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Abstract

This note looks at the properties of instrumental-variable estimators of models for
non-negative outcomes in the presence of individual effects. We show that fixed-effect
versions of the estimators of Mullahy (1997) and Windmeijer and Santos Silva (1997)
are inconsistent under conventional asymptotics, in general, and that inference based
on them in long panels requires bias correction. Such corrections are derived and their
effectiveness is investigated in numerical experiments. Consistent estimation in short
panels is nonetheless possible in the setting underlying Mullahy’s (1997) approach
using a differencing strategy along the lines of Wooldridge (1997) and Windmeijer
(2000).
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Introduction

The pseudo-poisson maximum-likelihood estimator is routinely used for the purpose of

analysing non-negative outcomes. It is consistent under a conditional-mean specification

only (Gouriéroux, Monfort and Trognon, 1984a,b) and is well-known to possess a certain

robustness against the inclusion of fixed effects (see Wooldridge 1999 and Fernández-Val
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koen.jochmans@tse-fr.eu.
Support from the European Research Council through grant no 715787 (MiMo), and from the French
Government and the ANR under the Investissements d’ Avenir program, grant ANR-17-EURE-0010 is
gratefully acknowledged.

1



and Weidner 2016). This may lead to the presumption that the instrumental-variable

generalizations of the pseudo-poisson estimator, too, are unaffected by the presence of such

incidental parameters; it has been used by Tenreyro (2007) and Haucap, Rasch and Stiebale

(2019), for example, without any reference to the incidental-parameter problem. This is,

however, not the case. This note provides details that underlie this conclusion for the

(one-way) panel data case.

Fixed-effect versions of two instrumental-variable estimators are looked at. The first

such estimator is the one proposed by Mullahy (1997). The second is the one proposed by

Windmeijer and Santos Silva (1997). These estimators are based on different orthogonality

conditions. Furthermore, these conditions are not compatible with one another, a point

already made by Windmeijer and Santos Silva (1997). We show that both estimators are

inconsistent under classical asymptotics that treat the length of the panel as fixed, and

asymptotically biased under sequences where both dimensions of the panel grow at the

same rate. This bias can be corrected for, either by relying on analytical formulae given

below or by the application of a jackknife.

The moment conditions underlying the estimator of Mullahy (1997) can be modified

to yield an alternative estimator that is consistent in short panels. The same would not

appear to be true for the poisson type fixed-effect estimator of Windmeijer and Santos Silva

(1997).

1 Panel model and fixed-effect estimators

We observe a scalar outcome yit, a regressor vector xit, and a vector of instruments zit for

a random sample of N individuals, i = 1, . . . , N , that are followed over T periods of time,

t = 1, . . . , T . Our ambition is to estimate the parameter θ in a multiplicative model of the

form

yit = αi λ(xit, θ) vit,

where λ is a known function, the αi are latent variables that capture any heterogeneity

across individuals that does not vary over time, and vit is a time-varying disturbance term.
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We will treat the αi as fixed effects. Hence, all expectations below are to be understood as

being conditional on α1, . . . , αN . We will write xi := (xi1, . . . , xiT ) and zi := (zi1, . . . , ziT ).

Multiplicative error An instrumental-variable estimator based on E(vit|zi) = 1, as in

Mullahy (1997), involves the empirical moment condition

N∑
i=1

T∑
t=1

zit

(
yit

αi λ(xit, θ)
− 1

)
= 0,

and the the empirical moment conditions for the individual effects. The latter follow from

E(vit) = 1 and are
T∑
t=1

(
yit

αi λ(xit, θ)
− 1

)
= 0,

for each individual.

Additive error The model can be reformulated as

yit = αi λ(xit, θ) + uit,

with uit := αi λ(xit, θ) (vit−1). An instrumental-variable estimator based on the assumption

that E(uit|zi) = 0, as in Windmeijer and Santos Silva (1997), is constructed around the

empirical moment condition

N∑
i=1

T∑
t=1

zit (yit − αi λ(xit, θ)) = 0,

together with
T∑
t=1

(yit − αi λ(xit, θ)) = 0

for each individual. Clearly, this is an instrumental-variable version of the pseudo poisson

estimator.

2 Large-sample behavior

As discussed by Mullahy (1997) and Windmeijer and Santos Silva (1997), the conditions

E(vit|zi) = 1 and E(uit|zi) = 0 are not compatible, in general. The exception is when
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the regressors are exogenous. Hence, the multiplicative and additive specifications yield

(different) estimators based on different conditional validity conditions that will usually

not both be valid at the same time. In the context of simultaneous equations the former

appears more natural (see, e.g., Mullahy 1997 for a discussion). We treat them separately,

in turn.

Multiplicative error It is useful to work with a concentrated estimating equation for θ.

For a given value ϑ of the common parameter the corresponding estimator of αi is available

in closed form. It equals

α̂i(ϑ) :=
1

T

T∑
t=1

yit
λ(xit, ϑ)

.

Substituting this back into the moment condition for θ then yields the profiled estimating

equation
N∑
i=1

T∑
t=1

zit

(
yit

α̂i(ϑ)λ(xit, ϑ)
− 1

)
= 0.

This estimating equation is biased, in general. Indeed, letting v̄i := T−1
∑T

t=1 vit, its

expectation at θ is equal to

N∑
i=1

T∑
t=1

E
(
zit E

(
vit
v̄i
− 1

∣∣∣∣ zi)) .
This will be non-zero, in general, unless E(vit/v̄i|zi) = 1. So, the no-bias condition amounts

to conditions on the distributions of the vit|zi that guarantee that the expectation of a ratio

is equal to the ratio of expectations. One situation in which this will be the case is when

vit|zi is i.i.d. over time.1

The presence of a non-vanishing bias in the estimating equation for θ as N →∞ with

T held fixed means that the corresponding instrumental-variable estimator is inconsistent

for θ under such asymptotics.

1In this case vit/v̄i and vij/v̄i have the same distribution (and hence the same mean), conditional on zi.

As this holds for all j, we can average to find that E(vit/v̄i|zi) = 1
T

∑T
j=1 E(vij/v̄i|zi) = E(v̄i/v̄i|zi) = 1,

as claimed.
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The bias does decrease as T →∞. Observe that α̂i := α̂i(θ) is (conditionally) unbiased

for the individual effect αi. Furthermore, it is asymptotically linear, as T → ∞, with

representation

α̂i − αi =
1

T

T∑
t=1

αi (vit − 1) + op(T
−1).

A second-order Taylor expansion of the profiled moment condition around the true αi and

evaluating at θ yields

N∑
i=1

T∑
t=1

zit (vit − 1)−
N∑
i=1

T∑
t=1

zitvit
αi

(α̂i − αi) +
N∑
i=1

T∑
t=1

zitvit
α2
i

(α̂i − αi)
2 + op(N).

The first part corresponds to the infeasible estimating equation for θ in which the individual

effects are known and has mean zero. The remaining two terms contribute bias to the

feasible equation. If we plug-in the linear representation for α̂i − αi and take expectations

the bias is found to be

−
N∑
i=1

∑T
t=1 E(zitvit(vit − 1))

T
+

N∑
i=1

∑T
t=1 E(zitvit)

T

∑T
t=1 E(vit(vit − 1))

T
+ o(N),

where we have assumed (conditional) independence of the errors over time for simplicity

of exposition.

The bias in the moment condition translates into a bias of order T−1 in the estimator.

Consequently, while consistent as N, T → ∞, θ̂ will be asymptotically-biased if N and T

grow at the same rate. This bias can be estimated and removed, either through the use of a

plug-in estimator of the bias based on the analytical formula above, or through a jackknife.

Doing so will recenter the limit distribution around zero and lead to asymptotically-valid

inference.

Additive errors Here, on recycling notation,

α̂i(ϑ) :=

∑T
t=1 yit∑T

t=1 λ(xit, ϑ)
,

and the profiled estimating equation for θ becomes

N∑
i=1

T∑
t=1

zit (yit − α̂i(ϑ)λ(xit, ϑ)) = 0.
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When the regressors are strictly exogenous, i.e., when E(uit|xi) = 0 it is easily seen that

E(α̂i|xi) = αi. From this, then, unbiasedness of the profiled estimating equation follows,

leading to consistency under classical asymptotics. More generally, however, unbiasedness

would require that

E

(∑T
t=1 E(uit|xi, zi)∑T

t=1 λ(xit, θ)

∣∣∣∣∣ zi
)

= 0

and this will not be true, in general.

We can again characterize the leading bias in the estimating equation. Afirst-order

expansion around the αi now suffices as, here, the estimating equation is linear in the

individual effects. On the other hand, the estimator of the individual effects is now biased,

and this bias has to be accounted for. As T → ∞, we have, again using (conditional)

independence over time,

α̂i − αi = − 1

T 2

T∑
t=1

E(λituit)

E(λi)2
+

1

T

T∑
t=1

uit
E(λi)

+ op(T
−1),

where λit := λ(xit, θ) and λi := T−1
∑T

t=1 λit; this follows from standard higher-order

asymptotics (Bao and Ullah, 2007). Together with the expansion

N∑
i=1

T∑
t=1

zit (yit − α̂i λit) =
N∑
i=1

T∑
t=1

zituit −
N∑
i=1

T∑
t=1

zitλit (α̂i − αi)

this yields the bias as

N∑
i=1

∑T
t=1 E(zitλit)/E(λi)

T

∑T
t=1 E(uitλit)/E(λi)

T
−

N∑
i=1

∑T
t=1 E(uitzitλit)/E(λi)

T
+ o(N).

Proceeding as before yields the same conclusions about the large-sample behavior of the

instrumental-variable estimator as in the multiplicative case. A bias correction to the

estimator may again be constructed.

3 An alternative estimator

In the multiplicative specification E(vit|zi) = 1 implies that E(yit/λit|zi) = αi. Therefore,

E
(

yit
λ(xit, θ)

− yit−1

λ(xit−1, θ)

∣∣∣∣ zi) = 0
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holds for all t > 1. This leads to unconditional moments in the spirit of Wooldridge (1997)

and Windmeijer (2000) that are free of incidental parameters, paving the way for consistent

estimation from short panels. An example of such an estimator would be the solution to

the estimating equation

N∑
i=1

T∑
2=1

zit

(
yit

λ(xit, ϑ)
− yit−1

λ(xit−1, ϑ)

)
= 0,

which is in line with the moment conditions used previously. More generally, optimal

(unconditional) moment conditions can be constructed in the usual way (Chamberlain,

1987). Under regularity conditions the implied estimator will be N−1/2-consistent and

asymptotically normal as N → ∞ with T fixed. This approach can equally be used in a

setting characterized by sequential moment conditions on the form E(vit|zi1, . . . , zit) = 1.

In this case

E
(

yit
λ(xit, θ)

− yit−1

λ(xit−1, θ)

∣∣∣∣ zi1, . . . , zit−1

)
= 0

follows from iterating expectations. In both cases, our formulation allows for unrestricted

serial dependence in the errors.

For the additive specification where E(uit|zi) = 0 a differencing strategy would not

appear to be available.

4 Simulations

We generated outcomes using an exponential link function without individual effects, i.e.,

yit = exp(xitθ) vit,

setting θ = 1. The regressor and the instrument were both binary random variables with

P(xit = 1|zit = 0) = .80, P(xit = 1|zit = 1) = .30,

and

P(zit = 1) = .30.
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Finding a simple data generating process for the outcome that satisfies the restrictions

of the additive specification of Windmeijer and Santos Silva (1997) is not a simple task.

We therefore proceeded as follows. We drew multiplicative errors vit from log-normal

distributions depending on the values of the regressor and instrument. To satisfy the

condition E(vit|zi) = 1 we set

E(vit|xit, zit) =



4.4817 if xit = 0 and zit = 0

0.1296 if xit = 1 and zit = 0

0.2231 if xit = 0 and zit = 1

2.8127 if xit = 1 and zit = 1

in a first set of experiments. This is the multiplicative model. To satisfy E(uit|zi) = 0, in

turn, we set

E(vit|xit, zit) =



4.4817 if xit = 0 and zit = 0

0.6798 if xit = 1 and zit = 0

0.2231 if xit = 0 and zit = 1

1.6669 if xit = 1 and zit = 1

in a second set of experiments. This is the additive model. Tables 1 and 2 contain results

for the respective designs for different samples sizes.

Table 1 reports the mean, the standard deviation, as well as the coverage rate of 95%

confidence intervals (as obtained over 5000 Monte Carlo replications) for four estimators.

The first, EXO, is the fixed-effect estimator of Mullahy (1997) with xit instrumenting for

itself. The second, IV, use zit as an instrument for xit. The third, BC, is the (analytically)

bias-corrected version of IV using the formula derived above. (The split-panel jackknife of

Dhaene and Jochmans (2015) gave very similar results.) Finally, the fourth, DIFF, is the

differencing estimator described in the previous section.2 In all cases coverage rates were

computed using the nonparametric percentile bootstrap (based on 99 bootstrap samples),

resampling the cross-sectional units. Doing so is particularly useful for the fixed-effect

2As the covariate is non-negative in our example, the empirical moment condition as stated approaches

zero as θ → ∞. Evaluating them at xit − x, where x is the overall sample mean of the xit, in stead of at

xit resolves this problem. Also see Windmeijer (2000).
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estimators, for which we observed that a plug-in estimator of the asymptotic variance

tends to be inaccurate for relatively small values of T . This is in line with observations

made elsewhere (see, e.g., Jochmans 2017).

Table 2 has the same structure as Table 1 but concerns the additive specification. Hence,

here, all of EXO, IV, and BC are in reference to the Windmeijer and Santos Silva (1997)

moment conditions. Results for a DIFF estimator are not reported as such an approach is

not available here.

The results show that EXO is heavily biased and not useful for inference in any of the

cases considered. This is, of course, expected as it is based on invalid moment conditions.

The IV estimator is biased but consistent asN, T →∞. This is borne out in our simulations

as the bias and standard deviation both shrink in larger samples. However, the bias is

important relative to the standard deviation and so hypothesis tests will be size distorted.

In our particular design, this is particularly visible here in Table 1 and less so in Table 2,

although it would start becoming more visible also there as the cross-sectional dimension

would increase. The corrected estimator, BC, removes most of the bias from IV, re-centering

its sampling distribution. For the multiplicative specification in Table 1 we also observe

that DIFF is well behaved for all configurations.

Conclusion

This note has highlighted difficulties with instrumental-variable estimators for count data

in the presence of fixed effects. The problem can be rectified in long panels (i.e., under

rectangular-array asymptotics) and we have shown how to do so. A differencing strategy

for short panel data has also been proposed.
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Table 1: Simulations for multiplicative-error model

MEAN STD COVERAGE

N T EXO IV BC DIFF EXO IV BC DIFF EXO IV BC DIFF

200 20 -0.5242 1.3827 1.0683 1.0063 0.0817 0.1893 0.1407 0.1823 0 0.4520 0.9150 0.9440

200 40 -0.4591 1.1484 1.0249 0.9998 0.0598 0.1028 0.0946 0.1323 0 0.6650 0.9400 0.9330

200 60 -0.4240 1.0985 1.0165 1.0032 0.0507 0.0791 0.0763 0.1106 0 0.7260 0.9330 0.9340

200 80 -0.4092 1.0735 1.0107 1.0023 0.0436 0.0655 0.0651 0.0933 0 0.7670 0.9180 0.9230

200 100 -0.3995 1.0558 1.0051 1.0009 0.0386 0.0586 0.0580 0.0846 0 0.8130 0.9320 0.9400

EXO: instrumental-variable estimator of Mullahy (1997) instrumenting xit by itself. IV: instrumental-variable estimator of Mullahy (1997)

instrumenting xit by zit. BC: bias-corrected version of IV. DIFF: differencing estimator from Section 3. True parameter value: θ = 1.

Coverage rates computed through the bootstrap with 99 replications. Results based on 5000 simulations.
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Table 2: Simulations for additive-error model

MEAN STD COV

N T EXO IV BC EXO IV BC EXO IV BC

200 20 0.1403 1.0803 1.0049 0.0705 0.2187 0.2038 0 0.9040 0.9250

200 40 0.1399 1.0456 1.0090 0.0467 0.1367 0.1322 0 0.9150 0.9320

200 60 0.1421 1.0267 1.0027 0.0379 0.1201 0.1176 0 0.9300 0.9360

200 80 0.1427 1.0215 1.0037 0.0330 0.1007 0.0991 0 0.9320 0.9390

200 100 0.1402 1.0018 0.9987 0.0295 0.0890 0.0895 0 0.9320 0.9400

EXO: instrumental-variable estimator of Windmeijer and Santos Silva (1997) instrumenting xit by itself. IV: instrumental-variable estimator

of Windmeijer and Santos Silva (1997) instrumenting xit by zit. BC: bias-corrected version of IV. True parameter value: θ = 1. Coverage

rates computed through the bootstrap with 99 replications. Results based on 5000 simulations.
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