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Abstract

Consider a firm owned by shareholders with heterogeneous beliefs

and discount rates who delegate to a manager the choice of a produc-

tion plan. The shareholders and the manager can trade contingent

claims in a complete asset market. Shareholders cannot observe the

chosen production plan and design a compensation scheme so that

at equilibrium the manager chooses the plan they prefer and reveals

it truthfully. We show that at equilibrium i) profit is maximized,

ii) the manager gets a constant share of production, iii) she has no

incentive to trade. We then show that such equilibrium exists if and

only if the manager has the same belief and discount rate as the

representative shareholder. This allows us to characterize the re-

quired characteristics of the manager as a function of shareholders’

characteristics.
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1 Introduction

A fundamental literature dating back at least to Berle and Means (1932)

analyzes how managers should be chosen and remunerated so as to act in

shareholders’best interest. A first challenge is how to define shareholders’

interest, given that corporations are often owned by many investors with

possibly different tastes and beliefs. Jensen and Meckling (1976) famously

proposed to define a “corporate objective function”as the result of “a com-

plex process in which the conflicting objectives of individuals are brought

into equilibrium.”

A large part of the following literature has studied agency problems

from the perspective of a representative shareholder, abstracting from the

underlying equilibrium process. In this paper, we take a different per-

spective. Assuming that shareholders delegate the production choice to a

manager and that they can trade assets with her in a complete financial

market, we model explicitly how heterogeneous shareholders may reach an

agreement on a commonly preferred production plan. Assuming further

that the actions taken by the manager cannot be observed, we investigate

how to define the characteristics of the manager and her compensation so

as to make her act in shareholders’interest.

In our model, shareholders have heterogeneous discount rates and be-

liefs. The manager chooses a production plan, which determines a flow of

uncertain output over time. Shareholders cannot observe the plan chosen

by the manager, they only observe the realized production. A contract for

the manager specifies her compensation at each date as a function of the

history of production.

Given a compensation scheme and a price process, the manager consid-

ers the indirect utility associated to each possible production plan, that is

the maximal utility she can obtain by choosing a consumption plan subject

to her budget constraint. She then chooses a production plan that maxi-

mizes her indirect utility and the associated optimal consumption plan and

announces the production plan to shareholders. Each shareholder chooses

a consumption plan so as to maximize her expected utility subject to her

budget constraint. A manager-shareholders equilibrium is then defined by

a compensation scheme, a production plan, a price process and a list of
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optimal consumption plans for the manager and shareholders such that,

as usual, markets clear and with the following distinctive features: the

manager has no incentive to misreport the chosen production plan and the

chosen production plan is unanimously preferred by all shareholders.

We start by deriving some intermediary results that define some prop-

erties that our equilibrium must satisfy. First, we show that an equilibrium

plan maximizes the value of the firm’s production at equilibrium price. This

echoes a well-known result that, in complete markets, shareholders would

agree on profit maximization or, equivalently, on aggregate dividend max-

imization. Notice however that the result is not immediate in our setting,

in which production, prices, and the manager’s compensation are jointly

determined in equilibrium. A priori shareholders’aggregate dividend is not

equal nor proportional to the value of production, the difference between

these two quantities corresponding to the value of manager’s compensation.

Second, we show that the manager’s compensation is necessarily linear

or, equivalently, the manager is given a fixed share of production. Third,

we show that the manager does not trade in the financial market. In fact,

the manager would misreport the chosen plan unless at equilibrium the

marginal value of her compensation is proportional to her marginal utility

of consumption. It follows that her consumption profile coincides with her

compensation. Intuitively, if this were not the case, the manager could

increase her utility by announcing a given plan, implement a different one,

and exploit the induced mispricing by trading on her private information.

Hence, at equilibrium, the manager has no incentive to trade.

From the previous results we obtain a characterization of a family of

manager-shareholders equilibria, if they exist. These results allow to con-

struct our equilibrium by separating the manager’s maximization problem

from that of shareholders. The equilibrium production plan maximizes the

manager’s utility on the set of production plans. At the same time, it is the

equilibrium production plan if the firm was run only by the shareholders,

according to profit maximization.

We define the representative shareholder at equilibrium as a fictitious

shareholder who - if endowed with the equilibrium production plan - would

have no incentive to trade at equilibrium prices. We can then state a nec-

essary and suffi cient condition for the existence of a manager-shareholders
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equilibrium. We show that such equilibrium exists if and only if the man-

ager has the same characteristics as the representative shareholder at equi-

librium.

The properties of the representative agent at equilibrium have exten-

sively been studied in the literature on aggregation of preferences and be-

liefs in asset markets. To derive some properties of the equilibriummanager

as a function of shareholders’characteristics, we assume that all sharehold-

ers have same CRRA instantaneous utility function. The representative

shareholder at equilibrium is then an expected utility maximizer with the

same CRRA instantaneous utility function, whose belief is a function of

shareholders’beliefs and discount rates and whose discount rate is time de-

pendent or stochastic. In particular, when all shareholders and the manager

share the same belief but differ in their time preference, the manager needs

to have a declining discount rate. This is because aggregate consumption

in the distant future is mostly in the hands of more patient individuals.

When the horizon becomes arbitrarily large, the manager needs to behave

as the most patient shareholder. An implication is that a manager whose

discount rate is an average of shareholders’discount rates would take deci-

sions that are too focused on the short-term relative to shareholders’best

interest. Moreover, when shareholders have the same constant discount

rate but different beliefs, the manager cannot have the same discount rate

as shareholders. Rather, she needs to put a higher weight on distant con-

sumption than any of the shareholders. Put differently, a manager with

the same discount rate as the shareholders would be short-termist.

We think our results have important implications for the study of agency

problems. Our setting is most closely related to a common agency prob-

lem, in which an agent faces multiple principals with possibly conflicting

interests (as started by Bernheim and Whinston (1986)). Our key distinc-

tive feature is to embed this problem in a general equilibrium setting, in

which the asset market is used to mediate and possibly align shareholders’

conflicting interests. In this perspective, we highlight the importance of

modeling explicitly shareholder heterogeneity and the equilibrium process

leading to the definition of a representative shareholder. In our model, the

representative shareholder is defined at equilibrium, and as mentioned be-

fore, it is the representative shareholder at a production equilibrium when
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the firm is run only by shareholders according to profit maximization. As

we show, the insights one would get by taking the representative share-

holder as given would be different, and possibly misleading, especially in

settings where shareholder heterogeneity is important.

We qualify the view that agency conflicts are minimized when the man-

ager is also a shareholder, which has motivated the rise in stock compen-

sation. Stock compensation indeed appears as necessary in our setting. At

the same time, we emphasize that the manager must have the same char-

acteristics as the representative shareholder. Otherwise, whatever fraction

of the firm’s share she owns, she would take decisions not unanimously

supported by all shareholders.

In this respect, we view our results mostly as normative, emphasizing

the conditions for the existence of a manager-shareholders equilibrium in

which the manager’s actions are perfectly aligned with shareholders’ in-

terests. From a positive viewpoint, we do not take the existence of such

an equilibrium as granted. It may be very diffi cult or impossible to find

a manager with the same characteristics as the representative shareholder.

Under this perspective, one may interpret our results as suggesting the

impossibility of reaching an equilibrium in which the production decision

is delegated to a manager while serving shareholders’interests. However,

we view this paper only as a starting point in addressing the question of

delegation. A natural next step is to investigate whether richer contracts

(that may include trading restrictions for the manager) together with pos-

sibly non-linear compensations may help achieving a manager-shareholders

equilibrium. In a companion paper (Bianchi, Dana and Jouini (2020)), we

define conditions for existence of a manager-shareholders equilibrium in a

setting where trading restrictions can be imposed on the manager. We get

back to this issue in more details in the concluding remarks.

Our paper builds on the literature on aggregation of preferences and

beliefs in asset markets.1 Our focus on agency problems between a manager

and shareholders is however novel in this literature. Similarly, we relate to

the literature on asset pricing with production and agency costs.2 This

1Recent contributions include Detemple and Murthy (1994); Gollier and Zeckhauser
(2005); Jouini and Napp (2007); Jouini, Marin and Napp (2010); Cvitaníc, Jouini,
Malamud and Napp (2012); Xiong and Yan (2010); Bhamra and Uppal (2014).

2See for example Dow, Gorton and Krishnamurthy (2005), Albuquerue and Wang
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literature typically abstracts from shareholder heterogeneity. Our analysis

is complementary, as we abstract from asset pricing implications and focus

on how to choose and remunerate a manager in a way to minimize agency

costs.

Managerial compensation has generally been studied under the perspec-

tive of a representative shareholder (see e.g. Murphy (1999) and Murphy

(2012) for reviews). We provide new insights by embedding the choice of

the compensation in a stock market equilibrium with heterogeneous share-

holders. In this spirit, Bolton, Scheinkman and Xiong (2006) consider a

market with heterogeneous beliefs and short-selling constraints and show

that shareholders may prefer short-term speculative strategies.3 In our

model, the market is effi cient and there is no resale, but (ineffi cient) short-

termism may arise as the result of shareholder heterogeneity.

We also relate to the literature on firms’objectives when shareholders

are heterogeneous. Magill and Quinzii (2002) review fundamental problems

posed by market incompleteness, as well as classic contributions address-

ing these problems. Bisin, Gottardi and Ruta (2016) study competitive

equilibria in a production economy with incomplete markets and agency

frictions and derive fundamental welfare properties.4 We instead focus on

the design of the compensation scheme and keep shareholders’objective as

simple as possible by assuming complete markets, or - more precisely - full

spanning. As explained in Magill and Quinzii (2009), this assumption is

typically much weaker than market completeness, and it means that it is

possible to find a portfolio of assets that pays one unit if a given outcome

for the firm is realized, and nothing otherwise.

The way information asymmetry is introduced makes our paper in line

with the probability approach to general equilibrium developed by Magill

and Quinzii (2009). Indeed, we assume that shareholders do not observe

states of nature but only the production outcomes, so from their point of

view, production plans only differ by the outcomes probability distribution.

(2008), Gorton, He and Huang (2014).
3Alternative equilibrium models have instead focused on the labor market equilibrium

(e.g. Gabaix and Landier (2008)) or on financial market equilibrium with a representa-
tive agent (e.g. Diamond and Verrecchia (1982)).

4Other recent contributions include Zame (2007), Demichelis and Ritzberger (2011),
Magill, Quinzii and Rochet (2015), Crès and Tvede (2021).
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Accordingly, we consider contracts that are contingent on the possible re-

alizations firm’s production as opposed to being contingent on exogenous

states of nature.5

2 Model

We consider a firm owned by a group of shareholders, who are heteroge-

neous in beliefs and time preferences, and run by a manager. The firm

produces a non-storable consumption good, which we use as numeraire,

according to a production plan y. This plan is a random process in which

yt(ω) defines the production of the firm at date t in state ω. There is a

finite set of production and consumption dates T = {0, ..., T} or T = {T}
when there is only one consumption/production date.6 The information

structure is modeled by a filtered probability space (Ω, (Ft)t∈T , P ).

We denote by X the space of production and consumption processes

x = (x0, . . . , xT ). For each t, xt is assumed to be Ft measurable so that
xt only involves information up to date t. We denote by X ′ the space of

state-price densities p where, for a given date t ∈ {0, ..., T} and a given
state of the world ω ∈ Ω, pt(ω) corresponds to the price as of t = 0, of one

unit of consumption at date t in state ω. For a given price process p, the

value of the consumption process x is p · x =
∑T

t=0E [ptxt] , where E is the

expectation operator under the probability P .

For these expectations to be well defined, we have to further impose

that production and consumption processes in X are such that E|xt|r <∞
for all t ∈ T and that price processes in X ′ are such that E|pt|r

′
< ∞,

where r and r′ are such that 1 < r <∞ and 1
r

+ 1
r′ = 1.7 We denote by X+

5As underlined by Magill and Quinzii (2009) "That this assumption is realistic seems
to be confirmed by the striking fact that the contracts which are used to finance invest-
ment and share production risks– bonds, equity and derivative securities– are either
non contingent or based on realized profits and prices, rather than on exogenous events
with fixed probabilities."

6For ease of presentation, all definitions and results are stated for T = {0, ..., T}. The
adaptation to the T = {T} is straightforward.

7The space X equipped with the norm ‖x‖ =
(∑T

t=0E|xt|r
)1/r

is then a Banach

space whose dual (the space of continuous linear forms onX) isX ′. In factX is Lr space.

It can be seen as Lr
(

Ω̂, F̂ , P
)
where

(
Ω̂, F̂ , P̂

)
is the direct sum of the probability spaces

(Ω,Ft, P ) , i.e. Ω̂ is the disjoint union of T +1 many copies(Ωt) of Ω, F̂ is the σ−algebra
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and X ′+ the set of nonnegative processes, respectively, in X and X ′. For

Y ⊂ X, we denote by Y+ the set Y ∩X+.

In terms of notations, while x and y will be used to denote random

consumption and production processes taking their values in RT+1, z will

be used to denote vectors in RT+1 and, henceforth, generic values taken

by x or y. As usual, x ≤ x′ (x � x′) means xt ≤ x′t (xt < x′t) almost

everywhere for all t, and x < x′ means x ≤ x′ and x 6= x′. Finally, we

denote by µ and µt the Lebesgue measure, respectively, on R and Rt.

2.1 Production

We focus on the unique consumption good that is produced by the firm.

Therefore, the choice of a production plan corresponds to the choice of a

technology that transforms these inputs into units of consumption good

across time and states of the world.

We let Y ⊂ X denote the set of production plans. Denote with NY (y)

the normal cone of Y at y,

NY (y) = {p ∈ X ′ : p · (y′ − y) ≤ 0,∀ y′ ∈ Y } ,

which corresponds to the set of linear forms that reach their maximum on

Y at y. We will say that y ∈ Y is positively exposed if there exists p� 0

such that p ∈ NY (y). Note that a positively exposed production plan y is

effi cient in the sense that it is not dominated by other feasible production

plans : @y′ ∈ Y, y′ > y. We denote by Eff+(Y ) the set of positively exposed

production plans.
We say that Y is smooth if, for all ȳ ∈ Eff+(Y ), there exists p � 0

such that NY (ȳ) = {λp : λ ≥ 0}. This condition states that at positively
exposed plans, the tangent cone (i.e. the polar of the normal cone) is a half

space and it ensures that Y has no outward kink.

We will say that Y is strictly convex from above if for (y1, y2) ∈ Y 2 and

t ∈ (0, 1) , there exists y ∈ Y such that ty1 + (1− t)y2 < y.8

of sets A ⊂ Ω̂ such that A ∩ Ωt ∈ Ft for all t and P̂ induces on each
(

Ωt, F̂
∣∣∣
Ωt

)
, the

initial probability P.
8Let us recall that Y is said strictly convex when for all (y1, y2) ∈ Y 2 and t ∈ (0, 1) ,

ty1 + (1 − t)y2 ∈ int(y). It is immediate that strict convexity implies strict convexity
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We make the following assumptions:

Assumption (P)

(P1) Y = K−X+ where K ⊂ X+ and such that 0� ς ≤ K ≤ Ξ for some

ς and Ξ in X+,

(P2) Y is closed, strictly convex from above and smooth,

(P3) If y ∈ Eff+(Y ), the random variable y has a density hy with hy > 0,

µT+1−a.e. on RT+1
+ .

Assumption (P1) implies the classical free disposal assumption, Y −
X+ ⊂ Y . It also provides an upper bound on Y+. Finally, assumption (P1)

ensures that utility maximization on Y leads to plans y such that ς ≤ y ≤ Ξ.

Note that under the free disposal assumption, strict convexity from above

implies the convexity of Y . Assumption (P1) and (P2) are standard in

the general equilibrium literature in finite dimension. Assumption (P3)

states that for every positively exposed production plan, all trajectories

taking positive values are possible.9 This implies that by observing a given

trajectory of realizations (yt(ω)){0,...,T} of a given production process in

Eff+(Y ), shareholders are not able to exclude any plan y ∈ Y from the

set of possibly chosen plans. This assumption underlies the information

asymmetry between the manager and the shareholders in our model.

In order to illustrate Assumptions (P2) and (P3), we consider the fol-

lowing example, in which production and consumption only take place at

date T.

Example 1 (Controlled Ito processes) Let (Wt)t∈[0,T ] be a Brownian

motion on some probability space (Ω,G, P ) and (Gt)t∈[0,T ] be the (augmented)

filtration generated by (Wt)t∈[0,T ] . For a (Gt)t∈[0,T ]−progressively measur-
able positive real valued process θ such that

∫ T
0
θ2
s < ∞ a.e., we define

from above. However strict convexity is a much stronger condition and requires, in
particular, a nonempty interior.

9In this assumption RT+1
+ might be replaced by some [A,B]

T+1 for 0 < A < B. In
this case, all the considered functions that are defined on RT+1

+ are replaced by functions
that are only defined on [A,B]

T+1
.
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(
yθt
)
as the solution of dyθt = µ (θt) y

θ
t dt + θty

θ
t dWt and yθ0 = 1 where10

µ (z) = 1 − (z−2)2

2+|z−2| . We denote by Θ the set of such processes θ and by

Y the set of terminal values yθT for θ ∈ Θ. We take T = {T} , F = GT ,
X = L2(Ω,F , P ). It is shown in an Online Appendix that Y = Y − X+

satisfies (P2) and (P3).

2.2 Shareholders

The firm is owned by a group of N shareholders, i = 1, ..., N . We denote

with νi shareholder i’s initial endowment of shares, and we assume νi > 0

for all i. Shareholders have no other endowments, and they are heteroge-

neous in their time preference rates ρi assumed to be constant and in their

subjective probabilities Qi. All subjective probabilities are assumed to be

equivalent to P and we denote by M i the density of Qi with respect to P,

M i = dQi

dP
.

A key ingredient in our analysis is that shareholders do not observe

the plan y = (yt)t∈T chosen by the manager nor the state of the world

ω. At date t and in state ω, their information is given by the history of

realizations (ys (ω))s=0,...,t. As already mentioned, by Assumption P3, the

observation of a given trajectory does not allow them to infer the chosen

plan nor the state of the world. It follows that shareholders can only trade

assets whose payoffs are contingent on the history of the production process

y. More formally, let C be the set of contingent contracts C : X+ → X+

whose payoffs at date t ∈ T and for a given y are of the form ct(ω) =

Ct(y0(ω), ..., yt(ω)), for some measurable functions Ct : Rt+1
+ → R+. Given

y, shareholders only trade consumption processes in C(y) = {C(y), C ∈ C}.
All shareholders have the same consumption space X+ and they are

assumed to be expected utility maximizers. The expected utility of share-

holder i for a contingent consumption plan c is defined as

U i(c) =
T∑
t=0

exp(−ρit)E
[
M i

tu(ct)
]
, (1)

10In this example, the instantaneous level of risk (volatility) is given by θ and the
instantaneous rate of return (drift) is given by µ (θ) . The rate of return increases with
the level of risk until a given risk level θ∗ = 2 and then decreases. And when there is no
risk, θ = 0, there is no return.
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in which u is a CRRA instantaneous utility function (the same for all

shareholders).11 That is

u(x) =
1

γ
xγ, (2)

for some γ < 1. We further assume the following:

Assumption (C)

1. For all i, M i and M iςγ−1 belong to X ′,

2. For all i, M iςγ and M iΞγ belong to L1
(
Ω, (Ft)t∈T , P

)
.

Assumption (C) assures that shareholders’marginal utility is well de-

fined in all directions and that their utility is well defined on K.

2.3 Manager

The firm is run by a manager. As mentioned, we do not model explicitly

why shareholders need to delegate this choice to a manager. A standard

argument is that they lack the time or the skills needed to implement the

plan, which may require continuous adjustments over time.12

We assume that the manager is an expected utility maximizer with

instantaneous utility u, as defined in (2), she has a constant time preference

rate ρm and a subjective probability Qm equivalent to P with density Mm.

Her expected utility of a contingent plan c is therefore defined by

Um(c) =
T∑
t=0

exp(−ρmt)E [Mm,tu(ct)] .

The manager is given a contract described by a compensation scheme Φ :

X+ → X+. As shareholders can only observe the realized production,

the compensation at date t can only depend on the history of realizations

11Assuming that shareholders have no other endowments than their shares of the firm
and that instantaneous utility functions are CRRA with homogeneous risk aversion pa-
rameters, will appear as crucial for the proof of existence and uniqueness of a production
equilibrium as seen in Appendix 2.
12For instance, in Example 1, the manager chooses her risk exposure θ upon observing

the signals
(
yθt
)
. That requires having the skills to assess the impact of the chosen θ on

the dynamics of the production process as well as the time to continuously monitor the
signals and adjust the risk exposure accordingly.

12



y0 (ω) , . . . , yt (ω) . That is, Φ(y) must be of the form

Φt(y (ω)) = φt(y0 (ω) , . . . , yt (ω)), (3)

for some φt : Rt+1
+ → R+ assumed to be continuous almost everywhere.

Shareholders delegate to the manager the choice of the production plan.

In the framework of Example 1, this means that the manager chooses the

degree θt of risk exposition at each date t. In this respect, the example

has some similarities with Sannikov (2008), with two important differ-

ences. First, our model has as many principals as the number of share-

holders. Second, manager’s choices in our case are not determined by an

arbitrage between effort and compensation but through a more complex

market mechanism, as we detail below.

To explain how the manager makes her choices, let us introduce the

concept of indirect utility of production plans for a given price process.

Given a price process q and production plan y, let Vm(y, q) be the maximal

utility of the consumption processes that the manager can obtain by trading

her compensation under her market constraint c ∈ C(y) and her budget

constraint q · c ≤ q · Φ(y),

Vm(y, q) = max{Um(c), c ∈ C(y), q · c ≤ q · Φ(y)}. (4)

Given her compensation and a price process q, the manager chooses a

production plan y that maximizes her indirect utility Vm(·, q) over Y and

an optimal consumption plan Cm(y). The manager announces the chosen

plan y to shareholders. who maximize the utility of their consumption

plans under their market and budget constraints. From Assumption (P3),

when y is in Eff+(Y ) (which is the case for example if Φ is increasing),

shareholders cannot verify the truth of the announcement and the manager

can implement a plan with higher utility of consumption. Therefore the

manager implements y only if Um(Cm(y)) = maxy′∈Y Um(Cm(y′)).

For further use in the definition of equilibrium, let V i(y, q) be the max-

imal utility of the consumption processes that shareholder i can obtain by

trading her share of production under her market and budget constraints:

V i(y, q) = max{U i(c), c ∈ C(y), q · c ≤ νi(q · (y − Φ(y)))},
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where νi denotes her initial share and y − Φ(y) is the production left to

shareholders after having paid the manager. Equation (4) and the corre-

sponding shareholders’equation show how the manager and the sharehold-

ers assess the utility associated to the various alternative production plans.

They compare their indirect utility under y to the one they would have

obtained under any alternative y′ ∈ Y, by taking prices q as given.13

2.4 Equilibrium

Let us now define our concept of equilibrium between shareholders and

the manager. We have in mind a setting with a large number of non-

strategic shareholders. We take a general equilibrium approach in which

resource allocation is decentralized through prices and which we adapt so

as to account for the information asymmetry between the manager and the

shareholders.

Definition 1 A manager-shareholders equilibrium is defined by a compen-
sation scheme Φ, a production process ŷ ∈ Y, a list of contingent contracts
(Ĉi)i, a contingent contract Ĉm, and a price process q̂ such that:

1. ĉi = Ĉi(ŷ) maximizes U i(c) on {c ∈ C(ŷ), q̂ · c ≤ νi(q̂ · (ŷ − Φ(ŷ)))},

2. ĉm = Ĉm(ŷ) maximizes Um(c) on {c ∈ C(ŷ), q̂ · c ≤ q̂ · Φ(ŷ)},

3.
∑

i ĉ
i + ĉm = ŷ,

4. Vm(ŷ, q̂) > Vm(y, q̂) for all y ∈ Y \ {ŷ},

5. Um(Ĉm(ŷ)) = maxy∈Y Um(Ĉm(y)),

6. V i(ŷ, q̂) > V i(y, q̂) for all y ∈ Y \ {ŷ} .

For a given ŷ, conditions 1 to 3 define an exchange equilibrium (with

market constraints given by c ∈ C(ŷ)) between the manager and the share-

holders with endowments Φ(ŷ) and (νi(ŷ − Φ(ŷ))i. Together with point 4,

13Price taking is important to be able to define a consensus plan (see e.g. Grossman
and Stiglitz (1980) for a discussion on price taking behaviors and unanimity). Price
taking could also be derived by considering a setting with a large number of identical
firms. The analysis would not be affected.
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they define a concept of equilibrium in the spirit of a production equilibrium

(with market constraints) in which the choice of the plan is determined by

the manager. Point 5 highlights a key distinctive feature of our equilib-

rium, relative to more standard agency problems in partial equilibrium. In

our setting, the manager is not only choosing a production plan but also

her consumption plan Cm(y), possibly by trading in the asset market. This

opens the possibility for the manager to announce a given plan, implement

a different one, and increase her utility by trading on her private infor-

mation and changing her consumption decisions. Our condition 5 implies

that at equilibrium the manager has no incentive to misreport and so there

is no asymmetric information between the manager and the shareholders.

Alternatively, we may assume that the manager does not announce a plan

and that the shareholders have expectations about manager’s choice. Un-

der this description of the model, condition 5 implies that shareholders’

expectations are consistent with the plan actually chosen by the manager.

Point 6 means that, under q̂, shareholders unanimously prefer ŷ to any

other plan y in Y. It is known that when markets are complete and share-

holders can directly choose production plans, unanimity holds. Our setting

is different, since the decision is delegated to a manager and shareholders

trade contingent claims on production. Note that the unanimity require-

ment does not seem too restrictive. It can be shown that under an ad-

ditional technical condition (namely, the differentiability of Φ), unanimity

holds in our setting whenever there exists at least one shareholder who

prefers ŷ to any other plan y in Y .

Given our equilibrium concept, we can highlight how the maximiza-

tion problem of our manager expressed in Equation (4) differs from what

appears in standard agency problems. First, our manager is maximizing

her indirect utility, which depends not only on her action but also on the

endogenous equilibrium price. Second, the manager’s consumption may

depend not only on her compensation but also on the possibility to trade

in the asset market. This implies that in the equilibrium definition, we

need to ensure that the manager has no incentive to announce a given

plan, implement a different one, and increase her utility by trading on her

private information and changing her consumption decisions.
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3 Equilibrium Properties

We start by analyzing the properties that equilibria should have.

3.1 Profit is maximized

We first show that at equilibrium, the price process q̂ should be strictly

positive, a standard property in equilibrium models. We then show that ŷ

should maximize q̂ · ŷ at price q̂ on Y , a property that implies the effi ciency
of ŷ.

Proposition 1 Suppose Assumption (P) holds and let (Φ, (ĉi)i, ĉm, q̂, ŷ) be

an equilibrium. Then q̂ � 0 and q̂ · ŷ = maxY q̂ · y. Hence, ŷ ∈ Eff+(Y )

and NY (ŷ) = {λq̂, λ ≥ 0}.

When ŷ is implemented and under the price system q̂, q̂ · ŷ corresponds
to the market value of the firm’s production. As already underlined, this

resembles the well-known result that, in complete markets, shareholders

would agree on profit maximization. At the same time, the result is not

immediate in our setting. Profit maximization when the firm is run only

by shareholders need not be equivalent to maximizing shareholders’aggre-

gate dividend in our setting, as one needs to account also for the value of

manager’s compensation.

3.2 The compensation is linear

In this section we show that the equilibrium compensation is linear in the

following sense.

Definition 2 We say that the compensation is linear if there exists α ∈
[0, 1] such that

Φ(y) = αy for all y ∈ X+. (5)

Such a compensation will be denoted Φα.

For this purpose, we have to introduce the following definition and

additional assumption. For a given ȳ ∈ Y and a given t, we define Y (ȳ, t) =
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{y ∈ Y : (y0, ..., yt) = (ȳ0, ..., ȳt)} , the set of production plans whose first
t+ 1 coordinates coincide with those of ȳ.

Assumption (P4) For all ȳ ∈ Eff+(Y ) and p � 0 such that NY (ȳ) =

{λp : λ ≥ 0} , NY (ȳ,t)(ȳ) = {q ∈ X ′ : ∃λ ≥ 0, qs = λps for s > t} , for all
t.

This condition is in the spirit of the constraint qualification condition

in convex optimization.14 This condition is obviously satisfied in Example

1 in which consumption only occurs at the terminal date.

The next theorem shows that at equilibrium, if it exists, the manager

receives a linear compensation.

Theorem 2 Suppose assumptions (P1) to (P4) hold and let (Φ, (ĉi)i, ĉm, q̂, ŷ)

be an equilibrium. Then there exists 0 < α < 1 such that Φ = Φα.

To have an intuition of why the compensation scheme is linear, let us

consider the case where φt is differentiable (actually, we show in the proof

that this is the case almost everywhere). Notice that from our equilibrium

definition, the value of the manager’s compensation is maximal on Y+ at

ŷ. Hence, the marginal value of the manager’s compensation q̂Φ
′
(y) is

proportional to the equilibrium price q̂, which, by backward induction,

gives that the compensation Φ(y) is linear. This implies that the incomes

of the manager and of the shareholders are proportional to each other.

When prices are given the only feature of a compensation that matters

is its market value. However, in our general equilibrium setting, prices

are endogenous and depend in particular on the production plan chosen

by the manager, which in turn depends on her compensation. Hence, the

shape of the compensation matters and Theorem 2 states that this shape

is necessarily linear.

We also notice that the equilibrium compensation is determined up to

the scale parameter α, that could be made arbitrarily close to 0. In order to

pin down α, one could easily introduce a reservation utility for the manager

U∗ and assume that shareholders minimize the compensation cost. It would

then be immediate to show that the equilibrium level α̂ is fully determined

by the condition V m(ŷ, q̂) = U∗.

14It is easy to show that the inclusion {q ∈ X ′ : ∃λ ≥ 0, qs = λps for s > t} ⊂
NY (ȳ,t)(ȳ) is always satisfied.
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3.3 The manager does not trade

The manager does not trade in the financial market when her optimal

demand coincides with her compensation. In this case, her consumption

does not depend on asset prices, and therefore she does not benefit from

announcing a given plan and implementing a different one. Our next result

is that the manager truthfully reports the chosen plan ŷ only if she has no

incentive to trade her compensation Φ(ŷ) in the financial market. Hence,

at an equilibrium, if it exists, the manager’s consumption ĉm coincides with

her compensation. We call this the no-trade result, which we state in the

following:

Theorem 3 Suppose assumptions (P1) to (P4) hold. Let (Φα, (ĉi)i, ĉm, q̂, ŷ)

be an equilibrium. Then the manager does not trade, in other words ĉm =

Φα(ŷ).

Let us give a sketch of the proof when there is only one period. Let

(Φα, (ĉi)i, ĉm, q̂, ŷ) be an equilibrium. Then the manager receives αŷ. From

assertion 2 in Definition 1, ĉm maximizes Um(c) s.t. c ∈ C(ŷ), q̂ · c ≤ αq̂ · ŷ.
As we show that the constraint c ∈ C(ŷ) is not binding, the derivative of

the utility of the manager at ĉm is proportional to q̂. Furthermore, from

assertion 5 of Definition 1, ŷ solves

max
y∈Y

Um(Ĉm(y)). (6)

Condition (6) comes from the fact that by implementing a given y the

manager can change her consumption profile Ĉm(y) and that at equilibrium

she does not misreport her choice. From the first order conditions, the

derivative of Um(Ĉm(y)) at ŷ is also proportional to q̂. Hence the two

derivatives at ŷ must be proportional. As the marginal utility appears

on both sides, we have that Ĉm has a constant derivative. Therefore for

some a > 0, Ĉm(y) = ay for all y. From the manager’s budget constraint

aq̂ · ŷ = αq̂ · ŷ, hence a = α which means that the manager does not trade.

Notice that neither the no trade nor the linear compensation are require-

ments of the model, they result from the agency problem in our general

equilibrium setting.
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3.4 Relation to the production equilibrium

The aim of this subsection is to characterize the set of manager-shareholders

equilibria. To this end, we use the no-trade result to separate, for a given

share α of production given to the manager, the equilibrium construction

into two parts. On one side, the manager chooses the production plan ŷ

that maximizes Um(αy) on Y . On the other, the shareholders choose a

production plan as if they were running by themselves according to profit

maximization, a firm with production set (1 − α)Y . At equilibrium, the

manager’s and shareholders’choices should coincide. In order to state our

result, let us first recall the concept of production equilibrium associated

to a given production set. Note that in its definition, shareholders are not

constrained anymore to trade contingent claims that depend on production

plans, they may trade any contingent claim.

Definition 3 A production equilibrium associated to the production set Y
is given by a production process y∗, y∗ ∈ Y, a set of individual consumption
processes (c∗i)i ∈ XN and a price process q∗ ∈ X ′ such that

1. c∗i = argmaxU i(c), q∗ · c ≤ νi(q∗ · y∗) for all i,

2. y∗ = arg maxY q
∗ · y,

3.
∑
c∗i = y∗.

The following theorem shows the existence and uniqueness of such a

production equilibrium.

Theorem 4 Suppose assumptions (P1), (P2) and (C) hold.

1. There exists a unique production equilibrium associated to Y denoted

by ((c∗i)i, q
∗, y∗), with q∗ � 0.

2. For any α ∈ (0, 1), ((1−α)c∗i)i, q
∗, (1−α)y∗) is the unique production

equilibrium associated to (1− α)Y .

The second assertion is a direct consequence of the first one using the

homogeneity of utilities. In both assertions, equilibrium prices are defined
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up to a multiplicative constant. The proof of Theorem 4 may be found in

Appendix 2.

In order to establish the link between the production equilibrium and

our concept of manager-shareholders equilibrium, we need the following

additional assumption.

Assumption (P5) The filtration F is generated by any y ∈ Eff+(Y ).

This is a completeness assumption which states that the market gener-

ated by all the contracts that are contingent on the values taken by y is

complete when y ∈ Eff+(Y ) and, in particular, for y = y∗. Indeed, as the

production equilibrium plan y∗ is profit maximizing and the equilibrium

price q∗ is strictly positive, y∗ ∈ Eff+(Y ). Under Assumption (P5), the

first item of the definition of a production equilibrium is equivalent to

c∗i = argmaxU i(c), c ∈ C(y∗), q∗ · c ≤ νi(q∗ · y∗), for all i,

which means that under Assumption (P5), the standard concept of pro-

duction equilibrium is equivalent to a concept of production equilibrium

with market constraints.15

From Theorems 2, 3 and Proposition 1, we obtain a characterization of

a manager-shareholders equilibrium.

Theorem 5 Suppose assumptions (P1) to (P5) and (C) hold. Let α ∈
(0, 1) be given. The list (Φα, (ĉi)i, αŷ, q̂, ŷ) is a manager-shareholders equi-

librium if and only if

1. the production plan ŷ maximizes Um(y) over Y,

2. the triple ((ĉi)i, q̂, (1 − α)ŷ) is the production equilibrium associated

to (1 − α)Y . Therefore, ĉi = (1 − α)c∗i for all i, q̂ = νq∗ for some

ν > 0 and ŷ = y∗.

15Note that this assumption is not necessary when all agents have homogeneous beliefs.
Indeed, in such a setting, it is easy to show that even if the agents can trade all possible
contracts and not only those that are contingent on the values taken by y, they will only
trade such contingent contracts (see Appendix 2).
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4 Equilibrium Manager

We next show that, for any 0 < α < 1, at the production equilibrium

associated to (1−α)Y , there is a representative shareholder independent of

α and we fully describe her characteristics. As standard, this is a fictitious

shareholder who - if endowed with the entire production - would have no

incentive to trade at equilibrium prices. We then derive the main result of

the paper: a necessary and suffi cient condition for the existence of manager-

shareholders equilibria is that the manager has the same characteristics as

the representative shareholder at equilibrium. We refer to such manager as

an equilibrium manager.

We start by characterizing the representative shareholder in our setting.

Let

Λ =

{
λ ∈ Rn+ :

∑
i

(λi)
1

1−γ = 1

}
,

and N(λ) be defined by

Nt(λ) =

(∑
i

(
λiM i

t exp(−ρit)
) 1
1−γ

)1−γ

.

Theorem 6 Suppose assumptions (P1), (P2) and (C) hold. Let ((c∗i)i, q
∗, y∗)

be the production equilibrium associated to Y . Then:

1. There exists a unique vector of equilibrium utility weights (λ∗i) in Λ

and ν > 0 such that

λ∗iM i
t exp(−ρit)u′(c∗it ) = νq∗t for all t and all i. (7)

2. There is a representative shareholder with instantaneous utility u, a

density M̃ and a nonnegative discount rate process ρ̃ uniquely deter-

mined by:

exp(−ρ̃tt)M̃t = Nt(λ
∗). (8)

3. The belief and discount rate of the representative shareholder at the

production equilibrium associated to (1− α)Y are independent of α.

Using Theorem 5 and Theorem 6, we can now state the main result of
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the paper. The following theorem shows that a manager-shareholders equi-

librium exists if and only if the manager has the same belief and discount

rate as the representative shareholder.

Theorem 7 Suppose assumptions (P1) to (P5) and (C) hold. Let ((c∗i)i, q
∗, y∗)

be the production equilibrium associated to Y . The family parametrized by

0 < α < 1, (Φα, ((1− α)c∗i))i, αy
∗, q∗, y∗) is the unique family of manager-

shareholder equilibria if and only if (ρm,Mm) satisfies

exp(−ρmt)Mm,t = exp(−ρ̃tt)M̃t for all t ∈ T, (9)

which gives Mm,t = M̃t and ρm = ρ̃t for all t ∈ T.

5 Implications

In this section we discuss some implications of Theorem 7 in terms of the

characteristics (belief and discount rate) of the equilibrium manager as a

function of shareholders’characteristics.

5.1 Homogeneous shareholders

If all the shareholders have the same belief M and the same discount rate

ρ then, Nt(λ) = Mt exp(−ρt), which does not depend on λ. By condition
8, we have ρ̃ = ρ and M̃ = M and, by condition 9, the equilibrium exists

if and only if the manager has the same belief and discount rate as the

shareholders.

5.2 Heterogeneous discount rates

Suppose that all shareholders share the same belief as the manager, that

is M i = Mm for all i, but they have different discount rates. Then by

condition (8) we have M̃ = Mm and the discount rate of the manager is

given by

exp(−ρmt) =

(∑
i

(
λ∗i exp(−ρit)

) 1
1−γ

)1−γ

. (10)

22



This gives

ρm =
1

t

∫ t

0

ρ(s)ds,

where ρ(s) is the solution of

exp(−
∫ t

0

ρ(s)ds) =

(∑
i

(
λ∗i exp(−ρit)

) 1
1−γ

)1−γ

.

Using the same argument as in Nocetti, Jouini and Napp (2008), we obtain

that ρ(t) is decreasing with limt→∞ ρ(t) = inf ρi. This means that there

is no constant solution ρm to equation (10) and that the manager has

necessarily a decreasing discount rate. This is due to the fact that aggregate

consumption in the distant future is mostly in the hands of more patient

shareholders. This is shown in the following proposition.

Proposition 8 When all shareholders (including the manager) have the
same belief M and ρi 6= ρj for some (i, j), the equilibrium manager’s dis-

count rate must be decreasing over time.

A similar insight is derived by Gollier and Zeckhauser (2005). They

focus on Pareto effi cient allocations in a setting with no uncertainty and no

production, and show that the representative shareholder has a decreasing

discount rate.16 Similarly, in a continuous time equilibrium setting with

heterogeneous beliefs and discount rates, Jouini et al. (2010) show that the

representative shareholder discount rate cannot be constant and converges

asymptotically to the lowest individual discount rate. In our setting, this

means that the equilibrium manager behaves in the long run as the most

patient shareholder.17

Note that we assumed in Section 2.3 that the manager has a constant

discount rate. If we maintain this assumption, Proposition 8 can be seen

as an impossibility result: in a setting where all the shareholders have the

same belief and where at least two shareholders have different discount
16They show this is the case when all agents have constant discount rates and de-

creasing absolute risk aversions, which is the case in our framework.
17We cannot derive such a result directly from the equations above because our model

has a finite horizon and changing T leads to a possible change in the equilibrium weights(
λ∗i
)
. In Appendix 3, we show that ρ(T ) approaches inf ρi when T is suffi ciently large

in a sense made precise.
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rates, whatever the belief and the constant discount rate of the manager,

there is no manager-shareholders equilibrium.

5.3 Heterogeneous beliefs

Suppose instead that all shareholders have the same constant discount rate

but different beliefs and γ 6= 0. Then by condition (9) the belief and

discount rate of the manager should satisfy

exp(−ρt)
(∑

i

(
λ∗iM i

t

) 1
1−γ

)1−γ

= exp(−ρmt)Mm,t. (11)

For γ ≤ 0, we have (see Appendix 1)

Et

(∑
i

(
λ∗iM i

t+1

) 1
1−γ

)1−γ
 ≤ (∑

i

(
λ∗iM i

t

) 1
1−γ

)1−γ

.

When applied to equation (11), this leads to ρm ≥ ρ, the inequality being

strict when there are at least two shareholders with different beliefs and

γ 6= 0. The equilibrium manager has a higher discount rate than any of

the shareholder when γ ≤ 0. The opposite inequality, ρm ≤ ρ is obtained

for γ > 0. We can state the following proposition.

Proposition 9 If γ 6= 0, when all shareholders have the same discount

rate ρ and M i 6= M j for some (i, j), then we must have ρm > ρ when γ < 0

and ρm < ρ when γ > 0.

If we introduce the consumption discount rate ρm,c, defined as

exp(−ρmt)u(ct) = u(exp(−ρm,ct)ct),

then ρm,c = 1
γ
ρm and the manager’s consumption discount rate is always

lower than the shareholders common discount rate. That is, the man-

ager puts more weight on distant consumption/production than any of the

shareholders.

Normal belief heterogeneity
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In order to derive some properties about the equilibrium manager belief,

let us specify further shareholders’beliefs. Let us assume that T = 1 and

that the production set is characterized by a given random variable with

normal distribution x̃ ∼ N (µ, σ2). For instance, this could correspond to

the situation where the manager chooses the degree of exposure (level of

volatility) to a given exogenous risk, the mean return being a function of

the chosen degree of exposure.

Let us assume that all shareholders agree about the normality of x̃

as well as about its variance σ2 but that shareholder i believes that x̃ ∼
N (µi, σ

2), we have then

M i =
exp− (x−µi)2

2σ2

exp− (x−µ)2

2σ2

.

Let us assume that the distribution of the µi’s is symmetric with respect

to the objective µ which is the case, for instance, with a large number of

shareholders when the µi’s result from the observation of a noisy signal

around µ. Let us also assume that the λ∗i as a function of µi is also

symmetric with respect to µ.18 We have

exp(−ρ)

(∑
i

(
λ∗iM i

) 1
1−γ

)1−γ

= exp(−ρm)Mm. (12)

Since
∑

i (λ
∗iM i

t )
1

1−γ is symmetric with respect to µ and increasing after µ,

it is easy to show that manager’s belief is a mean preserving spread of the

objective belief. Let Em and V arm denote respectively the expected value

and the variance from the manager point of view, Qm and Qi the manager’s

and shareholders’subjective probabilities and�SSD second order stochastic
dominance. We have

Em [x̃] = µ, V arm [x̃] > σ2 and Qm �SSD Q =
1

N

∑
i

Qi.

Therefore, the equilibrium manager overestimates the level of exogenous

risk.
18The distribution of the (λ∗i) depends on the distribution of shares (νi). This as-

sumption is then an assumption on the distribution of shares.
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5.4 Heterogeneous discount rates and beliefs

We now consider a setting in which both beliefs and discount rates are

heterogeneous. In this section we set γ = 0 (logarithmic utility). From

equation (9) we have

exp(−ρmt)Mm,t =
∑
i

λ∗i exp(−ρit)M i
t , for every t ∈ T, (13)

which leads to the following proposition.

Proposition 10 Suppose that γ = 0 and M i
s 6= M j

s for some (i, j) and

some s ∈ T . If the number of dates t ∈ T such that t > s is not smaller than

the number of shareholders with distinct discount rates, then the equilibrium

manager must have a non deterministic discount rate.

Similarly to Proposition 8, Proposition 10 can be seen as an impossi-

bility result if one maintains the assumption that manager has a constant

discount rate. In a logarithmic setting where at least two shareholders

have different beliefs and with a suffi ciently large number of dates, what-

ever the belief and the constant discount rate of the manager, there is no

manager-shareholders equilibrium.

6 Conclusion and Extensions

A key result of our analysis is that a manager-shareholders equilibrium

exists if and only if the manager has the same characteristics as the repre-

sentative shareholder at equilibrium. This result implies a precise mapping

between shareholders’and manager’s characteristics, as we have character-

ized in Section 5. The flip side of these results is that finding an equilibrium

manager may be diffi cult in settings in which such characteristics are hard

to observe or in which they are constrained to be "similar" to those of

shareholders.

In the context of Proposition 8, for example, one can see that it is not

possible to find an equilibrium manager in the set of shareholders with

constant discount rates, even though all shareholders have constant dis-

count rates. Similarly, in Proposition 9, the equilibrium manager cannot
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be defined among shareholders with discount rate ρ, even though all share-

holders have discount rate ρ. An implication is that, in order to overcome

such impossibility, it is necessary to enrich the contracting space and allow

shareholders to restrict the manager’ability to trade in the asset market.

In such a framework and in a companion paper (Bianchi et al. (2020)), we

investigate whether a manager-shareholders equilibrium could be achieved

by imposing trading restrictions to the manager. We also analyze how the

equilibrium compensation could be used to align the marginal utility of the

manager to that of the representative shareholder at the equilibrium plan,

and whether that would require departing from the linear compensation

found in Section 3.
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7 Appendices

7.1 Appendix 1. Proofs

The following Lemma will be useful in the next. In particular, when some

consumption plan c does not satisfy the market constraints c ∈ C(y) for

some y ∈ Y , the Lemma establishes that the market constraints are satisfied
for some slight perturbation of y.

Lemma 11 For (x, x′) ∈ X2
+ and ε > 0, there exists x′′ ∈ X+ such that

‖x′ − x′′‖ < ε and C(x) ⊂ C(x′′). Furthermore,

1. if x and x′ are in Y, we can take x′′ such that x′′ ∈ Y+,

2. if xτ = x′τ for τ = 0, ..., t then we can take x′′ such that xτ = x′τ = x′′τ

for τ = 0, ..., t.

Proof. Let (x, x′) ∈ X2
+ and let α > 0. Let sn = n + 1 for n ≥ 0

and sn = 1
−n+1

for n ≤ 0. The family S = (sn)n∈Z is an ordered family

with lim∞ sn = ∞ and lim−∞ sn = 0. Let z and z′ be nonnegative real

numbers. If z′ > 0, there exits n ∈ Z such that sn ≤ z′ < sn+1 and we

define h by h(z, z′) = sn − (sn − sn−1) z
1+z
. We have 0 < sn−1 < h(z, z′) ≤

sn ≤ z′ and |h(z, z′)− z′| < 2. If z′ = 0, we take h(z, 0) = 0 and we

still have h(z, z′) ≤ z′. If 0 < ε < 1 is given and if εz + (1 − ε)z′ 6= 0,

then |h(z, εz + (1− ε)z′)− z′| < 2 + ε |z − z′| . If εz + (1 − ε)z′ = 0 then

z = z′ = 0 and we still have |h(z, εz + (1− ε)z′)− z′| < 2 + ε |z − z′| .
Let us suppose now that we know h(z, εz + (1 − ε)z′) without knowing z
nor z′. If h(z, εz + (1 − ε)z′) = 0 we necessarily have εz + (1 − ε)z′ = 0

and from there z = 0. If h(z, εz + (1 − ε)z′) > 0, the inequalities sn−1 <

h(z, εz + (1 − ε)z′) ≤ sn uniquely define a pair (sn, sn−1) and from there

z is uniquely determined by the equation h(z, z′) = sn − (sn − sn−1) z
1+z
.

Now, let us define x′′ by x′′t = εh(xt
ε
, εxt

ε
+ (1 − ε)x

′
t

ε
). We have |x′′t − x′t| <

ε
(

2 + ε
∣∣∣xtε − x′t

ε

∣∣∣) ≤ ε (2 + |xt − x′t|) and if we take ε suffi ciently small, we
have ‖x′ − x′′‖ < ε. Furthermore, knowing x′′t permits to determine xt and

we have C(x) ⊂ C(x′′). Finally, we have seen that h(z, z′) ≤ z′ and then

0 ≤ x′′ ≤ εx+ (1− ε)x′ ∈ Y+ by convexity of Y+. We have then x′′ ∈ Y+.

It is clear that when xτ = x′τ , it suffi ces to take x
′′
τ = xτ = x′τ instead

of x′′τ = εh(xτ
ε
, εxτ

ε
+ (1− ε)x

′
τ

ε
).
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Proof of Proposition 1. Let us first show that q̂ � 0. Indeed if

for some t, q̂t = 0 on a set A of positive measure, the shareholders’and

manager’s demand could be arbitrarily large on A violating assertion 3 of

the definition of equilibrium.

Assume that there exists y′ ∈ Y+ such that q̂ · y′ > q̂ · ŷ. By Lemma 11,
there exists y′′ close to y′ such that q̂ ·y′′ > q̂ · ŷ and C(ŷ) ⊂ C(y′′). We have
then either q̂ · Φ(y′′) > q̂ · Φ(ŷ) or q̂ · (y′′ − Φ(y′′)) > q̂ · (ŷ − Φ(ŷ)). From

the definition of the indirect utility, we have either Vm(y′′, q̂) > Vm(ŷ, q̂) or

V i(y′′, q̂) > V i(ŷ, q̂)which violates assertion 4 or assertion 6 of the definition

of equilibrium. Therefore, q̂ · ŷ = maxY+ q̂ · Φ(y). Since q̂ � 0, q̂ · ŷ =

maxY q̂ · Φ(y), ŷ ∈ Eff+(Y ) and NY (ŷ) = {λq̂, λ ≥ 0}.
Proof of Theorem 2. The proof requires different steps.

Step 1. Date−T compensation zT → φT (z0, ..., zT ) and net production

zT → zT − φT (z0, ..., zT ) are nondecreasing in zT .

The idea of this step is very simple. If the compensation is lower at

z′ than at z < z′, then for any plan y, the manager prefers to realize a

modification y′ of y rather than y itself where y′ takes the same values

as y except that y′ takes the value z whenever y takes the value z′. Since

y′ ≤ y, it is attainable whenever y is attainable. But since such a plan y′

is dominated, manager’s choice will not be accepted by shareholders. The

treatment of zT → zT − φT (z0, ..., zT ) is symmetric. The technicalities of

the proof are due to 1. the multiple dates setting, 2. the fact that we have

to deal with measurable modifications on nonzero measure sets, and 3. the

modifications should be made such that C(y) = C(y′).

In order to show that date−T manager’s compensation φT (z0, ..., zT )

and the net production zT → zT −φT (z0, ..., zt−1, zt) are nondecreasing, we

have to first provide a definition of monotonicity that is robust to the fact

that the considered functions can be modified on a 0 measure set without

modifying the behavior of the manager nor those of the shareholders.

Definition A function ϕ : R→ R is nondecreasing a.e. if

µ2
({

(z, z′) ∈ R2 : (z − z′)(ϕ(z)− ϕ(z′)) < 0
})

= 0.

Let us show that, for almost all (z0, ..., zT−1) ∈ RT+, both functions
zT → φT (z0, ..., zT ) and zT → zT − φT (z0, ..., zt) are nondecreasing a.e.
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By definition of the conditional expectation, there exists Q such that

E [ q̂| ŷ] = Q(ŷ). Since q̂ � 0, P−a.e., we have Q > 0 µ−a.e. Furthermore,
it is immediate that, for almost every (z0, ..., zT ) ∈ RT+1

+ , we have

E [ q̂T | (ŷ0, ..., ŷT−1) = (z0, ..., zT−1) and ŷT ∈ [zT − ε, zT + ε)]

=

∫
u∈[zT−ε,zT+ε)

hy(z0, ..., zT−1, u)Q(z0, ..., zT−1, u)du∫
u∈[zT−ε,zT+ε)

hy(z0, ..., zT−1, u)du
→
ε→0

Q(z0, ..., zT ).

Let us assume that zT → φT (z0, ..., zT ) is not nondecreasing and, for

each (z0, ..., zT−1), let

A(z0, ..., zT−1) ={
(zT , z

′
T ) ∈ R2

+ : (zT − z′T )(φT (z0, ..., zT−1, zT )− φT (z0, ..., zT−1, z
′
T )) < 0

}
.

We have, µ2 (A(z0, ..., zT−1)) > 0 for all (z0, ..., zT−1) ∈ B for some Borel-

measurable setB ⊂ RT+ with µT (B) > 0.We know that µT+1
(
RT+1

+ \C
)

= 0

where C is the Borel-measurable set of continuity points of φT for which

we further have hy > 0 and Q > 0. Hence, we may modify A and B in

order to have (z0, ..., zT ) and (z0, ..., z
′
T ) in C for all (z0, ..., zT−1) ∈ B and

(zT , z
′
T ) ∈ A(z0, ..., zT−1).

For (z0, ..., zT−1) ∈ B, there exists then (a, b) ∈ A(z0, ..., zT−1).We may

assume a < b and then

φa
def
= φT (z0, ..., zT−1, a) > φT (z0, ..., zT−1, b)

def
= φb.

For η > 0, there exists ε > 0 such that |φT (z0, ..., zT−1, z)− φa| < η for

z ∈ I = [a− ε, a+ ε) and
∣∣φT (z0, ..., zT−1, z)− φb

∣∣ < η for z ∈ J =

[b− ε, b+ ε). If η and ε are chosen such that η < φa−φb
2

and ε < b−a
2
,

we have I < J and φT (z0, ..., zT−1, I) > φT (z0, ..., zT−1, J). Since I, J , a

and b depend on z = (z0, ..., zT−1), we denote them by Iz, Jz, az and bz.

Let (α, β, α′, β′) be rational numbers such that α < β < α′ < β′ and let

B(α, β, α′, β′) =

{z ∈ B : α ∈ [az − ε, az) , β ∈ [az, az + ε) , α′ ∈ [bz − ε, bz) , β′ ∈ [bz, bz + ε)} .
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It is easy to check thatB = ∪α,β,α′,β′B(α, β, α′, β′). As the set of (α, β, α′, β′)

is countable, there exists (ᾱ, β̄, ᾱ′, β̄′) such that µT−1(B(ᾱ, β̄, ᾱ′, β̄′)) > 0.

Let a and b and ε be suffi ciently small so that we further have [a− ε, a+ ε) ⊂[
ᾱ, β̄

)
and [b− ε, b+ ε) ⊂

[
ᾱ′, β̄′

)
. From now on, we denote by B′ the

set B(ᾱ, β̄, ᾱ′, β̄′), by I ′ the interval [a− ε, a+ ε) and by J ′ the interval

[b− ε, b+ ε) . By considering a possibly smaller B′ of positive measure, we

may assume (without loss of generality) that φT is continuous at (z0, ..., zT−1, a)

and at (z0, ..., zT−1, b) for all (z0, ..., zT−1) ∈ B′.
The intervals I ′ and J ′ do not depend on (z0, ..., zT−1) ∈ B and we have

I ′ < J ′ and φT (z0, ..., zT−1, I
′) > φT (z0, ..., zT−1, J

′) for all (z0, ..., zT−1) ∈
B′.

Let f : R → R \ J ′ be defined by f(z) = 1
2

(a− ε) + 1
2
z on I ′, f(z) =

a+ 1
2

(z − b+ ε) on J ′ and f(z) = z elsewhere. We have f(z) ≤ z for all z

and f admits an inverse denoted by g.

Let the process ỹ be defined by (ỹ1, ..., ỹT ) = (ŷ1, ..., ŷT−1, f(ŷT )) when

(ŷ1, ..., ŷT−1) ∈ B′ and (ỹ1, ..., ỹT ) = (ŷ1, ..., ŷT−1, ŷT ) elsewhere. As ỹ ≤
ŷ, ỹ ∈ Y. By definition of g, we have (ŷ1, ..., ŷT−1, ŷT ) = (ỹ1, ..., ỹT−1, g(ỹT ))

when (ỹ1, ..., ỹT−1) ∈ B′ and (ŷ1, ..., ŷT ) = (ỹ1, ..., ỹT ) elsewhere. Hence ŷ

and ỹ generate then the same information structure and C(ỹ) = C(ŷ).

Observe that for (ŷ1, ..., ŷT−1) ∈ B′, if ŷT ∈ I ′, then ỹT ∈ I ′ and

|φT (ŷ1, ..., ŷT )− φT (ỹ1, ..., ỹT )| < 2η,

if ŷT ∈ J ′, then ỹT ∈ I ′ and φT (ŷ1, ..., ŷT )− φ(ỹ1, ..., ỹT ) < φ(b)− φ(a) + 2η

and, we have φ(ŷ) = φ(ỹ) elsewhere. Therefore, for (z0, ..., zT−1) ∈ B′, we
have

E(z0,...,zT−1) [q̂TφT (ŷ)− q̂TφT (ỹ)]

2ε

<
2ηP(z0,...,zT−1)(ŷT ∈ I ′ ∪ J ′)E(z0,...,zT−1) [ q̂T | ŷT ∈ I ′ ∪ J ′]

2ε

+
2 (φT (z0, ..., zT−1, b)− φT (z0, ..., zT−1, a))P(z0,...,zT−1)(ŷT ∈ J)E(z0,...,zT−1) [ q̂T | ŷT ∈ J ]

2ε

→
ε→0

2η (h(z0, ..., zT−1, a) + h(z0, ..., zT−1, b))Q(z0, ..., zT−1a)

+ (φT (z0, ..., zT−1, b)− φT (z0, ..., zT−1, a))h(z0, ..., zT−1, b)Q(z0, ..., zT−1b)
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where E(z0,...,zT−1) and P(z0,...,zT−1) correspond, respectively, to the expec-

tation and to the probability conditional to (ŷ1, ..., ŷT−1) = (z0, ..., zT−1).

Since φT (z0, ..., zT−1, b) − φT (z0, ..., zT−1, a) < 0, for η and ε suffi ciently

small and (z0, ..., zT−1) ∈ B′, we have
E(z0,...,zT−1)[q̂TφT (ŷ)−q̂TφT (ỹ)]

2ε
< 0. For

(z0, ..., zT−1) /∈ B′ and (ŷ1, ..., ŷT−1) = (z0, ..., zT−1), we have ŷ = ỹ and
E(z0,...,zT−1)[q̂TφT (ŷ)−q̂TφT (ỹ)]

2ε
= 0. Since µT−1(B′) > 0, by the law of iterated

expectations, we obtain E [q̂TφT (ŷ)] < E [q̂TφT (ỹ)] and q̂ · Φ(ŷ) < q̂ · Φ(ỹ).

Since C(ỹ) = C(ŷ), we have V m(q̂, ỹ) > V m(q̂, ŷ) which is impossible.

The function Id− φT is treated similarly, using V i instead of V m.

Step 2. Differentiability

Since zT → φT (z1, ..., zT ) and zT → zT−φT (z1, ..., zT ) are nondecreasing

then zT → φT (z1, ..., zT ) is 1-Lipshitz and then differentiable a.e.

Step 3. Linearity at date T

Let us show that q̂ · Φ(ŷ) = maxY (ŷ,T−1) q̂ · Φ(y). Assume that there

exists y′ ∈ Y (ŷ, T − 1)+ such that q̂ · Φ(y′) > q̂ · Φ(ŷ). By Lemma 11

and by continuity of φT , there exists y′′ ∈ Y (ŷ, T − 1) close to y′ such

that q̂ · Φ(y′′) > q̂ · Φ(ŷ) and C(ŷ) ⊂ C(y′′). From the definition of the

indirect utility, we have Vm(y′′, q̂) > Vm(ŷ, q̂) which violates assertion 4 of

the definition of equilibrium. We have then q̂ ·Φ(ŷ) = maxY (ŷ,T−1) q̂ ·Φ(y).

From Proposition 1, NY (ŷ) = {αq̂, α > 0} and by Assumption P4, we have
then NY (ŷ,T−1)(y) = {(q0, ..., qT−1, αq̂T ) : α > 0}. As φT is differentiable
a.e., from the first order conditions, there exists α > 0 such that,

q̂T
∂φT
∂yT

(ŷ0, . . . , ŷT ) = αq̂T (14)

As q̂T � 0 and as from assumption P, ŷ takes all possible values in (0,∞)T ,

we have
∂φT
∂xT

(z0, . . . , zT ) = α, ∀z ∈ RT+1
+ .

Integrating with respect to zT , we get that for some functions H : RT+ → R

φT (z0, . . . , zT ) = αzT +H(z0, . . . , zT−1). (15)

Since φT (z0, . . . , zT ) ≤ zT , φT (z0, . . . , zT−1, 0) = 0. Setting zT = 0 in

equation (15), we obtain that H = 0 and φT (z0, . . . , zT ) = αzT .

Step 4. Backward induction
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The first step above relies, in particular, on the fact that zT only in-

tervenes in φT and not in φt for t 6= T. Due to Step 3, we know now that

zT−1 does not intervene in φT and hence only intervenes in φT−1. We may

then apply the above methodology to prove that φT−1 is nondecreasing

and then differentiable a.e. Similarly, the first order condition with respect

to zT−1 only involves φT−1 and is similar to 14 replacing T by T − 1. We

obtain that φT−1(z0, . . . , zT−1) = αzT−1 and by backward induction, we

obtain that φt(z0, . . . , zt) = αzt for all t and all (z0, . . . , zt) ∈ Rt+1
+ . As

0 ≤ Φ(y) ≤ y, 0 ≤ α ≤ 1.

Step 5. 0 < α < 1

Note that α = 0 leads to V m(y, q̂) independent of y which is not compat-

ible with the 4th equilibrium condition. Similarly, α = 1 leads to V i(y, q̂)

independent of y which is not compatible with the 6th equilibrium condi-

tion.

Proof of Theorem 3. Let (Φ, (ĉi)i, ĉm, q̂, ŷ) be an equilibrium. From

Theorem 2, Φ = Φα for some α s.t. 0 < α < 1. Let us first show that

Vm(ŷ, q̂) = Um(ĉm) = max{Um(c), q̂ · c ≤ q̂ · Φ(ŷ)} or, in other words, that
we can relax the condition c ∈ C(ŷ). If this is not the case, there exists c

such that q̂ · c ≤ q̂ ·Φ(ŷ) and Um(c) > Um(ĉm). As Um is homogeneous, for

ε small enough, we have q̂ · (1− ε)c < q̂ ·Φ(ŷ) and Um((1− ε)c) > Um(ĉm).

By continuity of q · Φ, let ε > 0 such that |q̂ · Φ(ŷ)− q̂ · Φ(y)| < q̂ · Φ(ŷ)−
q̂ · (1 − ε)c for all y such that ‖y − ŷ‖ < ε. By Lemma 11, there exists

y ∈ X+ such that y << ŷ, ‖y − ŷ‖ < ε and C((1 − ε)c) ⊂ C(y). We

have then y ∈ Y+, (1 − ε)c ⊂ C(y) and q̂ · (1 − ε)c < q̂ · Φ(y) which gives

Vm(y, q̂) ≥ Um((1− ε)c) > Um(ĉm) = Vm(ŷ, q̂) which contradicts Condition

4 in the definition of a manager-shareholders equilibrium.

Therefore, there exists λ > 0 such that

α exp(−ρmt)Mm,tu
′(ĉm,t) = λq̂t, for all t. (16)

Furthermore from the 5th equilibrium condition,

max
y∈Y

T∑
t=0

exp(−ρmt)E[Mm,tu(Ĉm,t(y0, . . . , yt)] = Um(Ĉm(ŷ)).
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Let us show that Ĉm,T (z0, . . . , zT−1, zT ) is nondecreasing in zT . The

proof is similar to the proof of Step 1 in Theorem 2 and we only provide a

sketch of it. Let (z0, . . . , zT−1) ∈ RT+ be given and let us define C̃(zT ) by

C̃(zT )
def
= Ĉm,T (z0, . . . , zT−1, zT ).

Let A =
{

(z, z′) ∈ R2
+ : (z − z′)(C̃(z)− C̃(z′)) < 0

}
and let us assume

that µ⊗µ (A) > 0. By Fubini, there exists z such that µ (B) > 0 with B ={
z′ > z : C̃(z) > C̃(z′))

}
. Let us consider ŷ′ such that ŷ′ = (z0, . . . , zT−1, z)

when ŷ = (z0, . . . , zT−1, z
′
T ) with z′T ∈ B and ŷ′ = ŷ elsewhere. We

have ŷ′ ≤ ŷ and then ŷ′ ∈ Y and Ĉm,T (ŷ′) > Ĉm,T (ŷ). If we were able

do that for a set of (z0, . . . , zT−1) with positive measure then we would

obtain a contradiction with the fact that ŷ maximizes Um(Ĉm(ŷ)) on Y.

Hence, for almost all (z0, . . . , zT−1) ∈ RT+, we have µ ⊗ µ (A) = 0 which

means that Ĉm,T (z0, . . . , zT−1, zT ) is nondecreasing a.e. in zT for almost all

(z0, . . . , zT−1) ∈ RT+ and Ĉm,T (z0, . . . , zT−1, zT ) admits a partial derivative

with respect to zT almost everywhere.

From the first order conditions and Proposition 1 item 1, there exists

ν > 0 such that

T∑
s=t

Et

[
∂Ĉm,s
∂yt

(ŷ0, . . . , ŷs) exp(−ρms)Mm,su
′(ĉm,s)

]
= νq̂t for all t. (17)

From Equations (16 ) and (17), we thus obtain that for all t:

T∑
s=t

Et

[
∂(Ĉm,s)

∂yt
(ŷ0, . . . , ŷs) exp(−ρms)Mm,su

′(ĉm,s)

]
= a exp(−ρmt)Mm,tu

′(ĉm,t)

(18)

for some a > 0. In particular, at date T ,

∂Ĉm,T
∂yT

(ŷ0, . . . , ŷT ) = a.

As ŷ takes all possible values in RT+1
+ , we have

∂Ĉm,T
∂xT

(z0, . . . , zT ) = a, ∀z ∈ RT+1
+ .

36



Integrating with respect to zT , we obtain

Ĉm,T (z0, . . . , zT ) = azT +H(z0, . . . , zT−1), (19)

for some functions H : RT+ → R. Since Ĉm,T (z0, . . . , zT ) ≤ zT , if zT = 0

Ĉm,T (z0, . . . , zT ) = 0. Setting zT = 0 in the previous equation, we obtain

that H = 0 and

Ĉm,T (z0, . . . , zT ) = azT , ∀(z0, . . . , zT ) ∈ RT+1
+ . (20)

Similarly, considering next Equation (18) at t = T − 1, we obtain

Ĉm,T−1(z0, . . . , zT−1) = azT−1.

By backward induction, we obtain that Ĉm,t(z0, . . . , zt) = azt for all t and

all (z0, . . . , zt) ∈ Rt+1
+ , and using the equality q̂ · Ĉm(ŷ) = q̂ · αŷ, that

a = α or Ĉm = Φα. Therefore, irrespective of the production process and

of the history, the consumption of the manager at t coincides with her

compensation at t; that is, the manager does not trade in the financial

market.

Proof of Theorem 4. The proof of assertion 1 may be found in

Appendix 2. To prove assertion 2, from assertion 1, there exists a unique

equilibrium associated to (1− α)Y . From the homogeneity of preferences,

one directly checks that ((1−α)c∗i)i, q
∗, (1−α)y∗) solves the three properties

of a production equilibrium associated to (1− α)Y .

Proof of Theorem 5. Let 0 < α < 1 be given and (Φα, (ĉi)i, αŷ, q̂, ŷ)

be a manager-shareholders equilibrium. To prove assertion 1, from asser-

tion 2 of Definition 1 and from Theorems 2 and 3, we have, for some α such

that 0 < α < 1,

Vm(ŷ, q̂) = Um(Ĉm(ŷ)) = Um(αŷ).

As Vm(y, q̂) ≥ Um(αy) for all y ∈ Y , from assertion 4 of Definition 1, we

have

Vm(ŷ, q̂) = Um(αŷ) ≥ Vm(y, q̂) ≥ Um(αy),∀y ∈ Y,

proving the desired assertion. To prove assertion 2, from assertion 1 of

Definition 1 and Assumption (P5), ĉi maximizes U i(c) s.t. q̂ · c ≤ νi(q̂ ·
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((1− α)ŷ)), hence the first item of the definition of a production equilib-

rium associated to (1− α)Y is verified. From Proposition 1, q̂ · (1− α)ŷ ≥
q̂ · (1 − α)y for all y ∈ Y . Lastly from Theorems 2 and 3 and assertion 3

of the definition of a production equilibrium,
∑

i ĉ
i = (1− α)ŷ. Therefore

((ĉi)i, q̂, (1−α)ŷ) is the production equilibrium associated to (1−α)Y and

from Theorem 4, ĉi = (1 − α)c∗i for all i, q̂ = νq∗ for some ν > 0 and

ŷ = y∗.

Conversely, let us assume that Assertions 1 and 2 of Theorem 5 are sat-

isfied. By definition of the production equilibrium, the plan c∗i maximizes

U i under the budget constraint q̂· c ≤ νiq̂·y∗ hence ĉi = (1−α)c∗i maximizes

U i under the budget constraint q̂· c ≤ νiq̂ · (1 − α)y∗ = νiq̂ · (ŷ − Φα(ŷ)).

Furthermore, by Assumption P5, C(ŷ) = X. Then, Condition 1 in Defini-

tion 1 is satisfied. The same reasoning applies to Condition 2. By definition

of the production equilibrium, we have
∑

i ĉ
i = (1−α)ŷ which immediately

gives Condition 3. Assertion 1 of Theorem 5 is equivalent to Condition 5.

Let y ∈ Y, by definition of the production equilibrium, we have q̂ · y ≤ q̂ · ŷ.
If q̂ · y = q̂ · ŷ, the strict convexity from above gives the existence of y′ in

Y such that y′ > 1
2
y + 1

2
ŷ and, since q � 0, q̂ · y′ > q̂ · ŷ which contradicts

the definition of the production equilibrium. We have then q̂ · y < q̂ · ŷ
and since C(ŷ) = X, by strict monotonicity of the utility function, we have

Vm(ŷ, q̂) > Vm(y, q̂). Therefore, Condition 4 is satisfied. Condition 6 is

derived similarly.

Proof of Theorem 6. To prove assertion 1, from Theorem 4, there ex-

ists a unique production equilibrium associated to Y denoted by ((c∗i)i, q
∗, y∗)

with q∗ defined up to a multiplicative constant. The vector of equilibrium

utility weights (λ∗i)i in Λ and the scaling constant ν > 0 are uniquely de-

fined by the shareholder’s first order conditions at equilibrium given by (7).

To prove assertion 2, from Equation (21), the representative shareholder’s

utility at equilibrium is N(λ∗) · u(y∗). Let us define (ρ̃t) and
(
M̃t

)
by

induction as follows

exp (ρ̃t+1(t+ 1))

exp (ρ̃tt)
=

Nt

Et [Nt+1(λ∗)]
and M̃t+1 = Nt+1(λ∗) exp (ρ̃t+1(t+ 1)) .

The process (exp (−ρ̃tt)) is predictable and
(
M̃t

)
is a martingale and we

have exp(−ρ̃tt)M̃t = Nt(λ
∗). Furthermore, this decomposition is unique.
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Indeed, if exp(−ρ̃1
t t)M̃

1
t = exp(−ρ̃2

t t)M̃
2
t , then taking the expectation for

t = 1, we obtain ρ̃1
1 = ρ̃2

1 and from there M̃1
1 = M̃2

2 . If we take now the

expectation for t = 2 conditional to date 1, we have

exp(−2ρ̃1
2)M̃1

1 = E1

[
exp(−2ρ̃1

2)M̃1
2

]
= E1

[
exp(−2ρ̃2

2)M̃2
2

]
= exp(−2ρ̃2

2)E1

[
M̃2

2

]
= exp(−2ρ̃2

2)M̃2
1 .

and since M̃1
1 = M̃2

1 , we obtain ρ̃
1
2 = ρ̃2

2 and from there M̃1
2 = M̃2

2 . By

induction, we get M̃1 = M̃2 and ρ̃1 = ρ̃2.

To prove the last assertion, at the production equilibrium associated to

(1 − α)Y , the utility weights and να > 0 are defined by the first order

conditions λ∗iM i
t exp(−ρit)u′((1 − α)c∗it ) = ναq

∗
t for all t and all i which

defines the same equilibrium utility weights in Λ, hence the same N(λ∗)

and the same representative shareholder utility.

Proof of Theorem 7. From Theorem 5, the manager maximizes

Um(αy) over Y . Therefore she chooses y∗ if and only if the process

(exp(−ρmt)Mm,tu
′(αy∗)t∈T ∈ NY (y∗) = {νq∗, ν > 0}.

Moreover q∗ is proportional to the marginal utility of the representative

shareholder at equilibrium. Using the homogeneity of u, we must have, for

some ν > 0 and for every t

(exp(−ρmt)Mm,tu
′(y∗t ) = ν exp(−ρ̃tt)M̃tu

′(y∗t )

Cancelling u′(y∗t ), on both sides and setting t = 0, we obtain ν = 1 and

(9).

Since Mm,t and M̃t are martingales and ρ̃t is predictable, we have ρm =

ρ̃t for all t and Mm = M̃ by the uniqueness of such a decomposition as

proven in Theorem 6.

Proof of Propositions 8 and 9. The proof of Proposition 8 may be
found in Subsection 5.2. and that of Proposition 9 in Subsection 5.3.

Proof of Et

[(∑
i

(
λ∗iM i

t+1

) 1
1−γ
)1−γ

]
≤
(∑

i (λ
∗iM i

t )
1

1−γ
)1−γ

.
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Let B ∈ Ft, we have

E

(∑
i

(
λ∗iM i

t+1

) 1
1−γ

)1−γ

1B

 =

∥∥∥∥∥∑
i

(
λ∗iM i

t+1

) 1
1−γ 1B

∥∥∥∥∥
1−γ

1−γ

≤
(∑

i

∥∥∥(λ∗iM i
t+1

) 1
1−γ 1B

∥∥∥
1−γ

)1−γ

≤
(∑

i

(
E
[
λ∗iM i

t1B
]) 1

1−γ

)1−γ

which gives

Et

(∑
i

(
λ∗iM i

t+1

) 1
1−γ

)1−γ
 ≤ (∑

i

(
λ∗iM i

t

) 1
1−γ

)1−γ

.

Lemma 12 Let 0 < a1 < ... < aN and 0 < b1 < ... < bN , the matrix
(
a
bj
i

)
is invertible.

Proof of the Lemma. Let (λ1, ..., λN) such that
∑N

j=1 λja
bj
i = 0

for all i and let f defined by f(x) =
∑N

j=1 λjx
bj . We have f(ai) = 0

for i = 1, ..., N, and g(ai) = 0 for i = 1, ..., N with g(x) =
∑N

j=1 λjx
bj−b1 .

Therefore, there exists (a1
1, ..., a

1
N−1) such that a1

i ∈ (ai, ai+1) and g′(a1
i ) = 0

for i = 1, ..., N − 1. We have g′(x) =
∑N

j=2 λj(bj − b1)xbj−b1−1 and then

g1(a1
i ) = 0 for i = 1, ..., N−1 with g1(x) =

∑N
j=2 λj(bj−b1)xbj−b2 . Therefore,

there exists (a2
1, ..., a

2
N−2) such that a2

i ∈
(
a1
i , a

1
i+1

)
and (g1)

′
(a2
i ) = 0 for

i = 1, ..., N − 2 or g2(a2
i ) = 0 for i = 1, ..., N − 2 with g2(x) =

∑N
j=3 λj(bj−

b1)(bj − b2)xbj−b3 . By iteration, we have aN−1
1 > gN−1(aN−1

1 ) = 0 with

gN−1(x) =
∑N

j=N λj(bj−b1)(bj−b2)...(bj−bN−1))xbj−bN which gives λN(bN−
b1)(bN − b2)...(bN − bn−1) = 0 or λn = 0. By iteration, we obtain λN−1 = 0

and then λj = 0 for j = 1, ..., N.

Proof of Proposition 10. When dealing with equation (13), if two
shareholders i and j have the same time discount rate, we may replace them

by a single shareholder with the same discount rate, the belief λ
∗iM i+λ∗jMj

λ∗i+λ∗j

and a weight λ∗i + λ∗j. Hence, we will assume without loss of generality

that ρi 6= ρj for all (i, j) with i 6= j. We further assume that ρ1 > ... > ρN .

Since there are at least N dates t ∈ T such that t > s, let (t1, ..., tN) be
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such that tN > ... > t1 > s > 0. Let us assume that ρm is deterministic and

let us take the conditional (to s) expectations in (13) for t = tj, j = 1, ...N .

We then have for all j = 1, ...N ,

exp(−ρm,tj tj)Mm,s =
∑
i

λ∗i exp(−ρitj)M i
s.

Let X(ω) = (λ∗1M1
s (ω), , ..., λ∗NMN

s (ω) and A = (exp(−ρitj))j,i. Then
AX(ω) = Mm,s(ω)Y with Y =(exp(−ρm,t1t1), ..., exp(−ρm,tN tN)). From

Lemma 12 with ai = exp(−ρi) and bj = tj, the matrix (exp(−ρitj))i,j
is invertible and so is A and we have X(ω) = Mm,s(ω)A−1Y. Taking

the expectation, we have Λ = A−1Y with Λ = (λ∗1, , ...λ∗N). Hence

X(ω) = Mm,s(ω)Λ and therefore M i
s(ω) = Mm,s(ω) for all i which con-

tradicts our heterogeneous beliefs assumption.

7.2 Appendix 2. Existence of a Production Equilib-

rium and Related Results

Existence of a production equilibrium is proven by a Negishi utility weights

method. The proof of uniqueness extends Dana (1995) by introducing

time, processes and a production set and is based on our assumption that

shareholders have proportional endowments (no other endowments than

their shares of the firm) and homogeneous utility indices (same CRRA

instantaneous utility function for all shareholders).

Concepts, notations and first results

In this appendix, we assume that (P1), (P2) and (C) are fulfilled.

Let Y+ = Y ∩ X+ and Yς = {y ∈ Y+ | y ≥ ς}. From (P2), the sets Y

and Y+ and Yς are closed and convex and from (P1) (P2), Y+ and Yς are

bounded, hence σ(X,X ′) compact.

Definition 4 An allocation (c1, . . . , cN , y) is the specification of a con-

sumption plan ci ∈ X+ for each shareholder i = 1, . . . , N and of a pro-

duction plan y ∈ Y+ for the firm. The allocation is feasible if
∑

i c
i = y.

We first recall the following classical characterization of Pareto optima.
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Lemma 13 An allocation (c1, . . . , cN , y) is a Pareto optimum if and only

if there exists λ ∈ RN+ , such that (c1, . . . , cN) solves

max
{∑

λiU i(ci), ci ≥ 0 for all i,
∑

ci = y, y ∈ Y+

}
.

In order to compute explicitly Pareto optima, let us next introduce

some notations. For t ∈ T, c ∈ R+ and λ ∈ RN+ , let u(c, λ) and (Ci(c, λ))i
be defined by

u(t, c, λ) = max

{∑
i

λi exp(−ρit)M i
tu(ci), ci ≥ 0, ∀ i,

∑
ci ≤ c

}
,

Ci(t, c, λ) = arg max

{∑
i

λi exp(−ρit)M i
tu(ci), ci ≥ 0,∀ i,

∑
ci ≤ c

}
.

We recall that the process N(λ) is defined by

Nt(λ) =

(∑
i

(
λiM i

t exp(−ρit)
) 1
1−γ

)1−γ

.

One easily verifies that

u(c, λ) = N(λ)u(c), (21)

Ci (c, λ) = Si(λ)c (22)

where Sit(λ) =

(
λiM i

te
−ρit

) 1
1−γ

∑
j(λjM

j
t e
−ρjt)

1
1−γ

represents shareholder’s i stochastic share

of c. For any (ω, t, λ), the function u(ω, t, ·, λ) is differentiable with respect

to c on ]0,∞[ and we have

uc(c, λ) = N(λ)u′(c). (23)

From lemma 13, the allocation (c1, . . . , cI , y) is a Pareto optimum if and

only if there exists λ ∈ RI+, such that y ∈ Y+ solves the representative

shareholder problem Pλ :

max
y∈Y+

T∑
t=0

E(u(t, yt, λ)) = max
y∈Y+

N(λ) · u(y)
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and cit = Ci(t, y, λ) for all i. As u(t, ·, λ) is increasing, the maximiza-

tion may be restricted to Yς . As u(t, c, ·) is homogeneous of degree 1,

Ci(t, c, ·) is homogeneous of degree 0 for all i and we may restrict attention

to Λ =
{
λ ∈ RI+ :

∑
i(λ

i)
1

1−γ = 1
}
.

For further use, let us introduce some notations.

Let XMi

def
=
{
x : Mix ∈ L1

(
Ω, (Ft)t∈T , P

)}
for all i and XM

def
= ∩iXMi

.

Let X ′M =
{
Mp, p ∈ L∞

(
Ω, (Ft)t∈T , P

)}
with M =

∑
iMi. For every

x ∈ XM and Mp ∈ X ′M , let x ·Mp =:
∑T

t=0E(Mtptxt) = Mp · x.

Let L1 denote L1
(
Ω, (Ft)t∈T , P

)
and L∞ denote L∞

(
Ω, (Ft)t∈T , P

)
.

We denote by⇀ the convergence with respect to σ(X,X ′) and by⇀M the

convergence with respect to the topology σ(XM , X
′
M). Note that wn ⇀M w

if and only if Mwn →Mw with respect to the topology σ(L1, L∞). Let

V = {v = u(y) : y ∈ Yς} .

By Assumptions (C) and (P1), for any y ∈ Yς ,

|u(y)| ≤ |u(Ξ)|+ |u(ς)| def= A ∈ XM . (24)

Therefore, V ⊂ XM .

Pareto Optima and Equilibria with transfers

We start by proving a lemma which will be useful in many proofs.

Lemma 14 1. There exists a > 0 such that |N (λ)| ≤ aM ∈ X ′M .

2. For (λn) ⊂ Λ such that λn → λ′, we have N (λn) → N (λ′) for

σ(X ′M , XM).

3. If (yn) ⊂ Yς and yn →a.e. y
′, then u(yn) ⇀M u(y′). Let (vn) ⊂ V

vn →a.e. v
′ and λn → λ′, then N (λn) vn →L1 N (λ′) v′.

Proof. 1. b →
(∑

i |bi|
1

1−γ

)1−γ
is bounded over the simplex of Rn ,

hence there exists a > 0 such that
(∑

i |bi|
1

1−γ

)1−γ
≤ a

∑
i |bi|. We then

have Nt (λ) ≤ a (
∑

i (λ
iM i

t exp(−ρit))) ≤ aMt and N (λ) ∈ X ′M .
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2. For λn → λ′ and w ∈ XM we have wN (λn) →a.e. wN (λ′) and

|wN (λn)| ≤ aM |w| ∈ L1. By Lebesgue Theorem, we then havewN (λn)→L1

wN (λ′) for all w ∈ XM .

3. If yn →a.e. y
′, for x ∈ X ′M , xu(yn) →a.e. xu(y′) and |xu(yn)| ≤

|xA| ∈ L1. By Lebesgue Theorem, we have u(yn) ⇀M u(y′). If λn → λ′

and vn →a.e. v
′, N (λn) vn →a.e. N (λ′) v′ and |N (λn) vn| ≤ aMA ∈ L1 and

we conclude similarly.

We now characterize the Pareto optima. To this end, let us reconsider

problem Pλ and introduce a notation:

max
y∈Yς

T∑
t=0

E [u(t, yt, λ)] = max
v∈V

F (v, λ) with F (v, λ) = N(λ) · v.

From Lemma 14, problem Pλ is well defined. Let us show that it admits a
unique solution yλ (or vλ = u(yλ) depending on the chosen formulation).

Lemma 15 The problem Pλ has a unique solution denoted yλ. Therefore
F (., λ) reaches its maximum on V at a unique point vλ.

Proof. Let (yn) ⊂ Yς and ε > 0 be such that ‖yn − y′‖r → 0 and

N (λ) · u(yn) > N (λ) · u(y′) + ε for all n. There exists a subsequence

yϕ(n) →a.e. y
′ and, by Lemma 14, we have N (λ)u(yϕ(n)) →L1 N (λ)u(y′)

which contradicts our assumption. Hence y → N (λ) ·u(y) is strongly u.s.c.

and therefore weakly u.s.c. on Yς which is weakly compact. Therefore it

admits a maximum yλ. Uniqueness of yλ follows from the strict concavity

of u, that of vλ from the monotonicity of u.

From Lemmas 13 and 15 and Equation (22), Pareto optima may be

described as follows:

Lemma 16 An allocation (c1, . . . , cN , y) is a Pareto optimum if and only

if there exists λ ∈ RN+ , such that y = yλ and ci = Ci(yλ, λ) for every i.

Let us next recall the definition of an equilibrium with transfers.

Definition 5 An allocation (c1, . . . , cN , y) with a strictly positive price process

p is an equilibrium with transfers if it verifies:

44



1. y maximizes profit that is : p · y ≤ p · y for all y ∈ Y ,

2. For every i, ci maximizes U i(c) subject to p · c ≤ p · ci.

We now prove a second welfare theorem:

Lemma 17 For any λ ∈ RN+ , the allocation ((Ci(yλ, λ))i, yλ) with the price

uc(yλ, λ) is an equilibrium with transfer.

Proof. Let us first verify that the price process is in X ′. From (23),

Lemma 14 and Assumption (C), we have

uc(yλ, λ) = N(λ)u′(yλ) ≤ aMu′(yλ) ≤ aMςγ−1 ∈ X ′.

As yλ solves Pλ, uc(yλ, λ) ∈ NY (yλ). Therefore yλ maximizes profit at price

uc(yλ, λ) proving the first property of an equilibrium with transfers. The

remainder of the proof which is totally standard is skipped.

A useful continuity property

The aim of this subsection is to prove that if λn → λ, then vλn ⇀M vλ

where we recall that :

F (vλ, λ) > F (v, λ), ∀ v ∈ V, λ ∈ Λ (25)

Lemma 18 1. V and MV are convex,

2. MV is sequentially σ(L1, L∞) compact and V is σ(XM , X
′
M) sequen-

tially compact.

Proof. To prove assertion 1, note first that if the F-adapted process
t is such that u(ς) ≤ t ≤ u(y) for some y ∈ Yς , then t ∈ V . Indeed the

process u−1(t) is F-adapted and ς ≤ u−1(t) ≤ y. Therefore u−1(t) ∈ Yς

and t = u(u−1(t)) ∈ V . To show the convexity of V , let yi ∈ Yς for i = 1, 2

and 0 ≤ λ ≤ 1. As u(yi) ≥ u(ς) for i = 1, 2 and from the concavity of u

u(ς) ≤ λu(y1) + (1− λ)u(y2) ≤ u(λy1 + (1− λ)y2).

From our previous remark λu(y1) + (1 − λ)u(y2) ∈ V which implies that

V is convex and therefore MV is convex. To prove assertion 2, let us first
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prove thatMV is closed. LetMu(yn)→ z in the norm topology of L1 with

yn ∈ Yς . Then some subsequence Mu(ynk) → z a.e. Hence ynk → u−1( z
M

)

a.e. and as yn ≤ Ξ for any n, the convergence is also in Lr. As Yς is

closed, there exists y ∈ Yς such that y = u−1( z
M

) and z = Mu(y) ∈ V .

Hence MV is norm closed and as it is convex, it is σ(L1,∞) closed. From

(24), MV is equi-integrable. It then follows from Dunford-Pettis’theorem

that it is sequentially σ(L1, L∞) compact. Hence every sequence Mvn has

a subsequence converging weakly in MV or equivalently every sequence vn
has a subsequence converging in V in the σ(XM , X

′
M) topology proving

that V is σ(XM , X
′
M) sequentially compact.

We now prove the main result of this subsection.

Lemma 19 1. If vn ⇀M v′ and λn → λ′, then F (vn, λn)→ F (v′, λ
′
).

2. If λn → λ, then vλn ⇀M vλ.

Proof. To prove assertion 1, we have

|F (v′, λ)− F (vn, λn)| ≤ |F (v′, λ′)− F (vn, λ
′)|+ |F (vn, λn)− F (vn, λ

′)| .

|F (v′, λ′)− F (vn, λ
′)| = |N (λ′) · (v′ − vn)| → 0 as vn ⇀M v′ and N (λ′) ∈

X ′M . Moreover,

|F (vn, λn)− F (vn, λ
′)| = |(N (λn)−N (λ′)) · vn| ≤ |(N (λn)−N (λ′))| · A.

and from Lemma 14 |F (vn, λn)− F (vn, λ
′)| → 0.

To prove assertion 2, let λn → λ, then from Lemma 18 assertion 2, vλn has

a subsequence, still denoted vλn , such that vλn ⇀M v̄ with v̄ ∈ V . From
(25), for every n, we have F (vλn , λn) > F (v, λn), ∀ v ∈ V. Taking the limit
as n → ∞, we obtain from assertion 1 F (v̄, λ) ≥ F (v, λ), ∀ v ∈ V . As

F (·, λ) has as unique maximizer vλ, v̄ = vλ. Hence the sequence vλn has as

unique cluster point vλ and therefore vλn ⇀M vλ.
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Definition and Properties of the transfer map

We may now define the transfer map T by

T i(λ) = uc(yλ, λ) · (Ci(yλ, λ)− νiyλ) = Gi (vλ, λ) , for i = 1, . . . , N, (26)

with Gi (v, λ) = γN(λ) · (Si(λ)− νi) v. As uc(yλ, λ) ∈ X ′ for every λ , T is
well-defined. Let us quote a continuity property of G whose proof, similar

to that of the continuity of F is omitted.

Lemma 20 If (vn, λn) ⊂ V × Λ is such that vn ⇀M v′ and λn → λ′, then

G(vn, λn)→ G(v′, λ′).

Proposition 21 T is continuous on Λ and there exists λ∗ with λ∗i > 0 for

all i such that T i(λ∗) = 0 for all i.

Proof. To show the continuity of T i on Λ, let λn → λ′. From Lemma 19,

vλn ⇀M v(λ′). Hence from Lemma 20, Gi (vλn , λn) → Gi (vλ′ , λ
′) proving

the continuity of T i. The proof of existence of a λ∗ with λ∗i > 0 for all

i such that T i(λ∗) = 0 for all i is standard and follows the properties of

T (continuity, boundary behavior T i(λ) < 0 when λi = 0 for some i, and∑
T i(λ) = 0 for every λ ∈ Λ).

Proof of Theorem 4, Assertion 1. T has a zero to which corresponds
a Pareto optimum with zero transfer payments. It is therefore a production

equilibrium. Let us show that it is unique. Assume that there are two

equilibria
(
(ĉ1, . . . , ĉN), ŷ, p̂

)
and

(
(c̃1, . . . , c̃N), ỹ, p̃

)
where without loss of

generality, prices are such that p̂ · ŷ = p̃ · ỹ = 1. Then ĉi is the optimal

solution to the problem

maxU i(c) s.t. p̂ · c ≤ νi,

and c̃i is the optimal solution to the problem

maxU i(c) s.t. p̃ · c ≤ νi.

From Dana (1995) Proposition 2.1, as utilities are homogeneous, we have

for every i,

(p̂− p̃) · (ĉi − c̃i) < 0.
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Summing over i, we obtain

(p̂− p̃) · (ŷ − ỹ) < 0.

From the definition of a production equilibrium, we have p̂ · ŷ ≥ p̂ · ỹ and
p̃ · ỹ ≥ p̃ · ŷ which leads to a contradiction. The uniqueness of the vector of
equilibrium utility weights follows immediately.

Remark 22 Existence and uniqueness of an exchange equilibrium for a

given y ∈ X+ follows from the previous theorem by choosing Y = {y}−X+.
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