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Péter Bayer� Joel S. Brown�

Johan Dubbeldam§ Mark Broom¶

November 2, 2021

Abstract

This paper develops and analyzes a Markov chain model for the treatment of cancer.
Cancer therapy is modeled as the patient’s Markov Decision Problem, with the objective of
maximizing the patient’s discounted expected quality of life years. Patients make decisions
on the duration of therapy based on the progression of the disease as well as their own
preferences. We obtain a powerful analytic decision tool through which patients may
select their preferred treatment strategy. We illustrate the tradeoffs patients are facing
in a numerical example and calculate the value lost to a cohort who choose suboptimal
strategies. In a second model patients may make choices to include drug holidays. By
delaying therapy, the patient temporarily forgoes the gains of therapy in order to delay
its side effects. We obtain an analytic tool that allows numerical approximations of the
optimal times of delay.

1 Introduction

1.1 Motivation

Patients face challenging decisions regarding cancer treatments. This is especially so when cure
is uncertain or nearly impossible, regardless of treatment. Such is the case for most patients
with metastatic disease. Patients’ decisions invariably balance quality of life with quantity of
life. Therapies are invasive, costly, and often significantly reduce a patient’s well-being both
during and after therapy. Many chemotherapies bring hair loss, nausea, malaise and lethargy.
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Hormone therapies may leave the patient feeling uneasy, agitated, weak, and with diminished
sex drive and performance. Radiation therapy can leave the patient acutely ill or with long-term
health issues from damaged tissues such as urinary problems following radiation of the prostate,
bladder or pelvic area. Partial or complete surgical removal of the colon, breasts, prostate, liver,
brain and even amputations of limbs can leave permanent physical and psychological disabilities.

Survival time remains the prevailing measure of success in cancer therapy. Due to the unam-
biguity and availability of data it is the least controversial and most accessible metric. Mathe-
matical models of cancer therapy often report on their proposed regimens’ effects on (simulated)
survival or progression time. Clinical trials of new drugs and methods of delivery are similarly
evaluated on this basis. Yet, there is reason to believe that oncologists and patients do not
make treatment decisions to maximize survival time. In particular, decisions to refuse therapy
are often influenced by concerns over quality of life (Shumay et al., 2001) and cure probability
(Frenkel, 2013) possibly at the expense of expected survival time. While the prevailing response
to such decisions had been a call for oncologists to “better communicate” with their patients,
whether the prescribed therapy indeed aligns with the patient’s objectives is not so clear. In
particular, patients who refuse therapy at times report no worse quality of life than those who
complete it (Gilbar, 1991).

Here, we provide a theoretical foundation to formally capture these dilemmas. We employ the
mathematical tools of dynamic optimization, statistics, and game theory. With these, we build a
model of cancer treatment by which these dilemmas can be explicitly modeled and analyzed. Our
model will not capture all elements of such dilemmas. Our intention is to advance a modeling
approach that introduces methods and concepts by which the discussion surrounding patient
empowerment and individuality, quality versus quantity of life, and therapeutic strategies can
be advanced.

1.2 Background

The tools and concepts of game theory and decision theory have proven extremely valuable
in cancer research. The objective has been to utilize game theory’s insights in understanding
the eco-evolutionary dynamics of cancer. The practical application of this research is first, to
calibrate the parameters (doses, timing, duration) of existing therapy regimens (see e.g. adaptive
therapy, (Gatenby et al., 2009)) and, second, to find new points of attack against the disease in
search of new therapy regiments.

One development towards this first goal views cancer therapy as a game played between the
disease and the treating physician (Orlando et al., 2012). A useful framework is to model the
game as a leader-follower (Stackelberg) game with the treating physician as a strategic decision
maker and cancer as a reactive player. Via natural selection, the cancer evolves resistance to the
physician’s past and current treatment strategies (Staňková et al., 2019). The approach identifies
the patient benefits that the physician can realize by assuming the role of leader in the therapy-
cancer game. The physician anticipates the cancer’s possible evolutionary responses and uses
this to the patient’s advantage. In the absence of such an approach, we often observe physicians
in the reactive role and following a prescribed or standard treatment strategy, changing only
after observing disease progression as measured by tumor burdens rather than the evolutionary
strategies of the cancer cells.

In the following modeling sections, we advance this thread of the literature by viewing the
therapy-cancer game as a Markovian process. In Markovian models of cancer (Kay, 1986; An-
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dersen et al., 1991), all relevant information regarding the prognosis of the patient is encoded
in health states, usually including a healthy state, various states of disease progression, and a
death state. The patient’s transitions between these states follows a stochastic process. The
transition probabilities between states may be calibrated from cohort data (Duffy et al., 1995) for
simulations of likely disease progression. The resultant toolkit has applications in both medicine
(Llorca and Delgado-Rodŕıguez, 2001) and health economics (Le Lay et al., 2007).

Traditionally, in Markovian models, the transition probabilities are assumed to depend only
on the current state of the patient, not on previous disease history. This is both a simplifying
and restrictive assumption. Too few health states may obscure state differences created by
the patient’s past history of therapy. Too many health states requires an overly large and
unwieldy transition matrix that may fail to produce insights applicable to a large cohort of
patients. Cooper et al. (2003, 2004) resolved this by introducing a small number of payoff-states
(responsive, stable and progressive disease; and dead) while letting the transition probabilities
change based on the length of the treatment, measured in the number of treatment cycles.

To this existing framework we add the element of choice by the patient.1 Markov decision
processes (MDPs) (Bellman, 1957) combine the tools of stochastic processes and decision theory.
In this model the Markovian transition probabilities depend upon both the current state and
the strategy of a payoff-maximizing decision maker. The patient receives payoffs, measured in
quality adjusted life years (QALYs), from spending time in states, with more healthy states
giving higher payoffs. The tension in these problems is introduced when the decision-maker
faces a choice between strategies that lead to immediate payoff gains and strategies that lead to
better future prospects but at the cost of foregoing immediate gains. These tradeoffs occur with
cancer therapy. The patient taking therapy makes immediate financial and QALY sacrifices
in hopes of a higher probability of cure and greater life expectancy. If the decision-maker’s
objectives can be represented by time-discounting future expected payoffs and the set of states
is finite, then optimal policies will exist (Blackwell, 1962, 1965), and, in general, it will be unique
(Ortega-Gutiérrez et al., 2016).

In this paper we use MDPs to model as a game with a single strategic decision maker, the
patient. We treat the evolutionary processes of cancer as an exogenous and stochastic element,
whose behavior, conditional on the selected treatment strategy. We introduce exponential dis-
counting to model a preference for earlier QALYs over later ones. The treatment strategy should
maximize discounted expected QALYs, we are able to derive optimal treatment strategies.

In Section 2, we consider the duration of treatment. The patient’s payoff is the difference
between their QALYs and the cost of the treatment. The patient decides whether to continue
treatment in hopes of a higher cure probability or longer life expectancy, or to abandon treatment
to forgo the cost of therapy. The adaptive dynamics of the cancer become a key factor. As the
patient’s disease progresses, cancer’s responsiveness to therapy changes. Following Cooper et
al. (2003) our model has an infinite series of health states, in addition to the absorbing ‘cured’
and ‘dead’ states. There are two types of non-absorbing states, characterized by two detection
levels, detectable and undetectable disease burden. Both types of state have infinite copies,
characterized by an integer i which corresponds to the state of the disease based on the patient’s
therapy history. While undetectable, we assume that therapy cannot be given; the disease will,
in time become detectable. Without therapy, the detectable state i disease will, in time, lead to

1In the remainder of the paper we refer to the patient as the sole decision-maker without explicitly mentioning
the treating oncologist, tumor board, or any other participants of the decision making process.
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the death of the patient. With therapy, the detectable state i disease will transition to either
cure, death, or state i+1 undetectable or state i+1 detectable disease state. We call the therapy
received while the disease is in detectable state i a round of therapy. Thus, the first time the
patient may receive care is in detectable state 0. The rates of transition are dependent on the
value of i, the number of rounds the patient has received. The dilemma of the patient is to select
the value i∗ beyond which, no more therapy is taken.

This model permits evaluating treatment strategies of different duration. The model is highly
efficient as the patient’s payoff-maximizing treatment strategies may be derived analytically
as a solution to a linear system of equations for all parameter settings. Furthermore, if the
patient’s likelihood of recovery declines with the progressive state of the detectable disease, an
assumption that is motivated both by the onset of resistance to therapy as well as observed
outcomes of cancer therapy, the globally optimal payoff-maximizing duration of therapy equals
the myopically optimal one, the strategy the patient follows if they only plan one decision node
ahead, i.e. take the next round of therapy if and only if ceasing therapy after that one round
is better than ceasing now. This is an attractive property that avoids any time-inconsistencies
of treatment. If the monotonicity conditions are met, then there will exist a unique progressive
disease state beyond which the patient loses expected QALYs due to overtreatment if treatment
is not stopped. Interestingly, while the average expected payoff loss of overtreatment across
all patients may be marginal due to time-discounting and the cohort’s attrition up to the time
when overtreatment is reached, the realized payoff loss for patients who do reach that stage is
substantial. We demonstrate this through a simulation.

Cancer therapy is often highly toxic for the patient. This lost quality of life is one of the main
reasons for patients to refuse or abandon therapy. Our second model (Section 3) includes loss of
QALYs where the payoff of the patient depends upon their current health state and the current
level of toxicity. We assume that a patient’s toxicity level increases with each round of therapy
and declines as past rounds of drugs in the patient decay over time. Including toxicity makes the
cost of therapy conditional on its effect. Surviving patients have to bear the QALY reduction
longer, and patients who are not cured may have to resort to taking on higher levels of toxicity
and additional QALY reductions from additional rounds of therapy. This affords patients an
additional option for managing the QALY-cost of therapy. They may choose to postpone rather
than abandon therapy as a means of allowing their toxicity burden to depreciate. However, by
doing so they also postpone any benefits of therapy to their recovery.

This model addresses what already happens in practice. For certain therapies, drug holidays
are mandated as a means for reducing the risk of mortality from toxicity. Physicians may
also temporarily cease drug use if the patient’s health seems overly compromised, and patients
themselves will temporarily refuse treatment as a consequence of feeling sick from the drug. By
including the loss of patient QALYs due to cumulative toxicity, our model no longer conforms to
classic MDPs. It is no longer analytically tractable. But, we do provide methods for a numerical
approximation that allows the patient to optimize simultaneously the timing and duration of
cancer therapy.

The paper proceeds as follows. In Section 2, we develop a Markov model of cancer ther-
apy that includes therapy-dependent likelihoods of cure and mortality that can change with
time. A key element of this model is the inclusion of patient-specific quality adjusted life years
(QALYs). We then use of Markov decision processes (MDPs) to seek dynamic and optimal ther-
apy scheduling that anticipates and allows for multiple points of decision making. In Section 3,
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we expand the model to include the effects of drug toxicity on QALYs and presents a finer tuning
of the optimal duration and timing of therapy. In Section 4, we discuss the significance of the
results, their relationship to other relevant work, and provide prospectus for future theoretical
and empirical research. All mathematical proofs are provided in the appendix.

2 State-dependent payoffs

We assume that the patient has a solid tissue detectable tumor without specifying the exact kind
of cancer. The progression of the disease is modeled as a Markov-process in continuous time.
The states encode the patient’s quality of life and prognosis-relevant data, while the transition
rates describe their prognosis and depend upon the patient’s chosen treatment strategy. The
set of cancer’s progressive states (henceforth, states) is S = {0, {1(i), 2(i)}∞i=0, 3}. The states are
interpreted as follows:

� 0: Healthy, cancer free state.

� 1(i): Undetectable cancer after i rounds of therapy.

� 2(i): Detectable cancer after i rounds of therapy. The patient chooses whether to take
another round of therapy.

� 3: Death of the patient.

Without therapy, the natural progression has state 1(i) leading eventually to state 2(i) which
leads to state 3, an absorbing state. The healthy absorbing state 0 may only be reached by
therapy. The patient or the treating physician cannot distinguish between the cured and the
undetectable states, 0 and 1(i), and hence we assume that the patient does not receive therapy
until the next detectable state, 2(i) is reached.

Upon entering state 2(i) the patient alters the progression of the disease by accepting therapy.
When receiving therapy in state 2(i) the patient may transition to any one of the four states 0
(cure), 1(i+1) (partial therapy success), 2(i+1) (partial therapy failure), or 3 (death). On reaching
the i+ 1th progressive states, the patient potentially faces different transition rates and proba-
bilities. For instance, as resistance evolves, disease burden increases, or new metastases occur,
the cure rate may decline and mortality may increase.

We define a treatment strategy by a function x : {2(i)}∞i=0 → {therapy, no therapy}. In words,
for each detectable state 2(i) the patient chooses whether or not to take therapy. As a state
2(i+1) can only be reached if the patient chooses to receive therapy in state 2(i), we restrict
attention to treatment strategies such that for every i ≥ 0 with x(2(i)) = no therapy we have
x(2(i+1)) = no therapy. We can therefore describe a treatment strategy by the index of the
detectable state 2(i) at which the patient ceases treatment. We will thus denote strategies by xi,
indicating that the patient chooses therapy in every state 2(j) for j < i. Strategy x0 describes a
patient forgoing therapy entirely, while x∞ describes a patient who always opts for therapy in a
detectable state.

Time is continuous. We assume that the states encode all progression-relevant information
to the disease. Hence the process, conditional on the treatment strategy, is Markovian. The
transition rates by which the patient moves between the states are as follows:
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Figure 1: Schematic showing transition rates of the first 3 decision nodes of therapy. Each 0 node and
each 3 node on the figure represent one absorbing state, while the figure shows multiple copies for better
visibility. From an undetectable disease state, 1(i), the patient will eventually progress to detectable
state 2(i). If the patient opts for therapy, he or she progresses to one of the four states 0, 1(i+1), 2(i+1),
or 3. Otherwise, by choosing the no therapy option, he or she eventually progresses to state 3.

1. 1(i) → 2(i) at rate δi,

2. if x(2(i)) = no therapy, then 2(i) → 3 at rate ωi

3. if x(2(i)) = therapy, then

a. 2(i) → 0 at rate λi,

b. 2(i) → 1(i+1) at rate βi,

c. 2(i) → 2(i+1) at rate γi,

d. 2(i) → 3 at rate µi.

Let the term αi = λi + βi + γi + µi describe the overall rate of exit from state 2(i). The model
is summarized by Figure 1.2

Spending time in each health state provides payoffs to the patient measured in QALYs.
In this section we assume that the payoff values of each state are independent of the chosen
treatment strategy. This assumption is relaxed in the following section. We assume that the
rate of accruing QALYs is highest when cured, lower when burdened by undetectable disease,
lower still when having detectable disease, and 0 if dead. For 0 ≤ v ≤ u ≤ 1, the rate of QALY
accrual is given by the function u : S → [0, 1] given by

2The connection with the more well-known discrete-time Markov Decision Processes is the followsing: In
expectation, a patient who does not take therapy at state 2(i) spends time 1/ωi in 2(i) before progressing to 3.
The transition probability from 2(i) to 3 is thus 1 without therapy. Similarly, a patient in 1(i) transitions to
2(i) with probability 1, spending at expected time of 1/δi in 1(i). A patient who takes therapy in 2(i) spends
an expected 1/αi time in this state before transitioning to one of 0, 1(i+1), 2(i+1), 3 with probabilities λi/αi,
βi/αi, γi/αi and µi/αi, respectively. The time spent in each state is exponentially distributed with parameter
corresponding to the total transition rate out of the state: δi for state 1(i), ωi for state 2(i) without therapy and
αi for state 2(i) with therapy.
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u(s) =


1 if s = 0
u if s ∈ {1(i)}∞i=0

v if s ∈ {2(i)}∞i=0

0 if s = 3

called the patient’s instantaneous payoff function.
Upon selecting the treatment strategy xi, the patient’s progression through the states is

a stochastic (Markovian) process. A realization of the patient’s progression is called a play,
described by a class of functions s : [0,∞) × X → S. The value s(t, xi), denotes the patient’s
state at time t ∈ [0,∞) under treatment strategy xi. Given strategy xi, realization s(·, xi) and
j ≤ i let tj(s(·, xi)) denote the time that the patient receives the jth round of therapy. Whenever
it does not cause confusion suppress the argument and write only tj to denote the time of round
j.

Taking therapy is costly. Each time the patient accepts therapy he or she incurs an instan-
taneous cost c. This may represent the monetary cost to pay for one round, lost income, or
temporary discomfort caused by the therapy.

We assume that the patient has a preference for earlier rewards, modeled via exponential
discounting with a patient-specific discount factor ρ > 0.

Given a strategy xi and realization s(·, xi), the patient’s payoffs are given as

U(s(·, xi)) =

∫ ∞
0

e−ρtu(s(t, xi))dt−
i∑

j=1

ce−ρtj . (1)

Due to ρ > 0, U(s(·, xi)) is finite for every realization of the stochastic process if a finite strategy
xi is chosen and for almost every realization if x∞ is chosen.

For j ≤ i let

U j(s(·, xi)) =

∫ ∞
tj

e−ρ(t−tj)u(s(t, xi))dt−
i∑

j′=j

ce−ρ(tj′−tj)

denote the future payoffs of a patient who evaluates their prospect starting from state 2(j) (and
therefore, starts discounting at tj).

The patient chooses xi to maximize their expected payoffs given by

V (xi) = Es(·,xi)U(s(·, xi)). (2)

As before, for j ≤ i we let

V j(xi) = Es(·,xi)U
j(s(·, xi))

denote the expected payoff of a patient who starts evaluating their prospects from state 2(j).
From these formulations we derive main result of this section.

Proposition 2.1 (Recursive evaluation). For a fixed treatment strategy xi with i > 0, the
expected future payoffs in round j < i is given as follows:
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V j(xi) =
v

αj + ρ
+

λj
αj + ρ

1

ρ
+

βj
αj + ρ

(
u

δj+1 + ρ
+

δj+1

δj+1 + ρ
V j+1(xi)

)
+

γj
αj + ρ

V j+1(xi)− c,

(3)

V i(xi) =
v

ωi + ρ
, if i is finite. (4)

Proposition 2.1 allows for the evaluation of the patient’s payoffs in any state for any finite
treatment through a linear recursive system. The right hand side of (3)’s five components are (1)
the discounted expected payoff the patient collects in state 2(j) before transitioning to any other
state, (2) the discounted expected value of reaching state 0 (3) the discounted expected value
of transitioning to state 1(j+1) followed by a transition into state 2(j+1), (4) discounted expected
value of a direct transition to state 2(j+1), and (5) the instantaneous cost of the treatment. In
(4), as there are no further rounds of therapy and the patient will progress to state 3. Thus
the right hand side contains only the discounted expected value the patient collects in state 2(i)

before death. In the appendix we calculate each component and formally prove this result.
If for two treatment strategies, xi, xj, we have V (xi) ≥ V (xj) (V (xi) > V (xj)) we say that

the patient (strictly) prefers i to j and denote it by xi % xj (xi � xj). We say that xi is optimal
if xi % xj for every j.

Proposition 2.1 allows for optimal treatment strategies to be derived efficiently even though,
due to the time-heterogeneity of the transition rates, a closed form of (3) cannot be given.
However, (3)-(4) can be transformed into a straightforward comparison between two “successive”
strategies xi and xi+1. This allows for a myopic condition of stopping or continuing therapy that
is shown in the next proposition.

Proposition 2.2 (Myopic stopping condition). For a finite i we have xi % xi+1 if and only if

v
αi − ωi
ωi + ρ

+ c(αi + ρ) ≥ u
βi

δi+1 + ρ
+ v

1

ωi+1 + ρ

(
βiδi+1

δi+1 + ρ
+ γi

)
+
λi
ρ
. (5)

Under the myopic strategy, the patient compares stopping now in state 2(i) with a strategy
of taking therapy now and then stopping at the next detectable state 2(i+1). The advantage of
stopping treatment (left-hand-side of (5)) comes from the extra value from spending time in 2(i)

(v term, possibly negative if no therapy results in spending less time in expectation), plus the
normalized saved cost of the treatment. The advantage of maintaining therapy for one more
detectable state (right-hand-side of (5)) comes from the value of spending time in 1(i+1) (u term),
the value of spending time in 2(i+1), either indirectly through 1(i+1) or by a direct transition (v
terms), and the value of possibly becoming cured.

Proposition 2.2 can be used to determine if, at any point, stopping therapy immediately
is better than continuing for one more round with the intention of stopping therapy after that
state. A sequence of such successive comparisons allows for a local optimization of the treatment
strategy, but it may not result in a global optimum. The myopic optimization strategy will miss
a better treatment strategy if, for instance, stopping treatment is better than continuing for one
more round, but worse than continuing for two.

Under certain plausible monotonicity conditions, such local comparisons will produce the
global optimum, e.g. if continuing for one more round is always better than stopping, then treat-
ment should never be stopped. The last result of this section provides sufficient monotonicity
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conditions under which the optimal treatment strategy can be calculated through the myopic
strategy.

Take the following homogeneity/monotonicity conditions:

� (H1): u = v = 1,

� (H2): δi = δ, ωi = ω,

� (M1): M(i) ≤M(i+ 1),

� (M2): M(i) ≥M(i+ 1),

for all i ∈ N, and

M(i) =
βi

αi + ρ

ω

δ + ρ
+

λi
αi + ρ

ω

ρ
+
ω − µi
αi + ρ

.

The value M(i) is a measure of the advantage of taking therapy at state 2(i); it is a weighted
sum of the progression rates corresponding to at least partial therapy success (i.e. leading to
states 1(i+1) and 0) and the difference between the death rate without and with therapy.

The first condition pertains to the patient’s preferences. Under (H1) the patient maximizes
discounted life expectancy by spending as much time in states other than 3 as possible. Under
(H2), the rate of progression from undetectable cancer to detectable, and the rate of death while
living with untreated cancer, are constants and independent of i, the prior or current state of the
disease. Under monotonicity condition (M1) the patient is improving under continuous therapy,
transition probabilities become more favorable with each round. Under (M2) the reverse holds,
the patient’s prognosis worsens with each round.

Proposition 2.3 (Myopic optimization). Assume (H1) and (H2).

1. Under (M1) there exists an i′ ∈ N ∪ {∞} such that for every j < i ≤ i′ we have xi ≺ xj
and for every i > j ≥ i′ we have xi % xj.

2. Under (M2) there exists an i′ ∈ N ∪ {∞} such that for every j < i ≤ i′ we have xi � xj
and for every i > j ≥ i′ we have xi - xj.

The proof of Proposition 2.3 relies on on the successive comparisons of Proposition 2.2. Under
the first set of conditions, V (xi) is quasi-convex in i, while under the second it is quasi-concave.
In either case we can provide the optimal treatment strategy, as shown by the next corollary.

Corollary 2.4 (Myopic optimization). Assumer (H1) and (H2).

1. Under (M1), if V (x0) > V (x∞), then x0 is the only optimal treatment strategy, if V (x0) <
V (x∞), then x∞ is the only optimal treatment strategy, in case of equality both are optimal.

2. Under (M2) xi′ is the only optimal treatment strategy.

In the first statement we approximate V (x∞) by taking a sufficiently high i and evaluating V (xi)
through (3)-(4). As we have a positive discount rate, (ρ > 0), any level of approximation can
be achieved. In the second statement we find the optimal i′ through a sequence of pairwise
comparisons. As long as continuing therapy for one more round is better than stopping immedi-
ately, the patient should continue. In this situation, a myopic strategy will identify the globally
optimal treatment strategy.
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Corollary 2.4 applies only if the homogeneity and monotonicity conditions (H1), (H2), and
one of (M1) or (M2) hold. With (M1), we find that the treatment strategy x∞ is optimal
because the likelihood of cure or undetectable disease increases with each round. Such a circum-
stance applies when progressive disease states manifest as shrinkage of the overall tumor burden,
elimination of the most life threatening tumors or metastases, or therapy increases in efficacy.
Condition is favorable for the patient.

With (M2), ceasing therapy at some point becomes optimal. With each round the tumor
burden, number of metastases, and resistance to therapy may be increasing. This means that
the rate of adding QALYs declines with therapy in each progressive disease state i. For instance,
if continued therapy only kills sensitive cells while leaving resistance cancer cells unharmed, then
therapy, in time, results in diminishing returns. Under this condition, there exists an interior
optimal treatment strategy beyond which further treatment is to the detriment of the patient.

Example 2.5 (Overtreatment). To illustrate the model, we simulated the effects of overtreat-
ment and calculated the loss of overall quality of life. To reduce the number of key factors we
introduce a final homogeneity condition, (H3): βi = β, γi = γ, µi = µ. Under (H3), only cure
rate λi, depends on the patient’s progressive disease state i. We let λi = λ(i+1) for some initial
value λ. Table 1 gives the values for the time-homogeneous parameters of this simulation. The
effects of varying λ and c are shown in Figure 2. As expected, the optimal duration of therapy
increases with λ and decreases with c.

Parameter ρ δ β γ µ ω
Value 0.05 0.15 0.15 0.12 0.13 0.13

Table 1: For Example 2.5, we fixed ρ and randomized the remaining transition parameters between 0.1
and 0.2, keeping ω = µ, under which a decreasing M(i) is guaranteed as long as λi is also decreasing
with i.

For λ = 0.4 and c = 3 the parameters satisfy (M2) and the unique optimal strategy is x2.
Expected values of treatment strategies x0 through x7 are reported in Table 2 in relative terms
to a healty patient’s payoff.3

As shown by Table 2, any treatment strategy that begins with therapy (xi, i > 0) is better
than no therapy at all (x0) ). The strategy of only having therapy in the first two progressive
states (x2) is the unique optimal strategy. However, as the cure rate, λi declines sharply in
i, most patients who are not cured in the first two rounds lose the opportunity to do so in
future rounds (Table 3).4 For such patients, the cost of future therapy rounds is higher than
the present value of the gains of postponing progression to state 3. If the standard of care is
continuing therapy indefinitely, patients who survive beyond state 2(2) are being overtreated and
incur significant payoff losses. Patients in state 2(3) lose 6.29% points under strategy x7 when
compared to the then-optimal x2, patients in 2(3) lose 12.27%, while patients who in 2(4) lose
the most at 14.01% of a healthy person’s lifetime payoffs. Treatment strategies x1 through x7
all provide very similar ex-ante evaluations despite the staggering payoff losses described above.
This happened for two reasons: (1) the losses affect a minority of the population (only 9.47% of

3A healthy individual remains in state 0 and thus collects a payoff of 1 indefinitely. Taking into account
time-discounting, this person has a payoff of 1/ρ = 20.

4Note that this does not mean that subsequent rounds of therapy offer no benefits as patients under therapy
have a longer life expectancy then those who are not even if λi = 0.
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Figure 2: Optimal number of treatment rounds in the cost-based model for parameter values shown in
table 1. Gray areas show the regions in which continuous treatment is optimal. The progressive disease
state at which the patient should cease therapy increases with the likelihood of cure and decreases with
the cost to the patient in terms of money, lost income or ill-health from therapy.

V j(xi)
j

0 1 2 3 4 5 6 7

xi

x0 27.78%
x1 49.95% 27.78%
x2 52.24% 36.16% 27.78%
x3 52.17% 35.88% 27.04% 27.78%
x4 51.91% 34.95% 24.59% 22.36% 27.78%
x5 51.74% 34.31% 22.93% 18.69% 20.27% 27.78%
x6 51.64% 33.96% 21.99% 16.62% 16.03% 19.39% 27.78%
x7 51.59% 33.77% 21.49% 15.51% 13.77% 14.92% 19.04% 27.78%

Table 2: Expected values of treatment strategies x0 to x7 evaluated at different points of disease progres-
sion relative to a healthy individual’s total payoffs with λ = 0.4 and c = 3. Taking 2 rounds is optimal,
but further rounds diminish the present value (period 0) payoffs only marginally. Patients under con-
tinuous therapy who reach round 3 and beyond, if overtreated, have significantly lower prospects than
patients who stop therapy.

the cohort is neither cured nor dead after the third round, 6.01% after the fourth, 3.95% after
the fifth), (2) the losses occur with a time delay starting at the time of reaching 2(2), hence the
differences are in the discounted future expected payoffs. Thus, the losses that occur due to
overtreatment are obscured, delayed, and concentrated on a minority of patients making policy
change to move away from the ‘always treat’ strategy in the standard of care very difficult.

It should also be noted that, while in our model and simulation, overtreatment is costly
in lifetime payoff terms, the fraction of patients cured are larger the more rounds of therapy
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Round 0 1 2 3 4 5

Cure rate 0.40 0.16 0.06 0.03 0.01 0.00

Cure probability 50.00% 28.57% 13.79% 6.02% 2.50% 1.01%
Death probability 16.25% 23.21% 28.02% 30.55% 31.69% 32.17%
Progression probability 33.75% 48.21% 58.19% 63.44% 65.82% 66.82%

Cohort size 100.00% 33.75% 16.27% 9.47% 6.01% 3.95%
Cured 0.00% 50.00% 59.64% 61.89% 62.46% 62.61%
Dead 0.00% 16.25% 24.08% 28.64% 31.54% 33.44%

Table 3: A simulated cohort’s survival statistics under ‘always treat’ with λ = 0.4 up to state 2(5).

are taken. x2 results in 59.64% of patients cured, while x7 results in 62.66%. Furthermore, a
payoff-maximizing patient who stops after reaching 2(2) forgoes the cure percentage of 13.79%
of the next round, showcasing how the objectives of oncologists and patients might differ and
lead to highly different choices of treatment strategy.

3 Toxicity-dependent payoffs

In our first model (Section 2), the cost of therapy was a constant and accrued only when
therapy was being administered. This applies when the cost is monetary or under the simplifying
assumption that the onset and cessation of any ill-health caused by the drug’s toxicity switches
instantly. Under these circumstances, the patient decides on which progressive disease state
to cease therapy. Upon progressing to the next detectable disease state the patient chooses
whether or not to immediately undergo therapy for the duration of the detectable disease state.
The disease transition rates changed only when the patient entered a new state.

Here we extend the model by separating the cost of therapy between the material cost and
those directly affecting the patient’s quality of life via therapy toxicity. We do this by considering
the more realistic case where drug-induced malaise starts with therapy, and then declines with
time upon ceasing therapy. In particular, when a round of therapy is unsuccessful in curing
the disease, the lasting side-effects of the therapy can influence the decision to continue with
therapy. The patient’s level of therapy-induced toxicity negatively influences QALYs even when
therapy has stopped.

Because of cumulative toxicity effects, a patient may decide on the timing of receiving therapy
upon entering a new disease state. Drug holidays, for instance, provide a reprieve for the patient.
The patient, upon entering a new disease state may delay the resumption of therapy. For our
model, this means the patient spends some time experiencing the no therapy rate of progression
before deciding to take the next round of treatment, after which the therapy transition rules
apply. By including cumulative effects of drug toxicity, our next model captures the rational
motivation behind taking drug holidays. We seek to find the optimal time for the patient to
delay therapy upon entering the next detectable disease state, 2(i).

We will add cumulative toxicity to the model by assuming that each round of therapy adds
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to toxicity, while its level decays exponentially over time. Let i(t) denote the number of rounds
of therapy taken up to time t. For z0, ẑ ≥ 0 and ζ > 0 we define

z(z0, t) = z0e
−ζt +

i(t)∑
i=0

ẑe−ζ(t−ti). (6)

The value z(z0, t) is called the patient’s toxicity level, a negative payoff component to the pa-
tient’s quality of lief. Each round of therapy adds a fixed amount ẑ to the patient’s toxicity. Its
starting level is denoted by z0 and it decays exponentially with a constant rate ζ.

As an important component of the patient’s well-being, the patient’s choice on whether to
continue therapy at the next detectable disease state, 2(i), and when to start that therapy will
be contingent on their current level of toxicity. Upon entering a state 2(i), instead of a binary
choice of take therapy or not, the patient chooses the to time delay therapy. By delaying for a
time t̂, during that time, the patient obeys the progression rule as if the no therapy choice was
taken, i.e. moves to state 3 at rate ωi. If the patient does not progress during this time, then
they transition through the game tree in accordance with the therapy choice, i.e. moves to state
0, 1(i+1), 2(i+1), and 3 at rates λi, βi, γi, and µi, respectively.

Formally, the patient’s strategy is now described by a function x : {2(i)}∞i=0× [0,∞)→ [0,∞).
For round i and toxicity level z the value x(i, z) is the duration of the drug holiday in state 2(i)

before re-starting therapy. If this value is 0, then therapy begins immediately upon entering this
disease state, if it is infinity, then the patient ceases taking therapy upon progressing to state 2(i).
For consistency, we restrict attention to strategies such that if for some i we have x(i, z) = ∞
for every z, then for every j > i and every z′ we have x(j, z′) =∞ as well, meaning that if the
patient rejects therapy in state 2(i), then the patients also rejects therapy in all future detectable
diseases states. We call a treatment strategy finite if there exists i such that x(i, z) = ∞ for
every z, i.e. the patient stops therapy after a finite number of rounds.

The patient’s instantaneous payoff function when affected by toxicity, u : S × [0,∞)→ R, is
given as

u(s, z) =

{
1− z if s ∈ {0, {1(i)}∞i=0, {2(i)}∞i=0}

0 if s = 3.

The patient collects a payoff of 1 in any health state other than 3, minus the amount of toxicity
he or she currently has. In state 3, the patient collects a payoff of zero. We therefore replace
the state-dependent quality-of-life-terms under therapy of our base model, u and v, with the
toxicity-adjusted quality of life, 1− z.

Given a treatment strategy x, state-realization s(·, x) and initial toxicity level z0, the patient’s
payoff when affected by toxicity is given by

U(s(·, x), z0) =

∫ ∞
0

e−ρtu(s(t, x), z(z0, t))dt−
i(t)∑
j=1

ce−ρtj , (7)

where, as before tj denotes the time of administering the jth round of therapy. Due to ρ > 0,
U(s(·, x), z(·, x)) is finite for every realization in every finite strategy and almost every realization
for every strategy. We define a patient’s prospects starting in a general state 2(i), at time t′

conditional on the fact that their current toxicity level equals zi as

U i(s(·, x), zi) =

∫ ∞
0

e−ρ(t−t
′)u(s(t, x), z(zi, t))dt−

i(t)∑
j=i(t′)

ce−ρ(tj−t
′), (8)
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Given z0, the patient chooses x to maximize their discounted expected payoff :

V (x, z0) = Es(·,x)U(s(·, x), z0).

A patient starting in state 2(i) with toxicity level zi faces prospects given as

V i(x, zi) = Es(·,x)U i(s(·, x), zi).

In the following proposition we establish how to evaluate a treatment strategy of a patient
affected by toxicity.

Proposition 3.1 (Evaluation of treatment strategies under toxicity). At disease state 2(i), for
a treatment strategy x, with starting toxicity level zi and where the patient waits time t̂ before
taking round i+ 1 (i.e. x(i, zi) = t̂), the patient’s discounted expected payoff is calculated by the
following recursive formula:

V i(x, zi) =
1− e−(ωi+ρ)t̂

ωi + ρ
−
zi

(
1− e−(ωi+ρ+ζ)t̂

)
ωi + ρ+ ζ

+ e−(ωi+ρ)t̂

(
−c+

1

αi + ρ
− zie

−ζt̂ + ẑ

αi + ρ+ ζ
(9)

+λi

(
1

ρ(αi + ρ)
− zie

−ζt̂ + ẑ

(ρ+ ζ)(αi + ρ+ ζ)

)
+
γi
αi

∫
V i+1(x, zie

−ζ(τ+t̂) + ẑ)e−ρτdf(τ)

+
βi
αi

(
αi

(αi + ρ)(δi+1 + ρ)
− αi(zie

−ζt̂ + ẑ)

(αi + ρ+ ζ)(δi+1 + ρ+ ζ)
+

∫
V i+1(x, zie

−ζ(τ+t̂) + ẑ)e−ρτdg(τ)

))
.

with probability measures

f(τ) = αie
−αiτ , for τ ≥ 0,

g(τ) =

{
δi+1αi

δi+1−αi

(
e−αiτ − e−δi+1τ

)
if αi 6= δi+1

α2
i τe−αiτ if αi = δi+1

, for τ ≥ 0.

Proposition 3.1 shows the relationship between the payoffs generated by treatment strategies
in successive detectable disease states. The first component is the expected payoff the patient
collects while waiting for the next round of therapy. The second component is the sum of three
parts: the expected payoff of transitioning to state 0, the expected payoff of a direct transition
to state 2(i+1), and the expected payoff of a transition to state 2(i+1) via state 1(i+1).

It is clear that the cumulative toxicity model allows for significantly less analytic tractability
than the instantaneous cost model of Section 2. This is most apparent when comparing the
recursive formulae of Propositions 2.1 3.1. While the former shows a simple linear dependence
on successive disease states, the latter necessitates numerical methods of approximation. At the
end of this section we examine a numerical example relying on such methods.

In special cases the toxicity model does provide analytically tractable results. Namely,
a myopic calibration of the next round’s delay, with the assumption that no further rounds
will be taken. Thus, in the next lemma we evaluate finite treatment strategies close to the
end of treatment. These provide optimal stopping conditions for myopic treatment strate-
gies, and provide insights into a global optimization of treatment strategies. For i ∈ N let
Xi = {x : x(i, z) = ∞ for all z}, i.e. treatment stops after i rounds. Due to the consistency
restriction these sets are nested, i.e. Xi ⊆ Xi+1 for every i.
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Let

Ai(ρ) =
1

αi + ρ

(
1 +

λi
ρ

+
γi

ωi + ρ
+ βi

(
1

δi+1 + ρ
+

δi+1

(δi+1 + ρ)(ωi + ρ)

))
,

and

Bi(ρ) =
1

ωi + ρ
.

The following lemma gives an evaluation of three special strategies that form the cornerstones
of myopic calibration of optimal delay.

Lemma 3.2 (Evaluating treatment strategies). 1. For x ∈ Xi

V i(x, zi) = Bi(ρ)− ziBi(ρ+ ζ). (10)

2. For x ∈ Xi+1 with x(i, zi) = 0

V i(x, zi) = Ai(ρ)− (zi + ẑ)Ai(ρ+ ζ)− c. (11)

3. For x ∈ Xi+1 with x(i, zi) = t̂

V i(x, zi) = Bi(ρ)
(

1− e−(ωi+ρ)t̂
)
−ziBi(ρ+ ζ)

(
1− e−(ωi+ρ+ζ)t̂

)
+ e−(ωi+ρ)t̂

(
Ai(ρ)− (zie

−ζt̂ + ẑ)Ai(ρ+ ζ)− c
)
. (12)

Lemma 3.2 shows straightforward evaluations of three treatment strategies for a patient currently
in disease state 2(i): (1) therapy is ceased immediately (i.e., after a total i previous rounds), (2)
the final round of therapy (the i+1th) is applied immediately, and (3) the final round of therapy
(the i + 1th) is applied with a delay of t̂ (i.e, the patient takes a drug holiday of duration t̂).
This result allows us to formulate a calibration of the optimal delay before the next round of
therapy under the myopic assumption that no further rounds will be taken, as shown in the next
proposition:

Proposition 3.3 (Myopic calibration of delay). Of the strategies with at most i rounds of
therapy:

1. If Bi(ρ) − Ai(ρ) + ẑAi(ρ + ζ) + c and Bi(ρ + ζ) − Ai(ρ + ζ) are both negative, then the
optimal time to administer the last round of therapy is to wait until the patient’s toxicity level
reaches a threshold z with

z =
Bi(ρ+ ζ)

Bi(ρ)

Bi(ρ)− Ai(ρ) + ẑAi(ρ+ ζ) + c

Bi(ρ+ ζ)− Ai(ρ+ ζ)
,

or, if the patient’s toxicity is below this level, then administer the last round of therapy immedi-
ately.

2. If Bi(ρ)−Ai(ρ) + ẑAi(ρ+ ζ) + c > 0 and Bi(ρ+ ζ)−Ai(ρ+ ζ) < 0, then stopping at the
i− 1th round is better than continuing with the ith round.

3. If Bi(ρ)−Ai(ρ) + ẑAi(ρ+ ζ) + c < 0 and Bi(ρ+ ζ)−Ai(ρ+ ζ) > 0, then treatment should
be administered immediately.
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4. If Bi(ρ)−Ai(ρ)+ ẑAi(ρ+ζ)+c and Bi(ρ+ζ)−Ai(ρ+ζ) are both positive, then treatment
should be administered immediately if the patient’s toxicity is above the threshold z′ and never if
it is below it, with

z′ =
Bi(ρ)− Ai(ρ) + ẑAi(ρ+ ζ) + c

Bi(ρ+ ζ)− Ai(ρ+ ζ)
.

Proposition 3.3 plays a similar role as Section 2’s Proposition 2.2. It identifies a myopically
optimal stopping condition at a particular disease state without an intention of resuming therapy
in subsequent disease states. Moreover, it determines the myopically optimal waiting time
through analytic methods. Under condition (1) treatment is to be delayed until toxicity is
sufficiently diminished, under (2) it is to be canceled no matter the patient’s toxicity level,
under (3) it is to be administered immediately no matter the patient’s toxicity level, and finally,
under (4) it is to be administered only for patients with high toxicity level. The final point
shows a perverse case, resulting from the fact that patients with high negative instantaneous
payoffs prefer to immediately receive the next round even though the transition parameters are
such that doing so decreases the patient’s life expectancy.

Example 3.4. In this example we demonstrate the value gained from calibrating the duration
of the treatment holiday in a detectable disease state. As in Example 2.5, we let λi = λi+1 for
an initial value λ. Consider the transition parameters shown in Table 4.

Parameter ρ δ β γ µ ω
Value 0.05 0.1 0.1 0.2 0.3 0.2

Table 4: The calibration of Example 3.4.

For a benchmark, we first consider the no toxicity case with λ = 0.67, meaning that we
evaluate this example through Section 2’s model. Then, as in Example 2.5, (M2) is satisfied. In
Table 5, for each treatment strategy x0 through x8, we report the corresponding range of the
treatment costs, c that lead produce it as the unique payoff-maximizing strategy.

Cost range Optimal strategy Payoff range (% of healthy) Total cured (%)

0.84 – 1.13 x8 64.13% – 62.28% 65.90%
1.14 – 1.55 x7 62.22% – 59.61% 65.90%
1.56 – 2.13 x6 59.55% – 55.93% 65.89%
2.14 – 2.92 x5 55.87% – 50.92% 65.84%
2.93 – 3.94 x4 50.85% – 44.47% 65.69%
3.95 – 5.20 x3 44.40% – 36.58% 65.12%
5.21 – 6.65 x2 36.52% – 27.87% 62.87%
6.66 – 8.22 x1 27.81% – 20.01% 52.76%

8.23+ x0 20.00% 0.00%

Table 5: Payoff-maximizing treatment strategies for various cost ranges, their corresponding ex-ante
payoff ranges relative to a healthy individual, and total cure percentages.

Now consider the case of toxicity. To showcase its effect we set c = 0, i.e. the incentive of
stopping treatment comes solely from the patient’s decreased quality of life due to toxicity.
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We take z0 = 0, ẑ = 0.5, and ζ = 0.03. Under these parameters, the total payoff-reduction
of one round of therapy from toxicity is ẑ/(ρ + ζ) = 6.25, called its present cost. However,
this cost is realized in full only by patients with a death rate of zero as patients who move to
state 3 experience the quality-of-life reduction from toxicity for a shorter time. Patients in non-
absorbing states face a constant death rate of µ = ω = 0.2 and hence face an expected present
cost of ẑ/(ρ + ζ + ω) = 1.79. As such, based on Table 5 we can expect at least 2 rounds of
therapy, and at most 6.

Through Proposition 3.3, we can analytically derive a myopically optimal treatment plan,
i.e. the optimal waiting times before each round under the assumption that there will be no
further rounds of therapy attempted. As the benefits of therapy are declining with each round,
the globally optimal strategy will be to delay therapy in future rounds more and more, thus
the myopic assumption that therapy will cease after the current round under consideration will
matter less and less. As such, myopic optimization will produce increasingly accurate estimates
of the globally optimal treatment strategy as the patient takes more rounds. In Table 6 we
report the threshold levels of toxicity in each round. With z0 = 0 and ẑ = 0.5 the first two

Round Cure rate Cure probability Threshold toxicity

1 0.67 0.53 0.87
2 0.45 0.43 0.76
3 0.30 0.33 0.65
4 0.20 0.25 0.48
5 0.14 0.18 0.22
6 0.09 0.13 negative

Table 6: Threshold toxicity levels below which the next round of treatment can be delivered under
myopically optimal treatment strategies. Above this level, a payoff-maximizing myopic patient waits
until toxicity drops to the threshold level before taking therapy.

rounds are delivered as soon as possible to the patient as the threshold of round 1 is 0.87, while
that of round 2 is 0.76, and the maximum toxicity that the patient can have after round 1 is 0.5.
From round 3 onward, however, the patient may be better off delaying, if their toxicity exceeds
the threshold corresponding to round i+ 1’s at the time of arrival to state 2(i).

For a specific case consider a patient in state 2(2), deciding on the delay of the third round.
This patient has taken therapy in two detectable disease states and their toxicity level increased
twice by ẑ = 0.5, however, in the intermittent times of waiting for the transitions (in states
2(0), 2(1), possibly visiting 1(1) or 1(2) or both as well), the patient’s toxicity level has declined.
In our example we set z2 = 0.73. The patient is facing a cure rate of λ3 = 0.3. By Table 6, this
patient’s payoff is maximized by waiting until the toxicity level reaches 0.65 to take the third
round. The patient’s present value, depending on their delay of taking the third round is shown
in Figure 3.

We note that the patient’s decision to delay the third round may seem surprising, considering
that the probability of cure is still high (0.33), and that during the waiting time of 3.86 their
probability of death is even higher (e−3.86ω = 0.54). It is clear that such a decision is not
supported by practices that maximize probability of cure or survival time. The decision to delay
is cast in a more favorable light by considering that receiving the toxicity hit of the third round
immediately would yield a quality of life of −0.23. Even at the threshold toxicity of 0.65 the
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Figure 3: The patient’s payoffs relative to a healthy individual’s after completing two rounds as a function
of round 3’s delay with toxicity rate z2 = 0.73 and facing a cure rate of λ2 = 0.3. Expected payoffs are
maximized at a delay of t̂3 = ln(z2/z̄)/ζ = 3.86

patient’s quality of life turns temporarily negative. The delay lowers the patient’s present cost
of therapy enough for a payoff-maximizing patient to resume therapy.

Example 3.4 showcases both the possible benefits of delaying therapy (Figure 3) and a my-
opically optimal patient’s behavior (Table 6). It also highlights the comparison between the
models of Sections 2 and 3. The former prescribes the number of treatment rounds based on
the flat one-time cost the patient incurs per round, while the latter prescribes the timing of
these rounds. Note, however, that unlike in Section 2, where we were able to derive a condition
that ensured that the myopically optimal behavior produces the globally optimal one (Propo-
sition 2.3), there is no analogous result to guarantee that Table 6’s results correspond to the
globally optimal behavior in the toxicity model. In the next example, we evaluate the same
calibration via a numerical approximation and show that its results are in agreement with the
myopically optimal waiting times.

Example 3.5. Consider the same transition parameters as shown in Table 4. As in Example 3.4,
we take λ = 0.67, ẑ = 0.5 and ζ = 0.03 with z0 = 0. Table 7 reports the expected optimal delays
of a maximum of six treatment rounds through a numerical approximation (see the appendix
for a summary of the methodology of the approximation).
The interpretation of the prescribed treatment strategy starting at round 0 (first row of Table 7)
is as follows: Given the patient’s toxicity level of z0 = 0, in expectation, the patient is advised to
wait time t̂i before receiving the i+1th round of therapy. Note that the prescribed waiting times
for distant treatment rounds are subject to change. At the onset, they are merely an expected
time of optimal delay given the patient’s expected progression, on which, based on backwards
induction, the optimal time of delay of the first round, t̂0 = 0, can be calculated. Thus, only
this first delay is actionable information. Should the patient reach the next decision node, their
toxicity level may be quite different from the expected levels, hence, subsequent decisions need
to be taken according to the realized toxicity levels.

To illustrate, we report three re-optimized treatment strategies given toxicity levels z1 =
0.32, 0.40, and 0.48 after round 1 (rows 2 to 4 of Table 6). This large divergence in toxicities is
based on the fact that patients who do not respond to the treatment (and thus progress to state
2(1) directly) are expected to have larger toxicity levels than those who do (and thus reach 2(1)
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Round 0 1 2 3 4 5

Cure rate 0.67 0.45 0.30 0.20 0.14 0.09
i zi Payoff Cure perc. 52.76% 42.80% 33.39% 25.14% 18.37% 13.10%

0 0.00 42.70% 0 0 0 11.27 20576 ∞

1 0.32 24.12% 0 0 13.76 17.67 ∞
1 0.40 21.16% 0 0.84 13.76 118.88 ∞
1 0.48 18.28% 0 3.68 13.91 13.77 ∞

2 0.60 11.09% 0 15.44 176.77 ∞
2 0.68 8.62% 1.44 16.96 22.31 ∞
2 0.76 6.73% 5.14 16.96 22.19 ∞
2 0.84 5.13% 8.48 16.96 21.88 ∞
2 0.92 3.63% 11.51 16.96 24.12 ∞

Table 7: Delay times and payoffs of approximate optimal strategies, x∗(i, zi) conditional on starting
therapy in round i with toxicity level zi. Bold numbers are actionable choices, all other delays are
expected values subject to change. A patient progressing through the disease states re-optimizes in each
detectable state and tailors their behavior based on the current level of toxicity.

indirectly through 1(1)), as the latter group’s toxicity is allowed to decline for a longer time.5

As shown in the table, these patients are all advised to take round 2 immediately, but their
expected delays in future rounds, as well as their expected payoffs, diverge.

Those patients who progress further again need to re-optimize based on their realized levels
of toxicity. We approximate optimal treatment strategies for patients who start after round
2 with toxicity levels z2 = 0.60, 0.68, 0.76, 0.84, and 0.92. At this stage, the prescribed delays
before taking round 3 are different, hence the different patients’ payoff-maximizing behavior di-
verges. The approximate delay times of the next round line up with the myopically optimal ones
(retrieved from Proposition 3.3) up to the 3rd decimal point, indicating that the approximate
optimal solution and the myopically optimal one agree closely, provided that λi is decreasing.

4 Discussion

In this paper we develop a decision-making tool of cancer therapy. We model the development
of the disease as a random, Markovian process, capturing the prognosis-relevant data with four
types of health states (cure, undetectable tumor burden, detectable burden and death). This
approach unifies the more classical Markovian models of cancer therapy (Cooper et al., 2003,
2004) with the novel game theoretic analysis of cancer (Orlando et al., 2012; Staňková et al.,
2019), adding the element of patient choice to the former, and simplifying cancer’s evolutionary
dynamics to a random, Markovian process in the latter. This framing of cancer strategies in

5The expected time spent in state 1(i) is 1/δ = 10 in this example, while toxicity level upon leaving state 1(i)

if it was at level z′ upon entering it is z′δ/(δ + ζ), so an initial toxicity level of around 0.5 decreases to around
0.38.
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response to therapy allows us to focus on the patient’s choices. We then rely on classic results
from Markov Decision Processes for the existence of a unique optimal treatment strategy.

The model’s main disease-specific inputs are estimates of transition rates associated with
and without therapy. These rates consider transitions from detectable disease to cure, death,
undetectable disease, and the next detectable progressive disease state; and transitions from
undetectable disease to a detectable disease state. Such data would need to be estimated from
large patient cohorts that consider cure, complete responses, partial responses, stable disease
states, disease progression and mortality from therapeutic regimens. These regimens could
include the application of the same therapeutics regardless of disease state, or changes to the
therapies in response to changed disease state. Sources of data can include clinical trials, patient
outcome data compiled by governments, and published peer-reviewed papers on specific cancers
using large patient cohorts (e.g. breast cancer, Urru et al. (2018); lung cancer, Sun et al.
(2016); pancreatic cancer, He et al. (2020)). For instance, The National Cancer Database
sponsored by the American College of Surgeons and the American Cancer Society can be used
to analyze cancer patients, their treatments, and outcomes. With more than 34 million records,
the database accrues more than 70 percent of newly diagnosed cancer cases within the United
States (National Cancer Database (facs.org)). The Children’s Oncology Group, supported by
the National Cancer Institute, provides access to data on childhood and adolescent cancers from
cancer centers across North America (>14,000 new patients per year), Australia, New Zealand,
and Europe.

The patient-specific inputs include the patient-specific perceptions of the cost of therapy.
These can include financial hardships (Ell et al., 2008; McNulty and Khera, 2015; Smith et al.,
2021), emotional stress (Delgado-Guay et al., 2015; Traeger et al., 2009) and toxicity (Cleeland et
al., 2012). For our model, challenges exist in terms of patients revealing or perceiving these costs.
Surveys exist for evaluating these costs. Examples include for immune-checkpoint therapies
(Hansen et al., 2020), for breast cancer patients undergoing diverse therapies (Mokhatri-Hesari
and Montazeri, 2020; Bjelic-Radisic et al., 2020), and for thyroid cancer treated with lenvatinib
(Giani et al., 2021). Additionally, the model requires patients to reveal or have a sense for how
they discount time (see Vaughn et al. (2020) for the case of breast cancer patients).

With knowledge of transition rates of disease states and patient-specific parameters regard-
ing time discounting and therapy costs, our first model provides a simple recursive formula to
analytically evaluate the performance of various treatment strategies. This tool then allows the
patient to choose their preferred therapy duration. Under some monotonicity and homogene-
ity assumptions, a myopic (looking just one disease state ahead) evaluation of the treatment
strategies also produces the globally optimal outcome, further simplifying the decision-making
progress. In a second model, where the patient’s instantaneous payoffs were determined by their
current toxicity levels from therapy, the evaluation of treatment strategies becomes more com-
plicated and requires numerical tools. Nevertheless, optimal duration of therapy and optimal
timing of treatment rounds can be estimated. Myopically optimizing the next round’s delay
can be performed analytically, and can provide a good approximation to a globally optimal
treatment strategy if the cure rate in future detectable disease states decreases.

We raise three discussion points on the modeling choices made in the paper. The first is the
decision to include no more than four types of health states. One reason for this is to keep our
models tractable. A second reason is that a practical application of a model with more health
states requires more cohort data. Given the same amount of cohort data, calibrating a model
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with more than four health states comes with a loss of statistical power. In the case of large
cohorts, collecting patient data of a given cancer type, this may not be a problem. However,
in the case of cohorts stratified by age, sex, or by other variables, diluting the data in favor of
including a larger number of health states may not be desirable. We further argue that more
health states raises classification problems, while the four present in our paper is the lowest
number that is needed. In cases where data are abundant and classification unproblematic, our
model may be extended to include more state types in a straightforward manner.

Secondly, we raise the issue of personalized medicine. Barring some exceptional circum-
stances, the transition rates of our model must be calibrated from cohort data. The ability to
personalize our model depends on the availability cohort data corresponding to the patient’s
characteristics. For some cancers and for some strata this cannot be taken as given. In these
cases, our models can still serve as useful benchmarks against which the patient and their physi-
cian may evaluate their options given the patient’s own characteristics and responses. Even
when the ability to personalize our model’s transition rates is low, some of our model’s variables
such as the patient’s instantaneous payoff parameters and discount rate can be calibrated to
match the patient’s preferences and characteristics. When personalization is high, the differ-
ences between these patient-specific traits may still mean that two patients belonging to the
same demographic will favor different treatment strategies.

Thirdly, we address the relationship of the patient’s toxicity level in our second model and
the transition rates. In our model, these are mathematically independent in the sense that after
a given number of rounds of therapy, progression rates are not affected by toxicity. In practice,
toxicity caused by therapy is strongly related to the patient’s prognosis. This mismatch is
caused by the fact that our model combines “objective” parameters regarding disease prognosis
with “subjective” ones that reflect the patients’ preferences. Toxicity of therapy is related to
both. We therefore use the abstract term toxicity to reflect on the subjective aspect, measuring
the patient’s quality of life under therapy. Introducing explicit dependence between toxicity and
transition would be problematic both for the tractability of the model and in mixing the objective
concerns with subjective ones. For example, two patients may be very similar in their disease
progression but may report varying levels of discomfort due to therapy, or vice versa, which may
influence their choice of treatment. As the transition rates, do depend on the number of rounds
of therapy, our toxicity measure and the patient’s prognosis are statistically not independent.

Finally, we reflect on our stated goal, to address the dilemmas arising from the difficulty in
finding a suitable measure of success of cancer therapy. Our approach, maximizing the patient’s
discounted expected QALYs is rooted in a classic economic approach that treats individuals
as rational utility maximizers. As such, we propose it as a good candidate to evaluate cancer
therapy in a way that explicitly captures the patients’ well-being. As an additional value, even if
such an approach cannot be adopted in oncology formally, a model such as this can help identify
and understand points of disagreement between cancer patients and their treating physicians in
selecting a treatment strategy.

The model has several key utilities. First, there can be circumstances where a patient’s
optimal choice is to cease therapy even when cure may still be possible. This may pose ethical
dilemmas for the physician. Generally, quantity versus quality of life tradeoffs come most into
play when therapy is palliative and the disease state is assessed as incurable. In the model, a
patient’s willingness to cease therapy may be in part due to financial distress (Beeler et al., 2020).
This creates health disparities between those with and without access to inexpensive health care,
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or employer supported sick leave. Second, the model can predict, on a patient to patient basis,
the duration and timing of drug holidays. Current practice often has a pre-determined protocol
for taking breaks in therapy regardless or patient preferences, or manages them haphazardly
based on the patient’s level of discomfort or abnormal bloodwork.

Our approach inherits the limitations and criticism of its two main components, QALYs and
expected utility maximization. The former includes difficulty in measurement, interpersonal
comparison, and equity concerns. Similarly, expected utility theory has its detractors, both in
static settings (such as the well-known Allais, Ellsberg, and St. Petersburg paradoxes) and dy-
namic ones (such as time-inconsistent preferences). Addressing the former in the cancer context
is part of a deeper discussion on the appropriateness of using QALYs. We argue that, while
its shortcomings do not make it suitable to replace less controversial measures, such as survival
time, considering QALYs in addition to survival time has significant added value. Addressing
the latter in our setting requires a deeper mapping of the individual decision-making process.
Methods of behavioral economics, psychology, and other decision sciences use model and tools
based explicitly on expected utility theory. Thus, our model and its predictions, can serve as
useful benchmarks for future research in the decision theory of cancer.

A Appendix

Proposition 2.1

We first show the second part of the statement, that is:

V i(xi) =
v

ωi + ρ
,

for a finite i.
The patient collects a constant stream of instantaneous payoffs v while still in state 2(i), and

0 after he or she transitions to state 3. Let τ denote the time the patient spends in 2(i). As
τ ∼ Exp(ωi), we have

V i(xi) = Eτ
(∫ τ

0

ve−ρtdt

)
=

∫ ∞
0

∫ τ

0

ve−ρtdt ωie
−ωiτdτ = vωi

∫ ∞
0

[
−e−ρt

ρ

]τ
0

e−ωiτdτ

=
vωi
ρ

∫ ∞
0

(
1− e−ρτ

)
e−ωiτdτ =

vωi
ρ

(
1

ωi
− 1

ωi + ρ

)
=

v

ωi + ρ
.

To show the first part we calculate each of the following four components separately: (1) the
discounted payoffs collected in state 2(j) before transitioning; (2) those collected after transition-
ing to state 0; (3) those collected after transitioning to state 1(j+1), followed by transitioning to
state 2(j+1); (4) those collected after a direct transition to 2(j+1).

Calculating (1) amounts to evaluating

Eτ
(∫ τ

0

ve−ρtdt

)
=

∫ ∞
0

∫ τ

0

ve−ρtdt αje
−αjτdτ =

v

αj + ρ
,

with very similar steps as before, where now we have τ ∼ Exp(αj).
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To calculate (2) we need to evaluate

Eτ
(∫ ∞

τ

e−ρtdt

)
=

∫ ∞
0

∫ ∞
τ

e−ρtdt αje
−αjτdτ = αj

∫ ∞
0

[
−e−ρt

ρ

]∞
τ

e−αjτdτ

=
αj
ρ

∫ ∞
0

e−ρτe−αjτdτ =
αj
ρ

1

αj + ρ

as once more we have τ ∼ Exp(αj). Multiplying by λj/αj, the probability that state 0 is reached,
we get

1

ρ

λj
αj + ρ

.

Component (3) has two parts: the payoffs collected while the patient is in state 1(j+1), and the
payoff he or she collects after transitioning to 2(j+1). Taking τ ∼ Exp(αj) and τ ′ ∼ Exp(δj+1),
the former amounts to

Eτ,τ ′
(∫ τ+τ ′

τ

ue−ρtdt

)
=

∫ ∞
0

∫ ∞
0

∫ τ+τ ′

τ

ue−ρtdt αje
−αjτdτ δj+1e

−δj+1τ
′
dτ ′ = uαjδj+1

∫ ∞
0

∫ ∞
0[

−e−ρt

ρ

]τ+τ ′
τ

e−αjτdτ e−δj+1τ
′
dτ ′ =

uαjδj+1

ρ

∫ ∞
0

∫ ∞
0

(
e−(αj+ρ)τ − e−(αj+ρ)τe−δj+1τ

′
)

dτ e−δj+1τ
′
dτ ′

=
uαjδj+1

ρ

1

αj + ρ

∫ ∞
0

(
e−δj+1τ

′ − e−(ρ+δj+1)τ
′
)

dτ ′ =
uαjδj+1

ρ

1

αj + ρ

(
1

δj+1

− 1

δj+1 + ρ

)
=

αj
αj + ρ

u

δj+1 + ρ
.

This, multiplied by the probability of reaching state 1(j+1), βj/αj gives

βj
αj + ρ

u

δj+1 + ρ
.

The second part, the payoff the player receives after transitioning to 2(j+1) amounts to receiving
a payoff of V j+1(xi) with time delay τ + τ ′, that is, in expectation:

αj
αj + ρ

δj+1

δj+1 + ρ
V j+1(xi).

Multiplying by the probability of reaching state 1(j+1) (from which reaching state 2(j+1) is cer-
tain), we get

βj
αj + ρ

δj+1

δj+1 + ρ
V j+1(xi).

The sum of the two parts gives the third component of (3) as desired.
In component (4), a direct transition to state 2(j+1) provides a payoff of V j+1(xi) with a delay

of τ with τ ∼ Exp(αj), equaling
αj

αj + ρ
V j+1(xi).
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Multiplied by the probability of reaching 2(j+1) directly, γj/αj, we get

γj
αj + ρ

V j+1(xi).

Finally, subtracting the cost of a round of therapy, c, incurred immediately, we get the right
hand side of (3).

Proposition 2.2

As the two treatment strategies are identical in the first i periods, V (xi) ≥ V (xi+1) if and only
if V i(xi) ≥ V i(xi+1). By Proposition 2.1 the left hand side amounts to v/(ωi + ρ), while the
right hand side is

V i(xi+1) =
v

αi + ρ
+

λi
αi + ρ

1

ρ
+

βi
αi + ρ

(
u

δi+1 + ρ
+

δi+1

δi+1 + ρ
V i+1(xi+1)

)
+

γi
αi + ρ

V i+1(xi+i)− c.

By plugging in V i+1(xi+1) = v/(ωi+1 + ρ) we have that V i(xi) ≥ V i(xi+1) if and only if

v

ωi + ρ
≥ v

αi + ρ
+

λi
αi + ρ

1

ρ
+

βi
αi + ρ

(
u

δi+1 + ρ
+

δi+1

δi+1 + ρ

v

ωi+1 + ρ

)
+

γi
αi + ρ

v

ωi+1 + ρ
− c.

Multiplying by αi + ρ and rearranging produces the inequality stated by the proposition.

Proposition 2.3

Applying (H1) and (H2) to (5), by Proposition 2.2 we have xi - xi+1 if and only if

βi + γi + λi + µi − ω
ω + ρ

+ c(αi + ρ) ≤ βi
δ + ρ

+
1

ω + ρ

(
βiδ

δ + ρ
+ γi

)
+
λi
ρ
.

Multiplying by (ω + ρ)/(αi + ρ) and rearranging gives

c ≤ 1

ω + ρ

(
βi

αi + ρ

ω

δ + ρ
+

λi
αi + ρ

ω

ρ
+
ω − µi
αi + ρ

)
=

1

ω + ρ
M(i). (13)

1. Let i′ ∈ N be the smallest number such that xi′ - xi′+1. Then we have c ≤ M(i′)/(ω + ρ).
Under (M1) M(i) is increasing in i, thus every successive treatment strategy with more than i′

rounds is better than the one preceding it, hence for every i > j ≥ i′ we have xj - xi. By the
choice of i′, for every j ≤ i′ > 0 we have then xj ≺ xj−1, implying that for every i < j ≤ i′ we
have xj ≺ xi.

2. Let i′ ∈ N be the smallest number such that xi′ % xi′+1. Then we have c ≥M(i′)/(ω+ ρ).
Under (M2) M(i) is decreasing in i, thus every successive treatment strategy with more than i′

rounds is worse than the one preceding it, hence for every i > j ≥ i′ we have xj % xi. By the
choice of i′, for every j ≤ i′ > 0 we have then xj � xj−1, implying that for every i < j ≤ i′ we
have xj � xi.
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Proposition 3.1

The value is the sum of five values: (1) the payoff received in state 2(i) while waiting for the
next round of therapy. We calculate the positive part of the payoff (i.e, without toxicity). Take
τ ∼ Exp(ωi), then

Eτ
∫ min{τ,t̂}

0

e−ρtdt =

∫ t̂

0

ωie
−ωiτ

∫ τ

0

e−ρtdtdτ +

∫ ∞
t̂

ωie
−ωiτ

∫ t̂

0

e−ρtdtdτ

=
1

ρ

(
1− e−ωi t̂ +

ωi
ωi + ρ

(
e−(ωi+ρ)t̂ − 1

)
+ e−ωi t̂ − e−(ωi+ρ)t̂

)
=

1− e−(ωi+ρ)t̂

ωi + ρ
.

With very similar calculations we may get the negative (toxicity) part of this component:

Eτ
∫ min{τ,t̂}

0

zie
−(ρ+ζ)tdt =

zi

(
1− e−(ωi+ρ+ζ)t̂

)
ωi + ρ+ ζ

.

(2), the payoff received in state 2(i) after taking therapy but before transitioning to any of
the states 0, 1(i+1), 2(i+1), or 3 as a result. Again, just taking the positive component, with
τ ∼ Exp(αi) this is

Eτ
∫ τ+t̂

t̂

e−ρtdt = e−ρt̂
∫ ∞
0

αie
−αiτ

∫ τ

0

e−ρtdtdτ = e−ρt̂
1

αi + ρ
.

For the toxicity component that the patient started with, we get

Eτ
∫ τ+t̂

t̂

zie
−(ρ+ζ)tdt = e−(ρ+ζ)t̂

zi
αi + ρ+ ζ

.

Adding the toxicity caused by therapy ẑ at time time t̂ we get

Eτ
∫ τ+t̂

t̂

ẑe−ρte−ζ(t−t̂)dt = ẑe−ρt̂Eτ
∫ τ

0

e−(ρ+ζ)tdt = e−ρt̂
ẑ

αi + ρ+ ζ
.

Adding these three and multiplying with the probability of the patient reaching the time to take
therapy, e−ωi t̂ we get

e−(ωi+ρ)t̂

(
1

αi + ρ
− zie

−ζt̂ + ẑ

αi + ρ+ ζ

)
.

(3), the payoff received upon a transition to state 0. Again, with τ ∼ E(αi) this is (positive and
negative parts together):

Eτ
∫ ∞
τ+t̂

e−ρt − zie−(ρ+ζ)t − ẑe−ρt−ζ(t−t̂)dt = αie
−ρt̂

(
1

ρ(αi + ρ)
− zie

−ζt̂ + ẑ

(ρ+ ζ)(αi + ρ+ ζ)

)
.
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Multiplying with the probability reaching the time to administer round i, e−ωt̂, and by the
probability of transitioning to state 0 given that the patient receives round i, λi/αi, we get

λie
−(ωi+ρ)t̂

(
1

ρ(αi + ρ)
− zie

−ζt̂ + ẑ

(ρ+ ζ)(αi + ρ+ ζ)

)
.

(4), the payoff received upon a transition to state 2(i+1). This amounts to the expected present
value of V i+1(x, z(zi, τ

′)) with delay τ ′ where τ ′ = τ + t̂ for τ ∼ Exp(αi). This equals

Eτ ′
(

e−ρτ
′
V i+1(x, z(zi, τ

′))
)

= e−ρt̂Eτ
(
e−ρτV i+1(x, z(zi, τ + t̂))

)
.

Multiplying by the probability of reaching the time to administer round i, and by the proba-
bility of transitioning directly to state 2(i+1) given that the patient receives round i, γi/αi and
substituting in z(zi, τ + t̂) = zie

−ζ(τ+t̂) + ẑ we get

γi
αi

e−(ω+ρ)t̂
∫

e−ρτV i+1(x, zie
−ζ(τ+t̂) + ẑ)df(τ).

(5), the payoff received upon a transition to state 1(i+1) followed by a transition to state 2(i+1).
With τ1 ∼ Exp(αi) and τ2 ∼ Exp(δi+1), the former amounts to

Eτ1,τ2
∫ τ1+τ2+xi(zi)

τ1+t̂

e−ρt − zie−(ρ+ζ)t − ẑe−ρt−ζ(t−t̂)dt

=αie
−ρt̂

(
1

(αi + ρ)(δi+1 + ρ)
− zie

−ζt̂ + ẑ

(αi + ρ+ ζ)(δi+1 + ρ+ ζ)

)
.

Multiplying by the probability of reaching the time to administer round i, and by the probability
of transitioning to state 1(i+1) from 2(i), βi/αi, we get

βie
−(ωi+ρ)t̂

(
1

(αi + ρ)(δi+1 + ρ)
− zie

−ζt̂ + ẑ

(αi + ρ+ ζ)(δi+1 + ρ+ ζ)

)
.

Finally, upon reaching state 2(i+1) from 1(i+1) the patient receives the present expected value of
V i+1(x, z(zi, τ

′)) with a delay of τ ′ where τ ′ = τ1 + τ2 + t̂. Substituting τ = τ1 + τ2 we get

Eτ ′
(

e−ρτ
′
V i+1(x, z(zi, τ

′))
)

= e−ρt̂Eτ
(
e−ρτV i+1(x, z(zi, τ + t̂))

)
.

Multiplying by the probability of reaching the time to administer round i, and by the probability
of transitioning directly to state 1(i+1) (from which reaching state 2(i+1) is certain) given that
the patient receives round i, βi/αi and substituting in z(zi, τ + t̂) = zie

−ζ(τ+t̂) + ẑ we get

β

αi
e−(ω+ρ)t̂

∫
e−ρτV i+1(x, zie

−ζ(τ+t̂) + ẑ)dg(τ),

as g(·) is the density function of τ1 + τ2 by definition.
Summing up components (1) through (5) and adding the cost of one round of therapy, c with

delay t̂ multiplied by the probability of paying it gives the formula stated by the proposition.
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Lemma 3.2

1. (10) is obtained from (9) by setting t̂ =∞.
2. To calculate positive component of the payoff (without toxicity and costs), we substitute
t̂ = ẑ = zi = c = 0 into (9) to obtain

V i(x, 0) =
1

αi + ρ
+

λi
ρ(αi + ρ)

+
γi
αi

∫
V i+1(x, 0)e−ρτdf(τ)

+
βi

(αi + ρ)(δi+1 + ρ)
+
βi
αi

∫
V i+1(x, 0)e−ρτdg(τ).

By point 1, we may substitute V i+1(x, 0) = Bi(ρ). Evaluating the integrals gives

=
1

αi + ρ
+

λi
ρ(αi + ρ)

+
γi

ωi + ρ

1

αi + ρ
+

βi
(αi + ρ)(δi+1 + ρ)

+
βi

αi + ρ

δi+1

δi+1 + ρ

1

ωi + ρ

=
1

αi + ρ

(
1 +

λi
ρ

+
γi

ωi + ρ
+ βi

(
1

δi+1 + ρ
+

δi+1

(δi+1 + ρ)(ωi + ρ)

))
= Ai(ρ).

By similar calculations the payoffs from toxicity equal (zi + ẑ)Ai(ρ + ζ), while the cost is a
lump-sum −c. Adding these together gives (11).
3. Calculating the positive components amounts to substituting ẑ = zi = c = 0 into (9). This
yields

V i(x, 0) = Bi(ρ)(1− e−(ωi+ρ)t̂) + e−(ωi+ρ)t̂Ai(ρ)

where the second component follows from the calculations of the positive component of 2. The
toxicity can be deduced as

−ziB(ρ+ ζ)(1− e−(ωi+ρ+ζ)t̂)− e−(ωi+ρ)t̂(zie
−ζt̂ + ẑ)Ai(ρ+ ζ).

Adding these together with the lump-sum cost −c, factoring in the delay and the probability of
paying the cost leads to (12) as stated.

Proposition 3.3

We take a treatment strategy x ∈ Xi+1 and evaluate it in state 2(i) given toxicity level zi. To
find the optimal x(i, zi) = t̂ we differentiate V i+1(x, zi) (deduced from Lemma 3.2) with respect
to t̂ to give

∂V i(x, zi)

∂t̂
= e−(ωi+ρ)t̂ − zie−(ωi+ρ+ζ)t̂ +

e−(ωi+ρ)t̂

Bi(ρ)
(ẑAi(ρ+ ζ)− Ai(ρ) + c) +

e−(ωi+ρ+ζ)t̂

Bi(ρ+ ζ)
Ai(ρ+ ζ).

Multiplying by e(ωi+ρ+ζ)t̂ and rearranging, the sign of the derivative is the same as that of

eζt̂

d1︷ ︸︸ ︷(
1− Ai(ρ)

Bi(ρ)
+
ẑAi(ρ+ ζ) + c

Bi(ρ)

)
+zi

−d2︷ ︸︸ ︷(
Ai(ρ+ ζ)

Bi(ρ+ ζ)
− 1

)
= d1e

ζt̂ − d2zi.
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There are four cases: 1. If d1 and d2 are both negative, then the derivative equals zero if

t̂ =
1

ζ
ln

(
zi
d2
d1

)
,

provided that zi > d1/d2. If so, then ∂(V i(x, zi))
2/∂t̂2 is negative due to d1 being negative,

hence t̂ is indeed a maximizer, and zie
−ζt̂ = d1/d2 = z, thus the patient waits until toxicity falls

to z. If zi < d1/d2, then the first derivative is always negative, hence taking the next round
immediately is optimal.

2. If d1 > 0 and d2 < 0, then the first derivative is positive for all t̂, hence t̂ =∞ is optimal.
3. If d1 < 0 and d2 > 0, then the first derivative is negative for all t̂, hence t̂ = 0 is optimal.
4. If d1 and d2 are both positive, then if zi < z, then the first derivative is positive for all t̂,

meaning that t̂ =∞ is optimal. If zi > z, then the first derivative starts negative at t̂ = 0, then
turns positive and remains positive as t̂ approaches infinity, meaning that either t̂ = 0 or t̂ =∞
is optimal. Comparing the payoffs, we get that t̂ = 0 is best if and only if

zi >
Bi(ρ)− Ai(ρ) + ẑAi(ρ+ ζ) + c

Bi(ρ+ ζ)− Ai(ρ+ ζ)
= z′,

which is a stronger condition than zi > z.

Approximation method of Example 3.5

All transition parameters with the exception of the cure rate, λi, are independent if i. We assume
a maximum number of treatments, N , that is, we set t̂N =∞.

Ṽ i(x, zi) =
N∑
k=i

(
b(ρ, k)− b(ρ+ ζ, k)Z̃k

)
e−(ω+ρ)T̃k +

N−1∑
k=i

(
a(ρ, k)− a(ρ+ ζ, k)Z̃k+1

)
e−(ω+ρ)T̃k+1 .

(14)
The components in (14) are as follows: We denote by t̂k the time of delay before treatment
round k with t̂N =∞. The series Tk denotes the times at which the patient’s toxicity increases
as a result of the kth round of treatment, which takes place time t̂k after the patient enters 2(k).
Ti is taken to be 0, while for k > i we have

Tk =
k−1∑
j=i

τk +
k∑
j=i

t̂j,

with τk being the random variable denoting the length of the kth round of therapy from its
initiation (i.e. when toxicity increases) to its termination, conditional on the fact that the patient
proceeds to state 2(k+1).

To get an approximation, we replace Tk in (14) by its expected value, T̃k, leading to an
unbiased estimate of it. Given the patient’s strategy, the waiting times t̂j are fixed, while the
expected value of τk is given by

1

λk + β + γ + µ
+

β

δ(β + γ)
,
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of which the first component is the expected time spent in state 2(k) while waiting for the
kth round to take effect and the second is the expected time spent in state 1(k+1), waiting for
progression to state 2(k+1), leading to Ti+1 = t̂i

T̃k =
k−1∑
j=i

(
1

λj + β + γ + µ
+

β

δ(β + γ)

)
+

k∑
j=i

t̂j.

The estimate Z̃k denotes the approximation of the patient’s toxicity at the time of receiving
the kth therapy, i.e. at time Tk. For simplicity and computational ease, we approximate the
patient’s toxicity level at the time of entering state 2(k) by substituting the expected time into
the toxicity equation (6), giving a slightly biased estimate of the patient’s toxicity:6

Z̃k = z(zi, T̃k).

The two major components in (14) are

a(ρ, k) =

(
1 +

λk
ρ

+
β

δ + ρ

)(
γk∏k

j=1(αj + ρ)

)(
β

γ

δ

δ + ρ
+ 1

)k
(15)

and

b(ρ, k) =
1

ω + ρ

(
1− e−(ω+ρ)t̂k+1

)( γk∏k−1
j=1(αj + ρ)

)(
β

γ

δ

δ + ρ
+ 1

)k
. (16)

To get a visual intuition in deriving (14), from Figure 1, imagine that we fix the maximum
number of treatments at N , reducing the model to a finite series of states. We descend N layers
in the figure, then calculate all the possibilities to arrive at either state 0 or state 3 after at most
N treatments by simply counting the number of paths. Each new layer can be reached one of
two ways, either a direct transition from state 2(i) to 2(i+1) with rate γ, or an indirect one from
2(i) to 1(i+1) at rate β, then from 1(i+1) to 2(i+1) at rate δ.

The approximations of Table 7 are therefore results of numerically maximizing (in Wolfram
Mathematica) equations of the form (14), subject to t̂k ≥ 0, and entering λk = λk into (15).
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