that this criterion produces a

choice of αN which is rate optimal.

In the case of instrumental variable regressions, the following result can be proved.

Lemma 2.3.3. The SSR(αN) criterion is bounded in probability by:

aSSR(αN , β) =
1

αN
[ 1

αN
( 1

N
+ h2ρ

N ) + ( 1

Nhp+qN

+ h2ρ
N )(1 + αmin(β,1)

N ) + αmin(β+1,4)
N ]

Proof. The proof easily follows from the results in Darolles et al. (2011a). Consider the estimated

conditional expectation of the residuals on the space spanned by the instruments:

T̂ ϕ̂αN(2) − r̂ = T̂ ϕ̂
αN
(2) − Tϕ + Tϕ − r̂

The last term on the right hand side is the nonparametric estimation error. Therefore, one has:

∥Tϕ − r̂∥2 = ∥ (T̂ − T) y∥2 = OP ( 1

Nhp+qN

+ h2ρ
N )

Now focus on the first term. Define:

M = [I + αN (αNI + T ∗T )−1]
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Therefore:

T̂ ϕ̂αN(2) − Tϕ = T̂ (αNI + T̂ ∗T̂)−1
M̂T̂ ∗r̂ − Tϕ

= T̂ (αNI + T̂ ∗T̂)−1
M̂T̂ ∗r̂ − T (αNI + T ∗T )−1

MT ∗Tϕ

+ T (αNI + T ∗T )−1
MT ∗Tϕ − Tϕ

= A1 +A2

The second term B is the regularization bias. It can be bounded as follows (Engl et al., 2000):

∥A2∥2 = OP (αmin(β+1,4)
N )

since a second order iteration for the Tikhonov estimator is considered here. Term A can be finally

split into two components:

A1 = T̂ (αNI + T̂ ∗T̂)−1
M̂T̂ ∗r̂ − T̂ (αNI + T̂ ∗T̂)−1

M̂T̂ ∗T̂ϕ

+ T̂ (αNI + T̂ ∗T̂)−1
M̂T̂ ∗T̂ϕ − T (αNI + T ∗T )−1

LT ∗Tϕ

= A11 +A12

Since:

∥T̂ (αNI + T̂ ∗T̂)−1
M̂∥2 = OP (α−1

N )

from Assumption A4 in Darolles et al. (2011a), it follows that:

∥A11∥2 = OP [ 1

αN
( 1

N
+ h2ρ)]

Finally, using some algebra, it is possible to show that:

A12 = −α2
N [T̂ (αNI + T̂ ∗T̂)−2 − T (αNI + T ∗T )−2]ϕ
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which can be further split as follows:

A12 =α2
N T̂ [(αNI + T̂ ∗T̂)−2 − (αNI + T ∗T )−2]ϕ + α2

N (T̂ − T) (αNI + T ∗T )−2
ϕ

=α3
N T̂ (αNI + T̂ ∗T̂)−2 (T̂ ∗T̂ − T ∗T) (αNI + T ∗T )−2

ϕ (A12a)

+α2
N T̂ (αNI + T̂ ∗T̂ )−2

T̂ ∗T̂ (T̂ ∗T̂ − T ∗T ) (αNI + T ∗T )−2
ϕ (A12b)

+α2
N T̂ (αNI + T̂ ∗T̂ )−2 (T̂ ∗T̂ − T ∗T)T ∗T (αNI + T ∗T )−2

ϕ (A12c)

+α2
N (T̂ − T) (αNI + T ∗T )−2

ϕ (A12d)

The proof makes use of the following facts:

∥ (αNI + T̂ ∗T̂)−1 ∥2 = OP ( 1

α2
N

)

∥ (αNI + T̂ ∗T̂)−1
T̂ ∗∥2 = OP ( 1

αN
)

∥T̂ (αNI + T̂ ∗T̂)−1
T̂ ∗∥2 = OP (1)

∥αN (αNI + T ∗T )−1
ϕ∥2 = OP (αmin(β,2)N )

∥αNT (αNI + T ∗T )−1
ϕ∥2 = OP (αmin(β+1,2)

N )

Furthermore, notice that:

T̂ ∗T̂ − T ∗T = T̂ ∗ (T̂ − T ) − (T̂ ∗ − T ∗)T

This implies that:

∥A12a∥2 ≤∥α2
N T̂ (αNI + T̂ ∗T̂)−2

T̂ ∗ (T̂ − T )αN (αNI + T ∗T )−2
ϕ∥2

+∥α2
N T̂ (αNI + T̂ ∗T̂)−2 (T̂ ∗ − T ∗)αNT (αNI + T ∗T )−2

ϕ∥2

=OP
⎡⎢⎢⎢⎢⎣
( 1

Nhp+q
+ h2ρ)

⎛
⎝
α
min(β,2)
N +

α
min(β+1,2)
N

αN

⎞
⎠

⎤⎥⎥⎥⎥⎦
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and:

∥A12b∥2 ≤∥αN T̂ (αNI + T̂ ∗T̂)−2
T̂ ∗T̂ T̂ ∗ (T̂ − T )αN (αNI + T ∗T )−2

ϕ∥2

+∥αN T̂ (αNI + T̂ ∗T̂)−2
T̂ ∗T̂ (T̂ ∗ − T ∗)αNT (αNI + T ∗T )−2

ϕ∥2

=∥αN T̂ (αNI + T̂ ∗T̂)−1
T̂ ∗ (αNI + T̂ T̂ ∗)

−1
T̂ T̂ ∗ (T̂ − T)αN (αNI + T ∗T )−2

ϕ∥2

+∥αN T̂ (αNI + T̂ ∗T̂)−1
T̂ ∗ (αNI + T̂ T̂ ∗)

−1
T̂ (T̂ ∗ − T ∗)αNT (αNI + T ∗T )−2

ϕ∥2

=OP
⎡⎢⎢⎢⎢⎣
( 1

Nhp+q
+ h2ρ)

⎛
⎝
α
min(β,2)
N +

α
min(β+1,2)
N

αN

⎞
⎠

⎤⎥⎥⎥⎥⎦

In the same way, it is possible to show that:

∥A12c∥2 = OP
⎡⎢⎢⎢⎢⎣
( 1

Nhp+q
+ h2ρ)

⎛
⎝
α
min(β,2)
N +

α
min(β+1,2)
N

αN

⎞
⎠

⎤⎥⎥⎥⎥⎦

Finally:

∥A12d∥2 = OP [( 1

Nhp+q
+ h2ρ)αmin(β,2)N ]

which gives:

∥A12∥2 = OP [( 1

Nhp+q
+ h2ρ)αmin(β,1)N ]

and the result follows by multiplying each factor for 1/αN . ∎

This criterion has the same speed of convergence as the original MSE in (2.3.1). Therefore, upon

the optimal choice of the bandwidth, theoretically, α is selected in such a way that the variance

and the bias term converges at the same speed. However, despite this optimality result, it is

impossible, using this criterion to balance the two terms in the asymptotic upper bound when β

becomes smaller. This is due to the fact that the regularization bias converges to 0 too slowly

(see, also Engl et al., 2000, for a discussion). The heuristic explanation is related to the fact that

the regularization bias αβ stays roughly constant for any value of α. While the variance term gets

very large when the α is close to 0 and, for a fixed sample size N , decays to 0 only when α grows

larger. The minimization of this function thus leads to choose a parameter α which only affects

the variance term. That is, a very large value of the parameter.

Therefore, for β < 1, the SSR criterion may lead to over-regularize the solution of the inverse



67

(c)

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
−4

−3.5

−3

−2.5

−2

−1.5

−1

−0.5

0

0.5

α

 

 

β = 0 .01

β = 0 .05

β = 0 .1

β = 0 .5

(d)

Figure 2.1: A 3 dimensional plot of aSSR(αN , β) (left), and its derivative wrt αN for several values
of β (right).

problem, i.e. choose a large value of αN . Moreover, when β gets sufficiently close to 0, the only

solution is obtained for αN →∞. Figure (2.1) graphically illustrates the issue. On the left panel,

the function aSSR(⋅, ⋅) is plotted for N = 1000, ρ = 2, p = 2, q = 1, and for a reasonable range of

values for the two parameters αN and β, with γ as in (2.3.2).

It can be noticed that, when β is smaller than a certain threshold, the function is strictly decreasing

to 0 as αN →∞. On the right panel, the derivative of the function aSSR(⋅, ⋅) with respect to αN

is plotted for several values of β. As it can be seen, the derivative converges to 0 as αN grows, but

it never crosses the 0 line.

A possible way to correct for this numerical problem is to modify the penalization term P (αN), in

a such a way that the variance term does not converge too fast to zero as α increases. However, this

solution does not seem to be practicable, as it requires some previous knowledge of the parameter

β.

To overcome the deficiencies of available methods, this paper discusses a leave-one-out procedure

for the selection of the regularization parameter. Define the cross validation function:

CV (αN) = ∥T̂ ϕ̂αN(−i) − r̂∥
2 (2.3.6)

where ϕ̂αN(−i) is the non iterated Tikhonov estimator of ϕ that has been obtained by removing

the ith observation from the sample. The heuristic idea behind the choice of this function is
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similar to the one exploited in the selection of the smoothing parameter by cross validation in

nonparametric regressions. One is looking for the value of αN , that minimizes the prediction error

for the observation i, when this observation is not used to compute the estimator of ϕ. The optimal

αN is therefore obtained as:

αCVN = arg min
α>0

CV (αN)

The following result can be proven.

Theorem 2.3.4. The CV (αN) criterion is bounded in probability by:

aCV (αN , β) = (αN + 1

αN
)

2

[ 1

αN
( 1

N
+ h2ρ) + αmin(β+1,2)

N + ( 1

Nhp+q
+ h2ρ)]

Proof. First notice that minimizing the cross validation function (2.3.6) is tantamount to minimize

the following criterion:

CV (αN) = ∥ (I −Diag [(αNI + T̂ T̂ ∗)
−1
T̂ T̂ ∗])

−1
(T̂ ϕ̂αN − r̂) ∥2

Therefore:

CV (αN) ≤ ∥ (I −Diag [(αNI + T̂ T̂ ∗)
−1
T̂ T̂ ∗])

−1
∥2∥T̂ ϕ̂αN − r̂∥2

The norm of the residual sum of squares can be bounded as before, i.e.:

∥T̂ ϕ̂αN − r̂∥2 = OP ( 1

αN
( 1

N
+ h2ρ) + ( 1

Nhp+q
+ h2ρ)(1 + αmin(β,0)

N ) + αmin(β+1,2)
N )

which, because of β > 0, simplifies to:

∥T̂ ϕ̂αN − r̂∥2 = OP ( 1

αN
( 1

N
+ h2ρ) + αmin(β+1,2)

N + ( 1

Nhp+q
+ h2ρ))

The rest of the proof is to show that:

∥ (Diag [I − (αNI + T̂ T̂ ∗)
−1
T̂ T̂ ∗])

−1
∥2 = OP [(αN + 1

αN
)

2

]

First, notice that:

I − (αNI + T̂ T̂ ∗)
−1
T̂ T̂ ∗ = αN (αNI + T̂ T̂ ∗)

−1 = R̂αN
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Furthermore, for αN > 0, R̂αN is a normal bounded operator (Carrasco et al., 2007) and its diagonal

elements belong to its numerical range (see the Appendix). The latter is defined as the convex

polygon whose vertices are the eigenvalues of R̂αN (see, e.g. Herrero, 1991). Denote by dii, these

diagonal entries. Since the eigenvalues of T ∗T are bounded in the interval (0,1], the following

inequalities hold:

sup
i≥0

dii ≤ sup
i≥0

αN
αN + λ2

i

< 1

inf
i≥0
dii ≥ inf

i≥0

αN
αN + λ2

i

≥ αN
αN + 1

Which further implies that:

sup
i≥0

1

dii
≤ αN + 1

αN

As the eigenvalues of a diagonal operator are equal to its diagonal elements, it follows that:

∥ (Diag [R̂αN ])−1 ∥2 = OP [(αN + 1

αN
)

2

]

∎

An example about the behavior of this criterion function is reported in figure (2.2). Consider, as

before, a case in which N = 1000, ρ = 2, p = 2, q = 1, and the bandwidth is chosen such that:

γ = 2ρ

p + q + 2ρ

As it is visible from the figure, the CV function attains a minimum even for very small values of

β.

It is interesting to notice that, asymptotically, the CV criterion also belong to the family (2.3.4).

The penalizing factor is tantamount to:

P (αN) = 1 + 1

αN
+ 1

α2
N
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Figure 2.2: A 3 dimensional plot of aCV (αN , β) (left), and its derivative wrt αN for several values
of β (right).

which also contains the penalizing factor 1/αN . However, it has also two additional terms: a

constant and a quadratic term. When αN approaches 0 too fast, then the quadratic term increases

the value of the cross validation function. By contrast, when αN approaches infinity too fast, the

constant term is going to increase the weight of the residual sum of squares. Therefore, the cross

validation method is similar in spirit to the minimization of the sum of squared residuals proposed

in Fève and Florens (2010). However, it is not undermined when β gets too close to 0.

This section is concluded with the following result about the rate of convergence of the αN param-

eter chosen using our cross validation procedure.

Corollary 2.3.5. For an optimal choice of the smoothing parameter h, the minimization of the

cross validation function (2.3.6) leads to a choice of the regularization parameter αN , such that:

αCVN ≈ N− γ
(min(β,1)+2)

Proof. The value of αN is chosen, such that:

1

αN
( 1

N
+ h2ρ) ≈ αmin(β+1,2)

N
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Since the bandwidth is proportional to N
− 1
p+q+2ρ , one has that:

1

αN
( 1

N
+ h2ρ) ≈ 1

αN
N−γ

And the result easily follows. ∎

The cross validation criterion leads to a choice of the regularization parameter similar to the one

achieved using the discrepancy principle of Morozov (1967).5 The discrepancy principle consists in

selecting the value of α, such that:

∥T̂ ϕ̂αN − r̂∥ ≤ τδ

where τ is a positive constant, and δ represents some observational error. This error is related

to the approximation of the right hand side of equation (2.2.2) (see, e.g. Engl et al., 2000; Mathé

and Tautenhahn, 2011; Blanchard and Mathé, 2012). In our case, δ could be approximated by

the nonparametric estimation error in r, i.e. N−γ . However, the open question remains about the

choice of the tuning constant τ .

The cross validation criterion eliminates this further need and achieves the same order of conver-

gence. The choice of α is rate optimal, following the results of Darolles et al. (2011a), only when

β ≤ 1. Notice that this is not a serious flaw, when the sample has moderate size. However, as the

sample size grows, and the regularity of the function of interest is greater than 1, it would lead

to under-regularize the solution of the inverse problem, i.e. choosing a value of the regularization

parameter which decays to 0 more slowly than the optimal one. This is a known feature of leave-

one-out methods, for instance, in the case of the selection of the smoothing parameter in standard

nonparametric regressions (Li and Racine, 2007).

However, for higher values of β, it is feasible to achieve the optimal rate of using the same idea as in

the SSR method of Fève and Florens (2010), i.e., to increase the qualification of the regularization

procedure with an iterated Tikhonov approach. An alternative approach would be to consider

the properties of the CV criterion for the penalization of the function in Hilbert scales, i.e., the

5A similar rate of convergence is achieved by all so-called heuristic methods that selects the regularization
parameter as the minimizer of the prediction error. Interested readers are referred to Ch.4 and 5 of Engl et al. (2000)
for a discussion on this topic.
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penalization of the derivatives of the function, instead of the function itself (Florens et al., 2011).

This last point is discussed in the next section.

2.4 A more general approach to the Regularization in Hilbert

Scale

Following the result in the previous section, it can be actually shown that the cross validation

procedure of this paper has a broader scope of application, beyond the standard L2 penalization

of the function of interest. Introduce the additional assumption that ϕ ∈ Cu, i.e. ϕ has at least

u continuous derivatives, with u ≥ 0. Then, the function of interest can be approximated by the

integral of its derivative of any order.

Define {Ls, s ∈R, s ≥ 0}, the unbounded, self-adjoint and strictly positive family of operators, with

the convention that L0 = LsL−s = I, the identity operator. For each value of s, their domain is

such that:

D(Ls) = {ϕ ∈Cs ∶ ϕ(s) ∈ L2
Z , ϕ(0) = ϕ′(0) = ⋅ ⋅ ⋅ = ϕ(0)(s−1) = 0}

When s ≥ 0, this domain is called the Hilbert Scale induced by Ls (see Engl et al., 2000; Krein and

Petunin, 1966). Note that these spaces are densely and continuously embedded into each other,

i.e. for any t > s, D(Lt) ⊂ D(Ls). The boundary conditions imposed on the first s − 1 derivatives

ensure that the operator Ls has a bounded inverse L−s.

By means of the definition of the operator Ls, ϕ can be now defined as the solution of:

min
ϕ(s)∈D(Ls)

∥Tϕ − r∥2 + α∥Lsϕ∥2

which gives:

ϕα = (αL2s + T ∗T )−1
T ∗r = L−s (αI +L−sT ∗TL−s)−1

L−sT ∗r

= L−s (αI +B∗B)−1
B∗r = L−sϕ(s),α
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where B = TL−s and ϕ(s),α is the regularized sth derivative. A detailed explanation on how to

approximate Ls, at least when s is equal to 1, is given in Centorrino et al. (2013a) and Florens

and Racine (2012).6 This section explores the extension of the CV criterion of theorem (2.3.4) to

this more general case.

The assumptions stated in section (2.2) are maintained here. In particular, the operator T is

assumed to be one to one and the solution ϕ exists.7 However, some further assumptions are

needed that link the operator T with the Hilbert scale induced by Ls (see also Carrasco et al.,

2013; Engl et al., 2000; Florens et al., 2011). Denote by ∥x∥s = ∥Lsx∥ and ⟨x, y⟩s = ⟨Lsx,Lsy⟩, the

norm and the inner product induced by the operator Ls, respectively.

Assumption 6. The operator T satisfies the following inequality:

m∥g∥−a ≤ ∥Tg∥ ≤m∣g∥−a

for any g ∈ D(Ls), a > 0 and 0 <m <m <∞.

The scalar a measures the degree of ill-posedness of the inverse problem through the properties of

the operator T , i.e. the joint distribution of (Z,W ). Then for B defined as above, ∣ν∣ ≤ 1 and s ≥ 1,

Assumption (6) implies the following inequality (see Engl et al., 2000, Corollary 8.22, p. 214):

c(ν)∥g∥−ν(a+s) ≤ ∥ (B∗B)ν/2 g∥ ≤ c(ν)∥g∥−ν(a+s) (2.4.1)

for any g ∈ D ((B∗B)ν/2) with c(ν) = min{mν ,mν} and c(ν) = max{mν ,mν}.

Note that inequality (2.4.1) implies that:

D ((B∗B)ν/2) = D (Lν(a+s)) (2.4.2)

Furthermore, Assumption (6), together with the fact that ϕ ∈ D(Lu) implies the source condition

(5), with β = u/a (Carrasco et al., 2013; Florens et al., 2011). Heuristically, this can be explained

6Notice that, in practice, L is defined to be the first order differential operator, which is generally not self-adjoint.

To obtain a self-adjoint construction of it, it is possible to define it as Lϕ =
√
−ϕ(2) (see also Carrasco et al., 2013).

7See Florens et al. (2011) for the non identified case in penalized Tikhonov regularization.
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by the fact that the source condition summarizes the ill-posedness of the inverse problem, which

is determined by the regularity of the function ϕ, i.e. its number of continuous derivatives, and

the properties of the conditional expectation operator T . Formally, for any value of s and u,

Lsϕ ∈ D(Lu−s), that by (2.4.2) implies ϕ ∈ D ((B∗B)
u−s

2(a+s) ). Therefore, there exists a vector

v ∈ L2
Z , such that:

Lsϕ = (B∗B)
u−s

2(a+s) v

For s = 0, this leads to:

ϕ = (T ∗T )
u
2a v = (T ∗T )

β
2 v, with β = u

a

which is the source condition, as stated above (see also Carrasco et al., 2007, 2013).

Under these assumptions, the main result of this section follows.

Theorem 2.4.1. Suppose that ϕ is u times differentiable, and that assumption (6) holds. Suppose

further that ϕ is estimated by penalization of its sth derivative, where u ≤ a + 2s. Then, the cross

validation criterion (2.3.6) is bounded by the following function:

aCV (α,u, s, a) = (α + ∥B∥
α

)
2

[α−
a
a+s ( 1

N
+ h2ρ)

+α
u
a+s ∥ϕ∥2

u (
1

Nhp+q
+ h2ρ) + α

a+u
a+s ∥ϕ∥2

u + ( 1

Nhp+q
+ h2ρ)]

Proof. Following the proof of Theorem (2.3.4), minimizing the CV criterion is tantamount to the

minimization of:

CV (α) = ∥ (I −Diag [(αI + B̂B̂∗)−1
B̂B̂∗])

−1
(T̂ ϕ̂α − r̂) ∥2

The operator B is a bounded linear operator with finite norm ∥B∥. Therefore, the diagonal operator

is bounded as before, i.e.:

∥ (Diag [α (αI + B̂B̂∗)−1])
−1

∥2 = OP
⎡⎢⎢⎢⎢⎣
(α + ∥B∥

α
)

2⎤⎥⎥⎥⎥⎦
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Now consider the remaining term. First note that, since ϕ ∈ D(Lu), then ∥ϕ∥u <∞.

∥T̂ ϕ̂α − r̂∥2 ≤ ∥T̂ ϕ̂α − Tϕ∥2 + ∥2 + ∥Tϕ − r̂∥2

≤ ∥T̂ ϕ̂α − T̂ϕα∥2 + ∥T̂ϕα − Tϕ∥2 + ∥Tϕ − r̂∥2

= ∥A1∥2 + ∥A2∥2 + ∥A3∥2

Throughout the proof, I use the following inequalities (see Engl et al., 2000):

∥ (αI +B∗B)−1 ∥2 ≤ α−2

∥ (B∗B)µ α (αI +B∗B)−1 ∥2 ≤ α2µ

together with Assumption (6) and inequality (2.4.1), with:

ν = u − s
a + s

which explains why one needs to assume that u ≤ a + 2s. The norm of A3 corresponds to the

nonparametric estimation error, so that:

∥A3∥2 = OP ( 1

Nhp+q
+ h2ρ)

The squared norm of A2 can be decomposed as follows:

∥A2∥2 ≤ ∥T̂ϕα − Tϕα∥2 + ∥Tϕα − Tϕ∥2

= ∥T̂L−s (αI +B∗B)−1
B∗Tϕ − TL−s (αI +B∗B)−1

B∗Tϕ∥2

+ ∥TL−s (αI +B∗B)−1
B∗Tϕ − Tϕ∥2

= ∥A21∥2 + ∥A22∥2

A22 corresponds to the regularization bias and should converge to 0 as α approaches 0. One has
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then:

∥A22∥2 = ∥B (αI +B∗B)−1
B∗Tϕ − Tϕ∥2 = ∥α (αI +B∗B)−1

Tϕ∥2

= ∥α (αI +B∗B)−1
BLsϕ∥2 = ∥α (αI +B∗B)−1

B (B∗B)
u−s

2(a+s) v∥2

= ⟨α (αI +B∗B)−1
B (B∗B)

u−s
2(a+s) v,α (αI +B∗B)−1

B (B∗B)
u−s

2(a+s) v⟩

≤ ∥α (αI +B∗B)−1 (B∗B)
u−s

2(a+s) v∥∥α (αI +B∗B)−1 (B∗B)
2a+u+s
2(a+s) v∥

≤ α
u−s

2(a+s)α
2a+u+s
2(a+s) ∥v∥2

= OP (α
a+u
a+s ∥ϕ∥2

u)

Now consider the term A21.

∥A21∥2 = ∥ (T̂ − T)L−s (αI +B∗B)−1
B∗Tϕ∥2 ≤ ∥T̂ − T ∥2∥L−s (αI +B∗B)−1

B∗Tϕ∥2

= ∥T̂ − T ∥2∥ (αI +B∗B)−1
B∗Tϕ∥2

−s ≤ ∥T̂ − T ∥2∥ (B∗B)
s

2(a+s) (αI +B∗B)−1
B∗BLsϕ∥2

= ∥T̂ − T ∥2∥ (B∗B)
s

2(a+s) (αI +B∗B)−1 (B∗B)
2a+s+u
2(a+s) v∥2 = OP [α

u
a+s ∥ϕ∥2

u (
1

Nhp+q
+ h2ρ)]

Finally, consider the term A1.

∥A1∥2 = ∥T̂ ϕ̂α − T̂ϕα∥2 = ∥T̂L−s (αI + B̂∗B̂)−1
B̂∗r̂ − T̂L−s (αI +B∗B)−1

B∗Tϕ∥2

≤ ∥B̂ (αI + B̂∗B̂)−1
B̂∗r̂ − B̂ (αI + B̂∗B̂)−1

B̂∗T̂ϕ∥2

+ ∥B̂ (αI + B̂∗B̂)−1
B̂∗T̂ϕ − B̂ (αI +B∗B)−1

B∗Tϕ∥2

= ∥A11∥2 + ∥A12∥2
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The term A12 can be simplified as follows:

∥A12∥2 = ∥αB̂ [(αI + B̂∗B̂)−1 − (αI +B∗B)−1]Lsϕ∥2

= ∥αB̂ (αI + B̂∗B̂)−1 (B̂∗B̂ −B∗B) (αI +B∗B)−1
Lsϕ∥2

≤ ∥αB̂ (αI + B̂∗B̂)−1
B̂∗ (B̂ −B) (αI +B∗B)−1

Lsϕ∥2 (∥A12a∥2)

+ ∥αB̂ (αI + B̂∗B̂)−1 (B̂∗ −B∗)B (αI +B∗B)−1
Lsϕ∥2 (∥A12b∥2)

= OP [α
u
a+s ∥ϕ∥2

u (
1

Nhp+q
+ h2ρ)]

The result arises from the fact that:

∥A12a∥2 ≤ ∥α (αI + B̂B̂∗)−1
B̂B̂∗∥2∥ (T̂ − T)L−s (αI + B̂B̂∗)−1

Lsϕ∥2

≤ α2∥T̂ − T ∥2∥ (αI + B̂B̂∗)−1 (B∗B)
u−s

2(a+s) v∥2
−s

= OP [α
u
a+s ∥ϕ∥2

u (
1

Nhp+q
+ h2ρ)]

and

∥A12b∥2 ≤ ∥αB̂ (αI + B̂B̂∗)−1 ∥2∥L−s (T̂ ∗ − T ∗)B (αI + B̂B̂∗)−1
Lsϕ∥2

≤ α∥ (T̂ ∗ − T ∗) (αI + B̂B̂∗)−1 (B∗B)
u−s

2(a+s) v∥2
−s

= OP [α
u
a+s ∥ϕ∥2

u (
1

Nhp+q
+ h2ρ)]

Finally:

∥A11∥2 = ∥B̂ (αI + B̂B̂∗)−1
L−s (T̂ ∗r̂ − T̂ ∗T̂ϕ) ∥2

≤ ∥B̂ (αI + B̂B̂∗)−1 ∥2∥T̂ ∗r̂ − T̂ ∗T̂ϕ∥2
−s

= OP [α−
a
a+s ( 1

N
+ h2ρ)]

which gives the desired result. ∎

For s = 0, the result of Theorem (2.4.1) is just a generalization of Theorem (2.3.4). Note further

that, following Florens et al. (2011), the penalization by derivatives increases the qualification of the
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Tihkonov regularization, upon the assumption that T is one-to-one. Finally, when the bandwidth is

chosen optimally, i.e. h ≈ N−1/(2ρ+p+q), the second term of the asymptotic expansion is dominated

by the first one, given the constraints on u and a. This finally implies that the optimal α is chosen

in such a way that:

αCV ≈ (N
−γ

∥ϕ∥2
u

)
a+s

2a+u

Again, this selection of the optimal parameter attains the same rate as the discrepancy principle of

Morozov (see Engl et al., 2000). Moreover, it embeds the case presented in corollary (2.3.5), when

s = 0.

2.5 A Numerical Illustration

In order to illustrate the small sample properties of our cross validation procedure and to compare

it to existing methods, a simulation scheme similar to the one employed in Hall and Horowitz

(2005) is considered.

Samples of size N = 1000 are generated from the model:

fZW (z,w) = 2Cf
∞
∑
i=1

(−1)i+1i−b/2 sin(iπz) sin(iπw)

ϕ(z) =
√

2
∞
∑
i=1

(−1)i+1i−a sin(iπz)

Y = E (ϕ(Z)∣W = w) + V

where Cf is a normalizing constant and V ∼ N(0,0.1). The slice sampling method presented in

Neal (2003) is used in order to simulate values of Z and W from the joint pdf fZW . The infinite

series were truncated at j = 100 for computational purposes.

Note that the value of a and b respectively controls the smoothness of the function ϕ, through its

Fourier coefficients, and the decay of the eigenvalues λi. The source condition can therefore be

expressed in terms of the parameters a and b. As a matter of fact, the following condition has to

hold:

β < 1

b
(a − 1

2
)
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Figure 2.3: Marginal density of Z and W , with one draw using slice sampling.
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with a > 1/2 and b > 1 (see Hall and Horowitz, 2005; Darolles et al., 2011a).8

Two different simulation schemes are run. In the former, a and b are taken equal to 2. In the

latter, a = 4 and b = 2. In both cases, Z and W have the same marginal distribution, which

is depicted in figure (2.3). Note that in the former numerical study β < 0.75, while in the latter

β < 1.75. 1000 paths of the endogenous variable Z, the instrument W and the error V are simulated.

Epanechnikov kernels of order 2 are employed. The conditional expectation operators T and T ∗

are estimated as the matrix of kernel weights from the nonparametric regressions of Y on W , and

of r̂ = E(Y ∣W ) on Z (see also Fève and Florens, 2010; Centorrino et al., 2013a). Bandwidths are

selected using least square cross validation.9

In order to assess the performance of the two criteria, results are compared to those obtained with

an optimal α. This optimal value is defined as the minimizer of the following mean squared error

(MSE) function:

αOPT = arg min
α>0

∥ϕ̂α − ϕ∥2

Notice that this criterion produces the optimal value of α, given the estimation error.

Results of the numerical study are reported in Figure (2.4). The kernel Tikhonov estimator that

uses the CV function to compute the data-driven value of α (blue line) is plotted against the

same estimator that uses instead the SSR function of Fève and Florens (2010) (red line), and

the true function ϕ (black line). It is evident from the figure that ϕCV estimator outperforms

8Note that in Hall and Horowitz (2005) the additional condition a − 1/2 ≤ b < 2a is imposed. However, this
condition is necessary to prove minimax rate for the kernel Tikhonov estimator, which is not relevant for this paper.

9Codes are available from the author upon request.
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Figure 2.4: Estimation of the function ϕ using the CV and the SSR criterion respectively, with
penalization of the function.

the ϕSSR estimator in terms of fitting. This implies a lower bias and a higher variance of the

former estimator. The simulated pointwise 95% confidence intervals for the two estimators are also

plotted. It is clear from the figures that our CV criterion guarantees a better coverage of the true

function ϕ.

Another comparison between the two vectors of α’s is reported in table (2.1). Summary statistics

for the vector of αCV , αSSR and αOPT are listed. Beside the evident fact that αCV has a lower

mean than αSSR, its variance is also significantly smaller. Therefore, the regularization parameter

chosen using the CV criterion is less sensitive to sample selection. Also, the average value of αCV

is closer to the average value of the optimal α, although the distribution of both αCV and of αSSR

are shifted on the right, compared to the one of αOPT .

Mean Median St.Dev Min Max

αCV 0.0426 0.0399 0.0110 0.0229 0.1252

a = 2 αSSR 0.1214 0.1222 0.0184 0.0263 0.1734

αOPT 0.0263 0.0250 0.0074 0.0099 0.0612

αCV 0.0475 0.0446 0.0121 0.0210 0.1177

a = 4 αSSR 0.1207 0.1220 0.0181 0.0238 0.1792

αOPT 0.0270 0.0256 0.0075 0.0119 0.0592

Table 2.1: Summary statistics for the regularization parameter, with penalization of the function.

An equivalent comparative simulations exercise can be carried on in the case of the penalization by

derivatives. In particular, following the notations in the previous section, s = 1, so that penalization

is on the first derivative of the function, i.e. B = TL−1. The framework is slightly different than in
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the baseline case. For the estimation of the conditional expectation operator T , one proceeds as

before by regressing the dependent variable Y , on the instrument W . The integral operator L−1 is

approximated using the trapezoidal rule.10 The main challenge in this case is to obtain the adjoint

operator B∗. Define a function λ, such that, λ
′ ∈ L2

w; fZ and SZ , the pdf and the survivor function

of Z, respectively; fW , the pdf of W ; and, finally,

S(u,w) = − ∂

∂w
P (Z ≥ u,W ≥ w)

Then Florens and Racine (2012) show, in the case of Landweber-Fridman regularization, that the

adjoint operator, B∗, is such that:

(B∗λ) (u) = 1

fZ(u) ∫
λ(w) (S(u,w) − SZ(u)fW (w))dw

Also, the function ϕ is restricted to have mean 0 in order to be identified. As a matter of fact, the

first order differential operator is one-to-one only if it is restricted to this specific subset of functions.

This is extremely important for the implementation of the Landweber-Fridman regularization, as

the function of interest needs to be recentered at each iteration, in order to obtain a convergent

scheme.

In the application to Tikhonov regularization, the estimation is extremely simplified. Notice that

the identifying sample moment restriction for the estimation of ϕ is written as:

B̂∗B̂ϕ
′ = B̂∗r̂

Therefore, a fortiori, the mean of the function ϕ is restricted to be equal the mean of Y (up to

the regularization bias induced by the estimation). Also, recentering and multiplying both sides

by the inverse of the pdf function of Z is immaterial in our case. Thus, one can obtain B∗ simply

as:

(B∗λ) (u) = ∫ λ(w)S(u,w)dw

This can be approximated by the matrix of survivor weights of Z. Denote by Kh(⋅) a positive and

10For a detailed description of the implementation the reader is referred to Florens and Racine (2012) and Cen-
torrino et al. (2013a).
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symmetric kernel with (possibly) unbounded support, and define:

Kh(z) = ∫
z

−∞
Kh(u)du

For each possible realization of the random variable z. The survivor matrix of weights is defined,

for a sample of size N , as:

Ŝz = [1 −Kh (
z − zi
hz

)]
N

i=1

where the bandwidth hz is chosen, in our case, using maximum likelihood cross validation, and:

B̂∗ = Ŝz

Hence the Tihkonov regularized estimator with penalized first derivative is defined as:

ϕ̂α = L−1ϕ̂
′α = L−1 (αI + B̂∗B̂)−1

B̂∗r̂

The SSR criterion of Fève and Florens (2010) has been extended to this case by Fève and Florens

(2013). They generalize the SSR criterion by taking as penalizing term the squared norm of the

estimator ϕ̂α, i.e.,

SSR(α) = ∥ϕ̂α(2)∥
2∥T̂ ϕ̂α(2) − r̂∥

2

The implementation of the CV criterion remains instead unchanged. Results of this numerical

simulations are reported in figure (2.5), both for the case in which a = b = 2 (left panel), and for

the case a = 4 and b = 2 (right panel).

It is evident from the figures that the cross validation criterion outperforms the modified SSR

criterion. Also, it fulfills our theoretical predictions. As the qualification of Tikhonov regularization

increases by penalizing the first derivative and the function of interest is infinitely smooth, the

estimator clearly improves. Moreover, it improves more when the function is relatively less smooth

(a = 2), which is again consistent with theoretical findings. Coverage of both functions also improves

in this case.

Finally table (2.2) reports the summary statistics for the two vectors of α’s. Once again the αCV
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Figure 2.5: Estimation of the function ϕ using the CV and the SSR criterion respectively, with
penalization of the first derivative of the function.

has a substantially smaller mean than the αSSR and a very small variance, which indicates its

good properties with respect to sample selection. These comparative results have to be interpreted

with care, as the properties of the SSR criterion are not well established in this case. However,

αCV performs well also in comparison to αOPT , despite the fact that its values are once again

consistently greater than the optimal ones.

Mean Median St.Dev Min Max

αCV 0.00020 0.00021 0.00013 0.00004 0.00091

a = 2 αSSR 0.10883 0.11146 0.01154 0.00583 0.11146

αOPT 0.00008 0.00005 0.00005 0.00005 0.00047

αCV 0.00032 0.00031 0.00014 0.00003 0.00095

a = 4 αSSR 0.02217 0.00717 0.03265 0.00045 0.10766

αOPT 0.00010 0.00008 0.00006 0.00005 0.00049

Table 2.2: Summary statistics for the regularization parameter, with penalization of the first
derivative of the function.

2.6 An Empirical Application: Estimation of the Engel Curve

The estimation of the Engel Curve has been used by many authors as a motivating example for

studying the properties of nonparametric instrumental regressions and the adaptive choice of the

regularization parameter (see, e.g., Blundell et al., 2007; Horowitz, 2011, 2012).

As it has already been pointed out in the introduction, the estimation of the Engel curve boils
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down to find the structural relation between the total household expenditure and the budget share

allocated to a given commodity. As total expenditure is likely to be jointly determined with the its

share for individual commodities, the explanatory variable in this problem is endogenous. However,

it can be instrumented by the gross household income.

In this section, the separable model presented in (4.2.1a) is used to estimate the structural shape

of the Engel curve, where Y is the budget share for each individual commodity; Z is the logarithm

of total expenditure; and W is the logarithm of gross total income. That is:

Y = ϕ(Z) +U (2.6.1)

E(U ∣W ) = 0 (2.6.2)

This example seems particularly suited to discuss the properties and the implementation of non-

parametric instrumental regressions for several reasons. First, it restricts the analysis to the very

simple case of a single instrument and a single endogenous variable. Second, both the former and

the latter are continuously distributed and, therefore, satisfy the identification conditions. Finally,

economic theory can provide guidance about the shape of the curve, depending on the type of good

under consideration, which allows the researcher to verify the consistency of the results obtained.

As the studies cited above, the present paper focuses on the estimation of the Engel curve using data

from the 1995 wave of UK Family Expenditure Survey. The database contains 1655 observations

about households consisting of married couples with an employed head-of-household between the

ages of 20 and 55 years.11 This paper focuses on the estimation of the Engel curve for three

categories of nondurables and services: food, fuel, and leisure. Table (2.3) reports some summary

statistics for these data.

In order to show the flexibility of the approach of this paper, the application is presented under

several estimation of the conditional expectation functions. In particular, both local constant and

11Hoderlein and Holzmann (2011) point out a drawback of this model. Its additive separable structure may not
capture unobserved preference heterogeneity in the population. Therefore it may impose restrictions on the structural
shape of the Engel curve that cannot be justified by the economic theory. This suggests using this model specification
with care in empirical applications.
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Mean Median St.Dev Min Max

Budget share food 0.2074 0.1959 0.0971 0.0014 0.6867
Budget share fuel 0.0651 0.0588 0.0373 0.0000 0.3831
Budget share leisure 0.1297 0.0822 0.1343 0.0000 0.8872
Log Total Expenditure 5.4215 5.4019 0.4494 3.6090 7.4287
Log Gross Income 5.8581 5.8568 0.5381 2.1972 8.0893

Table 2.3: Summary statistics UK Family Expenditure Survey.

local linear kernels and cubic B-spline bases are analyzed here. Moreover, the direct estimation of

the first derivative of the curve is also considered using local constant kernels. For each estimator,

the smoothing parameters, i.e. either the bandwidths or the number of knots, are computed using

least square cross validation (Li and Racine, 2007). Bootstrap confidence intervals are obtained

using the methodology presented in Centorrino et al. (2013a). For comparison, the estimator of

the simple nonparametric regression of Y on Z is considered. Notice that, in the spirit of Blundell

and Horowitz (2007), if the function obtained with the simple nonparametric regression, i.e. under

the assumption of exogeneity, is fully contained inside the confidence bands of the nonparametric

estimator under endogeneity, it is possible to conclude that the explanatory variable is indeed

exogenous.12

Figures (2.6), (2.7) and (2.8) present the result of such an application for food, fuel and leisure

respectively. Results are similar to those obtained in related papers (see Blundell et al., 2007;

Hoderlein and Holzmann, 2011). It is particularly interesting to notice that the shape of the Engel

curve for the three goods and servces considered is extremely different. Food is a necessity good,

so that the Engel curve is downward sloping, i.e., the share of total expenditure devoted to food

becomes less important as total expenditure increases. Fuel seems to have an irregular pattern as its

relative weight on total expenditure is initially decreasing and then increasing toward higher total

expenditure. Finally, leisure is, as expected, a luxury service as the Engel curve is nondecreasing

in total expenditure.

Another important aspect to notice is that the local linear and the B-spline specification for leisure

seem to indicate that there is not any endogeneity problem in such a case. As a matter of fact,

the simple curve obtained from the nonparametric regression of the share of expenditure on leisure

and total expenditure is fully included in the 95% confidence interval obtained from bootstrapping

12Programming has been conducted in MatLab and codes are available from the author upon request.
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the nonparametric instrumental regression estimator. This can be due to expenditure on leisure

not systematically planned by the household.

However, for the scope of the present paper, a more crucial result is that nonparametric instru-

mental regressions with the data-driven choice of the regularization parameter yield systematically

consistent results.

A final assessment of the performance of this estimator is reported in figure (2.9), (2.10) and

(2.11). For food, fuel and leisure, these figures report, on the right panel, the direct estimator of

the first derivative of the Engel curve, obtained using local constant kernels; and on the left panel,

the estimator of the shape of the Engel curve, obtained as the integral of its first derivative. The

nonparametric estimator of the derivative of the regression function when Z is treated as exogenous

is also reported for completeness.13

Results are consistent with those previously discussed. The estimators of each derivative are

roughly constant, with indicates the Engel curve to be linearly decreasing (increasing).

2.7 Conclusions

This paper discusses the theoretical properties of a leave-one-out cross validation criterion for

the selection of the regularization parameter in nonparametric instrumental regressions, when the

Tikhonov scheme is used in order to estimate the function of interest. It is shown that this criterion

is rate optimal in mean squared error, i.e., it delivers a regularization constant which possesses the

same rate as the theoretical one, depending on the value of the regularity index β. The method

proposed here outperforms in a simulation study existing data-driven criteria and can be easily

extended to the case in which penalization is on the derivatives of the function rather than on

the function itself. Hence, this work goes in the direction of providing a stable and functioning

data-driven methodology that can allow an easier implementation of nonparametric instrumental

regressions. Finally, an empirical application to the estimation of the Engel curve in a sample of

13However, as already pointed out in related work (Florens and Racine, 2012), the two are not directly comparable.
As a matter of fact, in stardand nonparametric regression, the estimation of the nonparametric derivative is self-
consistent, i.e. it is obtained as derivative of the conditional mean estimator. By contrast, in the penalized approach
studied in this paper, one obtains directly the estimator of the derivative, and the regression curve is computed as
the integral of the latter.



87

UK households shows that the cross validation devised here is quite flexible, and it can be applied

when conditional expectation operators are estimated using any available nonparametric technique,

such as local polynomial or B-splines. It can therefore accommodate several tastes in the use of

nonparametric methods.
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Figure 2.6: Engel Curve for food
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Figure 2.7: Engel Curve for fuel
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Figure 2.8: Engel Curve for leisure
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Figure 2.9: Engel Curve for food and its derivative
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Figure 2.10: Engel Curve for fuel and its derivative
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Figure 2.11: Engel Curve for leisure and its derivative
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Abstract

We present an instrumental variable approach to the nonparametric estimation of binary outcome

regression models with endogenous independent variables. In order to achieve identification, we

use the reduced form model associated to the decomposition of the unobservable dependent vari-

able into the space spanned by the instruments, and we suppose disturbances in this reduced

form model to have a known distribution. We prove consistency of this estimator and run an

extensive simulation study to corroborate its usefulness as a preliminary and exploratory tool. An

empirical application demonstrates the performance of the proposed method relative to existing

semiparametric estimators.

3.1 Introduction

An important recent literature has considered the nonparametric estimation of the separable in-

strumental variable model defined by the relation:

Y = ϕ(Z) +U (3.1.1)

under the assumption, E(U ∣W ) = 0. The variables Y and Z are endogenous (in particular Z and

U may be dependent) and W denotes the instruments (see,e.g. Newey and Powell, 2003; Hall and

Horowitz, 2005; Carrasco et al., 2007; Darolles et al., 2011a; Chen and Pouzo, 2012, and many

others). In the majority of these papers, the regression function ϕ(⋅) is estimated by solving a

regularized version of a functional equation.

The objective of this work is to propose a nonparametric estimation of the function ϕ(⋅) in the

case where Y is not directly observed. We assume instead to observe a binary transformation of

it, i.e. Ỹ = 1 (Y ≥ 0).

Previous literature on the topic has examined the semiparametric estimation of binary regression

models with continuous endogenous variables (see Blundell and Powell, 2004; Rothe, 2009). In order

to correct the endogeneity bias, these authors advocate a control function approach. Identification

is achieved by specifying a parametric form for the function ϕ and estimating nonparametrically
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the distribution of the error term (see also Klein and Spady, 1993; Ahn et al., 2004).

In this paper, we propose instead a nonparametric estimation of ϕ. We make use of the fact that

the variable Y can be also written as:

Y = E(Y ∣W ) + ε

and we suppose the conditional distribution of ε given W to be known. In particular, we consider

the case in which the distribution of the errors is normal (Probit model) and logistic (Logit model).

Finally, we obtain ϕ as the solution of the following functional equation:

E(ϕ(Z)∣W ) = E(Y ∣W )

When the two sides of this equation are estimated using any nonparametric method, the solution

is known to be an ill-posed inverse problem, and needs a regularization method. We follow here the

approach of Darolles et al. (2011a), and explore the properties of a Tikhonov regularized solution

in the case where the dependent variable is binary.

Through a simulation study, we show the finite sample properties of our estimator and we ac-

knowledge its usefulness as a preliminary and exploratory tool for binary models with endogenous

regressors. Finally, we compare its properties to the semiparametric estimator of Rothe (2009) in

an empirical application to interstate migration in the US. We provide evidence that our model

can be used as an alternative to existing semiparametric frameworks when there is evidence of

nonlinear dependencies in the endogenous variable.

3.2 The Model

Let (Y,Z,W ) a random vector in R ×Rp ×Rq, such that:

Y = ϕ(Z) +U with E(U ∣W ) = 0 (3.2.1)

where ϕ(⋅) is an unknown function in L2
z, the space of square integrable functions with respect to
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the generating distribution of the data. Model (3.2.1) is equivalent to:

E(ϕ(Z)∣W ) = r (3.2.2)

where r = E(Y ∣W ), assuming Y square integrable. When Y is directly observable, the standard

way to proceed is to estimate r using any nonparametric technique and finally solve the inverse

problem to obtain an estimator of ϕ (see Darolles et al., 2011a; Horowitz, 2011, among others).

In this paper, we consider the estimation of ϕ in the case where the endogenous variable Y is

not observable. Instead, we suppose to have at hand a binary discrete transformation of it Ỹ =

1 (Y ≥ 0). The additional difficulty in this case is to obtain an estimation of r from Ỹ and W .

Notice that the identification condition of model (3.2.1) remains unchanged in this case. Define

Tϕ = E(ϕ(Z)∣W ) where T ∶ L2
z → L2

w is the conditional expectation operator. The function ϕ is

still uniquely determined by equation (3.2.2) if T is one to one, or, equivalently, if:

Tϕ
a.s.= 0 ⇒ ϕ

a.s.= 0 (3.2.3)

(see Newey and Powell, 2003; Darolles et al., 2011a). We assume this completeness condition to

hold throughout the paper.

Let us remind that model (3.2.1) can be rewritten as follows (see Chen and Reiss, 2011; Florens

and Simoni, 2012)

Y = E(ϕ(Z)∣W ) + ε where E(ε∣W ) = 0

which represents the decomposition of Y as the sum of its conditional expectation with respect to

W plus a residual term, where:

ε ≡ ϕ(Z) −E(ϕ(Z)∣W ) +U

Via this decomposition, we have that:

P(Ỹ = 1∣W = w) =P (Y ≥ 0∣W = w) = P (r(w) + ε ≥ 0∣W = w)

=1 −Gε∣w (−r(w))
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where G is the conditional distribution of the error term, ε, with respect to W .

As usual in binary regression models, we cannot jointly nonparametrically identify the conditional

expectation function r and the conditional distribution of the error term Gε∣w, unless we are willing

to restrict r into a particular class of functions (see Matzkin, 1992). Therefore, we need to make

some parametric assumption about either of these terms.

A viable approach would be to replace the unknown conditional expectation function r with some

finite parametric specification, e.g.:

r =
J

∑
k=0

W kβk where β0 = 1

One could then estimate the vector of parameters βk and Gε∣w nonparametrically (see Manski,

1985; Horowitz, 1992; Klein and Spady, 1993; Ichimura, 1993, among others).

An alternative approach is to suppose that the conditional distribution of the error term Gε∣w is

known and then obtain an estimator of r by inversion of the known function Gε∣w.

The former approach has the advantage of not imposing any parametric restriction on the distribu-

tion of the error term, and therefore avoids model misspecification. However, a finite-dimensional

parametric approximation of the conditional expectation function can lead to seriously erroneous

conclusions if it is incorrect. In our case especially, a wrong inference about r impacts directly the

estimation of ϕ.

In this paper, therefore, we advocate the latter approach. In fact, if we consider the nonparametric

model to be an exploratory tool, we might prefer to misspecify the distribution of the error, but

to obtain correct inference about the shape of the function of interest. Another reason to prefer

the second model is that, when economic theory can support a specific form of the conditional

expectation function, one can impose such a restriction and estimate, either parametrically or

nonparametrically, the shape of the distribution Gε (see Matzkin, 1991, 1992).

In practice, we are going to suppose that the conditional distribution of the disturbances, Gε∣w, is

either normal or logistic with constant standard deviation. In applications, identification is tanta-

mount to classical Probit and Logit models. Take two solutions ϕ1 and ϕ2, and the corresponding
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residual variances σ1 and σ2. Write:

Gσ1,w (E [ϕ1∣w]) = Gσ2,w (E [ϕ2∣w])

σ1Gw (Tϕ1) = σ2Gw (Tϕ2)

If we suppose G to be bijective and using the completeness condition (4.2.5), we have:

T (ϕ1 −
σ2

σ1
ϕ2) = 0 ⇒ ϕ1 −

σ2

σ1
ϕ2 = 0

Hence, the functions ϕ1 and ϕ2 are distinguishable only if we assume either that σ1 = 1 or, equiva-

lently, that ∥ϕ1∥ = 1. The main assumption of this paper is, therefore, about the homoskedasticity

of the residuals ε, conditionally on the instruments W . Notice, that we do not require the error

term ε to be independent of W .

Our main assumption is tantamount to:

V ar (Y ∣W = w) = V ar [(ϕ(Z) +U)∣W = w] = σ2 (3.2.4)

where σ2 is a constant, independent from the particular realization w of the instruments W .

Two remarks are in order. As in classical Probit and Logit models, our framework breaks down in

the presence of heteroskedasticity. The distribution of the error term ε generally depends on W ,

hence, according to the application we have in mind, it would be more or less reasonable to assume

that the conditional distribution of the errors does not vary with the particular realization of the

instruments.

Second, it would be possible to characterize a simple linear system of simultaneous equation as a

special case of our model. The following example clarifies this statement.

Example 4 (Linear simultaneous equations). Assume for simplicity that p = q = 1, so that (Z,W ) ∈

R
2, and consider model (3.2.1) with:

ϕ(Z) = Zβ
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and

Z = ζ(W ) + V

where V is an random noise, such that E(V ∣W ) = 0 and V is correlated with U , so that Z is

endogenous. Then, we have that:

ε = U + (Z − ζ(W ))β = U + V β

Write the joint conditional variance of the residual components U and V as:

V ar

⎛
⎜⎜
⎝

U

V
∣W = w

⎞
⎟⎟
⎠
=
⎛
⎜⎜
⎝

τ2
U(w) τUV (w)

τUV (w) τ2
V (w)

⎞
⎟⎟
⎠

Then:

V ar (ε∣W = w) = τ2
U(w) + τ2

V (w)β2 + 2βτUV (w)

Therefore, our assumption is trivially satified when (U,V ) is conditionally homoskedastic. For

instance, (see also Heckman, 1978):

⎛
⎜⎜
⎝

U

V
∣W = w

⎞
⎟⎟
⎠
∼ N

⎛
⎜⎜
⎝

⎛
⎜⎜
⎝

0

0

⎞
⎟⎟
⎠
,

⎛
⎜⎜
⎝

1 τ

τ 1

⎞
⎟⎟
⎠

⎞
⎟⎟
⎠

where τ is a constant in [−1,1].

Otherwise, one needs to place direct restrictions on the covariance function between U and V in

such a way that:

τUV (w) = 1

2β
(σ2 − τ2

U(w) − τ2
V (w)β2)

∎

Hence, our estimator of r is defined as:

r̂ (w) = G−1
ε∣w [P̂ (Ỹ = 1∣W = w)] (3.2.5)

where P̂ (Ỹ = 1∣W = w) is the nonparametric estimator of the conditional probability function.
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Finally, we obtain the function ϕ as the solution of the linear inverse problem (Carrasco et al.,

2007):

Tϕ = r (3.2.6)

The main issue arising from the non-parametric approach concerns the ill-posedness of the inversion

of the operator T . The solution of the equation may not exist or is not in general a continuous

function of the estimated part of the equation. The estimation is then not consistent in many

cases. To cope with the inverse problem, we apply here a regularization method. In particular, we

decide to use here the, so-called, Tikhonov regularization approach, advocated in Darolles et al.

(2011a). However, any other regularization method could have been equivalently applied in this

case (see, e.g. Horowitz, 2011; Florens and Racine, 2012; Johannes et al., 2013).

The solution of the inverse problem minimizes the following penalized criterion:

ϕα = arg min
ϕ

∥Tϕ − r∥2 + α∥ϕ∥2

where, α is the regularization parameter which ought to be chosen using an appropriate data-driven

method (see, also Fève and Florens, 2010).

3.3 Theoretical Properties

We suppose to observe an iid realization of the random variables (Ỹ , Z,W ), that we denote

{(ỹi, zi,wi) , i = 1, . . . ,N}.1 We further assume, without loss of generality, that Z and W take

values in [0,1]p and [0,1]q, respectively. For simplicity, define Qε = G−1
ε . In order to find the

regularized solution of (3.2.6), we need to estimate the operator T , its adjoint T ∗, and r.

All the low level assumptions are standard in the nonparametric IV literature, and we refer the

interested reader to Darolles et al. (2011a) and Horowitz (2011) for a review of these.

We consider univariate generalized kernel functions Kh of order l ≥ 2, where h is a bandwidth

parameter; and the set of functions ϕ ∈Cs. We denote by ρ = min{l, s}. In order to obtain uniform

convergence of the regularization bias, we further suppose that our ϕ function has regularity β > 0.

1As usual, this assumption could be relaxed by assuming stationarity and mixing, see Hansen (2008)
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This boils down to the so-called source condition and it is discussed in details in Carrasco et al.

(2007).

Denote by fZ,W , fZ and fW , the joint and the marginal pdfs of Z and W respectively; and by

KW,h and KZ,h the multivariate kernel functions of order l of dimension q and p, respectively. For

any couple of functions, ϕ and ψ, the estimators of T , T ∗ and r are defined as follows:

(T̂ϕ) (w) = ∫ ϕ(z) f̂Z,W (z,w)
f̂W (w)

dz

(T̂ ∗ψ) (z) = ∫ ψ(w) f̂Z,W (z,w)
f̂Z(z)

dw

r̂ = Qε

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
Nhq

N

∑
i=1

ỹiKW,h(w −wi,w)

f̂W (w)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

where f̂Z,W , f̂Z , and f̂W are the usual nonparametric kernel estimators of the joint and marginal

pdfs.

Then:

ϕ̂α = (αI + T̂ ∗T̂)−1
T̂ ∗r̂ (3.3.1)

is the estimate our binary nonparametric regression function.

The main difference with Darolles et al. (2011a) here is the fact that we cannot explicitly compute

the conditional expectation of Y given W , as Y is not observed.

We maintain the following assumption about the cdf Gε and the corresponding quantile function.

Assumption 7. The function Gε is monotone nondecreasing and right continuous. Furthermore,

for each p ∈ (0,1), it admits a generalized inverse, the quantile function, Qε, such that Qε (Gε(ε0)) ≤

ε0. This inverse is monotone, nondecreasing with continuous and bounded first derivatives.

Note that this assumption is satisfied by the Normal and the Logistic distribution. It is, however,

more general than the case studied in this paper. Furthermore, the assumption of boundedness of

the first derivative of the quantile function is tantamount to the assumption of the conditional pdf,

fε, being bounded away from zero. In fact, every quantile function, which satisfies assumption (7),
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can be written as solution of the following ordinary differential equation:

dQε(p)
dp

= 1

fε(Qε(p))

To complete our study of the properties of our estimator, we make here the following high level

assumption (a proof is provided in the appendix):

Assumption 8. There exists ρ ≥ 2, such that:

∥T̂ ∗r̂ − T̂ ∗T̂ϕ∥2 = OP (N−1 + h2ρ)

This assumption is essentially the same as assumption A4 in Darolles et al. (2011a, p. 1553). In

this case, we are also able to avoid the curse of dimensionality in the instrument by integrating

them out. The intuition behind the preservation of this property is that we are simply applying

a continuous transformation (the quantile function Qε) to our nonparametric estimator of the

conditional probability.

With these assumptions, we obtain the same asymptotic properties as in the case where the variable

Y is directly observed, i.e.:

∥ϕ̂α − ϕ∥2 = OP [ 1

α2
( 1

N
+ h2ρ) + ( 1

Nhp+q
+ h2ρ)α(β−1)∧0 + αβ∧2]

3.4 Estimation

Our estimator of the regression function ϕ is obtained as follows:

(i) We estimate nonparametrically the conditional expectation operator, T , and the conditional

probability function P(Ỹ = 1∣w).

(ii) We invert the know conditional distribution function, in order to get r̂, as described in (3.2.5).

(iii) We estimate the adjoint operator T ∗, and find the Tikhonov regularized solution ϕα.
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Step (i)

Define p(w) = P(Ỹ = 1∣w), the regression function in interest of our binary nonparametric regression

model.

Signorini and Jones (2004) extensively discuss, among other methods, the use of local constant

versus local linear logit regression in the class of binary models. They conclude that local linear

logit regression has to be preferred over a local constant specification, although the difference is

not so clear cut. Moreover, in this case, potential disadvantages of the local linear logit is that it

does not ensure that the probability to be bounded between 0 and 1; and it does not have a closed

form expression (as the weighted objective function is nonlinear in the parameter of interest) and

requires a numerical optimization procedure at each estimation point.

Therefore, we decide to preserve the simplicity of the estimation and apply a standard Nadayara-

Watson estimator2, i.e.:

p̂(w) =

N

∑
i=1

ỹiKhw (wi −w)

N

∑
i=1

Khw (wi −w)
= T̂ ỹ

with bandwidth parameters hw.

Step (ii)

The main assumption of this paper is that the conditional distribution of the error term ε is

known. Therefore, to retrieve the estimator of conditional expectation function, r̂, we simply

use the quantile function associated to the distribution Gε, and the estimator of the conditional

probability obtained in step (i) (see equation 3.2.5).

Step (iii)

We finally obtain the nonparametric instrumental regression function by solving (3.2.6), using a

Tikhonov regularization method (see equation 3.3.1).

2It would be also possible in some cases to use variable kernel method as bias reduction technique for the local
constant estimator, as advocated in Hazelton (2007).



101

The adjoint operator T ∗ defines the conditional expectation of all square integrable functions of

W given Z. Therefore, a natural nonparametric estimator is:

T̂ ∗r̂ =

N

∑
i=1

r̂iKhz (zi − z)

N

∑
i=1

Khz (zi − z)

with bandwidth parameter, hz.

Finally, in order to derive the value of the regularization parameter, we adopt the cross validation

criterion, developed in Centorrino (2013). It consists of the minimization of the following function:

CV (α) = ∥T̂ ϕ̂α(−i) − r̂∥
2

(3.4.1)

where ϕ̂α(−i) is the estimator of ϕ where the ith observation has been removed. This function

corresponds to the minimization of the norm of the residuals from the integral equation (3.2.6).

Using the optimal selection criterion, we obtain the first step Tikhonov estimator of the regression

function as described in (3.3.1).

As described in Fève and Florens (2010), it is also possible to update the smoothing parameters

for the conditional expectation functions E(ϕ(z)∣w) and E(E(ϕ(z)∣w)∣z), using our first step

estimation of the function ϕ. We discuss the advantages versus the disadvantages of a two step

estimation in this context in the next session.

3.5 Finite sample behavior

In this section we provide a Monte-Carlo simulation to explore the finite sample properties of our

estimator. The numerical example is calibrated on the empirical application presented in the next

section. We consider a real endogenous variable Z and two instruments W1 and W2.
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The data generating process is as follows:

Y =E (ϕ(Z)∣W ) + ε

Z =0.15W1 + 0.16W2 + η

where:

⎡⎢⎢⎢⎢⎢⎣

W1

W2

⎤⎥⎥⎥⎥⎥⎦
∼N

⎛
⎜⎜
⎝

⎡⎢⎢⎢⎢⎢⎣

0

0

⎤⎥⎥⎥⎥⎥⎦
,

⎡⎢⎢⎢⎢⎢⎣

1 0.2

0.2 1

⎤⎥⎥⎥⎥⎥⎦

⎞
⎟⎟
⎠

η ∼N (0, (0.17)2)

The residual term ε is generated according to a Normal, a Logistic and a mixture of normal

distributions, with mixing coefficients 0.8 and 0.2, i.e. ε∣w ∼ 0.8N (−1,0.05) + 0.2N (4,0.15). The

latter simulation scheme, adapted from Rothe (2009), has been employed to assess the performance

of our estimation under asymmetric distribution of the error term. The standard deviation of the

disturbance ε has been set equal to 0.05 and it is taken as known; wi, ηi and εi are mutually

independent, for every i.

We employ two specifications for the function ϕ: it is chosen equal to −z2, and to −0.075e−∣z∣

(Darolles et al., 2011a; Florens and Simoni, 2012). These functional forms are employed as we can

easily compute the corresponding conditional expectation functions. Define:

Γ(w1,w2) = 0.15w1 + 0.16w2

Then:

E (Z2∣W = w) = σ2
η + Γ2(w1,w2)

and:

E (0.075e−∣Z∣∣W = w) = 0.075e0.5σ2
η [e−Γ(w1,w2) (1 −Φ(ση −

Γ(w1,w2)
ση

))

+eΓ(w1,w2)Φ(−ση −
Γ(w1,w2)

ση
)]
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where Φ denotes the cdf of a standard normal distribution.

We work with a sample size of N = 1000, and we estimate the model both under a Probit (Gε ∼ N )

and a Logit (Gε ∼ Logistic) specification. We run the simulation using each time 250 simulated

samples of the residuals ε.

We use standard Gaussian kernels. The regularization parameters is computed as explained in

section (3.4). The bandwidth parameters are obtained using leave-one-out cross validation3.

Figures (3.1) and (3.3) report the estimation results when using a Probit specification of the model.

Figures (3.2) and (3.4) report instead the results using a Logit specification. For each figure, we

plot the true function (dashed light-grey line), against the mean of the first step estimator (grey

line), and the median of the second step estimator (black line). We also plot their respective 90%

simulated confidence intervals (dotted-dashed lines).

As expected, there is not a significant advantage in choosing between a Probit and a Logit spec-

ification of the model, as the two display similar results. In both cases, the first step estimator,

ϕ̂1, performs better in terms of bias, while it has in general a greater variance than the second

step estimator. This might be due to the fact that we generally undersmooth when computing

the estimators of E(ϕ̂1(z)∣w) and E(E(ϕ̂1∣w)∣z), with respect to the estimation of p(w), and of

E(E(r̂∣w)∣z). This is compensated computationally by a larger value of the regularization param-

eter, which decreases the variance, but at a cost of a much larger regularization bias.4 Therefore,

we suggest using the first step estimator in this context.

Furthermore, the regularity of the function of interest does change the quality of our results.

As a matter of fact, our estimator performs much better in the case where we take a very regular

function (z2) compared to the case where the function is highly irregular (e−∣z∣). This is particularly

evident when the distribution of the error term is not symmetric and we estimate using a Logistic

specification.

3Codes, in MatLab and R, are available upon request.
4MSE comparison not reported here indicates that the second step estimator has to be preferred.
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Figure 3.1: Estimation of the regression function ϕ(z) = −z2 using a Probit specification. The true
function (dashed light grey line) is plotted against the median of the first step (dark grey line) and
the second step (black line) Tikhonov estimators, and their simulated confidence intervals.
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(b) ε∣w ∼ Logistic
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Figure 3.2: Estimation of the regression function ϕ(z) = −z2 using a Logit specification. The true
function (dashed light grey line) is plotted against the median of the first step (dark grey line) and
the second step (black line) Tikhonov estimators, and their simulated confidence intervals.

3.6 An empirical application: interstate migration in the US

We now apply the proposed approach for the estimation of a binary choice model of interstate

migration in the United States. The sample is drawn from the 2003 wave of the Panel Study of

Income Dynamics (PSID), a large household panel survey conducted in the US.

The choice to move to another US state may be related to higher expected income in the new state

of residence. However, income is expected to increase, if and only if the individual decides to move.

This makes income a potentially endogenous dependent variable.

Following Dong (2010) and Escanciano et al. (2011), we construct a sample of non-student male

household heads, aged 22 to 69, with positive labor income during the year 2002-2003. To avoid

results driven by outliers, we trim those individuals whose labor income is below the 0.01 and
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(b) ε∣w ∼ Logistic
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Figure 3.3: Estimation of the regression function ϕ(z) = −0.075e−∣z∣ using a Probit specification.
The true function (dashed light grey line) is plotted against the fist step (dark grey line) and the
second step (black line) Tikhonov estimators, and their simulated confidence intervals (dotted-
dashed lines).
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Figure 3.4: Estimation of the regression function ϕ(z) = −0.075e−∣z∣ using a Logit specification. The
true function (dashed light grey line) is plotted against the fist step (dark grey line) and the second
step (black line) Tikhonov estimators, and their simulated confidence intervals (dotted-dashed
lines).

above the 99.9 percentile. We then obtain information about migration by comparing the state of

residence declared in 2003, with the state of residence in the following waves of the panel (2005,2007

and 2009). In this way, we obtain a sample of 3642 observations. The binary endogenous dependent

variable Ỹ is defined as follows:

Ỹ =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

1 if the household head has moved in the years 2004-2009

0 otherwise

Due to attrition, we only observe Y = 1 for roughly 10% of the sample. The endogenous covariate

Z is the log of the reported labor income. We also use a set of control variables X, such as a

college dummy, the log of age and the log of family size. In order to instrument the endogenous
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variable Z, we have chosen the log of utility expenditure (such as gas, electricity, water, etc.) and

the log of transport costs5. These instrumental variables are clearly unlikely to be correlated with

the choice of migration. However, they might be a very good proxy of income as higher expenses

in utilities are generally related to a bigger house; and higher transport costs might indicate higher

expenditure on leisure6.

Mean St.Dev Min Max

Migration Decision 0.09 0.29 0.00 1.00
Log Income 10.45 0.81 5.30 12.21
Log Utilities Expenditure 5.32 0.73 1.61 8.76
Log Transport Costs 4.88 0.72 0.69 8.41
Log Age 3.69 0.28 3.09 4.23
College 0.59 0.49 0.00 1.00
Log Family Size 1.02 0.51 0.00 2.30

Table 3.1: Summary statistics from the Panel Study Income Dynamics.

Since we introduce a number of exogenous variables, we decide to use the following semiparametric

model:

Ỹ = 1 (E (ϕ(Z)∣W,X) +Xβ + ε ≥ 0)

It appears that our partially linear specification is supported against the null of a fully parametric

model, as the Hsiao et al. (2007) test for the linear probability model rejects the latter in favor of

the former.7 Our main assumption becomes here about the distribution of the error term given X

and W . Thus:

ε∣W,X ∼ N (0,1)

In order to estimate ϕ and β, we use an approach similar to backfitting.

(i) We estimate the conditional probability of Ỹ given X and W . Finally, we obtain r̂ by

inversion of the known conditional cdf of ε.

5Some descriptive statistics for these variables are given in Table (4.6).
6The instruments have been tested using a parametric specification. They pass the weak-identification test using

the Kleibergen-Paap rank LM statistic (Kleibergen and Paap, 2006).
7We also test our partially linear specification against a set of nonparametric alternatives, using the cross val-

idation procedure proposed by Härdle et al. (2000). It appears that our partially linear model does not beat any
other possible nonparametric alternative. However, we maintain such a specification to simplify the description of
the estimator.
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(ii) For a given value of β, we solve the inverse problem:

T̂ϕ = r̂ −Xβ

where T̂ is now the estimator of the conditional expectation operator onto the space of

(X,W ).

(iii) For Ê (ϕ̂αN (z)∣x,w) given, we estimate β using a simple parametric probit, where we control

for the conditional expectation of ϕ̂αN . Optimality and
√
N -consistency of the estimated β

follows from Florens et al. (2012).

The backfitting algorithm iterates the last two steps up to convergence of the following minimization

criterion:

SSR(αN , β̂) =
1

NαN
∥P̂ (ỹ∣w,x) −Φ [Ê (ϕ̂αN (z)∣w,x) + xβ̂]∥2

where Φ denotes the standard normal distribution. An initial value for β should be selected and

should be not too far from the true value. In many cases 0 may be a suitable initial value.

Following the results in Burda (1993), we expect the coefficient associated to age and family size to

be negative. Accordingly, the coefficient associated to the college dummy is expected to be positive.

The effect of income is, however, not clear. For low revenue types, the probability of migration is

higher, as they might want to move in order to improve their status. Using a linear approximation

of ϕ and several parametric and semiparametric specifications, Dong (2010) indeed finds that

migration probability is decreasing when labor income is increasing. The same result is confirmed

in Escanciano et al. (2011). However, by plotting the average probability of interstate migration by

income quantile (figure 3.5), it appears that probability is decreasing, but not in a linear fashion.

This leaves rooms for nonparametric specification of the income effect in this context. We therefore

employ our nonparametric procedure to the estimation of ϕ. For completeness, we compare our

result with the semiparametric specification of Rothe (2009), i.e. we estimate the model:

Ỹ = 1 (Zγ +X1 +X2β2 +U ≥ 0) (3.6.1)

Z = ζ(W ) + V (3.6.2)
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Figure 3.5: Average probability of migration by income quantile.

where the matrix X is partitioned into X1, a vector of college dummies, and X2, a matrix of

logarithmic age and family size. For identification reasons, we set the coefficient associated with

the college dummy to be equal to 1. We remind that the additional identification condition with

endogeneity is:

E (U ∣W,V ) = E (U ∣V )

Since we do not observe V , we obtain a consistent estimator of it, V̂ , using the auxiliary re-

gression model in (3.6.2). The link function ζ is estimated nonparametrically using leave-one-out

bandwidths. Finally, we maximize the following log-likelihood function conditionally on the index,

Zγ +X2β2, and the estimated residual V̂ 8:

logL (γ, β2, h) =
N

∑
i=1

[ỹiP̂(U ∣ziγ + x2iβ2, v̂i) + (1 − ỹi) (1 − P̂(U ∣ziγ + x2iβ2, v̂i))]

where {P̂(U ∣ziγ + x2iβ2, v̂i), i = 1, ...,N} is the nonparametric estimator of the conditional cdf of U ,

with bandwidth h. Notice that the log-likelihood function is jointly maximized in the coefficients,

γ and β2, and the vector of bandwidths h.

Table (3.2) reports the results of the estimation using the semiparametric single index model (SPSI,

column 1), versus the linear part of our semiparametric instrumental variable estimation (SPIV,

column 2). The standard errors are obtained using bootstrap in the former case, while in our

semiparametric specification we simply retrieve them from the parametric probit model. The result

8See Rothe (2009) for a detailed explanation of the estimation procedure.
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SP-SI SP-IV

Migration Decision

Log Income -0.785
(0.488)

Log Age -2.168 -0.874
(0.645) (0.106)

College 1 0.402
(-) (0.065)

Log Family Size -0.455 -0.191
(0.248) (0.058)

Table 3.2: Summary of regression results from SP-SI (column 1) and SP-IV (column 2) models.
Standard Errors in brackets.

for the coefficients are not very different in the two model specifications and have the expected

sign. It has to be noticed that the coefficient associated to family size is not significant in the SPSI

model. Turning our attention to the coefficient associated to the endogenous variable in the SPSI,

we can see that its value is negative as expected and, therefore, consistent with existing evidence.

However, this coefficient is barely significant. Based on previous observations on the nonlinear

decay of the average probability, this does not come as a surprise since a linear specification might

not be sufficient to capture the relation between income and migration decision.

Figure (3.6) draws the nonparametric instrumental variable estimator of the impact of income on

migration probabilities. Bootstrap confidence intervals are obtained using the method developed

in Centorrino et al. (2013a). We can observe that the function is indeed not monotonic. The

income effect is marginally positive for low income values, and it then nonmonotonically decreases

towards higher income. This nonlinear trend may be due to the fact that low income individuals

may find convenient to move to a new state, especially if this displacement is associated with

better living conditions and higher expected income. However, they may not have adequate means

or opportunities to move elsewhere, especially if we consider that low income is often associated

with low education and low skill jobs. This would explain while the curve is initially increasing.

However, as income increases, everything else being equal, people have less incentives to relocate.

This is consistent with existing evidence in the literature, as discussed above.
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Figure 3.6: Functional estimator of the impact of income on migration decisions.

3.7 Conclusions

We propose in this paper a very simple nonparametric instrumental variable approach to binary

outcome models in presence of endogenous regressors, we prove its consistency and draw its finite

sample properties via a simulation study. Our empirical application shows that our estimator is easy

to apply and very flexible and can be used as as alternative framework to existing semiparametric

models for endogenous regressors.
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3.8 Appendix

3.8.1 Proof of Assumption 8

We denote by r̂∗ the unfeasible estimator of the conditional expectation of Y given W .

Remember that r̂ = Qε(p̂(w)). We start by considering a Taylor expansion of the quantile function

Qε(p̂(w)), around Gε(r̂∗).

Qε(p̂(w)) =Qε(Gε(r̂∗)) +Q
′
ε(Gε(r̂∗))(p̂(w) −Gε(r̂∗)) + o(∣p̂(w) −Gε(r̂∗)∣2)

≤r̂∗ +Q′
ε(Gε(r̂∗))(p̂(w) −Gε(r̂∗)) + o(∣p̂(w) −Gε(r̂∗)∣2)

by Assumption 7. Then:

T̂ ∗r̂ − T̂ ∗T̂ϕ = T̂ ∗r̂∗ + T̂ ∗Q′
ε(Gε(r̂∗))(p̂(w) −Gε(r̂∗)) (3.8.1)

where, for simplicity, we omit higher order terms.

We consider the Hilbert-Schmidt norm of the term on the lhs of 3.8.1:

∥T̂ ∗r̂ − T̂ ∗T̂ϕ∥2

≤ 2∥T̂ ∗r̂∗ − T̂ ∗T̂ϕ∥2 + 2∥T̂ ∗Q′
ε(Gε(r̂∗))(p̂(w) −Gε(r̂∗))∥2

= 2∥A1∥2 + 2∥A2∥2

Using assumption A4 in Darolles et al. (2011a, p. 1553), we can show that:

∥A1∥2 = OP (N−1 + h2ρ)

Now we turn to A2. By the properties of the quantile function, the boundedness of the conditional
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density of the disturbances, and the definition of p̂(w), and T̂ ∗, we obtain:

A2 =∫
⎡⎢⎢⎢⎢⎣

1

fε (Qε(Gε(r̂∗)))
⎛
⎝

1
Nhq ∑

N
i=1 ỹiKh(w −wi,w)

f̂(w)
−Gε(r̂∗)

⎞
⎠

⎤⎥⎥⎥⎥⎦

f̂(w, z)
f̂(z)

dw

=∫ [ 1

fε (Qε(Gε(r̂∗)))
( 1

Nhq

N

∑
i=1

(ỹi −Gε(r̂∗))Kh(w −wi,w))] f̂(w, z)
f̂(z)f̂(w)

dw

≤∫ [ 1

infε[fε(ε)]
( 1

Nhq

N

∑
i=1

(ỹi −Gε(r̂∗))Kh(w −wi,w))] f̂(w, z)
f̂(z)f̂(w)

dw

≤Op(1)∫ [( 1

Nhq

N

∑
i=1

(ỹi −Gε(r̂∗))Kh(w −wi,w))] f̂(w, z)
f̂(z)f̂(w)

dw

=∫ BN(w) f̂(w, z)
f̂(z)f̂(w)

dw = Ã2

By the uniform convergence properties of kernel density estimators (Hansen, 2008; Darolles et al.,

2011b), it is possible to show that:

Ã2 = ∫ BN(w) f(w, z)
f(w)f(z)dw +Op (∫ BN(w) f(w, z)

f(w)f(z)dw)

Notice that, ỹi −Gε(r̂∗) is iid uniform between [−1,1], so that uniformly in z:

Ã2 = OP (N−1 + h2ρ)

Following the proof of Darolles et al. (2011b).
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Abstract

We present a rather thorough investigation of the use of regularization methods for the estimation

of nonparametric regression models with instrumental variables. We consider various version of

Tikhonov, Landweber-Fridman and Galerkin regularization. We review data-driven techniques

for the sequential choice of the smoothing and the regularization parameters. Through intensive

Monte-Carlo simulations, we discuss the finite sample properties of each regularization method and

the validity of wild bootstrap confidence bands in this context. Finally, we investigate the use of

these methodologies in the estimation of the Engel curve for food for a sample of rural households

in Pakistan.

4.1 Introduction

Instrumental variables are popular in econometrics to achieve identification and perform inference

in the presence of endogenous explanatory variables. Empirical applications of this framework are

vast, e.g. structural estimation of the Engel curve (Blundell et al., 2007), of demand functions

(Hoderlein and Holzmann, 2011) or of returns to education in a homogeneous population (Blundell

et al., 2005).

However, in many empirical application, it is often preferred to introduce a parametric structure of

the function of interest. The implementation of some (linear or nonlinear) parametric models, that

can be estimated using GMM, enormously simplifies the estimation exercise. This comes at the

cost of imposing restrictions on the regression function which may not be justified by the economic

theory, and can lead to misleading inference and erroneous policy conclusions.

On the contrary, a fully nonparametric specification of the main model leaves the data to speak for

themselves, and therefore does not impose any a priori structure on the functional form. A fully

nonparametric approach can be a very useful exploratory tool for applied researchers in order to

choose an appropriate parametric form and to test restrictions coming from the economic theory

(e.g. convexity, monotonicity).

However, while nonparametric estimation with instrumental variables (also known as nonparamet-
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ric instrumental regression) has recently received enormous attention in the theoretical literature

(see, e.g. Darolles et al., 2011a; Horowitz, 2011, and references therein), it remains unpopular

among applied researchers.1 This may be partially due to the theoretical difficulties that empirical

researchers might encounter in approaching this topic. The regression function in nonparamet-

ric instrumental regressions is, in fact, obtained as the solution of an ill-posed inverse problem.

Heuristically, this implies that the function to be estimated is obtained from a singular system

of equations and, therefore, the mapping which defines it is not continuous. Hence, the estima-

tion of this type of models requires, beside the usual selection of the smoothing parameter for the

nonparametric regression, to transform this ill-posed inverse problem into a well-posed one. This

transformation is achieved with the use of regularization methods that require the selection of a

regularization constant.

The tuning of the latter parameter constitutes an additional layer of complication and it has to

be tackled with the appropriate method. Data-driven techniques for the choice of regularization

parameter in the framework of nonparametric instrumental regressions are presented in Centorrino

(2013); Fève and Florens (2010); Florens and Racine (2012), and Horowitz (2012).2 These works,

however, focus on a specific regularization scheme and there is not, to the best of our knowledge, a

paper which gives empirical researchers a broad picture about regularization frameworks that can

be used in the context of nonparametric instrumental regressions.

The contribution of this work is therefore to review several regularization techniques that can

be applied when the explanatory variable is endogenous and the regression function is estimated

nonparametrically using instrumental variables. We consider the simple framework of an additive

separable model, with a single endogenous covariate, a single instrument and without additional

exogenous variables. We analyze the performances of several version of Tikhonov (Darolles et al.,

2011a), Landweber-Fridman (Johannes et al., 2013; Florens and Racine, 2012) and Galerkin (Car-

dot and Johannes, 2010; Horowitz, 2011) regularizations in the case where both the smoothing and

the regularization parameters are chosen using data-driven methods.

Moreover, we assess the performances of wild bootstrap to obtain pointwise confidence intervals

1The few notables exceptions we are aware of are Blundell et al. (2007); Hoderlein and Holzmann (2011) and
Sokullu (2010)

2There exists also a very large literature in mathematics about numerical criteria for the choice of the regular-
ization parameter for integral equations of the first kind (Engl et al., 2000; Vogel, 2002).
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in this framework. Confidence bands may be extremely important to draw conclusions about

the variability of the estimation and to assess unusual features of the estimated regression curve.

Moreover, in this context, they can serve to test for the exogeneity of the independent variable

(Blundell and Horowitz, 2007). However, nonparametric instrumental regressions lack of a general

procedure to obtain them. Chen and Pouzo (2012); Horowitz and Lee (2012) and Santos (2012)

study bootstrap in nonparametric instrumental regressions and prove its validity but only in the

very specific framework of Galerkin regularization. The wild bootstrap presented in this work

is instead of more general applicability and, in particular, it can be used independently of the

regularization scheme under consideration.

The paper is structured as follows. In section (4.2), we present the main framework. We review

carefully each regularization scheme, and we discuss its practical implementation in section (4.3).

In sections (4.4) and (4.5), we describe the structure of the Monte-Carlo experiment, and expose the

bootstrap procedure and its validity. In section (4.6), we present an application to the estimation

of the Engel curve for food using a cross section database of Pakistan households. Finally, section

(4.7) concludes.

4.2 The main framework

We focus our analysis on a simple framework characterized by a triplet of random variables

(Y,Z,W ) ∈R3, verifying the following model:

Y = ϕ(Z) +U (4.2.1a)

E(U ∣W ) = 0 (4.2.1b)

This model is a regression type model, where the usual mean independence condition E(U ∣Z) = 0

is replaced by condition (4.2.1b). This specification has been extensively studied in econometrics

in order to account for the possible endogeneity of Z (i.e. the lack of independence between the

covariate Z and the error U), under the name of instrumental variable regression. In particular,

recent literature has investigated the nonparametric estimation of the function ϕ(⋅) in (4.2.1a)

(see,e.g. Newey and Powell, 2003; Hall and Horowitz, 2005; Carrasco et al., 2007; Darolles et al.,
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2011a; Chen and Pouzo, 2012, among others).

The main specificity of the model considered here is that ϕ(⋅) has to be found as the solution of

an integral equation of the first kind, i.e.

E(ϕ(Z)∣W ) = E(Y ∣W ) (4.2.2)

which leads to a linear inverse problem. However, this problem is generally ill-posed (see Engl

et al., 2000). To briefly illustrate the matter, denote by r = E(Y ∣W ), and Tϕ = E(ϕ(Z)∣W ), so

that (4.2.2) now writes:

Tϕ = r (4.2.3)

We assume that the triplet (Y,Z,W ) is characterized by its joint cumulative distribution function

F , dominated by the Lebesgue measure. Denote by f its probability density function. We consider

the space of square integrable function relative to the true F and we denote, for instance, by L2
z,

the space of square integrable functions of Z only. We further assume that Y ∈ L2
z and r ∈ L2

w.

The operator T defines the following linear mapping:

T ∶ L
2
z → L2

w

(Tϕ)(w) = ∫ ϕ(z)f(z∣w)dz

In order to solve (4.2.3), we also require its adjoint T ∗, which is defined as follows:

⟨Tϕ,ψ⟩ = ⟨ϕ,T ∗ψ⟩ where ϕ ∈ L2
z and ψ ∈ L2

w

and

(T ∗ψ) (z) = ∫ ψ(w)f(w∣z)dw

where ⟨⋅, ⋅⟩ denotes the inner product in L2
z or in L2

w.

The operators T and T ∗ are taken to be compact (see, e.g. Carrasco et al., 2007; Darolles et al.,

2011a), and they therefore admit a singular value decomposition. That is, there is a nonincreasing

sequence of nonnegative numbers {λi, i ≥ 0}, such that:
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(i) Tϕi = λiψi

(ii) T ∗ψi = λiφi

For every othonormal sequence ψi ∈ L2
w and φi ∈ L2

z. Using the singular value decomposition of T ,

we can rewrite equation (4.2.3) as:

∞
∑
j=1

λjϕjφj =
∞
∑
j=1

rjψj

where ϕj = ⟨ϕ,φj⟩ and rj = ⟨r, φj⟩ are the Fourier coefficients of ϕ and r, respectively. We point

out that compacteness it is not a simplifying assumption in this context, but describes a realistic

framework in which the eigenvalues of the operator are declining to zero. Assuming that the

eigenvalues are bounded below is relevant for other econometric models, but it is not realistic in

the case of continuous nonparametric instrumental variable estimation.

Another crucial assumption for identification is that the operator is T is injective, that is:

Tϕ
a.s.= 0 ⇒ ϕ

a.s.= 0 (4.2.5)

(see Newey and Powell, 2003; Darolles et al., 2011a; Andrews, 2011; D’Haultfoeuille, 2011). This

completeness condition is assumed to hold throughout the paper, and it guarantees that the eigen-

values of the operator T are strictly positive, although converging to 0 at some rate.

Finally, under this set of assumptions, we can use Picard’s theorem (see, e.g. Kress, 1999, p. 279)

and write the solution to our inverse problem as:

ϕ =
∞
∑
j=1

rj

λj
ψj (4.2.6)

The ill-posedness in (4.2.3) arises because of two main issues:

(i) The inverse operator T−1 is a non-continuous operator. The noncontinuity of T−1 is tanta-

mount to the fact that the eigenvalues λj → 0, as j → ∞, which entails the ill-posedness of

the problem. This leads to a non consistent estimation of the function ϕ.

(ii) The right hand side of the equation need to be estimated. This approximation introduces a
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further estimation error component which renders the ill-posedness of the problem even more

severe.

Therefore, the problem in (4.2.3) should be tackled using an appropriate regularization procedure.

The heuristic idea is to replace the operator T ∗T by a continuous transformation of it, so that the

denominator in (4.2.6) does not blow up. One could add to every eigenvalue λj a small constant

term. This constant term controls the rate of decay of the λj ’s to 0 (Tikhonov regularization).

Another approach would be to replace the infinite sum in (4.2.6) by a finite approximation of it,

and estimate the Fourier coefficients by projection on an arbitrary function basis of the instruments

and the endogenous variable (Galerkin regularization). Finally, it is possible to avoid the inversion

of the operator T ∗T , by using an iterative method (Landweber-Fridman regularization). Note that

all these methods require the tuning of the regularization parameter : the constant which controls

the decay of the eigenvalues; the finite term at which the sum has to be truncated; and the number

of iterations to reach a reasonable approximation to the direct operator inversion.

One of the aims of this work is to gather and discuss data-driven choices of such parameters.

4.3 Implementation of the regularized solution

Once we have chosen our preferred nonparametric estimator (local constant kernels, local poly-

nomials, splines), the implementation of regularization methods requires, beside the choice of the

smoothing parameters for the nonparametric regression, the selection of a regularization constant

in order to cope with the ill-posedness of the inverse problem.

Despite a correspondence between the smoothing and the regularization parameters clearly exists,

their simultaneous choice is, to the best of our knowledge, not feasible. The most judicious approach

is to select them sequentially. As a matter of fact, it seems that the regularization parameter adjusts

to the choice of the smoothing parameter in a reasonable set of values.3

For practical applications, it is essential to dispose of data-driven techniques for the selection of

both types of parameters. There is already a vast literature about the selection of the smoothing

parameter for nonparametric regressions (for a review, see Li and Racine, 2007). Hence, here we

3For a discussion on this topic, see also Fève and Florens (2010).
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mainly focus our attention on the methods for the optimal selection of the regularization parameter,

and we suppose that the smoothing parameter has been chosen using our preferred data-driven

approach.

Given the smoothing parameter, an inadequate choice of the regularization parameter has a sub-

stantial impact on the final estimation: if we regularize too much, the estimated curve becomes

flat as we kill the information coming from the data; if we do not regularize enough, the estimator

oscillates around the true solution, but it does not ultimately give any guidance about the form of

the regression function.

In the following, we suppose to dispose of an iid realization of the random variables (Y,Z,W ),

which we denote {(yi, zi,wi) , i = 1, . . . ,N}.

The linear operator T and the rhs of (4.2.3), r, can be estimated using our favorite nonparametric

regression technique (e.g., local polynomials, regression splines). Finally, we need to choose a

regularization rule, which identifies our solution as function of our nonparametric estimates of r

and T . The remainder of this section reviews the regularization methods we undertake in this

paper, and discusses, for each of them, a criterion for the data-driven choice of the regularization

parameter.

4.3.1 Tikhonov Regularization

The Tikhonov regularization method (TK henceforth) is based on the minimization of the following

criterion function (Darolles et al., 2011a):

∥Tϕ − r∥2 + α∥ϕ∥2 (4.3.1)

which leads to find the function ϕ as the solution of the following system of equations:

αϕ + T ∗Tϕ = T ∗r (4.3.2)

Notice that, in this equation, only the right hand side can be estimated from the data, while the

left hand side depends on the unknown function ϕ. The conditional expectation of Y given W is
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estimated as, r̂ = T̂ y, where T̂ corresponds to the matrix of kernel weights (see Fève and Florens,

2010) or to the orthogonal projection of the y’s on the space spanned by the spline basis of w.

Similarly, the adjoint operator T ∗ is estimated as the conditional expectation function of E(r̂∣Z).

For each of these estimator, a smoothing parameter is chosen using least square cross validation.

Finally, a first step estimator of ϕ is obtained by replacing these estimators in (4.3.2), i.e.,

ϕ̂α = (αI + T̂ ∗T̂)−1
T̂ ∗r (4.3.3)

where the superscript α stresses the dependence of the solution from the regularization parameter.
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Figure 4.1: Criterion function for the optimal choice of α in Tikhonov regularization

In order to choose the regularization parameter α, we adopt the cross validation approach developed

in Centorrino (2013). This method consists of minimizing the following sum of squares:

CV (α) = ∥T̂ ϕ̂α(−i) − r̂∥
2

where ϕ̂α(−i) is the estimator of ϕ obtained by removing the ith observation from the sample.

Centorrino (2013) proves that this criterion is rate optimal in mean squared error and shows its

superior finite sample performances compared to other existing numerical methods. A typical

shape of this criterion function can be found in figure (4.3.1).

Once an initial estimate of ϕ is obtained, it would be possible to select new smoothing parameters

for the estimation of the left hand side of (4.3.2). That is, to replace T and T ∗, on the lhs with the

matrices of weights obtained from the estimation of E(ϕ̂α∣W ) and of E(Ê(ϕ̂α∣W )∣Z), respectively;



122

and to finally iterate the choice of the regularization parameter for these new smoothing parameters.

However, there is not a theoretical (or practical) evidence that the iterative approach improves

the estimation. As a matter of fact, the quality of this scheme strongly depends on the first step

estimator. If the latter poorly approximates the function of interest, we cannot, in general, be sure

to converge to a better outcome. Thus, in this paper, we only consider the performance of the first

step TK estimator.

4.3.2 Landweber-Fridman Regularization

The Landweber-Fridman (LF henceforth) regularization consists of an iterative approach, which is

meant to avoid the inversion of a large matrix (Johannes et al., 2013). If we multiply both sides

of equation (4.2.3) by T ∗, the solution ϕ can be written as:

cT ∗Tϕ = cT ∗r

where c is a scalar constant, such that ∥T ∗T ∥ < 1/c. The iterative approach is about finding a fixed

point of the system of equations. Therefore, by adding and subtracting ϕ on the left hand side, we

obtain the recursive solution:

ϕj+1 = ϕj + cT ∗ (r − Tϕj) , ∀j = 0,1, . . . (4.3.4)

or equivalently:

ϕM = c
M−1

∑
j=0

(I − cT ∗T )j T ∗r (4.3.5)

where M is the total number of iterations needed to reach the solution. M plays here the role of

regularization parameter. As M diverges to infinity the regularized solution in (4.3.5) converges to

the true ϕ. Asymptotically, it can be shown that M ≃ 1/α, where α is the regularization parameter

in the Tikhonov approach (see, e.g. Florens and Racine, 2012).

In order to implement the LF regularization, we use the iterative scheme from equation (4.3.4).

We proceed as follows:

(i) We compute smoothing parameters h0, for the estimation of r, and of E(r∣Z). As for TK
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regularization, this allows us to obtain T̂h0 and T̂ ∗h0
, first step estimators of the operators

T and T ∗, where subscripts are used to stress the dependence on a specific value of the

smoothing parameter.

(ii) We set the initial condition ϕ̂0 = cT̂ ∗h0
r̂h0 . This is consistent with equation (4.3.5) for j = 0.

(iii) Using ϕ̂0, we update smoothing parameters for the estimation of E(ϕ̂0∣W ), and of E(E(Y −

ϕ̂0∣W )∣Z). Define these new smoothing parameters as h1. We therefore obtain updated

estimators of the operators, T̂h1 and T̂ ∗h1
.4

(iv) By equation (4.3.4), we compute ϕ̂1 as:

ϕ̂1 = ϕ̂0 + cT̂ ∗h1
(r̂h0 − T̂h1ϕ̂

0)

(v) For j = 2,3, . . . , we repeat steps (iii) and (iv), until the following criterion is minimized (see

also Florens and Racine, 2012):

SSR(j) = j ∥T̂ ϕ̂j − r̂∥
2

, j = 1,2, . . .

i.e., we stop iterating when this objective function starts to increase. This criterion function

minimizes the sum of square residuals, and it is multiplied by j in order to admit a minimum.

A typical shape of this function is reported in figure (4.2). It can be seen that the function

is only locally convex, so that, we need to check the criterion only after a certain number of

iterations has been performed. In practice, we iterate at least until j = c−1N1/4.5. The shape

of the function can then be checked ex-post for local minima.

4Updated smoothing seems natural, in this context, to account for the relation between regularization and
smoothing parameters. It also appears that the this strategy is MSE minimizing. We would like to thank Jeffrey S.
Racine for insightful discussions on this topic.

5This stopping rule is justified by the fact that the Tikhonov regularization parameter α ≃ N− 1
4 asymptotically

(Darolles et al., 2011a) Since M ≃ 1/α, it follows M ≃ N1/4. We then multiply by the inverse of the constant as
convergence towards the solution is slower as c decreases.
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Figure 4.2: Stopping function for Landweber-Fridman regularization

4.3.3 Galerkin Regularization

The Galerkin type of regularization (GK henceforth) consists on truncating the infinite sum in

(4.2.6), by a finite approximation on an arbitrary basis (see, e.g. Cardot and Johannes, 2010;

Horowitz, 2011).

Fix an orthonormal basis {φj , j = 1, . . . , J} (e.g., B-Splines, Wavelets, Hermite polynomials,etc.),

which does not necessarily correspond to the natural basis of operators T and T ∗. Take an integer

Jn <∞, the solution given by Galerkin regularization can be written as:

ϕJn =
Jn

∑
j=1

βjφj (4.3.6)

where βj = ⟨ϕ,φj⟩ are the Fourier coefficients, associated to the decomposition of ϕ on the space

spanned by the basis functions, and the superscript Jn denotes again the dependence of the solution

on the truncation parameter.

The implementation of this method is very simple: we need to estimate the Fourier coefficients βj ,

for j = 1, . . . , Jn in (4.3.6), upon the choice of an orthonormal family of basis functions and of the

truncation parameter Jn.

To the best of our knowledge, a theoretically justified rule for choosing the former is not available.

We therefore decide to use cubic B-spline basis (Blundell et al., 2007; Horowitz, 2011). For every

value of Jn, we obtain an estimator of the Fourier coefficients as follows:
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(i) Define the two matrices of basis functions:

Wn = [φ1(w), . . . , φJn(w)] Zn = [φ1(z), . . . , φJn(z)]

and the vector of Fourier coefficients, β = {β1, . . . , βJn}

(ii) Then:

ϕJn =
Jn

∑
j=1

βjφj = Znβ

(iii) We proceed as in a standard two stages least square problem and we obtain our estimator of

β as:

β̂ = arg min
β∈BJn

(Y −Znβ)
′
(WnW

′
n) (Y −Znβ)

where BJn is the parameter space that depends on the choice of Jn. This finally gives:

β̂ = (Z ′
nWnW

′
nZn)

−1
(Z ′

nWnW
′
nY )

For the choice of the regularization parameter Jn, we follow the data driven method proposed by

Horowitz (2012). Define HJn,s the Sobolev space of functions with s square integrable derivatives,

whose decomposition is truncated at Jn. Define further:

ρJn = sup
ν∈HJn,s,∥ν∥=1

[∥ (T ∗T )
1
2 ν∥]

−1

Blundell et al. (2007) call ρJn the sieve measure of ill-posedness. As n→∞, to obtain consistency

of the estimator, we require ρJn (J3
n/n)

1
2 → 0 and ρJn (J4

n/n)
1
2 → ∞. We therefore need to find a

value of Jn which satisfies these requirements. Such a value can be defined as:

Jn0 = arg min
J=1,2,...

{ρ2
JJ

3.5/n ∶ ρ2
JJ

3.5/n − 1 ≥ 0}

i.e., Jn0 is the smallest integer such that ρ2
JJ

3.5/n ≥ 1. The method for determining a feasible

estimate of Jn0 has two steps:

(i) Obtain an estimator of ρ2
J . Such an estimator can be obtained by noticing that ρ̂−2

J is the
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smallest eigenvalue of the matrix T̂ ∗J T̂J , where T̂ ∗J and T̂J are the estimators of the conditional

expectation operators truncated at J .

(ii) Finally, define:

Ĵn0 = arg min
J=1,2,...

{ρ̂2
JJ

3.5/n ∶ ρ̂2
JJ

3.5/n − 1 ≥ 0}

A typical shape of this criterion is drawn is figure (4.3).
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Figure 4.3: Choice of Ĵn for Galerkin regularization.

A final remark on GK regularization is about the variance of the estimator in finite samples. The

GK estimation procedure is a nonparametric generalization of the 2SLS estimator. Mariano (1972),

in an influential paper, shows that the 2SLS estimator only possesses moments of order p − q + 1,

where p is the dimension of the endogenous variable and q the dimension of the instruments.

Therefore, if one uses the same dimension for the matrices Wn and Zn, our GK would have only

finite mean but infinite variance. In order to obtain a finite variance in our sample, we therefore

include an additional term in the matrix Wn, so that its dimension is Jn + 1.6

4.3.4 Penalization by derivatives

The last approach presented in this work does not point out towards the realization of the regular-

ization scheme, but rather to the methodological fact that we can use the restriction in (4.2.3) to

obtain ϕ as the integral of its derivatives of any order. Therefore, we can regularize the derivative

6Simulations ran with the same dimension for both matrices show indeed that the variance of the GK estimator
becomes arbitrarily large when we do not correct for this effect.
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of the function of interest, instead of the function itself, in order to obtain an estimator that is

smoother and less oscillating than the ones previously discussed.

We solely focus on the case when the penalization is on the first derivative of the function. This

framework may be particularly relevant in economic applications as researchers are often interested

in marginal effects. For instance, one could be interested in the estimation of demand elasticities,

rather than the demand function itself.

In this section we thus work with functions having square integrable first derivative, i.e. ϕ
′ ∈ L2

z.

Define the first order differential operator L. We can rewrite equation (4.2.3) as follows:

TL−1Lϕ = r

TL−1ϕ
′ = r

Bϕ
′ = r

where B = TL−1. We can then obtain ϕ
′

as the solution of this equation, and, by definition,

ϕ = L−1ϕ
′
, where L−1 corresponds to the integral operator.

The main obstacle in the implementation of this estimator is to find the adjoint of the operator B,

defined as:

B∗ = (TL−1)∗ = (L−1)∗ T ∗

This definition requires to find the adjoint of the first order integral operator L−1. Following Florens

and Racine (2012), we have, for a generic function ψ, that:

(L−1)∗ψ(z) = −(∫
∞

z
ψ(u)du − ∫ ψ(u)du)

Now define a generic function λ, such that, λ
′ ∈ L2

w; fZ and SZ , the pdf and the survivor function

of Z, respectively; fW , the pdf of W ; and, finally,

S(u,w) = − ∂

∂w
P (Z ≥ u,W ≥ w)
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Then the adjoint operator, B∗, is such that:

(B∗λ) (u) = 1

fZ(u) ∫
λ(w) (S(u,w) − SZ(u)fW (w))dw

The pdf and the survivor function can be estimated using nonparametric kernels. Suppose Kh(⋅)

to be a continuous, positive, and bounded kernel, for a given bandwidth h, and define K̄h(a) =

1 − ∫ a−∞Kh(b)db. We then have:

(B̂∗λ) (u) = 1

f̂Z(u)
{ 1

N

N

∑
i=1

[K̄h (u − zi)λ(wi)] − ŜZ(u)(
1

N

N

∑
i=1

λ(wi))}

For the selection of the bandwidth parameter h, we apply least squares cross validation. For the

estimation of K and r, we can again apply any nonparametric technique. The corresponding

smoothing parameters are chosen by cross validation.

The integral operator L−1 is approximated using a trapezoidal rule. I.e.

(L̂−1ϕ
′)
i
=

i

∑
l=1

ϕ
′
l (zl − zl−1) , i = 1, . . . ,N

where z0 is normalized to be the smallest value taken by the random variable Z in the sample.

Finally, B̂ = T̂ L̂−1.

Notice that, the operator L−1 is a proper inverse of L only on the space of centered functions, i.e.

when E(ϕ) = 0. Therefore, the estimator is identified up to a constant term. However, by the

structural equation in (4.2.1a), we have that E(ϕ) = E(y). Then, our final estimator is recentred,

in order to have the same sample expectation as the dependent variable.

The implementation is based on both TK and LF regularization.

(i) TK. The derivative of the solution satisfies the following system of normal equations:

B̂∗B̂ϕ
′ = B̂∗r (4.3.7)

Notice that, in this case, the estimation is extremely simplified with respect to the case studied

in Florens and Racine (2012). As a matter of fact, the normalization of the estimated adjoint
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operator B̂∗ by the pdf of Z is not necessary, since both sides of (4.3.7) are multiplied by it.

Moreover, we do not need to recenter the solution of this problem, as a fortiori, the mean

of the function ϕ is the same as the mean of y, up to the regularization bias. With TK

penalization of the first derivative, the solution is written as:

ϕα = L−1ϕ
′α = L−1 (αI + B̂∗B̂)−1

B̂∗r

For the selection of α, we apply the same cross validation criterion presented above (see also

Centorrino, 2013; Fève and Florens, 2013, for an application).

(ii) LF. The LF iterative solution writes:

ϕ
′
j+1 = ϕ

′
j + cT ∗ (r − Tϕ

′
j) , ∀j = 0,1, . . . (4.3.8)

where:

ϕj = L−1ϕ
′
j −E (L−1ϕ

′
j)

with the initial condition:

ϕ
′
0 = c

1

f̂Z
[Ŝr − ŜZÊN (r)]

Finally:

ϕj+1 = L−1ϕ
′
j+1 −E (L−1ϕ

′
j+1) +E (y)

The smoothing parameters for the estimation of the pdf and the survivor functions are not

updated from iteration to iteration (see also Florens and Racine, 2012). The choice of the

smoothing parameters for the estimation of the operator T and the stopping criterion are,

instead, identical to the baseline case.

4.4 Monte-Carlo Simulations

In this section, we analyse the performances of the various estimators previously discussed using

data-driven methods. In particular, we consider the application of these regularizations under

distinct nonparametric estimations. We inspect the behavior of local constant, local linear and
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B-splines estimation associated with TK and LF; local constant estimation with penalized first

derivative; and finally a B-spline estimation for GK.

Couple of caveats are in order. The goal of this simulation study is not to compare the performance

of the various estimation techniques, but rather to show the effectiveness of the data-driven tech-

niques presented in this paper and test the validity of the bootstrap, discussed in the next section.

By no means, we would try to drive the empirical researcher towards one of these methods. On

the contrary, we may want to encourage to use various estimators simultaneously. Moreover, a

simulation study which aims at comparing the various regularization techniques would be flawed

by definition. This is because different regularities of the joint distribution of the endogenous vari-

ables and the instruments, and smoothness of the true regression function are driving the degree of

ill-posedness of the inverse problem. On the one hand, the estimators presented here may be more

or less sensitive to these regularities; on the other hand, many choices related to the implementa-

tion are still not backed by valid theoretical arguments, and might be suboptimal for a particular

design of the data.

The numerical example used in this paper is based on the framework adopted by Darolles et al.

(2011a), Florens and Simoni (2012) and Florens and Racine (2012). The main data generating

process follows equation (4.2.1a):

Y = ϕ(Z) +U

where E(U ∣Z) ≠ 0, so that endogeneity is present. Thus, we simulate independently the instrument

W , and two disturbances U and V . We then define the endogenous variable Z as a function of W ,

U and V . In particular, we have the following:

W ∼N (0,102)

V ∼N (0, (0.5)2)

U ∼N (0, (0.05)2)

Z = 1

1 + exp (−(0.1W + 40U + V ))

Y =Z2 +U
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The main difference with the numerical examples reported in other papers is that the endogenous

variable, Z, is a nonseparable function of the instrument, W , and the disturbances, U and V . The

companion code for this paper has been programmed in Matlab and it is available upon request

from the authors.

We work with a modest sample size of 500 observations and we draw 1000 replications of the error

terms V and U . Since the regressor Z is changing for each of these replications, we evaluate each

estimator of ϕ on a grid of 500 equispaced points in (0,1).

When using B-splines, we fix the order of the basis to 4 (cubic splines), and we compute the optimal

number of knots using either least squares cross validation (TK and LF) or the method developed

in Horowitz (2012) (GK). An important remark about the B-spline estimation is about the choice

of knots. The boundary knots are placed at the minimum and the maximum of the observed data.

We then place the interior knots uniformly between the two boundaries. The impact of free-knots

(Stone, 2005) or quantile knots is not explored here and left to further research.7

For local constant and local linear estimation, the bandwidth parameters are all obtained by least

squares cross validation (Li and Racine, 2007).

Notice that the use of least squares cross validation in this context is only of practical relevance, and

it can be replaced by other methods. Possible alternatives include rule of thumb smoothing, max-

imum likelihood cross validation, or a modified AIC criterion (Hurvich et al., 1998). Notice, that

all these methods are known to balance the trade-off between variance and bias for nonparametric

regressions. In practice, this also seems appropriate in the case of nonparametric instrumental

regressions (see Centorrino, 2013; Fève and Florens, 2013, for a further discussion on the topic).

Figures (4.4), (4.5), (4.6) and (4.7) report the results of our simulations for the local constant, local

linear, B-splines and penalized first derivative local constant estimators. On the left panel of each

figure, we draw the TK regularized solution; the LF solution is instead on the right panel. Figure

(4.8) presents the same results for GK with B-splines. The light gray line in each figure is the true

function ϕ. The thick black line is the median value of the regression function at each evaluation

point from the simulation and the dashed lines give the 95% confidence intervals.

7Another important aspect to consider is that the position of the knots can be chosen adaptively to ensure the
best fitting of the regressions curve (see Ma and Racine, 2013). This type of adaptive selection can be used with the
crsiv function in R (Racine and Nie, 2012).
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Figure 4.4: Simulations results using Local Constant Kernels
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Figure 4.5: Simulations results using Local Linear Kernels
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Figure 4.6: Simulations results using B-Splines



133

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

Tikhonov Penalization by Derivatives (Confidence Intervals)

 

 

True ϕ

ϕ̂

M T

S imu lated C Is

(a) Tikhonov

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

Landweber−Fridman Penalization by Derivatives, Confidence Intervals

 

 

True ϕ

ϕ̂

M LF

S imu lated C Is

(b) Landweber-Fridman

Figure 4.7: Simulations results using Local Constant Kernel with penalized first derivative
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Figure 4.8: Simulations results using Galerkin with B-splines

The comparison of the various estimators in terms of Mean Integrated Square Error (MISE),

median Mean Square Error (MSE), variance and bias is given in Table (4.1). All estimators have

roughly comparable performances. A comparison of the MISE shows that the Penalized Local

Constant TK and the B-spline estimators are those giving the best results for our simulation

scheme. They generally have a lower bias and a lower variance compared to all other estimators.

The GK regularization also gives good fitting of the true regression function. Its bias is very low,

while its variance is substantially bigger compared to the one of other estimators.

The Local Constant and Local Linear kernel estimators (both with TH and LF) present a larger

bias. It is difficult to say whether higher bias comes from the selection of the smoothing or the

regularization parameter. Variances are comparable across estimators both for LF regularization

and TK regularization. Notice that the local constant and local linear estimator have higher median
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variance under TK rather than under LF. The opposite holds true for the spline and the penalized

local constant. This latter result is consistent with the bias-variance trade off.

MISE MSE Bias Variance

Local Constant TH 0.00214 0.00219 0.01079 0.00119
Local Linear TH 0.00253 0.00260 0.01703 0.00104
Spline TH 0.00148 0.00129 0.00329 0.00057
Penalized TH 0.00039 0.00029 0.00872 0.00012
GK 0.01830 0.01344 0.00085 0.01336
Local Constant LF 0.00256 0.00278 0.01678 0.00117
Local Linear LF 0.00253 0.00256 0.01937 0.00084
Spline LF 0.00218 0.00196 0.01080 0.00087
Penalized LF 0.00163 0.00112 0.01942 0.00018

Table 4.1: MISE and Median MSE, Bias and Variance for each estimator.

In order to explore further the differences between bias and variance for the different estimators,

we report, in Table (4.2), summary statistics for the regularization parameter, by estimation type.

Concerning both LF and TK regularization, it is clear from this table that the choice of the

regularization parameter goes into the expected direction. In TK scheme, when α is selected to be

small, the estimation bias is reduced, as it is the case for the Spline and for the Penalized Local

Constant. This is consistent with the fact that splines tend to smooth more the regression function

and therefore lead to select a smaller value of the regularization parameter. By contrast, in the

Penalized Local Constant, the regularization is carried onto the first derivative of the function,

which gives a smoother solution for the inverse problem (and a smaller value of the regularization

parameter). The Local Constant and Local Linear estimators lead to a more rough estimation of

the conditional expectation functions and, therefore, the data-driven criterion selects a larger value

of the regularization parameter.

The same effect holds for the LF regularization. When the number of iterations, M , increases,

the bias decreases and the variance rises. In this case too, nonparametric methods that lead to

a smoother estimation of the regression function (as B-splines and local linear kernels) converge

towards a larger number of iteration, i.e. lower regularization. While local constant kernels reach

convergence, on average, for a lower value of M . The penalized local constant estimator is the one

having the higher mean (and median) number of iterations, as its solution is smoother. This is

reflected in practice by a lower bias and a larger variance of this estimator, as reported in Table

(4.1).
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A final remark is about the choice of the number of knots for the B-spline basis in the GK scheme.

As it can be seen from Table (4.2), the optimal criterion is very conservative as it selects a small

number of knots. For our simulation scheme, the data-driven criterion almost always selects 3

knots and, in some particular cases, 4 knots. However, this is sufficient to have a huge effect on

the total variance of the GK estimator.

Mean Median St.Dev Min Max

Local Constant TH (×105) 1288.3 1082.2 724.5 122.5 6043.2
Local Linear TH (×105) 716.0 391.8 959.4 3.9 11251.9
Spline TH (×105) 872.7 866.3 439.9 0.0 2794.7
Penalized TH (×105) 77.6 64.0 54.2 6.3 600.3
GK 3.0 3.0 0.2 3.0 4.0
Local Constant LF 45.9 46.0 14.0 9.0 118.0
Local Linear LF 68.4 44.0 82.1 10.0 1000.0
Spline LF 57.5 56.0 17.6 12.0 131.0
Penalized LF 256.8 248.5 85.0 87.0 641.0

Table 4.2: Summary statistics for the regularization parameter.

Finally, we also report in Table (4.3) some summary statistics for the computational time (in sec-

onds). It is evident that the GK type regularization holds an advantage upon all other estimators.

This is due to the fact that the truncation parameter plays in this case the role of regularization

and smoothing constant. Therefore, it is not necessary to implement any type of CV criterion for

the tuning of the smoothing parameter, which can be computationally very costly. Moreover, the

dimension of the estimated operator is reduced from the number of observations to the number

of bases after truncation, which impacts computational time tremendously. Hence, although we

only focus here on a fixed sample size, we expect that the gap in computational time between the

GK regularization type and the other estimators spreads further as N increases. A final comment

is about the difference between TK and LF regularization. TK regularization still holds an ad-

vantage in terms of computational time. This is because the choice of the smoothing parameter

is performed only once in TK, while for LF it has to be repeated as many times as the number

of iterations. Furthermore, the sample size considered in this work is mild and the inversion of

the regularized operator does not require excessive CPU memory. However, as the sample size

increases, the computation of the inverse operator becomes very costly and this computational

advantage may disappear.8

8An additional comment about LF is that, although updating the regularization parameter at each iteration may
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Mean Median St.Dev Min Max

Local Constant TH 16.64 15.20 5.00 10.27 43.35
Local Linear TH 35.96 31.16 18.11 14.20 227.92
Spline TH 16.49 16.57 2.08 4.03 24.72
Penalized TH 13.30 12.54 2.81 8.13 29.35
GK 0.06 0.06 0.02 0.01 0.27
Local Constant LF 502.44 481.24 169.98 105.78 1304.09
Local Linear LF 2265.71 1139.09 2591.45 194.02 23390.28
Spline LF 720.31 656.09 337.61 110.41 2614.35
Penalized LF 1887.46 1819.83 615.88 285.43 4631.69

Table 4.3: CPU time for each estimator (in seconds).

4.5 Wild Bootstrap in Nonparametric IV

4.5.1 Resampling from sample residuals in Nonparametric Regression Models

In standard nonparametric regressions without endogeneity, the general theory of bootstrap in is

presented in Härdle and Bowman (1988) and Härdle and Marron (1991). To present briefly their

approach, suppose for the moment that the variable Z can be considered as exogenous and that

we want to estimate the following model:

Y =m(Z) +U E(U ∣Z) = 0

In this case, bootstrap boils down to replace any occurrence of the unknown distribution of the

error term by the empirical distribution function. However, this empirical distribution function

cannot be observed in practice and it is obtained using an initial estimate m̂ of the regression

function. The sample residuals are then computed as:

û = y − m̂(z)

and then recentered, so that E(û) = 0. Bootstrap residuals, u∗, are finally obtained by sampling

with replacement from the recentered û. A bootstrap sample is then generated as follows:

y∗ = m̂(z) + u∗

be a MSE minimizing strategy, the gain in terms of MSE may not be sufficient to justify such a high computational
time. This point is not explored in this work and it is left to further research.
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For simplicity, we refer to this technique in the following as näıf bootstrap.

Resampling directly from the empirical distribution requires exchangeability of the residuals and

thus homoskedasticity. The latter condition can be relaxed under the so-called wild bootstrap (see

Härdle and Marron, 1991; Härdle and Mammen, 1993).

Under this framework, the ith bootstrap error u∗i is derived directly from the corresponding esti-

mated residual ûi. The new random variable u∗i has a two point distribution Ĝi = γδa + (1 − γ)δb,

defined through the parameters γ, a and b, and where δa and δb denote point measures at a and b,

respectively. The values of these parameters are computed so that the new random variable matches

the first three moments of the original residuals, i.e. E(u∗i ) = 0, E(u∗2
i ) = û2

i , and E(u∗3
i ) = û3

i .

Some algebra reveals that the parameters γ, a and b satisfying this property at each location are

γ = (5 +
√

5)/10, a = ûi(1 −
√

5)/2, and b = ûi(1 +
√

5)/2.

4.5.2 Residuals in Nonparametric IV model

In the presence of endogeneity and when the regression function is estimated nonparametrically,

bootstrap confidence intervals have been proposed by Chen and Pouzo (2012), Horowitz and Lee

(2012), and Santos (2012). While the first two papers solely deal with the case in which the

function of interest is estimated using sieves, Santos (2012) presents a method which is of a more

general interest and it is closely related to the one presented in this paper. In fact, the approach

we present is very simple to implement, and can be used irrespectively of the method applied to

obtain the nonparametric estimator of ϕ. The theoretical properties of this bootstrap approach

are not studied in this paper and left to further research.

In nonparametric instrumental regressions, bootstrapping directly the residuals from the main

structural equation, while it may work in practice, is theoretically flawed. This is because, direct

sampling implies modifying the dependence structure between the endogenous covariate Z and the

error term U .

An alternative approach, that has been undertaken by Sokullu (2010), is to bootstrap directly from
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the joint distribution of (Z,W ). If we specify the following triangular model:

Y = ϕ(Z) +U (4.5.1)

Z = g(W,V ) (4.5.2)

it would be possible, after estimation of the functions ϕ and g, to consistently estimate the errors U

and V and then draw observations from their joint empirical distribution. However, this approach

breaks down the basic rationale for using instrumental variables, which is exactly not to specify

a functional relation between Z and W . Moreover, structural estimation of the function g in

model (4.5.1) requires assumption on the error term V , which may not be satisfied in practice.

Alternatively, we could take an additively separable form for the function g but this approach

seems more suited when the endogenous model is estimated using control functions.

An alternative procedure would be to sample from the residual of the statistical inverse problem.

That is, define the errors in the following way:

η = r − Tϕ (4.5.3)

By drawing from the error term η, we could generate bootstrap samples r∗ and then estimate ϕ∗

as the solution of the inverse problem:

r∗ = Tϕ

However, the error in equation (4.5.3) is a functional residual. To consistently bootstrap from it,

we can write its Fourier decomposition as follows:

η =
∞
∑
j=0

⟨η, φj⟩
λj

λjφj

We can then resample an iid sequence of Fourier coefficients and generate a bootstrap sample of

the error term η from a truncated version of this infinite sum.

The approach proposed here is, instead, to resample residuals from the conditional moment equa-

tion obtained by projecting the dependent variable Y on the space spanned by the instruments W
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(see also Chen and Reiss, 2011; Florens and Simoni, 2012), i.e.:

ε = Y −E(ϕ(Z)∣W ) (4.5.4)

This model can be used to construct the sampling distribution of Y given the function ϕ. In the

spirit of Florens and Simoni (2012), we can redefine our operators as follows:

TN ∶ L2
Z →RN (4.5.5)

T ∗N ∶RN → L2
Z (4.5.6)

and the inverse problem would be the one defined by the sample counterpart of equation (4.5.4).

Notice that this approach is much simpler than the direct bootstrap from equation (4.5.3). A

potential criticism is that, resampling from (4.5.4), leads to bootstrap only the dependent variable

Y and not the endogenous component Z. However, by the definition of the error term ε in (4.5.4),

we have that:

Y ∗ = E(ϕ(Z)∣W ) + ε∗ = (ϕ(Z) +U)∗

Then, by holding constant the conditional expectation of ϕ given W , we are modifying the value

of ϕ(Z) + U . Therefore, we are changing the realization of the function ϕ and the error term U ,

simultaneously, for a given realization of the instrument W . This appears to be equivalent to

bootstrap directly from the joint distribution of the errors (U,V ), as in (4.5.1), at least in some

particular cases.

Example 5 (Linear simultaneous equations). Consider the following triangular model:

Y = Zβ +U

Z = ζ(W ) + V

where V is an random noise, such that E(V ∣W ) = 0 and V is correlated with U , so that Z is

endogenous. Then, we have that:

ε = U + (Z − ζ(W ))β = U + V β
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Therefore, bootstrap directly from the error ε is equivalent to bootstrap from the joint distribution

of (U,V ). ∎

Furthermore, the mean independence condition, E(U ∣W ) = 0, guarantees that the projected resid-

uals are not related to the regressors and standard bootstrap techniques can be applied. However,

the estimated residual from (4.5.4) is, by the definition of conditional expectation, a function of the

instruments W . In general, it is not possible to suppose this function to be constant and, therefore,

wild bootstrap is advocated here, in order to cope with this source of heteroskedasticity.9

Call T̂ the estimated conditional expectation operator, acting onto the space spanned by W . The

estimated residuals are defined as follows:

ε̂i(w) = yi − T̂ ϕ̂(zi) ∀i = 1, . . . ,N

Define further the bootstrap residual ε∗i (w) which is drawn with probability γ from the two point

distribution Ĝi, with realizations a(w) = ε̂i(w)(1 −
√

5)/2, and b(w) = ε̂i(w)(1 +
√

5)/2. This

residual is ultimately used to construct bootstrap observations as follows:

y∗ = T̂ ϕ̂(z) + ε∗(w)

A bootstrap estimator, ϕ∗(z), is then obtained by solving the inverse problem:

T̂ϕ = r∗

with r∗ = T̂ y∗. In order to retrieve the bootstrap estimator, smoothing parameters for the nonpara-

metric estimation of the conditional expectation operators are held constant. The regularization

parameter is also held fixed. However, in order to match the asymptotic distribution, we need to

deal with the specific features of each regularization procedure.

(i) TK: For a fixed value of the regularization parameter α, an asymptotic bias arises in the

distribution of the estimator (Carrasco et al., 2013). Confidence intervals have to be recentred

9We are aware that, despite its flexibility, wild bootstrap may cause greater variability and, ultimately, undercov-
erage. We do not explore this point further in the paper. Interested readers are referred to Kauermann and Carroll
(2001) and Kauermann et al. (2009).
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according to this bias. We know that (see Darolles et al., 2011a):

ϕα − ϕ = −α (αI + T ∗T )−1
T ∗Tϕ

Hence, we have that:

ϕ̂α − ϕα = ϕ̂α − ϕ + α (αI + T ∗T )−1
T ∗Tϕ (4.5.7)

which is the object whose distribution we would like to match.

If we replace ϕ, T , T ∗, and α with their sample counterparts, and ϕ̂α with the bootstrap

estimator ϕ̂∗α, we can approximate the object in (4.5.7) by:

ϕ̂∗α − ϕ̂α + αN (αNI + T̂ ∗T̂)−1
T̂ ∗T̂ ϕ̂α (4.5.8)

(ii) LF: The LF estimation is tantamount to TK regularization as long as the number of iterations

is asymptotically proportional to the inverse of the α parameter, i.e. M ≈ 1/α. Therefore,

the LF estimator is unbiased as M goes to infinity, i.e.:

∥ϕM − ϕ∥ = ∥c
M−1

∑
k=0

(I − cT ∗T )k T ∗Tϕ − ϕ∥ÐÐÐ→
M→∞

0

For a fixed finite number of iterations M , there exists again a regularization bias. The object,

whose asymptotic distribution is studied is, as before:

ϕ̂M − ϕM = ϕ̂M − ϕ + c
M−1

∑
k=0

(I − cT ∗T )k T ∗Tϕ (4.5.9)

This object can be approximated as above by replacing ϕ, T , T ∗, and M with their sample

counterparts, and ϕ̂M with the bootstrap estimator ϕ̂∗M .

(iii) GK: In this case, the regularization is achieved by the truncation of the basis, so that, for

any basis of order J , we have:

∥ϕJ − ϕ∥ = ∥
∞
∑

k=J+1

λjκjϕj∥
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However, it is not possible to control explicitly for this bias. In fact,

∥ϕJ − ϕ∥ = ∥Z (Z ′WW ′Z)
−1
Z ′WW ′Zβ − ϕ∥

is identically equal to zero for any fixed value of J , and would require the computation of the

entire series for J → ∞, which is clearly unfeasible. In this case, we therefore simply apply

wild bootstrap to the residuals without correcting for the estimated regularization bias (see

Horowitz and Lee, 2012, for a different approach to bootstrap).

In order to show the validity of our bootstrap procedure, we compare the distribution of the estima-

tor of ϕ obtained using the Monte-Carlo simulations in the previous section with the distribution

obtained over each bootstrap replication, given the values of the smoothing and the regularization

parameters.

Since properties of the bootstrap and coverage probabilities are given pointwise, we evaluate the

properties of the bootstrap for 7 values of the endogenous variable Z. In particular, we select

a vector Q of values of Z, which contains percentiles 1, 5, 25, 50, 75, 95, and 99. To facilitate

comparison, all distributions are standardized. With a slight abuse of notations, we thus denote

by ϕ the value of the function, for a particular realization of the endogenous variable Z.

We therefore compare the distribution f(ϕ) of ϕ̂ − ϕ with the distribution f∗(ϕ) of ϕ̂∗ − ϕ̂, at

each point of the vector Q. For each bootstrap density we compute the absolute deviation between

an appropriate nonparametric estimator of the former and the latter density.10 We use standard

Gaussian kernels where the optimal bandwidth for f̂(ϕ) is computed using maximum likelihood

cross validation and it is held constant for f̂∗(ϕ).

In particular, we use the total variational distance as reference measure (Liese and Vajda, 2006).

This measure is defined as follows:

TVϕ =
1

2
∫ ∣f∗(ϕ) − f(ϕ)∣dϕ

Figures (4.9), (4.10), (4.11), (4.12), (4.13), (4.14), (4.15), (4.16) and (4.17) present the comparison

10See also Ferraty et al. (2010), for a similar approach to the validity of bootstrap.
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between the density of the estimator ϕ̂ at each point of the vector Q (where the median has

been excluded for ease of presentation). The thin gray lines represent the densities obtained by

bootstrap; while the dashed thick black line is the distribution obtained from the simulations. It

appears clearly that the simulated errors can be fairly well approximated by the bootstrapped

errors.

Finally, Table (4.4) reports the median value of the variational distance for each value of the

vector Q.11 The median variational distance is below 0.1 for the majority of the estimators and it

therefore confirms that the bootstrap density approximates the true density fairly well. However,

its performance deteriorates in the case of GK regularization. Also, in the case of Local Linear TH,

the variational distance seems to increase around the median. However, its values remain under

0.3, which can be considered as being reasonable in this setting (see also Ferraty et al., 2010).

Q1 Q2 Q3 Q4 Q5 Q6 Q7

Local Constant TH 0.0261 0.0253 0.0451 0.0279 0.0270 0.0381 0.0418
Local Linear TH 0.0710 0.0799 0.0783 0.1979 0.1073 0.0355 0.0664
Spline TH 0.0205 0.0183 0.0730 0.0520 0.0677 0.0541 0.0431
Penalized TH 0.0236 0.0228 0.0298 0.0475 0.0668 0.0211 0.0297
GK 0.0659 0.0737 0.0313 0.0748 0.0505 0.0649 0.0747
Local Constant LF 0.0273 0.0237 0.0328 0.0410 0.0227 0.0284 0.0373
Local Linear LF 0.0307 0.0420 0.0414 0.0604 0.0848 0.0620 0.0392
Spline LF 0.0603 0.0811 0.0689 0.1098 0.0417 0.0508 0.0953
Penalized LF 0.0563 0.0565 0.0734 0.0521 0.0546 0.0475 0.0470

Table 4.4: Median Variational Distance at each point of the vector Q.

To conclude, we present pointwise coverage probabilities for the bootstrap for each value in Q

and the usual nominal values for confidence bands: 90%, 95%, and 99%. Table (4.5) reports the

median value of coverage probabilities for each one of the estimators considered in this work. It

is clear that the confidence bands obtained by bootstrap cover the true function very well and

that the bootstrap probabilities are very close to the nominal ones. This demonstrates further the

applicability and the good properties of wild bootstrap to obtain pointwise confidence bands in the

case of nonparametric models estimated with instrumental variables.

11Figures (4.23), (4.24), (4.25), (4.26) and (4.27) in the Appendix report also a box plot comparison of Total
Variational Distance.
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(a) 1% percentile (b) 5% percentile (c) 25% percentile

(d) 75% percentile (e) 95% percentile (f) 99% percentile

Figure 4.9: Simulation vs Bootstrap Densities for Local Constant Tikhonov.

(a) 1% percentile (b) 5% percentile (c) 25% percentile

(d) 75% percentile (e) 95% percentile (f) 99% percentile

Figure 4.10: Simulation vs Bootstrap Densities for Local Constant Landweber-Fridman.
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(a) 1% percentile (b) 5% percentile (c) 25% percentile

(d) 75% percentile (e) 95% percentile (f) 99% percentile

Figure 4.11: Simulation vs Bootstrap Densities for Local Linear Tikhonov.

(a) 1% percentile (b) 5% percentile (c) 25% percentile

(d) 75% percentile (e) 95% percentile (f) 99% percentile

Figure 4.12: Simulation vs Bootstrap Densities for Local Linear Landweber-Fridman.
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(a) 1% percentile (b) 5% percentile (c) 25% percentile

(d) 75% percentile (e) 95% percentile (f) 99% percentile

Figure 4.13: Simulation vs Bootstrap Densities for Spline Tikhonov.

(a) 1% percentile (b) 5% percentile (c) 25% percentile

(d) 75% percentile (e) 95% percentile (f) 99% percentile

Figure 4.14: Simulation vs Bootstrap Densities for Spline Landweber-Fridman.
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(a) 1% percentile (b) 5% percentile (c) 25% percentile

(d) 75% percentile (e) 95% percentile (f) 99% percentile

Figure 4.15: Simulation vs Bootstrap Densities for Local Constant Tikhonov with Penalized first
derivative.

(a) 1% percentile (b) 5% percentile (c) 25% percentile

(d) 75% percentile (e) 95% percentile (f) 99% percentile

Figure 4.16: Simulation vs Bootstrap Densities for Local Constant Landweber-Fridman with Pe-
nalized first derivative.
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Q1 Q2 Q3 Q4 Q5 Q6 Q7

Local Constant TH 0.8940 0.9030 0.9090 0.8970 0.9050 0.9080 0.8980
Local Linear TH 0.8920 0.8980 0.9020 0.8810 0.8930 0.9100 0.8970
Spline TH 0.9000 0.9040 0.8730 0.9110 0.8730 0.8950 0.8920
Penalized TH 0.9070 0.9060 0.8935 0.9000 0.9200 0.9070 0.9000

90% GK 0.9110 0.9060 0.9040 0.9110 0.9170 0.9140 0.9070
Local Constant LF 0.8950 0.8970 0.9030 0.9030 0.9050 0.9090 0.8970
Local Linear LF 0.9040 0.9090 0.9020 0.9070 0.9110 0.9070 0.8900
Spline LF 0.9220 0.9030 0.9130 0.9550 0.9100 0.9030 0.9220
Penalized LF 0.9010 0.9030 0.8970 0.8970 0.9140 0.9100 0.9080

Local Constant TH 0.9560 0.9530 0.9560 0.9470 0.9500 0.9490 0.9500
Local Linear TH 0.9450 0.9450 0.9440 0.9440 0.9470 0.9550 0.9500
Spline TH 0.9560 0.9560 0.9610 0.9520 0.9550 0.9540 0.9430
Penalized TH 0.9550 0.9560 0.9480 0.9530 0.9560 0.9490 0.9490

95% GK 0.9530 0.9530 0.9480 0.9550 0.9540 0.9510 0.9510
Local Constant LF 0.9430 0.9480 0.9530 0.9430 0.9510 0.9550 0.9450
Local Linear LF 0.9500 0.9510 0.9500 0.9435 0.9560 0.9480 0.9430
Spline LF 0.9620 0.9630 0.9460 0.9730 0.9530 0.9540 0.9560
Penalized LF 0.9590 0.9590 0.9590 0.9560 0.9610 0.9560 0.9560

Local Constant TH 0.9940 0.9900 0.9840 0.9910 0.9910 0.9930 0.9960
Local Linear TH 0.9870 0.9870 0.9870 0.9910 0.9910 0.9890 0.9900
Spline TH 0.9890 0.9890 0.9970 0.9870 0.9970 0.9930 0.9950
Penalized TH 0.9910 0.9930 0.9920 0.9910 0.9820 0.9880 0.9840

99% GK 0.9890 0.9890 0.9880 0.9920 0.9880 0.9910 0.9880
Local Constant LF 0.9930 0.9940 0.9890 0.9930 0.9870 0.9880 0.9860
Local Linear LF 0.9880 0.9900 0.9870 0.9860 0.9860 0.9910 0.9880
Spline LF 0.9890 0.9970 0.9840 0.9880 0.9880 0.9890 0.9860
Penalized LF 0.9940 0.9940 0.9960 0.9970 0.9920 0.9920 0.9920

Table 4.5: Pointwise coverage probabilies of wild bootstrap.
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(a) 1% percentile (b) 5% percentile (c) 25% percentile

(d) 75% percentile (e) 95% percentile (f) 99% percentile

Figure 4.17: Simulation vs Bootstrap Densities for Splines Galerkin.

4.6 An empirical application: estimation of the Engel curve for

food in rural Pakistan

In this last section, we present an empirical application to the estimation of the Engel curve for

food. The database is the one used in Bhalotra and Attfield (1998) and consists of 9740 rural

households in Pakistan with less than 20 members.

The Engel curve relationship describes the expansion path for commodity demands as the house-

hold’s budget increases. To estimate its shape, it is therefore sufficient to regress the share of the

household’s budget spent for a given commodity (or group of commodities) over the total bud-

get. However, as pointed out in Blundell et al. (2007), the total budget is likely to be determined

jointly with the share of expenditure across consumption goods. Hence, it is an endogenous re-

gressor. Blundell et al. (2007) suggest using other sources of income as a suitable instrument for

total expenditure.

In the following, to simplify notation, we denote by the random variable Y , the share of expenditure

in a given consumption good; by Z, the total log expenditure of the household; and, by W the log
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gross income of the household head.

Blundell et al. (2007) devise and apply a sieve minimum distance framework to the shape-invariant

estimation of this curve using a sample of British household. This specification allows for a non-

parametric modelling of the endogenous variable Z, minus a parametric component which scales

the function according to some household characteristics; and a linear parametric component,

which explicitly controls for household’s demographics. Bhalotra and Attfield (1998) uses a par-

tially linear model, in which Z enters in a nonlinear fashion, and household’s characteristics are

modeled parametrically. In the results reported in the paper, they do not explicitly control for

potential endogeneity of Z. They claim that, when using a control function approach with W as

control variable, their results do not differ substantially. However, the control function is taken

to be linear in W , while substantial nonlinearity may actually be present in the relation between

income and total expenditure.

Here, we maintain a high level of simplicity and we model the relationship as follows:

Y = ϕ(Z) +U, E(U ∣W ) = 0

where ϕ represents the shape of the Engel curve. Since our simplified model ignores specific

household and geographical characteristics, we reduce heterogeneity by considering only the region

of Punjab. This choice is justified by the fact that this province accounts for around 60% of the

sample and the results obtained in Bhalotra and Attfield (1998) are mostly driven by its demand

paths. We therefore end up using a sample of 5691 observations.

In our database, food, as a broad aggregate of 82 commodities, accounts on average for about 51%

of the total household expenditure in Punjab (see table 4.6).

Mean St.Dev Min Max

Log PC Expenditure 5.61 0.49 4.22 8.07
Log PC Income 5.63 0.52 3.98 8.00
Budget share food 0.51 0.10 0.07 0.83

Table 4.6: Summary statistics

In the original work of Bhalotra and Attfield (1998), it is shown that the Engel curve for food it is

decreasing, as predicted by Engel’s law, and has a quadratic shape. This latter result is of great
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interest as a quadratic Engel curve seems to be a feature of developing economies. However, as

reported by Blundell et al. (2007), neglecting potential endogeneity in the estimation can lead to

incorrect estimates of the Engel curve shape.

Our goal is to test the robustness of previous results and provide some additional evidence using

our simplified nonparametric instrumental variable approach. To compare our fully nonparamet-

ric specification with a quadratic model which also takes into account the endogeneity issue, we

consider the following model, which is estimated using a control function approach:

Y = β1Z + β2Z
2 + γV +U (4.6.1)

Z = ζ(W ) + V (4.6.2)

E (U ∣W,V ) = E (U ∣V ) (4.6.3)

The link function ζ is estimated using local constant kernels and cross validation bandwidth. The

coefficients (β1, β2, γ) are instead estimated using simple OLS. The results are summarized in

table (4.7). We can see that all coefficients are significant. The one associated with the quadratic

component is very small but significantly negative.

The results of the estimation of the Engel curve for Pakistan data are reported in Figures (4.18),

(4.19), (4.20), (4.21) and (4.22). For each kind of nonparametric estimator (local constant, local

linear, B-splines and penalized local constant), we present the outcome both using TK and LF

regularizations. The final figure (4.22) draws the GK estimator that uses B-spline bases. For each

figure, we also consider the 95% bootstrap confidence intervals and we draw the quadratic fitting

obtained using the control function approach in (4.6.1).

The results are widely consistent across the various frameworks. Note that the local constant

estimation coupled with TK regularization does not give visually nice results. This can be due to

the fact that optimal regularization parameter is under-regularizing, which causes the bumps in

the estimated regression function. It is also instructive to observe that these bumps disappear in

figure (4.21), right panel, when we are penalizing the first derivative instead. This gives a much

smoother solution for the regression function. Another important computational aspect to stress

is that, as mentioned above, LF regularization holds the advantage of not requiring the inversion
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Figure 4.18: Estimation of the Engel Curve for food (local constant)

4 4.5 5 5.5 6 6.5 7 7.5 8 8.5
−0.2

0

0.2

0.4

0.6

0.8

Total Log−Expenditure

B
u
d
g
e
t 
s
h
a
re

 f
o
r 

fo
o
d

 

 

Data

Quadratic

LL Tikhonov

Bootstrap CI

(a) Tikhonov

4 4.5 5 5.5 6 6.5 7 7.5 8 8.5
−0.2

0

0.2

0.4

0.6

0.8

Total Log−Expenditure

B
u
d
g
e
t 
s
h
a
re

 f
o
r 

fo
o
d

 

 

Data

Quadratic

LL Landweber−Fridman

Bootstrap CI

(b) Landweber-Fridman

Figure 4.19: Estimation of the Engel Curve for food (local linear)
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Figure 4.20: Estimation of the Engel Curve for food (splines)
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Figure 4.21: Estimation of the Engel Curve for food (Penalized local constant)
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Figure 4.22: Galerkin estimation of the Engel Curve for food

of the large data matrix and therefore can be a more appealing solution than TK in this case.

However, computational time might increase because of the numerical update of the smoothing

parameters at each iteration. This makes the two estimators, at least with our sample size, roughly

comparable in terms of computational time.

Log PC Expenditure Log PC Expenditure Sq V̂

Coefficient 0.245 -0.028 -0.087
Std Error 0.0027 0.0005 0.0063

Table 4.7: Results from model (4.6.1). Dependent variable: share of budget for food.

However, the most interesting information is that the nonparametric estimators are not unan-

imously suggesting a quadratic relation between the total budget and the food share in rural

Pakistan. The quadratic specification cannot be rejected at the 95% level by the majority of our
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models. This result is largely partial and does not control for the heterogeneity in our sample.

Nonetheless, we stress here that, even a simple nonparametric estimation which controls for the

possible endogeneity of the total budget, could be used as an indirect test to support a given

parametric model.

4.7 Conclusions

This paper presents a deep investigation of the practical implementation of nonparametric in-

strumental regressions. We consider the small sample properties of various estimators in a single

endogenous covariate and single instrument framework. A simulation study shows the perfor-

mances of these estimators and provide a useful review of the data driven approaches that have

been proposed so far for the selection of the regularization parameter. A simple and valid approach

for obtaining pointwise bootstrap confidence intervals is also discussed and its properties derived

by means of simulations. Finally, an application to the estimation of the Engel curve for food, in

a sample of household in rural Pakistan shows its practical usefulness.

Our intention is to give a unified and simple presentation of the several regularization procedures

that can be considered when applied researchers would like to keep the flexibility of nonparametric

estimation in presence of endogenous regressors. Our aim is to narrow the gap between the theo-

retical literature on the topic, which has been growing extremely fast recently, with the empirical

use of this framework, that, to the best of our knowledge, remains largely unpopular.

Without delving further into the specific matter of the estimation of the Engel curve, we point

out the relevance of the use of nonparametric instrumental regressions, and, more in general, of

nonparametric methods, in applied studies. Despite the fact that parametric model are faster

to compute and easier to present to the general audience, they may lay on assumptions about

the function of interest that can reveal to be unrealistic and may ultimately add more structural

information than the data themselves. This can ultimately lead to substantially different results and

hence conclusions in terms of policy considerations and inference about the behavior of economic

agents. Moreover, computational issues for nonparametric estimators do not seem to be relevant

anymore, and a variety of semiparametric structures can be used in order to ease computational
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burden, control for heterogeneity in the sample, and obtain parametric rate of convergence (Blundell

et al., 2007; Florens et al., 2012).

Our analysis deems partial, as we do not explore the properties of the various estimators under

several simulation schemes and several degrees of ill-posedness of the inverse problem. However, we

see this work as a useful first step to make nonparametric instrumental regression readily available

to applied economists and econometricians.
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4.8 Appendix
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Figure 4.23: Box plot Total Variational Distance, Local Constant Kernels.

Q1 Q2 Q3 Q4 Q5 Q6 Q7

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

(a) Tikhonov

Q1 Q2 Q3 Q4 Q5 Q6 Q7

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

(b) Landweber-Fridman

Figure 4.24: Box plot Total Variational Distance, Local Linear Kernels.
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Figure 4.25: Box plot Total Variational Distance, B-Splines.
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Figure 4.26: Box plot Total Variational Distance, Penalized Local Constant Kernels.
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Figure 4.27: Box plot Total Variational Distance, Galerkin.



Final Conclusions

Research is a very lengthy book in which the introduction is very slow and the core is exciting, full

of answers, but also of unsolved matters. As we proceed to the next chapter, we may find some

new answers and solutions but we are left with new and exciting issues we want to face.

This thesis contributes to the literature on causality and endogeneity in two different type of models

and when the object of interest is estimated nonparametrically.

In the standard iid setting, we provide a set of new tools for the data-driven choice of the regular-

ization parameter and for obtaining pointwise confidence intervals using wild bootstrap. Moreover,

we extend the current framework to embed the case in which only a binary transformation of the

dependent variable is observed.

In continuous time models, we give sufficient condition for the exogeneity of the covariate process

and we derive the properties of the estimators of the drift and the diffusion coefficients under Harris

recurrence of the joint process.

Of the many issues tackled in this work, we have probably only scratched the surface and future

research can proceed in several directions.

The research question tackled in the first chapter is, at the current state, probably the most

challenging. Its fortune is intertwined with the one of this first brick that we have started to build,

which has to be made more solid in several respects. It remains to be seen if this framework can

be useful in the estimation of asset pricing models, especially with respect to the literature on

ambiguity on the drift (Chen and Epstein, 2002; Jeong et al., 2009). Moreover, it is also essential

to provide a testing procedure for noncausality, as, in practical use, we would like to give hard

tools to understand in what context this assumption is satisfied.

The literature on nonparametric instrumental regressions is much better established at the mo-

ment, although many aspects could be further developed. The properties and the validity of the

wild bootstrap explored in Chapter 4 need to be analytically derived. Moreover, some further steps

159
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are required to make the model more handy for applied researcher. As a matter of fact, regression

models in applied microeconometrics often include many control variables as heterogeneity in the

sample is extremely important. Beside the partially linear specification studied in Florens et al.

(2012), there is not a straightforward way to include exogenous regressors in the picture. Con-

sidering a nonseparable function of both endogeneous and exogenous regressors can become very

cumbersome in presence of many exogenous variables, although the curse of dimensionality can be

mitigated by using infinite order polynomial regressions as studied in Hall and Racine (2013).

An additive separable nonparametric structure, estimated using backfitting techniques could be a

nice and viable solution to this problem; although an interesting line of research would be to study

the estimation of nonparametric instrumental models with exogenous regressors using infinite order

polynomials.

Finally, the selection of the regularization parameter should be extended to the case of more prac-

tical relevance in which we choose two different bandwidths for the estimation of the conditional

expectation operator and its adjoint. The theory has to be revised to allow for this more general

case. Furthermore, new techniques on linear optimization tools could leave room for the simulta-

neous selection of the bandwidth and the regularization parameter.
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