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1 Introduction

The optimal growth model is one of the main frameworks in macroeconomics.
While variations of the model with inelastic labor supply are used widely in
growth theory, the version with elastic labor supply is used in business cycle
models, both for exogenous and endogenous fluctuations. Despite the central
place of the model with elastic labor supply in dynamic general equilibrium
models of macroeconomics, existence of competitive equilibrium in general set-
tings has proved to be a challenge. Results of existence of equilibrium ([5], [7],
[10], [13]) use strong conditions for existence. This paper establishes existence
of equilibrium under very weak conditions: neither Inada conditions, nor strict
concavity, nor constant returns to scale (or more generally, homogeneity), nor
restrictions on cross-partials of the utility functions.

The approach taken in this paper is a direct method based on existence
of Lagrange multipliers to the optimal problem and their representation as a
summable sequence. The problem with inelastic labor supply was considered
by [14]. This approach uses a separation argument where the multipliers are
represented in the dual space (`∞)′ of the space of bounded sequences `∞. While
one would like the multipliers and prices to lie in `1, it is not the dual space
([8]). Previous work following [16], the representation theorems followed separa-
tion arguments applied to arbitrary vector spaces (see [3], [2], [6]). The Le Van
and Saglam ([14]) approach also uses a separation argument but imposes re-
strictions on the asymptotic behavior of the objective functional and constraint
functions which are easily shown to be satisfied in standard models. This is
related to [9]. There is a difficulty in going from the inelastic labor supply to
the elastic labor supply model: While one can show that the optimal capital
stock is strictly positive, without assuming Inada conditions, one cannot be sure
that the optimal labor supply sequence is strictly positive. Thus, the paper by
[13] which took the approach of decentralizing the optimal solution via prices
as marginal utilities had to make additional strong conditions on the utility
function to ensure that the labor supply sequence remains strictly positive. As
we show, following [14], that the Lagrange multipliers to the social planners
problem are a summable sequence, we can directly use these to decentralize the
optimal solution and not have to make strong assumptions to ensure interiority
of the optimal plan. Thus, the Inada conditions do not have to be assumed.
As the separation theorem does not require strict concavity or differentiability,
these strong assumptions on utility functions can be dropped. This is especially
important as an important specification of preferences in applied macroeco-
nomics models is with linear utility of leisure where strict concavity is violated.
This specification also results in the planners problem in models with indivisible
labor ([11],[17]). The relaxation of Inada conditions is especially important as
they may also be violated in utility and production functions of the CES class
which are also widely used in the applied literature. Furthermore, there is no
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need to make any assumption on cross-partial derivatives of the utility function
as in [1], [5], [7], [10] and [15].1 Thus, whether labor supply is backward bending
or not, and whether consumption is inferior or not plays no role in existence of
equilibrium.

The organization of the paper is as follows. Section 2 provides the suffi-
cient conditions on the objective function and the constraint functions so that
Lagrangean multipliers can be represented by an `1+ sequence of multipliers in
optimal growth model with leisure in the utility function. In section 3, we
prove the existence of competitive equilibrium in a model with a representative
agent by using these multipliers as sequences of prices and wages. Section 4
provides examples where many of the conditions used to assert existence of an
equilibrium are violated. In particular, there is a corner solution but show that
a competitive equilibrium exists following the approach of the current paper.
Section 5 concludes.

2 Lagrange multipliers in the optimal growth

model

Consider an economy where the representative consumer has preferences defined
over processes of consumption and leisure described by the utility function

∞∑
t=0

βtu(ct, lt).

In each period, the consumer faces two resource constraints given by

ct + kt+1 ≤ F (kt, Lt) + (1− δ)kt,

lt + Lt = 1, ∀t

where F is the production function, δ ∈ (0, 1) is the depreciation rate of capital
stock and Lt is labor. These constraints restrict allocations of commodities and
time for the leisure.

Formally, the problem of the representative consumer is stated as follows:

max
∞∑

t=0

βtu(ct, lt)

s.t. ct + kt+1 ≤ F (kt, 1− lt) + (1− δ)kt, ∀t ≥ 0

ct ≥ 0, kt ≥ 0, lt ≥ 0, 1− lt ≥ 0, ∀t ≥ 0

k0 ≥ 0 is given.

1These papers essentially show the isomorphism of the dynamic problem with endogenous

leisure to one without endogenous leisure, and the assumptions are used to show monotonicity

of the optimal capital path which combined with the static labor-leisure choice gives existence

in the original problem.
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We make a set of assumptions on preferences and the production technology.
The assumptions on the period utility function u : R2

+ → R are:

Assumption U1: u is continuous, concave, increasing on R2
+ and strictly

increasing on R2
++.

Assumption U2: u(0, 0) = 0.

The assumptions on the production function F : R2
+ → R+ are as follows:

Assumption F1: F is continuous, concave, increasing on R2
+ and strictly

increasing on R2
++.

Assumption F2: F (0, 0) = 0, limk→0 Fk(k, 1) > δ, limk→+∞ Fk(k, 1) < δ.

The assumptions U1, U2, F1 are standard. Note we do not assume strict
concavity, differentiability or Inada conditions for the utility and production
functions. Assumption F2 is a weak assumption to ensure that there is a maxi-
mum sustainable capital stock, and thus the sequence of capital is bounded.

We have relaxed some important assumptions in the literature. [3] assumes
that the production set is a convex cone (Theorem 3). [4] assumes the strictly
positiveness of derivatives of utility functions on RL

+ (strictly monotonicity as-
sumption). In our model, the utility functions may not be differentiable in
R2

+.2 [15] assumed the cross-partial derivative ui
cl has constant sign, ui

c(x, x)
and ui

l(x, x) are non-increasing in x, production function F is homogenous of
degree α ≤ 1 and FkL ≥ 0 (Assumptions U4, F4, U5, F5).3

We say that a sequence {ct, kt, lt}t=0,1,...,∞ is feasible from k0 if it satisfies
the constraints

ct + kt+1 ≤ F (kt, 1− lt) + (1− δ)kt, ∀t ≥ 0,

ct ≥ 0, kt ≥ 0, lt ≥, 1− lt ≥ 0, ∀t ≥ 0,

k0 > 0 is given.

It is easy to check that, for any initial condition k0 > 0, a sequence k = {kt}∞t=0

is feasible iff 0 ≤ kt+1 ≤ F (kt, 1) + (1 − δ)kt for all t. The class of feasible
capital paths is denoted by Π(k0). A pair of consumption-leisure sequences
{c, l} = {ct, lt}∞t=0 is feasible from k0 > 0 if there exists a sequence k ∈ Π(k0)
that satisfies 0 ≤ ct + kt+1 ≤ F (kt, 1− lt) + (1− δ)kt and 0 ≤ lt ≤ 1 for all t.

Define f(kt, Lt) = F (kt, Lt) + (1− δ)kt. Assumption F2 implies that

fk(+∞, 1) = Fk(+∞, 1) + (1− δ) < 1

fk(0, 1) = Fk(0, 1) + (1− δ) > 1.

From above, it follows that there exists k > 0 such that: (i) f(k, 1) = k,
(ii) k > k implies f(k, 1) < k, (iii) k < k implies f(k, 1) > k. Therefore for
any k ∈ Π(k0), we have 0 ≤ kt ≤ max(k0, k). Thus, k ∈ `∞+ which in turn

2Let F (k, L) = kαL1−α, α ∈ (0, 1). This function is not differentiable even in the extended

real numbers at (0, L) or (k, 0) for L ≥ 0, K ≥ 0. The assumptions in [4] that uc >> 0,

ul >> 0, and D2u is negative definite on R2
+ are obviously violated.

3See section 5 for a further discussion of assumptions in the literature.
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implies c ∈ `∞+ , if {c,k} is feasible from k0. Denote x = {c,k, l} and F(x) =

−
∞∑

t=0
βtu(ct, lt), Φ1

t (x) = ct + kt+1 − f(kt, 1 − lt), Φ2
t (x) = −ct, Φ3

t (x) = −kt,

Φ4
t (x) = −lt, Φ5

t (x) = lt − 1, ∀t, Φt = (Φ1
t , Φ

2
t ,Φ

3
t+1,Φ

4
t ,Φ

5
t ), ∀t. The planning

problem can be written as:

minF(x) s.t. Φ(x) ≤ 0,x ∈ `∞+ × `∞+ × `∞+ (P )

where F : `∞+ × `∞+ × `∞+ → R ∪ {+∞}
Φ = (Φt)t=0,...,∞ : `∞+ × `∞+ × `∞+ → R ∪ {+∞}

Let C = dom(F) = {x ∈ `∞+ × `∞+ × `∞+ |F(x) < +∞}
Γ = dom(Φ) = {x ∈ `∞+ × `∞+ × `∞+ |Φt(x) < +∞, ∀t}.

Proposition 1 Let x,y ∈ `∞+ × `∞+ × `∞+ , T ∈ N. Define

xT
t (x,y) =

{
xt if t ≤ T

yt if t > T
.

Suppose that the two following assumptions are satisfied:
T1: If x ∈ C, y ∈ `∞+ × `∞+ × `∞+ satisfy ∀T ≥ T0, xT (x,y) ∈ C, then

F(xT (x,y)) → F(x) when T →∞.

T2: If x ∈ Γ, y ∈ Γ and xT (x,y) ∈ Γ, ∀T ≥ T0, then
a) Φt(xT (x,y)) → Φt(x) as T →∞
b) ∃M s.t. ∀T ≥ T0, ‖Φt(xT (x,y))‖ ≤ M

c) ∀N ≥ T0, lim
t→∞

[Φt(xT (x,y))− Φt(y)] = 0.

Let x∗ be a solution to (P ) and x0 ∈ C satisfies the Slater condition:

sup
t

Φt(x0) < 0.

Suppose xT (x∗,x0) ∈ C ∩ Γ. Then, there exists Λ ∈ `1+\{0} such that

F(x) + ΛΦ(x) ≥ F(x∗) + ΛΦ(x∗), ∀x ∈ (C ∩ Γ)

and ΛΦ(x∗) = 0.

Proof : It is easy to see that `∞+ × `∞+ × `∞+ is isomorphic with `∞+ , since, for
example, there exists an isomorphism

Π : `∞+ → `∞+ × `∞+ × `∞+ ,

Π(x) = ((x0, x3, x6, . . .)(x1, x4, x7, . . .), (x2, x5, x8, . . .))

and
Π−1(u,v, s) = (u0, v0, s0, u1, v1, s1, u2, v2, s2, . . .).
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Thus, there exists an isomorphism Π
′
: (`∞+ ×`∞+ ×`∞+ )

′ → (`∞+ )
′
. It follows from

Theorem 1 in [14] that there exists Λ ∈ (`∞+ ×`∞+ ×`∞+ )
′
. Let Λ = Π

′
(Λ) ∈ (`∞+ )

′
.

Then, the results are derived by the analogous arguments where a standard
separation theorem used4 as in the Theorem 2 in [14].

Note that T1 holds when F is continuous in the product topology. T2c is
satisfied if there is asymptotically insensitivity, i.e. if x is changed only on a
finitely many values the constraint value for large t does not change that much
([9]). T2c is the asymptotically non-anticipatory assumption and requires Φ to
be nearly weak-* continuous ([9]). T2b holds when when Γ = dom(Φ) = `∞

and Φ is continuous (see [9], [14]).

Proposition 2 If x∗ = (c∗,k∗, l∗) is a solution to the following problem5:

min−
∞∑

t=0

βtu(ct, lt) (Q)

s.t. ct + kt+1 − f(kt, 1− lt) ≤ 0,

−ct ≤ 0, −kt ≤ 0, 0 ≤ lt ≤ 1,

then there exists λ = (λ1
, λ2, λ3, λ4, λ5) ∈ `1+× `1+ × `1+ × `1+ × `1+, λ 6= 0 such

4As the Remark 6.1.1 in [6], assumption fk(0, 1) > 1 is equivalent to the Adequacy As-

sumption in [3] and this assumption is crucial to have equilibrium prices in `1+ since it implies

that the production set has an interior point. Subsequently, it allows using a separation

theorem in the infinite dimensional space to obtain Lagrange multipliers.
5A solution exists following a standard argument which is sketched for completeness. Ob-

serve that the feasible set is in a fixed ball of `∞ which is weak∗-(`∞, `1) compact. We show

that the function
∑∞

t=0 βtu(ct, lt) is continuous in this topology on the feasible set. Since

the weak∗ topology is metrizable on any ball, we can take a feasible sequence (ct(n), lt(n))n

converging to some (ct, lt) in the feasible set. Since any feasible consumptions sequence is

uniformly bounded by a number depending only on k0, for any ε > 0 there exists T0 such that

for any T ≥ T0, for any n, we have
∑

t≥T

βtu(ct(n), lt(n)) ≤ ε,
∑

t≥T

βtu(ct, lt) ≤ ε

Hence,
∣∣∣∣∣
+∞∑

t=0

βt[u(ct(n), lt(n))− u(ct, lt)]

∣∣∣∣∣ ≤
T−1∑

t=0

βt|u(ct(n), lt(n))− u(ct, lt)|+ 2ε.

Since weak∗ convergence implies pointwise convergence, the result is established.
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that: ∀x = (c,k, l) ∈ `∞+ × `∞+ × `∞+

∞∑
t=0

βtu(c∗t , l
∗
t )−

∞∑
t=0

λ1
t (c

∗
t + k∗t+1 − f(k∗t , 1− l∗t ))

+
∞∑

t=0

λ2
t c
∗
t +

∞∑
t=0

λ3
t k
∗
t +

∞∑
t=0

λ4
t l
∗
t +

∞∑
t=0

λ5
t (1− l∗t )

≥
∞∑

t=0

βtu(ct, lt)−
∞∑

t=0

λ1
t (ct + kt+1 − f(kt, 1− lt))

+
∞∑

t=0

λ2
t ct

∞
+

∑
t=0

λ3
t kt

∞
+

∑
t=0

λ4
t lt +

∞∑
t=0

λ5
t (1− lt) (1)

λ1
t (c

∗
t + k∗t+1 − f(k∗t , 1− l∗t )) = 0, ∀t ≥ 0 (2)

λ2
t c
∗
t = 0, ∀t ≥ 0 (3)

λ3
t k
∗
t = 0, ∀t ≥ 0 (4)

λ4
t l
∗
t = 0, ∀t ≥ 0 (5)

λ5
t (1− l∗t ) = 0, ∀t ≥ 0 (6)

0 ∈ βt∂1u(c∗t , l
∗
t )− {λ1

t}+ {λ2
t}, ∀t ≥ 0 (7)

0 ∈ βt∂2u(c∗t , l
∗
t )− λ1

t ∂2f(k∗t , L∗t ) + {λ4
t} − {λ5

t}, ∀t ≥ 0 (8)

0 ∈ λ1
t ∂1f(k∗t , L∗t ) + {λ3

t} − {λ1
t−1}, ∀t ≥ 0 (9)

where ∂iu(c∗t , l
∗
t ), ∂if(k∗t , L∗t ) respectively denote the projection on the ith com-

ponent of the subdifferential of the function u at (c∗t , l∗t ) and the function f at
(k∗t , L∗t ).

Proof : We first check that the Slater condition holds. Indeed, since f ′k(0, 1) >

1, then for all k0 > 0, there exists some 0 < k̂ < k0 such that: 0 < k̂ < f(k̂, 1)
and 0 < k̂ < f(k0, 1). Thus, there exists two small positive numbers ε, ε1 such
that:

0 < k̂ + ε < f(k̂, 1− ε1) and 0 < k̂ + ε < f(k0, 1− ε1).

Denote x0 = (c0,k0, l0) such that c0 = (ε, ε, ...), k0 = (k0, k̂, k̂, ...), l0 =
(ε1, ε1, ...). We have

Φ1
0(x

0) = c0 + k1 − f(k0, 1− l0)

= ε + k̂ − f(k0, 1− ε1) < 0

Φ1
1(x

0) = c1 + k2 − f(k1, 1− l1)

= ε + k̂ − f(k̂, 1− ε1) < 0

Φ1
t (x

0) = ε + k̂ − f(k̂, 1− ε1) < 0, ∀t ≥ 2

Φ2
t (x

0) = −ε < 0, ∀t ≥ 0, Φ3
0(x

0) = −k0 < 0
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Φ3
t (x

0) = −k̂ < 0, ∀t ≥ 1, Φ4
t (x

0) = −ε1 < 0, ∀t ≥ 0

Φ5
t (x

0) = ε1 − 1 < 0, ∀t ≥ 0.

Therefore, the Slater condition is satisfied. Now, it is obvious that, ∀T, xT (x∗,x0)
belongs to `∞+ × `∞+ × `∞+ . As in [14], Assumption T2 is satisfied. We now check
Assumption T1. For any x̃ ∈ C, ˜̃x ∈ `∞+ × `∞+ × `∞+ such that for any T ,
xT (x̃, ˜̃x) ∈ C we have

F(xT (x̃, ˜̃x)) = −
T∑

t=0

βtu(c̃t, l̃t)−
∞∑

t=T+1

βtu( ˜̃ct,
˜̃
lt).

As ˜̃x ∈ `∞+ × `∞+ × `∞+ , sup
t
| ˜̃ct| < +∞ , there exists m > 0, ∀t, | ˜̃ct| ≤ m. Since

β ∈ (0, 1) we have
∞∑

t=T+1

βtu(m, 1) = u(m, 1)
∞∑

t=T+1

βt → 0 as T →∞.

Hence, F(xT (x̃, ˜̃x)) → F(x̃) when T → ∞. Taking account of Proposition 1,
we get (1)-(6).

Finally, we obtain (7)-(9) from the Kuhn-Tucker first-order conditions.

3 Competitive equilibrium

Definition 1 A competitive equilibrium consists of an allocation {c∗, l∗,k∗,L∗} ∈
`∞+ × `∞+ × `∞+ × `∞+ , a price sequence p∗ ∈ `1+ for the consumption good, a wage
sequence w∗ ∈ `1+ for labor and a price r > 0 for the initial capital stock k0 such
that:

i) {c∗, l∗} is a solution to the problem

max
∞∑

t=0

βtu(ct, lt)

s.t. p∗c ≤ w∗L + π∗ + rk0

where π∗ is the maximum profit of the firm.
ii) {k∗,L∗} is a solution to the firm’s problem

π∗ = max
∞∑

t=0

p∗t [f(kt, Lt)− kt+1]−
∞∑

t=0

w∗t Lt − rk0

s.t. 0 ≤ kt+1 ≤ f(kt, Lt), Lt ≥ 0,∀t.

iii) Markets clear

c∗t + k∗t+1 = f(k∗t , L∗t ) ∀t
l∗t + L∗t = 1 ∀t
and k∗0 = k0
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Theorem 1 Let {c∗,k∗, l∗} solve Problem (Q). Take

p∗t = λ1
t for any t and r > 0.

There exists fL(k∗t , L∗t ) ∈ ∂2f(k∗t , L∗t ) such that {c∗,k∗,L∗,p∗,w∗, r} is a com-
petitive equilibrium with w∗t = λ1

t fL(k∗t , L∗t ).

Proof : Consider λ = {λ1, λ2, λ3, λ4, λ5} of Proposition 2. Conditions (7), (8),
(9) in Proposition 2 show that ∂u(c∗t , l

∗
t ) and ∂f(k∗t , L∗t ) are nonempty and there

exist uc(c∗t , l
∗
t ) ∈ ∂1u(c∗t , l

∗
t ), ul(c∗t , l

∗
t ) ∈ ∂2u(c∗t , l

∗
t ), fk(k∗t , L∗t ) ∈ ∂1f(k∗t , L∗t )

and fL(k∗t , L∗t ) ∈ ∂2f(k∗t , L∗t ) such that ∀t

βtuc(c∗t , l
∗
t )− λ1

t + λ2
t = 0 (10)

βtul(c∗t , l
∗
t )− λ1

t fL(k∗t , L∗t ) + λ4
t − λ5

t = 0 (11)

λ1
t fk(k∗t , L∗t ) + λ3

t − λ1
t−1 = 0 (12)

Define w∗t = λ1
t fL(k∗t , L∗t ) < +∞.

First, we claim that w∗ ∈ `1+.

We have

+∞ >

∞∑
t=0

βtu(c∗t , l
∗
t )−

∞∑
t=0

βtu(0, 0) ≥
∞∑

t=0

βtuc(c∗t , l
∗
t )c∗t +

∞∑
t=0

βtul(c∗t , l
∗
t )l∗t ,

which implies
∞∑

t=0

βtul(c∗t , l
∗
t )l∗t < +∞, (13)

and

+∞ >

∞∑
t=0

λ1
t f(k∗t , L∗t )−

∞∑
t=0

λ1
t f(0, 0) ≥

∞∑
t=0

λ1
t fk(k∗t , L∗t )k

∗
t +

∞∑
t=0

λ1
t fL(k∗t , L∗t )L

∗
t

which implies
∞∑

t=0

λ1
t fL(k∗t , L∗t )L

∗
t < +∞. (14)

Given T , we multiply (11) by L∗t and sum up from 0 to T . Observe that

∀T,

T∑
t=0

βtul(c∗t , l
∗
t )L∗t =

T∑
t=0

λ1
t fL(k∗t , L∗t )L

∗
t +

T∑
t=0

λ5
t L
∗
t −

T∑
t=0

λ4
t L
∗
t . (15)

0 ≤
∞∑

t=0

λ5
t L
∗
t ≤

∞∑
t=0

λ5
t < +∞. (16)

0 ≤
∞∑

t=0

λ4
t L
∗
t ≤

∞∑
t=0

λ4
t < +∞. (17)
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Thus, since L∗t = 1− l∗t , from (15), we get

T∑
t=0

βtul(c∗t , l
∗
t ) =

T∑
t=0

βtul(c∗t , l
∗
t )l∗t +

T∑
t=0

λ1
t fL(k∗t , L∗t )L

∗
t

+
T∑

t=0

λ5
t L
∗
t −

T∑
t=0

λ4
t L
∗
t .

Using (13), (14), (16), (17) and letting T →∞, we obtain

0 ≤
∞∑

t=0

βtul(c∗t , l
∗
t ) =

∞∑
t=0

βtul(c∗t , l
∗
t )l∗t +

∞∑
t=0

λ1
t fL(k∗t , L∗t )L

∗
t

+
∞∑

t=0

λ5
t L
∗
t −

∞∑
t=0

λ4
t L
∗
t < +∞.

Consequently, from (11),
∑∞

t=0 λ1
t fL(k∗t , L∗t ) < +∞ i.e. w∗ ∈ `1+. So, we have

{c∗, l∗,k∗,L∗} ∈ `∞+ × `∞+ × `∞+ × `∞+ , with p∗ ∈ `1+ and w∗ ∈ `1+.

We now show that (k∗,L∗) is solution to the firm’s problem.
Since p∗t = λ1

t , w∗t = λ1
t fL(k∗t , L∗t ), we have

π∗ =
∞∑

t=0

λ1
t [f(k∗t , L∗t )− k∗t+1]−

∞∑
t=0

λ1
t fL(k∗t , L∗t ) L∗t − rk0

Let :

∆T =
T∑

t=0

λ1
t [f(k∗t , L∗t )− k∗t+1]−

T∑
t=0

λ1
t fL(k∗t , L∗t ) L∗t − rk0

−
(

T∑
t=0

λ1
t [f(kt, Lt)− kt+1]−

T∑
t=0

λ1
t fL(k∗t , L∗t ) Lt − rk0

)
.

From the concavity of f , we get

∆T ≥
T∑

t=1

λ1
t fk(k∗t , L∗t )(k

∗
t − kt)−

T∑
t=0

λ1
t (k

∗
t+1 − kt+1)

= [λ1
1fk(k∗1 , L∗1)− λ1

0](k
∗
1 − k1) + . . .

+[λ1
T fk(k∗T , L∗T )− λ1

T−1](k
∗
T − kT )− λ1

T (k∗T+1 − kT+1).

By (4) and (12), we have: ∀t = 1, 2, . . . , T

[λ1
t fk(k∗t , L∗t )− λ1

t−1](k
∗
t − kt) = −λ3

t (k
∗
t − kt) = λ3

t kt ≥ 0.

Thus,

∆T ≥ −λ1
T (k∗T+1 − kT+1) = −λ1

T k∗T+1 + λ1
T kT+1 ≥ −λ1

T k∗T+1.

Since λ1 ∈ `1+, sup
T

k∗T+1 < +∞, we have

lim
T→+∞

∆T ≥ lim
T→+∞

− λ1
T k∗T+1 = 0.

9



We have proved that the sequences (k∗,L∗) maximize the profit of the firm. We
now show that c∗ solves the consumer’s problem.

Let {c,L} satisfy
∞∑

t=0

λ1
t ct ≤

∞∑
t=0

w∗t Lt + π∗ + rk0. (18)

By the concavity of u, we have:

∆ =
∞∑

t=0

βtu(c∗t , l
∗
t )−

∞∑
t=0

βtu(ct, lt)

≥
∞∑

t=0

βtuc(c∗t , l
∗
t )(c∗t − ct) +

∞∑
t=0

βtul(c∗t , l
∗
t ) (l∗t − lt).

Combining (3), (6), (10), (11) yields

∆ ≥
∞∑

t=0

(λ1
t − λ2

t )(c
∗
t − ct) +

∞∑
t=0

(λ1
t fL(k∗t , 1− l∗t ) + λ5

t − λ4
t )(l

∗
t − lt)

=
∞∑

t=0

λ1
t (c

∗
t − ct) +

∞∑
t=0

λ2
t ct −

∞∑
t=0

λ2
t c
∗
t +

∞∑
t=0

(w∗t + λ5
t )(l

∗
t − lt)

−
∞∑

t=0

λ4
t l
∗
t +

∞∑
t=0

λ4
t lt

≥
∞∑

t=0

λ1
t (c

∗
t − ct) +

∞∑
t=0

(w∗t + λ5
t )(l

∗
t − lt) =

∞∑
t=0

λ1
t (c

∗
t − ct) +

∞∑
t=0

w∗t (l∗t − lt) +
∞∑

t=0

λ5
t (1− lt)

≥
∞∑

t=0

λ1
t (c

∗
t − ct) +

∞∑
t=0

w∗t (Lt − L∗t ).

Since

π∗ =
∞∑

t=0

λ1
t c
∗
t −

∞∑
t=0

w∗t L∗t − rk0,

it follows from (18) that

∆ ≥
∞∑

t=0

p∗t c
∗
t −

∞∑
t=0

w∗t L∗t − rk0 −
( ∞∑

t=0

p∗t ct −
∞∑

t=0

w∗t Lt − rk0

)

≥ π∗ − π∗ = 0

Consequently, ∆ ≥ 0 that means c∗ solves the consumer’s problem.
Finally, the market clears at every period, since ∀t, c∗t + k∗t+1 = f(k∗t , L∗t )

and 1− l∗t = L∗t .
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4 Examples

We give two parametric example illustrating the violation of standard assump-
tions made in the literature and that there is a corner solution - in the first
there is zero labor and in the second, zero capital - so that the existing results
cannot be applied to establish existence of equilibrium. For this example, using
our results we calculate the competitive equilibrium.

4.1 Example 1: Competitive equilibrium with L∗t = 0, l∗t =

1

Consider an economy with a good that can either be consumed or invested as
capital, one firm and one consumer. The consumer has preferences defined over
processes of consumption and leisure described by the utility function

∞∑
t=0

βtu(ct, lt) =
∞∑

t=0

βt(ct + mlt),

The firm produces capital good by using capital kt and labor Lt = 1 − lt.

The production function f(kt, Lt) = (kα
t + Lt)1/θ, 0 < α < θ, 0 < β < 1 < θ, f

is concave and increasing. Assume that m =
1
θ

(
θ

βα

)α(θ − 1)
θ − α . The planning

problem is

max
∞∑

t=0

βt(ct + mlt)

s.t. ct + kt+1 ≤ (kα
t + Lt)1/θ, ∀t ≥ 0

Lt + lt = 1, ∀t ≥ 0

ct ≥ 0, kt ≥ 0, lt ≥ 0, 1− lt ≥ 0, ∀t ≥ 0

k0 ≥ 0 is given.

Inada conditions are not satisfied for both the utility and production func-
tions. The utility function is also not strictly concave.6

Let λt = (λi
t)

5
i=1, λt 6= 0 denote the Lagrange multipliers. The Lagrangean

is

H =
∞∑

t=0

βtu(ct, lt)−
∞∑

t=0

λ1
t (ct + kt+1 − f(kt, 1− lt))

+
∞∑

t=0

λ2
t ct

∞
+

∑
t=0

λ3
t kt

∞
+

∑
t=0

λ4
t lt +

∞∑
t=0

λ5
t (1− lt)

6From the example it will be clear that we make utility linear in consumption only for ease

of calculation.
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It follows from Kuhn-Tucker necessary conditions that, ∀t ≥ 0

0 = βt − λ1
t + λ2

t

0 = βtm− 1
θ
λ1

t (k
α
t + 1− lt)

1−θ
θ + λ4

t − λ5
t

0 =
α

θ
λ1

t k
α−1
t (kα

t + 1− lt)
1−θ

θ + λ3
t − λ1

t−1

0 = λ1
t (ct + kt+1 − (kα

t + Lt)1/θ)

λ2
t ct = 0, λ3

t kt = 0, λ4
t lt = 0, λ5

t (1− lt) = 0.

It is easy to check that, the above system of equation has a solution:

λ∗1t = βt, λ∗2t = λ∗3t = λ∗4t = λ∗5t = 0,

k∗t = (
βα

θ
)

θ
θ−α := ks ∈ (0, 1),

c∗t = (ks)α/θ − ks > 0,

l∗t = 1,

L∗t = 0.

As we know from section 3, if we define the sequence price p∗t = λ∗1t = βt for

the consumption good and w∗t ∈ λ∗1t ∂2f(k∗t , L∗t ) = λ∗1t fL(ks, 0) = βt 1
θk

α(1−θ)
θ

s

then p∗t ∈ `1+, w∗t ∈ `1+ and {c∗,k∗,L∗,p∗,w∗, r} is a competitive equilibrium.

4.2 Example 2: Competitive equilibrium with k∗t = 0

Now consider the production function f(kt, Lt) = (kt + Lα
t )1/θ where 0 < α <

θ, 0 < β < 1 < θ and the utility function

u(ct, lt) = ct +
1
θ

(
β

θ

) α−θ
α(θ−1)

lt

We obtain the Kuhn-Tucker conditions, ∀t ≥ 0

0 = βt − λ1
t + λ2

t

0 =
1
θ
(
β

θ
)

α−θ
α(θ−1) βt − α

θ
λ1

t Lt
α−1(kt + Lα

t )
1−θ

θ + λ4
t − λ5

t

0 =
1
θ
λ1

t (kt + Lα
t )

1−θ
θ + λ3

t − λ1
t−1

0 = λ1
t (ct + kt+1 − (kt + Lα

t )1/θ)

λ2
t ct = 0, λ3

t kt = 0, λ4
t lt = 0, λ5

t (1− lt) = 0.

The system of equation has a corner solution k∗t = 0 and

λ∗1t = βt, λ∗2t = λ∗3t = λ∗4t = λ∗5t = 0

L∗t = (
β

θ
)

θ
α(θ−1) := Ls ∈ (0, 1)

c∗t = (Ls)α/θ > 0

l∗t = 1− Ls

12



4.3 Violation of some assumptions in the literature

The firm produces the capital good, which is used as an input, by using capital
kt and labor Lt. Define the production set

Yt = {(zt,−Lt) ∈ R× R− : zt + kt ≤ f(kt, Lt), kt ≥ 0, Lt ≥ 0}

where f(kt, Lt) = (kα
t + Lt)1/θ, 0 < α < θ, 1 < θ.

We show that {0} 6= Y ∩ (−Y ).
Let yt = zt + kt denote the output. In this economy, zt = yt − kt is the net

output. Then

Yt = {(yt − kt,−Lt) ∈ R× R− : yt ≤ f(kt, Lt), kt ≥ 0, Lt ≥ 0}
For any k̄t ∈ (0, 1), f(k̄t, 0) = k̄

α
θ
t and 0 < k̄t < k̄

α
θ
t = f(k̄t, 0). There

exists ε > 0 such that ε + k̄t < f(k̄t, 0). Let denote yε
t = ε + k̄t. We have

x =(ε, 0) = (yε
t − k̄t, 0) ∈ Y since yε

t ≤ f(k̄t, 0). Clearly −ε + k̄t < f(k̄t, 0) so
−x=(−ε, 0)= ((− ε + k̄t)− k̄t, 0) ∈ Y . This implies 0 6= x ∈ Y ∩ (−Y ).

Moreover, for any λ > 0, if λ.x ∈ Y then λε + k̄t < f(k̄t, 0). Let λ → +∞, a
contradiction. Thus Y is not a cone (Assumption in [3], Theorem 3).

5 Discussion and Conclusion

This paper studies existence of equilibrium in the optimal growth model with
elastic labor supply. This model is the workhorse of dynamic general equi-
librium theory for both endogenous and real business cycles. The results on
existence of equilibrium have assumed strong conditions which are violated in
some specifications of applied models.

This paper uses a separation argument to obtain Lagrange multipliers which
lie in `1. As the separation argument relies on convexity, strict convexity can be
relaxed; this also means that assumptions on cross partials of utility functions
are not needed (as in [1], [5], [7], [10] and [15]); and homogeneity of production is
not needed. These above papers assume normality of leisure (rule out backward
bending labor supply curves) to show that the capital path is monotonic but this
is inessential to show existence of a competitive equilibrium. The representation
theorem involves assumptions on asymptotic properties of the constraint set
(which are weaker than Mackey continuity (see [3] and [9]). The assumptions
ensure that the either the optimal sequence {ct, lt}∞t=0 is either always strictly
interior or always equal to zero. Thus, one does not have to impose strong

conditions, either Inada or limε→0
u(ε, ε)

ε
→ +∞ as in [13] to ensure that the

sequence of labor is strictly interior. This later condition is not satisfied, for
example, in homogeneous period one utility functions. The existence result also
does not employ any differentiability assumptions. Thus, it covers both Leontief
utility and production functions Y = min(K/v,L/u) and Y/L = (1/v)K/L.
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This implies that the intensive production function, y = f(k) where y = Y/L

and k = K/L is effectively a straight line with slope 1/v up to the capital-labor
ratio k∗ = K∗/L∗ and is horizontal thereafter. Another well known model
where differentiability is violated is the Intensive Activity Analysis Production
Function but existence follows from our results.

A careful reader will observe that we can introduce tax and other distortions
for the existence of a competitive equilibrium as long as concavity is maintained
in line with the results in the literature. For monotonicity results, stronger
results need to be imposed.
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