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Abstract

A multivariate time series is a time-indexed sequence of multidimensional

samples. Such a kind of data appears in many fields since they are the obser-

vation of dynamic systems (e.g. mechanics, biology). Hence, the constituting

variables of a multivariate time series are often related to each other. This

multidimensionality renders the analysis of the phenomenon underlying the

data more complex than with univariate time series.

In this thesis, we deal with datasets made up of multiple multivariate time

series. In particular, (i) we are concerned with the detection of abnormal

phenomena, which is commonly referred as outlier or anomaly detection.

Furthermore, for a phenomenon being studied, which might be an outlier,

the model of the underlying dynamics can provide indepth knowledge on it.

Thus, (ii) we also interest in discovering the model of the dynamics in a

data-driven manner. To address (i) and (ii), we have made two contributions

wherein each one of them, a time series is represented as a function over time.

Our first contribution deals with the detection of outliers in a dataset of

multivariate time series. We addressed the problem in a functional data

perspective. Functional data analysis is a statistical framework to repre-

sent sequences of continuous variables, whose index is the discretization of a

continuous variable (e.g. time), as functions. Our contribution builds upon

this framework. We observed that, due to atypical relationships between the



variables of a time series, the outlyingness can result in its curve shape. To

highlight this shape outlyingness, we proposed to aggregate the variables of

a multivariate time series in several geometric manners. Then, we used the

output representation, provided by these aggregation operators, of the initial

time series, as input of existing outlier detection algorithms. We empirically

showed that our approach outperforms state-of-the-art methods.

Our second contribution tackles the data-driven discovery of a determinis-

tic model underlying the dynamics between variables of a multivariate time

series. We focused on the case where this (unknown) model is a system of

ordinary differential equations whose solution is the function representing the

time series itself. We proposed a multi-task learning algorithm to discover

such a model. Each task aims at learning a single differential equation which

can be coupled to the other ones. We addressed the multi-task aspect with

a regularizer that enforces both sparsity within tasks and similarity between

tasks. In addition, contrary to state-of-the-art multi-task regularizers, ours

is nonconvex and thus provides accurate estimate of the model parameters.

We empirically showed on a benchmark of systems of ordinary differential

equations that learning in a multi-task way with nonconvex sparsity outper-

forms state-of-the-art approaches in terms of bias and reconstruction error

from the model learnt.
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Mathematical notations

• R
d: the set of real valued d-dimensional column vectors

• R
n×d: the set of real valued n× d matrices

• a: an element of R

• a =
(

a1, . . . , ad

)⊤
: an element of Rd

• A =
(

a1, . . . , an

)

: an element of Rn×d

• ak,•: the k-th row of A

• a•,l: the l-th column of A

• 〈a, b〉: the standard (Euclidean) inner product between a and b

• ‖a‖p = (
∑

k |ak|
p)1/p: the ℓp norm of a ∈ R

d with p ≥ 1

• ‖A‖p,q =
(

∑

k‖ak•‖
q
p

)1/q
: the ℓp,q norm of A with p, q ≥ 1

• T : a closed interval of R

• T̃ =
{

t1, . . . , tm

}

: an arbitrary discretization of T with m values

• x(t): the value of the function x at t. If x(t) ∈ R
d=1, then x(t) = x(t)

• x̃: an approximation of the function x

• N (µ, Σ): the Gaussian distribution with mean µ and (positive-
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definite) covariance Σ

• U(a, b): the uniform distribution in the a × b rectangle with ai > bi



Chapter I

General introduction

In this chapter, we first present the industrial context that has motivated

our research exposed in this thesis. For that, we define what a flight test is,

and introduce the issues involved by the analysis of time series generated

by flight tests, i.e. the detection and understanding of abnormal dynamic

behaviors. Secondly, we both define the notions of time series and outliers,

which we encompass in the functional data framework. Thirdly, we sum

up our two contributions: the first one addresses the detection of outliers

in functional data, and the second one tackles the discovery of systems of

differential equations from a time series.

Abstract.

1
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I.1.2 Why analyzing flight test data ?

Flight test data analysis aims both at fixing design problems and validating

the aircraft performances. Once these goals have been achieved, the manufac-

turer has to write documentation for government certification and customer

acceptance. Such a documentation entails, for instance, outlines, tables and

flow-charts of aircraft performances under nominal operating conditions and

emergency procedures as well. As operating conditions can vary with respect

to external conditions (e.g. weather), every flight is different. Therefore the

documentation cannot cover every nominal operating condition but a refer-

ence domain of known ones from which the pilot can easily infer unknown

ones. ”Interpolating” means adapting and inferring the aircraft behavior to

a situation that does not exactly correspond to one described in the doc-

umentation but is a priori close to it. For that reason, it is necessary to

understand, under various operating conditions, the behavior of the aircraft

through flight test data. Furthermore, such an understanding helps flight

test engineers to classify the nominal operating conditions and thereby to

detect abnormal/unexpected aircraft behaviours.

I.1.3 Multiple-flight data analysis

When the behavior of the flight parameters is known by flight test engineers,

multiple-flight data analysis is in principle fast. However, on the first hand,

to understand both the similarities and specificities of multiple flights, the

data analyses must be done in a short time (e.g. propulsive system engineers

can be asked to analyze 200 flight test data in four days). On the other hand,

when there is a lack of knowledge about the behavior of some flight parame-

ters involved in a specific system, their analysis result harder and longer. As

an example, propulsive systems are designed by engine manufacturers who

cannot share information on the engine operating logic, making the analy-

sis of engine parameters harder. Taking benefit from the data variability of

multiple flights can help to understand the operating modes of such a sys-

tem. Hence, there is a need of interpretable data-driven based methods to
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perform multiple flight analyses. Such analyses can reveal, for instance, an

abnormal behavior of a given system which thus requires some correction on

ground. Since the flight test data take the form of time series (see example in

Figure I.2), in this thesis we propose several time series based methods and

algorithms which aim to extract knowledge e.g. to assist flight test analysts.
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Figure I.2: Example of an Airbus dataset of multivariate time series relating
the behavior, along time (vertical axis), of a system involving four parameters
(P1, . . . , P4). Grey curves correspond to normal behaviors whereas red ones
correspond to abnormal behaviors. For data privacy, the vertical axes have
been scaled.
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I.2 Scientific motivations

I.2.1 General definition of time series

In many fields (e.g. engineering, chemometrics, finance), measurement sys-

tems generate data under the form of time series [Dos Santos et al. 2016,

Boulfani et al. 2020, Ramsay & Silverman 2006]. A time series is a sequence

of random objects x indexed by some time steps t ∈ T̃ =
{

t1, . . . , tm

}

, either

naturally discrete (e.g. month, year), either resulting from a discretization

of a time-continuous variable, i.e. a sampling process. When the indexed

objects are univariate, and lie in R, the dataset is a collection of real-valued

univariate time series (see example in Figure I.3). By extension, when the

indexed objects are multivariate, and lie in R
p (i.e. x is vector-valued of

dimension p), the dataset is a collection of multivariate time series (see ex-

amples in Figure I.4 with p = 2), [Lafabregue et al. 2019]. When substituting

R with N, one can have time series of categorical data. Hence, the notion of

time series can be easily extended to non-numerical types of data like text

[Baril et al. 2020].

I.2.2 The variability of univariate time series

In this thesis, we deal with datasets of time series whose indexes are

the discretization of a continuous-variable. More specifically, we con-

sider the time series as random realizations of functions depending on a

continuous variable of T ⊂ R. Representing time series as functions

is the building block of Functional Data Analysis (FDA). Such a rep-

resentation aims to extract features containing information on the func-

tional variability of the time series and can serve for dimensionality re-

duction, smoothing, feature extraction, prediction as well as visualization

[Ramsay & Silverman 2006, Ferraty & Vieu 2006]. In Figure I.3, we give an

example of univariate functional data generated by an arbitrary function.
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with A 6= 0 and the initial condition x1(0) = x2(0) = 0.

This example serves as an illustration of a (functional data based) gener-

ating process of multivariate time series. Of course, in practice the gener-

ating process is unknown but it shows how the correlation between the p

variables along time can be underlied. This example also motivates to re-

trieve a functional mechanism that underlies a time series dataset, this is the

first motivation of FDA. Example I.1 illustrates how a deterministic model

can characterize the correlation between the variables of a multivariate time

series. Accessing to the system of differential equations underlying a real

dataset can be of huge interest for engineers in real life applications. For

instance it can serve as a simulation model or as a representation of the phe-

nomenon dynamics. For real datasets, such kind of model is often unknown

by the practitioner. Recently the machine learning community has proposed

data driven methods to retrieve the model underlying the dynamics of a

noisy dataset of time series [Brunton et al. 2016, Schaeffer & McCalla 2017,

Schaeffer 2017, Mangan et al. 2017].

In Chapter III, we interest in the data-driven discovery, in closed form, of a

system of differential equations that models the dynamics of a multivariate

time series. Such an approach is built upon the recent framework of sparse

identification on nonlinear dynamics [Brunton et al. 2016].

I.2.4 General definition of outliers

The concept of outlier has been defined in [Hawkins 1980] as "an observa-

tion which deviates so much from other observations as to arouse suspi-

cions that it was generated by a different mechanism". This definition is

not specific to time series and is now well accepted. According to the def-

inition in [Aggarwal & Yu 2001], an outlier is defined as a data point that

is highly different from the others, based on some measure. Therefore, out-

liers can be seen as observations of a dataset that do not follow an expected
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behavior. Depending on the context, outliers are also referred as anoma-

lies in [Erfani et al. 2016, Chandola et al. 2009, Rousseeuw & Hubert 2018,

Liu et al. 2008], novelty in [Markou & Singh 2003, Pimentel et al. 2014] or

more rarely singularities. In certain cases, outliers are of analysis interest

since they can reveal a design fault in the system. For instance, detect-

ing outliers can help engineers working on a system requiring a high safety

level (e.g. aircraft) to detect unexpected system operating modes during the

system test phase.

I.2.5 Outliers in time series

Outlier in time series has different meanings in the literature. In many

papers, it is assumed that the dataset is made up of a single multivariate or

univariate time series. Hence, detecting outliers in such a dataset amounts

to find points of the time series that deviates from a regular pattern in a

given sense. Oppositely, a dataset can entail multiple time series. Detecting

outliers in such dataset amounts to find the time series that deviate from

the other ones. In this thesis, we deal with datasets containing multiple

multivariate time series.

I.2.5.1 Outliers in a univariate time series dataset

In a dataset of univariate time series, a sample can result as an outlier in

several ways. Assuming that a function u of a temporal continuous vari-

able, t ∈ T (see example Figure I.3) underlies the dataset, according to the

taxonomy of [Hubert et al. 2015], the deviation of an outlier can be:

• horizontal-shift: the time series was generated by the same process as

inliers up to a time translation, i.e. uhorizontal = u(t − τ) where τ is

random with nonzero mean.

• in the magnitude: the time series was generated by the same process

as inliers up to a magnitude shift, i.e. umagnitude = u(t) + a where a is

random with nonzero mean.
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representation (top) but their distinction is much more obvious in their joint

variable representation (bottom).

Then, comes the question of how to consider the p variables jointly across

the time variable. To answer such a question, in Chapter II, we propose to

represent multivariate time series as multidimensional path from which we

extract geometric features that highlight their outlyingness.
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I.3 Contributions

To tackle the detection of outliers in multivariate time series, we made two

contributions. The common idea of our two contributions is to represent

time series as functions over a time-continuous variable. In the first one, a

multivariate time series is represented as a multivariate path (or a trajectory)

from which shape-based features are extracted, under the form of a univari-

ate time series, and then input into an outlier detection algorithm. In this

manner, multiple kinds of outliers can be detected. In our second contribu-

tion, a multivariate time series is seen as the solution of an unknown system

of differential equations that is recovered by a multi-task learning algorithm.

Our algorithm returns the analytic form of the differential equation which is

useful to model and understand the underlying mechanism of a multivariate

time series.

I.3.1 Overview

I.3.1.1 Outlier detection with shape-based features

Our first contribution is to propose a shape-based feature extraction from

multivariate time series and is based on the multivariate functional data

framework [Lejeune et al. 2020a, Lejeune et al. 2020b]. Multivariate func-

tional data refer to a population of multivariate functions generated by a

system involving dynamic variables depending on a continuous variable (e.g.

time). Outlier detection in such a context is a challenging problem because,

as we mentioned along Chapter I, both the individual behavior of the vari-

ables and the dynamic correlation between them, are important. To iden-

tify the outliers, recent work has focused on multivariate functional depth

[Claeskens et al. 2014, Dai & Genton 2019, Kuhnt & Rehage 2016] which as-

signs an outlyingness score to each variable independently and then sums over

the scores. However, such an approach fails when the outlyingness manifests

in the curve shape rather than in the curve magnitude. To remedy it, the

curve geometry has to be considered across its variables, jointly, rather in each
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variable separately. In Chapter II, we propose to detect outliers in multivari-

ate functional data by aggregating the p dimensions with mapping functions

from differential geometry. Our proposal can be seen as a functional-shape-

based features extraction enabling to highlight the outlyingness of a curve

with interpretability. Then, we used the output representation of these map-

pings as input of existing outlier detection algorithms. We conducted an

experimental study on real and synthetic datasets and compared the pro-

posed method with functional-depth-based ones. One of the real datasets is

from Airbus flight test department, thus not publicly available. The results

demonstrate that our proposal can outperform the functional-depth-based

methods. Moreover, in contrast with the baseline methods, our method is

efficient for a large range of outlier proportions.

I.3.1.2 Learning a system of differential equations from a multi-

variate time series

Our second contribution is to learn the governing equation, in closed form,

that models the dynamic relationship between variables of a multivariate

time series [Lejeune et al. 2021]. Since a multivariate time series can be seen

as a vector-valued function over time, the governing equation takes the form

of System of Ordinary Differential Equations (SODE). A SODE brings an

accurate understanding on the corresponding dynamic phenomenon. It con-

sists in multiple equations, as in Example I.1, where each one relates the

time derivative of a single variable to several variables. A variable can ap-

pear in multiple equations, making the equations potentially depending on

one to the other. While in some cases the SODE can be written thanks to ex-

pert or phenomenon knowledge, in most of the cases, the SODE is unknown.

Data-driven approaches to automatically discover the underlying SODE have

been made possible thanks to sensor technology which can collect large

amount of data [Brunton et al. 2016, Long et al. 2018, Schaeffer et al. 2018,

Bhat & Rawat 2019]. Nevertheless, state of the art approaches are based

on single-task learning that means each component of the SODE is learned

independently [Argyriou et al. 2008] with sparse linear regression, where the
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sparsity is reflected in the convex ℓ1,1 penalty. This leads to SODEs that

weakly identify the underlying phenomenons since in reality, equations are

related to each others. Moreover, it turns out that the convexity of the

penalty involved in the learning criterion results in a SODE which is biased

with respect to the true one [Fan & Li 2001, Zhang 2010]. In Chapter III,

we develop a Multi-Task Learning (MTL) approach, where a task refers to

the discovery of a single equation of the SODE, to learn the behavior of the

dynamic system more accurately. Discovering a SODE is a hard problem

since real data are usually noisy and state-variables are often underlied by

a nonlinear dynamic. The nonconvex MTL approach we have proposed im-

proves the SODE identification by leveraging from a nonconvex sparse matrix

penalty that both considers the coupling within the SODE and solves the bias

issue. Results from several numerical experiments on a reference benchmark

of SODEs confirm that, compared with single-task learning, MTL is better to

recover the underlying form of the SODE and that the nonconvexity enables

more accurate estimate of it.





Chapter II

Shape-based outlier detection in

multivariate functional data

In this chapter, we expose our first contribution which deals with the detec-

tion of outliers in multivariate functional data analysis (i.e. multivariate

time series). State of the art approaches are recent and consider that the

outlyingness resides in each variable of the time series. However, this is

limiting since the outlyingness can reside in the relationship between the

variables. We address this limitation by considering the correlation be-

tween the variables, implicitly, through the curve shape. Specifically, we

propose to aggregate the variables in several geometric manners thus rep-

resenting the samples to univariate functional data. The outliers are then

detected from such new representation. Numerical experiments on real

(public and Airbus ones) and synthetic datasets, show that our approach

outperforms state of the art in most situations.

Abstract.

17
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II.1 Introduction

Functional data analysis (FDA) is a branch of modern statistics, the princi-

ple of which is the representation of high-dimensional measurement vectors

through functions (see [Ramsay & Silverman 2006, Ferraty & Vieu 2006] for

a practical and theoretical introduction to FDA). They appear in various

fields, such as biology, engineering, or medicine, where different sources of

measurements are recorded. As a real example of such data, we can con-

sider a longitudinal study for analyzing the height of a human population,

such as the Berkeley growth study [Tuddenham & Snyder 1954], in which a

physiological parameter or variable is measured for all subjects at various

time instants. Such data can be seen as realizations of a univariate function

depending on time. Although a continuous function depending on a single

continuous variable (e.g. time, wavelength, or frequency) underlies the data,

it is finely discretized, resulting in high-dimensional vectors. Such data are

referred to as functional data. Regarding data as functions enables recover-

ing the true nature of the process underlying the function that generated the

data. It also provides a smooth representation of the initial curves, which can

be affected by measurement noise. Moreover, the FDA framework enables

the handling of curves that are irregularly sampled or sampled on grids of

different sizes, where a grid refers to the discretization of a closed interval

in which the continuous variable lies. This is achieved by evaluating the

resulting functions on a common and arbitrary grid.

Specifically, when a single variable is recorded at each observation point

(as in the previous example), that is, the underlying function x(t) ∈ R,

where t ∈ T ⊂ R, the resulting data are called univariate functional data.

More generally, when p (possibly correlated) variables are simultaneously

recorded at each observation point, that is, x(t) =
[

x1(t), . . . , xp(t)
]

∈ R
p,

these data are called multivariate functional data. In the example, if weight

were measured in addition to height, these data would result as realizations

of a multivariate function, in this case bivariate.
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A typical task in FDA is outlier detection, which has several applications, for

instance, in biology (to determine abnormal gene expression levels in time-

course micro-array data [Arribas-Gil & Romo 2014, Hubert et al. 2015]), in

chemometrics (to determine the nature of an active substance produced by

a chemical process based on near-infrared spectra data [Hubert et al. 2015]),

or in air pollution studies (to detect highly contaminated locations in ur-

ban areas [Torres et al. 2011]). In these fields, the data are typically func-

tional and exhibit outlying behavior. Moreover, several parameters should

be simultaneously recorded to accurately understand the studied process.

Hence, outlier-detection methods should be specifically designed for multi-

variate functional data. When the variables are cautiously selected by a

domain expert, the outlying behavior can be detected through the potential

correlation between them.

The correlation between the p variables is important in multivariate func-

tional data because it can reveal an outlying behavior of the underlying

process, as discussed in [Hubert et al. 2015]. In Figure II.1, we show a mul-

tivariate functional dataset contaminated by one outlier whose variables are

non-linearly correlated where: in (a) and (b), the variables x1 and x2 are

plotted independently, whereas in (c) and (d), they are plotted one versus

the other, thus highlighting their correlation along t. Thus, independently

analyzing each variable implies that the potential correlation between the

variables is not considered,

According to the definition by [Aggarwal & Yu 2001], an outlier is defined as

a data point that is highly different from the others, based on some measure.

Such a point often contains useful information regarding the abnormal be-

havior of the system described by the data. Moreover, if the data dimension

is high, the data are likely to be more scattered in the space (i.e. curse of

dimensionality), and therefore, the probability that the outliers are scattered

is higher. Hence, outlier-detection is inclined to the curse of dimensional-

ity as other classification tasks that assume well-balanced classes. However,

regarding some typical algorithms for classification (e.g. logistic regression)

and clustering (e.g. K-means and mean-shift), the rarity and scattering of
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outliers may render these algorithms inefficient for outlier detection, owing

to the well-known class imbalance problem [Japkowicz & Stephen 2002].

Previous work on outlier detection in functional data primarily fo-

cused on the univariate case [Fraiman & Muniz 2001, Cuevas et al. 2006,

López-pintado & Romo 2009], whereas the multivariate case is more recent

[Claeskens et al. 2014, Ieva & Paganoni 2013, López-pintado et al. 2014,

Hubert et al. 2015, Kuhnt & Rehage 2016, Dai & Genton 2019]. Mul-

tivariate functional outliers can be characterized by deviations in the

correlation between the variables x1(t), ..., xk(t), ..., xp(t) and, potentially,

in their correlation w.r.t t. There can be scattering among functional

outliers depending on how outlyingness is expressed. According to the

functional-outlier taxonomy in [Hubert et al. 2015], there are two general

classes: isolated and persistent outliers. An isolated outlier exhibits extreme

behavior in a small part of the domain T , resulting in a narrow peak in

at least one of the variables. By contrast, a persistent outlier is defined

as a sample in which outlyingness manifests itself in a large part of the

domain. Among persistent outliers, different classes were distinguished

by [Hubert et al. 2015] as follows, see their description and illustration in

Section I.2.5.1.

The detection of shape outliers is quite recent and is attracting increas-

ing attention in FDA [López-pintado et al. 2014, Arribas-Gil & Romo 2014,

Kuhnt & Rehage 2016, Dai & Genton 2019]. Shape outliers are difficult to

detect in a curve population because the shapes are often non-linearly dis-

criminant (see Figure II.1(b) wherein the outlier curve is mixed with inliers

but exhibits a different shape) and exhibit larger variability than isolated out-

liers. Considering curve discrimination in terms of shape, one can augment

the curve variables by using differential analysis [Claeskens et al. 2014]. This

refers to adding derivatives or integrals (computed with respect to t) for each

initial variable. Hence, curve shape provides information regarding “hidden

outlying features” of the curve variables and the outlying relationship be-

tween them. However, as mentioned previously, the joint analysis of the p

variables becomes complex as p increases. In the present study, we address
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this problem by using differential geometry. Specifically, we use aggrega-

tion functions (here termed as mapping functions) of the variables. Thereby,

we implicitly consider the correlation of the variables through geometrical

characterizations of curve shape. In contrast with current functional-outlier

detection methods, which consider curve shape differently and only base the

final detection on the resulting depth values (Section II.2), we use both func-

tional curve-shape features and state-of-the-art outlier-detection algorithms

e.g. Isolation Forest [Liu et al. 2008]. Thus, the originality of the proposed

approach lies in the shape characterization of the initial curves through the

proposed mapping functions whose output representation is input to state-

of-the-art outlier-detection algorithms.

The mapping functions that we use refer to aggregation functions that en-

able capturing curve-shape features, such as curvature, length (i.e. perime-

ter of a shape), or tangential velocity, and consider all the variables, as

a curve is viewed as a path. More precisely, a mapping function aggre-

gates the variables through different interpretable combinations of the deriva-

tives of the variables. Mapping functions have been used in shape analy-

sis [Srivastava & Klassen 2016], that is, for curves lying in a two- or three-

dimensional space (e.g. extracted from images), but not in the detection of

multivariate functional outliers.

To capture the potential outlyingness of the curves through their shape,

we propose mapping functions among those used in differential geometric-

method in shape analysis [Srivastava & Klassen 2016]. These functions map

multivariate to univariate curves; however, for accurate computation, they

require the curves to be smooth. Although this is the case for multivariate

functional data, raw data are often noisy when sampled, and we use the

functional-data representation to recover the smooth version of the curves.

Then, using the proposed mapping functions, we map the functional repre-

sentation (in the form of a curve) so that some of its shape features capture

curve outlyingness. Finally, based on this new representation, we use outlier-

detection algorithms to assess the outlyingness of each sample and determine

a threshold for flagging outliers.
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Our contributions are summarized as follows:

(i) We propose an end-to-end method for detecting outliers through their

curve shape, which is characterized by geometrical transformations.

The method is based on the functional representation of the data.

(ii) We propose different mapping functions to capture different types of

outlyingness based on curve shape.

(iii) We demonstrate that the proposed method is superior to previous

outlier-detection algorithms and, in contrast to baseline methods, per-

forms well regardless of the proportion of outliers.

This chapter is organized as follows. In Section II.2, we review related work

on outlier detection in both univariate and multivariate functional data. In

Section II.3, we discuss curve representations in the functional-data frame-

work. In Section II.4, we present the mapping functions that can capture

shape outlyingness from the obtained functional representation. The exper-

imental results are presented and discussed in Section II.5. Finally, Sec-

tion II.6 concludes this part.
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II.2 Related work

II.2.1 Depth-based univariate functional outlier detec-

tion

The detection of outliers in functional data is a recent topic and has pri-

marily been addressed by extending statistical depth1 to functional depth.

Statistical depth measures the centrality of a sample relative to a dataset by

providing an outward-center ordering of the samples through a score lying in

[0, 1]. A value close to zero implies that the sample is more likely to be an

outlier [Tukey 1975]. Statistical depth has several theoretical properties (see

[Zuo & Serfling 2000] for details):

(i) It attains its maximum value for the most centered (i.e. most repre-

sentative) sample.

(ii) It decreases monotonically and vanishes as the sample moves away from

the center (up to infinity).

(iii) It does not depend on the dataset scale.

Therefore, given an outlyingness threshold, samples with a depth value close

to 0 can be flagged as outliers. This type of measure has been extended

to functional data and used for classification [Cuevas & Febrero 2007], rank-

ing [Fraiman & Muniz 2001, Cuevas et al. 2006], as well as outlier detection

[Febrero et al. 2008].

However, most of the existing functional depths are applicable to univariate

functional data only. For instance, given a functional sample, the integrated

depth [Fraiman & Muniz 2001], modified band depth, and modified epigraph

index [López-pintado & Romo 2009] evaluate depth pointwise, that is, at

each observation point t ∈ T . Then, these depth values are averaged by

1statistical depth was not specifically proposed for functional but for multivariate data
[Tukey 1975, Fraiman & Muniz 2001]. However, we distinguish between univariate func-

tional depth and multivariate functional depth, which were proposed specifically for func-
tional data.
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integration over T to provide a global outward-center score which can be

seen as an outlyingness score. The integrated depth measures the proportion

of a curve that is the closest to the median curve of the dataset, where the

median curve is computed pointwise. The modified band depth measures

the average proportion of the curve that takes values within the range of

all pairwise sample combinations, where “proportion of a curve” refers to

the size of the interval T where the curve outlies the dataset. The modified

epigraph index has a similar principle: It measures the proportion of the

curve that takes values smaller than the other values of the dataset. Thus, the

functional depth intuitively measures the centrality of the curve, regarding its

global shape with respect to the dataset, see [López-pintado & Romo 2009]

for details. The bivariate random projection depth by Cuevas and Febrero in

[Cuevas & Febrero 2007] considers specific shape information by projecting

the curve and its first derivative onto random directions (e.g. directions

generated according to a unit-variance Gaussian process), resulting in several

bivariate vectors; a bivariate statistical depth function is then applied to

these vectors and averaged over the random projections. Based on any of

these functional depths, an outlyingness threshold is necessary for outlier

detection. If the depth-value distribution is known, which is rare in practice,

one can select the threshold as a small probability quantile (e.g. a sample

with depth value lower than the 5%-quantile of this distribution is likely

an outlier). [Febrero et al. 2008] proposed estimating this threshold as the

first percentile of the empirical distribution of the depth values through a

bootstrap procedure.

Unfortunately, apart from the statistical point of view, these approaches do

not facilitate the understanding of the nature of outlyingness. These tech-

niques have been developed for visually detecting univariate functional out-

liers. [Arribas-Gil & Romo 2014] defined the outliergram to represent each

sample as a bivariate vector with the modified band-depth and epigraph val-

ues. They demonstrated that these depths are quadratically related. Hence,

in a two-dimensional plot, inlier samples lie on a parabola, whereas out-

liers are likely to be far from it. Sun and Genton [Sun & Genton 2011] pro-
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posed the functional boxplot to summarize the empirical distribution of the

functional data as classical boxplots computed pointwise. It was designed

to visualize a univariate functional dataset, in the same spirit as that of

the classical boxplot. In their method, the central region of the pointwise

boxplots is defined as the region in R where the 50% highest depth-score

samples {xi(t)}i≤n (i.e. the most central) lie according to the band-depth

ranks [López-pintado & Romo 2009]. The fences of the boxplots are defined

by inflating 1.5 times the height of the central region. Thus, the contin-

uum of the pointwise boxplots provides a functional boxplot. The outliers

are then identified as samples falling outside the fences. In this functional

boxplot, inliers and outliers rely heavily on curve magnitude. Thus, curve

shape largely fails to be considered a potential outlyingness feature. In

[Hyndman & Shang 2010], the authors applied robust principal component

analysis by considering the samples to be high-dimensional vectors and rep-

resented each sample as a bivariate vector containing the first and second

principal scores. Subsequently, outliers were identified as samples outside

certain high-density regions that were determined using the empirical distri-

bution of these bivariate vectors.

II.2.2 Depth-based multivariate functional outlier de-

tection

Depth-based outlier detection methods for multivariate functional data are

more recent. [Claeskens et al. 2014] generalized any given univariate func-

tional depth to the case of multivariate functional data. This corresponds

to a weighted sum of a given univariate functional depth applied to each

variable (x̃1(t), ...x̃k(t), ...x̃p(t)) pointwise and then integrated over T . The

authors also discussed the selection of the weight function. As a special case,

in [Ieva & Paganoni 2013] proposed the multivariate band depth by using the

modified band depth as the given univariate functional depth; the weights

associated to the variables are constant with respect to t.

[Hubert et al. 2015] noted that the generalization proposed in
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[Claeskens et al. 2014] does not allow to detect all shape outliers since

low-depth samples stand near the boundary of the dataset but may not be

outliers. Conversely, high-depth samples may present outlyingness in their

curve shape because, pointwise, the curve does not exhibit any significant

deviance in each variable, as this generalization is the sum of the individual

univariate functional depths. To address this, the entire shape of the curve

should be considered.

A few studies incorporate curve shape into a multivariate functional

depth measure. Recently, [Kuhnt & Rehage 2016] proposed the functional

tangential-angle (FUNTA) pseudo-depth, which considers curve shape based

on the intersection angles of the centered variables (i.e. the variables are

scaled so that their integral over T values is 0). More precisely, for each

variable, FUNTA computes the intersection angles of a given sample xik

with all the other samples xjk∀j 6= i, and then averages these angles over the

number of intersection angles of xik and over the variables k = 1...p. Thus,

FUNTA separately considers the shape for each variable with respect to t,

but not the shape between the p variables.

More recently, [Dai & Genton 2019] proposed the directional outlyingness

measure (Dir.out), which considers curve shape through the weighted point-

wise direction in R
p of the vector X(t) toward the median of the distribution

of X(t). The purpose of the weights is the up-weighting of the directions in

which the outlyingness of X(t) is likely to appear. In contrast with the afore-

mentioned multivariate functional depths, which provide a score in [0, 1], the

Dir.out depth returns a vector in R
p×R+ corresponding to the concatenation

of the mean directional outlyingness (in R
p) and the total variance of the di-

rectional outlyingness (in R
+). A final outlyingness score is computed as the

robust Mahalanobis distance between this vector and a mean vector of the

same type computed on a subset of independent samples. Then, the upper

tail of this distance distribution is approximated by an F -distribution, and

the outlyingness threshold is defined as a high-probability quantile of this

F -distribution. Hence, unlike in other multivariate functional depths, the

outlyingness threshold provided by the Dir.out approach is not data-driven,
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as it is based on the (approximately) true distribution of the outlyingness

scores. However, in this approach, the parameters should be tuned by simu-

lation and are difficult to interpret beyond the statistical framework.

Multivariate functional depths are related to curve shape through the in-

dividual behavior of the curve variables. In our contribution, we adopt a

different approach, as we view a curve as a path in R
p and process it as a

geometrical shape with mapping functions. Indeed, the curve shape is not

only reflected by the curve variables, individually along t, but also by the

relationship between them. Our mapping functions consider the curve shape

along t thus highlighting outlying correlation features between the variables.

As all the aforementioned multivariate functional depths yield an outly-

ingness score with unknown distribution (except for Dir.out), an outlying-

ness threshold can be computed from the resulting empirical distribution of

the depth values through a bootstrap procedure as in the univariate case

[Febrero et al. 2008]. It can also be computed from a training dataset based

on the receiver operating characteristic (ROC) curve.

In the experimental study (Section II.5), we use the FUNTA and Dir.out

functional depths as baselines because they have been demonstrated to be

promising for outlier detection in multivariate functional data by regarding

outlyingness as a curve-shape feature.

II.2.3 Geometry-based functional outlier detection

Representing functional data in a geometric framework is a recent idea, and

few studies have considered such representations for outlier detection. Re-

cently, [Xie et al. 2017] proposed detecting outliers in univariate functional

data by decomposing each univariate functional sample into three features:

translation, phase, and amplitude. The authors defined the translation of

a functional sample by its mean over the observation interval T . Both the

amplitude and phase components are functional data extracted from the

original samples. The amplitude component reflects the vertical variability
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of the functional data, whereas the phase component reflects the horizontal

variability. Analogously to the functional boxplot of [Sun & Genton 2011],

they computed on the original dataset (although the computational meth-

ods are quite different), the authors proposed a method for constructing a

functional boxplot for each of the three components so that outlying features

may be identified, and outliers may therefore be detected. [Xie et al. 2019]

extended this method to multivariate functional data and added other com-

ponents such as shape orientation (reflecting rotational variability). They

additionally provided useful visualization techniques for identifying outlying

features, in fact, they only focused on the bivariate, p = 2, and trivari-

ate, p = 3, cases, which are shape data extracted from images. However,

when the size of the dataset and the number of variables p increase, this

method is computationally costly, as the shape-based component-extraction

procedures include several continuous optimization problems. Moreover, in

these studies, the outlier-detection methods are based purely on the empiri-

cal distribution (through the functional boxplot) of the proposed geometrical

features, whereas in our work we geometrically aggregate the dimensions of

the curves, resulting in univariate functional data and subsequently detect

outliers from this new data representation. The latter can be seen as implicit

non-parametric learning of the inlier distribution based on the functional data

mapped to a geometric curve feature. Hence, we take advantage of both the

geometrical mapping and the outlier-detection algorithm.
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II.3 Background in functional data

This section is concerned with the handling of high-dimensional vectors of

discrete noisy measurements that can be represented as smooth continuous

functions; moreover, we discuss how such representations can be achieved.

We use the notation introduced in Mathematical notations. The functional

data representation is twofold:

(i) As the x̃is are smooth functions, the reconstructed data are noiseless.

(ii) The reconstructed data are “aligned” in the sense that two recon-

structed sample values x̃1(tj) and x̃2(tj) tj at tj are comparable, as

they refer to the same evaluation point tj ∈ T̃ .

This is not the case in raw data because one can have tm1
6= tm2

(the curves

can be sampled on different grids).

II.3.1 Functional-data representation

The first step in FDA is to approximate an unknown smooth function xi : t→

R
p, which underlies the sample i, by another smooth approximation function

x̃i(t), ∀t ∈ T , through mi discrete noisy measurements xi(t1), ..., xi(tmi
); this

is referred to as the functional approximation step. Its purpose is to remove

the noise, thus allowing accurate evaluations of some derived functions, such

as combinations of derivatives and integral functions. This is necessary in

our case, as the proposed mapping functions correspond to combinations of

derivatives and integrals.

We should first select a functional representation as an approximation func-

tion. As a function is intrinsically infinite-dimensional, in FDA, it is com-

monly assumed that the underlying function can be approximated by a finite

linear combination of non-linear basis functions. Such an approximation is

called a basis expansion function [Ramsay & Silverman 2006]. We assume

that xik, the k-th variable (hence a univariate function) of xi, is to be ap-

proximated. The intuition behind the basis expansion is to combine a small
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number of “specific functions” (a set of given functions), each of which can

capture some local features of the underlying function xik, so that xik could

be recovered with a small approximation error. This approximation function

can be formulated as

∀t ∈ T , x̃ik(t) =
Lik
∑

l=1

αiklφl(t) = α⊤
ikφ(t) (II.1)

where φ(t) = {φl(t)}1≤l≤Lik
is a vector of orthonormal basis functions at t

for some Lik ∈ N
∗ (referred to as the basis size) with fewer basis functions

than sampled observation points (Lik ≪ mi), and αik = {αikl}1≤l≤Lik
is the

coefficient vector, the element αikl of which is the importance of the l-th basis

function.

Another choice of functional representation in FDA is to use non-parametric

smoothing [Ferraty & Vieu 2006], which achieves a similar approximation,

but its form is less tractable than that of the basis expansion function, for

instance, to compute derivatives.

According to Equation (II.1), one should select

(i) the basis {φl}1≤l≤Lik
and

(ii) the basis size Lik.

The choice of the basis is data-dependent. As suggested by Ramsay and

Silverman [Ramsay & Silverman 2006], when the data are smooth and pe-

riodic, the Fourier basis should be selected; when the data are smooth, a

B-spline basis is suitable. A B-spline is a piecewise-polynomial function

of order at least three [De Boor 1978]. It is not exactly an orthonormal

basis but since we only exploit the differentiability that B-splines induce,

here we omit the non-orthonormality. If one requires orthonormality and

smoothness, the functional principal components basis is a good solution

[Ramsay & Silverman 2006].If the data have irregularities, a wavelet basis
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should be preferred [Nason 2008]. See [Ramsay et al. 2009] for other exam-

ples and details on the choice of the basis according to the data. In turn,

the choice of the basis size parameter Lik depends on the selected basis. An

inappropriate choice of the basis results in requiring a large Lik because each

basis function will focus on an irrelevant part of the data variability (low

bias and high variance or, high bias and low variance); the worst case is

to capture the noise, leading to over-fitting [Ramsay & Silverman 2006]. By

contrast, an appropriate choice of the basis functions results in a small Lik,

that is, the basis is sufficiently rich to approximate an unknown function

using few functions. Subsequently, once a suitable basis is selected, the bias–

variance trade-off should be considered. This refers to the balance between

the approximation error and a reasonable Lik [Ramsay & Silverman 2006].

Such a balance is generally achieved by a grid search by cross-validation for

each sample i and variable k. When φ(t) and Lik are specified, a computing

method is required to estimate the coefficient vector αik, which is introduced

in the next paragraph.

II.3.2 Functional-data fitting

The linearity of the basis expansion function with respect to the coefficient

vector α⊤
ik enables its efficient estimation (assuming the data were sampled

with a Gaussian noise ǫij, that is, xik(tij) = x̃ik(tij) + ǫij, where ǫij is inde-

pendent of x̃ik(tij)) by minimizing the least-squares criteria:

J(αik) =
mi
∑

j=1

(xik(tij)− x̃ik(tij))
2 (II.2)

or equivalently, with vector notation,

J(αik) = ‖xik(ti•
)−Φikαik‖

2
2 (II.3)
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where ti•
is, by abuse of notation, the vector containing all the samples

{tij}1≤j≤mi
and Φik = (φl(tij))1≤j≤mi,1≤l≤Lik

is the mi × Lik matrix contain-

ing all the Lik basis functions evaluated at the observation points. Thus, Φik

is a discretization over ti•
of the vector of orthonormal basis functions φ(t) in

Equation (II.1). As Lik ≪ mi and Φik has all its columns linearly indepen-

dent, by the orthonormality of the basis functions (and thus orthonormality

of Φik), Φ⊤
ikΦik is invertible. Hence, equating the gradient of J to 0 with

respect to αik leads to the following minimizer:

α∗
ik = arg min

αik

J(αik) = (Φ⊤
ikΦik)−1Φ⊤

ikxik(ti•
) (II.4)

which is known as the classical least-squares solution [Hastie et al. 2009].

However, as the data are fitted according to the basis functions, the smooth-

ness of x̃ik depends greatly on the noise influence on the basis functions.

Consequently, x̃ik may lack smoothness and overfit the data. To analyze

such a noise influence, one can compute the derivative of x̃ik, which is “ex-

cessively” variable if a large amount of noise remains in the approximation

function. To ensure smoothness, the least-squares criteria should be mini-

mized by penalizing the derivative(s) of x̃ik with an amount λ > 0 as follows:

Jλ(αik) =
mi
∑

j=1

(xik(tij)− x̃ik(tij))
2 + λ

∫

T
(Dqx̃ik(t))2dt (II.5)

where Dq = dq(·)
dtq is the q-th derivative of x̃ik(t). More generally, Dq can

be any linear combination of derivatives of xik, that is, a linear differential

operator [Ramsay & Silverman 2006]. A penalization term including deriva-

tives is also known as a roughness penalty. The parameter λ is arbitrary

and can be computed by cross-validation. This is detailed in Section II.5.2.

Equation (II.5) can be written using vector notation as follows:
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Jλ(αik) = ‖xik(ti•
)−Φikαik‖

2 + λα⊤
ikRikαik (II.6)

where Rik = (
∫

T Dqφj(t)D
qφm(t)dt)1≤j≤Lik,1≤m≤Lik

is a Lik × Lik positive

semi-definite matrix. The matrix Rik contains the inner products of the q-th

derivative of the Lik basis functions. This matrix can be computed provided

that the q-th derivative of the basis functions exists. In practice, it is common

to choose q = 1 or q = 2 (i.e. to penalize the velocity or acceleration of x̃ik,

or a combination of both).

As Jλ remains quadratic with respect to αik, approximating x̃ik with a

roughness penalty is equivalent to ridge regression [Hoerl & Kennard 1970,

Hastie et al. 2009]. Thus, the penalty term allows x̃ik to

(i) be smooth, as defined by the operator Dq and,

(ii) avoid over-fitting by pushing the coefficient vector near 0.

Equating the gradient of Jλ to 0 with respect to αik leads to the following

minimizer [Hastie et al. 2009, Ramsay & Silverman 2006]:

α∗
ik,λ = arg min

αik,λ

Jλ(αik,λ) = (Φ⊤
ikΦik + λRik)−1Φ⊤

ikxik(ti•
) (II.7)

II.3.3 Approximation functions as building blocks

Once the coefficient vectors have been estimated for the p variables of the n

samples (with or without penalization), we can consider the approximations

x̃ik to be smooth multivariate functions that well recover the underlying

functions. Although these functions can be theoretically evaluated at an

infinite number of points in T , in practice, there are two methods to handle

the approximations computationally (e.g. to compute derived functions such

as derivatives and integrals):
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(i) The first method is to compute the derived functions based on the basis

functions. As the basis functions are known analytically, their derived

functions can also be obtained analytically. Thus, by the linearity of

the basis expansion, one can easily obtain the derived functions of the

approximation functions (the integral and derivative are linear opera-

tors). We illustrate this using the k-th derivative of the approximation

function. We assume that an unknown function x is approximated by

x̃ through a basis expansion with a basis size L (in Equation (II.1)),

provided that the k-th derivative {Dkφl(t)}1≤l≤L of the basis functions

exists, and the coefficient vector {αl}1≤l≤L is available (or has been es-

timated as in Equation II.4). The k-th derivative of x̃ with respect to

t is Dkx̃, where

∀t ∈ T , Dkx̃(t) = Dk

(

L
∑

l=1

αlφl(t)

)

=
L
∑

l=1

αlD
kφl(t) (II.8)

(ii) The second method is to estimate the underlying functions by evalu-

ating all the approximation functions on the same grid T̃ . Thus, from

these estimates, one can compute derived functions, such as integral or

derivatives, using numerical methods, such as quadrature or finite dif-

ference schemes, respectively [Stoer & Bulirsch 2013]. These methods

are easy to implement, but they do not consider the basis functions

and require that the arbitrary grid be sufficiently fine (so that the ap-

proximation functions are evaluated at a large number of observation

points).

Thus, if the derivatives of the basis functions are known analytically (as is

the case for B-splines, Fourier basis functions, etc.), the derivatives of x̃ are

also known and do not need to be estimated from the raw data or from the

smooth reconstructions by a data-driven method such as finite differences.

Equation II.8 demonstrates the flexibility of the linear basis expansion for

computing derived functions in FDA. Then, a derived function, for instance

D1x̃, can be evaluated on an arbitrary grid. Such an approach is different
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from estimating the derivatives from an evaluation of x̃ on the grid by using

finite differences.

The first method is safer than the second because the analytic form of the

basis functions is fully considered, and therefore the corresponding derived

functions can be obtained accordingly. For instance, if the basis functions φl

are B-splines (which are piecewise polynomial), we know the analytic form of

D1x̃, as D1φl results in a piecewise polynomial as well. Thus, the evaluation

of D1x̃ by the first method provides more accurate estimates of D1x (which

is unknown) than numerical methods applied to x̃ evaluated on a fine grid

of T .

In the following section, we suggest some mapping functions for capturing

functional outlyingness in the detection process. These mapping functions

may have a complex analytical form because they involve several derivative

(first and second order derivatives, as well as integral functions). Therefore,

it is mandatory to have accurate evaluations of derivative functions, and

we follow the first method in the computational experiments since we use

B-splines and Fourier basis functions, whose derivatives are known.
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II.4 Shape-based representation of curves

We regard a multivariate curve as a path lying in a p-dimensional space,

R
p, and derive mapping functions (aggregation functions over the variables),

established in differential geometry, to capture shape features of the curves

(e.g. length, velocity, or curvature) so that outlying features may be de-

tected. These mapping functions have been used in shape analysis to ex-

tract features based on the edge (a bivariate curve) of an object in an image

[Srivastava & Klassen 2016].

In this section, we investigate several mapping functions that enable the

detection of multivariate functional outliers from the shape they exhibit in

R
p. Such mappings jointly consider the p variables, as they aggregate, in

several ways, some derivatives (with respect to t) of the curve variables.

Hence, the individual and collective variations of the variables are considered.

These mapping functions take each data sample, represented by its smooth

approximation function x̃i, as input and return a univariate curve (i.e. the

resulting aggregation) reflecting certain shape features. Hence, they provide

a means to “summarize” the shape of a multivariate curve, in the sense given

by the mapping function, and reduce the number of functional variables to

one. The univariate function returned by a mapping function is then fed

into an outlier-detection algorithm; this is detailed in Section II.5. In the

sequel, we simplify the notations by referring to a functional-data sample as

an arbitrary curve x =
[

x1, . . . , xp

]

instead of x̃i =
[

x̃i1, . . . , x̃ip

]

.

II.4.1 Arc-length mapping

The arc-length mapping function enables analyzing the length of a curve

between two points in T (see Figure II.2). Let x(t) be an arbitrary curve

depending on a continuous variable t ∈ T . For t0 ∈ T and t0 < t, the length

s(t) of the curve that x(·) represents from t0 to t is

s(t) =
∫ t

t0

‖D1x(u)‖2du =
∫ t

t0

√

√

√

√

p
∑

k=1

dxk(u)

du

2

du (II.9)
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the curvature at this point. The bivariate curve in Figure II.4 shows that at

a neighborhood of t1, where the tangent vector D1x(t1) has almost constant

direction, the osculating circle has a larger radius r(t1) than the radius of the

osculating circle at a neighborhood of t where the direction of the tangent

vector D1x(t) changes quickly. Thus, the curvature mapping function allows

analyzing the change of direction of the curve with respect to t. Indeed, if

the curve is a line, curvature is constant, and the curve directions remain

constant as well. Curvature is defined as [Srivastava & Klassen 2016]

κ(t) =
‖D1( D1x(t)

‖D1x(t)‖2

)‖2

‖D1x(t)‖2

(II.11)

or equivalently,

κ(t) =

√

‖D1x(t)‖2
2‖D2x(t)‖2

2 − 〈D1x(t), D2x(t)〉2

‖D1x(t)‖3
2

(II.12)

We now provide insight into the definition of κ in Equation (II.11). D1x(t)
‖D1x(t)‖2

is the direction vector (i.e. the normalized tangent vector); therefore,

D1 D1x(t)
‖D1x(t)‖2

is the rate of change of the direction vector, and the normal-

ization ‖D1x(t)‖2 relates to the rate of change of the direction with respect

to the tangent vector. Consequently, the curvature mapping can detect func-

tional outliers with a curve that exhibits a differently bended shape than

those of the other samples.
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II.5 Experimental study

We conducted an experimental study on real and synthetic datasets to

demonstrate the effectiveness of the proposed mapping functions in improv-

ing outlier detection in multivariate functional data. The detection perfor-

mance was evaluated in terms of the true detection rate (i.e. the proportion

of outliers correctly detected), false detection rate (i.e. the proportion of

outliers falsely detected), and area under the ROC curve (AUC).

II.5.1 Real data

II.5.1.1 ECG data

We tested the proposed approach on the real dataset used in

[Dai & Genton 2019]. The dataset consists of electrocardiogram (ECG)

time series of the electrical activity (voltage) of heart changes

[Goldberger et al. 2000]. Such data can reveal abnormalities in heart ac-

tivity. The time series are univariate and were labeled by cardiologists as

abnormal or normal. This dataset has been used for time-series classification

[Wei & Keogh 2006].

The ECG dataset consists in n = 810 time series including 208 abnormal and

602 normal cases. All the time series have an equal size of mi = 86. In con-

trast with [Dai & Genton 2019], who only considered the time series between

the time stamps t = 6 and t = 80 to avoid boundary effects, we considered

the entire time series to demonstrate the robustness and applicability of the

proposed approach. Dai and Genton also augmented the univariate time se-

ries to multivariate by adding the first and the second derivatives. We did

not follow this, as in our proposal, these aspects are considered (e.g. veloc-

ity mapping in Equation (II.10) or curvature mapping in Equation (II.11));

rather, we added the squared time series. Indeed, power is proportional to

the square of voltage. Thus, in terms of interpretability, this data augmenta-

tion appears to be more relevant than the second derivative of voltage. We

applied the same multivariate functional data augmentation to all ECG data
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experiments and for all methods. We did not apply the derivative augmenta-

tion, as this would bias the interpretation of the results, that is, it would not

be possible to discern whether the results were due to the specific augmenta-

tion or to the method. This would be of interest if the focus was specifically

on the ECG data, but here, we use it as a real dataset example.

As in [Dai & Genton 2019], to obtain a rare class of samples representing

outliers, we randomly created a partition of 400 samples (i.e. the training

set) out of the 810 samples by parameterizing the contamination level (i.e.

the rate of abnormal samples) in this partition to 5%, 10%, 15%, 20%, and

25%. Then, for each contamination level, we evaluated the proposed method

on the 410 remaining samples (i.e. the test set).

II.5.1.2 Pen-digits data

We tested the proposed method on the real dataset consisting of n = 10, 992

bivariate time series representing pen digits (PenDig) [Dua & Graff 2017].

The digits are labeled according to their class, from ’0’ to ’9’. Each digit

has mi = 8 observation points regularly sampled on both the horizontal

and vertical coordinates. As this initial dataset cannot be considered high-

dimensional, we upsampled it by linear interpolation to m′ = 200 on the two

coordinates before fitting the approximation functions.

To simulate the outlier classes, we considered a single digit to be the outlier

class, and the nine other classes to be the inlier class, as in [Ruff et al. 2018].

The training set was generated using 75% of the entire dataset with a con-

tamination level equal to c = 5% (i.e. 5% of the training set are outliers).

Each digit was separately considered the outlier class, and thus the experi-

ment was conducted in 10 independent ways. Then, for each case of outlier

class, we assessed the proposed method on the test set.

II.5.1.3 Airbus flight test data

We also tested our method on a real dataset provided by an Airbus flight

test expert, of n = 7, 118 four dimensional multivariate time series wherein
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each variable refers to a flight parameter. This dataset contains 85 outliers

annotated by the expert. For data privacy, we cannot share the Airbus flight

test data (AFT) neither give technical details on its physical meaning. We

show a plot of the scaled time series in Figure I.2 where red curves corresponds

to outliers.

The ECG and PenDig datasets were not used to assess the same properties of

the proposed method. The ECG data were used to demonstrate the robust-

ness of the proposed method with respect to different contamination levels

for some given outliers, whereas the PenDig data were used to assess the

detection performance for different outliers and a given contamination level.

Thus, we only compared these two in terms of performance, in the compari-

son of the various methods in Section II.5.8. The AFT dataset served as an

application example of outlier detection in flight test data.

II.5.1.4 Synthetic data

We simulated five multivariate functional datasets according to different

models proposed in [Dai & Genton 2019]. To the best of our knowledge,

this is the most recent study concerned with outlier detection in multivari-

ate functional data providing detection rates. For each synthetic dataset,

n = 150 curves are generated by a common simulation model with a continu-

ous variable discretized on a regular grid of size m = 200 in the interval [0, 1].

Among the n curves, c = 10%, referred to as the contamination level, were

outliers generated by specific contamination models xc1(t) . . . xc5(t). Each

contamination model generates one type of outlier. Testing the proposed

approach and the baselines on with different contamination models enables

assessing the efficiency of each mapping function for a given type of outlier.

The uncontaminated model is a bivariate Gaussian process GP(µ(t), Σ(s, t))

[Rasmussen 2003], with a constant mean function µ(t) = 0, and a cross-

covariance function Ckr between the two variables indexed by k and r, as
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follows:

Ckr(s, t) = ρkrσkσrM(|s− t|; νkr, βkr) k, r = 1, 2 and s, t ∈ [0, 1] (II.13)

where ρ12 is the correlation between the variables x1 and x2, ρ11 = ρ22 is the

variance of each variable, σ1 and σ2 are the marginal variances,

M(h; νkr, βkr) = 21−νΓ(ν)−1(β|h|)νKν(β|h|) is the Matérn class function

[Matérn 2013] (Kν is a modified Bessel function [Bowman 2012]), νkr > 0

is a smoothness parameter, and βkr > 0 is a range parameter. For this

simulation, we used the same parameter setting as in [Dai & Genton 2019]:

ρ12 = 0.6, ρ11 = ρ22 = 1, σ1 = σ2 = 1, ν11 = 1.2, ν22 = 0, 6, ν12 = ν21 = 1,

β11 = 0.02, β22 = 0.01, and β12 = β21 = 0.016. This covariance function

is implemented in the R package [Schlather et al. 2015]. We summarize the

uncontaminated model u(t) = (u1(t), u2(t))
⊤ as follows:

u(t) ∼ GP =



µ(t) = 0; Σ(s, t) =





C11 C12

C21 C22







 (II.14)

The five contamination models are (we annotate the variables with an index

c referring to “contamination”):

1. Model 1 persistent magnitude outlier: xc1(t) = 4u(t).

2. Model 2 isolated outlier: xc2(t) = u(t)(1 + 11Iz<t<z+0.1), where I is the

indicator returning 1 if the indexed condition is true, and 0 otherwise,

and z is a uniform random variable in [0, 0.9].

3. Model 3 persistent magnitude outlier, the contamination model is dif-

ferent for the two variables: xc3(t) = (x1,c3(t), x2,c3(t))
⊤, with x1,c3(t) =

1.7u1(t) and x2,c3(t) = 1.5u2(t).

4. Model 4 isolated outlier: xc4(t) = u(t)(1 + 4Iz<t<z+0.1), with z as in

model 2.
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5. Model 5 persistent shape outlier, the new uncontaminated model is

referred to as Y , and the contamination model as x(t)c5: y(t) =

(y1(t), y2(t))
⊤ with y1(t) = u1(t) + z11 cos(4πt) and y2(t) = u2(t) +

z12 sin(4πt), where z11 and z12 are independent uniform random vari-

ables in [2, 3]. The contamination model x(t)c5 is x1,c5(t) = u1(t) +

z21 cos(4πt) and x2,c5(t) = u2(t) + z22 sin(4πt), where z21, z22 are uni-

form random variables on [4, 5].

II.5.2 Experimental protocol

II.5.2.1 Functional-data fitting

Without loss of generality, we selected T = [0, 1] as the domain (closed

interval) of t for all the data sets. We recall that we represent all the curves

in the common interval T because we assume that the functional samples

were generated by a random function depending on t relating to the same

event in R
p. For instance, when the samples are measurements of a given

process depending on t, which represents time, T can be viewed as the relative

temporal range of the process (i.e. from the beginning at t = 0 to the end

at t = 1), and t ∈ T = [0, 1] can be interpreted as the progress rate of the

process.

Choice of the basis of functions. For the ECG, PenDig and the Air-

bus flight test datasets, we approximated each variable of the bivariate time

series by a basis consisting of B-splines of order eight (B-splines are piecewise-

polynomial functions of order at least three, and are located at a given ob-

servation point t ∈ T ). Indeed, we noticed that in this dataset, the curves

exhibit a smooth pattern without periodicity; hence, the B-spline basis is a

suitable choice, as recommended in [Ramsay & Silverman 2006].

For the synthetic dataset, we approximated each variable of the bivariate time

series by a Fourier (sine and cosine functions) basis with a fundamental period

of T = 1
F

= 1 (i.e. the length of T ). The Fourier basis was suitable because

we noticed low-frequency periodicity (induced by the covariance function
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Ckr(s, t)) over T .

Application of the functional-data fitting procedure. We

now provide the computational details of the functional-data fit-

ting. Following the recommendations in [Ramsay et al. 2009,

Febrero-bande & Oviedo de la Fuente 2012], for all datasets, we se-

lected both the penalization λk and the basis size Lik for the variable k of

sample i through a leave-one-out cross-validation procedure over a given

grid search for λk and Lik. We penalized both the first- and second-order

derivatives of x̃ik to gain smoothness in the mapping-function output. We

note that for all the samples of a given variable k, we equally penalized the

approximations x̃ik by the same λk to compute the coefficient vector α∗
ik.

Then, by computing α∗
ik,λk

according to Equation (II.7), we selected the

value of λk and Lik < mi that minimize the leave-one-out cross-validation

score CVλk
(Lik),

CVλk
(Lik) =

mi
∑

j=1

(

xik(tj)− x̃
−j
ik (tj)

)2
(II.15)

where x̃
−j
ik corresponds to the approximation of xik by Lik basis functions

by omitting the pair (tj, xik(tj)) in the functional-fitting step, as in Equa-

tion (II.5), where the penalization is λk.

For the ECG, PenDig and AFT datasets, the grid search of λ1 and λ2 was

fixed on logarithmic scale in [−9,−1], with a thickness of 0.1. The grid

search of Lik was fixed as {35, . . . , 60}, that is, for a given Lik, the Lik B-

spline functions are regularly located in T .

For the synthetic datasets, the grid search of λ1 and λ2 was fixed on logarith-

mic scale in [−9,−4], with a thickness of 0.1. The grid search of Lik was fixed

in {20, . . . , 25}, that is, for a given Lik, the synthetic data were approximated

by the first Lik frequencies 2πF × . . . 2πFLik. Then, for each variable, we

retained the coefficient vector associated with both the optimal regulariza-

tion and basis-size parameters to recover the smooth approximation function



48 CHAPTER II: SHAPE-BASED OUTLIER DETECTION

x̃i(t) = (x̃i1, x̃i2).

Finally, we used the coefficient vector associated with both the optimal reg-

ularization and basis-size parameters to recover the smooth approximation

functions x̃i(t) on a given grid and applied a mapping function to them.

II.5.2.2 Applying the mapping functions

We now explain the computational application of the mapping functions and

then how their output was fed to an outlier-detection algorithm.

After computing the approximation functions x̃i(t), we centered and scaled

each variable xik with the empirical mean and standard deviation functions

computed from the training set (see [Ramsay & Silverman 2006] for details

on the computation of mean standard deviation functions). This scaling

prevents the mapping functions from overweighting some variables with a

wider range than others. Indeed,

(i) The variables require to be scaled since the unit of the output value of

the arc-length mapping function (Lenmap in Equation (II.9)) is intrin-

sically a length. Then, we applied the three mapping functions intro-

duced in Section II.4. As the arc-length mapping is the integral function

of the velocity mapping, the arc-length mapping in Eq (II.9) was com-

puted from the minimum of T (i.e. t = 0) and was then integrated up

to t for all t ∈ T . In these experiments, the integral was efficiently es-

timated by a Riemann sum, as in this study, all the observation points

were regularly sampled in T , and therefore the sum converges to the in-

tegral. We note that if the observation points had been irregularly sam-

pled, the integral could have not been approximated by a Riemannian

sum, and numerical techniques, such as Simpson’s or the trapezoidal

rule, should have been used instead [Ramsay & Silverman 2006].

(ii) Regarding the velocity mapping Vmap in Equation (II.10), the first-

order derivative of each variable of x̃i(t) was computed according to

Equation (II.8).
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(iii) The curvature mapping (Curvmap) requires the computation of both

first- and second-order derivatives. Thus, we computed them as in

Equation (II.8) and combined them as in Equation (II.11).

The approximation functions recover the functional data on the entire domain

T . Thus, the approximation functions can be computed on an irregular

grid, and therefore the computation of the mapping functions should be

carefully performed (e.g. (i) in the computation of an integral function).

For both Vmap and Curvmap, which are based on derivative functions only,

simple and efficient derivative estimation methods can be used, as mentioned

in Section II.3.3.

Each mapping function returns a univariate function. Thus, applying a

mapping function to all n approximation functions x̃i(t) results in n uni-

variate functional-data samples. We used the resulting univariate functional

data in several outlier-detection algorithms. In practice, the functions re-

turned by a mapping function should be evaluated over a grid of observation

points in T to obtain the output samples in vector form. As we selected

T = [0, 1] for all datasets and the observation points are regular, the grid

is a regular discretization {t1...tj...tJ} of T with a thickness of 1
J

(t1 = 0

and for j > 1, tj = j
J
). Hence, for the outlier-detection algorithms, the data

correspond to J-dimensional numerical vectors that, in turn, correspond to

univariate functional data output by a mapping function. We selected the

thickness of the grid as the original size of the time series for both the syn-

thetic and ECG datasets (ECG dataset: J = mi = m = 86, PenDig dataset:

J = m′ = 200, AFT dataset: J = 1000, synthetic data sets: J = m = 200).

An irregular grid can also be used to evaluate the approximated functions,

but the computation of the mappings should be performed cautiously, as

mentioned in (i) for Lenmap.
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II.5.3 Outlier detection from the functional data out-

put by a mapping function

We detect outliers in the functional data returned by a mapping function

using a state-of-the-art outlier-detection algorithm. To this end, we selected

isolation forest (iFor) [Liu et al. 2008] and a one-class support vector machine

(OCSVM) [Schölkopf et al. 2001]. iFor is a bagging model that generates

a large number of decision trees grown on random subspaces. A subspace

corresponds to a subsample of features randomly selected from the full feature

space (here, {1 . . . j . . . J}). Each tree isolates the data samples based on a

random split value of a randomly selected feature from the subspace until

all the data samples have been isolated, or all the features of the subspace

have been selected. The sample outlyingness score returned by a tree is

based on the path length between the root node and the terminal node of

a tree. Outliers are samples that are easy to isolate and thus have short

path length in the trees. The path length is normalized in [0, 1] so that if

the score is close to 1, then the sample is likely an outlier. OCSVM is a

distance-based model formulated as a constrained quadratic minimization

problem, the variables of which correspond to the radius and the center of

the smallest hypersphere containing the data. To allow flexibility on the

hypersphere boundary owing to the presence of outliers in the training data,

slack variables are introduced in the objective function in addition to the two

other variables. The hyperparameter ν corresponds to an upper bound on

the a priori proportion of outliers in the training set. A sample is declared as

an outlier if it lies outside the fitted hypersphere. We used the radial-basis-

kernel version of OCSVM with ν equal to the exact proportion of outliers in

the training set. The bandwidth hyperparameter of the radial basis kernel

was optimized by a 20-fold cross-validation procedure.

For the ECG, PenDig, AFT and synthetic datasets, we set the number of

trees to 1000, and the subsampling size to 32 which are recommended values

in [Liu et al. 2008]. We randomly split each dataset into a training set and

a test set. As in [Dai & Genton 2019], the training set represents 50% of
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the data for the ECG dataset. The training set for the PenDig and AFT

datasets consists in 75% of the entire dataset. The training set contains

60% of the data for the synthetic data. The training set was used to both

fit the model (iFor and OCSVM) and select an outlyingness threshold from

the Receive Operating Curve (ROC) that discriminates inliers from outliers.

We then computed the outlyingness score of the test samples and achieved

detection using the previously computed outlyingness threshold. Regarding

OCSVM, we finetuned the bandwidth hyperparameter of the radial basis

kernel on the training set through a 20-fold cross-validation procedure on

the grid {2−25...2−5} for the real datasets as well as the synthetic ones.

II.5.4 Result assessment

We assessed the results with the correct detection rate ρc (i.e. number of

correctly detected outlier divided by the total number of outlying curves) and

the false detection rate ρf (i.e. number of falsely detected outliers divided

by the total number of inliers). In addition, as a measure of discrimination

between outliers and inliers by the proposed approach, we also computed

Area Under the ROC (AUC) from the labels of the test set. It is a standard

performance measure in outlier detection [Erfani et al. 2016, Liu et al. 2008]

and demonstrates that the proposed method can outperform the baselines

regardless of the computed outlyingness threshold.

The threshold-selection step is simple and is not part of iFor [Liu et al. 2008]

or OCSVM [Schölkopf et al. 2001], which are both unsupervised. We assume

that the training data is labeled even if there are few outlier samples. In real-

world applications, the user has some knowledge about the training data and

can thus label inliers and some outliers.

If the training set surely has no outlier, the proposed method only requires the

modification of the threshold selection rule. This modification is easy because

both iFor and OCSVM are unsupervised methods and output a normalized

score. Using the threshold that achieve the highest AUC, we computed the

correct detection rate (i.e. number of correctly detected outlier divided by
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the total number of outlying curves) ρc and ρf (i.e. number of falsely detected

outliers divided by the total number of inliers) to demonstrate the complete

application of the proposed method and compare it with the baselines. There

are other methods for learning an outlyingness threshold, such as using a

specific decision rule involving, e.g. an empirical quantile associated with

a reference distribution of the outlyingness scores [Dai & Genton 2019], or

threshold selection from the mass-volume curve [Clémençon & Thomas 2017]

when no outlier label is available, but this is beyond the scope of the present

study, as we assume that the training set has low non-zero contamination

level.

II.5.5 Baseline comparisons

We compared the proposed method with two recent outlier-detection ones

based on multivariate functional depth.

The first baseline method is FUNTA, proposed by [Kuhnt & Rehage 2016]

(see Section II.2). It only requires centering each variable xik of each sample

to a zero mean. As FUNTA has been demonstrated to be robust to noise

and can handle curves of different size, we used it on the raw data without

any functional data approximation. For the computation of the outlyingness

threshold, we applied the same procedure as in the proposed method, that

is, we selected the best outlyingness threshold for the training set using ROC

and applied it to the test set. We used the R implementation proposed in

[Rehage 2016].

The second baseline method is Dir.out proposed in [Dai & Genton 2019] (see

Section II.2). We used the same parameter setting as in [Dai & Genton 2019]

and did not perform any functional-data approximation. In this method,

the outlyingness score is based on the robust Mahalanobis distance of the

directional outlyingness vector computed on a subset of the data; in the

present case, we computed it using the training data to obtain comparable

results and to assess the performance measures on the test set. The tail of

the distribution of the distances is approximated by an F -distribution with
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degrees of freedom (p+1, m−p), where p is the number of curve variables, and

m is calculated through a simulation procedure (see [Dai & Genton 2019],

p. 7 for details). Consequently, the outlyingness threshold is not data-driven

and is computed as a quantile of probability 99, 3% of an F -distribution.

Then, we used the outlyingness threshold on the test set to asses performance.

We used the R implementation provided by the authors.

II.5.6 Experimental protocol application

The performance of the proposed approach was evaluated by simulation for

both the real and the synthetic data. The simulation settings for the ECG

and synthetic data were as in [Dai & Genton 2019]. We proceeded as follows:

(i) We randomly generated a train/test split.

(ii) We then applied the proposed and the baseline methods. Except for

Dir.out (baseline), which does not require outlyingness-threshold learn-

ing because the outlyingness score follows a known distribution (see

Section II.5.5), the outlyingness threshold was learnt on the training

set based on the ROC curve.

(iii) We evaluated the performance in terms of the true detection rate (ρc),

false detection rate (ρf ), and AUC on the test set.

For the ECG dataset (resp., PenDig datasets), steps (i) to (iii) were repeated

50 times for each case of the five contamination levels (resp., for the 10 outlier

classes) (see end of Section II.5.1), and 500 times for the synthetic data for

each of the five models (Section II.5.1.4). For the AFT dataset, steps (i) to

(iii) were repeated 50 times.

II.5.7 Results and discussion

We report the results for the ECG dataset in Table II.1, where for each

contamination level c (columns) and for each method (rows), we provide ρc,

ρf , and AUC (sub-columns). The results for the PenDig dataset are shown
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in Table II.2. The results for the synthetic data are reported in Table II.4. In

these tables, the value in a cell is the average of a performance measure over

the number of simulations. We conducted a hypothesis testing procedure in

Section II.5.8 to validate the relevance of these averages.

II.5.7.1 ECG data
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Figure II.5: The three performance measures ρc, ρf , and AUC, averaged over
the simulations versus the contamination level (c = 5%, 10%, 15%, 20%, 25%)
for each method (proposed in blue, and baselines in red). We notice that
when the contamination level c increases, the proposed method (except for
iFor(Lenmap) and OCSVM(Lenmap)) outperforms the baselines in terms of
ρc, ρf and AUC.

The results for the ECG data set (Table II.1) show that the proposed method

outperforms the baselines with Vmap and Curvmap with iFor and OCSVM. We

notice that when the contamination level c increases, the proposed method

(except for iFor(Lenmap) and OCSVM(Lenmap)) outperforms the baselines

in terms of ρc, ρf and AUC. Moreover, performance does not degrade as the

contamination level increases, in contrast with that of the baselines. In terms

of ρc, FUNTA performs as well as Vmap and Curvmap when used with both

iFor and OCSVM but significantly degrades in terms of ρf (i.e. it falsely de-

tects outliers) for low contamination levels. Dir.out performs as well as the

proposed method in terms of ρf but degrades in terms of ρc for high contam-

ination levels. Hence, FUNTA performs well when the contamination level
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Table II.1: Results on the ECG dataset.
c = 5% c = 10% c = 15% c = 20% c = 25%

Methods ρc ρf AUC ρc ρf AUC ρc ρf AUC ρc ρf AUC ρc ρf AUC

F UNT A (baseline) 0.85 0.60 0.78 0.86 0.50 0.81 0.88 0.42 0.83 0.87 0.29 0.85 0.85 0.24 0.86

Dir.out (baseline) 0.88 0.18 0.90 0.84 0.16 0.89 0.75 0.14 0.89 0.63 0.13 0.87 0.55 0.10 0.86

iFor(Vmap) 0.90 0.12 0.96 0.92 0.12 0.96 0.92 0.12 0.96 0.92 0.13 0.95 0.91 0.13 0.95

iFor(Curvmap) 0.89 0.07 0.98 0.90 0.07 0.98 0.91 0.08 0.98 0.90 0.08 0.97 0.91 0.08 0.97

iFor(Lenmap) 0.54 0.28 0.70 0.49 0.24 0.69 0.45 0.20 0.68 0.42 0.19 0.66 0.43 0.23 0.65

OCSVM(Vmap) 0.97 0.10 0.98 0.97 0.16 0.97 0.88 0.17 0.92 0.90 0.13 0.94 0.88 0.18 0.92

OCSVM(Curvmap) 0.96 0.17 0.95 0.96 0.21 0.93 0.90 0.20 0.91 0.91 0.22 0.91 0.90 0.23 0.89

OCSVM(Lenmap) 0.79 0.20 0.86 0.71 0.23 0.78 0.54 0.21 0.67 0.65 0.27 0.72 0.58 0.28 0.66

Outlier detection results for the ECG data set with five contamination levels c (columns). For each contamination level and each performance
measure (sub-columns), we marked the best results in bold (i.e. highest correct detection rate ρc and AUC, and lowest false detection rate ρf ).
For all the contamination levels, the proposed method achieves the best results with Vmap and the Curvmap. For our proposed method and a
given mapping function and outlier-detection algorithm, performance does not degrade when c varies, whereas for F UNT A and Dir.out it does.
Our method outperforms state-of-the-art methods when there are few outliers.



56 CHAPTER II: SHAPE-BASED OUTLIER DETECTION

is high, and Dir.out performs well when the contamination level is low. This

shows that the outlying features captured by these mapping functions are

more robust to the contamination level than those captured by the baselines.

II.5.7.2 PenDig data

From the results on the PenDig dataset in Table II.2, it can be seen that the

proposed method always outperforms the baselines in terms of AUC. This

implies that the baselines are not as effective in capturing shape outlying

features. When the outliers are ‘0’ digits, the results by the baselines are

consistent with the results on the synthetic data when some shape outliers

are simulated (Model 5 in Table II.4). This is not surprising, as Model 5

generates bivariate functional outliers with an elliptic shape in R
2; hence, a

zero-like shape (‘0’). As an AUC value close to 0.50 implies that the detector

performs as efficiently as a random method, we note that the ‘0’ outlier case

is the only in which the baselines are effective. The baseline methods cannot

distinguish different shape outliers with abrupt shape irregularities such as

(smooth) right angles, for example, when the outlier is the ‘1’, ‘4’, or ‘5’ digit.

In such cases, we obtain the best results in terms of AUC with Vmap. For

more regular shapes, such as ‘3’, ‘6’, ‘8’, and ‘9’, the best results are achieved

by Curvmap. We conclude similarly for the ρc results. However, baselines are

better in terms of ρf which shows that our method can confuse inliers with

outliers and lack robustness of this dataset.
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Table II.2: Results for the PenDig dataset
Outlier ’0’ Outlier ’1’ Outlier ’2’ Outlier ’3’ Outlier ’4’

Methods ρc ρf AUC ρc ρf AUC ρc ρf AUC ρc ρf AUC ρc ρf AUC

F UNT A (baseline) 0.49 0.22 0.60 0.01 0.21 0.51 0.22 0.19 0.58 0.23 0.20 0.52 0.23 0.21 0.53
Dir.out (baseline) 0.72 0.01 0.82 0.24 0.02 0.52 0.75 0.42 0.60 0.00 0.02 0.55 0.00 0.02 0.58

iFor(Vmap) 0.78 0.05 0.87 0.44 0.38 0.79 0.86 0.15 0.63 0.61 0.45 0.66 0.74 0.09 0.77

iFor(Curvmap) 0.82 0.12 0.92 0.43 0.60 0.61 0.87 0.47 0.57 0.57 0.38 0.69 0.81 0.33 0.63

iFor(Lenmap) 0.63 0.26 0.59 0.46 0.56 0.64 0.59 0.12 0.65 0.29 0.23 0.64 0.78 0.45 0.56

OCSVM(Vmap) 0.82 0.02 0.85 0.50 0.51 0.75 0.77 0.35 0.60 0.53 0.41 0.66 0.78 0.18 0.74

OCSVM(Curvmap) 0.80 0.11 0.91 0.50 0.60 0.70 0.55 0.23 0.59 0.56 0.44 0.68 0.61 0.15 0.66

OCSVM(Lenmap) 0.81 0.10 0.75 0.37 0.42 0.70 0.84 0.18 0.76 0.54 0.42 0.67 0.83 0.25 0.69

Outlier ’5’ Outlier ’6’ Outlier ’7’ Outlier ’8’ Outlier ’9’
Methods ρc ρf AUC ρc ρf AUC ρc ρf AUC ρc ρf AUC ρc ρf AUC

F UNT A (baseline) 0.49 0.22 0.60 0.01 0.02 0.51 0.22 0.00 0.58 0.23 0.01 0.51 0.23 0.21 0.53

Dir.out (baseline) 0.43 0.34 0.59 0.43 0.17 0.52 0.43 0.16 0.65 0.43 0.17 0.60 0.43 0.34 0.61

iFor(Vmap) 0.69 0.26 0.69 0.56 0.36 0.61 0.93 0.30 0.60 0.47 0.30 0.67 0.92 0.51 0.64

iFor(Curvmap) 0.62 0.29 0.61 0.54 0.28 0.63 0.93 0.21 0.68 0.48 0.20 0.77 0.79 0.26 0.73

iFor(Lenmap) 0.42 0.13 0.61 0.47 0.21 0.64 0.97 0.29 0.65 0.40 0.08 0.77 0.74 0.40 0.63

OCSVM(Vmap) 0.59 0.04 0.73 0.55 0.38 0.56 0.87 0.22 0.60 0.58 0.45 0.63 0.70 0.25 0.70

OCSVM(Curvmap) 0.58 0.18 0.64 0.61 0.40 0.61 0.86 0.19 0.62 0.56 0.44 0.66 0.62 0.14 0.72

OCSVM(Lenmap) 0.67 0.30 0.62 0.62 0.47 0.57 0.79 0.13 0.61 0.51 0.24 0.60 0.88 0.46 0.67

Outlier detection results for the PenDig dataset when each of the 10 classes (‘0’...‘9’) is considered an outlier (columns), and the nine other classes
inliers. For each case of outlier class and each performance measure (sub-columns), we marked the best results in bold. We note that our method
achieve the best results in terms of AUC, showing that it better discriminates outliers.
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II.5.7.3 AFT data

Table II.3: Results on the AFT dataset.

Methods ρc ρf AUC

FUNTA (baseline) 0.85 0.10 0.84

Dir.out (baseline) 0.90 0.12 0.90

iFor(Vmap) 0.98 0.01 0.97

iFor(Curvmap) 0.5 0.31 0.60

iFor(Lenmap) 0.97 0.02 0.96

OCSVM(Vmap) 0.95 0.03 0.96

OCSVM(Curvmap) 0.52 0.34 0.55

OCSVM(Lenmap) 0.95 0.05 0.92

Outlier detection results for the AFT

dataset with five contamination levels c.

We report the results on the AFT dataset in Table II.3 where one can see

that our proposal outperforms the baselines with Vmap and Lenmap in terms

of ρc, ρf and AUC. These results thus suggests that the outlying multivariate

time series of the AFT dataset are underlied by a process whose duration

and velocity are both abnormal. Also, since the Curvmap does not enhance

the discrimination between outliers and inliers, we can also say that they are

underlied by a path whose change in direction (in R
p=4) are similar.

II.5.7.4 Synthetic data

For all types of outliers (generated by a distinct contamination model),

iFor(Lenmap) achieves similar results to the baselines. For shape outliers

(Model 5),the baselines are outperformed.

For isolated outliers (Table II.4, Model 2 and Model 4 columns), the results

on the synthetic datasets show that the baseline methods perform as well as

Lenmap, and Vmap with iFor. Moreover, since in this case the outlyingness is a

short peak, the velocity quickly changes when the peak occurs; thus, the Vmap

function is an appropriate candidate for detecting isolated outliers. Curvmap
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Table II.4: Results on the five synthetic datasets
MODEL 1 MODEL 2 MODEL 3 MODEL 4 MODEL 5

Methods ρc ρf AUC ρc ρf AUC ρc ρf AUC ρc ρf AUC ρc ρf AUC

F UNT A (baseline) 1.00 0.00 1.00 0.92 0.02 0.99 0.96 0.00 1.00 0.89 0.04 0.99 0.58 0.31 0.73
Dir.out (baseline) 1.00 0.00 1.00 1.00 0.00 1.00 0.91 0.00 1.00 0.98 0.00 1.00 0.88 0.00 1.00

iFor(Vmap) 0.99 0.00 1.00 0.91 0.02 1.00 0.69 0.25 0.82 0.77 0.16 0.92 0.83 0.13 0.94

iFor(Curvmap) 0.61 0.30 0.75 0.57 0.48 0.60 0.59 0.39 0.67 0.57 0.48 0.61 0.73 0.24 0.85

iFor(Lenmap) 1.00 0.00 1.00 0.95 0.00 1.00 0.83 0.08 0.96 0.85 0.07 0.97 0.96 0.01 1.00

OCSVM(Vmap) 0.79 0.22 0.87 0.82 0.19 0.91 0.68 0.35 0.74 0.65 0.14 0.84 0.42 0.14 0.77

OCSVM(Curvmap) 0.49 0.34 0.65 0.60 0.52 0.62 0.48 0.38 0.63 0.42 0.44 0.61 0.43 0.37 0.65

OCSVM(Lenmap) 0.66 0.10 0.82 0.83 0.07 0.91 0.59 0.16 0.78 0.62 0.07 0.84 0.50 0.06 0.83

Outlier detection results for the synthetic data generated by the five models (columns), as described in Section II.5.1.4. We compared the proposed
methods, iFor(·) and OCSVM(·), with the two baselines, F UNT A and Dir.out, in terms of three performance measures (in sub-columns): correct
detection rate (ρc), false detection rate (ρf ), and AUC. For each model and each performance metric, we marked in bold the best results (i.e.

highest ρc and AUC, and lowest ρf ).
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shows poor performance for the two models. This implies that it is ineffective

in detecting isolated outliers. Indeed, the contamination models (Model 2

and Model 4, Section II.5.1.4) generate stationary functional data (constant

mean and only lag-dependent covariance) except in the part of T where the

outlyingness (low short peak) occurs. Thus, considering the second-order

variations (second-order derivatives in Equation (II.11)) is irrelevant and

leads to high ρf values (ρf columns and Curvmap rows).

For persistent magnitude outliers (Table II.4, Model 1 and Model 3 columns),

Dir.out and FUNTA yield the best results in terms of both ρc and ρf .

We obtain similar results for Model 1 with Vmap, and Lenmap with iFor.

Nevertheless, Vmap is not as efficient for Model 3 as for Model 1. Indeed,

Model 1 has high contamination (high short peak), resulting in high velocity

mapping values, and we recall that velocity and curvature relate to local

variations of the curves. Consequently, as here the magnitude outlyingness

is a global feature, Lenmap is better than Vmap and Curvmap. This indicates

that for detecting persistent magnitude outliers, the proposed approach is

more reliable with Lenmap than Curvmap and Vmap.

For persistent shape outliers (Table II.4, Model 5 column), the proposed

method outperforms the baselines with iFor on Lenmap. Furthermore, Vmap

yields results similar to those of Dir.out in terms of ρc and AUC. Table II.4

shows that the state-of-the-art FUNTA totally fails to capture shape out-

lyingness because it is based on the intersection angles between the samples

and is computed for each variable separately. Thus, it fails to consider the

correlation between them (as explained in Section II.1).

For Models 1–5, among the proposed mapping functions, Lenmap achieves the

best results and appears to be suitable for outlier detection if the variables are

weakly correlated, whereas Vmap and Curvmap are preferable if the correlation

between the variables is strong.

As Vmap and Lenmap achieve satisfactory results, the geometric characteri-

zation (velocity and length) of the samples provides a different shape fea-

tures in the outlier detection. We note that functional-data approxima-
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tion affects the geometric characterization. Indeed, functional approxima-

tion enables smoothing out a curve and properly extracting derivative-based

features because the induced smoothing renders the samples differentiable

(see Section II.3.3); this is not a required property for the baselines Dir.out

and FUNTA. Here, we carefully monitor the functional-approximation step

using leave-one-out cross-validation (Equation 14). Thus, in contrast with

the approximation step, the outlier-detection step depends greatly on the

mapping-function computation.

Overall, considering the results on synthetic datasets, we recommend using

Lenmap in the case of (potential) persistent magnitude or shape outliers. In

practice, Lenmap does not directly indicate whether a sample is a shape or

magnitude outlier. However, as shape and magnitude are quite distinctive

outlyingness classes, the class of such an outlier can be known a posteriori

by visual inspection or by setting a magnitude threshold with respect to

the magnitude of the outliers detected. If the outliers are suspected to be

isolated, we recommend using Vmap and Curvmap, as both mapping functions

extract local curve features in R
p. In the case of a low contamination level,

both OCSVM and iFor are suitable (even though on the ECG data, OCSVM

is better for small c), whereas for high contamination levels, iFor is better.

We demonstrated that each mapping function can detect multiple classes of

outliers. The results are consistent on both synthetic and real data. However,

knowing the class of a outlier detected by a given mapping function is not

easy, and this issue will be addressed in future work.

II.5.8 Statistical assessment of the results

We followed the hypothesis-testing procedure recommended in [Demsar 2006,

García et al. 2010] (also used in [Erfani et al. 2016]) to assess the statistical

significance of the results introduced above. Demsar provided an evaluation

protocol for a more general assessment of the difference between several clas-

sifiers used on multiple benchmark datasets. The protocol consists of two

steps: First, a global significance test is conducted to determine whether
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there is a difference among the evaluated methods. Second, if this is the

case, the methods are pairwise compared to evaluate the gain of one over

another.

We applied Demsar’s protocol because the present detection task reduces to

a two-class classification in the evaluation step (outliers/inliers). We applied

the protocol for the three performance measures ρc, ρf , and AUC separately.

As described in [Demsar 2006, García et al. 2010], there are several ways of

conducting the tests and we primarily applied it as in [Erfani et al. 2016].

We applied the protocol as follows:

(i) First, the Friedman test [Sheskin 2003] was applied to detect the

global statistical significance for each of the three performance mea-

sures among all the methods on all the datasets. The Friedman test

can be viewed as the non-parametric version of ANOVA (where, here,

a group refers to a method, and the samples in the group refer to

the performance of the method on the datasets), as it is based on the

ranks and thus does not make the Gaussian assumption for the per-

formance measures for each method [Demsar 2006]. We conducted the

Friedman test with the Iman–Davenport correction [Sheskin 2003], as

recommended in [Demsar 2006], to handle the well-known family-wise

error rate, which can bias the p-value in a multiple-hypothesis test.

We recall that in the present context, the family-wise error rate refers

to the probability of erroneously asserting that one method is more

reliable for detecting outliers than some of the others.

(ii) Second, if statistical significance was detected by the Friedman test, we

performed a post-hoc test to determine which methods are different.

More precisely, the post-hoc test is based on the p-values returned by

a pairwise-comparison test applied to all pairwise comparisons of the

methods. A nonparametric test can be selected for the pairwise com-

parisons (owing to the absence of the Gaussian assumption), such as the

post-hoc Friedman’s aligned ranked test [García et al. 2010]. As the

all-pairwise-comparisons test is a special case of a multiple-hypothesis
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test, it also suffers from the family error rate and requires a correction

procedure. Thus, we used the Finner correction as recommended in

[García et al. 2010].

We separately applied this evaluation protocol to the three performance mea-

sures for the five contamination levels of the ECG data, the 10 outlier classes

of the PenDig dataset, and the synthetic data to compare the methods on

two distinct types of data and to demonstrate the benefit of the proposed

approach on real data. Moreover, this enables assessing the difference of the

methods in a given context (i.e. when the outlier class is known). For all

datasets, we used a significance level of 0.1, as in [Erfani et al. 2016].

We report the average ranking (vertical axis) of all methods (horizontal axis)

applied to the ECG and PenDig datasets (resp., synthetic data) for each

performance measure (colors) in a vertical-bar plot in Figure II.6 (resp.,

Figure II.7). Each bar has a height equal to its average rank (1 is the best, 8

is the worst) based on the post-hoc Friedman’s aligned rank test across the

five contamination levels (resp., five models). For ρc and AUC, the ranking

is given in decreasing order, and for ρf , the ranking is given in increasing

order. The above number of bars refers to the global ranking (i.e. ranks

from the average ranks).

The Friedman test yielded to the rejection of equality of the methods for the

ECG, PenDig and synthetic datasets, for each performance measure (p-values

are given in the discussion). Therefore, we conducted pairwise comparison

(post-hoc) tests. The significance of the pairwise comparison tests of ρc, ρf ,

and AUC for the ECG and PenDig datasets is given in Tables II.5, II.6,

and II.7, and for the synthetic data, in Tables II.8, II.9, and II.10. The

significance (at level 0.1) of a test is indicated by 6=∗ , and non-significance

is indicated by = .

ECG data. The Friedman test rejects the null hypothesis of equivalence of

the methods for the three performance measures at a significance level of 0.1.

The p-values are 3.0× 10−10 for the correction detection rate ρc, 3.0× 10−10
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for the false detection rate ρf , and 2.2×10−16 for AUC. Thus, we conducted

a post-hoc test. Figure II.6 shows the average ranking of the methods based

on the Friedman’s aligned rank test (from the best 1 to the worst 8). The p-

value of each pairwise comparison in the post-hoc test is given in Tables II.5,

II.6, and II.7 for the correction detection rate, the false detection rate, and

AUC, respectively, where a cell indicates whether the resulting p-value of

the pairwise comparison test of the methods in the corresponding row and

column is below of above the significance level. The symbol = indicates a

p-value greater than the significance level of 0.1, allowing the acceptance of

the null hypothesis of equivalence of the two methods; rejection is indicated

by 6=∗.

Based on the results in Figure II.6 and Tables II.5, II.6, and II.7, it is con-

cluded that both Vmap and Curvmap outperform the baselines in terms of

the three performance measures. We notice that Dir.out is not significantly

better than the methods with the worst performance (i.e. iFor(Lenmap),

FUNTA, and OCSVM(Lenmap)). FUNTA is not significantly different

from iFor(Curvmap) and OCSVM(Curvmap) (Tables II.5 and II.7, FUNTA

rows and columns). Thus, by considering the results on the ECG data (Ta-

ble II.1 and Figure II.5), which show that FUNTA is almost as effective as

iFor(Curvmap) and OCSVM(Curvmap) in terms of ρc when the contamination

level is high (c ≥ 15%), this qualitative comparison is confirmed by the non-

significance of the difference with OCSVM(Curvmap). However, in terms of

ρf , FUNTA is ineffective and is outperformed by iFor(Vmap), iFor(Curvmap),

Dir.out, and OCSVM(Curvmap) (Table II.6). Even though Lenmap yields the

worst results among the three proposed mapping functions with both iFor

and OCSVM (Table II.1, Figure II.6), it is not significantly different from

Dir.out (see Dir.out columns and Lenmap rows in Tables II.5 and II.7).

PenDig data. The Friedman test rejects the null hypothesis of equivalence

of the methods for the three performance measures at a significance level of

0.1. The p-values are 1.5 × 10−1 for the correct detection rate, 2.8 × 10−9

for the false detection rate, and 1.1 × 10−4 for AUC. We note that there
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Table II.5: Statistical significance of the pairwise comparisons for the correct de-
tection rate ρc on the ECG (upper table) and PenDig (lower table) datasets.

F UNT A Dir.out iFor OCSVM
Vmap Curvmap Lenmap Vmap Curvmap Lenmap

F UNT A (baseline) x = = = 6=∗ = = =

Dir.out (baseline) - x 6=∗ 6=∗ = 6=∗ 6=∗ =
iFor(Vmap) - - x = 6=∗ = = 6=∗

iFor(Curvmap) - - - x 6=∗ = = 6=∗

iFor(Lenmap) - - - - x 6=∗ 6=∗ =

OCSVM(Vmap) - - - - - x = 6=∗

OCSVM(Curvmap) - - - - - - x 6=∗

OCSVM(Lenmap) - - - - - - - x

F UNT A Dir.out iFor OCSVM
Vmap Curvmap Lenmap Vmap Curvmap Lenmap

F UNT A (baseline) x = 6=∗ 6=∗ 6=∗ 6=∗ 6=∗ 6=∗

Dir.out (baseline) - x 6=∗ 6=∗ = 6=∗ 6=∗ 6=∗

iFor(Vmap) - - x = 6=∗ = = =

iFor(Curvmap) - - - x = = = =

iFor(Lenmap) - - - - x = = =

OCSVM(Vmap) - - - - - x = =

OCSVM(Curvmap) - - - - - - x =

OCSVM(Lenmap) - - - - - - - x

6=∗ indicates that the corresponding methods in the row and the column of the cell are significantly different at
a level of 0.1, and = indicates that they are not. The lower triangular part was replaced by dashes because it is
equal to the upper part.
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Table II.6: Statistical significance of the pairwise comparisons for the false detection
rate ρf on the ECG (upper table) and PenDig datasets (lower table).

F UNT A Dir.out iFor OCSVM
Vmap Curvmap Lenmap Vmap Curvmap Lenmap

F UNT A (baseline) x = = = 6=∗ = = =
Dir.out (baseline) - x 6=∗ 6=∗ = 6=∗ 6=∗ =
iFor(Vmap) - - x = 6=∗ = = 6=∗

iFor(Curvmap) - - - x 6=∗ = = 6=∗

iFor(Lenmap) - - - - x 6=∗ 6=∗ =

OCSVM(Vmap) - - - - - x = 6=∗

OCSVM(Curvmap) - - - - - - x 6=∗

OCSVM(Lenmap) - - - - - - - x

F UNT A Dir.out iFor OCSVM
Vmap Curvmap Lenmap Vmap Curvmap Lenmap

F UNT A (baseline) x = 6=∗ 6=∗ 6=∗ 6=∗ 6=∗ 6=∗

Dir.out (baseline) - x 6=∗ 6=∗ = = 6=∗ =
iFor(Vmap) - - x = = = = =

iFor(Curvmap) - - - x = = = =

iFor(Lenmap) - - - - x = = =

OCSVM(Vmap) - - - - - x = =

OCSVM(Curvmap) - - - - - - x =

OCSVM(Lenmap) - - - - - - - x

Notation is the same as in Table II.5.
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Table II.7: Statistical significance of the pairwise comparisons for the AUC on the
ECG (upper table) and PenDig (lower table) datasets.

F UNT A Dir.out iFor OCSVM
Vmap Curvmap Lenmap Vmap Curvmap Lenmap

F UNT A (baseline) x = = = 6=∗ = = =
Dir.out (baseline) - x 6=∗ 6=∗ = 6=∗ 6=∗ =

iFor(Vmap) - - x = 6=∗ = = 6=∗

iFor(Curvmap) - - - x 6=∗ = = 6=∗

iFor(Lenmap) - - - - x 6=∗ 6=∗ =

OCSVM(Vmap) - - - - - x = 6=∗

OCSVM(Curvmap) - - - - - - x 6=∗

OCSVM(Lenmap) - - - - - - - x

F UNT A Dir.out iFor OCSVM
Vmap Curvmap Lenmap Vmap Curvmap Lenmap

F UNT A (baseline) x = 6=∗ 6=∗ 6=∗ 6=∗ 6=∗ 6=∗

Dir.out (baseline) - x 6=∗ = = = = =
iFor(Vmap) - - x = = = = =

iFor(Curvmap) - - - x = = = =

iFor(Lenmap) - - - - x = = =

OCSVM(Vmap) - - - - - x = =

OCSVM(Curvmap) - - - - - - x =

OCSVM(Lenmap) - - - - - - - x

Notation is the same as in Table II.5
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is consistency with respect to the ECG data except for the false detection

rate ρf . Indeed, both Vmap and Curvmap outperform the baselines in terms

of ρc and AUC (Tables II.5 and II.7). Moreover, among the three mapping

functions, Lenmap yields the worst results and is not different from Dir.out.

However, there is an inconsistency ranking regarding ρf in the PenDig data

with respect to the ECG data (Figure II.6 and Table II.6). Indeed, as the

proposed method is not ranked first in terms of the false detection rate, it

may be claimed that it recognizes the outliers but tends to be excessively

severe.

We note that this conclusion regarding the correct and false detection rates

is drawn according to the adopted outlyingness thresholding rule, which can

be modified, as discussed at the end of Section II.5.3.

From the global ranking (Figure II.6) and the pairwise comparison tests, it

may be concluded that the proposed method outperforms the baselines on

both the ECG and PenDig datasets at the significance level 0.1.

Synthetic data. Regarding the synthetic data, the Friedman test rejects

the null hypothesis of equivalence of the methods for the three performances

measures at a significance level of 0.1. The p-value is 2.4 × 10−10 for the

correct detection rate, 2.4× 10−10 for the false detection rate, and 1.0× 10−6

for AUC. As these p-values are below 0.1, we conducted a post-hoc test

to compare the methods pairwise and assess the gain of one over another.

Figure II.7 shows the average ranking of the methods according to the post-

hoc Friedman’s aligned rank test.

The p-values of each pairwise comparison test is given in Tables II.8, II.9, and

II.10 for ρc, ρf , and AUC, respectively. We notice that Dir.out is significantly

equivalent to iFor(Lenmap), OCSVM(Lenmap), FUNTA, and iFor(V map),

and these methods are ranked first, second, and third on average, respec-

tively (Figure II.7). Thus, on the synthetic dataset, the baseline methods

are slightly better than the proposed method; however, based on the pairwise

comparison tests, the best methods (iFor(Lenmap) and OCSV M(Lenmap))
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are statistically equivalent. As discussed in the two previous paragraphs,

the proposed method is superior on real datasets. Moreover, in the iFor

rows and OCSVM columns, it can be seen that there is a pairwise equiva-

lence between iFor and OCSVM for (Lenmap) and (Vmap), that is, these two

outlier-detection algorithms are empirically consistent for a given mapping

function. Therefore, we have equivalent methods to achieve state-of-the-art

results (which cannot be improved, except for MODEL 5) for the synthetic

data.

Overall assessment. Tables II.5, II.6, and II.7 (in the iFor rows and

OCSVM columns) show the pairwise consistency between the iFor and

OCSVM algorithms for each mapping function. The same holds for the

synthetic data. Thus, for a given dataset and mapping function, iFor and

OCSVM achieve statistically the same performance results. This implies that

the detection performance relies more on the outlying features provided by

the mapping function than on the capacity of the outlier-detection algorithm

to discover outlying features itself.
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Table II.8: Statistical significance of the pairwise comparisons for the correct de-
tection rate ρc on the synthetic datasets.

F UNT A Dir.out iFor OCSVM
Vmap Curvmap Lenmap Vmap Curvmap Lenmap

F UNT A (baseline) x = = 6=∗ = = 6=∗ =

Dir.out (baseline) - x = 6=∗ = 6=∗ 6=∗ 6=∗

iFor(Vmap) - - x = = = 6=∗ =

iFor(Curvmap) - - - x 6=∗ = = =

iFor(Lenmap) - - - - x = 6=∗ 6=∗

OCSVM(Vmap) - - - - - x = =

OCSVM(Curvmap) - - - - - - x =

OCSVM(Lenmap) - - - - - - - x

Notation is the same as in Table II.5
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Table II.9: Significance of the pairwise comparisons for the false detection rate ρf on the synthetic dataset.
F UNT A Dir.out iFor(Vmap) iFor(Curvmap) iFor(Lenmap) OCSVM(Vmap) OCSVM(Curvmap) OCSVM(Lenmap)

F UNT A (baseline) x = = 6=∗ = = 6=∗ =

Dir.out (baseline) - x = 6=∗ = 6=∗ 6=∗ =
iFor(Vmap) - - x = = = 6=∗ =

iFor(Curvmap) - - - x 6=∗ = = =

iFor(Lenmap) - - - - x = 6=∗ =

OCSVM(Vmap) - - - - - x = =

OCSVM(Curvmap) - - - - - - x 6=∗

OCSVM(Lenmap) - - - - - - - x

Notation is the same as in Table II.5
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Table II.10: Significance of the pairwise comparisons for AUC on the synthetic dataset.
F UNT A Dir.out iFor(Vmap) iFor(Curvmap) iFor(Lenmap) OCSVM(Vmap) OCSVM(Curvmap) OCSVM(Lenmap)

F UNT A (baseline) x = = 6=∗ = = 6=∗ =
Dir.out (baseline) - x = 6=∗ = 6=∗ 6=∗ 6=∗

iFor(Vmap) - - x 6=∗ = = 6=∗ =

iFor(Curvmap) - - - x 6=∗ = = =

iFor(Lenmap) - - - - x 6=∗ 6=∗ 6=∗

OCSVM(Vmap) - - - - - x = =

OCSVM(Curvmap) - - - - - - x =

OCSVM(Lenmap) - - - - - - - x

Notation is the same as in Table II.5
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Figure II.7: (1 is the best, 8 is the worst) for ρc, ρf , and AUC based on
the post-hoc Friedman’s aligned rank test. For ρc and AUC, the ranking
is given in decreasing order (i.e. for high ρc and AUC values, the rank is
close to 1), and for ρf , the ranking is given in increasing order (i.e. for low
ρf values, the rank is close to 1). The y-axis represents the average ranking
over the five models, and the integers on the top of the bars represent the
final ranking. If there are ties, we take the average ranking. The baseline
methods are slightly better than the proposed method, but the best results by
the proposed method (iFor(Lenmap) and OCSV M(Lenmap)) are statistically
equivalent to those by the baseline, as showed by the pairwise comparison
tests in Tables 8,9, and 10.
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II.6 Conclusion

In this chapter, we proposed a method to improve the detection of differ-

ent types of outliers in multivariate functional data, based on curve shape.

We assumed that the original discrete curves can be well approximated by

finite functional basis expansions, where the basis is specified. Based on

the smooth reconstruction provided by the fitted basis expansion, we used

the arc-length, velocity, and curvature mapping functions to capture latent

shape features. Then, we detected the outliers from the mapped curves using

outlier-detection algorithms.

Through an experimental study on real and synthetic datasets, we showed

that the proposed approach outperforms multivariate functional depth base-

lines on real data and can perform similarly on synthetic data (except for

persistent shape outliers, where the proposed method performs better). We

demonstrated that, compared with the baselines, the proposed approach is

robust to the variation of the contamination level.

We did not assume any weighting of the curve variables in the mapping

functions; this is left as future work. This weighting could be user-driven, as

proposed for functional depth in [Claeskens et al. 2014], or data-driven. It is

conceivable that this can enhance outlier detection in the presence of non-

outlying curve variables (when p increases). Another possible improvement

would be to combine mapping functions in the same detector so that multiple

outlier classes may be detected in the same dataset.

II.7 Publications

We shall mention that the work of Chapter II has been published in two

venues. We first published the short paper [Lejeune et al. 2020b] in the inter-

national Conference Extended Data Base Technology. In this paper, we used

the curvature mapping function on the ECG data set and showed empirically

that our method is more robust than some baselines in terms of contamina-
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tion rate. From repeated trials, we also showed that our method provides

predictions with lower uncertainties than the baselines. We secondly pub-

lished the journal paper [Lejeune et al. 2020a] in the Knowledge-based Sys-

tems journal. In this paper, we extended our work in [Lejeune et al. 2020b]

by proposing the arc-length and the velocity mapping functions. We vali-

dated our method on synthetic datasets and on the ECG and PenDig real

datasets.



Chapter III

Data-driven discovery of systems of

ordinary differential equations with

nonconvex multi-task learning

In this chapter, we tackle the problem of analytical discovery of systems

of ordinary differential equations (SODE) from a multivariate time series.

Once known, the analytical form of such model provides a quantitative

representation of the dynamics underlying an observed phenomenon. The

problem is encompassed by the recent framework known as the sparse

identification of nonlinear dynamics [Brunton et al. 2016]. In state of the

art, the problem is formalized as a linear regression whose weights are

learned with the sparse convex LASSO penalty. However, this penalty

does not take into account the coupling between the equations of the SODE

and, due to its convexity, gives a biased estimate of the weights. To address

these two limitations, we re-cast the problem as a multi-task learning one

involving a nonconvex penalty. Numerical experiments, on known SODEs,

show that both the multi-task and the nonconvexity features of our method

outperform state of the art. We also apply our algorithm on an Airbus

flight test dataset.

Abstract.
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of the state-variables in a dynamic system. Famous examples of SODEs are

for example the FitzHugh-Nagumo equation to model neural excitement in

biology, the damped harmonic oscillator equation in mechanics or the Lotka-

Volterra equation to model population dynamics [Ramsay & Hooker 2017].

Governing equations are traditionally derived from principled rules them-

selves formalized from general empirical observations under certain hypothe-

ses. For instance, the SODE of the damped harmonic oscillator is de-

rived from the Newton’s second law under the constant-mass hypothesis

[Greiner 2006].

However, there remains some complex systems (e.g. in mechanical engineer-

ing, fluid mechanics) whose dynamic behavior is poorly understood and quite

hard to be modeled within a governing equation derived from existing princi-

pled rules. Hence, the SODE underlying such systems is unknown. Accessing

to the model, like a SODE, that governs an unknown dynamic is a challenging

task of scientific interest to improve the understanding of a physical system

as well as of practical interest to get a simulation model e.g. for prototype

design [Brunton et al. 2016, Schaeffer & McCalla 2017]. In this chapter, we

address such a challenge and propose a data-driven method to solve it based

on multi-task learning (MTL). In Figure III.1, we illustrate the core of both

our and state of the art methods: (top) based on data (Ẋn and ΘXn
) sam-

pled from a dynamic system, solving for the optimization problem involving

a sparse penalty R (bottom-center) leads to the identification of a SODE

(bottom-left). The learned SODE strongly relies on the chosen penalty. We

propose a nonconvex sparse penalty to learn the matrix coefficient β that

accounts for correlations within the SODE. The nonconvexity of such a reg-

ularizer results in a penalty with stronger sparsity than convex regularizers

leading to better selection of the candidate functions. Furthermore, this

penalty provides in a SODE learned more accurately than with state of the

art penalty.

Thanks to the development of sensor technology, many data can be sampled

from a dynamic system. Such an amount of data gives new opportunities to
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extract important knowledge on the underlying physical behavior of a dy-

namic system. Consequently, there has been a growing interest over the last

years in the development of data-driven methods for the discovery of gov-

erning equations [Brunton et al. 2016, Long et al. 2018, Bhat & Rawat 2019,

Schaeffer 2017, Zhang & Schaeffer 2019].

State-of-the-art methods for the discovery of SODE are based on the

matrix-extended LASSO (the ‖·‖1,1 norm) sparsity-promoting learning

methods [Brunton et al. 2016, Schaeffer & McCalla 2017, Rudy et al. 2019,

Tishbirani 1996]. In Figure III.1, we illustrate and generalize the core idea of

these methods: such kind of methods takes as input samples of state-variables

time derivative and a dictionary of resultants of (arbitrary) nonlinear trans-

formations of state-variables samples. Then the algorithm outputs the rel-

evant elements of the dictionary that best model the relationship between

the (samples of) state-variables and their associated first order derivatives.

Actually, learning in this way, i.e. with the ‖·‖1,1 norm penalty, reduces to

single-task learning, where a task refers to the discovery of a single equation.

However, (i) single-task learning does not accommodate the relatedness be-

tween the equations of the SODE [Obozinski et al. 2010]. We give an exam-

ple of such relatedness in Figure III.1 bottom-left where the occurrence of x3
1

and x3
2, within both equations, makes the SODE coupled. Consequently, issue

(i) results in an over-complete (i.e. not sparse enough) or under-complete

(too sparse) set of selected dictionary elements to identify the SODE.

Moreover, since the LASSO penalty is convex, (ii) the learned coefficients

associated to each element of the dictionary result biased [Zhang 2010,

Fan & Li 2001].

To remedy both (i) and (ii), we propose to cast the problem of discov-

ering a SODE as a MTL problem [Argyriou et al. 2008, Caruana 1997,

Obozinski et al. 2010] involving nonconvex regularizer that promotes spar-

sity, relatedness between the equations of the SODE and encourages unbi-

asedness.

Our contribution is to learn a SODE from data samples of a dynamic system
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with sparsity-promoting algorithm in the same spirit as [Brunton et al. 2016,

Schaeffer & McCalla 2017, Rudy et al. 2019], while preventing both incon-

sistent sparsity and bias issues. Actually, learning a SODE can be seen as

a problem made up of p regression tasks. The k-th learning task consists

to learn the k-th component of the SODE from a large dictionary of lin-

ear and nonlinear functions built from the raw data i.e. the samples of the

state-variables of the dynamic system under study. Since, by definition of a

SODE, there are as many tasks as state-variables, the regression problem re-

sults in a MTL problem. Contrary to single-task learning, MTL takes benefit

from the correlation between the tasks to learn a consistent set of predictors

across tasks in order to improve predictive performances of each of of them

[Argyriou et al. 2008, Obozinski et al. 2010]. In other words, when applied

to the discovery of a SODE, MTL amounts to learn a sparse set of elements

from a dictionary of candidate functions for each equation by considering the

coupling feature of the SODE.

We sum up our two-fold contribution:

• We cast the discovery of SODE as a nonconvex MTL problem.

We formalize the learning as an optimization problem involving a

matrix-structured, sparse and nonconvex regularizer to account both

for task relatedness and unbiasedness in the learned SODE. To

perform the learning, we instantiate an efficient generic algorithm

[Gong et al. 2013].

• Through experiments on benchmark of reference SODEs, we show that

learning with a nonconvex multi-task penalty enables a better recovery

of the underlying equations than learning with a convex single-task

penalty.
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III.2 Related work

We focus on the case where the state-variables are sampled from a dynamic

system along a scalar variable t ∈ R that, without loss of generality, refers

to time. Thus each one of the sampled state-variables form a time series.

To discover the dynamic relationship between the state-variables, one can

assume that the data in underlied by the solution of an unknown SODE

as proposed by [Brunton et al. 2016]. Discovering the SODE from the data

enables the practitioner to better understand the underlying dynamic of the

phenomenon. We emphasize that, contrary to recent work on deep learning

algorithm driven by SODE solver [Chen et al. 2018], we aim to discover a

SODE from data samples and not to solve a given SODE since the later is

unknown by definition of the problem.

For clarity, let’s recall how a SODE is formalized. Let f =
[

f1, . . . , fp

]⊤
:

R
p → R

p be a Lipschitz continuous map defining the evolution of a state-

variable x(t) =
[

x1(t), . . . , xp(t)
]⊤
∈ R

p, a SODE is expressed as Dx(t) =

ẋ(t) = f(x
(

t)
)

, where ẋ refers to the first-order time derivative of x (we use

the ’dot’ notation instead of D for a better readiness), or equivalently:



























ẋ1(t) = f1

(

x1(t), . . . , xp(t)
)

...

ẋp(t) = fp

(

x1(t), . . . , xp(t)
)

(III.1)

In Figure III.1 bottom-left, we instantiate Equation (III.1) with p = 2 and

f polynomial in x. Hence, discovering a SODE boils down to learn f in

Equation (III.1) from noisy samples of (ẋ, x). Since the state-variables are

related to each other, they can appear in multiple equations of the SODE.

Thus, the p equations are coupled each other. We improve the discovery of

a SODE by taking benefit of this feature through MTL.

The seminal work of learning a SODE from data samples traces back to

[Schmidt & Lipson 2009]. In their paper, Schmidt and Lipson proposed a
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combinatorial approach based on genetic-programming to select the parsi-

monious model, among a large set of candidate models, that best recovers

the data. As mentioned in [Brunton et al. 2016], genetic-programming meth-

ods do not scale to large data sets and are inclined to over-fitting. To remedy

it, Brunton et al. re-casted the learning of a SODE as sparse regression prob-

lem. Such a modern problem formulation has recently formed a new general

framework referred as the sparse identification of nonlinear dynamics in the

literature.

III.2.1 Building block for sparse learning of a SODE

State-of-the-art methods for the discovery of SODE, [Brunton et al. 2016,

Rudy et al. 2019], assume that each one of ẋ1, . . . , ẋp in Equation (III.1)

are independent targets which can be predicted by a sparse combination

of elements comprised in a dictionary of candidate functions. See Fig-

ure III.1 for an example of a two-dimensional SODE and where the dic-

tionary is denoted ΘXn
. The dictionary is first specified by the user by

building linear as well as nonlinear candidate functions (e.g. polynomi-

als) from the noisy samples Xn of x. This dictionary reflects the prior

knowledge on the observed phenomenon and is possibly over-complete. In

[Brunton et al. 2016, Schaeffer & McCalla 2017, Rudy et al. 2019], f is as-

sumed to be linear with respect to (w.r.t) the elements of the dictionary (and

not w.r.t t). The linear assumption on f w.r.t x1, . . . , xp makes it easy to

learn and to interpret. Then to learn the SODE, a sparsity-promoting algo-

rithm, e.g. LASSO [Tishbirani 1996], elastic-net [Zou & Hastie 2005], learns

f1, · · · , fp separately by both selecting the relevant elements (i.e. a small

set of candidate functions) of the dictionary and estimating their associated

coefficient in the linear model.
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III.2.2 Discovery of a SODE by sparse linear regres-

sion

The first step of the approach introduced above can be described as fol-

lows [Brunton et al. 2016]. Starting from n noisy samples of a p-dimensional

state-variable comprised in Xn and the associated time-derivatives samples

Ẋn =
[

ẋ•1, ẋ•2, . . . , ẋ•p

]

(which can be computed numerically if they were

not sampled), one first builds an arbitrary dictionary of m candidate func-

tions ΘXn
=
[

x•1, x•2, . . . , x2
•1, x2

•2, . . . , cos x•1, . . .
]

∈ R
n×m. Then from the

linear assumption on f , i.e. Ẋn = f
(

Xn

)

= ΘXn
β where β ∈ R

m×p is a

matrix wherein the q-th column refers to the coefficient-vector associated to

the candidate functions of the q-th SODE component (see Equation (III.1)),

one can find a sparse β∗ by minimizing a loss (data fidelity term) plus a

sparsity-promoting term:

β∗ = arg min
β∈Rm×p

ℓ(Ẋn, ΘXn
β) + λR(β) (III.2)

λ > 0 is the sparsity amount hyperparameter. We illustrate our approach in

Figure III.1 with a two-dimensional SODE.

To learn the SODE, [Brunton et al. 2016, Rudy et al. 2019, Schaeffer 2017]

instantiate Problem (III.2) by choosing R as the ℓ1,1 norm i.e. β∗ is the

solution of the following problem:

β∗ = arg min
β∈Rm×p

1

2
‖Ẋn −ΘXn

β‖2
F + λ‖β‖1,1 (III.3)

which is a special case of Problem (III.2) where ‖·‖2
F = ‖·‖2

2,2 =
∑p

j

∑n
i (·)2

is the squared Frobenius norm that serves in the loss ℓ(·, ·) and ‖·‖1,1 is the

sparsity-promoting regularizer R(·). Note that, since β =
[

β•1, · · · , β•p

]

and

‖·‖1,1 acts independently on each entry of β, solving Problem (III.3) reduces

to p independent LASSO [Tishbirani 1996] sub-problems where each one is

a learning task that consists to estimate, for k = 1 . . . p, β•k from
(

ẋ•k, x•k

)

with the ℓ1 norm weighted by λ. In this way, learning the SODE is performed

in a single-task learning manner.
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III.3 Learning algorithm

[Schaeffer 2017] formalized the discovery of nonlinear dynamics in the case

of partial differential equations and thus the dictionary used in his algorithm

is different to our ΘXn
as it involves partial derivatives. It turns out that

the learning criterion that the author used was formalized similarly to Prob-

lem (III.3) for SODE. Since Problem (III.3) is convex in β, Schaeffer solved

it with the Douglas-Rachford algorithm [Combettes & Pesquet 2011] (Algo-

rithm III.1) which is a proximal algorithm [Parikh & Boyd 2013]. One can

see that the main steps of Algorithm III.1 are in lines 4 and 5. These steps

consist to iterate between the shrinkage of W (sparsity promotion) followed

by the regularized inversion of Z (loss minimization). Step 6 maintains spar-

sity in W . The algorithm can be applied in low as well as in high-dimension

settings, m≫ n, i.e. when there are more candidate functions than samples

in ΘXn
. The notion of proximal operator is at the core of this learning algo-

rithm as well as in our proposal for MTL, so we recall its formal definition.

Algorithm III.1: Douglas-Rachford algorithm for Problem (III.3)

Input: data samples Ẋn, Xn, sparsity amount λ > 0, initial guess β0,
0 < µ < 2

1: build ΘXn
arbitrarily from Xn

2: W ← β0, β ←W

3: while β has not converged do

4: Z ← 2proxλ‖·‖1,1
(W )−W

5: W ← µ(I + λΘ⊤
Xn

ΘXn
)−1(Z − λΘ⊤

Xn
Ẋn)−Z

+(1− µ
2
)W

6: β ← proxλ‖·‖1,1
(W )

7: end while

Output: β

Definition III.1. (proximal operator [Parikh & Boyd 2013]) The proximal

operator associated to a closed proper convex function of a Hilbert space,
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h : H → R, is defined for every y ∈ H, with λ > 0 as:

proxλh(y) = arg min
u∈H

1

2
‖y− u‖2

H + λh(u)

Remark III.3.0.1. Here, depending on the context, H reduces either to

R
p or R

n×p. By the strong convexity of the two terms in the optimization

problem involved in Definition III.1, the optimizer proxλh(u) is unique and

thus is single-valued in H [Parikh & Boyd 2013].

Remark III.3.0.2. When h is separable, i.e. for any vector or matrix

W , h(W ) =
∑

i

∑

j hij(wij) with hij : R → R, computing proxλh(W ) re-

duces to compute the proximal operator of hij for every i, j and then to

concatenate
{

proxλhij
(wij)

}

ij
according to the dimensions of W . In other

words, in the case of a separable vector or matrix function, evaluating the

proximal operator on a given element boils down to evaluate the proxi-

mal operator for each of the separable parts. Hence, since the ℓ1,1 matrix

norm is separable, hij(wij) = |wij|, its proximal operator acts entrywisely

and proxλ|·|(wij) = sign(wij) max (0, |wij| − λ) which is known as the soft-

thresholding operator [Tishbirani 1996].

Roughly speaking, in the learning algorithm of a linear model, the proxi-

mal operator of a convex non-differentiable function (e.g. ‖·‖1,1) serves as

a shrinkage operator which assigns zero to coefficients in β that do not de-

crease the learning criterion enough. Actually, the exact shrinking to zero,

of the coefficients associated to irrelevant candidate functions for each task,

is due to the non-differentiability of the regularizer. Note that ‖·‖1,1 is used

as a sparsity-promoting regularizer in Problem (III.3), is separable and thus

does not consider any matrix structure. Thus, for MTL, the separability of

regularizer is not desirable. Indeed, one can permute any element within

the coefficient matrix β to learn, the resulting ℓ1,1 norm remains unchanged.

Consequently, the regularizer acts as if β were a vector in R
mp.
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III.3.1 Shortcomings

Considering a simple vector structure on β through a fully separable norm

regularizer, rather than a matrix-structured one, amounts to omit task re-

latedness i.e. correlations between columns
[

β•1, · · · , β•p

]

. Furthermore,

the convexity of a norm in R
m×p induces a bias in the learned coefficients

[Fan & Li 2001, Boyd & Vandenberghe 2004] and can degrade the identifi-

cation of the SODE. Indeed, the soft-thresholding operator evaluated on

a regression coefficient, i.e. proxλ|·|(βik) = β̃ik = sign(βik)(|βik| − λ) if

|βik| − λ > 0. Hence, if the i-th candidate function is relevant for the k-th

equation of the SODE and if the sparsity amount λ must be large, the learned

coefficient β̃ik is underestimated (in absolute value) with a bias amount of

λ sign βik.

III.3.2 Building-block of MTL of linear regressions

Since we address the discovery of a SODE with multiple linear regressions,

herbelow we describe the building block of MTL in this framework. The core

idea of MTL consists to regularize all the tasks jointly during the learning.

Here a task refers to the discovery of a single equation of the SODE. We

discuss stat of the art sparsity-promoting regularizers that can deal with

sparsity across tasks.

MTL consists in learning p functions
[

f1, · · · , fp

]

jointly by assuming that

they are close to each other in some similarity metric [Argyriou et al. 2008]

and share a common set of features. For the k-th task, one is given a data

set {yik; zik}i≤nk
of nk samples with m features. Therefore, the p regression

coefficient vectors can be represented in a matrix β =
[

β1, · · · , βp

]

∈ R
m×p.

The task similarity is reflected within the learning criterion by a regularizer

applied on this matrix. For p linear regressions, MTL can be formulated as

computing β∗ as:

β∗ = arg min
β=[β1,··· ,βp]

p
∑

k=1

nk
∑

i=1

1

2nk

(zik; y⊤
ikβk)2 + λR(β) (III.4)
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where R is the regularizer that may take into account for task relatedness and

λ > 0 is the regularization amount. Note that when nk = n and R is ‖·‖1,1,

Problem (III.4) reduces to Problem (III.3). Thus by choosing a regularizer,

more appropriate than the ℓ1,1, to considers relatedness between tasks, the

discovery of a SODE can be reformulated as a MTL problem. Hence solving

for Problem (III.3) corresponds to learn f1, · · · , fp independently.

III.3.2.1 Considering task relatedness

To account for task relatedness in the learning and not to perform p indepen-

dent single-task learning, the regularizer has to consider a matrix structure

on the coefficients. For instance, solving Problem (III.4) with R chosen

as Rℓ2,1
, i.e. ‖β‖2,1 =

∑m
i ‖βi•‖2 matrix norm (the so-called group-lasso

[Yuan & Lin 2006]) makes β row-sparse i.e. some of its rows are nonzero

and all the others exactly equal zero. Such a regularizer enforces all the

components of the SODE to have the same nonzero coefficients and thus to

share the same candidate functions specified in ΘXn
[Obozinski et al. 2010].

III.3.2.2 Considering task specific elements

Rather than only considering specific candidate functions with the entry-

wise ‖·‖1,1 norm, or oppositely, only common candidate functions across the

components of the SODE with the ‖·‖2,1 norm, it is more realistic to con-

sider both. Such a compromise can be achieved by taking R as a convex

combination of these two norms i.e. Rℓ2,1+ℓ1,1
= α‖·‖2,1 + (1− α)‖·‖1,1 with

α ∈ [0, 1]. For single-task linear regression, it is formulated as an extension of

the group-lasso when groups of features are known and some of the features

do not act at the group level [Simon et al. 2013]. When α > 0.5, the learning

criterion attaches more importance on common candidate functions across

tasks than task specific ones, and conversely when α < 0.5. In practice, α is

set around 0.9 to allow few task specific components but it can be fine-tuned

by cross-validation.



III.3. LEARNING ALGORITHM 89

III.3.2.3 Shortcomings

Despite being able to select relevant candidate functions, the norms Rℓ2,1

and Rℓ2,1+ℓ1,1
induce a bias in the learned coefficients within β. Similarly

to ‖·‖1,1, this bias is induced by the convexity of such regularizers through

their associated proximal operator which are available analytically (no opti-

mization step is needed to evaluate them) and given in [Simon et al. 2013].

We consider these regularizers as baselines in our numerical experiments in

Section III.5 and show that the nonconvexity is important to get an accurate

estimate of the SODE.

In Section III.2.1 and Section III.3.2, task relatedness and nonconvexity are

showed to be two important weaknesses not addressed by the ℓ1,1 regular-

izer used in state-of-the-art algorithms. Our contribution leverages both the

nonconvexity and task relatedness within a single regularizer to improve the

discovery of a SODE.
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III.4 Nonconvex matrix-structured regular-

izer

In this section, we expose our contribution and propose a nonconvex regu-

larizer which considers both relatedness between the tasks, through sparsity,

and unbiasedness. To learn a SODE with such a regularizer, we instantiate a

generative iterative thresholding algorithm [Gong et al. 2013] which can be

used with convex as well with nonconvex regularizers which can be expressed

as the difference of two convex functions.

III.4.1 Nonconvex separable regularizer

We first introduce the single task learning version of the nonconvex regular-

izer that we extend to MTL by applying it entrywisely on a matrix, i.e. as

the ℓ1 norm to ℓ1,1 norm. This nonconvex regularizer, the Smoothly Clipped

Absolute Deviation (SCAD) [Fan & Li 2001], does not account for task re-

latedness but serves as a building block for the regularizer we propose and

incorporates unbiasedness.

Definition III.2. Let λ > 0 and θ > 2 be two hyperparameters that serve as

the sparsity amount and unbiasedness level respectively. The SCAD penalty

is defined for any w ∈ R as:

rSCAD
λ,θ (w) =



















λ|w| if |w| ≤ λ

−λ2−2θλ|w|+w2

2(θ−1)
if λ < |w| ≤ θλ

(θ+1)λ2

2
if |w| > θλ

(III.5)

Remark III.4.1.1. rSCAD
λ,θ is not differentiable for x = 0 and nonconvex

(actually concave in R
+). Like any convex regularizer used in a learning

algorithm, the non-differentiability at 0 involves sparsity which is a desirable

property. Also, when θ increases, the SCAD regularizer approximates the ℓ1

norm [Fan & Li 2001].
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sion(s) i.e. for any vector or matrix W , RSCAD
λ,θ (W ) =

∑

i

∑

j rSCAD
λ,θ (wij).

One can note that such an extension results, by construction, in a regular-

izer having the separability property. Thus, the proximal operator of RSCAD
λ,θ

is obtained by evaluating proxrSCAD
λ,θ

entrywisely. However, since a separa-

ble regularizer cannot take into account relatedness between tasks, like the

ℓ1,1 norm, the benefit gained by learning with RSCAD
λ,θ over the latter is only

unbiasedness. Indeed, the first summand in RSCAD
λ,θ acts both at the row

and column levels of β. In other words, it acts for the coefficient βij associ-

ated to i-th candidate function (i-th column of ΘXn
) of the j-th task, and

therefore independently across the p equations of the SODE. We propose

to "un-separate" RSCAD
λ,θ to both leverage from non-separability as well as

nonconvexity of the SCAD penalty.

III.4.2 Nonconvex non-separable regularizer

We propose to learn β =
[

β1•, · · · , βm•

]⊤
in Ẋn = ΘXn

β, by solving Prob-

lem III.4 with our proposed regularizer RSCAD−ℓ1 . To make the proposed

regularizer non-separable, such that it accounts for task relatedness as well

as unbiasedness, the key point is to replace the second summation of RSCAD
λ,θ

by the evaluation of rSCAD
λ,θ of the ℓ1 norm of βi• for every i:

RSCAD−ℓ1

λ,θ (β) =
m
∑

i=1

rSCAD
λ,θ

(

‖βi•‖1

)

(III.7)

In this manner, since the regularizer acts for the i-th candidate function onto

the coefficient vector βi• ∈ R
p through the SCAD penalty of the ℓ1 norm,

RSCAD−ℓ1 enforces the coefficients of the i-th candidate function to be sparse,

unbiased and correlated across the p tasks. Note the analytical similarity

with the Rℓ2,1
=
∑

i‖βi•‖2 norm (Section III.3.2) which does not allow each

equation of the SODE to have a specific candidate function. Contrary to

Rℓ2,1
, our proposal RSCAD−ℓ1 enforces each βi• to have a small ℓ1 norm and

thereby enables the components of the SODE to have specific candidate

functions (this is due to the sparsity induced by the ℓ1 norm). RSCAD−ℓ1
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was reformulated as a sparse group penalty to learn single-task linear models

when groups of correlated predictive variables are known but some of the

groups may have been misspecified [Jiang & Huang 2015]. To the best of

our knowledge, this regularizer has never been extended to MTL.

Like RSCAD
λ,θ , the regularizer RSCAD−ℓ1

λ,θ is nonconvex but its proximal operator

can be computed according the ℓ1 norm of the rows of W =
[

w1•, · · · , wm•

]⊤

as, for i ∈ {1, . . . , m}:

prox
R

SCAD−ℓ1

λ,θ

(W ) =



























sign(wi•) max(0, |wi•| − λ) if |wi•| ≤ 2λ− ‖wi•‖1

θ−1
θ−2

sign(wi•) max(0, |wi•| −
θ

θ−1
λ) if 2λ− ‖wi•‖1 < |wi•| ≤ θλ− ‖wi•‖1

wi• if |wi•| > θλ− ‖wi•‖1

(III.8)

where sign, max and | · | act entrywisely. We will see in the next section

that knowing, analytically, this proximal operator is essential to perform the

learning.

III.4.3 MTL with a nonconvex regularizer

In this section, we instantiate the Generative Iterative Sequential Thresh-

olding (GIST) algorithm of [Gong et al. 2013] to learn β ∈ R
m×p with non-

convex regularizers that can be expressed as a difference of two convex func-

tions, see [Gasso et al. 2009] for examples of such regularizers. We present

the GIST algorithm in Algorithm III.2 with a regularizer R that can be ei-

ther convex, either nonconvex and can be written a difference of two convex

functions, see [Gong et al. 2013] for convergence guarantee of GIST. This

is a generalization of the Fast Iterative Shrinkage-Thresholding algorithm

[Beck & Teboulle 2009] designed to minimize (convex) least-squares plus ℓ1

norm problems. It turns out that RSCAD−ℓ1 , and RSCAD as well, have this

property, thereby the GIST algorithm encompasses Problem III.4. We also

used GIST with R convex for baseline comparisons in numerical experiments

in Section III.5.

GIST algorithm (Algorithm III.2) consists in two nested loops. The outer
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Algorithm III.2: GIST for Problem (III.4) with R possibly non-
convex

Input: data samples Ẋn and Xn, sparsity amount λ > 0, unbiasedness
level θ > 2, initial guess β0, step size γ, step size minimum γmin.

1: build ΘXn
arbitrarily from Xn

2: β ← β0, γ ← γmin

3: W ← β − γminΘ⊤
Xn

(ΘXn
β − Ẋn)

4: while β has not converged do

5: while line search criterion unsatisfied do

6: β ← proxγλR(β)
7: γ ← 0.8γ

8: end while

9: W ← β − γΘ⊤
Xn

(ΘXn
β − Ẋn)

10: β ← proxγλR(W )
11: γ ← γmin

12: end while

Output: β

loop (lines 4-12) consists in performing a loss gradient descent step (line 9)

followed by a shrinkage operator step (which here learns the coefficients of

the underlying SODE). In practice, the outer loop (line 4) is stopped if

the ℓ2,2 norm of the relative change of β between two consecutive itera-

tions is less than a low value like 10−5 or the total number of iterations

is greater than 5000. The inner loop (lines 5-8) consists to perform a line

search to compute a gradient step size γ so that it ensures a sufficient de-

crease of the loss along the negative gradient direction. Here we used the

backtracking line search criterion with parameter value 0.8 (line 7), which is

commonly used, and serves as the ’slow-rate’ of the line search (must lie in

]0, 1[) [Boyd & Vandenberghe 2004]. Note that learning with Rℓ1,1
in Algo-

rithm III.2 approximately reduces to learning with Algorithm III.1. In the

next section we instantiate Algorithm III.2 with different regularizers and

compare their ability to recover a SODE from noisy data.
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III.5 Numerical experiments

III.5.1 Experimental setting

III.5.1.1 Synthetic SODEs

To show the efficiency of our approach, we evaluated it on three refer-

ence two-dimensional SODEs: the Damped Oscillator with Cubic dynamic

(DOC) (used to model damped behaviors with non-linearity), the Lotka-

Volterra (LV) system (used for predator-prey interactions modeling) and the

Lorenz Attractor (LAT) system (used for excitation systems modeling like

neurons). Each one of these systems has common functions as well as spe-

cific functions across their two equations. We used the same settings as

[Schaeffer & McCalla 2017]. We generated the time series by solving nu-

merically the true SODEs with the explicit Runge-Kutta-45 method. We

corrupted the time series and their time derivative with a Gaussian noise

(σ = 0.1). Based on these noisy samples, we built the dictionary with mono-

mial candidate functions (up to degree five, with first and second order in-

teractions e.g. x1x2, x2
1x2).

For clarity, we give the analytic form of the DOC, LV and LAT SODE:

DOC










ẋ1(t) = −0.1x3
1(t) + 2x3

2(t)

ẋ2(t) = −2x3
2(t)− 0.1x3

1(t)
(III.9)

with xDOC(0) =
[

0, 2
]

, TDOC = 25 and nDOC = 5.103. The numerical

solution of the DOC SODE is plotted in Fig III.3.

LV










ẋ1(t) = 1.5x1(t)− x1(t)x2(t)

ẋ2(t) = −3x2(t)− x1(t)x2(t)
(III.10)

with xLV (0) =
[

0, 2
]

, TLV = 4.5 and nLV = 5.103. The numerical solution of
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the LV SODE is plotted in Fig III.4.

LAT


























ẋ1(t) = −10x1(t) + 10x2(t)

ẋ2(t) = 28x1(t)− x2(t)− x1(t)x3(t)

ẋ3(t) = −8
3
x3(t) + x1(t)x2(t)

(III.11)

with xLAT (0) =
[

− 5, 1, 20
]

, TLAT = 10 and nLAT = 5.103 as in

[Schaeffer & McCalla 2017]. The numerical solution of the LAT SODE is

plotted in Fig III.5.

III.5.1.2 Airbus flight test data

We experimented the baselines and our method on a multivariate time series

provided by an Airbus flight test expert. For data confidentiality, we can-

not share details on the data meaning. The dataset includes the time series

of the sampled state-variables (Figure III.7, blue curves), as well as their

sampled time derivatives (Figure III.8 blue curves). We built the dictionary

with monomial candidate functions (up to degree five, with first, second

and third order interactions terms e.g. x1x2, x2
1x2, x3

1x2). Based on the

knowledge of a flight test expert, we also included cos(2πx1), cos(2π0.5x1),

sin(2πx1) and sin(2π0.5x1). Also, to account for temporal variability of

the SODE, regardless of the state-variables, we included exponential terms

e−0.5t, e−t, e−1.5t, e−2t in the dictionary. Since it is a real dataset, the true

SODE is unknown thus we can only report the ǫT error between the sampled

state-variables and the numerical solution of the learnt SODE. For data con-

fidentiality, we cannot report the analytical SODE found but a plot of the

numerical solution. To solve the SODE, we used the explicit Runge-Kutta-45

method implemented in the SciPy library [Oliphant et al. 2001].

III.5.1.3 Implementation

We learnt the SODEs with GISTA with RSCAD−ℓ1 and RSCAD. We set θ =

2.01, near its lower bound. The best value of λ was computed as the one
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minimizing the Bayesian information criterion (no need for train/test splits

with cross-validation)1 in the logarithmic grid {λ0 = 103, . . . , λN−1 = 10−2}

containing N = 103 values. As this requires one learning for each λ, we

performed warm-start to estimate the models along λ [Friedman et al. 2010].

Warm-start consists to first estimate β̂λ0
with the largest sparsity amount

λ0, such that β̂λ0
= 0, and then to (sequentially) estimate β̂λi

by initialising

GISTA with β0 = β̂λi−1
.

III.5.2 Comparison with baseline regularizers

We compared our approach by learning with: Rℓ1,1
, Rℓ2,1

, Rℓ2,1+ℓ1,1

(α = 0.9), for which the proximal operators are available analytically

[Chierchia et al. 16 ]. For Rℓ1,1
and Rℓ2,1

, we used Algorithm III.1(µ = 1.5)

and the multi-task-LASSO (MTLa) from Scikit-Learn, respectively. We used

the relative squared norm ǫβ =
‖β̂−β∗‖2

2,2

‖β∗‖2

2,2

, ǫT =
∑T

t
‖x̂(t)−x(t)∗‖2

2

‖x(t)∗‖2

2

and the rate

of misidentified candidate functions ǫMIS i.e. the number of misidentified

functions divided by the total number of candidates functions for every tasks

p×m. ǫβ measures the unbiasedness w.r.t the true coefficient matrix β∗. ǫT

measures the relative total error, along t, between the (numerical) solution

of the learnt SODE w.r.t the true one. The lower ǫβ, ǫT and ǫMIS, the better

the recovery of the SODE.

III.5.3 Results

III.5.3.1 Synthetic SODEs

For each SODE, we repeated the experiment ten times. We report the average

and standard deviation of ǫβ, ǫT and ǫMIS in Table III.1. We show the sim-

ulated SODEs, with their closed form, from their best estimate over the ten

trials in Fig III.6. The results show that on the DOC, LV and LAT datasets,

learning with RSCAD−ℓ1 outperforms the convex baselines (Table III.1 Rℓ1,1
,

Rℓ2,1
, Rℓ2,1+ℓ1,1

rows) both in terms of SODE identification (smallest ǫMIS) as

1However, without training set, by abuse of language we keep on using "learn" that
refers to compute an estimate of β̂
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Table III.1: Results (average (%) ± standard deviation (%), over ten trials) of the learning of the DOC, LV and LAT SODEs with five regularizers.

SODE DOC (p = 2) LV (p = 2) LAT (p = 3)
Reg/Error ǫβ ǫMIS ǫT ǫβ ǫMIS ǫT ǫβ ǫMIS ǫT

Rℓ1,1
(LASSO) 10−3 ± 10−3 15± 8.7 14± 10−3

6.4± 2.10
−1

38± 4.1 1.2± 10−3 2.10−3 ± 3.10−4 4.1± 2.9 37± 10−3

Rℓ2,1
(MTLa) 10−3 ± 10−4 13± 10 7.10−1 ± 10−3 11± 1.0 65± 13 10162 ± 10−3 1.10−3 ± 2.10−4 27± 6.1 44± 10−3

Rℓ2,1+ℓ1,1
10−3 ± 10−4 12± 9.6 1.3± 10−3 10± 1.0 65± 13 18± 10−3 1.10−3 ± 2.10−4 19± 5.8 44± 10−3

RSCAD
10

−4 ± 10
−4

6.4± 3.1 3.10
−1 ± 10

−3 14± 6.10−1 50± 10 38± 10−3
4.10

−5 ± 3.10
−5

1.2± 0.0 32± 10
−3

RSCAD−ℓ1 (our) 10
−4 ± 10

−4
3.5± 3.5 8.10

−2 ± 10
−3

2.10
−3 ± 1.10

−3
7.8± 2.1 1.10

−4 ± 10
−3

4.10
−5 ± 3.10

−5
0.0± 0.0 13± 10

−3

ǫβ measures unbiasedness. ǫMIS is the misidentification error of the SODE. ǫT is the error between the solution of a learnt SODE and the ground
truth. For each SODE, the two smallest errors are in bold.
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well as unbiasedness (smallest ǫβ). Fig III.6 (LAT simulations) shows that

even if the SODE is well identified (small ǫMIS) with a convex regularizer,

the bias of the coefficients leads to a degradation of the forecasting perfor-

mances of the SODE. Moreover, despite the a priori inability of RSCAD to

consider the coupling within an SODE, the results nevertheless (Table III.1

penultimate row) show that it is good for variable selection (except for LV

whose dictionary ΘXn
involves more correlations than for DOC and LAT).

Such a result can be attributed to the (semi) concavity of RSCAD that leads

to a penalty with stronger sparsity (i.e. nearer to the ℓ0 oracle) than convex

regularizers. As a global result, our experiments show that leveraging both

from MTL and nonconvexity improves the discovery of the SODE in closed

form.

III.5.3.2 Airbus flight test data

Table III.2: Results (%) of the SODE discovery
experiment on an Airbus flight test dataset with
five regularizers. The two smallest errors are in
bold.

SODE Flight test dataset (p = 2)

Reg/Error ǫT

Rℓ1,1
(LASSO) 67.41

Rℓ2,1
(MTLa) 55.87

Rℓ2,1+ℓ1,1
55.29

RSCAD 62.56

RSCAD−ℓ1 (our) 44.96

We report the error ǫT , for each SODE discovered by the five regularizers, in

Table III.2. The results show that learning with RSCAD−ℓ1
outperforms the

baselines. We note that the second best result is achieved by learning with

Rℓ2,1
, meaning that considering the coupling within the SODE, regardless of

the bias induced by convexity, is a first benefit of our MTL-based approach.

Thus, the results are consistent with the ones of the synthetic SODEs, which
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shows that learning with a nonconvex MTL-based regularizer improves the

discovery.

In addition, in Figure III.7 and Figure III.8), for each learned SODE, we

provide the numerical solutions and their time derivative respectively.
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III.6 Conclusion

We re-casted the learning of an unknown SODE from noisy data as a MTL

problem. We proposed a nonconvex regularizer that better (i) accommodates

the coupling of the equations of the underlying SODE than convex regular-

izers and (ii) results in unbiased coefficients. To learn the SODE with our

nonconvex regularizer, we instantiate a generic algorithm from the literature.

Numerical experiments on real and synthetic datasets confirm that both the

MTL feature and the nonconvexity of our proposal outperform learning with

state of the arts regularizers.



General conclusion and

perspectives

In this thesis, we tackled two problems in multivariate time series analy-

sis: the detection of outliers and the discovery of SODE. To address both

problems, we represented a time series as function over time.

In Chapter II, we used the functional data representation as a pre-processing

step. Then, we proposed to extract shape features with the arc-length, veloc-

ity and curvature mapping functions which are well established in differential

geometry. We used the obtained shape-based data representation as input of

an outlier detection algorithm. Through numerical experiments on synthetic

and real datasets, we showed the improvement of our approach, in terms of

detection and robustness to the contamination level, w.r.t to state of the art.

As future work, a possible improvement is to combine mapping functions so

that multiple classes of outliers in the same dataset might be detected. For

instance, such a combination can be made with ensemble models, wherein

each model has to detect outliers from the representation returned by a single

mapping function. Another line of research is the outlier class recognition

(in addition to the detection), which would enhance the interpretability of

our approach. Recognizing the type of outlyingness can inform the user on

the abnormality of the behavior e.g. a delay if the outlier is horizontally
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shifted w.r.t to the inlier class. This could also be addressed by ensemble

models wherein each model is trained on a single outlier class. Then, one

can decompose the global outlyingness score in multiple sub-scores, where

each one refers to an outlier class. Such a decomposition would inform on

the contribution of each outlier class to an outlier.

In Chapter III, we represented the time-dependent function underlying a

noisy time series as the solution of an unknown SODE. Accessing to the

analytical form of the SODE is of a great interest since it can give an ex-

plicit, and functional, understanding on a particular dynamic system. This

inverse problem is formulated as a sparse regression problem. However, state

of the art algorithms are single-task based and thus omit the coupling feature

within the SODE. Furthermore, they involve the convex ℓ1 sparse penalty

that results in biased estimate of the regression weights. To remedy these

two limitations, we re-casted the problem with MTL involving a nonconvex

penalty. Our numerical experiments showed the improvement of our algo-

rithm w.r.t to state of the art.

A limitation of our approach, also not addressed by state of the art, is its

restriction to discover the SODE underlying a single multivariate time series.

Therefore, for a dataset comprising multiple multivariate time series, this is

required to learn each SODE independently. In this way, as the size of

the dataset increases, the learning can be costly and does not consider the

potential similarities between the time series. A future work, would be to

jointly discover multiple SODEs with a constraint of similarity between the

regression weights across all the SODEs.
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