
A Mechanism Design Approach to Climate
Agreements∗

David Martimort† and Wilfried Sand-Zantman‡

This Version: April 30, 2013

Abstract: We analyze environmental agreements in contexts with volun-
tary participation by sovereign countries, incentives problems and possible
limits on enforcement and commitment. Taking a mechanism design per-
spective, we study how countries may agree on effort targets and compen-
sations to take into account multilateral externalities. The optimal mecha-
nism unveils an important trade-off between solving a free riding problem
in effort provision at the intensive margin for participating countries and
another free riding problem at the extensive margin to ensure that all coun-
tries participate. This mechanism can easily be approximated by means of
simple menus with attractive implementation and robustness properties.
However, limits on enforcement and commitment might hinder its perfor-
mances making the “business as usual” scenario more attractive.

Keywords: public goods, incentive constraints, mechanism design, global
warming.

JEL Codes: Q54, D82, H23.

∗We thank workshop participants at Paris School of Economics, the Paris Environmental and Energy Eco-
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1 Introduction

Global warming has by now become an issue of paramount importance. If the “busi-
ness as usual” scenario (thereafter BAU ) prevails in the near future, expected damage
could reach up to 13,8 % of GDP by 2200.1 Because the corresponding distribution
of costs and (possible) benefits is non-trivial, reaching an agreement among sovereign
countries over the design of environmental policies that would slow down this process
is a formidable challenge.

A Coasian perspective suggests that efficient outcomes should emerge from envi-
ronmental agreements. Yet the record of recent negotiations from Montreal, to Kyoto,
Copenhagen, Cancun and Rio meetings and their repeated failures might indicate that
such view is flawed. Indeed, any bargaining solution that can be thought off to reach
an efficient solution to such multilateral externality problem requires fine tuning de-
tails of the agreement to the particular costs and benefits of countries. For instance,
a high-polluting country should be compensated for reducing its emissions up to its
opportunity costs of doing so while a country that benefits more should be ready to
contribute more significantly. Unsurprisingly, fine tuning financial contributions and
effort targets so precisely might not be feasible in practice. This might be either because
any “fair” international agreement is institutionally bound to treat different countries
similarly2 or because more fundamental informational problems preclude any sort of
discriminatory policies. For instance, countries could have private information, say on
the political costs of implementing a given abatement policy.

Well-crafted agreements must thus induce sovereign and heterogenous countries to
select their most preferred options at the bargaining table within the very same menu.
Satisfying the corresponding incentive compatibility constraints is therefore an important
feature of any agreement. On the modeling front, imposing those constraints necessar-
ily push the analysis into the realm of the mechanism design paradigm if the properties
of environmental negotiations have to be explored.

A number of important and novel insights that have no counterpart in a Coasian
setting emerge from this analysis. First, the optimal agreement is now shaped by the
tension between solving a first free-riding problem in effort provision at the intensive
margin for participating countries and avoiding a second free-riding problem at the
extensive margin to ensure that all countries participate. Inducing more effort at re-
ducing pollution from the most efficient countries exacerbates the incentives of the
least efficient ones to leave the agreement. Second, even though the design of an op-
timal mechanism might look complex at first glance, such mechanism can be easily
approximated by a simple menu of options with attractive implementation and robust-

1See Stern (2006).
2An anonymous design was forcefully advocated by the Bush administration to justify its withdrawal

from the 2001 Kyoto protocol when calling the treaty “unfair” for industrialized countries.
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ness properties. Finally, limits on enforcement and commitment might strongly hinder
performances of that optimal mechanism, making de facto the “business as usual” sce-
nario more attractive; a disappointing outcome echoed by the failures of real-world
negotiations that were reported above.

Two free-riding problems. In the context of environmental negotiations, two dis-
tinct sources of free riding should be considered. First, each country that participates
to an agreement may behave as if its costs of implementing a given abatement pol-
icy was higher, undersupply pollution-reducing effort and leave most of the burden
of abatements on other participating countries. This is a free-riding problem at the in-
tensive margin. This free-riding problem has already received much attention in the
mechanism design literature on public good provision. It is by now well known that
its source is the impossibility of finding mechanisms that could reconcile the require-
ments of incentive compatibility, participation and budget balance.3

As pointed out by Chander and Tulkens (2008), free riding also bites, and it might
be viewed as being more specific to international negotiations, at the extensive margin.
Sovereign countries may indeed opt out of the negotiation and still enjoy the benefits
of any agreement ratified by others. When deciding not to ratify a treaty, a country
forms conjectures on how others react which in turn determines its payoff from the de-
viation. Should the remaining coalition disband with all countries adopting their BAU
emissions or should ratifying countries go on with some restricted treaty? Incentives
to free ride by not participating certainly depend on those conjectures which in turn
vary with the level of commitment embedded in an agreement.

Although several alternatives are discussed, we will mostly consider below the
BAU scenario as the fall-back option whenever an agreement is not reached. Under
those circumstances, second-best effort levels always lie somewhere in between their
levels at the BAU and at the first best. Such downward distortions make free riding at
the intensive margin less attractive. At the same time, and again to prevent such free
riding, inefficient countries that choose emissions which are close to their BAU level
are also asked to contribute to a “green fund”. This fund helps to subsidize countries
which instead choose to expand their effort beyond the BAU reference point so as to
better internalize the externality they exert on others.

Of course, contributions to this fund are necessarily limited. Otherwise, those coun-
tries which are the most tempted by the BAU scenario would refuse the agreement,
exacerbating free riding at the extensive margin. This points at an important trade-off
between solving the free-riding problems at the intensive and at the extensive margins.
An important and somewhat striking consequence of this trade-off is that most ineffi-

3Laffont and Maskin (1982) and Mailath and Postlewaite (1990) point out the difficulty in reaching
efficiency in general environments. Rob (1989), Neeman (1999) and Baliga and Maskin (2003) have
developed more specific applications targeted to environmental economics.
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cient countries end up being indifferent between joining in or not, in which case they
exert their BAU efforts but pay to the fund the expected positive externality they enjoy
from the greater effort exerted by the most efficient ones.

Approximate implementation. Proposing a handy set of instruments that could be
used in practice to implement climate-change friendly policies is definitively high on
the agenda of practitioners, public decision-makers and scholars.4 In this respect, we
also investigate how the optimal mechanism can be implemented or, at least, approx-
imated in practice. The benefits of such approximations are well-known in the pro-
curement and regulation literatures (Wilson 1993, Rogerson 2003, Chu and Sappington
2007) but this insight turns out to be particularly useful also in our context. Our anal-
ysis reveals that a simple menu that specifies either a fixed contribution or a Pigovian
subsidy per unit of effort cum another contribution may approximate quite well the
performances of the full-fledged optimal mechanism. Countries are then split into two
groups. Efficient ones take the incentive option while inefficient ones just contribute a
fixed amount to the “green fund.” Numerical simulations testify that this menu reaches
most of the second-best welfare gains. This might leave us with an optimistic view on
the possibility of solving the climate-change problem even in non-Coasian environ-
ments.

Although our general analysis considers a priori a continuum of countries and de-
rives full-fledged optimal mechanisms in that case, it is also noticeable that this simple
menu remains unchanged even when large players who may have a significant impact
on global emissions enter into the picture. This robustness test is of course another
attractive property of the simple menu we propose.

Commitment and Enforcement problems. Barrett (2003) reports that the Kyoto Pro-
tocol suffers from (at least) two flaws.5 First, non-ratifying countries are not pun-
ished. Second, the protocol did not incorporate any compliance mechanism for rat-
ifying countries. This suggests that the mechanism design problem should also ac-
count for two further constraints, namely the impossibility to credibly commit to pun-
ish non-ratifiers and the difficulty in enforcing the agreement for ratifiers. Those two
constraints are again specific in our context and have no counterpart in the more stan-
dard literature on public good provision.

Considering first the commitment problem, we analyze different conjectures on the
credibility of punishments imposed on non-participating countries. Two polar cases
are studied. When the mechanism does not stipulate any punishment, free riding at
the extensive margin takes an extreme form and there exists no incentive compatible
allocation that might outperform the BAU outcome. On the contrary, if participants

4See for instance the proposals made Bradford (2008) and Guesnerie (2008) among others.
5On this issue, see also Aldy and Stavins (2007).
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can minmax non-ratifiers (with the proviso that such punishments would require non-
credible threats) the first best is achieved, an optimistic albeit unrealistic scenario.

Turning to the enforcement problem, we argue that what can be achieved by a treaty
depends on the collective ability to guarantee that each ratifying country abides by the
rule of the game once accepted. This is true even though internal political pressures at
reelections time, lobbying, and incentives to foster short-term growth may push gov-
ernments to renege on international agreements. Introducing an explicit enforcement
constraint (harder to satisfy than the standard participation constraints) exacerbates in-
efficiencies. Difficulties in enforcement make again the BAU option more attractive.

Literature review. The existing literature on climate negotiations has insisted on pos-
sible failures in reaching global agreements. The focus is on conditions for reaching
efficiency while at the same time requiring the worldwide coalition to be stable against
secessions. To tackle those issues, Chandler and Tulkens (1995, 1997) introduce the no-
tion of γ-core for economies with multilateral externalities. They defined the worth of a
coalition, assuming that countries outside the coalition play individual best responses.
They demonstrated that the grand-coalition is feasible despite individual incentives to
free ride at the extensive margin. Under complete information, efficiency may be com-
patible with a worldwide coalition. We share with these authors an important concern
on the role played by conjectures on the strength of participation constraints. When
incentive compatibility matters, efficiency is far less easy to reach. There has been al-
most no work addressing the multilateral externality problems in climate agreement
taking a mechanism design perspective. An exception is Helm and Wirl (2011) who
consider a two-country version of this problem where bargaining power is asymmet-
rically distributed and an uninformed country designs a mechanism controlling col-
lective emissions. Our paper takes a more normative approach allowing for multiple
countries and a more symmetric distribution of bargaining power and information.

Another important line of research (Carraro and Siniscalco 1993, 1995, Barrett 1994)
has instead focused on incentives to form coalitions by imposing external and inter-
nal stability criterions similar to those developed in earlier cartel theory. Subsequent
research in the field (Carraro, 2005) has then stressed the importance of various in-
stitutional rules to ensure participation, stability, and solve the free-riding problem.
Institutional constraints are there imposed at the outset. This stands in sharp contrast
with the mechanism design approach that derives optimal institutions from primitives
- well-specified informational constraints and strategic behavior.6

Another route which departs from the Coasian scenario and as such can be viewed
as complementary to ours, consists in introducing commitment problems. In that

6This stability program was developed in a complete information framework and often assumed
away the possible heterogeneity between countries. On the difficulties in reaching agreements among
heterogenous countries in a complete information setting, see Thoron (2008).
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vein, Beccherle and Tirole (2011), Battaglini and Harstad (2012) and Harstad (2012a,
2012b) analyze dynamic games of complete information where countries can limit
global warming by either decreasing consumption or making some non-verifiable tech-
nological investments. Countries may refrain from investing today fearing that it
would trigger less investment and more pollution from others tomorrow. Becherelle
and Tirole (2011) show how today investments affect threat points in future negotia-
tions. Harstad (2012b) highlights the costs of short-term agreements. Harstad (2012a)
derives optimal dynamic contracts when renegotiation might allow to reach efficient
outcomes. Gersbach and Winkler (2007) and Gersbach, Hummel and Winkler (2011)
exhibit some solutions to the free-riding problem (at the intensive margin) with attrac-
tive self-enforcing properties but, contrary to us, leave aside the issue of participation.

Viewed as a contribution to the mechanism design literature, this paper somewhat
revamps the conflict between individual incentives, budget balance and participation
that has studied at length in the literature on public good provision.7 First, this litera-
ture assumes that all agents have veto power and that the fall-back option is no provi-
sion with zero payoffs. This assumption is clearly inadequate to tackle the specificities
of environmental negotiations between sovereign countries since those countries can
always produce outside of the agreement and get thereby a type-dependent reserva-
tion payoff.8 Second, most papers in the field focus on the case of a 0-1 provision and
thus provide stark inefficiency results (see for instance Mailath and Postelwaite, 1990).
In our model instead, a mechanism stipulates effort towards depollution which adjust
more continuously to incentives pressure. This induces broader patterns of inefficien-
cies.9 Third, and as stressed above, this literature is silent on how limits on commit-
ment and enforcement may hinder performances of the mechanisms while those limits
are inherent to the institutional context of international negotiations.

Organization of the paper. Section 2 presents the model. Section 3 describes incentive
feasible allocations. Focusing on theBAU scenario as the fall-back option, we delineate
conditions for inefficient effort provision when incentive compatibility matters. We
analyze those inefficiencies and the properties of the nonlinear contribution schedule
that implements second-best efforts. Section 4 assesses the performances of simple
instruments which are attractive in practice. Section 5 investigates the commitment
ability of the coalition to enforce punishments on non-ratifiers. Section 6 studies the
enforcement problem. Finally, Section 7 highlights a few alleys for further research.
Proofs are in an Appendix.

7See again Laffont and Maskin (1982), Mailath and Postlewaite (1990), Rob (1989), Neeman (1999),
Hellwig (2003) and Baliga and Maskin (2003) among others.

8From a technical viewpoint, the characterization of such regime is made complex by the addition
of type-dependent participation constraints to a mechanism design problem under budget balance. We
rely on and adapt techniques developed in Martimort and Stole (2011) to tackle those issues.

9On this, see also Hellwig (2003).
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2 The Model

Preferences and technology. Let consider a continuum of countries of unit mass which
undertake activities that mitigate pollution emissions. By exerting a non-negative ef-
fort ei, country i generates two kinds of benefits. The first benefits of size αei (where
α ∈ [0, 1)) are purely local and accrue only to country i.10 The second sort of benefits
are instead global, worth (1 − α)ei and accrue to all countries worldwide. As α varies
from zero to one, efforts go from having pure global to pure local consequences. Even
though this modeling is consistent with αei being the pure local benefits of a clean en-
vironment,11 a broader interpretation of this modeling is that the adoption of policies
against global warming might have a more general positive economic impact at the
local level (maybe by fostering growth through innovation in green technologies) but,
as we will see below, these efforts are too low from a worldwide welfare point of view.

Countries are heterogeneous in terms of their marginal cost of exerting effort. For
tractability, we adopt a quadratic formulation so that the disutility of effort writes as
C(ei, θi) =

e2i
2θi

, where θi is an efficiency parameter. Those costs should be understood
in a broad sense, including not only technological but also opportunity, and political
costs12 necessary to reach a given effort target. With that latter interpretation in mind,
developed countries (at least some of them like the U.S.) may be considered as the
least efficient ones while developing ones might actually face lesser internal constraints
in adopting stringent regulations.13 Cost convexity captures the fact that emissions
cannot be reduced too much without impairing the basic functioning of the economy
by, for instance, imposing technological changes and adjustments that are increasingly
harder to implement as efforts increase. Country i’s payoff can be written as:

Ui = ti + αei + (1− α)E − e2
i

2θi
.

E represents the “aggregate” effort taken worldwide.14 The payment ti stands for any
financial compensation that this country may receive for undertaking the requested
effort. The possibility of including monetary contributions into environmental treaties
is indeed often explicit. For instance, Article 11 of the Kyoto Convention allows for the

10It will appear clearly in the sequel that the case α = 1 is degenerate. There is no externality in that
unlikely case and BAU is trivially optimal, a theoretical case that has no practical relevance.

11For instance, CO2 is known as having a global impact whereas other gases like SO2 or NOx have
also significant local impacts.

12In that respect, Helm, Hepburn and Mash (2005) study the incentives of governments to implement
lax carbon policies because of electoral concerns.

13Although much data and estimates are already available to assess technological costs of depollution
and their cross-country variations (see for instance Morris, Paltsev and Reilly, 2008), much less informa-
tion is easily available to evaluate political costs.

14An alternative formulation of the objective would be ti + αei + βE − e2i
2θi

for some non-negative α
and β. Normalizing by α+β and changing θi into θi(α+β) gives us our posited formulation. The latter
has the benefit of keeping the first best fixed as α changes. This simplifies comparative statics.
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possibility of transfers from developed to developing countries under the aegis of an
International Green Fund.15

Information. The efficiency parameters θi are independently drawn from the same
cumulative distribution F (·) with support Θ = [θ, θ̄] (with θ > 0) and everywhere pos-
itive and atomless density f(θ) = F ′(θ). Let denote by Eθ(·) the expectation operator
with respect to θ.

The following condition will ensure monotonicity of effort at the optimal second-
best mechanism described below:

Assumption 1
d

dθ

(
1− F (θ)

θf(θ)

)
≤ 0 ∀θ ∈ Θ.16

Mechanisms and incentive compatibility. Agreements cannot be made contingent on
efficiency parameters, i.e., discriminatory mechanisms conditional on the countries’ ex-
act types are banned. Our model can thus be applied not only when costs are common
knowledge but discriminatory mechanisms are not feasible but also when countries
have private information on their cost functions.

The countries’ efforts are instead observable.17 Efforts can be contractually specified
and eventually subsidized.

In that context, a mechanism stipulates levels of compensation and effort for each
country. Of course, such mechanism must be incentive compatible. By the Revelation
Principle, there is no loss of generality in considering direct and truthful revelation
mechanisms of the form {t(θ̂), e(θ̂)}θ̂∈Θ. Those mechanisms determine compensations
and effort levels as a function of a country’s announcement θ̂ on its own type. In
particular, those mechanisms replace any nonlinear contribution schedule T (e) that
would map observable effort levels into compensations. For technical reasons, we will
assume that efforts and payments belong to a sufficiently large compact set; formally,
(e, t) ∈ [0,M ]× [−T, T ] for M and T large enough.

15Contributions may also be given a broader interpretation and be viewed as the benefits or costs that
countries withdraw when climate negotiations are linked to negotiations on other issues such as R&D
technology transfers, sovereign debt and trade agreements. (On this, see Barrett 2005.) Of course, those
costs and benefits may entail deadweight losses that are not modeled here.

16Distributions (uniform, exponential, truncated normal...) satisfying the more common monotonicity
of the hazard rate d

dθ

(
1−F (θ)
f(θ)

)
≤ 0 (Bagnoli and Bergstrom, 2005) also satisfy the weaker Assumption 1.

17That efforts in curbing pollution emissions are publicly observable is actually a mild assumption.
Indeed, much attention has recently been devoted by practitioners on this issue and they agree that
a worldwide system of satellite observations to measure local emissions is technically feasible. Tirole
(2008) forcefully recognizes this point.
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This mechanism design approach relies implicitly on the use of a mediator (or and
international external agency) who monitors and enforces, possibly under some ob-
servability constraints, the efforts made by participating countries.18,19

Following a truthful strategy, a type θ country exerts an effort e(θ). We rely on
the Law of Large Numbers to identify the average global benefits of the countries’
efforts with its expected value, i.e., (1−α)E ≡ (1−α)Eθ̃(e(θ̃)). We may then define the
equilibrium payoff U(θ) of a country with type θ as:

U(θ) = t(θ) + αe(θ) + (1− α)Eθ̃(e(θ̃))−
e2(θ)

2θ
.

Incentive compatibility implies:

U(θ) = max
θ̂∈Θ

t(θ̂) + αe(θ̂) + (1− α)Eθ̃(e(θ̃))−
e2(θ̂)

2θ
. (1)

In the sequel, we shall repeatedly use a more compact (dual) characterization of incen-
tive compatibility by using the rent U(θ) instead of the payment t(θ) together with an
effort level. An allocation is thus a pair (U(θ), e(θ)).

Budget balance. Assuming that no external source of funds is available, i.e., the mech-
anism must be self-financed, the following budget balance condition must also hold:

Eθ̃(t(θ̃)) ≤ 0.

It will be often useful to rewrite this constraint as:

Eθ̃

(
e(θ̃)− e2(θ̃)

2θ̃

)
≥ Eθ̃

(
U(θ̃)

)
. (2)

The overall expected surplus generated by the countries’ efforts should be at least
equal to their overall expected payoff. Of course, this constraint is binding (no waste
of resources) for optimal mechanisms under all circumstances below.

Participation constraints. Finally, the mechanism must satisfy a set of participation
constraints to ensure that all countries join the agreement. Those participation con-
straints depend on the commitment ability of the coalition to enforce actions in case

18This external party is often referred to in the informal literature. For instance Guesnerie (2008)
has proposed mechanisms to trade pollution permits that also heavily rely on an International Bank for
Emissions Allowance Acquisition.

19Of course, the solution to this mechanism design problem gives us an upper bound on aggregate
welfare. More decentralized bargaining procedures may fail to reach the frontier of the set of incentive-
feasible allocations. See for instance Martimort and Moreira (2010) for a result along these lines in the
context of public good provision.
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any country deviates and does not join in. In the sequel, we will bear particular atten-
tion to the BAU outcome that is achieved when the whole coalition disbands as soon as
any country refuses to participate.20

The corresponding fall-back option is thus the (symmetric) Bayesian-Nash equilib-
rium where countries non-cooperatively choose their efforts. Let denote by UN(θ) the
payoff of a type θ country in such equilibrium. We have

UN(θ) = max
e
αe− e2

2θ
+ (1− α)Eθ̃(eN(θ̃))

where the Bayesian-Nash level of effort eN(θ̃) is

eN(θ) = arg max
e
αe− e2

2θ
+ (1− α)Eθ̃(eN(θ̃)) = αθ.21

This immediately leads to the following expression of payoffs under BAU :

UN(θ) =
α2

2
θ + (1− α)αEθ̃(θ̃).

Since countries know their types when deciding whether to join the treaty or not,
the corresponding ex post participation constraints are written as:

U(θ) ≥ UN(θ) ∀θ ∈ Θ. (3)

First-best allocation. Suppose that the countries’ efficiency parameters are common
knowledge and discriminatory type-dependent instruments can be used to fix efforts
at their target levels and compensate countries for those efforts according to the exact
cost they incur. Ex post participation constraints (3) are easily satisfied. Of course,
worldwide welfare is maximized for the first-best level of effort

eFB(θ) = θ ∀θ ∈ Θ.

Because a given country does not internalize the impact of its own effort on other
countries’ welfare, efforts are too low under the BAU scenario.

3 Second-Best Mechanisms

3.1 Incentive Compatibility

Next lemma describes incentive compatible allocations.
20Sections 5 and 6 develop alternative specifications of those participation constraints.
21Thanks to our separability assumption between returns from local and global benefits, non-

deviating countries choose the same effort level whatever their beliefs on the deviant (and negligible)
country as long as they revert to a non-cooperative behavior.
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Lemma 1 An allocation (U(θ), e(θ)) is incentive compatible if and only if:

1. U(θ) is absolutely continuous with at each point of differentiability (i.e., almost every-
where)

U̇(θ) =
e2(θ)

2θ2
. (4)

2. e(θ) is non-decreasing.

By mimicking a slightly less efficient type θ − dθ, a type θ country can exert the
same effort level but at a lower marginal cost. The marginal gains from doing so is ap-
proximatively e2(θ−dθ)

2θ2
dθ ≈ e2(θ)

2θ2
dθ. To induce self-selection, the most efficient type must

pocket an extra reward U(θ)−U(θ−dθ) ≈ U̇(θ)dθ that is precisely worth these marginal
gains as shown in (4). From Lemma 1, it immediately follows that an incentive compat-
ible mechanism must give greater payoffs to the most efficient countries. Presumably,
these countries are also those which may get more by entering the agreement than by
opting for their fall-back option.

It is standard to neglect the monotonicity condition on e(·) and obtain a relaxed
optimization problem whose solution satisfies that extra condition when Assumption
1 holds. We will follow this approach in the remainder of the paper. Adopting ex ante
efficiency as an optimization criterion, the so relaxed second-best optimization problem
consists in finding an (absolutely continuous) profile U(·) that solves:

(PSB) : max
U(·),e(·)

Eθ̃(U(θ̃)) subject to (2), (3) and (4).

3.2 Conditions for Efficiency

As a preliminary step, we investigate under which conditions efficiency might still be
compatible with incentive compatibility.

Proposition 1 When the fall-back option is BAU , the first-best allocation can be implemented
if and only if

α ≤ α1 =
θ

2Eθ̃(θ̃)− θ
∈ (0, 1).

To understand this result, one must figure out the impact of α on both participa-
tion and incentive compatibility. Consider first the participation problem. When the
parameter α is small, positive externalities are significant and the cost of disagreement
is high. This relaxes participation constraints and makes cooperation more attractive.
However, on the incentives side, countries do not care much about the local impact
of their effort and the incentives to free ride by reducing efforts are large. Avoiding
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such free riding requires large compensations to stimulate provision. When α is small
enough, the gains from cooperation are sufficiently large to compensate for the incen-
tives cost. The first-best allocation can still be implemented.

When α is instead large enough, the global impact of each countries’ individual ef-
fort is less significant. Countries choose efforts close to the first best even when they do
not cooperate. By the same token, the gains from cooperation are also small. Although
there is less free riding in effort provision, the gains from cooperation are too small to
compensate for the incentive problem and allow efficiency.

To analyze second-best problems, we will thus assume that the externality is not
too strong relative to the informational problem:

Assumption 2

α > α1 =
θ

2Eθ̃(θ̃)− θ
∈ (0, 1).22

In a companion paper (Martimort and Sand-Zantman, 2013), we show that when-
ever Assumption 2 does not hold and incentive compatibility is not an obstacle to
efficiency, a simple institution achieves the first best: the market. Consider a non-
discriminatory distribution of initial duties imposing on each country to exert a fixed
amount of effort which is the “average” efficient effort, namely E0 = Eθ̃(e

FB(θ̃)) and
let countries trade these duties on a worldwide market. To have each country internal-
izes the impact of his effort choice on the rest of the world and thereby reach efficiency,
trade must take place at price 1 − α. The corresponding final allocation then satisfies
participation constraints whenever Assumption 2 does not hold.

3.3 Two Free-Riding Problems

We now characterize second-best allocations with the BAU scenario as the fall-back
option. Inefficiencies depend on the tension between incentive compatibility, partici-
pation and budget balance. In this respect, we will distinguish two scenarios. In the
first one, all countries except the less efficient ones strictly gain from joining the mech-
anism. Effort levels always remain above BAU . These weak distortions arise when the
gains from cooperation are rather large. In the second scenario, i.e., for strong distor-
tions, inefficiencies are more pronounced. Only the most efficient countries strictly
prefer joining in. Less efficient ones keep on exerting their BAU effort level.

To describe more precisely those scenarios, we make a small detour and define first
a few auxiliary variables that are useful in the sequel. Consider an effort schedule

22Assumption 2 certainly holds when the parameter α is close enough to one (the case of a weak
externality) or when uncertainty on the θ is large enough so that Eθ̃(θ̃) is sufficiently above θ.
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ē(θ, ζ) and a critical type θ∗(ζ) both parameterized by some parameter ζ ≥ 1

ē(θ, ζ) =
θ

1 + ζ−1
ζ

1−F (θ)
θf(θ)

(5)

and {
1−F (θ∗(ζ))
θ∗(ζ)f(θ∗(ζ))

= 1−α
α

ζ
ζ−1

if ζ ≥ ζ∗(α) (strong distortions)
θ∗(ζ) = θ if ζ ∈ [1, ζ∗(α)) (weak distortions)

(6)

where
ζ∗(α) =

1

1− 1−α
α
θf(θ)

. (7)

Anticipating on our findings below, ē(θ, ζ) will actually be the second-best effort
level when ζ = ζ̂ is the Lagrange multiplier for an aggregate feasibility constraint ob-
tained by consolidating incentive, participation and budget-balance constraints alto-
gether. All types which are less efficient than the critical type θ∗(ζ) (when interior) are
just indifferent between exerting the BAU effort and the second-best effort level, i.e.,
ē(θ∗(ζ̂), ζ̂) = eN(θ∗(ζ̂)). The parameter ζ measures the strength of distortions.

With these notations in mind, we derive this aggregate feasibility constraint as:∫ θ∗(ζ)

θ

(
eN(θ)− e2

N(θ)

2θ

)
f(θ)dθ +

∫ θ̄

θ∗(ζ)

(
ē(θ, ζ)− ē2(θ, ζ)

2θ

(
1 +

1− F (θ)

θf(θ)

))
f(θ)dθ

=

∫ θ∗(ζ)

θ

UN(θ)f(θ)dθ + UN(θ∗(ζ))(1− F (θ∗(ζ))). (8)

Condition (8) simply expresses the fact that total welfare has to be fully redistributed
among countries participating to the mechanisms while keeping incentive compatibil-
ity. Incentive compatibility explains the extra informational distortion (proportional
to 1−F (θ)

θf(θ)
on the left-hand side of (8)). Inducing effort profiles closer to the first best is

now costly because it exacerbates free riding at the intensive margin; the most efficient
countries having then incentives to pretend being less so. Inducing participation im-
poses that feasible rent profiles must remain above their BAU level. We show below
that those constraints are actually binding on an interval Ωc = [θ, θ∗(ζ)] (which might
be reduced to a single point in the case of weak distortions). The BAU effort and rent
profiles are then found respectively both on the left-hand side of condition (8) which
evaluates total welfare and on the right-hand side which measures expected payoffs.

Observe that ζ∗(α) is decreasing with α and that 1− 1−α
α
θf(θ) > 0 (hence ζ∗(α) > 1

holds) when

α > α2 =
1

1 + 1
θf(θ)

. (9)

Assumption 3 below (which is for instance satisfied by the uniform distribution
to which we will refer later on for some comparative statics exercises) simplifies the
analysis without loss of any insight:
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Assumption 3

α2 ≤ α1 ⇔ Eθ̃(θ̃) ≤ θ +
1

2f(θ)
.

This assumption allows us to have a clear separation between parameters constel-
lations where either strong or weak distortions arise.

Distortion regimes. We are now ready to describe the two distortion regimes. De-
pending on the value of the multiplier ζ̂ which is obtained as the unique solution to
the aggregate feasibility condition (8),23 the rent and effort profiles will have different
shapes unveiled in Propositions 3 and 4 below.

Proposition 2 Suppose that the fall-back option is BAU and that Assumption 3 holds. There
exists α̂ ∈ (α1, 1) that defines two different profiles of payoffs at the optimal mechanism.

1. Weak distortions. For α ∈ [α1, α̂], ζ̂ ∈ (1, ζ∗(α)].

2. Strong distortions. For α ∈ (α̂, 1), ζ̂ > ζ∗(α).

The intuition for those distortions is better understood when thinking of α as be-
ing close enough to α1, i.e., small enough while Assumption 2 being still satisfied. In
that case, the efficiency gains from coordinating effort levels are rather strong but yet
not large enough to allow efficiency. Nevertheless, we expect rather small allocative
distortions. More formally, the multiplier ζ̂ should be close to one so that effort is al-
most efficient. When α increases, the gains from coordination are lower and incentive
compatibility constraints have more bite. Distortions are stronger and ζ̂ increases.

Rents profile. When Assumption 2 holds, we already know that efficiency cannot be
achieved. One cannot find incentive compatible payments that implement efficient ef-
fort levels and give all types strictly more than their BAU payoffs. The participation
constraint (3) must be binding somewhere. Depending on the scenario, this participa-
tion constraint may bind either at a single point or on a whole interval.

Proposition 3 Suppose that the fall-back option is BAU and that Assumptions 1, 2 and 3
hold together. The second-best profile of rents Ū(θ) is such that the participation constraint (3)
is binding

1. only at θ when ζ̂ ≤ ζ∗(α) (weak distortions);

2. on an interval Ωc = [θ, θ∗(ζ̂)] with non-empty interior when ζ̂ > ζ∗(α) (strong distor-
tions).

23The proof of uniqueness can be found in the Appendix.
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Efforts profile. Turning now to the characterization of effort levels, we get:

Proposition 4 Suppose that the fall-back option is BAU and that Assumptions 1, 2 and 3
hold together. The second-best profile of effort levels ē(θ) is continuous, increasing in θ, greater
than the BAU level but downward distorted below the first best everywhere except at θ̄.

1. If θ = θ∗(ζ̂) (weak distortions), then

ē(θ) = ē(θ, ζ̂) > eN(θ) ∀θ ∈ Θ; (10)

2. If θ < θ∗(ζ̂) (strong distortions), then

ē(θ) =

{
ē(θ, ζ̂) > eN(θ) if θ ∈ Ω = (θ∗(ζ̂), θ̄]

eN(θ) if θ ∈ Ωc = [θ, θ∗(ζ̂)].
(11)

Because of free riding, the most efficient types (such that θ ∈ Ω = (θ∗(ζ̂), θ̄]) have
some incentives to claim being less efficient and produce less effort than requested
by the mechanism. Those efficient types free ride by exerting less effort even when
participating to the mechanism. By doing so, they still earn some rent above BAU .

To limit those incentives to free ride at the intensive margin, the optimal mechanism
plays both on effort targets and compensations. First, effort is reduced below the first
best for all types (except the most efficient one). This distortion makes it less attractive
for the most efficient types to mimic slightly less efficient ones and abate less. Second,
the mechanism also requests a greater contribution from the least efficient types still
as a means to make their allocation less attractive. This second distortion might push
those types out of the mechanism. It thus exacerbates free riding at the extensive mar-
gin. To avoid such possibility, the inefficient countries’ contributions are limited and
participation constraints are binding on the lower tail of the types distribution. This is
so either at a single point or on a whole interval depending on whether distortions are
weak or strong.

Summarizing, there is a trade-off between the free-riding problems at the intensive
and at the extensive margins. Incentive compatibility constraints introduce a conflict
between the most efficient countries’ incentives to exert effort and the least efficient
types’ incentives to participate.

Contributions. Observe that at any point of differentiability of the payment sched-
ule, the incentive compatibility condition (1) also implies the following relationship
between payments and efforts:

˙̄t(θ) =
˙̄e(θ)

θ
(ē(θ)− eN(θ)) . (12)
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From Proposition 4, it follows that t̄(·) is strictly increasing on (θ∗(ζ̂), θ̄] and constant
on [θ, θ∗(ζ̂)] if such interval has a non-empty interior. From the fact that the budget-
balance constraint (2) is binding at the optimum, it also follows that

t̄(θ) < 0 < t̄(θ̄).

Inefficient countries always pay for joining the coalition even though they get the same
payoff in and out. They are ready to pay exactly the benefit they receive from the
greater effort exerted by those efficient types who produce above the BAU level. More
precisely, for large inefficiencies (i.e., when ζ̂ > ζ∗), a country with a type in the interval
[θ, θ∗(ζ̂)] contributes a fixed amount which is the expected (positive) externality it enjoys
from the agreement:

t̄(θ) = −(1− α)

∫ θ̄

θ∗(ζ̂)

(ē(θ)− eN(θ))f(θ)dθ < 0.

Indeed, when such inefficient country deviates and opts out of the coalition, the most
efficient countries with types θ ∈ (θ∗(ζ̂), θ̄] react by producing their BAU effort level
which is strictly less than that requested by the mechanism. This punishment reduces
the payoff of the deviating country by an amount which matches its contribution:

(1− α)

∫ θ̄

θ∗(ζ̂)

(ē(θ)− eN(θ))f(θ)dθ.

The optimal allocation can be implemented by means of a convex nonlinear contri-
bution schedule. To show this, first observe that ē(θ) is an increasing function of θ when
Assumption 1 holds. Hence, we may define the inverse mapping θ̄(e) on the relevant
interval and a nonlinear payment schedule that implements the optimal allocation as:

T (e) = t̄(θ̄(e)) =

∫ θ̄(e)

θ

ē2(x)

2x2
dx− αe+

e2

2θ̄(e)
− (1− α)Eθ̃(ē(θ̃)).

Corollary 1 T (e) is flat for e ≤ eN(θ∗(ζ̂)), strictly increasing and convex for e > eN(θ∗(ζ̂)).

Observe that T ′(ē(θ̄)) = 1 − α ≥ T ′(ē(θ)) for all θ. Indeed, the most efficient coun-
tries fully internalize the impact of their effort on global welfare since they receive a
Pigovian (marginal) subsidy for doing so. Less efficient types are less rewarded at the
margin and do not expand effort as much.

4 Towards A Real-World Implementation

The convexity of the nonlinear contribution schedule T (e) found in Corollary 1 sug-
gests that this schedule could be conveniently approximated by a pair of simple linear
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schemes. To replicate the flat part of T (e) and approximate the optimal mechanism
for lower levels of effort, the first option within this menu has countries paying up-
front a fixed amount T and still exerting their BAU effort. Only the least efficient
countries choose that scheme. The second linear option entails both a greater up-front
contribution T > T but also a Pigovian subsidy 1−α per unit of effort so that the first-
best effort is exerted by the most efficient types opting for that scheme. This option
is meant to capture the properties of the optimal mechanism for the highest levels of
effort.24 Finally, budget balance holds when the fixed contributions from both groups
cover subsidies.

Let us denote by θ∗ the cut-off type who is just indifferent between those two op-
tions. By incentive compatibility and single-crossing, types below θ∗ choose theirBAU
effort while those above choose the efficient effort. This leads us to the following indif-
ference condition for θ∗:

αeFB(θ∗)− (eFB(θ∗))2

2θ∗
− T + (1− α)

(∫ θ∗

θ

eN(θ̃)f(θ̃)dθ̃ +

∫ θ̄

θ∗
eFB(θ̃)f(θ̃)dθ̃

)

= αeN(θ∗)− e2
N(θ∗)

2θ∗
− T + (1− α)

(∫ θ∗

θ

eN(θ̃)f(θ̃)dθ̃ +

∫ θ̄

θ∗
eFB(θ̃)f(θ̃)dθ̃

)
.

Simplifying, we obtain:

T = T + (1− α2)
θ∗

2
. (13)

To ensure participation of the least efficient countries, their upfront contribution
must just balance the externality gain created by the extra effort of countries with types
above θ∗. This extra effort being eFB(θ)− eN(θ) = (1− α)θ, the expected externality on
types below θ∗ becomes (1− α)2

∫ θ
θ∗
θf(θ)dθ. This gives the following expression for T :

T = (1− α)2

∫ θ

θ∗
θf(θ)dθ. (14)

Finally, the menu must be budget balanced, where the expenses are the subsidies
per unit of effort given to the most efficient agents and the resources are the lump-sum
contributions paid by both groups, namely:

F (θ∗)T + (1− F (θ∗))T = (1− α)

∫ θ

θ∗
θf(θ)dθ. (15)

Using the expressions of T and T drawn from (13) and (14) and inserting into (15),
θ∗ is implicitly defined as a solution to the following equation (for α < 1):

J (θ∗) =
θ∗

2
(1− F (θ∗))(1 + α)− α

∫ θ

θ∗
θf(θ)dθ = 0. (16)

24Observe that all countries taking such linear scheme equalize their opportunity costs of effort so that
re-trading among them won’t be a valuable option.
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Remark first that θ∗ = θ is a solution and that J ′(θ) < 0. Moreover, Assumption 1
implies that J (·) is quasi-concave and there are thus at most two solutions to (16).
More precisely, note that J (θ) > 0 if and only if α ≤ α1. Therefore, for α ≤ α1, θ∗ = θ,
efficiency is achieved with a single linear contract of slope 1 − α and we recover our
previous findings: A market where countries trade duties at price 1−α yields efficiency.
On the contrary, for α > α1, we have θ∗ ∈ (θ, θ), and the type space is split into two
connected subsets taking different contracts.

Simulations. One may now wonder how significant is the welfare loss from using
the simple two-item menu above instead of the optimal nonlinear mechanism. As the
following numerical simulations show, the loss is surprisingly small. Therefore, the
menu turns to be a good approximation of the optimal mechanism.

Let us characterize the optimal contract and its two-item approximation for a uni-
form distribution on Θ = [1, 2]. For this particular specification, we find α1 = α2 = 0.5.
Moreover, tedious computations show that α̂ = 0.726. Following the insights of Propo-
sition 2, we will take α = 0.65 and α = 0.85 to respectively illustrate the cases of weak
and strong distortions.

• For weak distortions, i.e., α = 0.65, we know that θ∗(ζ̂) = θ = 1. Moreover, computa-
tions lead to ζ̂ = 1.397 so that the optimal effort is everywhere given by

ē(ζ̂ , θ) =
θ2

0.792θ + 0.416
.

From this, the aggregate welfare under the optimal mechanism is roughly equal to
0.367. In this example, the first-best welfare would be equal to 0.75. Observe that the
second-best outcome is relatively far away from the first best, half of the overall surplus
being lost due to incentive compatibility.

With a two-item menu, (16) yields θ∗ = 1.300, i.e., the thirty percent least efficient
countries pay the lower contribution T . Equations (13) and (14) yield then

T = 0.190 and T̄ = 0.565.

The aggregate welfare achieved with such menu is roughly worth 0.328. Compar-
ing with the optimal mechanism, the relative welfare loss from using the simple menu
instead of the optimal mechanism is 10.7 percent.This is admittedly small, especially
compared to the surplus loss due to incentive compatibility even with the optimal
mechanism. Of course, that mild loss must be put beside the significantly simpler de-
sign of the two-item menu.

• For strong distortions, i.e., α = 0.85, we know that θ∗(ζ̂) > 1. Computations lead to
ζ̂ = 1.779 and θ∗(ζ̂) = 1.425. The optimal effort is everywhere given by

ē(ζ̂ , θ) =

{
θ2

0.557θ+0.886
if θ ∈ (1.425, 2]

0.85θ if θ ∈ [1, 1.425].
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This corresponds to a value of the aggregate welfare under the optimal mechanism
which is now roughly equal to 0.380.

If a two-item is instead offered, (16) yields θ∗ = 1.700, i.e., the thirty percent most
efficient countries pay the higher contribution T and receive the Pigovian subsidies per
unit of efforts. Equations (13) and (14) yield then

T = 0.012 and T̄ = 0.247.

It is worth noticing that the contribution asked from the least efficient countries is
rather small in that case.

The aggregate welfare achieved with such menu is approximatively equal to 0.373.
Now, the relative welfare loss from using the menu instead of the optimal mechanism
is less than 2 percent; a surprisingly small loss indeed.

The simple menu above lends itself into a nice and realistic interpretation. Suppose
that developing countries face lower marginal opportunity costs of reducing pollution
because they just do not produce as much as developed countries. Those countries
self-select on a scheme with a subsidy. They exert first-best efforts and get subsidized
for that. A contrario, the more developed countries face higher opportunity costs and
do not expand effort beyond BAU . Per capita, those countries contribute less to the
global funding of the system but, as our numerical examples illustrate, the fraction of
countries that self-select by choosing a fixed payment may be significant so that their
overall contribution is enough to cover subsidies.

Our mechanism bears some strong resemblance with another proposal, the so-
called Global Public Good Purchase pushed forward by Bradford (2008). In Bradford’s
(complete information) mechanism, countries make a set of voluntary contributions
to an International Agency; this agency buys then any reduction below the BAU al-
lowances. The negative side of Bradford’s approach is that it does not say much on the
incentive properties of the mechanism and whether they can be reconciled with the
participation problem. That conflict between incentives and participation is instead de
facto solved by the menu we propose.

Large countries. Viewing the world as being made of a continuum of countries has
been an efficient modeling short-cut to derive qualitative properties of the optimal
mechanism and its approximation. Equipped with those insights, we now see how
big actors (China, U.S., India...) whose strategic behavior might significantly impact
aggregate emissions may enter the picture. Surprisingly, it turns out that, in the inter-
esting case of a large player who is reluctant to engage in large abatement efforts, the
qualitative properties of the menu are unchanged.

To illustrate, suppose that a large country faces a large abatement cost, i.e. a small
value θ̂ of the efficiency parameter. Supposing an atom with positive mass at that point,
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the modified cumulative distribution of the efficiency parameter can be expressed as

F̃ (θ) =

{
(1− h)F (θ) if θ < θ̂

h+ (1− h)F (θ) if θ ≥ θ̂

where the parameter h ∈ (0, 1) represents the mass associated to that large country.
To fit real-world scenarios, we assume that θ̂ is small enough so that the large player

is not willing to adopt the incentive option within the menu. We are thus looking for a
solution such that the cut-off type θ∗ remains above θ̂. The definition of θ∗ given in (13)
is then unchanged. Instead, the participation requirement (14) and the budget balance
condition (15) are modified to account for the extra mass of types taking the flat option.
We respectively get:

T = (1− α)2(1− h)

∫ θ

θ∗
θf(θ)dθ (17)

and

(h+ (1− h)F (θ∗))T + (1− h)(1− F (θ∗))T = (1− α)(1− h)

∫ θ

θ∗
θf(θ)dθ. (18)

Inserting the value of T obtained from (17) into (18) yields that the cut-off value θ∗

is unchanged and still solves (16). There are two offsetting effects that explain this
surprising result. On the one hand, there is a relatively lower mass of efficient countries
and, from (17), the “pay-the-expected externality” fee T now decreases. But on the
other hand, there are also relatively less countries that need to be subsidized for their
effort beyond their BAU level.

5 Commitment Issues

We now investigate the properties of mechanisms under various scenarios on the com-
mitment ability of countries participating to the coalition. Indeed, ratifying countries
may not always be able to specify threats of retaliation on non-ratifiers. The two com-
mitment scenarios that are considered below correspond to polar fall-back payoffs for
a non-ratifying country. Participation constraints are more or less stringent depending
on the scenario. That, in turn, affects the efficiency of the mechanism. Our analysis
unveils how the ability of treaty members to punish non-ratifiers is key to depart from
the BAU outcome.

5.1 No Commitment

Suppose first that the mechanism cannot credibly impose any threat on non-ratifiers.
Ratifying countries keep on playing the mechanism even after having contemplated
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a deviation from a country opting out. A non-ratifying country still chooses an effort
level eN(θ) while ratifiers keep on choosing the effort levels requested by the mecha-
nism. The participation constraint becomes:

U(θ) ≥ α2

2
θ + (1− α)Eθ̃(e(θ̃)), ∀θ ∈ Θ. (19)

By refusing to abide to the agreement, a deviating country does not affect the ag-
gregate effort but avoids paying any contribution. Of course, this scenario leads to an
extreme form of free riding at the extensive margin.25

Proposition 5 When there is no possibility to commitment to inefficient threats, the only fea-
sible allocation is BAU .

The important take-away from this analysis is that, to improve on BAU , a treaty
must stipulate obligations/commitments of the ratifying members which might also
depend on the behavior of non-ratifiers.26 In particular, it is never in the collective
interest of ratifiers to ignore the defection of a single country and keep on offering the
same mechanism even if this non-ratifier is of measure zero. Doing so would trigger
defections by all countries and implementation of the BAU outcome.

5.2 Worst Punishments

Let us consider now the opposite case where non-ratifiers can be punished. This is
of course an extreme and unrealistic assumption that requires inefficient threats, more
precisely zero effort by non-deviating countries to minimize the deviation payoff for
non-ratifiers. Even though choosing an effort level eN(θ) remains optimal for a non-
ratifying country, the worst punishment yields a payoff from not joining which is now:

UW (θ) =
α2

2
θ.

Inducing participation requires:

U(θ) ≥ UW (θ) ∀θ ∈ Θ. (20)

Proposition 6 The first-best allocation can always be implemented when the fall-back option
is the Worst-Punishment outcome.

Because the fall-back option entails zero effort by non-deviating countries, the gains
from cooperation increase. It allows to implement the first best even when incentive
constraints matter.27

25Those strong incentives to free-ride arise because each country is infinitely small in the world as
a whole. This is itself a strong assumption that could be relaxed by considering the case of a limited
number of countries (or few blocks of countries).

26Interestingly, the Kyoto protocol included such contingent restrictions as it required the ratification
by countries representing 55% of worldwide emissions to bring the treaty into force.

27This result is reminiscent of other works in Bayesian environments with a finite number of players
(Makowski and Mezzetti 1994 among others).
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6 Limits on Enforcement

Environmental treaties are often been criticized because they suffer from a significant
enforcement problem. To illustrate this enforcement issue in the context of our model,
observe that the optimal mechanism characterized in Section 3.3 has some surprising
features, especially when the participation constraint is binding on a non-empty inter-
val Ωc = [θ, θ∗(ζ̂)] (the case of strong distortions). Indeed, types in that interval exert
their BAU effort whether they join the mechanism or not. This makes the mechanism
particularly vulnerable to an enforcement problem if contributions are paid once the
countries’ efforts are already sunk. Once those indifferent types have already chosen
their effort, they could just choose not to contribute and free ride on the most efficient
ones. This perverse possibility brought by such timing is indeed particularly relevant
in the case of the 1997 Kyoto protocol where the 38 most developed countries (the so-
called Annex I) committed themselves to a certain level of emissions before any system
of contributions were established.

In accordance, we shall define an enforceable mechanism as such that any given
country should always find it optimal to obey the course of actions requested by this
mechanism at any point in time. In particular, once it has already chosen its effort level,
this country should also prefer to pay the requested contribution if any.

To model such enforcement issue, we suppose that the relationship is infinitively
repeated with a common discount factor δ. Following a familiar information struc-
ture for repeated contracting environments due to Baron and Besanko (1984), types are
assumed to be stationary and drawn once for all. A stationary mechanism governs
the whole relationship and as such induces a repeated game among countries. Had a
given country with type θ complied with the mechanism, it gets a per-period payoff
U(θ) at equilibrium. Whenever a country exerts an effort level within the range of the
mechanism but then chooses not contribute in the current period, non-deviating ones
retaliate by playing trigger strategies from next period on so as the BAU outcome is
implemented.28 Therefore, a country with type θ abides by the mechanism whenever
the following enforcement constraint holds:

U(θ) ≥ (1− δ)

(
max

e∈[e(θ),e(θ)]
− e

2

2θ
+ αe+ (1− α)Eθ̃(e(θ̃))

)
+ δUN(θ). (21)

The right-hand side represents that country’s payoff if it chooses any effort level within
the range of the mechanism, does not contribute in the current period and then ex-
pects the BAU outcome to follow. Whenever the range of effort levels requested by
the mechanism includes all BAU levels, the right-hand side of (21) is always maxi-
mized at eN(θ). We can now replace (21) with the following state-dependent constraint

28Levin (2003) and Athey, Bagwell and Sanchirico (2004) also study enforcement issues in other spe-
cific dynamic contexts.
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which is more stringent than the BAU ’s participation constraint whenever effort levels
requested by the mechanism are above their BAU level:

U(θ) ≥ UN(θ) + (1− δ)(1− α)(Eθ̃(e(θ̃))− Eθ̃(eN(θ̃))) ∀θ. (22)

Under limited enforcement, the optimization problem becomes:

(PE) : max
U(·)∈W (Θ),e(·)

Eθ̃(U(θ̃)) subject to (2), (4) and (22).

To assess the new inefficiencies involved, we first investigate conditions under
which the first-best levels of effort are no longer implementable.

Proposition 7 The first-best allocation cannot be implemented under limited enforcement when

α > α1(δ) = α1 −
2(1− δ)(Eθ̃(θ̃)− θ)
δ(2Eθ̃(θ̃)− θ)

. (23)

Because the enforcement constraint (21) is stronger than (3), it becomes harder to
implement the efficient level of effort and α1(δ) ≤ α1.

Solving this problem offers a characterization of regimes with strong distortions.

Proposition 8 Assume that (23) holds. Under limited enforcement, an optimal mechanism
with strong distortions is such that there exists ζ̂ > 1 such that (21) is binding on an interval
Ωc = [θ, θ∗(ζ̂)] with θ∗(ζ̂) > θ solving:

1− F (θ∗(ζ̂))

θ∗(ζ̂)f(θ∗(ζ̂))
=

1− α
α

(
ζ̂

ζ̂ − 1
− 1 + δ

)
. (24)

The effort profile is then:

ē(θ) =


(

1− ζ̂−1

ζ̂
(1− δ)(1− α)

)
θ

1+ ζ̂−1

ζ̂

1−F (θ)
θf(θ)

> eN(θ) if θ ∈ Ω = (θ∗(ζ̂), θ̄]

eN(θ) if θ ∈ Ωc = [θ, θ∗(ζ̂)].29
(25)

Comparing (25) with (10) shows that reducing the effort level of the most efficient
countries towards the BAU level relaxes the enforcement constraint (22).30 Comparing
(24) and (6), we observe also that θ∗(ζ̂) is greater when Assumption 1 holds. In other
words, the area where the enforcement constraint binds is larger than with the weaker
participation constraint. Distortions are more pronounced under limited enforcement.

29Observe that, with such strong distortions the range of effort levels requested by the mechanism
includes all Nash levels which validates the way we wrote the enforcement constraint as (22).

30Of course, the values of the multiplier ζ̂ differ in the two scenarios.
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7 Final Remarks

In practice, climate-change policies are implemented by means of markets for pollu-
tion permits (or quotas). A key feature of such mechanism is to allow further rounds
of decentralized trade if some countries (reps. firms within those countries) want to
trade quotas beyond their initial allocation. In the framework of our model, one may
wonder what could be the impact of allowing resale of “effort” quotas. The answer is
immediate. Opening markets for trading effort quotas would just drive all participat-
ing countries to equalize their opportunity costs to the prevailing market price. This
feature stands in sharp contrast with the strict convexity of the optimal mechanism
which implies that those countries which exert more effort than in the BAU scenario
do so at different rates. In other words, allowing decentralized trade would undermine
the screening properties of the mechanism in second-best environments. A contrario,
the approximate mechanism sketched in Section 4 is robust to such trades, at least as
far as the most efficient countries are concerned. Indeed, those countries all get the
same Pigovian subsidy and would not gain from further trading quotas.

The main thrust of our analysis is also robust to the introduction of some redistribu-
tive concerns although some effects may be magnified. Ex ante efficiency is only one
possibility (among a whole continuum) for choosing a normative criterion to assess
the performances of climate-change policies. Adopting the definition of interim effi-
cient allocations given by Holmström and Myerson (1983), we could as well consider a
welfare criterion attributing type-dependent non-negative social weights to each pos-
sible type. To understand how the optimal mechanism would be modified with such
redistributive concerns, suppose for instance, that ethic considerations lead to give
to low-income countries (presumably those with the lowest opportunity costs of ex-
erting depolluting efforts) a slightly greater weight in the objective. Effort for those
most efficient types should not be so distorted away from the first best. Those efficient
countries end up significantly above their BAU payoffs. For the least efficient types
instead, effort distortions are exacerbated and the effort profile may severely drop off
as costs increase. In terms of the payoffs profile, while the most efficient countries end
up much above the BAU level, more countries might just be also indifferent between
joining the agreement or not. Of course, such features are also reflected into the ap-
proximate menu that could be used in practice. The incentive option is taken by fewer
efficient countries but, for those countries, the lump-sum contributions also diminish.

We deliberately chose to study a very parsimonious model to highlight the trade-off
between the various forms of free riding in the most illuminative way. More detailed
modelings of the production processes in each country and of the intertemporal impact
of investments would lead to more complex analysis but the very same economic in-
sights are likely to pertain. As long as the BAU outcome leads to excessively low effort
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levels compared to the socially optima, a mechanism with two options (the first with
incentive properties and the second being only a fixed contribution) would certainly
perform pretty well.

Equipped with the mechanism design methodology developed in this paper, we be-
lieve that a number of other important questions could be addressed in future research.
A first important extension should consider the design of dynamic mechanisms. In
particular, one may want to assess the performance of menus of linear contracts in
those dynamic environments. A second extension would be to go more deeply into the
analysis of the relationship between local politics and international agreements. The
analysis of such two-tier mechanism design problem will be particularly fruitful to un-
derstand institutional design behind the climate-change problem.31 At last and taking
a broader perspective, our methodology and the workhorse model we have proposed
could certainly be also useful to analyze how sovereign countries deal with other mul-
tilateral externalities problems such as fiscal fraud, fight against global terrorism or
global health problems.
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Appendix

Proof of Lemma 1. Define f(t, e, θ, E) = t+αe+(1−α)E− e2

2θ
.Observe that f(t, e, E, θ) is

differentiable and absolutely continuous in θ since θ ≥ θ > 0 for any (t, e, E). Moreover,
|fθ(t, e, E, θ)| = e2

2θ2
is bounded by some integrable function M2

2θ2
when e ∈ [0,M ]. From

Theorem 2 and Corollary 1 in Milgrom and Segal (2002), it follows immediately that
U(θ) is absolutely continuous and thus almost everywhere differentiable with:

U(θ) = U(θ) +

∫ θ

θ

e2(x)

2x2
dx. (A1)

Condition (4) follows at any point of differentiability.
Incentive compatibility implies for any pair (θ, θ̂):

t(θ) + αe(θ) + (1− α)Eθ̃(e(θ̃))−
e2(θ̂)

2θ
≥ t(θ̂) + αe(θ̂) + (1− α)Eθ̃(e(θ̃))−

e2(θ̂)

2θ
,
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Reversing the role of θ and θ̂ and summing both sides of the inequalities so obtained,
using the fact that − e2

2θ
satisfies increasing differences, and simplifying yields immedi-

ately e(θ) ≥ e(θ̂) for θ ≥ θ̂. e(·) is non-decreasing and thus a.e. differentiable.
Reciprocally, since U(·) is absolutely continuous and satisfies everywhere (A1), we

have:

U(θ) +

∫ θ

θ

e2(x)

2x2
dx = t(θ) + αe(θ) + (1− α)Eθ̃(e(θ̃))−

e2(θ)

2θ
.

From this, incentive compatibility immediately follows since:

t(θ) + αe(θ) + (1− α)Eθ̃(e(θ̃))−
e2(θ)

2θ
−

(
t(θ̂) + αe(θ̂) + (1− α)Eθ̃(e(θ̃))−

e2(θ̂)

2θ

)

=

∫ θ

θ̂

e2(x)− e2(θ̂)

2x2
dx ≥ 0

when e(·) is non-decreasing.

Proof of Propositions 1 and 6. An important step of the analysis consists in consol-
idating the incentive compatibility constraint (4) and the feasibility condition (2). In
this respect, let define a critical type θ∗ as:

θ∗ = max arg min
θ∈Θ

U(θ)− Ul(θ)

where l = N,W . Of course, such critical type depends on the choice of the mechanism
since it affects the profile of implementable rent U(θ). From continuity of U(θ)− Ul(θ)
and compactness of Θ, such θ∗ necessarily exists for any implementable profile U(θ).

Note that satisfying the participation constraint (3) at θ∗ is enough to have it satis-
fied for all θ. Hence, a necessary and sufficient condition for (3) to hold is that

U(θ∗) ≥ Ul(θ
∗). (A2)

Using again (A1) yields

U(θ) = U(θ∗) +

∫ θ

θ∗

e2(x)

2x2
dx. (A3)

Integrating by parts on each interval [θ, θ∗] and [θ∗, θ̄], we finally obtain the following
expression of the average payoff of countries:

Eθ̃(U(θ̃)) = U(θ∗) + Eθ̃

(
(1θ̃≥θ∗ − F (θ̃))e2(θ̃)

2θ̃2f(θ̃)

)

where 1θ̃≥θ∗ =

{
1 if θ̃ ≥ θ∗

0 otherwise.
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Finally, the feasibility condition can be rewritten as

Eθ̃

(
e(θ̃)− e2(θ̃)

2θ̃

)
≥ U(θ∗) + Eθ̃

(
(1θ̃≥θ∗ − F (θ̃))e2(θ̃)

2θ̃2f(θ̃)

)
. (A4)

Notice that any rent profile for a mechanism that implements the first-best effort
level eFB(θ) is such that θ is the critical type since U(θ)−Ul(θ) (for l = N,W ) is increas-
ing (U̇(θ)− U̇l(θ) = 1−α2

2
> 0 when α < 1). Hence, a necessary and sufficient condition

for the participation constraint (3) to hold everywhere is that it holds at θ. That remark
being made, the feasibility constraint and the critical type’s participation constraint are
altogether satisfied when:

Eθ̃

(
eFB(θ̃)− (eFB(θ̃))2

2θ̃

)
≥ Ul(θ) + Eθ̃

(
(1− F (θ̃))(eFB(θ̃))2

2θ̃2f(θ̃)

)
.

This amounts to check

Eθ̃

(
eFB(θ̃)− (eFB(θ̃))2

2θ̃

(
1 +

1− F (θ̃)

θ̃f(θ̃)

))
=

1

2

∫ θ̄

θ

(θf(θ)− 1 + F (θ))dθ ≥ Ul(θ)

⇔

{
θ
2
≥ α2

2
θ + (1− α)αEθ̃(θ̃) if l = N

θ
2
≥ α2

2
θ if l = W.

(A5)

Hence, when l = N , we get an impossibility if Assumption 2 holds. Instead, when
l = W , (A5) holds and one can find budget-balanced transfers that ensure that the first
best is implemented.

Proofs of Propositions 3 and 4. We first characterize the optimal mechanism when
Assumption 2 holds. The proof of Propositions 3 and 4 is a direct consequence of this
characterization.

Neglecting the monotonicity condition on e(·) that will be checked ex post; we first
rewrite the so relaxed optimization problem under asymmetric information as:

(PSB) : max
U(·)∈W (Θ),e(·)

Eθ̃(U(θ̃)) subject to (2), (3) and (4)

where W (Θ) is the set of absolutely continuous arcs on Θ.
(PSB) is a generalized Bolza problem with an isoperimetric constraint (2) and a

state-dependent constraint (3). We denote by ζ the non-negative multiplier of the for-
mer constraint. This allows us to write the Lagrangian for this problem as:

L(θ, U, e, ζ) = f(θ)

(
U + ζ

(
e− e2

2θ
− U

))
.
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Let then define the Hamiltonian as

H(θ, U, e, ζ, q) = L(θ, U, e, ζ) + q
e2

2θ2
.

This Hamiltonian is linear in U and strictly concave in e when

q ≤ ξθf(θ). (A6)

This latter condition is checked below for the optimal profile.

Following Galbraith and Winter (2004), the necessary optimality conditions that are
satisfied by a normal extremum (Ū(θ), ē(θ)) can be written as follows.

Proposition A.1 Necessary conditions (Galbraith and Winter, 2004). There exists an abso-
lutely continuous function p(θ), a function q(θ), and a non-negative measure µ(dθ) which are
all defined on Θ such that:

−ṗ(θ) =
∂H

∂U
(θ, Ū(θ), ē(θ), ζ, q(θ)), (A7)

ē(θ) ∈ arg max
e≥0

H(θ, Ū(θ), e, ζ, q(θ)), (A8)

q(θ) = p(θ)−
∫ θ−

θ

µ(dθ), ∀θ ∈ (θ, θ̄], (A9)

supp{µ} ⊂ {θ s.t. Ū(θ) = UN(θ)} = Ωc, (A10)

p(θ) = −p(θ̄) +

∫ θ̄

θ

µ(dθ) = 0. (A11)

Sufficient conditions. Those necessary conditions are also sufficient (Martimort and Stole,
2011, Appendix B).

Condition (A7) describes how the costate variable p(·) evolves whereas (A8) is the
optimality condition for the control. Some explanations for the other conditions are
in order. From (A9), the left-side limit of q(·) at any θ is the costate variable deflated
by a term related to the measure w.r.t. µ of the open interval [θ, θ).32 This costate
variable measures the distortions induced by incentive compatibility. From (A10), the
support of the measure µ is contained in the subset of types for which the participation
constraint (3) is binding. Together, with (A8), it implies that second-best distortions are
less significant on intervals where the participation constraint is binding. Sufficiency

32Such formulation is made necessary to take into account the fact that µ may be singular at θ.
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is obtained by adapting the same Arrow-type argument as in Martimort and Stole
(2011, Appendix B). Conditions (A7) to (A11) are also sufficient for (Ū(θ), ē(θ)) to be an
optimum.

Let us rewrite some of these optimality conditions. First, observe that (A7) can be
transformed as

−ṗ(θ) = f(θ)(1− ζ). (A12)

From (A11), we get

p(θ̄) =

∫ θ̄

θ

µ(dθ). (A13)

We may rewrite (A12) as

p(θ) = p(θ̄) + (1− ζ)(1− F (θ)). (A14)

Second, (A8) yields the first-order condition

ζf(θ)

(
1− ē(θ)

θ

)
= −q(θ) ē(θ)

θ2
. (A15)

In the sequel, we consider two possibilities for the subset of types where the par-
ticipation constraint (A2) is binding. In Case 1 (strong distortions) below, this partici-
pation constraint is binding on an interval Ωc = [θ, θ∗] with non-zero measure. Case 2
(weak distortions) deals with the case where Ωc = {θ}.

Case 1. Ωc = [θ, θ∗], with θ∗ > θ.

Analysis of the set of types Ωc where the participation constraint (3) is binding. 33 Several
facts immediately follow from the optimality conditions.

• Since µ = 0 on Ω = (θ∗, θ̄], (A13) implies that

p(θ̄) =

∫ θ∗

θ

µ(dx). (A16)

• Consider now Ω = (θ∗, θ̄] (with non-zero measure) where (A2) is slack, i.e., Ū(θ) >

UN(θ). On the interior of such interval, µ = 0 and (A9) implies that

q(θ) = p(θ)−
∫ θ∗

θ

µ(dx). (A17)

Using (A14), (A16) and (A17) yields

q(θ) = (1− ζ)(1− F (θ)). (A18)

Finally inserting (A18) into (A15) yields the expression optimal effort level ē(θ, ζ)

given by (5) (where we make the dependence on ζ explicit for further references).
33From the sufficiency conditions in Proposition A.1, finding a vector (p, q, e) that induces such allo-

cation and satisfies the necessary conditions (A7) to (A11) validates this “guess and try” approach.
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• Consider now an interval Ωc = [θ, θ∗] with non-zero measure where (A2) is bind-
ing, i.e., Ū(θ) = UN(θ). Differentiating with respect to θ in the interior of Ωc =

[θ, θ∗] yields
˙̄U(θ) = U̇N(θ)⇔ ē(θ) = eN(θ).

Therefore, (A15) becomes now:

q(θ) = −
(

1− α
α

)
ζθf(θ) ∀θ ∈ (θ, θ∗). (A19)

From (A9), (A14) and (A19), we deduce that∫ θ−

θ

µ(dθ) = p(θ̄) + (1− ζ)(1− F (θ)) +

(
1− α
α

)
ζθf(θ) ∀θ ∈ (θ, θ∗)

or, using (A16)

−
∫ θ∗

θ−
µ(dθ) = (1− ζ)(1− F (θ)) +

(
1− α
α

)
ζθf(θ) ∀θ ∈ (θ, θ∗). (A20)

Let us look for a positive measure µ that is absolutely continuous with respect to
the Lebesgue measure on (θ, θ∗] and so writes as µ(dθ) = g(θ)dθ for some mea-
surable and non-negative function g(·) on this interval.

Before studying further the properties of g(·), we prove the following Lemma:

Lemma A.1 Assume that Assumption 1 holds. Take k ≤ 1
θf(θ)

and define uniquely
θ∗ ∈ [θ, θ̄] as the solution to

k =
1− F (θ∗)

θ∗f(θ∗)
> 0. (A21)

Then, we have
d

dθ
(1− F (θ)− kθf(θ)) ≤ 0 ∀θ ∈ [θ, θ∗]. (A22)

Proof. Observe that Assumption 1 can be rewritten as

0 ≥ d

dθ

(
1− F (θ)

θf(θ)

)
= −1

θ
−(1− F (θ))

θ2f 2(θ)

d

dθ
(θf(θ))⇔ −(1−F (θ))

d

dθ
(θf(θ)) ≤ θf 2(θ).

From this, it follows that

d

dθ
(1− F (θ)− kθf(θ)) = −f(θ)− k d

dθ
(θf(θ)) ≤ f(θ)

(
−1 + k

θf(θ)

1− F (θ)

)
.

Using the definition of k from (A21) and again Assumption 1, we get:

k ≤ 1− F (θ)

θf(θ)
∀θ ≤ θ∗
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Therefore, we get

d

dθ
(1− F (θ)− kθf(θ)) = −f(θ)− k d

dθ
(θf(θ)) ≤ 0 ∀θ ≤ θ∗

which yields (A22).

Consider now k = ζ(1−α)
(ζ−1)α

and observe that k ≤ 1
θf(θ)

when ζ > ζ∗ where ζ∗ is
defined in (7).

Differentiating (A20) with respect to θ yields

g(θ) = (1− ζ)

(
−f(θ)− k d

dθ
(θf(θ))

)
∀θ ∈ (θ, θ∗). (A23)

From Lemma A.1, applied to such k, g(·) is indeed non-negative on [θ, θ∗] if ζ > 1.
More precisely, when ζ > 1, we get:

g(θ) = (1− ζ)
d

dθ
(1− F (θ)− kθf(θ)) ≥ 0 ∀θ ∈ (θ, θ∗). (A24)

By construction, µ has no mass point at θ∗. This implies that ē(θ∗, ζ) = eN(θ∗) and
θ∗(ζ) is thus defined by (6) when interior.

Note also that putting altogether (A16) and (A24) implies that

p(θ̄) = µ({θ}) + (1− ζ)

∫ θ∗

θ

d

dθ
(1− F (θ)− kθf(θ)) dθ

where µ({θ}) is the mass that the measure µ charges at θ. Using (A21), this latter
equation can be rewritten as:

p(θ̄) = µ({θ})− (1− ζ)− 1− α
α

ζθf(θ). (A25)

But from (A11) and (A12), we get

p(θ) = p(θ̄) + 1− ζ = 0. (A26)

Inserting into (A25) yields

µ({θ}) =
1− α
α

ζθf(θ) > 0 (A27)

which shows that µ has a mass point at θ.

Concavity of H(θ, U, e, ζ, q) in e. Observe that, for θ ∈ Ωc, q(θ) as defined by (A19) is
negative and thus (A6) holds where q = q(θ). For θ ∈ Ω, we deduce from (A18) that
q(θ) < 0 and thus (A6) again holds.
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Continuity of ē(·) at θ∗. This continuity immediately follows from the fact that µ has no
charge at θ∗. This implies “smooth-pasting” of the rent profile with:

U(θ∗) = UN(θ∗) and U̇(θ∗) = U̇N(θ∗).

Monotonicity of ē(·). It immediately follows from the fact that ē(·) is everywhere contin-
uous and, trivially increasing on Ωc but also on Ω from Assumption 1.

Case 2. Ωc = {θ}. Observe that k = ζ(1−α)
(ζ−1)α

> 1
θf(θ)

when ζ ≤ ζ∗. In that case, the
participation constraint (A2) is binding at θ only. From (A27), the measure µ has a
charge at θ only. When ζ ≥ 1, we have

µ({θ}) =
1− α
α

ζθf(θ) ≥ (ζ − 1)
ζ∗

ζ∗ − 1
≥ 0. (A28)

The optimal effort is still given by (5) on the whole interval [θ, θ̄].

Proof that ζ̂ > 1. Observe that, when binding, (2) can be rewritten as:∫ θ∗(ζ)

θ

(
eN(θ)− e2

N(θ)

2θ

)
f(θ)dθ +

∫ θ̄

θ∗(ζ)

(
ē(θ, ζ)− ē2(θ, ζ)

2θ

)
f(θ)dθ

=

∫ θ∗(ζ)

θ

UN(θ)f(θ)dθ +

∫ θ̄

θ∗(ζ)

(
UN(θ∗(ζ)) +

∫ θ

θ∗(ζ)

ē2(ξ, ζ)

2ξ2
dξ

)
f(θ)dθ (A29)

where we make explicit the dependence of ē(·) and θ∗ on ζ as specified in (5) and (6) to
express the left-hand side and where we use (A3) to rewrite the right-hand side.34

Let denote respectively by L(ζ) and R(ζ) the left-hand and right-hand sides of
(A29). The following observations are readily made.

1. L(ζ)−R(ζ) is strictly increasing. First, observe that

∂ē

∂ζ
(θ, ζ) = −

1−F (θ)
f(θ)(

ζ + (ζ − 1)1−F (θ)
θf(θ)

)2 < 0. (A30)

Using the fact that ē(θ, ζ) is continuous at θ = θ∗(ζ), i.e., ē(θ∗(ζ), ζ) = eN(θ∗(ζ)),
we have:

L′(ζ) =

∫ θ̄

θ∗(ζ)

∂ē

∂ζ
(θ, ζ)

(
1− ē(θ, ζ)

θ

)
f(θ)dθ = (ζ−1)

∫ θ̄

θ∗(ζ)

∂ē

∂ζ
(θ, ζ)

1−F (θ)
θf(θ)

ζ + (ζ − 1)1−F (θ)
θf(θ)

f(θ)dθ.

(A31)
34Observe that this formula encompasses both Case 1 which applies for ζ ≥ ζ∗ and Case 2 which

applies for ζ ∈ [1, ζ∗].
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Using the fact that UN(θ, ζ) is continuous at θ = θ∗(ζ), we have

R′(ζ) = θ̇∗(ζ)

∫ θ̄

θ∗(ζ)

(
U̇N(θ∗(ζ))− ē2(θ∗(ζ), ζ)

2(θ∗(ζ))2

)
f(θ)dθ+

∫ θ̄

θ∗(ζ)

∫ θ

θ∗(ζ)

∂ē

∂ζ
(ξ, ζ)

ē(ξ, ζ)

ξ2
f(θ)dξdθ.

Using that U̇N(θ∗(ζ)) =
e2N (θ∗(ζ))

2(θ∗(ζ))2
, and continuity of ē(·, ζ) at θ = θ∗(ζ), i.e., ē(θ∗(ζ), ζ) =

eN(θ∗(ζ)), we get

R′(ζ) =

∫ θ̄

θ∗(ζ)

(∫ θ

θ∗(ζ)

∂ē

∂ζ
(ξ, ζ)

ē(ξ, ζ)

ξ2
dξ

)
f(θ)dθ.

Integrating by parts yields

R′(ζ) =

∫ θ̄

θ∗(ζ)

(1− F (θ))
∂ē

∂ζ
(θ, ζ)

ē(θ, ζ)

θ2
dθ =

∫ θ̄

θ∗(ζ)

∂ē

∂ζ
(θ, ζ)

ζ 1−F (θ)
θf(θ)

ζ + (ζ − 1)1−F (θ)
θf(θ)

f(θ)dθ.

(A32)

Using (A31) and (A32) we finally get

L′(ζ)−R′(ζ) = −
∫ θ̄

θ∗(ζ)

∂ē

∂ζ
(θ, ζ)

1−F (θ)
θf(θ)

ζ + (ζ − 1)1−F (θ)
θf(θ)

f(θ)dθ > 0.

2. Notice that when ζ = 1, θ∗(ζ) = θ and L(1) < R(1) indeed amounts to (2).

3. We have

Lemma A.2
lim

ζ→+∞
L(ζ)−R(ζ) > 0. (A33)

Proof. Consider the following problem:

VM = max
e(·),θ∗

∫ θ∗

θ

(
eN(θ)− e2

N(θ)

2θ

)
f(θ)dθ +

∫ θ̄

θ∗

(
e(θ)− e2(θ)

2θ

(
1 +

1− F (θ)

θf(θ)

))
f(θ)dθ

−
∫ θ∗

θ

UN(θ)f(θ)dθ − UN(θ∗)(1− F (θ∗)). (A34)

First, observe that VM ≥ 0. Indeed, taking e(θ) = eN(θ) and θ∗ = θ̄ obviously yields 0
for the maximand.

The above maximum is achieved for (ē∞(θ), θ∗∞) where

ē∞(θ) =
θ

1 + 1−F (θ)
θf(θ)

(A35)
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and {
1−F (θ∗∞)
θ∗∞f(θ∗∞)

= 1−α
α

if 1−α
α

< 1
θf(θ)

θ∗∞ = θ if 1−α
α
≥ 1

θf(θ)
.

(A36)

Condition 1 ensures that θ∗∞ ∈ (θ, θ̄) always exists whenever (9) holds. That VM > 0

immediately follows from observing that VM is not achieved for eN(θ) and θ∗ = θ̄. Fi-
nally, this strict inequality amounts to (A33).

From Items [1.], [2.] and [3.] above, there exists ζ̂ > 1 such that

L(ζ̂) = R(ζ̂).

Integrating by parts and manipulating finally yields (8).

Proof of Proposition 2. Because Assumption 3 holds, we have 1 > 1−α
α
θf(θ) > 0 and

thus ζ∗(α) > 1 for any α ≥ α1 ≥ α2. A first implication is that, for ζ ≤ ζ∗(α), we get
θ∗(ζ) = θ. Because L(·)−R(·) is strictly increasing as shown above, we have ζ̂ ≤ ζ∗(α)

if and only if
L(ζ∗(α)) ≥ R(ζ∗(α))⇔ J(α) ≥ UN(θ, α) (A37)

where

J(α) =

∫ θ̄

θ

(
ē(θ, ζ∗(α))− ē2(θ, ζ∗(α))

2θ

(
1 +

1− F (θ)

θf(θ)

))
f(θ)dθ

and where, for future reference, we make explicit the dependence of UN(·) on α.
We compute:

J ′(α) =
∂ζ∗

∂α
(α)

∫ θ̄

θ

∂ē

∂ζ
(θ, ζ∗(α))

(
1− ē(θ, ζ∗(α))

θ

(
1 +

1− F (θ)

θf(θ)

))
f(θ)dθ

=

∫ θ̄

θ

θf(θ)(1− F (θ))2

θf(θ)

((1− α)θf(θ)− α)(
α + (1− α) (1−F (θ))θf(θ)

θf(θ)

)3dθ.

We have J ′(α) ≤ 0 for any α ≥ α2 (with equality only at α = α2).
Moreover, for α = 1, we have ζ∗(1) = 1 and ē(θ, ζ∗(1)) = eFB(θ). Therefore, we get:

J(1) =

∫ θ̄

θ

(
eFB(θ)− (eFB(θ))2

2θ

(
1 +

1− F (θ)

θf(θ)

))
f(θ)dθ =

θ

2
= UN(θ, 1). (A38)

We also find:

J ′(1) = −θf(θ)

∫ θ̄

θ

(1− F (θ))2

θf(θ)
dθ.

From Assumption 1, we immediately derive the inequality

(1− F (θ))2

θf(θ)
≤ 1− F (θ)

θf(θ)
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with an equality only at θ = θ. Therefore, we get:

−J ′(1) <

∫ θ̄

θ

(1− F (θ))dθ = Eθ(θ)− θ = −U ′N(θ, α)|α=1. (A39)

It follows from J(·) and UN(θ, ·) continuity, that there exists α3 < 1 such that

J(α) < UN(θ, α) ∀α ∈ (α3, 1). (A40)

Moreover, Assumption 3 implies that ζ∗(α1) > 1. Therefore, we get ē∞(θ) ≤ ē(θ, ζ∗(α1)) ≤
ē(θ, 1) = eFB(θ) (with an equality only at θ̄). Since ē∞(θ) is a pointwise maximizer of
the concave function e− e2

2θ

(
1 + 1−F (θ)

θf(θ)

)
, we have:

J(α1) >

∫ θ̄

θ

(
eFB(θ)− (eFB(θ))2

2θ

(
1 +

1− F (θ)

θf(θ)

))
f(θ)dθ =

θ

2
= J(1) = UN(θ, α1)

(A41)
where the last equality follows from observing that UN(θ, α1) = UN(θ, 1) and that (A38)
amounts to J(1) = UN(θ, α) for α = α1. We deduce from this and the fact that J(·) and
UN(θ, ·) are continuous that necessarily α3 ∈ (α1, 1).

From (A37) and (A40), we also get:

ζ̂ > ζ∗(α) ∀α ∈ (α3, 1).

From (A37) and (A41), we deduce that there exists α4 ∈ (α1, α3] such that

J(α) ≥ UN(θ, α) ∀α ∈ [α1, α4]. (A42)

Finally, we get
ζ̂ ≤ ζ∗(α) ∀α ∈ [α1, α4].

We now prove that α3 = α4. Let denote by α̂ this common value. Observe that:

d

dα

(
J ′(α)

(1− α)θf(θ)− α

)
= −3

∫ θ̄

θ

θf(θ)(1− F (θ))2

θf(θ)

(
1− (1−F (θ))θf(θ)

θf(θ)

)
(
α + (1− α) (1−F (θ))θf(θ)

θf(θ)

)4dθ < 0

where this inequality follows from the fact that the numerator in the integrand is non-
negative when Assumption 1 holds. Similarly, we compute:

d

dα

(
U ′N(θ, α)

(1− α)θf(θ)− α

)
=
θf(θ)(θ − Eθ̃(θ̃)) + Eθ̃(θ̃)

((1− α)θf(θ)− α)2
> 0

where the last inequality follows from the fact that Assumptions 2 and 3 altogether
imply

θf(θ)(θ − Eθ̃(θ̃)) + Eθ̃(θ̃) ≥ Eθ̃(θ̃)−
θ

2
> 0.
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Define now $(α) =
J ′(α)−U ′N (θ,α)

(1−α)θf(θ)−α . This continuous function is decreasing over (α1, 1)

with $(α1) > 0 > $(1) where the first of these inequalities follows from J ′(α1) < 0 <

U ′N(θ, α1) and the second from (A39). Because (1 − α)θf(θ) − α < 0 for α ≥ α1 > α2,
we deduce that J ′(α)−U ′N(θ, α) is non-positive on [α1, α̃] and non-negative on [α̃, 1] for
some α̃ ∈ (α1, 1). From (A38) and (A41), it follows that J(α) − UN(θ, α) is decreasing
and then increasing on [α1, 1] with a unique α̂ on the decreasing part such that:

J(α̂) = UN(θ, α̂).

Proof of Corollary 1. From (12), we immediately get:

T ′(ē(θ)) =
ē(θ)

θ
− α =


1

1+ ζ̂−1

ζ̂

1−F (θ)
θf(θ)

− α if ē(θ) > eN(θ)⇔ θ > θ∗(ζ̂)

0 if ē(θ) = eN(θ)⇔ θ ≤ θ∗(ζ̂)

where the first equality follows from (5). Note that T ′(e) is continuous at ē(θ∗(ζ̂)) (such
that ē(θ∗(ζ̂) = eN(θ∗(ζ̂)) if it is interior. Differentiating once more, we get:

˙̄e(θ)T ′′(ē(θ)) =

−
ζ̂−1

ζ̂

d
dθ (

1−F (θ)
θf(θ) )(

1+ ζ̂−1

ζ̂

1−F (θ)
θf(θ)

)2 > 0 if ē(θ) > eN(θ)

0 if ē(θ) = eN(θ).

Hence, T (e) is convex and strictly so if and only if e > eN(θ∗(ζ̂)). It is flat when
e ≤ eN(θ∗(ζ̂)).

Proof of Proposition 5. Observe that the budget balance condition (2) altogether with
the participation constraints (19) yield the following simpler inequality:∫ θ

θ

(
αe(θ)− e2(θ)

2θ

)
f(θ)dθ ≥ α2

2

∫ θ

θ

θf(θ)dθ. (A43)

The pointwise maximum of the left-hand side is eN(θ) = αθ and then the left- and
right-hand sides of (A43) are both equal. Therefore, the optimal mechanism robust to
any individual deviation consists in proposing the BNE outcome which is, by defini-
tion, also incentive compatible.

Proof of Proposition 7. The first best eFB(θ) = θ is implementable when (21) holds for
all θ, i.e., when there exists a profile UFB(θ) such that U̇FB(θ) = (eFB(θ))2

2θ2
= 1

2
and:

UFB(θ) ≥ V FB(θ) = (1−δ)
(
−(eFB(θ))2

2θ
+ αeFB(θ) + (1− α)Eθ̃(e

FB(θ̃))

)
+δUN(θ) ∀θ.

(A44)
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Observe that, with the first-best profile of effort, U̇FB(θ) = 1
2
> V̇ FB(θ) = δ α

2

2
− (1 −

δ)(1− α). Hence, (A44) holds for all θ if it holds at θ.
Mimicking the analysis in the Proof of Proposition 1, the first-best effort level is

thus implementable when:∫ θ̄

θ

(
eFB(θ)− (eFB(θ))2

2θ

(
1 +

1− F (θ)

θf(θ)

))
f(θ)dθ ≥ V FB(θ).

Simplifying yields the condition:

θ

2
≥ δUN(θ) + (1− δ)

(
−
(

1

2
− α

)
θ + (1− α)Eθ̃(θ̃)

)
. (A45)

Simplifying further, (A45) does not hold when (23) holds.

Proof of Proposition 8. First, observe that, we may rewrite (22) as

U(θ) ≥ UN(θ) + (1− δ)(1− α)γ ∀θ (A46)

where
γ = Eθ̃(e(θ̃)− eN(θ̃)) (A47)

Neglecting as usual the monotonicity condition that e(·) is non-decreasing that will
be checked ex post; we define a mechanism design problem as:

(PEγ ) : max
U(·)∈W (Θ),e(·)

Eθ̃(U(θ̃)) subject to (2), (4), (A46) and (A47) .

(PEγ ) is again a generalized Bolza problem with two isoperimetric constraints (2) and
(A47) and a state-dependent constraint (A46). Our first step is to solve for such prob-
lem. The solution then defines a value function V E(γ). In a second step, optimizing in
γ yields then the optimal value γ̂.

Denoting by ζ the non-negative multiplier of (2) and by κ the multiplier of (A47),
we write the Lagrangian for (PEγ ) as:

Lγ(θ, U, e, ζ, κ) = f(θ)

(
U + ζ

(
e− e2

2θ
− U

))
+ κ(γ − f(θ)(e− eN(θ))).

Let then define the Hamiltonian as

Hγ(θ, U, e, ζ, κ, q) = Lγ(θ, U, e, ζ, κ) + q
e2

2θ2
.

This Hamiltonian is linear in U and strictly concave in e when again (A6) holds. This
latter condition is again checked below for the optimal profile.
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Necessary and sufficient conditions. We proceed as in the previous appendices to write
the conditions that a normal extremum (Ū(θ, γ), ē(θ, γ)) must satisfy. Optimality im-
plies that there exists an absolutely continuous function p(θ), a function q(θ), and a
non-negative measure µ(dθ) which are all defined on Θ such that:

−ṗ(θ) =
∂Hγ

∂U
(θ, Ū(θ, γ), ē(θ, γ), ζ, κ, q(θ)), (A48)

ē(θ, γ) ∈ arg max
e≥0

Hγ(θ, Ū(θ, γ), e, ζ, κ, q(θ)), (A49)

q(θ) = p(θ)−
∫ θ−

θ

µ(dθ), ∀θ ∈ (θ, θ̄], (A50)

supp{µ} ⊂ {θ s.t. Ū(θ, γ) = UN(θ) + (1− δ)(1− α)γ} = Ωc
γ, (A51)

p(θ) = −p(θ̄) +

∫ θ̄

θ

µ(dθ) = 0. (A52)

Let us rewrite some of these optimality conditions. First, observe that (A48) can be
transformed again into (A12) and then (A14). Using (A52), we again get (A13).

Second, (A49) yields the first-order condition

f(θ)

(
ζ − κ− ζ ē(θ, γ)

θ

)
= −q(θ) ē(θ, γ)

θ2
. (A53)

As before, we distinguish between two scenarios for the subset of types Ωc
γ where

the enforcement constraint (A46) is binding.

Case 1. Strong distortions. Ωc
γ = [θ, θ(γ, ζ, κ)] with θ < θ(γ, ζ, κ). Several facts imme-

diately follow.

• Equation (A13) implies again that p(θ̄) solves (A16).

• Consider now the interval Ωγ = (θ(γ, ζ, κ), θ̄] where (A46) is slack, i.e., Ū(θ, γ) >

UN(θ) + (1− δ)(1− α)γ. On the interior of such interval, µ = 0 and (A50) implies
that again q(θ) is given by (A17).

Using (A14), (A16) and (A17) yields again that q(θ) solves (A18) on Ωγ . Finally
inserting (A18) into (A53) yields the following expression of the optimal effort
level ē(θ, γ, ζ, κ) (where we make the dependence on ζ and κ explicit for further
references):

ē(θ, γ, ζ, κ) =

(
1− κ

ζ

)
θ

1 + ζ−1
ζ

1−F (θ)
θf(θ)

. (A54)
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Define θ(γ, ζ, κ) such that ē(θ(γ, ζ, κ), γ, ζ, κ) = eN(θ(γ, ζ, κ)), i.e.,

1− F (θ(γ, ζ, κ))

θ(γ, ζ, κ)f(θ(γ, ζ, κ))
=
ζ(1− α)

(ζ − 1)α
− κ

(ζ − 1)α
. (A55)

Assume for the time being that the right-hand side of (A55) is non-negative (this
will be the case for the optimal value γ̂ found below) and set θ(γ, ζ, κ) = θ when-
ever this right-hand side is greater than 1

θf(θ)
.

• Consider now the interval Ωc
γ = [θ, θ(γ, ζ, κ)] with non-zero measure where (A46)

is binding, i.e., Ū(θ, γ) = UN(θ) + (1− δ)(1− α)γ. Differentiating with respect to
θ in the interior of Ωc yields

˙̄U(θ, γ) = U̇N(θ)⇔ ēγ(θ) = eN(θ).

Therefore, (A53) becomes now:

q(θ) = −θf(θ)

(
1− α
α

ζ − κ

α

)
∀θ ∈ (θ, θ(γ, ζ, κ)). (A56)

From (A50), (A14), (A16) and (A56) we deduce that

−
∫ θ(γ,ζ,κ)

θ−
µ(dθ) = (1− ζ)(1− F (θ)) + θf(θ)

(
1− α
α

ζ − κ

α

)
∀θ ∈ (θ, θ(γ, ζ, κ)).

(A57)

Let us look for a positive measure µ that is absolutely continuous with respect to
the Lebesgue measure on (θ, θ∗] and so writes as µ(dθ) = g(θ)dθ for some mea-
surable and non-negative function g(·) on this interval.

Define k′ = ζ(1−α)
(ζ−1)α

− κ
(ζ−1)α

(and consider the case where k′ ≥ 0 from our assump-
tion made after (A55)). Differentiating (A20) with respect to θ yields

g(θ) = (1− ζ)

(
−f(θ)− k′ d

dθ
(θf(θ))

)
∀θ ∈ (θ, θ(γ, ζ, κ)). (A58)

From Lemma A.1 applied to such k′, g(·) is indeed non-negative on [θ, θ(γ, ζ, κ)]

if ζ > 1. Note that by construction, µ has no mass point at θ(γ, ζ, κ). This implies
that ē(·) is continuous at θ(γ, ζ, κ).

Concavity of H(θ, U, e, ζ, q) in e. Observe that, for θ ∈ Ωc, q(θ) as defined by (A56) is
negative and thus (A6) holds where q = q(θ). For θ ∈ Ω, we deduce from (A18) that
q(θ) < 0. and thus (A6) again holds.

Monotonicity of ē(·). It immediately follows from the fact that ē(·) is everywhere contin-
uous and, trivially increasing on Ωc but also on Ω from Assumption 1.
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Computing κ and ζ . Observe that the rent profile (making the dependence in (ζ, κ)

explicit) is defined as

Ū(θ, γ, ζ, κ) =

{
UN(θ(γ, ζ, κ)) + (1− δ)(1− α)γ +

∫ θ
θ(γ,ζ,κ)

ē2(x)
2x2

dx if θ ≥ θ(γ, ζ, κ)

UN(θ) + (1− δ)(1− α)γ if θ ≤ θ(γ, ζ, κ).

Therefore, we may rewrite (2) as∫ θ(γ,ζ,κ)

θ

(
eN(θ)− e2

N(θ)

2θ

)
f(θ)dθ +

∫ θ̄

θ(γ,ζ,κ)

(
ē(θ, γ, ζ, κ)− ē2(θ, γ, ζ, κ)

2θ

)
f(θ)dθ

=

∫ θ(γ,ζ,κ)

θ

UN(θ)f(θ)dθ +

∫ θ(γ,ζ,κ)

θ

(
UN(θ(γ, ζ, κ)) +

∫ θ

θ(γ,ζ,κ)

ē2(x, γ, ζ, κ)

2x2
dx

)
f(θ)dθ

+(1− δ)(1− α)γ.

Or, integrating by parts,∫ θ(γ,ζ,κ)

θ

(
eN(θ)− e2

N(θ)

2θ

)
f(θ)dθ+

∫ θ̄

θ(γ,ζ,κ)

(
ē(θ, γ, ζ, κ)− ē2(θ, γ, ζ, κ)

2θ

(
1 +

1− F (θ)

θf(θ)

))
f(θ)dθ

=

∫ θ(γ,ζ,κ)

θ

UN(θ)f(θ)dθ + UN(θ(γ, ζ, κ))(1− F (θ(γ, ζ, κ))) + (1− δ)(1− α)γ. (A59)

The multipliers κ and ζ are thus solutions to the system defined by (A59) and

γ =

∫ θ̄

θ(γ,ζ,κ)

(ē(θ, γ, ζ, κ)− eN(θ))f(θ)dθ. (A60)

Case 2. Weak distortions. Ωc
γ = {θ}. Observe that k′ ≥ 1

θf(θ)
when ζ ≤ ζ∗(γ, ζ, κ)

where
1

θf(θ)
=
ζ∗(γ, ζ, κ)(1− α)

(ζ∗(γ, ζ, κ)− 1)α
− κ

(ζ∗(γ, ζ, κ)− 1)α
. (A61)

The enforcement constraint (A46) is then binding at θ only and the measure µ has a
charge at θ only. The optimal effort is still given by (A54) but on the whole interval
[θ, θ̄].

Optimal value γ̂. To compute the optimal value of γ, observe that raising γ by dγ raises
the whole profile of rents by (1 − δ)(1 − α)dγ which has a cost (ζ − 1)(1 − δ)(1 − α)dγ

while at the same time, the benefit of such marginal increase is by definition κdγ. At
the optimum, γ̂ is found so that:

κ = (ζ − 1)(1− δ)(1− α) (A62)

Optimal values ζ̂ and κ̂. The value ζ̂ is obtained when (A62) is inserted into the system
(A59)-(A60). From this value, we then get κ̂ = (ζ̂−1)(1−δ)(1−α). Inserting (A62) into
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(A54) and (A55) respectively then yields the expression of the optimal effort ē(θ, ζ̂) =

ē(θ, γ̂, ζ̂, κ̂) given by (25) and the expression of the optimal cut-off θ∗(ζ̂) = θ(γ, ζ̂, κ̂)

given by (24).
Define then ζ∗ such that

1− α
α

(
ζ∗

ζ∗ − 1
− 1 + δ

)
=

1

θf(θ)
.

Observe that, for ζ̂ ≤ ζ∗, we have θ∗(ζ̂) = θ and Case 2 (weak distortions) arises. For
ζ̂ > ζ∗, we have θ∗(ζ̂) > θ and Case 1 (strong distortions) arises.

With those notations at hands, ζ̂ solves the following equation in ζ :∫ θ∗(ζ)

θ

(
eN(θ)− e2

N(θ)

2θ

)
f(θ)dθ

+

∫ θ̄

θ∗(ζ)

(
ē(θ, ζ)− (ē(θ, ζ))2

2θ

(
1 +

1− F (θ)

θf(θ)

))
f(θ)dθ+

∫ θ̄

θ∗(ζ)

(1−δ)(1−α)(eN(θ)−ē(θ, ζ))f(θ)dθ

=

∫ θ∗(ζ)

θ

UN(θ)f(θ)dθ + UN(θ∗(ζ))(1− F (θ∗(ζ))). (A63)

Mimicking steps in the Proof of Propositions 3 and 4, let again denote respectively by
L(ζ) and R(ζ) the left-hand and right-hand sides of (A63).

Proof that ζ̂ > 1. When ζ = 1, we have θ∗(ζ) = θ, ē(θ, ζ) = eFB(θ) and L(1) < R(1)

indeed amounts to (23). Proceeding as in the Proof of Propositions 3 and 4, we show
that L(ζ)− R(ζ) is strictly increasing, and proceeding as in Lemma A.2, we show that
limζ→+∞ L(ζ)−R(ζ) > 0. Hence, (A63) admits a unique solution ζ̂ > 1.
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