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Je remercie vivement ma femme Rebeca pour son soutien inconditionnel et sa compréhension
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Zair Alejandro

5





Table des matières

Table des figures 9

Liste des tableaux 13

1 Introduction 15

2 Objectives 19

2.1 General Objective . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.2 Particular Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3 Artificial Development 21

3.1 Development and Gene Regulatory Networks . . . . . . . . . . . . . . . . . 22

3.2 Reaction-Diffusion Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.3 Self-Activation and Lateral Inhibition Model . . . . . . . . . . . . . . . . . 27

3.4 Lindenmayer Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.5 Biomorphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.6 Artificial Embryogenesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.7 Evolutionary Neurogenesis and Cell Differentiation . . . . . . . . . . . . . 41

3.8 Evolutionary 2D/3D Morphogenesis . . . . . . . . . . . . . . . . . . . . . . 43

3.9 METAMorph . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.10 Random Boolean Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.11 Artificial Regulatory Networks . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.12 Evolutionary Development Model . . . . . . . . . . . . . . . . . . . . . . . 61

3.13 The French Flag Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4 Proposed Model 65

4.1 Cellular Growth Testbed . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.1.1 2D Neighborhoods . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

7



Table des matières

4.1.2 3D Neighborhood . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

4.1.3 NetLogo Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

4.2 Morphogenetic Gradients . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

4.3 Genomes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

4.3.1 Artificial Regulatory Networks . . . . . . . . . . . . . . . . . . . . . 73

4.3.2 Structural Genes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

4.4 Genetic Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

4.4.1 Chromosome Structure . . . . . . . . . . . . . . . . . . . . . . . . . 81

4.4.2 Fitness function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

5 Results 87

5.1 Form Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

5.1.1 2D shapes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

5.1.2 3D shapes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

5.2 Pattern Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

5.2.1 Basic ARN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

5.2.2 Extended ARN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

5.2.3 Extended ARN with Morphogenetic Fields . . . . . . . . . . . . . . 109

6 Discussion and perspectives 113

6.1 Form Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

6.2 Pattern Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

7 Conclusion 121

Bibliographie 123

8



Table des figures

3.1 Relationship between cis-regulatory elements, transcription factors and re-
gulatory genes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.2 GRN for the endomesoderm specification at the 30 hours of development
of the sea urchin embryo. Short horizontal lines represent a node in the
network with arrows indicating the direction of interactions. (Taken from
[Dav06].) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.3 Regulatory genes of the fruit fly Drosophila melanogaster. Each gene controls
development of different body regions along the body axis. (Taken from [Car06].) 25

3.4 Pattern generation and regeneration. (a) Reaction diagram (A = Activa-
tor, H = Inhibitor) ; (b) Pattern generation ; (c) Pattern regeneration after
perturbation. (Taken from [Mei82].) . . . . . . . . . . . . . . . . . . . . . . . . 29

3.5 Construction of a biomorph with a recursion depth of 4. (Taken from [Ren02].) 33

3.6 Biomorphs obtained with an implementation of the interactive algorithm.
(Taken from [Ren02].) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.7 A differentiable chromosome with four operons.(Taken from [dIF92].) . . . . . 35

3.8 The 14 neighborless states for 2D cells. (Taken from [dIF92].) . . . . . . . . . 36

3.9 Format of a simplified chromosome. (Taken from [dIF92].) . . . . . . . . . . . 37

3.10 Evolved triangular and rectangular shapes. The desired shapes are outlined
by the empty cells in the background. (Taken from [de 99].) . . . . . . . . . . 37

3.11 Desired L shaped and component regions. (Taken from [dIF92].) . . . . . . . . 38

3.12 Two-operon chromosome for the generation of an L shape. (Taken from [dIF92].) 40

3.13 L shape produced by an evolved two-operon chromosome. The target shape
is outlined by empty cells. (Taken from [dIF92].) . . . . . . . . . . . . . . . . 40

3.14 L shape produced by an evolved two-operon chromosome using the shaping
technique. The target shape is outlined by empty cells. (Taken from [dIF92].) 41

3.15 Example of a segment of the genome used in Eggenberger’s model. . . . . . 44

3.16 Upper cell clusters result from random growth. Lower cell clusters emerged
after addition of one morphogen to modulate growth. (Taken from [Egg97b].) . 46

3.17 Examples of evolved 3D forms. The fitness function only evaluated the
number of cells and the degree of bilaterality. (Taken from [Egg97b].) . . . . . 47

3.18 Stages of a simulated invagination. (Taken from [Egg03].) . . . . . . . . . . . . 48

3.19 Example of a Random Boolean Network. a) Network configuration ; b)
Lookup table for state transitions ; c) State space diagram. . . . . . . . . . 52

9



Table des figures

3.20 Examples of state dynamics for the three types of Random Boolean Net-
works. N = 32. Black square = state ’1’ ; white square = state ’0’. Initial
states at the top and time flowing downwards. a) Ordered (K = 1) ; b)
Critical (K = 2) ; c) Chaotic (K = 5). (Taken from [Ger04].) . . . . . . . . . . 53

3.21 Gene expression and regulation in the artificial genome. Gene length N is
equal to 6. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.22 Examples of time development of protein concentrations. (a) Oscillating
concentration change ; (b) Slow and smooth concentration change ; (c)
Quick settlement into a point attractor ; (d) Transition concentration change
between two proteins. (Taken from [Ban03].) . . . . . . . . . . . . . . . . . . . 58

3.23 Effect of a single bit change in protein concentration behavior. The genome
is the same as in Fig. 3.22(d).(a) Degree of matching between protein 7
and inhibitory site to gene 4 changed by one bit ; (b) Degree of matching
increased by another bit. (Taken from [Ban03].) . . . . . . . . . . . . . . . . . 58

4.1 Relationship between a cellular automaton neighborhood template and the
corresponding lookup table. The output bit values shown are used only as
an example. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.2 Interaction neighborhoods. (a) Von Neumann, (b) Moore, (c) 2-Radial, and
(d) Margolus. The objective cell is depicted in gray. . . . . . . . . . . . . . 68

4.3 3D Margolus neighborhood. The objective cell is depicted as a dark cube. . 70

4.4 Morphogenetic gradients (a) Left to Right ; (b) Top to Bottom ; (c) Mor-
phogen concentration graph. . . . . . . . . . . . . . . . . . . . . . . . . . . 72

4.5 Genome structure of the basic model. . . . . . . . . . . . . . . . . . . . . . 74

4.6 Genome structure of the extended model. . . . . . . . . . . . . . . . . . . . 76

4.7 Genome structure of the extended model with morphogenetic fields. . . . . 78

4.8 Chromosome structure for evolving a form generating gene. . . . . . . . . . 82

5.1 Desired shapes. (a) Square, (b) Diamond, (c) Triangle, and (d) Circle. . . . 89

5.2 Mean fitness comparative chart for all neighborhoods and shapes. . . . . . 89

5.3 Square shape. Cells outside the desired shape are shown in light gray. Neigh-
borhood description is followed by fitness value. (a) Von Neumann (0.751),
(b) Moore (0.998), (c) 2-Radial (0.917), and (d) Margolus (1.000). . . . . . 91

5.4 Diamond shape. Cells outside the desired shape are shown in light gray.
Neighborhood description is followed by fitness value. (a) Von Neumann
(1.000), (b) Moore (0.878), (c) 2-Radial (0.826), and (d) Margolus (0.912). 92

5.5 Triangle shape. Cells outside the desired shape are shown in light gray.
Neighborhood description is followed by fitness value. (a) Von Neumann
(0.580), (b) Moore (0.973), (c) 2-Radial (0.951), and (d) Margolus (0.879). 93

5.6 Circle shape. Cells outside the desired shape are shown in light gray. Neigh-
borhood description is followed by fitness value. (a) Von Neumann (0.868),
(b) Moore (0.953), (c) 2-Radial (0.901), and (d) Margolus (0.939). . . . . . 94

5.7 Desired 3D shapes. (a) Cube, and (b) Sphere. . . . . . . . . . . . . . . . . 94

10



5.8 Shapes obtained using the 3D Margolus neighborhood model. Cells outside
the desired shape are shown in light gray. Shape description is followed by
fitness value. (a) Cube (0.9920), and (b) Sphere (0.8911). . . . . . . . . . . 95

5.9 Two-color square. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
5.10 Graph of protein concentration change from an ARN expressing the two-

color square. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
5.11 Three-color square. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
5.12 Graph of protein concentration change from an ARN expressing the three-

color square. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
5.13 French flag (21× 7). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
5.14 Graph of protein concentration change from an ARN expressing the 21× 7

French flag. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
5.15 French flag (27× 9). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
5.16 Graph of protein concentration change from an ARN expressing the 27× 9

French flag pattern . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
5.17 Graph of protein concentration change from an ARN expressing the 27× 9

French flag pattern built from the alternating activation of structural genes. 101
5.18 Effect of a single different bit in the ARN. (a) Fitness 0.50 ; (b) Fitness 0.93102
5.19 Accumulated fitness values for varying numbers of function defining bits

and regulatory sites in the extended model. . . . . . . . . . . . . . . . . . . 103
5.20 Average fitness values from the 16 simulations corresponding to the dif-

ferent values of function defining bits tested in the extended model. . . . . 104
5.21 Graph of protein concentration change from an ARN expressing the three-

color square. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
5.22 Four-color square. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
5.23 Graph of protein concentration change from an ARN expressing the four-

color square. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
5.24 French flag with a flagpole pattern. . . . . . . . . . . . . . . . . . . . . . . 108
5.25 Graph of protein concentration change from an ARN expressing the 21× 7

French flag with a flagpole pattern. . . . . . . . . . . . . . . . . . . . . . . 108
5.26 Growth of a French flag pattern. (a) Initial cell ; (b) Central white square

with morphogenetic field for gene 1 (square) ; (c) White central square and
left blue square with morphogenetic field for gene 2 (extend to left) ; (d)
Finished flag pattern with morphogenetic field for gene 3 (extend to right) ;
(e) Graph of protein concentration change from the genome expressing the
French flag pattern. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

5.27 Growth of a French flag with a flagpole pattern. (a) Central white square
with morphogenetic field for gene 5 (square) ; (b) White central square and
right red pattern with morphogenetic field for gene 3 (extend to right) ; (c)
White central square, right red pattern and left blue square with morpho-
genetic field for gene 2 (extend to left) ; (d) Finished flag with a flagpole
pattern with morphogenetic field for gene 4 (flagpole) ; (e) Graph of protein
concentration change from the genome expressing the French flag with a
flagpole pattern. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

11





Liste des tableaux

4.1 Size in bits for chromosomes used in evolving a form generating gene. Pa-
rameters are as defined in the text. . . . . . . . . . . . . . . . . . . . . . . 83

4.2 Size in bits for chromosomes used in evolving an ARN. . . . . . . . . . . . 84

5.1 Fitness mean (x̄) and standard deviation (σ) from 100 runs of the CA
algorithm for the final chromosomes. . . . . . . . . . . . . . . . . . . . . . 90

5.2 Evolved number of iterations for the final chromosomes for all neighbo-
rhoods and shapes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

5.3 Fitness mean (x̄) and standard deviation (σ) from 100 runs of the CA
algorithm for 3D shapes. The evolved number of iterations (Iter.) is also
presented. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

13





1

Introduction

Résumé

Le Développement artificiel est l’étude des modèles de simulation de croissance cellulaire, avec pour
objectif de comprendre comment des structures et formes complexes peuvent émerger d’un petit groupe de
cellules initiales indifférenciées. Dans les systèmes biologiques, le développement est un processus fascinant
et très complexe qui implique l’exécution d’un ensemble de segments de programme codé dans le génome
de l’organisme.

Une des étapes cruciales dans le développement d’un organisme est celle de la génération de la forme
générale où l’organisation corporelle fondamentale de l’individu est esquissée. Il est reconnu maintenant
que les réseaux de régulation génétique jouent un rôle central dans le développement et le métabolisme
des organismes vivants. Des chercheurs ont découvert ces dernières années que les diverses structures
cellulaires créées pendant les étapes du développement sont générées principalement par l’activation et
l’inhibition sélectives de gènes régulateurs très spécifiques. Sur ce principe, les Réseaux Artificiels de
Régulation (RARs) sont des modèles qui tentent d’imiter les réseaux de régulation génétiques trouvés
dans la nature. D’un autre côté, des techniques de calcul évolutionnaires ont été amplement utilisées dans
une grande gamme d’applications pour faire évoluer un codage (génotype) afin que son image (phénotype)
possède des propriétés particulières. Il en a été ainsi en particulier pour faire évoluer des RARs afin qu’ils
exécutent des fonctions particulières.

Au cours des années, plusieurs modèles de croissance cellulaire artificielle ont été proposés pour com-
prendre les mécanismes du processus de développement. Ce travail propose un modèle de développement ar-
tificiel qui produit des structures cellulaires par activation et inhibition sélectives de gènes du développement,
sous les contraintes des gradients morphogénétiques. La croissance cellulaire est accomplie à travers l’ex-
pression de gènes structurels qui sont eux mêmes contrôlés par un RAR qui a été évolué par un Algo-
rithme Génétique (AG). Le RAR contrôle le temps de reproduction des cellules et il détermine également
le gène à utiliser pour la reproduction à chaque moment. Parallèlement, des gradients morphogénétiques
contraignent les positions sur lesquelles les cellules peuvent se reproduire. Le RAR et les gènes structurels
constituent le génome de la cellule artificielle.

Afin de tester les fonctionnalités des RARs trouvés par l’AG, un modèle de croissance cellulaire basé
sur le paradigme des Automates Cellulaires (ACs) a été développé dans un premier temps. Cela a permis
d’évaluer si les chromosomes de l’AG (qui représentent les modèles des RARs) possèdent la capacité de
produire des structures désirées. Les ACs fournissent un cadre excellent pour modéliser des interactions
locales qui donnent lieu à des propriétés émergentes dans les systèmes complexes.
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Chapitre 1. Introduction

Artificial Development is the study of computer models of cellular growth, with the

objective of understanding how complex structures and forms can emerge from a small

group of undifferentiated initial cells. In biological systems, development is a fascinating

and very complex process that involves following an extremely intricate program coded

in the organism’s genome. To present day, we still marvel at how from a single initial cell,

the zygote, a whole functional organism of trillions of coordinated cells can emerge.

One of the crucial stages in the development of an organism is that of pattern genera-

tion, where the fundamental body plans of the individual are outlined. It is now evident

that gene regulatory networks play a central role in the development and metabolism of

living organisms [Dav06]. It has been discovered in recent years that the diverse cell pat-

terns created during the developmental stages are mainly due to the selective activation

and inhibition of very specific regulatory genes.

Artificial Regulatory Networks (ARNs) are computer models that seek to emulate the

gene regulatory networks found in nature. ARNs have previously been used to study diffe-

rential gene expression either as a computational paradigm or to solve particular problems

[Egg97b, Rei99, Ban03, KB04, STK05, FHB+05]. On the other hand, evolutionary com-

putation techniques have been extensively used in the past in a wide range of applications,

and in particular they have previously been used to evolve ARNs to perform specific tasks

[Bon02, KLB04].

Over the years, artificial models of cellular growth have been proposed with the ob-

jective of understanding the intricacies of the development process [Lin68, Mei82, FB92,

Kit94, KB03c]. In this work an artificial development model that generates cellular pat-

terns by means of the selective activation and inhibition of development genes under the

constraints of morphogenetic gradients is presented. Cellular growth is achieved through

the expression of structural genes, which are in turn controlled by an ARN evolved by a

Genetic Algorithm (GA). The ARN determines when cells are allowed to grow and which

gene to use for reproduction, while morphogenetic gradients constrain the position at

16



which cells can replicate. Both the ARN and the structural genes constitute the artificial

cell’s genome.

In order to test the functionality of the ARN found by the GA, a cellular growth

testbed based on the Cellular Automata (CA) paradigm was first developed, so that the

GA chromosomes representing the proposed ARN models could be evaluated in their

role to produce the desired patterns [CD06b]. Cellular automata have previously been

used to study form generation, as they provide an excellent framework for modeling local

interactions that give rise to emergent properties in complex systems [de 99, DD05].
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2

Objectives

Résumé

Objectif général
L’objectif général de ce travail est de proposer un modèle de développement artificiel qui soit capable

de générer des structures cellulaires reposant sur des mécanismes d’auto-organisation et d’interaction
avec un environnement artificiel.

Objectifs particuliers
– Développer un modèle de croissance cellulaire pour produire des formes simples.
– Utiliser la combinaison de formes simples pour créer des structures plus complexes.
– Appliquer le modèle au problème de la génération de la structure d’un drapeau français (French

flag problem).

2.1 General Objective

To propose an artificial development model that is able to generate cellular patterns

through the use of self-organizing properties and interaction with an artificial environment.

2.2 Particular Objectives

– To develop a cellular growth testbed for generating simple shapes.

– To use the combination of simple shapes to create more complex patterns.

– To apply the model to the problem of generating a French flag pattern.
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3

Artificial Development

Résumé

Ce chapitre présente un état de l’art des principales recherches relatives au développement artificiel
après une brève introduction aux principaux concepts biologiques associés. Un des premiers modèles du
processus de la morphogenèse est la Réaction-Diffusion proposée par Turing, où des substances appelées
morphogènes réagissent entre elles dans un milieu initialement homogène. Des structures peuvent se
développer lors de ces réactions provenant de l’instabilité de l’équilibre homogène, déclenchée par des
petites perturbations aléatoires. De leur côté, Meinhardt et Gierer ont proposé un système similaire,
appelé le Modèle d’auto activation et d’inhibition latéral, où l’interaction d’un activateur et un inhibiteur
peut altérer la symétrie d’un milieu homogène. Ces auteurs ont considéré que la formation des structures
nécessite la présence d’une réaction auto-catalysante et d’un inhibiteur de longue porté pour arrêter la
croissance infinie de ce processus (inhibition latérale).

Dans les Systèmes de Lindenmayer, ou L-Systèmes, un organisme est produit par un assemblage de
structures ou modules discrets répétés. Un L-Système est une grammaire formelle avec un ensemble de
symboles et un ensemble de règles de récriture. Les règles sont appliquées de manière itérative en com-
mençant sur le symbole initial. Une des applications principales des L-Systèmes a été dans la modélisation
du développement de plantes, en utilisant des visualisations graphiques avancées pour les simulations.
D’un autre côté, les modèles des Biomorphs de Dawkins utilisent les micromutations et la sélection cu-
mulative pour tenter d’expliquer l’évolution des structures complexes chez les êtres vivants.

Les modèles d’Embryogenèse artificielle proposés par Hugo de Garis sont parmi les premiers systèmes
qui ont exploité l’évolution d’automates cellulaires par algorithme génétique afin d’obtenir des struc-
tures cellulaires prédéfinies en 2D. Kitano a été également l’un des premiers chercheurs à expérimenter
l’évolution de systèmes de développement artificiel. Cet auteur a en particulier réussi à évoluer des grands
réseaux neuronaux en utilisant des AGs.

Fleischer et Barr ont présenté un cadre pour la modélisation et la simulation de la formation de
structures multicellulaires en 2D. Ils ont conclu que la combinaison de facteurs chimiques, de forces
mécaniques et de mécanismes de contrôle de la lignée cellulaire (cell lineage) est au cœur du développement
cellulaire. D’un autre côté, Eggenberger a utilisé une approche évolutionnaire pour étudier la création des
réseaux neuraux et la morphogenèse simulée d’organismes en 3D basé sur l’expression différentielle des
gènes.

Le modèle de Réseau Booléen Aléatoire (RBA) proposé par Kauffman considère l’interaction de nœuds
connectés aléatoirement en utilisant des tables des règles également produites au hasard. Depuis plusieurs
années, des modèles associés des Réseaux Artificiels de Régulation (RARs) ont également été proposés.
Ce chapitre en présentera plusieurs possédants des concepts communs tels que génomes, gènes, sites
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promoteurs, sites régulateurs, facteurs de transcription, séquences de correspondance, et degré de corres-
pondance. Quelques-uns de ces modèles présentent trois types de comportements, qui peuvent être classés
comme statique, dynamiquement structuré et chaotique.

Le Modèle de Développement Évolutionnaire (MDE de Kumar et Bentley) est initialement un système
d’étude des processus de développement des organismes multicellulaires et leur application potentielle à
l’informatique. L’EDS contient l’équivalent de beaucoup d’éléments clefs dans le développement biologique
tels que : cellules, cytoplasme cellulaire, parois cellulaires, protéines, récepteurs, facteurs de la transcrip-
tion et gènes. L’EDS contient deux types de génomes : le premier assure l’initialisation des cellules et le
deuxième contrôle la croissance cellulaire. On peut citer également le système artificiel de développement
cellulaire METAMorph où les règles morphogénétiques sont introduites par l’utilisateur dans un outil de
simulation.

Enfin, le problème académique de la génération de la structure d’un drapeau français (French flag
problem) est présenté avec un état de l’art des principaux travaux informatiques sur ce sujet.

This chapter covers the main research areas pertaining to artificial development after

a short introduction to biological gene regulatory networks and their relationship with

development. In the sections that follow, the work more directly related to the model

presented in this thesis will be reviewed in more detail.

3.1 Development and Gene Regulatory Networks

The mechanism of biological development can be viewed conceptually as consisting of

a series of concentric layers [Dav06]. On the outer layer, development is achieved through

the spatial and temporal regulation of expression of myriads of genes coding for all the

different proteins of the organism, which catalyze the creation of other constituents. A

deeper layer is characterized by a dynamic progression of regulatory states, defined as the

presence and activity state of the set of regulatory proteins that control gene expression.

Finally, at the core layer is the genomic machinery consisting of all the modular DNA

sequences that interact with the regulatory proteins in order to interpret the regulatory

states. These DNA sequences are known as cis-regulatory elements (cis is Latin for “this

side of”), as they refer to regulatory elements usually located on the same DNA molecule

as the genes that they control. Cis-regulatory elements are the target of active diffusible

proteins known as transcription factors or trans (Latin for “far side of”) elements, which

define the regulatory state.
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Regulatory gene

Expression

Transcription 
factor

To target cis-regulatory elements 
associated to regulatory genes

Cis-regulatory elements

Transcription factors from 
other regulatory genes

Fig. 3.1 – Relationship between cis-regulatory elements, transcription factors and regu-
latory genes.

Cis-regulatory elements read the information contained in the regulatory state of the

cell, process that information, and interpret it into instructions that can be used by

the cellular biochemical machinery to express genes contained in the genome. The term

“regulatory genes” refer to those genes encoding the transcription factors that interact

with cis-regulatory elements. Figure 3.1 shows a simplified illustration of the relationship

between cis-regulatory elements, regulatory genes and transcription factors. Transcription

factors bind to specific cis-regulatory elements, and this interaction can enhance or inhibit

the expression of the associated regulatory gene into a transcription factor, which can in

turn interact with its target cis-regulatory element on other genes.

The spatial and temporal expression of regulatory genes is central to development, as

they determine to a great extent the fate and function of all cells in the developing orga-

nism. Developmental control systems take the form of gene regulatory networks (GRNs) ;

when genes in a GRN are expressed, they produce transcription factors that can affect

multiple target genes (through their associated cis-regulatory elements), which can in

turn express transcription factors that affect their target genes. Each regulatory gene can

have multiple inputs from other regulatory genes and multiple outputs to other regulatory

genes. Thus a regulatory gene can be viewed as a node in a network of interactions.

The periphery of a developmental GRN is defined by the absence of outputs to other
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Fig. 3.2 – GRN for the endomesoderm specification at the 30 hours of development of
the sea urchin embryo. Short horizontal lines represent a node in the network with arrows
indicating the direction of interactions. (Taken from [Dav06].)

genes in the network, i.e. transcription factors that affect other regulatory genes. We

mainly find at the outskirts of the GRN the sets of developmental genes that code for

proteins that lead to cellular differentiation. Actual developmental GRNs are extremely

complex systems that involve other elements not shown in Fig. 3.1, such as intracellu-

lar and intercellular signaling molecules, cellular receptors and lineage proteins that are

present in one cell type and not in others.

Biological development is evidently an extremely complex process that involves inter-

actions both in time and space of cells in the growing organism. To give an idea of the

complexity of developmental GRNs, Fig. 3.2 presents a network corresponding to current
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Fig. 3.3 – Regulatory genes of the fruit fly Drosophila melanogaster. Each gene controls
development of different body regions along the body axis. (Taken from [Car06].)

knowledge on the endomesoderm specification of the sea urchin embryo at 30 hours of

development. This GRN is considered incomplete and it is the subject of ongoing research

with new nodes and relations being added as they are discovered.

Much of the knowledge on the development of organisms has been obtained from stu-

dying animals that are easy to maintain and reproduce in captivity. One of the most

studied species in genetic and developmental research is the fruit fly Drosophila melano-

gaster. Over the years, researchers have been able to identify a number of proteins directly

involved in the development of D. melanogaster. Figure 3.3 shows eight regulatory genes

that are responsible for the development of specific body segments on this insect. Mutation

of these genes severely affects the development of the associated body segment.

Researchers continue to elucidate the mechanisms underlying development at the mo-

lecular level and much work on the subject remains to be done. However, it is increasingly

evident that GRNs play an essential role in the development of multicellular organisms,

from the simplest to the higher species of plants and animals.
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3.2 Reaction-Diffusion Systems

It is usually attributed to Turing the founding of modern research on artificial develop-

ment. He suggested in his seminal article on the chemical basis of morphogenesis [Tur52],

that an initially homogeneous medium might develop a structured pattern due to an

instability of the homogeneous equilibrium, triggered by small random perturbations.

Using a set of differential equations, Turing proposed a reaction-diffusion model where

substances called morphogens, or form generators, would react together and diffuse through

a medium, which could be a tissue. In this model, one of the substances is autocatalytic

and tends to synthesize more copies of itself. At the same time another substance also

promotes synthesis of the first substance, but the latter inhibits the synthesis of the for-

mer. One key element of the model is that the two substances have very different diffusion

coefficients, with one of them diffusing much more rapidly than the other. The system can

be fine-tuned with the proper parameters such that at some point the slightest disrup-

tion in the equilibrium can be amplified and propagated through the medium generating

unpredictable patterns.

For simplification purposes, Turing built his model using a few elemental cellular

structures. He considered the cases of an isolated ring of cells, a hollow sphere of cells,

and a 2D single layer of cells. He was particularly interested in investigating what caused

the initial instability that led to the formation of patterns. He observed that there were

six main patterns in the distribution of morphogens. One of the most interesting was the

appearance of stationary waves on a ring of cells. He suggested that this could explain

certain radial patterns that appeared during the morphogenesis of some organisms. Using

the other cellular structures, he demonstrated how the gastrulation process could be

generated in a sphere of cells by the reaction-diffusion mechanism. Other patterns, such

as dappling, could be generated in a single layer of cells, which could account for the skin

patterns seen in many animals.

Even though his model was based on an oversimplification of natural conditions, Turing
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succeeded in demonstrating how the emergence of a complex pattern could be explained

in terms of a simple reaction and diffusion mechanism using well-known physical and

chemical principles.

3.3 Self-Activation and Lateral Inhibition Model

Experiments with biological specimens have demonstrated that development is a very

robust process. Development can continue normally even after a substantial amount of

tissue from certain parts has been removed from an embryo. However, there are small

specialized regions that play a crucial role in the organization of the development process.

Such organizing regions are usually very small and they control pattern generation in

the surrounding tissues. When these organizing regions are transplanted to other parts of

the embryo, they start to generate the structures that they would normally form in the

original region [CGW04, Car06].

In order to explain the long range effect of these small organizing regions on the larger

surrounding tissue and the robustness of their influence even after induced interferences,

Wolpert introduced the concept of “positional information”, whereby a local source region

produces a signaling chemical [Wol69, Wol81]. This theoretical substance was supposed to

diffuse and decay creating a concentration gradient that provided cells with information

regarding their position in the tissue.

Nevertheless, the problem remained as to how a local differentiated source region could

be generated from a seemingly homogeneous initial cluster of developing cells. Even though

many eggs have some predefined structure, all the patterns developed after a number of

cell divisions cannot initially be present in the egg. A mechanism must exist that allows

the emergence of heterogeneous structures starting with a more or less homogeneous egg.

Pattern generation from an almost homogeneous condition can often be observed in

the inanimate world. Dunes, for example, can form from an initially homogeneous sand
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surface under the influence of wind. A small initial ripple in the sand can be amplified

(positive feedback) until bigger and bigger sand deposits are formed.

Gierer and Meinhardt proposed that pattern formation was the result of local self-

activation coupled with lateral inhibition [GM72, Gie81, Mei82]. In this model, which

has some resemblance to Turing’s model, a substance that diffuses slowly, called the

activator, induces its own production (autocatalysis or self-activation) as well as that of

a faster diffusing antagonist, the inhibitor. These authors suggest that pattern formation

requires both a strong positive feedback (autocatalysis) and a long-ranging inhibitor to

stop positive feedback from spreading indefinitely (lateral inhibition).

The concentration of the activator and the inhibitor can be in a stable state, since

an increase in the activator concentration can be compensated by a corresponding in-

crease in the inhibitor concentration, bringing the activator concentration back to the

initial concentration. This equilibrium is nonetheless locally unstable. A local increase

in the activator concentration will continue to increase by autocatalysis as the inhibitor

diffuses more rapidly than the activator into the surrounding area. The smallest random

fluctuations are sufficient for breaking the homogeneity so that pattern generation can be

initiated.

One possible interaction between the activator a and the inhibitor h is suggested by

the authors with the definition of the following equations :

∂a

∂t
=
ρa2

h
− µaa+Da

∂2a

∂x2
+ ρa (3.1)

∂h

∂t
= ρa2 − µhh+Dh

∂2h

∂x2
+ ρh (3.2)

where t is time, x is the spatial coordinate, Da and Dh are the diffusion coefficients and

µa and µh are the decay rates of a and h, respectively. Parameter ρ is the source density

that expresses the ability of cells to perform autocatalysis. A small activator production
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Fig. 3.4 – Pattern generation and regeneration. (a) Reaction diagram (A = Activator, H
= Inhibitor) ; (b) Pattern generation ; (c) Pattern regeneration after perturbation. (Taken
from [Mei82].)

ρa can start the disruption of the homogeneous condition at low activator concentrations.

For the formation of stable patterns in this model, the diffusion of the activator has

to be much slower than that of the inhibitor, i.e. Da << Dh. Furthermore, the activator

must have a longer time constant than the inhibitor, µa < µh, otherwise oscillations will

be produced [Mei03].

These equations were approximated by difference equations for discrete cells and used

for computer simulations. Figure 3.4 shows a simulation of pattern generation and rege-

neration in a linear array of cells. A reaction diagram is shown in Fig. 3.4(a). Activator

A catalyzes both itself and inhibitor H, while the latter diffuses more rapidly than A and

suppresses production on long ranges. Figure 3.4(b) shows how a concentration pattern

is formed over time starting with a homogeneous concentration of activator and inhibitor

[Mei82]. The arrow in Fig. 3.4(b) shows where a uniform increase in the activator along

the cell array has no effect on the homogeneous distribution of both types of molecules,

since an equally uniform increase in inhibitor concentration suppresses the increase in

activator concentration. However, a small local increase in the activator concentration, or

even a random fluctuation, cannot be compensated by the inhibitor, as the latter diffuses

more rapidly into the surroundings. In the meantime, the activator concentration increases
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steadily until a stable state is achieved, where the production, and the diffusion and decay

of the activator reaches an equilibrium. The pattern thus obtained is very robust, as it has

self-regulating properties. In Fig. 3.4(c), after a stable concentration pattern is formed,

most of the activator is manually depleted in the simulation. With the diminished cata-

lytic action of the activator, the inhibitor concentration decreases by decay, but then the

remnant activator molecules self-activate to reach again a stable condition after a number

of time steps.

These simulations suggest how in an undifferentiated medium, a small perturbation

could be amplified and then disrupt the homogeneous state. For instance, in an apparently

homogenous egg, a small perturbation in the activator concentration at one end of the egg

could lead to the accumulation of activator molecules at this end. The activator molecules

could have other properties such as a signaling role that could induce cells near this zone

to differentiated into the head (or tail) of the developing organism.

Gierer and Meinhardt have proposed many other examples of biological systems where

their model could be applied [Mei82, Mei96, MG00, Mei03]. One well-known application

of their model is in the simulated generation of shell patterns in seashells [Mei98]. With

the appropriate parameter values, these simulations generate patterns that are very close

to those found in the shells of certain species of seashells.

These results suggest how a relatively simple mechanism of coupled biochemical in-

teractions can account for the generation of very complex patterns. The components of

the model are based on reasonable assumptions, since mutual activation and inhibition of

biochemical substances and molecular diffusion actually exist in the real world. In recent

years, molecular biology and genetics experiments have given support to many elements

of the model. Possibly the weakest assumption the authors made for the model was the

use of simple diffusion for cell signaling. Modern biological techniques have shown that

intercellular communication is indeed very complex and it usually involves the expression

of ligand-specific receptors at the cell’s surface and intracellular transportation of certain
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signaling molecules to the cell’s nucleus. Nevertheless, the logic behind the model seems

to be sound.

3.4 Lindenmayer Systems

Lindenmayer systems, or L-systems, were originally introduced as a mathematical

formalism for modeling development of simple multicellular organisms [Lin68, Lin71].

The organism is abstracted as an assembly of repeating discrete structures or modules.

The formalism is independent of the nature of the module, which can be an individual

cell or a whole functional structure such as a plant branch. A module is represented by

a symbol from an alphabet, and the symbol represents the module’s type. Additionally,

there can be parameters associated to a symbol in order to define its state, in which case

the formalism is extended to what is known as Parametric L-systems [Han92].

An L-system is a formal grammar with a set of symbols and a set of rewriting rules.

The rules are applied iteratively starting with the initial symbol. Unlike traditional formal

grammars, rewriting rules are applied in parallel to simulate the simultaneous development

of component parts of an organism.

L-Systems were initially conceived to derive theoretical results applicable to biological

development. However, with the introduction of state-of-the-art computer graphics tech-

niques and the widespread use of computer equipment, L-Systems were used to program

and dynamically visualize development systems [Smi84, PHM97].

One of the main applications of L-systems has been in the modeling of the development

of higher plants [PL90]. The modeling does not take place at the cellular level. Instead, it

is based on a modular construction of discrete structural units that are repeated during

the development of plants, such as branches, leaves and petals [Pru93, Pru97]. Initial

models did not consider the influence of the environment on development. However, as

organisms in nature are an integral part of an ecosystem, an extension to the modeling
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framework that considered interaction with the environment was introduced [MP96].

The use of L-Systems has been extremely fruitful in modeling the development of

organisms at a high structural level. Implemented models of plant development that use

L-systems are visually striking because of their resemblance to growth seen in real-life

plants and trees.

3.5 Biomorphs

Richard Dawkins’ well-known Biomorphs were first introduced in his famous book

“The Blind Watchmaker” to illustrate how evolution might induce the creation of complex

designs by means of micro-mutations and cumulative selection [Daw96]. Dawkins intended

to find a model to counteract the old argument in biology that a finished complex structure

such as the human eye could not be accounted for by Darwin’s evolution theory.

Biomorphs are the visible result of the instructions coded in a genome that can undergo

evolution. The original genome consists of nine genes coded as integers, where the first

eight genes determine the length and branching direction of growing lines in a 2D plane,

whereas the last gene controls the depth of branching. Dawkins introduced a constraint

of symmetry around an axis so that the resulting forms would show bilateral symmetry,

as in many biological organisms.

The construction algorithm that grows biomorphs from their genome is recursive in

nature, as Dawkins considered that actual embryological processes could to a large extent

be considered recursive. The idea being that the shape of an adult individual emerged

after a number of local cellular interactions in the whole developing body and that these

effects consisted of simple divergencies such as binary cellular divisions. Figure 3.5 shows

the recursive construction of a basic biomorph with a recursion depth of 4.

Initially Dawkins thought that the forms produced would be limited to tree-like struc-

tures. However, to his surprise, the forms generated were extremely varied in shape and
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Fig. 3.5 – Construction of a biomorph with a recursion depth of 4. (Taken from [Ren02].)

detail. There were biomorphs that roughly resembled insects, crustaceans or even mam-

mals.

This author proposed next an “interactive” evolutionary algorithm, where the user

played the part of the selection force. The algorithm implementation presents the user

with an individual biomorph and the eighteen biomorphs that result from the addition

of subtraction of one unity (micro-mutation) on each of the nine genes in the genome.

Initially the user has to decide which form he/she wants to evolve, such as a spider or

a pine tree, and in each step of the algorithm he/she chooses the biomorph that best

resembles the target form (cumulative selection).

The algorithm was further improved by adding genes that could activate or disable

the symmetrical growth of the generated forms in the 2D plane, both horizontally and

vertically. The algorithm was also extended to take into account the segmentation process,

which is considered one of the greatest innovations in biological evolution. Segmented

bodies are present in at least three of the major phyla : vertebrates, arthropods and

annelids. Figure 3.6 shows some of the biomorphs obtained using an implementation of

this algorithm.

Dawkins showed with his models that the evolution of complex structures was indeed

feasible in a step by step manner by means of the cumulative selection of the individual

that best approached the final structure.
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Fig. 3.6 – Biomorphs obtained with an implementation of the interactive algorithm. (Taken
from [Ren02].)

3.6 Artificial Embryogenesis

Hugo de Garis worked on the creation of a self-assembly process that he called “ar-

tificial embryogenesis”. His motivation was that he believed that in the future, machines

would have so many components that a sequential mechanical assembly would not be

feasible. He theorized that highly complex machines should be self-assembled in a similar

way as biological organisms are developed.

He worked on artificial “embryos” as 2D shapes formed by a colony of cells using

the CA paradigm. The basic idea is that a GA can evolve the CA rule set to control

reproduction of artificial cells [de 91]. The rule sets are encoded in the chromosomes used

by the GA and they can be switched on or off, depending on whether the state of a cell

matches the gene’s “condition field”. The test in the condition field determines whether or

not the “action field” is activated. If the action field is activated, then cells can reproduce.

De Garis used what he called “differentiable chromosomes”, which consisted of several

genes or “operons”, where in general each operon contained a condition field C and an
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Fig. 3.7 – A differentiable chromosome with four operons.(Taken from [dIF92].)

action field A, as shown in Fig. 3.7.

Each cell in a particular cellular automaton model contains the same chromosome and

at every time step all cells calculate their current state by looking at the states of the

neighboring cells. Next, each cell compares its present state with the condition fields Ci in

the chromosome. If one of the condition C matches, then the corresponding action field

A is activated and the reproduction instructions coded in this field are executed.

This author developed a model that evolved reproduction rules for CA, with the goal

that the final shape of a colony of cells was as close as possible to a predefined simple

shape such as a square or a triangle [de 92, dIF92]. In this model, cells can only reproduce

if there is at least one adjacent empty cell, i.e. only edge cells are allowed to reproduce.

Assuming that only edge cells can reproduce and that no isolated cells are generated, then

cells can be in one of fourteen possible states in a 2D lattice (Fig. 3.8).

If one state is coded by one bit, then only fourteen bits are necessary to code all

states, with a predefined position for each state in the bit string. If there is a “1” in the

bit corresponding to a state, then all edge cells in that state are allowed to divide and

generate a daughter cell, whereas a “0” means that cells in that state are not permitted

to reproduce.

When edge cells are allowed to reproduce, it has to be determined the direction at

which the daughter cell is to be placed. For states where there is only one empty adjacent

cell, there is no option but to place the new cell at that position, so in this case there is no

need to code the direction of reproduction. However, when there are two or three empty

adjacent cells, a choice has to be made as to where to place the newly produced cell. For

states with two empty adjacent cells, only one bit is necessary to determine the direction
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Fig. 3.8 – The 14 neighborless states for 2D cells. (Taken from [dIF92].)

of reproduction, with a predefined direction for each bit value and each state. For states

with three empty cells, two bits are sufficient to code the direction of reproduction, again

with a predefined direction of reproduction for each state and each combination of the

two bits. As a result, since there are 6 states with 2 empty adjacent cells, and 4 states

with 3 vacant adjacent cells (see Fig. 3.8), it is necessary to use 6 × 1 + 4 × 2 = 14 bits

to specify the direction of reproduction for all states.

The combination of the two 14-bit strings determines for one reproduction cycle which

cells are allowed to divide and at which relative position to place their daughter cells. In

order to evolve the reproduction rules for more than one cycle with a possibly different

reproduction rule for each cycle, it is necessary to introduce in the differentiable chromo-

some as many instances of the two 14-bit strings as iteration steps are desired. Even the

number of iterations necessary to create a predefined shape can be evolved. The chromo-

some proposed in [dIF92] for this purpose is shown in Fig. 3.9.

The chromosomes thus defined were evolved by a genetic algorithm using the following

fitness function :
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Fig. 3.9 – Format of a simplified chromosome. (Taken from [dIF92].)

Fig. 3.10 – Evolved triangular and rectangular shapes. The desired shapes are outlined
by the empty cells in the background. (Taken from [de 99].)

Fitness =
ins− 1

2outs

des
, (3.3)

where ins is the number of filled cells inside the desired shape, outs is the number of filled

cells outside the desired shape, and des is the total number of cells inside the desired

shape. Thus, a fitness value of 1 represents a perfect match.

Using this setup, the generation of several target shapes was tried. Two examples of

shapes evolved are presented in Fig. 3.10. Since isolated cells are not allowed in the model,

reproduction started with a 2× 2 cluster of cells. In both cases, the number of iterations

(NI in the chromosome) evolved to be 4.

Several other target shapes, both convex and non-convex were tested. Results showed
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Fig. 3.11 – Desired L shaped and component regions. (Taken from [dIF92].)

that convex shapes could be obtained with a fitness value around 95%, but non-convex

shapes evolved poorly, with low fitness values.

After these initial results, de Garis concluded that evolving an artificial embryo implies

a type of sequential, synchronized unfolding of shapes. For example, after the main body is

grown, then the head and limbs can be grown, followed by the emergence of more detailed

shapes, such as those corresponding to fingers and toes [dIF92].

To put this idea to the test, de Garis attempted the generation of an L-shaped form,

which is a non-convex shape. Figure 3.11 shows the target shape and its decomposition in

regions. The basic idea is to use two genes to generate the L shape, where the first gene

would generate region A, and it then would be shut off to let cells in region R express the

second gene in order to produce region B.

For this approach to work, it is necessary that cells can somehow determine their

position in the grid. This author decided to use a concentration gradient of a theoretical

chemical to provide cells with positional information. Each cell has a certain quantity

of this chemical, which is replicated and a fraction of it is transmitted to the daughter

cell. Thus a concentration gradient is formed with its peak at the position of the initial
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cells. Each cell also has an 8-bit storage for determining the direction of the highest

concentration of the chemical. At each time step, concentration is measured at each cell

position averaging the concentrations from the cell and the three cells towards the direction

of the eight main “cardinal points” (N, NE, E, SE, S, SW, W and NW), thus obtaining

eight average concentration values for each cell. The bit corresponding to the direction

with the highest concentration is then given a value of 1, and the other bits are set to 0.

In this manner, by measuring the concentration values from neighboring cells, a cell can

determine the concentration gradient and have an estimate of its relative position. For

example, cells in the south-east of region A would have their highest gradients towards

the north-west direction and would therefore have their north-west bit set to 1.

On the other hand, it is necessary that cells know when to switch gene A off so that

gene B can be expressed. The solution proposed by de Garis was to let cells carry an

internal generation count, so that a parent cell with a count value of g would produce a

daughter cell with a count of g + 1.

Under these assumptions, the two-operon chromosome shown in Fig. 3.12 was propo-

sed. Field X codes for the iteration count to determine when the first operon is turned

off and the second operon becomes activated. When the iteration count reaches X + Y ,

the second operon is switch off. The NEWS DIRNS field has 8 bits and determines which

cells can reproduce after X iterations. Only cells that have their direction bit set to 1

when the same direction bit is set to 1 in this field can replicate. For example, if a cell’s

highest gradient is NW, and the bit corresponding to NW in the NEWS DIRNS field is

1, then the cell is allowed to reproduce after X iterations. Finally, the REPRO ?/DIRN

PAIRS fields are similar in function to the REPRO ? and R DIRNS fields presented in

Fig. 3.9.

Figure 3.13 shows the results obtained using this approach when trying to produce

an L shape. The fitness value of the resulting shape shown in Fig. 3.13b was about 80%,

which was not as good as when generating convex shapes.
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Fig. 3.12 – Two-operon chromosome for the generation of an L shape. (Taken from [dIF92].)

Fig. 3.13 – L shape produced by an evolved two-operon chromosome. The target shape
is outlined by empty cells. (Taken from [dIF92].)

In an attempt to obtain better results, the author used a technique that he termed

“shaping”, which consisted in dividing the evolutionary process in phases with interme-

diate targets. In this case, the second operon was disabled and evolution was initially

conducted with the objective of producing chromosomes that could generate region A

of the L shape (see Fig. 3.11). The resulting chromosomes were then fed as a starting

chromosome population for the GA, this time with both operons fully functional. Results

from these experiments are shown in Fig. 3.14.

Despite the bias towards chromosomes that were already conditioned to start with the

correct region, the shaping technique did not produce better result, as the final fitness

value of the most successful experiments was again about 80%. This author went on and

tried to generate other non-convex shapes, such as a snowman shape and a turtle shape

with a combination of circle shapes, but he again ran into limitations in the maximum

fitness values that he was able to obtain.

Even though the approach used by de Garis proved the potential of the application
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Fig. 3.14 – L shape produced by an evolved two-operon chromosome using the shaping
technique. The target shape is outlined by empty cells. (Taken from [dIF92].)

of evolutionary techniques to the growth of artificial cells in order to generate desired

shapes, his results were of limited success. However, he was one of the first researchers

to use the concept of sequential gene activation for the production of artificial cellular

structures using the CA paradigm.

3.7 Evolutionary Neurogenesis and Cell Differentia-

tion

Kitano was another of the first researchers that conducted experiments towards evol-

ving an artificial development system. This author was successful at evolving large neural

networks using genetic algorithms [Kit90]. He encoded into the GA chromosome the neural

network connectivity matrix using a graph generating grammar. Instead of using a direct

encoding of the connectivity matrix, a set of rules was created by a grammar overcoming

the scalability problem on the cases tested. Previous attempts saw how convergence per-

formance was greatly degraded as the size of the neural network grew larger. The grammar

used was an augmented version of Lindenmayer’s L-System and used matrices as symbols.

Kitano later developed a model of neurogenesis and cell differentiation based on a

simulation of metabolism [Kit94]. The idea was to see if artificial multicellular organisms
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could be created using genetic algorithms evolving the metabolic rules in the genome

of the cell. Although all cells carry the same set of rules, individual cells can express

different rules because of differences in their local environment, thus producing a sort of

cell differentiation. Metabolic rules define which kind of metabolite can be transformed

into another kind and under what conditions of metabolite concentration and enzyme

presence. These rules are coded in the genome of the cell, and are of the form “If the level

of metabolite A is less (or greater) than n, then start a reaction that converts metabolite

B into C using the enzymatic properties of metabolite D”. These rules are applied to all

the metabolites in every cell of a developing organism at each iteration of the simulation.

One of the metabolites represents DNA molecules, and when its concentration is above a

specified threshold, cells can divide and produce daughter cells with a certain amount of

random fluctuation. This randomness provides the base of a chaotic process that can lead

to symmetry breaking, which is a widespread feature of developing organism. In addition,

cell death can occur in the model when the overall metabolism is too low or too high.

Additionally, Kitano et al. developed a project to simulate the development of the soil

nematode C. elegans [KHKL98]. They chose to model the embryogenesis of C. elegans

because of its relatively simplicity in structure and because it is one of the best studied

multicellular organism in biology. They used data on cell lineage and cell location publi-

shed in [SDT+92] in order to generate a 3D computer graphics image from the division

of the first cell to approximately 600 minutes after the first cellular cleavage. They tried

to match as much as possible the data from the actual organisms and the results from

the simulation. When there was missing simulation data regarding the actual position of

cells, their system could calculate forces between cells such as the force that pushes adja-

cent cells. Their long-term goal was to produce a complete synthetic model of C. elegans

cellular structure and function.
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3.8 Evolutionary 2D/3D Morphogenesis

Fleischer and Barr presented a simulation framework and computational testbed for

the study of 2D multicellular pattern formation [FB92]. Their initial motivation was the

generation of neural networks using a developmental approach, but their interest soon

shifted towards the study of the multiple mechanisms involved in morphogenesis.

Their approach combined several developmental mechanisms that they considered im-

portant for biological pattern formation. Previous work from other researchers had in-

dividually considered chemical factors, mechanical forces, and cell-lineage control of cell

division to account for some aspects of morphogenesis. These authors decided to combine

these factors into one modeling system in order to determine how the interactions between

these components could affect cell pattern development.

The modeling framework consists of discrete cells capable of independent movement

and controlled by an artificial genome. The latter is a set of differential equations that

depend on the cell’s current state and its local environment. The changes in the environ-

ment are in turn determined by differential equations which implement mechanical forces

and the diffusion of extracellular substances. The computer implementation of the model

was able to simulate a number of simple multicellular behaviors, such as cells following

gradients, cell clustering, cell differentiation, pattern formation, and network generation.

Fleischer and Barr emphasized that it was the interactions between the developmental

mechanisms that were at the core of the determination of multicellular and developmental

patterns, and not the individual elements of the model.

On the other hand, Eggenberger used an evolutionary approach for studying the crea-

tion of neural network and the simulated morphogenesis of 3D organisms based on diffe-

rential gene expression [Egg97a, Egg97b]. His model for simulating morphogenesis includes

a genome with two types of elements : regulatory units and structural genes. The regula-

tory units act as switches to turn genes on and off, while structural genes code for specific

substances that are used to modulate developmental processes. Every gene is defined as
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having the same number of integers, with the last integer, called the marker, indicating the

type of gene. The integers composing the genome are taken from the set {1, 2, 3, 4, 5, 6}.

The fist gene of the genome is assumed to always be a regulatory unit. All genes from the

first to the one ending in the marker 5 are defined as regulatory units. Next, all genes after

the last regulatory unit and until the gene with the marker 6, are defined as structural

genes, and the activity of the latter depends on the regulatory units that precede them.

After the last marker 6, the next marker 5 is searched and all the genes between these

markers are again considered regulatory units, which control the structural genes found

next, until the gene with marker 6, and so on until the end of the genome (see Fig. 3.15).

Regulatory unit

423210221135112326421230241215321236

24326 423210221135112326421230241215321236 132230

TypeAffinity DiffusionAffinity

Structural gene

Fig. 3.15 – Example of a segment of the genome used in Eggenberger’s model.

From the above definition, it follows that one or more adjacent regulatory units can

control expression of one or more adjacent structural genes. Gene expression control is

based on its biological counterpart, where sequences in the genome, called cis-elements,

can show affinity with soluble factors, typically proteins, and the degree of matching

determines the strength of the effect, either as enhancement or as inhibition of gene

expression.

Structural gene expression is regulated by the concentration and affinity of transcrip-

tion factors. Each cell contains a list of transcription factors, which consist of string of

integers that can be compared for matching with the regulatory units in the genome. Af-

finity is calculated subtracting in the appropriate base the first n integers (from 6 to 8 in

the implementation) of both strings. This difference represents the degree of affinity and
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its sign designates its role : positive for enhancement and negative for inhibition. On the

other hand, every transcription factor in the cell has a concentration value. The product

of the affinity and the concentration of each transcription factor at a regulatory unit is

calculated and the resulting values are added. The same procedure is performed for every

regulatory unit of a gene. The resulting sum is then fed to a sigmoidal function and if

predefined thresholds are crossed, the corresponding gene is activated or inhibited. The

associated equations are shown next :

rj =
n∑
i=1

affi × conci (3.4)

ak =
1

1 + e−
∑

j=1
rj

(3.5)

gk =


−1.0 if ak < 0.2

1.0 if ak > 0.8

0.0 otherwise

(3.6)

where affi is the affinity of transcription factor i with regulatory unit j, conci is the

concentration of transcription factor i, rj is the activity of regulatory unit j of a structural

gene, ak is the total sum of the activities of all regulatory units of gene k, and gk is the

activity of gene k [Egg97b].

An active structural gene can perform a number of functions, depending on its type,

which is determined by some of its integers. A structural gene can be translated into a

transcription factor, a cell adhesion molecule that can connect cells with the correspon-

ding adhesion molecule, or a receptor used to regulate communication between cells. A

structural gene can also elicit a function such as cell division or cell death.

Eggenberger implemented cell signaling in several ways : with intracellular substances

which regulate the activity of its own gene, with specific receptors on the cell surface
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which can be stimulated by other substances, and with substances that can penetrate cell

walls and diffuse to neighboring cells. These diffusing substances can provide cells with

positional information.

In order to direct morphogenesis towards a 3D shape with desired properties, the

artificial genome was evolved by means of a genetic algorithm, with mutation and single-

point crossover as genetic operators. In the implementation of the model, a series of 8

genetic elements with 2 regulatory units and 2 structural genes each were used. Figure

3.16 shows the shapes grown by evolved genomes when a single morphogen-producing

cell is allowed to reproduce. A spherical shape tends to be formed due to the modulating

effect of the morphogen concentration gradient on cell replication.

Fig. 3.16 – Upper cell clusters result from random growth. Lower cell clusters emerged
after addition of one morphogen to modulate growth. (Taken from [Egg97b].)

In other series of experiments, a fitness function that rewarded bilateralism was used.

Before the initial cell is allowed to reproduce, the artificial environment is conditioned

with morphogen sources on each of the three axes at varying distances to the origin. All
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three morphogens are different, so that they can regulate growth independently. Cells are

able to read and respond to the varying morphogen concentrations. The fitness function

was dependant on the total number of cells and their position with respect to one of the

axes. Figure 3.17 shows some of the resulting evolved 3D shapes.

Fig. 3.17 – Examples of evolved 3D forms. The fitness function only evaluated the number
of cells and the degree of bilaterality. (Taken from [Egg97b].)

In order to gain more flexibility, this author extended his model later on. In the

extended model, structural genes have seven parameters that encode their properties.

Among the new additions there is a field that stores the probability of interaction with

ligand molecules, a field for storing threshold levels of activation, and a field that contains

the decay rate of the expressed molecule. Regulatory units are also endowed with a field

that stores the threshold level at which the associated structural genes should be activated
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[Egg03, EH04].

The new model used floating point numbers, and for this reason Eggenberger decided

to use the Evolutionary Strategy developed by Rechenberg as evolutionary algorithm,

instead of the genetic algorithm used in the previous model. Figure 3.18 shows some of

the simulation results obtained with this model. These forms represent six stages of a

simulated invagination, induced by placing a source of morphogen at a random position

in the cell cluster. This invagination process is similar to the gastrulation process seen at

the initial stages of development in higher animals.

Fig. 3.18 – Stages of a simulated invagination. (Taken from [Egg03].)

Eggenberger’s models showed that a number of mechanisms central to development
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such as cellular growth, cell differentiation, axis definition, and dynamical changes in

shape could be simulated using a framework not based on a direct mapping between a

genome and the resulting cellular structure. The shapes that emerge in the models are

the result of the interaction among cells and their environment.

3.9 METAMorph

METAMorph, which stands for Model for Experimentation and Teaching in Artificial

Morphogenesis, is an open source software platform for the simulation of cellular develop-

ment processes using genomes encoded as gene regulatory networks. The design is made

by hand and it allows visualization of the resulting morphological cellular growth process

[STK05].

As in higher organisms, cellular growth starts in METAMorph with a single cell (the

zygote) and is regulated by gene regulatory networks in interaction with proteins. All cells

have the same genome consisting of a series of genes. Each gene can produce exactly one

protein, although the same protein can be produced by different genes.

A protein is defined by a unique name, a type (internal or external) and two constants

(decay and diffusion). Internal proteins can only diffuse inside a cell, while external pro-

teins can travel through cell membranes and can have a signaling function for communi-

cation among cells.

The concentration of each protein is stored in 12 sites inside every cell. As a result,

proteins may not be uniformly distributed within the cytoplasm. On the other hand, genes

can be expressed differently at each of these sub-cellular sites based on local protein levels.

The diffusion constant determines the amount of protein that migrates from one site to

another at each time step.

Protein production by a gene is dependent on the promoter sequences located next to

the gene. The influence of the promoter is calculated using the sum of the products of
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the weight and concentration of all proteins. The resulting value is then fed to a sigmoid

function that determines the next protein concentration level.

In the model, cells are represented by spheres of a fixed radius and each cell occupies

a position on an isospatial 3D grid, so that every cell can have up to 12 equidistant

neighboring cells. Cell actions can be triggered when a specific protein concentration level

rises above a threshold value. These actions are :

Cell division If there is an empty space available, a dividing cell produces a daughter

cell placed in the space located in the direction of the mitotic spindle.

Mitotic spindle movement Cell orientation is achieved through the definition of a “mi-

totic spindle” pointing towards one of the 12 possible adjacent cell positions. The

spindle orientation can be varied when specific proteins reach a threshold level.

Programmed cell death (apoptosis) The cell is removed from its position leaving an

empty space.

Differentiation Cell type is visualized in the model as a distinct external color. The

type of a cell is not related to its function.

The main disadvantage of this simulation platform is that the cellular development

model has to be designed through a trial and error process that is limited by the designer’s

ability to introduce the appropriate parameter values. By the authors’ account, this trial

and error process typically involves a considerable amount of time, since simulation times

are usually high due to the parallel nature of the morphogenetic process. To compound

the problem, small changes in design can have substantial consequences on the final shape

caused by “the butterfly effect”.

METAMorph would greatly benefit from introducing in the platform a search process

(possibly an evolutionary algorithm) so that the system could find by itself a suitable

design for a desired cellular growth pattern.
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3.10 Random Boolean Networks

Random Boolean Networks (RBNs) are a type of discrete dynamical networks that

consist of a set of Boolean variables whose state depends on other variables in the network.

In RBNs, time and state values take only integer values. The first Boolean networks were

proposed by Kauffman in 1969 as a randomized model of a gene regulatory network

[Kau69, Kau74, Kau93].

RBNs are also known as N−K models or Kauffman networks. They consist of a set of

N binary-state nodes, where each node represents a gene that can be on or off, and a set

of K edges between nodes that represent relationships between nodes. The connections

between nodes are randomly selected and remain fixed thereafter. The dynamics of the

RBN is determined by the particular network configuration and by a randomly generated

binary function, defined as a lookup table for each node.

RBNs are a generalization of CA, but unlike the latter, the state for each node is

determined by nodes that are not necessarily in the immediate vicinity. However, in CA

a node can take up any number of states, while a RBN is constrained to only two states.

As in canonical CA, updating is synchronous in RBNs, so that the state of all nodes at

time t+ 1 depends on the state of nodes at time t and are all updated at the same time.

Figure 3.19(a) presents an example of a RBN where all three nodes are connected to

all the other nodes (N = K = 3). A possible update function is shown in 3.19(b), while

the corresponding state space diagram is presented in 3.19(c) [Ger04].

Since the state space is finite, a state can eventually be visited more than once, and

when that happens it is said that an attractor as been reached. If the attractor consists

of a single state, it is called a point attractor, while if it contains two or more states, it is

called a cycle attractor. The states that lead to an attractor are called the attractor basin.

The RBN shown in Fig. 3.19 contains both a point and a cycle attractor, as can be seen

in Fig. 3.19(c).

Depending on the behavior of the network dynamics, three different phases or regimes
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Fig. 3.19 – Example of a Random Boolean Network. a) Network configuration ; b) Lookup
table for state transitions ; c) State space diagram.

can be distinguished : ordered, chaotic and critical [Kau04]. In order to identify these

phases, a plot can be generated with a small black square for a node in state ’1’ and

with all the nodes lined up at the top of the plot with time flowing downwards. Figure

3.20 shows plots from each type of RBN. Early studies of RBNs quickly revealed that

parameter K had a great influence on the type of RBN generated. Broadly speaking,

networks with K ≤ 2 correspond to the ordered type, while the chaotic type is usually

seen in networks with K ≥ 3.

The critical type of behavior is usually considered by researchers as the most interesting

of the three types. The ordered type is too static to derive useful observations applicable to

dynamic systems, whereas the chaotic type is too random to study any kind of reproducible

property. Of particular interest is what has been termed “the edge of chaos” [Heu98], which

in RBNs means a condition in networks of the critical type where dynamically changing

states are in a phase transition between ordered and chaotic.

Kauffman also discovered that these transitional phases were related to diverse aspects

of the stability of a network. He conducted experiments where he manually perturbed or

damaged nodes in a RBN in order to study the effect of these alterations. He found that

in the ordered regime, damage to a node does not usually spread to other nodes. In the
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Fig. 3.20 – Examples of state dynamics for the three types of Random Boolean Networks.
N = 32. Black square = state ’1’ ; white square = state ’0’. Initial states at the top and
time flowing downwards. a) Ordered (K = 1) ; b) Critical (K = 2) ; c) Chaotic (K = 5).
(Taken from [Ger04].)

chaotic phase a small change could have large consequences in the network dynamics.

Finally, at the edge of chaos, changes can disseminate, but not necessarily affecting the

whole network [Ger04].

It has been suggested that living systems evolve more naturally at “the edge of chaos”,

since they need certain stability in order to survive, while at the same time they need

flexibility to explore their space of possibilities [Lan90, Kau04]. Furthermore, Kauffman

suggested that biological entities could have originally been generated from random ele-

ments, with no absolute need of precisely programmed elements [Kau69]. This conjecture

was derived from his observations of the complex behavior of some of these randomly

generated networks and the inherent robustness he found in them.

3.11 Artificial Regulatory Networks

Over the years, many models of Artificial Regulatory Networks (ARNs) have emerged

in an attempt to emulate the gene networks found in nature. Torsten Reil was one of the

first researchers to propose an artificial genome with biological plausible properties based

on template matching on a nucleotide-like sequence [Rei99]. The genome is defined as a
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GeneCis element Promoter

GenePromoter

Regulation

Translation

Binding

Gene product (transcription factor)

Fig. 3.21 – Gene expression and regulation in the artificial genome. Gene length N is
equal to 6.

string of digits and is randomly created. Genes in the genome are not predefined, but are

identified by a “promoter” sequence that precedes them. The string arbitrarily chosen for

the promoter sequence is 0101, similar to TATA boxes found in biological genomes. The

N digits immediately following the promoter sequence constitute the gene (Fig. 3.21).

After a gene is identified, it is translated using a simple transformation of the se-

quence. In the implementation used by Reil, the gene product is simply generated by

the addition of one digit to the sequence, with the corresponding modulo operation. For

each identified gene product, all direct matching sequences in the genome are searched

and stored (see Fig. 3.21). These matching sequences are termed “cis-elements” in the

model, as their biological counterparts, and they constitute the regulatory units of the

genome. A regulatory sequence can behave either as an enhancer to activate a gene, or as

an inhibitor to block its activity. The role of the gene product is defined by the value of

its last digit. For instance, all gene products ending in ‘1’ are inhibitors. Regulation is not

concentration dependent ; it suffices to have one enhancer to activate a gene. However,

inhibition is defined as having precedence over enhancement.

In order to test the model, after a genome was generated and all the above rules were

applied, gene expression over time was studied. Initially all genes but one were set as
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turned off. It was then determined which genes were regulated by the initial active gene,

and they were labeled as on or off, depending on their role as enhancers or inhibitors. In

the next step, the same procedure was applied using the newly activated genes, and so on

for all subsequent time steps until a specified number of cycles was reached. The resulting

pattern of expression is visualized in what the author called an expression graph, which

is a 2D graph with time in the X-axis and a black dot for every active gene in the Y-axis.

The author varied the following model parameters : genome size, gene length, base

(range of digits), and degree of inhibition measured as a fraction of the range of digits

that determined the role of inhibitor in cis-elements. It was found that the behavior of

the model was highly dependent on the parameter values.

As with RBNs and other dynamical systems, three basic types of behavior were iden-

tified : ordered, chaotic, and complex. Gene expression was called ordered if genes were

continuously active or inactive throughout the run. If gene expression seemed to be ran-

dom with no apparent emerging pattern, it was called chaotic. If the expression of genes

was considered to be between ordered and chaotic with the formation of identifiable pat-

terns, then it was called complex. The author broadly identified which ranges of parameter

values gave rise to each type of behavior.

For genomes with a behavior of the complex type, it was found that gene expression

converged to the same pattern from a number of different start genes. This was viewed

as the cycle attractors found in the RBNs described in Section 3.10. Every genome of

this kind typically contained several such attractors. This finding supported the notion

proposed by Kauffman that cell types could be viewed as attractors of gene expression in

natural gene networks [Kau71]. Thus, cell differentiation could be viewed as a dynamic

system that moved from one attractor to another.

On the other hand, Reil observed that even after manual perturbations in the model,

gene expression usually returned to the attractors that emerged previously. It must be

emphasized that the artificial genomes endured no evolution. The behaviors observed were
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the result of the properties of genomes entirely generated at random. Reil hypothesized

that robustness in natural genomes might be an inherent property of the template mat-

ching system, rather than the result of the natural selection of the most robust nucleotide

sequences [Rei99].

An important advancement in the design of an artificial genome model was made

by Banzhaf, who designed a genetic representation based on ARNs [Ban03]. His genome

consists of a randomly generated binary string. Similarly to other models, the “promoter”

is a particular sequence that signals the beginning of a gene in the genome. The promoter

was arbitrarily chosen as the string ’XYZ01010101’, with ’XYZ’ being any 3-bit combina-

tion. In a randomly generated bit string, the expected frequency of the pattern ’01010101’

is 2−8 ≈ 0.0039 = 0.39%. The gene following the promoter was defined as a series of five

32-bit strings, for a total of 160 bits per gene. Immediately before the promoter sequence,

two special 32-bit sites were defined : an enhancer and an inhibitor.

The five 32-bit regions after the promoter are translated into a protein using a majority

rule, i.e. the first bit in the translated protein corresponds to the bit that is in majority

in the first position of the five protein-coding regions, and so on until the end of the

32-bit sequence. In this model the transcription process seen in nature is completely

disregarded. There is no intermediary element –such as the messenger RNA sequences

found in biological systems– between the gene and the translated protein.

After a protein has been produced, it is then compared on a bit by bit basis with

the enhancer and inhibitor sequences on all genes in the genome. The comparison is

achieved through the use of an XOR operation, which renders a ’1’ if the bits compared are

complementary. It is expected that a Gaussian distribution is found when measuring the

match between a particular protein and all the 32-bit sequences of a randomly generated

genome. Thus there will be few sequences with a high degree of matching and likewise

there will be few poor-matching sequences. The majority of 32-bit strings will be average-

matching sequences. Banzhaf confirmed through simulations that randomly generated
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genomes of various sizes contained the expected number of genes. For example, a genome

consisting of 100,000 bits contained 409 genes, which is consistent with the 0.39% rule.

The degree of matching between proteins and enhancer or inhibitor sites defines the

degree of activation or inhibition of genes, respectively. The influence of a protein is

exponential with the number of matching bits. How the degree of activation and inhibition

of genes with the corresponding change in protein concentration are calculated will be

discussed more thoroughly in Section 4.3 of Chapter 4, as the ARN proposed in this thesis

is based on the model here described. It suffices to say for the moment that all translated

proteins are compared against the regulatory sites of all genes and the concentration

change for the next time step is then calculated for all proteins.

Using randomly generated genomes with no evolution involved, Banzhaf discovered

several types of protein concentration dynamics over time. Figure 3.22 shows four examples

of protein concentration variations over time. Protein concentrations are normalized so

that total protein concentration is always the unity. In Fig. 3.22(a), protein concentration

change exhibits a dampened oscillating pattern for several proteins, while in Fig. 3.22(b)

protein concentrations follow a slow and smooth development. It can happen that a protein

quickly dominates in concentration over the other proteins as in Fig. 3.22(c), or a protein

can achieve higher values of concentration with a subsequent switch of expression to

another gene (Fig. 3.22(d)).

It was soon discovered that the degree of matching between regulatory sites and a

protein by one or two bits could sometimes induce dramatic changes in the dynamics.

Figure 3.23 exemplifies this point my showing the results of manually modifying the

genome from Fig. 3.22(d). In Fig. 3.23(a) the degree of matching between protein 7 and

the inhibitor site in gene 4 was changed by one bit. The transition of expression to another

gene is displaced to the right in the graph and this displacement is more pronounced by

simply modifying another bit in the same gene (Fig. 3.23(b). Note the change in the time

scale.)
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(a) (b)

(c) (d)

Fig. 3.22 – Examples of time development of protein concentrations. (a) Oscillating
concentration change ; (b) Slow and smooth concentration change ; (c) Quick settlement
into a point attractor ; (d) Transition concentration change between two proteins. (Taken
from [Ban03].)

(a) (b)

Fig. 3.23 – Effect of a single bit change in protein concentration behavior. The genome is
the same as in Fig. 3.22(d).(a) Degree of matching between protein 7 and inhibitory site
to gene 4 changed by one bit ; (b) Degree of matching increased by another bit. (Taken
from [Ban03].)

After observing the dynamics of proteins from genomes that had experienced no evo-

lution, Banzhaf used Genetic Programming (GP) in an attempt to drive the dynamics of
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gene expression towards desired behaviors. He started by evolving the genome to obtain a

target concentration of a particular protein. He found out that in general the evolutionary

process quickly converged towards the target state.

In the search of other applications for this model, Banzhaf and his colleagues evolved

genomes where the protein concentrations were used to modulate output functions such

as sinusoids, exponentials and sigmoids [KLB04]. A randomly selected 62-bit string in

the genome was chosen to function as an enhancer and an inhibitor site, and they were

allowed to freely interact with expressed proteins. However, instead of controlling gene

expression, these sites were used to calculate the output value of a function mapped to the

[−1, 1] interval. These authors found that it was feasible to evolve genomes for generating

time-series for function optimization. They also used evolution of the artificial genome

model to produce networks with small-world and scale-free topologies [KB04].

Another author that evolved an ARN in order to perform a specific task was Bongard

[Bon02]. He designed virtual modular robots that were evaluated for how fast they could

travel over an infinite horizontal plane during a time interval previously specified. The

robots are composed of one or more morphological units and zero or more sensors, motors,

neurons and synapses. Each morphological unit contains a genome, and at the beginning

of the evolution a genome and a motor neuron are inserted into the initial unit. As

in similar genome models, a gene is preceded by a promoter sequence. Transcription

factor sources are placed at the poles of the initial unit to allow the ARN to establish its

anterior/posterior axes. The unit then starts producing transcription factors that activate

expression of genes in the genome. Transcription factors can have a direct influence in the

external features of the developing unit. They can activate one of 23 predefined phenotypic

transformations, such as increasing the length of the unit, causing a unit to divide in two,

or adding, deleting or modifying neurons or synapses. The unit’s behavior is dependent

on the real-time propagation of sensory information through its neural network to motor

neurons, which can actuate the unit’s joints to generate movement. Using this model,
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Bongard demonstrated that mobile units could be evolved in a virtual environment. His

results suggest that a similar model might be applied in the design of physical robots.

Other authors have performed research on artificial regulatory networks using a num-

ber of approaches. Willadsen and Wiles designed a genome based on the model proposed

by Reil [Rei99]. As in other models, the genome consists of a string of randomly genera-

ted integers where a promoter precedes a fixed-length gene. Gene products are produced,

which can regulate expression of other genes [WW03]. While their genome model offered

no major improvement over previous models, these authors succeeding in showing that

there was a strong relationship between gene network connectivity and the degree of in-

hibition with respect to generating a chaotic behavior. Low connectivity gene networks

were found to be very stable, while in higher connectivity networks there was a signifi-

cantly elevated frequency of chaotic behavior. The same research group suggested that the

synchronous updating of the network dynamics regularly used in genome models was not

the most adequate since it was not biologically plausible [HW04b]. They suggested that

asynchronous updating of the dynamics was more realistic since biological cells do not

work synchronously. They found that using asynchronous updating, dynamics converged

to an attractor under almost all conditions [HW04a].

Flan et al. used ARNs to construct 2D cellular patterns such as borders, patches and

mosaics [FHB+05]. They implemented the ARN as a graph, where each node represents a

distinct expression level from a protein, and each edge corresponds to interactions between

proteins. A protein is influenced when its production or inhibition is altered as the function

of other protein concentration levels. A set of differential equations was used to define the

rate of production or inhibition. In their model, cell to cell contact signaling was sufficient

to form a number of global patch patterns. On the other hand, they found it difficult

to produce certain patterns with a single ARN, but they solved the problem by using

disjoint ARNs run in parallel and combining their protein concentration levels. These

authors conjectured that complex ARNs in nature might have evolved by combining
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simpler ARNs.

Nehaniv’s research group has worked on ARNs aiming at evolving a biological clock

model [KNSQ06, KNS07]. They studied the evolvability of ARNs as active control systems

that responded with appropriate periodic behaviors to periodic environmental stimuli of

several types. Their genome model is based on the one proposed in [QNDR03], from the

same research group. Unlike the model on which it is based, the genome in the biological

clock model contains an evolvable number of complex cis-regulatory control sites. Each

regulatory site in turn contains a number of activating or inhibitory binding factors.

Although their model only considered the evolution of the genome of one single cell, their

results with the biological clock model could be used to synchronize reproduction of cells

in an artificial development model.

3.12 Evolutionary Development Model

Kumar and Bentley designed a developmental testbed that they called the Evolutio-

nary Development System (EDS). It was intended for the investigation of multicellular

processes and mechanisms, and their potential application to computer science. The EDS

contains the equivalent of many key elements involved in biological development. It im-

plements concepts such as embryos, cells, cell cytoplasm, cell wall, proteins, receptors,

transcription factors, genes and cis-regulatory regions [KB03a, KB03b].

In the EDS, proteins are implemented as objects. Each protein has a field to identify it

as one of the eight types defined. Protein objects contain a current and a new state object

that are used to simulate parallelism in protein behavior. These state objects include

information such as the protein diffusion coefficient. Protein diffusion in the medium is

implemented by means of a Gaussian function centered at the protein source. It is assumed

that proteins diffuse uniformly in all directions.

Unlike other models, there are two types of genomes in the EDS. The first genome
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stores protein-related parameter values such as the rates of synthesis, decay and diffusion.

The second genome encodes the architecture to be used for development by describing

which proteins have a role in the regulation of the different genes. The second genome is

contained inside every cell during the simulation of the developmental process. The first

genome is only used to initialize proteins with their respective values.

The genome inside cells is represented by an array of genes, where each gene consists

of a cis-regulatory region and a protein-coding region. The cis-regulatory region contains

in turn an array of target sites for binding matching transcription factors. As in other

models, the binding of transcription factors in the cis-regulatory region modulates the

activity of the gene. By summing the product of concentration and interaction weight of

each transcription factor, a value is obtained that is fed to a sigmoid function to determine

whether or not the associated protein-coding region should be translated.

Cells in the EDS are autonomous agents that have sensors in the form of surface

receptors capable of binding to substances in the environment. Depending on their current

state, cells can exhibit a number of activities such as division, differentiation shown as an

external color, and apoptosis or programmed cell death.

A genetic algorithm with tournament selection was used to evolve the genomes. One of

the morphogenesis experiments consisted in evolving spherical embryos using the equation

of a sphere as a fitness function. Results showed that evolution did not make use of many

proteins and the evolved ARNs were not very complex. The authors considered that it was

likely that their system had a natural tendency to produce almost spherical cell clusters

and that it did not take much to achieve the goal desired.

The design of the EDS was probably too ambitious by involving many elements that

introduced more variables and interactions in the system than desired. Results obtained

with the EDS are meager considering the number of concepts involved. The system might

prove its true potential with a more complex target cellular structure.
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3.13 The French Flag Problem

The problem of generating a French flag pattern was first introduced by Wolpert in

the late 1960s when trying to formulate the problem of cell pattern development and

regulation in living organisms [Wol68]. This formulation has been used since then by

some authors to study the problem of artificial pattern development.

Lindenmayer and Rozenberg used the French flag problem to illustrate how a grammar-

based L-System could be used to solve the generation of this particular pattern when

enunciated as the production of a string of the type anbncn over the alphabet {a, b, c}

and with n > 0 [LR72]. On the other hand, Herman and Liu developed an extension of a

simulator called CELIA [BH70] and applied it to generate a French flag pattern in order

to study synchronization and symmetry breaking in cellular development [HL73].

More recently, Miller and Banzhaf used what they called Cartesian genetic program-

ming to evolve a cell program that would construct a French flag pattern [MB03]. They

tested the robustness of their programs by manually removing parts of the developing

pattern. They found that some of their evolved programs could repair to some extent the

damaged patterns. Bowers also used this problem to study the phenotypic robustness of

his embryogeny model, which was based on cellular growth with diffusing chemicals as

signaling molecules [Bow05].

Gordon and Bentley proposed a development model based on a set of rules that des-

cribed how development should proceed [GB05]. A set of rules evolved by a GA was used

to develop a French flag pattern. The morphogenic model based on a multiagent system

developed by Beurier et al. also used an evolved set of agent rules to grow French and Ja-

panese flag patterns [BMF06]. On the other hand, Devert et al. proposed a neural network

model for multicellular development that grew French flag patterns [DBS07]. Finally, even

models for developing evolvable hardware have benefited from the French flag problem as

a test case [TG07, HMB07].
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Proposed Model

Résumé

Ce chapitre présente la contribution spécifique de l’auteur à un modèle de développement artificiel.
Une série de gènes régulateurs codés au début de chaque génome artificiel constitue un RAR. Ces gènes de
régulation sont suivis par une série de gènes structurels, dont chacun peut générer une forme particulière
simple telle qu’un carré ou une ligne. Les différents modèles étudiés diffèrent principalement quant au
type de RAR proposé.

Trois modèles de RARs différents ont été conçus et ils ont été évolués dans tous les cas au moyen
d’un AG. Tous les modèles construits sont basés sur le modèle original de RAR proposé par Banzhaf.

– Dans le RAR basique, chaque gène régulateur consiste en un site d’activation, un site d’inhibition
et une série de régions qui peuvent produire une protéine régulatrice interagissant avec les sites
régulateurs de tous les gènes.

– Dans le modèle étendu de RAR, le nombre de sites régulateurs peut être supérieur à 2 et ils
peuvent se comporter en tant qu’activateur ou en tant qu’inhibiteur, selon la configuration des bits
définissant le rôle du site régulateur.

– Dans la version finale du modèle, des structures cellulaires sont produites au moyen de l’activation
et de l’inhibition sélectives de gènes du développement, sous les contraintes de gradients des
morphogènes. Le RAR étendu détermine le temps de division cellulaire et il choisit le gène
structurel à utiliser pour la reproduction, pendant que les gradients morphogénétiques contraignent
la position sur laquelle les cellules peuvent se reproduire.

Pour évaluer la performance des trois modèles proposés, leurs génomes ont été appliqués à un modèle
de croissance cellulaire conçu pour produire des formes géométriques simples pour chaque gène structurel.
Ce modèle est basé sur le paradigme des AC. Quatre voisinages d’interaction en 2D ont été utilisés dans
l’AC : von Neumann, Moore, 2-Radial et Margolus. Dans le cas 3D, on a utilisé le voisinage Margolus
en 3D. La table de transition des ACs fournit pour chaque voisinage local, l’état (vide ou occupé) de la
position cible dans la grille. Les gènes structurels dans les génomes artificiels correspondent à une table
de transition (résultat d’une évolution par un AG) qui produit une forme géométrique particulière. En
commençant avec une cellule active au milieu de la grille, l’algorithme de l’AC est appliqué afin de per-
mettre aux cellules actives de se reproduire d’après les règles trouvées par l’AG.

The proposed model of artificial development is presented in this chapter. In the final

version of the model, cellular patterns are generated by means of the selective activation
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and inhibition of development genes under the constraints of morphogenetic gradients.

Cellular growth is achieved through the expression of structural genes, which are in turn

controlled by an Artificial Regulatory Network (ARN) evolved by a Genetic Algorithm

(GA). The ARN establishes the time at which cells can reproduce and determines which

structural gene to use at each time step. At the same time, morphogenetic gradients

constrain the position at which cells can replicate. The combination of the ARN and the

structural genes make up the artificial cell’s genome.

In the following sections, the successive phases of the model construction are presented.

Each intermediate model is based on the preceding model, either to increase functionality

or to overcome limitations presented in the previous model.

4.1 Cellular Growth Testbed

In order to evaluate the performance of the development program obtained with each

successive incremental model, their evolved genomes were applied to a cellular growth

testbed designed to generate simple geometrical shapes [CD06b]. This growth model is

based on the extensively studied cellular automata (CA) paradigm.

Cellular automata are simple mathematical models that can be used to study self-

organization in a wide variety of complex systems [Wol83]. CA are characterized by a

regular lattice of N identical cells, an interaction neighborhood template η, a finite set

of cell states Σ, and a space- and time-independent transition rule φ which is applied to

every cell in the lattice at each time step [DD05].

In the CA model used in this work, a cell can become active only if there is already

an active cell in the interaction neighborhood. Thus, a new active cell can only be de-

rived (reproduced) from a previously active cell in the interaction neighborhood, i.e. no

spontaneous generation is allowed, as in actual biological systems.

In this work two different regular lattices with non-periodic boundaries were tried, a
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2D and a 3D lattice. For 2D neighborhoods, a 33× 33 cell lattice was used, while for the

3D neighborhood a cubic lattice of side length 17 was chosen. The set of cell states was

defined as Σ = {0, 1}, where 0 can be interpreted as an empty cell and 1 as an occupied or

active cell. For 2D shapes, four different interaction neighborhood templates η were consi-

dered, while only one neighborhood was studied in 3D. The interaction neighborhoods are

described in the following subsections. The CA’s rule φ was defined as a lookup table that

determined, for each local neighborhood, the state (empty, occupied) of the objective cell

at the next time step [MCD96, HCM98]. For a binary-state CA, these update states are

termed the rule table’s “output bits”. The lookup table input was defined by the binary

state value of cells in the local interaction neighborhood, where 0 meant an empty cell

and 1 meant an occupied cell.

All the neighborhoods considered in the cellular growth testbed are outer interaction

neighborhoods, since the objective cell is not considered as part of the interaction neigh-

borhood. This simplification was made given that the CA rule is applied only to empty

cells, implicitly assuming that all rules that have the state value 1 in the objective cell,

also have the value 1 as output. That is, a cell that is already occupied by an active cell

has no place to hold another active cell.

Figure 4.1 shows an example of the relationship between a CA neighborhood template

and the corresponding lookup table. For each neighborhood configuration, the output

bit determines whether or not a cell is to be placed at the corresponding objective cell

position. In this example, if there is only an active cell at the objective cell’s right position,

then the objective cell is to be filled with an active cell (second row of the lookup table

in Fig. 4.1). The actual output bit values used have to be determined for each different

shape and are found using a genetic algorithm.
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Lookup Table

Output 
bit

00 00 0
00 10 1
00 01 1

11 11 0

00 11 0
10 00 1

MM

Output
bit

Neighborhood
template

Fig. 4.1 – Relationship between a cellular automaton neighborhood template and the
corresponding lookup table. The output bit values shown are used only as an example.

4.1.1 2D Neighborhoods

Four types of 2D interaction neighborhoods were used in this work : von Neumann,

Moore, 2-Radial, and Margolus neighborhoods (Fig. 4.2).
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Fig. 4.2 – Interaction neighborhoods. (a) Von Neumann, (b) Moore, (c) 2-Radial, and
(d) Margolus. The objective cell is depicted in gray.
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Von Neumann Neighborhood

In the von Neumann neighborhood the cells at the top, left, bottom, and right of

the objective cell make up the interaction neighborhood. The CA lookup table input φ is

defined by the binary values of cells ηv0η
v
1η

v
2η

v
3 of the neighborhood indicated in Fig. 4.2(a).

Moore Neighborhood

In the Moore neighborhood the nearest eight cells around the objective cell define

the interaction neighborhood. The lookup table input is defined by the binary values of

ηm0 η
m
1 η

m
2 η

m
3 η

m
4 η

m
5 η

m
6 η

m
7 of the neighboring cells shown in Fig. 4.2(b).

2-Radial Neighborhood

This interaction neighborhood is composed by all the cells within a radius of two cells

of length from the objective cell. Formally,

ηr =
{

(cx, cy) : cx, cy ∈ {−2,−1, 0, 1, 2} ∧
√
c2x + c2y ≤ 2

}
− {(0, 0)}

The lookup table input is defined by the binary values of ηr0η
r
1η

r
2η

r
3η

r
4η

r
5η

r
6η

r
7η

r
8η

r
9η

r
10η

r
11,

where ηr0 to ηr11 are as indicated in Fig. 4.2(c).

Margolus Neighborhood

In the Margolus neighborhood there is an alternation of the block of cells considered

at each step of the CA algorithm. At odd steps, the cells at the top, upper left, and

left of the objective cell constitute the interaction neighborhood, while at even steps the

neighborhood is formed by the mirror cells of the previous block (see Fig. 4.2(d)). The

lookup table input is defined by the binary values of ςηa0η
a
1η

a
2 , where ς is defined as 0 for

odd steps of the CA algorithm and as 1 for even steps, and ηa0 , η
a
1 and ηa2 are the binary

values of the neighboring cells indicated in Fig. 4.2(d).
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4.1.2 3D Neighborhood

The neighborhood chosen for working in 3D was the Margolus neighborhood, which

has been previously used with success in modeling 3D shapes [ATTY99, WWW04]. As in

the 2D case, each cell belongs to different blocks at odd and even steps. The input of the

lookup table is defined by the values of ςη′′0η
′′
1η
′′
2η
′′
3η
′′
4η
′′
5η
′′
6 , where ς is defined as in the 2D

case and η′′0 to η′′6 are as indicated in Fig. 4.3.

Odd
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   ″    ″

   ″
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Fig. 4.3 – 3D Margolus neighborhood. The objective cell is depicted as a dark cube.

Results from simulations using these neighborhoods are presented in Chapter 5. From

these results and for the sake of simplicity and shorter simulation times, only 2D cell

patterns were considered for the rest of the model construction, using an outer Moore

neighborhood template in the cellular growth testbed. However, all the principles that

apply for the 2D case could be extrapolated to the 3D case in a straightforward manner,

although with much longer simulation times.

4.1.3 NetLogo Models

NetLogo is a programmable modeling environment based on StarLogo that can be

used to simulate natural and social phenomena [Wil99]. It works by giving instructions

to hundreds or thousands of independent “agents” all operating concurrently. It is well

suited to study emergent properties in complex systems that result from the interaction
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of simple but often numerous entities. The version used in this work was NetLogo 3-D

Preview 1, which has extensions from the regular NetLogo that allow modeling a virtual

3D environment.

For all simulations, the CA algorithm at study was implemented as a NetLogo model.

For each of the neighborhoods studied and for each of the successive models proposed, a

NetLogo model was built. Each cell position is defined by its Cartesian coordinates with

the origin at the center of the lattice. Starting with an active cell in the middle of the

lattice, the CA algorithm was applied allowing active cells to reproduce according to the

CA rule table and until the indicated number of iterations was attained. Asynchronous

updating of cells was originally chosen for the CA implementation, as it had been repor-

ted to give more biological-like results [SdR99]. However, in later models, synchronous

updating was used for the sake of reproducibility.

4.2 Morphogenetic Gradients

Since Turing’s influential article on the theoretical effect of diffusing chemical sub-

stances on an organism’s pattern development [Tur52], the role of these molecules has

been confirmed in a number of biological systems. These organizing substances have been

termed morphogens due to their role in driving morphogenetic processes. In the final deve-

lopment model presented in this chapter, morphogenetic gradients were generated similar

to those found in the eggs of the fruit fly Drosophila, where orthogonal gradients offer a

sort of Cartesian coordinate system [CGW04]. These gradients provide reproducing cells

with positional information in order to facilitate the spatial generation of patterns. The

artificial morphogenetic gradients were set up as suggested in [Mei82], where morphogens

diffuse from a source towards a sink, with uniform morphogen degradation throughout

the gradient.

Before cells were allowed to reproduce in the cellular growth testbed, morphogenetic
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gradients were generated by diffusing the morphogens from one of the CA boundaries for

1000 time steps. Initial morphogen concentration level was set at 255 arbitrary units, and

the source was replenished to the same level at the beginning of each cycle. The sink was

set up at the opposite boundary of the lattice, where the morphogen level was always

set to zero. At the end of each time step, morphogens were degraded at a rate of 0.005

throughout the CA lattice. Two orthogonal gradients in the CA lattice were defined, one

generated from left to right and the other from top to bottom (Fig. 4.4).
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Fig. 4.4 – Morphogenetic gradients (a) Left to Right ; (b) Top to Bottom ; (c) Morphogen
concentration graph.

4.3 Genomes

Genomes are the repository of genetic information in living organisms. They are enco-

ded as one or more chains of DNA, and they regularly interact with other macromolecules,

such as RNA and proteins. Artificial genomes are typically coded as strings of discrete

data types. The genomes used in the following models were defined as binary strings

starting with a series of regulatory genes, followed by a number of structural genes.

The series of regulatory genes at the beginning of each artificial genome presented in

this chapter constitutes an Artificial Regulatory Network (ARN). For the sake of simpli-

city, the term “regulatory gene” is used in these models to comprise both the elements

controlling protein expression and the regions coding for the regulatory protein. The mo-

72



4.3. Genomes

dels presented next differ mainly on the type of ARN proposed. On the other hand,

structural genes code for the particular shape grown by the reproducing cells and they

will be described in more detail in Section 4.3.2.

4.3.1 Artificial Regulatory Networks

In nature, gene regulatory networks have been found to be a central component of

an organism’s genome. They actively participate in the regulation of development and

in the control of metabolic functions in living organisms [Dav06]. Artificial Regulatory

Networks on the other hand are computer models whose objective is to emulate to some

extent the gene regulatory networks found in nature. ARNs have previously been used to

study differential gene expression either as a computational paradigm or to solve particular

problems [Egg97b, Rei99, Ban03, KB04, STK05, KNSQ06].

Basic ARN

The first ARN model presented here (shown as the series of regulatory genes of the

genome in Fig. 4.5) is based on the ARN proposed by Banzhaf [Ban03]. However, unlike

the ARN model developed by this author, the ARN implemented in the present work does

not have promoter sequences and there are no unused intergene regions. All regulatory

genes are adjacent and have predefined initial and end positions. Furthermore, the number

of regulatory genes is fixed.

Each of the regulatory genes consists of an inhibition site, an enhancer site and a series

of regulatory protein coding regions (Fig. 4.5). The latter “translate” these regions into a

regulatory protein using the majority rule, i.e. for each bit position in the protein coding

regions, the number of 1’s and 0’s is counted and the bit that is in majority is translated

into the regulatory protein. The inhibition site, the enhancer site and the individual

protein coding regions all have the same size in bits. Thus the protein translated from the

corresponding coding regions can be compared on a bit by bit basis with the inhibitor and
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Inhibitor 
site 

Enhancer 
site 

Regulatory protein 
coding regions

Translation by majority rule 

Regulatory 
protein 

Determine degree 
of match 

1

Regulatory genes 

. . .

To inhibition and enhancer sites 
in the other regulatory genes

1 . . .2 n m

Structural genes 

2

Fig. 4.5 – Genome structure of the basic model.

enhancer sites and the degree of matching can be measured. As in [Ban03], the comparison

was implemented by an XOR operation, which results in a “1” if the corresponding bits

are complementary.

Each translated protein is compared with the inhibition and enhancer sites of all

the regulatory genes in order to determine the degree of interaction in the regulatory

network. The influence of a protein on an enhancer or inhibitor site is exponential with

the number of matching bits. The strength of enhancement en or inhibition in for gene i

with i = 1, ..., n is defined as

eni =
1

n

n∑
j=1

cje
β(u+

ij−u
+
max) (4.1)

ini =
1

n

n∑
j=1

cje
β(u−ij−u

−
max), (4.2)

where n is the total number of regulatory genes, cj is the concentration of protein j, β is a

constant that fine-tunes the strength of matching, u+
ij and u−ij are the number of matches

between protein j and the enhancer and inhibitor sites of gene i, respectively, and u+
max

and u−max are the maximum matches achievable between a protein and an enhancer or
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inhibition site, respectively [Ban03].

Once the en and in values are obtained for all regulatory genes, the corresponding

concentration change for protein i in one time step is found using

dci
dt

= δ (eni − ini) ci, (4.3)

where δ is a constant that regulates the degree of protein concentration change. Protein

concentrations are updated and if a new protein concentration results in a negative value,

the protein concentration is set to zero. Protein concentrations are then normalized so

that total protein concentration is always the unity. Parameters β and δ were set to 1.0

and 1.0× 106, respectively [CD07c], as will be explained in the chapter of results.

Genome size in bits is dependent on the number and size of its component genes, and

in this basic model it was defined as

GenomeSize1 = n× [(2 + k)× r] + (m× s), (4.4)

where n is the number of regulatory genes, k is the number of regulatory protein coding

regions, r is the region size in bits, m is the number of structural genes (m ≤ n), and s

is the structural gene size in bits. For all simulations the following parameter values were

used : n = 10, k = 5, r = 32 and s = 256. The number of structural genes m took values

from 1, 2, 3 or 6, depending on the experiment performed, as explained in Chapter 5. The

number of regulatory genes n was chosen as 10 because this figure was within the range

of values previously reported for this kind of ARN [Ban03], and it was found that this

value gave a desirable behavior in the protein concentration variations needed to control

cell reproduction. Parameter values for k and s are equal to those used in [Ban03]. The

value of 256 for parameter s results from the use of an outer Moore neighborhood for the

CA lookup table that corresponds to the structural gene, that is s = 28 = 256, as will be

described in Section 4.3.2.
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Extended ARN

As explained in Chapter 5, the basic ARN genome could not reliably synchronize

more than three structural genes, so it was decided that the model should be extended to

overcome this limitation [CD07d, CD07b]. The extended genome is shown in Fig. 4.6.
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Fig. 4.6 – Genome structure of the extended model.

The basic ARN model only considered one inhibitor and one enhancer site for each

regulatory gene. However, in the extended model the number of regulatory sites can be

more than two and, more significantly, they have no predefined function. They can behave

either as an enhancer or an inhibitor, depending on the configuration of the defining bits

associated with the regulatory site (Fig. 4.6). If there are more 1’s than 0’s in the defining

bits region, then the site functions as an enhancer, but if there are more 0’s than 1’s, then

the site behaves as an inhibitor. Finally, if there is an equal number of 1’s and 0’s, then

the regulatory site is turned off. This means that the regulatory site role as an enhancer

or as an inhibitor can be evolved by the GA. Furthermore, if the number of function

defining bits is even, then the regulatory site can be turned on and off. The number of

regulatory sites was extended with respect to the original model, in order to more closely

follow what happens in nature, where biological regulatory genes involved in development

typically have several regulatory sites associated with them [Dav06].

Each regulatory gene in the extended model consists of a series of inhibitor/enhancer
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sites and a series of regulatory protein coding regions (Fig. 4.6). As in the basic ARN,

these regions translate a protein using the majority rule which can be compared bit by

bit with the regulatory sites by means of an XOR operation.

The equations that calculate the degree of gene enhancement or inhibition had to be

slightly modified to account for the variable number of inhibitor and enhancer sites. The

strength of excitation en or inhibition in for gene i with i = 1, ..., n is thus defined as

eni =
1

v

v∑
j=1

cje
β(u+

ij−u
+
max) (4.5)

ini =
1

w

w∑
j=1

cje
β(u−ij−u

−
max), (4.6)

where v and w are the total number of enhancer and inhibitor sites, respectively. The rest

of parameters and constants are the same as in the basic model.

Once the en and in values are obtained for all regulatory genes, the corresponding

change in concentration for protein i was calculated as in the basic model. Parameters β

and δ were also set as in the previous model.

Genome size in bits for the extended model is calculated using

GenomeSize2 = n× {[(p+ k)× r] + (p× d)}+ (m× s), (4.7)

where n is the number of regulatory genes, p is the number of inhibitor/enhancer sites

per regulatory gene, k is the number of regulatory protein coding regions, r is the re-

gulatory/protein region size in bits, d is the number of function defining bits, m is the

number of structural genes (m ≤ n), and s is the structural gene size in bits. The number

of structural genes m took values from 3, 4 or 8, depending on the experiment performed,

and parameters p and d were varied as explained in Chapter 5. The rest of the parameters

were set the same as in the basic model.
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Chapitre 4. Proposed Model

Extended ARN with Morphogenetic Fields

In this final ARN model, each regulatory gene consists of a series of eight inhibi-

tor/enhancer sites, a series of five regulatory protein coding regions, and two morphogen

threshold activation sites that determine the allowed positions for cell reproduction (Fig.

4.7). Inhibitor/enhancer sites are composed of a 12-bit function defining region and a re-

gulatory site. As in the previous model, regulatory sites can behave either as an enhancer

or an inhibitor, depending on the configuration of the function defining bits associated

with them.
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Fig. 4.7 – Genome structure of the extended model with morphogenetic fields.

The parameter values used for the number of inhibitor/enhancer sites and the number

of function defining bits are those that gave the best results under the conditions tested

(Chapter 5). The values for the rest of the parameters are the same as in the extended

model [CD07a].

As in the previous models, the regulatory protein coding regions are translated into a

protein that is matched against all the regulatory sites in the ARN. Protein concentration

levels are calculated as in the extended ARN model.

The morphogen threshold activation sites provide reproducing cells with positional

information as to where they are allowed to grow in the CA lattice. There is one site

for each of the two orthogonal morphogenetic gradients described in Section 4.2. These
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sites are 9 bits in length, where the first bit defines the allowed direction (above or below

the threshold) of cellular growth, and the next 8 bits code for the morphogen threshold

activation level, which ranges from 0 to 28− 1 = 255. If the site’s high order bit is 0, then

cells are allowed to replicate below the morphogen threshold level coded in the lower order

eight bits ; if the value is 1, then cells are allowed to reproduce above the threshold level.

Since in a regulatory gene there is one site for each of the two orthogonal morphogenetic

gradients, for each pair of morphogen threshold activation levels, the pair of high order bits

defines in which of the four relative quadrants cells expressing the associated structural

gene can reproduce. Quadrants can have irregular edges because morphogenetic gradients

are not perfectly generated due to local morphogen accumulation close to the non-periodic

boundaries of the CA lattice.

Genome size in bits for this model is calculated using

GenomeSize3 = n× {[(p+ k)× r] + [p× (d+ 2h)]}+ (m× s), (4.8)

where h is the size in bits of a morphogen threshold activation site, and the rest of the

parameters are the same as in the previous model. The number of structural genes m used

in this model was 3 or 8, depending on the pattern desired.

4.3.2 Structural Genes

Structural genes code for the particular shape grown by the reproducing cells [CD06a]

and they correspond to the CA rule table’s output bits from the cellular growth testbed

presented in Section 4.1. Previously to being attached to the regulatory genes to constitute

the genome, structural genes were evolved by a GA in order to produce predefined 2D

shapes.

Structural genes are always associated to the corresponding regulatory genes, that

is, structural gene number 1 is associated to regulatory gene number 1 and its related
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translated protein, and so on. A structural gene was defined as being active if and only if

the regulatory protein translated by the associated regulatory gene was above a certain

concentration threshold. The value chosen for the threshold was 0.5, since the sum of

all protein concentrations is always 1.0, and there can only be a protein at a time with

a concentration above 0.5. As a result, only one structural gene can be expressed at a

particular time step in a cell. If a structural gene is active, then the CA lookup table

coded in it is used to control cell reproduction. Given that the outer Moore neighborhood

used in the cellular growth testbed consists of the eight cells surrounding the central cell,

structural genes are all 256 bits in length (28 = 256) [CD06a].

In the series of simulations presented in Chapter 5, the number of structural genes

used in the genome depended on the particular pattern grown and this number was always

less than the number of regulatory genes. Thus, some regulatory proteins both regulated

concentration for other proteins and directly controlled structural gene expression, while

other proteins only had a regulatory role. Structural gene expression is visualized in the

cellular growth testbed as a distinct external color for the cell.

4.4 Genetic Algorithm

Genetic algorithms are search and optimization methods based on ideas borrowed from

natural genetics and evolution [Hol92]. A GA starts with a population of chromosomes

representing vectors in search space. Each chromosome is evaluated according to a fitness

function and the best individuals are selected. A new generation of chromosomes is created

by applying genetic operators on selected individuals from the previous generation. The

process is repeated until the desired number of generations is reached or until the desired

individual is found.

The GA in this work uses tournament selection as described in [Mit96] with single-

point crossover and mutation as genetic operators. Single-point crossover consists in ran-
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domly selecting two chromosomes with a certain probability called crossover rate, and

then randomly selecting a single bit position in the chromosome structure. From this

point on, the remaining fragments of the two chromosomes are exchanged. The resulting

chromosomes then replace the original ones in the chromosome population. On the other

hand, mutation consists in randomly flipping one bit in a chromosome from 0 to 1 or vice

versa. The probability of each bit to be flipped is called the mutation rate.

After several calibration experiments, the parameter values described next were consi-

dered to be appropriate. The initial population consisted of either 500 binary chromosomes

chosen at random for evolving the form generating genes, or 1000 chromosomes for the

simulations involving the ARN models. Tournaments were run with sets of 3 individuals

randomly selected from the population. Crossover rate was 0.60 in all cases, whereas the

mutation was 0.015 for the evolution of structural genes, and 0.15 for the evolution of

ARNs. The crossover rate of 0.60 was chosen because it was reported to give the best

results when trying to evolve a binary string representing a CA using a GA [BB05]. As

for the mutation rate, it was decided to use a value one order of magnitude higher in the

evolution of the ARN models than the one used in the same report, for the reasons that

will be given in Chapter 5. Finally, the number of generations was set at 50 in all cases,

since there was no significant improvement after this number of generations.

4.4.1 Chromosome Structure

The GA experiments were run with two different types of chromosomes, the kind used

for the evolution of a form generating gene (structural genes in the artificial genomes),

and the one used for evolving an ARN model.

Chromosome Structure for Form Generation

The chromosome structure used for evolving a form generating gene is shown in Fig.

4.8. The control field codes for the number of steps in base 2 that the CA algorithm is
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Tab. 4.1 – Size in bits for chromosomes used in evolving a form generating gene. Para-
meters are as defined in the text.

Neighborhood l a b 2l × a+ b
Von Neumann 4 1 4 20
Moore 8 1 4 260
2-Radial 12 1 4 4100
2D Margolus 3 2 5 21
3D Margolus 7 2 4 260

allowed to run, whereas the action field represents the CA lookup table’s output bits in

lexicographical order of neighborhood.

Action
field

Control
field

Fig. 4.8 – Chromosome structure for evolving a form generating gene.

For the initial simulations, when testing different neighborhood templates, chromo-

some size varied depending on the neighborhood type and the maximum number of ite-

rations allowed for the CA. For this type of chromosome, size in bits was defined as

(2l × a) + b, (4.9)

where l is the number of cells in the local interaction neighborhood (excluding the objective

cell, which is always assumed to be 0, i.e. the CA rule is applied only to empty cells), a

is the number of alternating steps in the CA algorithm (2 for the Margolus neighborhood

and 1 for all the others), and b is the number of bits of the maximum number of iterations

in base 2 that the CA is allowed to run. Table 4.1 shows the chromosome size for the

various neighborhoods considered.

The control field size was chosen so that the shape formed on any CA run could not

overflow the boundaries of the CA lattice. As mentioned in Section 4.1.3, the lattices
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consisted of a square of 33 × 33 and a cube of 17 × 17 × 17 cells, with the initial active

cell at the central position. To have an active cell reach one of the lattice boundaries, the

CA algorithm would be required to run for at least 16 steps in the square lattice, and 8

steps in the cubic lattice. On this ground, for all 2D neighborhoods, except 2D Margolus,

the control field size was chosen to be 4, so that the CA algorithm would iterate for at

most 24 − 1 = 15 steps. For the Margolus neighborhoods, due to the alternation of the

cell blocks forming the interaction neighborhood, the CA algorithm would require twice

as many steps for an active cell to reach one of the lattice boundaries. For this reason,

the chromosome’s control field size was defined as 5 for the 2D Margolus neighborhood

and 4 in the 3D Margolus case, so that the upper limit of iterations would be 25− 1 = 31

and 24 − 1 = 15 steps, respectively.

The chromosome’s action field coding for the CA rule table is of length 2l × a. For

the Moore neighborhood, that represents a rule space of 2256 ≈ 1077, and for the 2-Radial

neighborhood the rule space size is 24096 ≈ 101233. In both cases the search space is far

too large for any sort of exhaustive evaluation. And if we also take into account the bits

introduced by the control field, the search space grows larger. Even for the smallest of the

neighborhoods considered, the von Neumann and the 2D Margolus neighborhoods, the

search space is not negligible, since it contains over one million possibilities.

In the case of the 3D CA, the 3D Margolus neighborhood was chosen over, for example,

a 3D Moore neighborhood, since in the latter case the interaction neighborhood would

consist of the nearest 26 cells, giving a CA lookup table of 226 ≈ 6.7×107 rows, as opposed

to the 27 × 2 = 256 rows required by the 3D Margolus neighborhood.

Chromosome for evolving ARNs

When evolving the ARNs with the goal of synchronizing the expression of structural

genes, the chromosomes used for the GA runs were simply the ARN chains themselves.

Chromosome size in this case depended on the ARN model and the values of the parame-
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Tab. 4.2 – Size in bits for chromosomes used in evolving an ARN.
ARN Model Formula Chromosome size

Basic 10× [(2 + 5)× 32] 2240
Extended 10× {[(8 + 5)× 32] + (8× 12)} 5120
With Morph. fields 10× {[(8 + 5)× 32] + [8× (12 + (2× 9))]} 6560

ters chosen. Table 4.2 presents the chromosome sizes with the parameter values actually

used. The formulas presented in the preceding sections for genome size were used to cal-

culate chromosome size, only excluding the term m×s that represents the structural gene

region size.

The basic ARN binary string, which is the smallest ARN tested, has a size of 2240 bits,

which represents a search space of 22240 ≈ 2×10674 vectors. Evidently, search space grows

exponentially with the number of regulatory genes. But even for the simplest of ARNs, the

one consisting of only two regulatory genes, the search space has a size of 2448 ≈ 7×10134,

which is still too large to be explored deterministically. It should be evident that the

search space for any of the ARN models considered is far too large for any method of

exhaustive assessment. Therefore, the use of an evolutionary search algorithm for finding

an appropriate synchronization of gene expression is amply justified.

4.4.2 Fitness function

As in the case of the chromosome structure, there were two different fitness functions

used, depending on whether one o more structural genes were considered.

One structural gene

The fitness function for the simulations involving the evolution of one structural gene

is the same as the function used by de Garis ([de 99]) and it has been already presented

in Section 3.6, but is reproduced here for ease of consultation :
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Fitness =
ins− 1

2outs

des
, (4.10)

where ins is the number of filled cells inside the desired shape, outs is the number of filled

cells outside the desired shape, and des is the total number of cells inside the desired

shape. Thus, a fitness value of 1 represents a perfect match.

During the course of a GA experiment, each chromosome produced in a generation was

fed to the corresponding NetLogo model, which was allowed to run for as many iterations

as indicated in the chromosome’s control field. Fitness was evaluated after the model

stopped and a shape was formed. This process continued until the maximum number of

generations was reached and then the best individual was selected.

Multiple structural genes

In the case of the evolution of ARNs that synchronized the expression of more than

one structural gene, the fitness function used by the GA was defined as

Fitness =
1

c

c∑
i=1

insi − 1
2
outsi

desi
, (4.11)

where c is the number of different colored shapes, each corresponding to an expressed

structural gene, insi is the number of filled cells inside the desired shape i with the correct

color, outsi is the number of filled cells outside the desired shape i, but with the correct

color, and desi is the total number of cells inside the desired shape i. In consequence, a

fitness value of 1 represents again a perfect match. This fitness function is an extension

of the one used in [de 99], where the shape produced by only one “gene” was considered.

To account for the expression of several structural genes, the combined fitness values of

all structural gene products were introduced in the fitness function used.

During a GA run, each chromosome produced in a generation was fed to the corres-

ponding NetLogo model, where the previously evolved structural genes were attached and
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the cells were allowed to reproduce controlled by the ARN found by the GA. Fitness was

evaluated at the end of 100 time steps in the cellular growth testbed, where a colored

pattern could develop. This process continued until the maximum number of generations

was reached or when a fitness value of 1 was obtained.
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5

Results

Résumé

Les quatre formes 2D choisies pour tester le modèle de croissance cellulaire basé sur des ACs étaient
un carré, un triangle, un losange et un cercle. Les formes testées dans le cas 3D étaient un cube et une
sphère. Pour produire une forme particulière, un AG a été utilisé pour trouver la table de transition et le
nombre d’itérations appropriés. Après cette évolution, une cellule active est placée au milieu de la grille
et l’AC s’exécute exploitant cette table de transition ainsi que le nombre d’itérations trouvés par l’AG.
On présente les résultats moyens de 100 répétitions dans les ACs des meilleurs chromosomes trouvés.

Les trois modèles de réseaux de régulation (RAR basique, RAR étendu et RAR avec gradient de
morphogène) ont subi une évolution par un AG afin d’obtenir les structures cellulaires désirées. Le but était
de combiner des formes colorées simples générées par les gènes structurels afin d’obtenir des structures
prédéfinies. Après qu’un RAR ait été obtenu et que les gènes structurels précédemment évolués aient été
agrégés pour constituer le génome artificiel, une cellule active initiale au milieu de la grille de l’AC a
exécuté son comportement de reproduction, contrôlée par la séquence d’activation des gènes structurels
trouvés par l’AG.

Une fois les valeurs appropriées des paramètres trouvés pour le RAR basique, plusieurs séries
d’expériences ont été menées pour évoluer des RARs afin d’obtenir diverses structures colorées. Une
structure carrée bicolore a été obtenue facilement. Cependant, afin de créer une structure carrée à trois
couleurs, au lieu d’utiliser une série de trois gènes structurels qui convenait pour un carré, un tandem de
deux séries de trois gènes structurels a dû être employé pour augmenter la probabilité de trouver un RAR
approprié par l’AG. En utilisant la même approche de la duplication des gènes structurels, la structure
d’un drapeau français a été obtenue. Dans le modèle de RAR étendu, pour tester un nombre variable
de sites régulateurs ainsi qu’un nombre variable de bits codant les activateurs ou inhibiteurs, une série
d’expériences a été menée. Les tests ont consisté à trouver un RAR apte à développer un carré à trois
couleurs dans le modèle de croissance cellulaire, en faisant variant le nombre des sites régulateurs et le
nombre des bits qui définit le rôle des sites. Les autres valeurs des paramètres pour l’AG et les RARs ont
été fixées comme dans le modèle basique. Dans toutes les simulations exécutées ultérieurement, il a été
retenu 12 bits pour le rôle des sites activateurs ou inhibiteurs et 8 bits pour le nombre de site régulateur.
Ces valeurs ont fourni les meilleurs résultats dans les conditions testées. Les structures d’un carré à quatre
couleurs et d’un drapeau français avec une hampe ont été obtenues en utilisant l’approche de duplications
des gènes structurels. Enfin, pour tester l’effet de l’addition de morphogènes dans le modèle de RAR
étendu, le modèle de croissance cellulaire a encore été appliqué à la création de la structure d’un drapeau
français avec et sans la hampe. La duplication de gènes structurels ici aussi était rendue nécessaire afin
d’obtenir la structure du drapeau avec la hampe.
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Results are divided in two main parts. In the first part, the framework for obtaining

form generating genes was established, whereas in the second part the different ARN

models were tested for their ability to synchronize the expression of structural genes in

order to obtain a desired pattern.

5.1 Form Generation

In all cases, the GA described in Section 4.4 was used to evolve the lookup table and

the number of iterations for the desired shapes. Starting with one active cell in the middle

of the CA lattice in the NetLogo model, cells were allowed to reproduce (sprout an active

cell from a previously active cell) using the lookup table found by the GA and for as

many iterations as indicated in the chromosome’s control field. Since the CA algorithm

used asynchronous updating with the order of reproduction of cells randomly selected, a

particular shape and fitness could slightly change on different runs of the CA algorithm

for the same chromosome. For this reason, fitness mean and standard deviation from 100

runs of the CA algorithm are reported for all final chromosomes.

5.1.1 2D shapes

The desired shapes are shown in Figure 5.1. These shapes were chosen for their sim-

plicity and familiarity. The square has a side length of 21 cells, the diamond has a length

of 11 cells from the center to any of its corners, the triangle has a base and a height of 23

and 21 cells, respectively, and finally the circle has a radius of 11 cells.

Table 5.1 presents the fitness mean and standard deviation from 100 runs in the

NetLogo model of the final chromosomes for all the shapes and neighborhoods considered.

A comparative chart of the mean fitness values presented in Table 5.1 is shown in Figure

5.2, grouped by interaction neighborhood.

At the initial stages of this work, it was assumed that, since all shapes considered had
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Fig. 5.1 – Desired shapes. (a) Square, (b) Diamond, (c) Triangle, and (d) Circle.
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Fig. 5.2 – Mean fitness comparative chart for all neighborhoods and shapes.
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Tab. 5.1 – Fitness mean (x̄) and standard deviation (σ) from 100 runs of the CA algorithm
for the final chromosomes.

Von Neumann Moore 2-Radial Margolus
Shape x̄ σ x̄ σ x̄ σ x̄ σ

Square 0.738 0.008 0.993 0.003 0.887 0.015 1.000 0.000
Diamond 1.000 0.000 0.805 0.040 0.773 0.028 0.880 0.018
Triangle 0.580 0.000 0.950 0.011 0.909 0.023 0.860 0.010
Circle 0.868 0.000 0.932 0.013 0.875 0.017 0.928 0.006
Average 0.797 0.002 0.920 0.017 0.861 0.021 0.917 0.008

dimensions such that the outer active cells could be reached in 10 steps, the number of

iterations should be fixed at 10 steps for the von Neumann, Moore and 2-Radial neighbo-

rhoods, and 20 steps for the Margolus neighborhood. However, it was later decided that,

in order to avoid a preconceived notion of how the evolved chromosomes should work,

the GA should also find the optimum number of iterations needed to generate a particu-

lar shape. For this reason the control field was introduced in the chromosome definition.

Table 5.2 presents the evolved number of iterations (coded in the control field) of the final

chromosomes for all shapes and neighborhoods.

Tab. 5.2 – Evolved number of iterations for the final chromosomes for all neighborhoods
and shapes.

Shape Von Neumann Moore 2-Radial Margolus
Square 15 10 11 20
Diamond 10 12 9 19
Triangle 12 10 10 19
Circle 13 9 10 18

Figures 5.3 to 5.6 show results from some of the best runs for the four types of shapes

obtained using the four models, corresponding to each of the neighborhoods studied. For

ease of visualization, cells that fall outside the desired shape are shown in light gray

[CD06a].
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Fig. 5.3 – Square shape. Cells outside the desired shape are shown in light gray. Neigh-
borhood description is followed by fitness value. (a) Von Neumann (0.751), (b) Moore
(0.998), (c) 2-Radial (0.917), and (d) Margolus (1.000).

5.1.2 3D shapes

The desired 3D shapes are presented in Figure 5.7. The cube has a side length of 5

cells, while the sphere has a radius of 4 cells. Fitness mean and standard deviation from

100 runs in the NetLogo model for 3D shapes, as well as the evolved number of iterations

for the final chromosomes, are presented in Table 5.3.

Figure 5.8 shows shapes from some of the best runs obtained using the 3D Margolus

model. As in the 2D case, cells outside the desired shape are shown in light gray [CD06b].
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Fig. 5.4 – Diamond shape. Cells outside the desired shape are shown in light gray. Neigh-
borhood description is followed by fitness value. (a) Von Neumann (1.000), (b) Moore
(0.878), (c) 2-Radial (0.826), and (d) Margolus (0.912).

5.2 Pattern Generation

For all models, the GA described in Chapter 4 was used to evolve the ARN for the

desired colored patterns. The goal was to combine different colored shapes expressed by

structural genes in order to obtain a predefined pattern. After an ARN was obtained and

the previously evolved structural genes were attached to constitute the artificial genome,

an initial active cell in the middle of the CA lattice was allowed to reproduce controlled by

the structural gene activation sequence found by the GA. In the desired patterns studied,

each color represents a different structural gene being expressed. In order to achieve the

desired pattern with a predefined color for each cell, the genes in the ARN had to evolve
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Fig. 5.5 – Triangle shape. Cells outside the desired shape are shown in light gray. Neigh-
borhood description is followed by fitness value. (a) Von Neumann (0.580), (b) Moore
(0.973), (c) 2-Radial (0.951), and (d) Margolus (0.879).

to be activated in a precise sequence and for a specific number of iterations.

5.2.1 Basic ARN

As a first step, in order to find the appropriate values for parameters β and δ used in

the ARN, a series of GA experiments was performed. The tests consisted in finding an

ARN to grow a 21 × 21 square in the cellular growth testbed in at most 10 generations,

using 10 regulatory genes and one structural gene that coded for the square. The other

parameters values for the GA and the ARN were set as described in Chapter 4.

Being a factor to an exponent, parameter β could not be varied widely. Thus, a range
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Fig. 5.6 – Circle shape. Cells outside the desired shape are shown in light gray. Neigh-
borhood description is followed by fitness value. (a) Von Neumann (0.868), (b) Moore
(0.953), (c) 2-Radial (0.901), and (d) Margolus (0.939).

Fig. 5.7 – Desired 3D shapes. (a) Cube, and (b) Sphere.

94



5.2. Pattern Generation

Tab. 5.3 – Fitness mean (x̄) and standard deviation (σ) from 100 runs of the CA algorithm
for 3D shapes. The evolved number of iterations (Iter.) is also presented.

Shape x̄ σ Iter.
Cube 0.9690 0.0165 4
Sphere 0.8579 0.0163 6

Fig. 5.8 – Shapes obtained using the 3D Margolus neighborhood model. Cells outside the
desired shape are shown in light gray. Shape description is followed by fitness value. (a)
Cube (0.9920), and (b) Sphere (0.8911).

of 0.5 to 5.0 in increments of 0.5 units was tried. For parameter δ, a range of 1.0× 100 to

1.0× 1020 with exponent increments of one unit was used. Surprisingly, parameter δ was

found to be very flexible in the range of values that could successfully find the desired

pattern. For a β value of 1.0, runs with parameter δ in the range from 1.0×106 to 1.0×1020

found the correct pattern under the conditions described. At the end, the values for β

and δ were set to 1.0 and 1.0× 106, respectively [CD07c].

Once the appropriate parameter values were found, several series of experiments were

performed in order to evolve ARNs for various colored patterns. Not all GA experiments

rendered an ARN capable of forming the desired pattern. Furthermore, for some desired

patterns involving the expression of more than three structural genes, no appropriate ARN

could be evolved. The graphs presented next correspond to some of those experiments

where ARNs with fitness function values equal to 1.0 were found by the GA.
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Fig. 5.9 – Two-color square.
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Fig. 5.10 – Graph of protein concentration change from an ARN expressing the two-color
square.
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Fig. 5.9 shows a two-color 21×21 square built by the expression of two structural genes,

both coding for a square. The graph corresponding to the expression of the regulatory

proteins of the evolved ARN is presented in Fig. 5.10. For some of the graphs shown, only

the first 60 time steps are presented, as there is no significant change in these graphs after

this point and until the end of the 100-step run.

Fig. 5.11 – Three-color square.

When trying to create a three-color square expressing three identical structural genes

each coding for a square, it proved difficult to synchronize the expression of the three

regulatory genes in a specific sequence. In order to increase the likelihood for the GA to

find an appropriate ARN, instead of using a series of three structural genes coding for

a square, a tandem of two series of three structural genes was used, for a total of six

structural genes. In that manner, for creating the inner square, the ARN could express
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Fig. 5.12 – Graph of protein concentration change from an ARN expressing the three-
color square.

either structural gene number 1 or gene number 4, for the middle square it could use

genes 2 or 5, and finally for the outer square it could make use of structural genes 3 or 6.

Thus, the probability of finding an ARN that could express a three-color square with a

particular color order was substantially increased. Using an ARN with this configuration

of structural genes, the three-color 25× 25 square shown in Fig. 5.11 was obtained. The

graph representing the expression of the proteins for the corresponding ARN is shown in

Fig. 5.12. Note the order in which the structural genes were expressed, starting with the

first gene from the second series of structural genes, followed by the second gene from the

first series, and ending with the third gene from the second series of structural genes.

Fig. 5.13 – French flag (21× 7).
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These patterns were chosen so that the different structural genes were expressed for

the same number of time steps in the cellular growth model. For the two-color square,

each structural gene is expressed for five time steps, whereas for the three-color square,

each of the three genes involved is activated for exactly four time steps.

In order to explore the result of combining different structural genes that are expressed

for a different number of time steps, three different genes were used to grow a French flag

pattern. One gene drove the creation of the central white square, while the other two

genes extended the central square to the left and to the right, expressing the blue and

the red color, respectively. The last two structural genes do not code specifically for a

square, instead they extend a vertical line of cells to the left or to the right for as many

time steps as they are activated, and they were obtained using the framework for evolving

form generating genes.
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Fig. 5.14 – Graph of protein concentration change from an ARN expressing the 21 × 7
French flag.

Unlike the two- and three-color squares, where each gene had to be activated in a

precise sequence, to create the flag pattern the central square could be extended to the

left or to the right in any of the two orders, that is, first extend to the left and then to

the right, or vice versa. This allowed more flexibility for the GA to find an appropriate

ARN. Figure 5.13 shows a 21 × 7 French flag pattern grown from the expression of the
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three structural genes mentioned above. The graph of protein concentration change from

the corresponding ARN is shown in Fig. 5.14. After the white central square is formed,

the left blue square is grown, followed by the right red square.

To illustrate a different sequence of gene activation, the 27 × 9 French flag pattern

shown in Fig. 5.15 was created. The corresponding protein concentration graph is presen-

ted in Fig. 5.16. Note that in this case, the right red square is formed before the left blue

one.

Fig. 5.15 – French flag (27× 9).
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Fig. 5.16 – Graph of protein concentration change from an ARN expressing the 27 × 9
French flag pattern

When the patterns generated do not require strictly sequential gene activation, structu-
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5.2. Pattern Generation

ral genes do not necessarily have to complete one pattern before forming another pattern.

Take as example the case of the French flag pattern, where some structural genes can

interrupt their expression and then resume activation at a later time after the expression

of another gene. One of the genes that extend cells to one side can be interrupted to

allow the gene that extends cells to the opposite side to be activated, and then resume its

activation to finish the pattern. Fig. 5.17 shows the protein concentration graph of one

of these cases, where a 27 × 9 French flag pattern is generated. After the white central

square is formed, the gene that extends the red cells to the right is activated for only 5

time steps generating a 5× 9 red rectangle. Then the gene that extends the blue cells to

the left is activated for 9 time steps until completion of the left blue square. Finally, the

gene that extends cells to the right becomes activated again for another 4 time steps to

finish the generation of the red right square.
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Fig. 5.17 – Graph of protein concentration change from an ARN expressing the 27 × 9
French flag pattern built from the alternating activation of structural genes.

One point worth noting regarding the GA parameters is that a relatively high mutation

rate was used. This choice was made since it was found that single bits could have a

considerable influence in the final behavior of the ARN, as previously noted by Banzhaf

[Ban03]. As an example, consider the two graphs shown in Fig. 5.18 from an experiment
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where a two-color square was grown. The corresponding ARNs for these graphs differ

only in the value of bit position 952 on the enhancer site of regulatory gene number 5.

While the upper graph of Fig. 5.18 corresponds to a chromosome with fitness value of

0.50, the lower graph corresponds to a chromosome with a fitness value of 0.93. In fact,

further mutation of this latter chromosome on bit 599 in regulatory gene number 3, gets

the ARN to achieve a fitness value of 1.00.
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Fig. 5.18 – Effect of a single different bit in the ARN. (a) Fitness 0.50 ; (b) Fitness 0.93

5.2.2 Extended ARN

In the extended ARN model, in order to test the effect of different values in the number

of function defining bits and regulatory sites, a series of GA experiments was performed.

The tests consisted in finding an ARN to grow the three-color square shown in Figure
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5.11 in the cellular growth testbed, while varying the number of function defining bits

and regulatory sites. Three structural genes each coding for a square of different color

were used. The other parameters values for the GA and the ARN were set as described

in Chapter 4.

The number of function defining bits was varied from 1 to 16, whereas the number

of regulatory sites was increased from 2 to 10, in 2-unit steps. Results are presented in

Figure 5.19 as a graph of accumulated fitness values over the parameter ranges tested.

These results represent single trial experiments for each pair of parameter values tested.

Due to the lengthy simulation times, typically lasting several hours, it was difficult to

run several simulations for each one of the parameter values tested. Even though an

average fitness of several simulations over each pair of parameter values would have been

more statistically sound, the results presented here can give us an overall estimate of the

behavior of the ARN for the parameter values considered [CD07b].
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Fig. 5.19 – Accumulated fitness values for varying numbers of function defining bits and
regulatory sites in the extended model.

From the results, it is not evident that there is a difference between the use of an

odd and an even number of function defining bits on the final fitness values obtained.

Therefore it is not clear whether or not there is an advantage in giving the regulatory
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sites the ability to be turned on and off. Likewise, there is no clear improvement on the

final fitness values when increasing the number of regulatory sites in the ARN. Figure

5.20 presents an average of the fitness values from all 16 simulations corresponding to the

varying function defining bits, for each of the regulatory site values tested.
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Fig. 5.20 – Average fitness values from the 16 simulations corresponding to the different
values of function defining bits tested in the extended model.

In all the simulations described from now on, the values for the number of function

defining bits and the number of regulatory sites were chosen as 12 and 8, respectively,

since they provided the best results under the conditions tested. However, as mentioned

before, these values are to be taken with reserve, as there is no definite proof that they

correspond to the optimal values for these parameters.

Once suitable parameter values were chosen, a number of simulations were performed

in order to evolve ARNs for other colored patterns. It should be mentioned that as in

the basic model, not all GA experiments produced an ARN capable of finding the desired

pattern. Furthermore, some difficulties were found when trying to evolve appropriate

ARNs for developing patterns involving four structural genes.

The graphs presented next correspond to some of those experiments where ARNs

with fitness function values equal to 1.0 were found by the GA. Once again, for some of
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Fig. 5.21 – Graph of protein concentration change from an ARN expressing the three-
color square.

the graphs shown, only the first 60 time steps are presented, as there is no significant

change in these graphs after this point and until the end of the 100-step run. Figure 5.21

presents the graph of protein concentration change corresponding to one of the evolved

ARN expressing the three-color square shown in Figure 5.11.

When trying to grow a four-color square through the expression of four structural

genes each coding for a square of different color, it proved difficult to synchronize the

expression of the four regulatory genes in a specific sequence. Using the same approach

as in the case of the basic ARN model, in order to increase the likelihood for the GA to

find an appropriate ARN, instead of using one series of four structural genes coding for

a square, a tandem of two identical series of four structural genes was used, for a total of

eight structural genes. In that manner, for creating the innermost square, the ARN could

express either structural gene number 1 or gene number 5, for the next two squares it

could use genes 2 or 6, or genes 3 or 7, respectively, and finally for the outermost square it

could express structural genes 4 or 8. Then again, the probability of finding an ARN that

could express a four-color square with a particular color order was significantly increased.

Using an ARN with this configuration of structural genes, the four-color 25 × 25
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Fig. 5.22 – Four-color square.

square shown in Figure 5.22 was obtained. The graph representing the expression of the

proteins for the corresponding ARN is shown in Figure 5.23. Note that in this case, only

the structural genes from the second series were expressed, from gene number five to gene

number eight. Other experiments found a different sequence of activation combining genes

from the two series (data not shown).

As in the case of the three-color square, the four-color square pattern was chosen so

that the different structural genes were expressed for the same number of time steps in

the cellular growth model. Each of the four genes involved is to be activated for exactly

three time steps to grow this pattern.

In order to explore once again the result of combining different structural genes that

are expressed for a different number of time steps, four structural genes were used to
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Fig. 5.23 – Graph of protein concentration change from an ARN expressing the four-color
square.

grow a French flag with a flagpole pattern. Unlike previous reports where only the French

flag itself was produced, the flagpole was added in order to increase the complexity of

the pattern generated. The same three structural genes used previously for growing the

French flag pattern were used. The fourth gene added created the brown flagpole by means

of growing a single line of cells downward from the lower left corner of a rectangle.

When trying to evolve an ARN to produce the French flag with a flagpole pattern, it

was found that, as in the case of the four-color square, the GA could not easily evolve an

activation sequence that produced the desired pattern. In consequence, it was decided to

use the same approach as before of setting a tandem of two identical series of the four

structural genes that could produce the desired pattern. Figure 5.24 shows the 21 × 7

French flag with a flagpole pattern produced by the expression of the configuration of

structural genes mentioned above. The graph of protein concentration change for the

corresponding ARN is shown in Figure 5.25. After the white central square is formed, the

right red square and the left blue square are sequentially grown, followed by the creation

of the flagpole. Note that the white central square is formed from the activation of a gene

from the first series of structural genes, while the other three genes are expressed from
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the second series of the tandem.

Fig. 5.24 – French flag with a flagpole pattern.
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Fig. 5.25 – Graph of protein concentration change from an ARN expressing the 21 × 7
French flag with a flagpole pattern.

Unlike the problem of growing the four-color square pattern, where one gene had to

finish forming the corresponding shape before the next gene could become activated, there

is more flexibility in the activation sequence needed to grow the French flag with a flagpole
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pattern. In particular, after the white central square is fully formed, the genes that extend

the central square to either side can be activated in any order, and their corresponding

activations can even alternate before either one has finished growing [CD07c]. However, it

is essential that the flag is fully formed before the flagpole can begin to grow. It is evident

that the left blue square has to be complete in order to start growing the flagpole at the

correct position, but consider the case where the right red square is not fully formed after

the flagpole, or part of it, was grown. In this case, if the gene that extends a vertical line

of cells to the right is activated, it would not only produce the cells required to finish the

red right square, but it would equally start to extend the flagpole to the right, since it

also consists of a vertical line of cells.

5.2.3 Extended ARN with Morphogenetic Fields

In order to test the effect of the addition of the morphogenetic fields to the extended

ARN model, the artificial development model was again applied to the creation of the

French flag pattern with and without the flagpole. The same structural genes used in the

previous models were used for growing the desired patterns [CD07a].

Figure 5.26 shows a 27 × 9 French flag pattern grown from the expression of the

three structural genes used previously. The graph of the corresponding regulatory protein

concentration change over time is shown in 5.26(e). Starting with a single white cell (a),

a white central square is formed from the expression of gene number 1 (b), the left blue

square is then grown (c), followed by the right red square (d). The evolved morphogenetic

fields are shown for each of the three structural genes. Since the pattern obtained was

exactly as desired, the fitness value assigned to the corresponding ARN was the unity.

In the case of the French flag with a flagpole pattern, the approach of using two

tandems of the four appropriate structural genes was again used. The 21× 7 French flag

with a flagpole pattern produced by the expression of this configuration of structural genes

is shown in Fig. 5.27. The graph for the corresponding regulatory protein concentration
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Fig. 5.26 – Growth of a French flag pattern. (a) Initial cell ; (b) Central white square
with morphogenetic field for gene 1 (square) ; (c) White central square and left blue
square with morphogenetic field for gene 2 (extend to left) ; (d) Finished flag pattern
with morphogenetic field for gene 3 (extend to right) ; (e) Graph of protein concentration
change from the genome expressing the French flag pattern.

change is shown in 5.27(e). After the white central square is formed (a), a right red pattern

(b) and the left blue square (c) are sequentially grown, followed by the creation of the

flagpole (d). The evolved morphogenetic fields are shown for each of the four structural

genes expressed. Note that the white central square is formed from the activation of

the first gene from the second series of structural genes, while the other three genes are

expressed from the first series of the tandem. It should also be noted that the last column

of cells is missing from the red right square, since the morphogenetic field for the gene

that extends the red cells to the right precluded growth from that point on (Fig. 5.27(b)).

On the other hand, from the protein concentration graph in 5.27(e), it is clear that this

morphogenetic field prevented the growth of red cells all the way to the right boundary,

as gene 3 was active for more time steps than those required to grow the appropriate red

square pattern. The fitness value assigned to this pattern was 0.96, which corresponded

to the most successful simulation obtained when trying to grow this particular pattern.

110



5.2. Pattern Generation

0

0.5

1

0 20 40 60 80 100

Time steps

Pr
ot

ei
n 

co
nc

en
tra

tio
n

(e)(d)

(a) (b)

(c)

Protein 5 
(center)

Protein 2
(left)

Protein 3 
(right)

Protein 4
(flagpole)

Fig. 5.27 – Growth of a French flag with a flagpole pattern. (a) Central white square with
morphogenetic field for gene 5 (square) ; (b) White central square and right red pattern
with morphogenetic field for gene 3 (extend to right) ; (c) White central square, right
red pattern and left blue square with morphogenetic field for gene 2 (extend to left) ; (d)
Finished flag with a flagpole pattern with morphogenetic field for gene 4 (flagpole) ; (e)
Graph of protein concentration change from the genome expressing the French flag with
a flagpole pattern.
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6

Discussion and perspectives

Résumé

La génération de plusieurs structures convexes et non convexes a été tentée au début. On a rapidement
découvert que les formes non convexes étaient très difficiles à obtenir en utilisant un AC avec une seule
table des règles et sans mécanisme pour permettre aux cellules actives de revenir à l’état vide. Toutes
les formes simples sélectionnées à la fin, tant en 2D qu’en 3D, étaient du type convexe. Le problème de
générer une structure non convexe dans le modèle de croissance cellulaire a été résolu plus tard à travers
l’utilisation de la différentiation cellulaire, au moyen de l’expression sélective de gènes structurels qui
contiennent des tables de règles différentes.

Bien qu’il n’y eût pas un modèle qui puisse produire toutes les formes 2D avec un haut degré d’exac-
titude, c’était évident que quelques modèles étaient plus aptes à générer une forme particulière. En
moyenne, pour les quatre voisinages étudiés, les modèles les plus prometteurs pour la génération des formes
prédéfinies étaient les voisinages Moore et Margolus, avec pratiquement la même aptitude moyenne. Le
voisinage Moore a été choisi à la fin dans le modèle de croissance cellulaire pour l’évaluation des modèles
de RARs. Dans le cas 3D, les résultats ont montré que la combinaison d’un AG et d’un AC avec un
voisinage Margolus en 3D était un bon choix pour modéliser la génération de formes tridimensionnelles.
Bien que les modèles de RARs aient été évolués pour générer des formes en 2D, les résultats de ces
modèles pourraient être extrapolés au domaine 3D, mais avec des temps de simulation plus longs.

Quant aux modèles de RARs, on a trouvé qu’en utilisant le modèle de RAR basique on pourrait
synchroniser deux ou trois gènes structurels avec fiabilité. Cependant, quelques problèmes ont été trouvés
en essayant de synchroniser l’activation de plus de trois gènes structurels dans une séquence précise.
Avec le modèle de RAR étendu, les résultats ont montré que c’était relativement facile de synchroniser
avec fiabilité jusqu’à trois gènes, mais des problèmes ont encore été rencontrés lorsque l’on a essayé de
synchroniser l’activation de quatre gènes dans une séquence prédéfinie. D’après les résultats obtenus avec
le RAR étendu qui utilise des gradients morphogénétiques, c’était apparemment plus difficile pour l’AG
de trouver une séquence d’activation pour la création de la forme d’un drapeau français avec une hampe,
que dans le modèle de RAR sans les gradients. Une explication possible c’est qu’avec l’addition dans le
RAR des sites du seuil d’activation des morphogènes, l’espace de recherche de l’AG était plus grand que
dans le modèle étendu original, en le rendant plus difficile pour l’AG de trouver une séquence d’activation
appropriée.

En général, le cadre présenté a prouvé être convenable pour la génération de structures cellulaires
qui impliquent jusqu’à quatre gènes structurels. Cependant, il est nécessaire d’approfondir ce travail afin
d’explorer la formation de structures plus complexes en 2D et en 3D. Il est également souhaitable d’intégrer
dans ce modèle la disparition et le déplacement des cellules. En outre, afin de construire un modèle plus
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exact du processus de croissance cellulaire, l’utilisation d’un environnement physique plus réaliste peut
être nécessaire.

6.1 Form Generation

At the initial stages of the work, the generation of several shapes both convex and

non-convex was tried. In geometry, a convex shape has the property that the line segment

that joins any two points in the shape is contained within the shape. Given the discrete

nature of cell positions in the lattice, convex shapes are harder to define in a CA. We

could say that convex shapes in a CA are those where all the filled cells in the shape are

circumscribed by the perimeter of a real-valued convex shape with no space left for empty

cells.

Among the non-convex shapes that were tried, there was a star shape and an L-shaped

form. However, it was soon discovered that non-convex shapes are difficult to obtain in

a CA with a single rule table and with no provision for allowing filled cells to revert to

the empty state. Basically the problem in forming non-convex shapes in a CA with these

restrictions is that the same rule table is applied to all cells. Since cells forming a single

shape in a CA with a single transition rule are all the same and they only have limited

local information, there is no coordination among cells to differentiate into cells with

different roles. Given that cell death and cell displacement are not allowed in the model

for the sake of simplicity, once an empty cell becomes occupied or filled, it remains in that

state for the rest of the simulation. To compound the problem, a filled cell can only be

introduced in the lattice if there is already a filled cell in the neighborhood template.

For the above reasons, all single shapes selected in the end both in 2D and 3D were

of the convex type. However, the problem of forming a non-convex pattern in the cellular

growth testbed was later solved through the use of cell differentiation, by means of the

selective expression of structural genes containing different rule tables.

Results obtained in setting up the framework for single shape generation in 2D showed
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that although there was not one model that could generate all four shapes with a high

degree of accuracy, it was evident that some models were more appropriate than others

in building a particular shape. For instance, the von Neumann model was particularly

efficient in generating the diamond shape, which is no surprise given the spatial disposition

of the neighborhood template itself. However, for the other shapes, the von Neumann

model had the worst performance in form generation, possibly due to its “blindness”

towards the adjacent diagonally positioned cells.

As for the other neighborhoods, even though the Moore neighborhood template could

be viewed as a subset of the 2-Radial neighborhood template, the final chromosomes

obtained with the Moore model had higher fitness values for all four shapes. One possible

explanation is that, as mentioned in Chapter 4, the 2-Radial model had a far larger

search space than the Moore model, which could make it difficult for the GA to find the

fitness maxima. Furthermore, unlike the other neighborhoods where all cells in the outer

neighborhood were directly adjacent to the central cell, in the 2-Radial template some

cells could be introduced in the lattice without an intermediate cell to be present. In

particular the four cells farthest from the neighborhood center could in principle generate

a filled cell at the objective cell. This nonetheless gave no apparent advantage to this

neighborhood over the other templates.

Although some of the shapes evolved in the cellular growth testbed are not strictly

convex, the cells that are not inside the convex shapes are mainly generated by means of

the random asynchronous selection of cell reproduction. The shapes shown in the figures

of Chapter 5 are only the product of individual runs. Different runs normally rendered

slightly different shapes, and that is the reason for using a probabilistic approach of

summarizing the results from 100 runs.

On the average, of the four neighborhoods studied, the most promising models in shape

generation were those corresponding to Moore and Margolus, both with practically the

same average fitness (see Table 5.1). The results obtained with the Margolus template were
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in most cases comparable to those derived with the Moore neighborhood, even though

the former had a chromosome size that was less than a tenth in length than that of the

latter. The only case where the Moore neighborhood showed some advantage over the

Margolus neighborhood was in the generation of the triangle. Nevertheless, it is possible

that the Moore neighborhood would be better at forming more complex shapes than the

Margolus template, given its much larger search space. It is for this reason that the Moore

neighborhood was chosen as template for the evaluation of the ARN models in the cellular

growth model.

In the 3D case, results showed that the combination of a GA and CA with a 3D

Margolus interaction neighborhood was a good choice for modeling 3D shape generation.

Even though the ARNs models were evolved for developing 2D patterns, results from these

models could be extrapolated to 3D. However, simulation times would be considerably

longer and it would probably be more difficult for the GA to find an appropriate gene

activation sequence in 3D, given the additional dimension to take into consideration.

As for letting the number of iterations evolve in the cellular growth model when ge-

nerating a predefined shape, this decision turned out to be appropriate, as the number of

iterations needed to create the shapes was not always the same as those intuitively ex-

pected. However, in the simulations that best approached the shapes desired, the number

of iterations evolved were close to or exactly the same as those expected. It was decided

nonetheless that one should not to influence the results with preconceived notions of the

expected outcome.

In general, the framework developed proved to be suitable for generating simple shapes,

but more work is needed to explore single shape formation of more complex forms, both

in 2D and 3D. It is also desirable to study shape formation allowing cell death and cell

displacement, as in actual cellular growth. Furthermore, in order to build a more accurate

model of the growth process, the use of a more realistic physical environment may be

necessary.
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6.2 Pattern Generation

Simulations involving the basic ARN model show that a GA can give reproducible

results in evolving an ARN to grow predefined simple 2D cell patterns starting with

a single cell. In particular, it was found that using this ARN model it was feasible to

reliably synchronize two or three structural genes. However, some problems were found

when trying to synchronize the activation of more than three structural genes in a precise

sequence.

Despite its limitations, this basic model demonstrated that the synchronization of

structural genes similar to the gene expression regulation found in nature was feasible.

However, it was necessary to find a way to synchronize more than three structural genes

if generation of more complex patterns was to be achieved.

As is often the case, by studying how nature works, insight can be gained that aid in

proposing approaches for solving a particular problem. In this case, it was decided that

the number of enhancer and inhibitor sites in the regulatory network could be increased

as in biological gene regulatory networks. Likewise, the role as enhancer or inhibitor of

the regulatory sites was allowed to be evolved, as is the case in biological genomes, where

the role of regulatory sites depends on the particular nucleotide sequence present at the

appropriate places.

With the extended ARN model, results showed that it was relatively easy to reliably

synchronize up to three genes, but problems were still encountered when trying to syn-

chronize the activation of four genes in a precise sequence. For solving this problem, it

was necessary to use the approach of defining a tandem of two series of the structural

genes necessary to develop the pattern.

As for the extensions added to the original ARN model, the results suggest that the

number of function defining bits had more influence than the number of regulatory sites

in evolving an ARN to produce a desired shape. One possible explanation is that a bigger

defining bits region could offer a larger target on which the mutation operator could act.
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On the other hand, there was no apparent advantage in providing the regulatory sites with

the ability to be turned on and off, since there was no significant difference between an even

and an odd number of function defining bits. Similarly, there was no clear-cut advantage in

increasing the number of regulatory sites above the original number. Although more work

is required to confirm these results, the extended ARN model could arrive to solutions

that the basic ARN model was not able to find under the conditions tested.

In the extended ARN model, apart from the gene activation sequence coded in the

genome, cells only had local information to determine whether or not to reproduce. In

particular, cells had no global positional information, since the shape grown was mainly

due to a self-organizing mechanism driven by the ARN. However, in order to achieve

more complex shapes, it was considered necessary to allow cells to extract information

from their environment through the use of diffusing morphogens.

Morphogenetic fields should in principle assist in the creation of more complex patterns

by providing positional constraints to cellular growth. However in the results obtained with

the extended ARN with morphogenetic fields, it was apparently harder for the GA to find

an activation sequence for the creation of the French flag with a flagpole pattern. One

possible explanation is that with the addition of the morphogen threshold activation sites

to the ARN, the search space grew even larger than in the original extended ARN model,

making it more difficult for the GA to find an appropriate activation sequence. However,

since individual simulations times usually took several hours to complete, it could be that

the number of simulations essayed with both models was not high enough to draw an

unambiguous conclusion.

On the other hand, there is evidence that the fitness landscape on which the GA

performs the search to evolve the ARNs is very rugged. This was illustrated with the

influence of single bits on the fitness values of an evolving model. It took the shift of

one bit value in the genome string of the basic ARN model to go from a fitness value of

0.50 to 0.93, and one additional single bit shift led the fitness value to a perfect match.
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6.2. Pattern Generation

In this particular case, that meant that adjacent vectors in the search space had very

dissimilar values in fitness evaluation. It is conjectured that this behavior is widespread

in the search spaces defined in the models developed, given the difficulties encountered in

synchronizing what could be considered just a handful of structural genes. Most likely, a

change of representation would aid in the search process. However, this would mean an

extensive change in the basic model design, which is not always easy to accomplish.

In all the ARN models presented, some patterns were easier than others to produce.

The more independence there was in the sequence in which the individual shapes were

generated, the easier it was for the GA to find an appropriate gene activation sequence

in the ARN. The hardest patterns to be generated were those where there was a fixed

structural gene activation sequence on which the shapes were to be created.

One restriction of the three ARN models presented is that all cells synchronously fol-

low the same genetic program, as a sort of biological clock. This has obvious advantages

for synchronizing the behavior of developing cells, but it would also be desirable that cells

had an individual program –possibly a separate ARN– for reacting to local unexpected

changes in their environment. Morphogenetic fields provide a means to extract informa-

tion from the environment, but an independent program would lend more flexibility and

robustness to a developing organism. After all, living organisms do contain a series of gene

regulatory networks for development and metabolism control. One could even envision ei-

ther a hierarchy of ARNs, where some ARNs could be used to regulate others ARNs, or

a network of ARNs, where all ARNs could influence and regulate each other.
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7

Conclusion

Résumé

En général, les modèles de développement artificiels présentés dans ce travail ont prouvé leur capacité
à produire des structures 2D simples qui impliquent l’activation de quatre gènes structurels au maximum.
Les modèles les plus faciles à obtenir étaient ceux où l’activation des gènes ne devait pas suivre un ordre
strictement séquentiel.

Malgré la difficulté à trouver un modèle d’AC pour produire régulièrement des formes convexes avec
une seule table des règles, il a été trouvé qu’il est aisé de le faire à travers la synchronisation d’une
séquence de l’activation dans un modèle de RAR.

Cependant, des travaux supplémentaires sont nécessaires afin d’explorer la formation des structures
cellulaires plus complexes dans les domaines 2D et 3D. Il faut également de trouver un modèle de
développement pour synchroniser de manière fiable l’activation de plus de quatre gènes. Pour accomplir
la séquence d’activation de cinq gènes structurels (ou plus) dans l’approche présentée de synchronisation
d’un RAR, il est probablement nécessaire de changer la représentation du modèle, afin qu’un paysage
d’aptitude plus lisse puisse être obtenu. En outre, pour augmenter l’utilité du modèle, l’interaction avec
d’autres entités artificielles et l’extraction d’information d’un environnement physiquement plus réaliste
peuvent être nécessaires.

Jusqu’à maintenant ce travail a été consacré à produire des structures prédéfinies dans une espèce
d’évolution dirigée. Cependant, il serait désirable de laisser évoluer les cellules dans une structure fonc-
tionnelle sous contraintes de l’environnement, sans aucune notion préconçue du résultat final.

À la connaissance de l’auteur, ceci est le premier rapport de l’utilisation d’un AG pour évoluer un
comportement spécifique dans un RAR pour former une structure cellulaire artificielle. Le but à long
terme de ce travail est d’étudier les propriétés émergentes du processus du développement artificiel. Il
peut être envisagé qu’un jour il sera possible de construire des structures très complexes qui surviennent
principalement de l’interaction de myriades d’entités plus simples.

In general, the artificial development models presented proved to be suitable for ob-

taining simple 2D patterns involving the activation of up to four structural genes. The

easiest patterns to obtain were those where the activation of genes did not have to follow

a strictly sequential order.
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Chapitre 7. Conclusion

Although it was hard to find a CA model that consistently generated convex shapes

with a single rule table and no reversion to the empty cell state from the filled cell state,

it was found that the expression of different rule tables through the synchronization of an

activation sequence in an ARN model could readily do it.

However, additional work is needed in order to explore pattern formation of more

complex forms, both in 2D and 3D. It is also desirable to search for a development

model that can reliably synchronize the activation of more than four genes. In order

to achieve the activation sequence of five or more structural genes using the approach

presented of ARN synchronization, it is probably necessary to change the representation

of the model, so that a smoother fitness landscape could be obtained. Furthermore, in

order to increase the usefulness of the model, interaction with other artificial entities and

extraction of information from a more physically realistic environment may be necessary.

Until now this work has been devoted to generating predefined patterns in a kind of

directed evolution. However, it would be desirable to let cells evolve into a functional

pattern under environmental constraints without any preconceived notion of the final

outcome.

To the author’s knowledge, this is the first report of the use of a GA to evolve a

specific behavior in an ARN to grow an artificial cell pattern. A simple GA was chosen in

this work for evolving the ARN due to the discrete and fixed-size nature of the artificial

genome used. Moreover, it was considered that the GA was the evolutionary computation

paradigm that resembled the most the actual evolutionary mechanism seen in nature.

The long-term goal of this work is to study the emergent properties of the artificial

development process. It can be envisioned that one day it will be feasible to build highly

complex structures arising mainly from the interaction of myriads of simpler entities.
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