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Summary of the dissertation

The three chapters of this dissertation describe various aspects of the activity
of intermediaries in financial markets. These intermediaries are often called dealers,
referring to a legal statute in the US for companies whose main business is to trade
in financial markets for their own account; or market makers by reference to their
intermediation function, with some ambiguity about what types of activity market
making covers. Dealers include the largest banks with activities in financial markets,
and more recently some large asset management companies have set up important
dealer subsidiaries.

In the first chapter I empirically investigate the trading activity of dealers in the
US corporate bond market. To make terminology clear, I use the phrase market
making in a narrow sense: buying or selling on customer demand, and re-selling
or re-purchasing the same asset to other customers. Then I refer to non-market
making trades as proprietary trades.1 Using dealer transaction in investment grade
corporate bonds and holding data, I show that on top of trading as market makers in
a narrow sense dealers also trade on spreads between bonds that they likely perceive
as mispricings, a form of proprietary trading.

First, I separate market making trades from proprietary trades in the following
way. Market making trades are initiated by customers, so that customer buys are
associated with price decreases and vice-versa, consistent with market making theo-
ries based on customer adverse selection and dealer inventory costs. By contrast, as
in limits of arbitrage theories, proprietary trades are initiated by dealers, implying
an opposite correlation between customer trades and price changes. To distinguish
between the two, as the data do not indicate who initiate the trade, I separate
transactions into two bins and assess the correlation in each bin. In the first bin
(approximately half of the observations), customer buys are partially or completely
offset by customer sells; in the second bin, all customer transactions are in the same
direction. Using price impact regressions, I show that outside the 2007-2009 finan-
cial crisis, the first bin corresponds to market making, while the second corresponds
to proprietary trading.

In a second step, I show that transactions in the second bin, and not in the first
bin, correspond to dealers buying (selling) bonds that are cheap (expensive) with
respect to Treasury bonds, and with respect to bonds of the same maturity. Such
patterns are much stronger before the 2007-2009 crisis and are reduced afterwards.
Trading on the corporate-Treasury spread may correct an actual mispricing, if the
spread is partly explained by the lower liquidity of corporate bonds; however, for a
given bond, the spread is also justified by a higher credit risk, whose fair value is
notoriously hard to assess.

Consistently with exploitation of the corporate-Treasury bond spread, I show

1Strictly speaking, any outright purchase or sale by a dealer is trading for its own account,
which includes market making transactions. I follow the terminology used in regulatory debates
by labelling proprietary trading any trade for the dealer’s account that is not market making.
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that the largest dealers held increasingly large corporate bonds inventory, and a
mirroring inventory of bonds borrowed and sold (i.e. sold short) in the years lead-
ing to the 2007-2009 crisis, while these positions have not been rebuilt after the
crisis. Uncovering this strategy in particular sheds light on the role of dealers in
shaping corporate bond credit spreads, whose aggregate levels has been shown to
impact firms’ funding costs and thus to forecast economic activity.

In the second chapter I theoretically investigate why dealers trade a broad class
of derivative contracts - forwards and futures, and to some extent swaps - instead
of trading the underlying asset directly. I propose a dynamic equilibrium model
in which dealers trade excess inventories progressively among each other, because
of imperfect competition. However, in the course of trading, some other investors
can post unexpected orders for reasons unrelated to dealers’ asset valuation, which
creates a risk to which buying and selling dealers have opposite exposure: buyers
fear that other investors buy at the same time as them, making the price increase,
while sellers fear that other investors sell, for symmetric reasons. This creates gains
from trading the risk created by investor supply or demand shocks, which can be
implemented or more generally approximated, with forward or future contracts of
maturity shorter than dealers’ horizon.

These derivatives contract slow down and decrease the sharing of the underlying
asset risk, implying a gross welfare loss for dealers; however, this loss is more than
compensated by the benefit of a surer surplus of future transactions, i.e. a better
management of dynamic trading.

On the positive side, the equilibrium with derivatives and longer inventory hold-
ings by dealers is reminiscent of the pre-2007-2009 crisis situation; while the equilib-
rium without derivatives reminds of the post-crisis situation, with regulatory limits
to leverage for larger dealer banks and dealers less willing to hold inventories for a
long time. This model does not model default and financing constraints that real-
world dealers face and that appear crucial in explaining amplification of financial
crises.

In the third chapter, I explore an underlying reason why financial markets are
fragmented. Market fragmentation underlies mispricings between assets as pointed
out in the first chapter, and inventory imbalances between dealers that are the
basis of derivative trading in the second chapter. I show that under imperfect
competition and dynamic trading, dealers choose to open a parallel market to trade
with customers in order to extract more trading rents, which makes customers worse
off.
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Résumé de la thèse

Les trois chapitres de cette thèse décrivent différents aspects de l’activité des
intermédiaires sur les marchés financiers. Ces intermédiaires sont souvent appelés
dealers (négociants), par référence à un statut légal américain pour les entreprises
dont l’activité principale est l’achat et la vente pour compte propre sur les marchés
financiers; ou bien market makers (teneurs de marché), avec une ambigüıté sur ce
que la tenue de marché recouvre exactement. Parmi les dealers, on compte les
plus grandes banques ayant des activités sur les marchés financiers, tandis que plus
récemment de grands gestionnaires d’actifs ont créé des filiales sous statut de dealer.

Dans le premier chapitre, nos investigations se portent sur les activités de trading
des dealers sur le marché américain des obligations d’entreprises. Pour préciser la
terminologie, nous réservons le terme tenue de marché á des transactions exécutées
á la demande des clients, une transaction opposée étant exécutée plus tard avec
d’autres clients. Les autres transactions sont regroupées sous le terme de trading pour
compte propre2. Utilisant des données de transactions par les dealers sur obligations
de qualité de crédit investment grade, et des données de détentions, nous montrons
qu’en plus d’agir comme teneur de marché dans un sens restreint - acheter ou vendre
à la demande d’un client, et revendre ou racheter à d’autres clients - les dealers
exploitent aussi des écarts de prix qu’ils jugent non justifiés par les fondamentaux
des émetteurs, ce qui est une forme de trading pour compte propre (proprietary
trading).

Dans un premier temps, nous séparons les transactions relevant de la tenue de
marché de celles qui relèvent du trading pour compte propre de la manière suiv-
ante. Les transactions relevant de la tenue de marché sont initiées par les clients,
de sorte que les achats par les clients sont associés à des augmentations de prix et
réciproquement, ainsi qu’il est prédit par les théories de tenue de marché en présence
d’antisélection des clients, ou de coûts d’inventaire chez les dealers. Au contraire,
comme dans les théories de limites à l’arbitrage, les transactions pour compte propre
sont initiées par les dealers, ce qui implique une corrélation opposée entre les trans-
actions des clients et les variations de prix. Pour distinguer entre les deux, dans
la mesure oú les données n’indiquent pas qui initie la transaction, nous séparons
les transactions en deux paniers et mesurons la corrélation entre transactions des
clients et changements de prix dans chaque panier. Dans le premier panier, qui
représente approximativement la moitié des observations, les achats de clients sont
partiellement ou totalement compensés par des ventes de clients; dans le second
panier, toutes les transactions des clients sont dans la même direction. Nous util-
isons des régressions d’impact sur les prix pour mesurer les corrélations dans chacun
des paniers, et trouvons qu’en dehors de la crise de 2007-2009, le premier panier

2Le trading pour compte propre désigne à proprement parler toute transaction d’un dealer pour
compte propre et non pour le compte d’un client (ce que ferait un courtier), de sorte que la tenue
de marché relève du trading pour compte propre. Nous suivons néanmoins la terminologie utilisée
dans les débats réglementaires, qui distinguent entre la tenue de marché et le reste, appelé trading
pour compte propre.
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correspond à la tenue de marché, le second au trading pour compte propre.
Dans un second temps, nous montrons que les transactions du second panier, et

seulement celles-ci, correspondent à des achats (ventes) par les dealers d’obligations
peu chères (chères) comparées aux obligations du Trésor américain, et comparées à
d’autres obligations d’entreprises de même maturité. Le résultat est beaucoup plus
fort avant la crise de 2007-2009, et réduit après la crise. L’exploitation de l’écart
de taux entre les obligations d’entreprise et du Trésor peut corriger des aberrations,
si cet écart est partiellement expliqué par l’illiquidité des obligations d’entreprises;
cela étant, pour une obligation donnée, l’écart de taux est aussi justifié par un risque
de crédit plus important, mais dont la juste valeur est notoirement difficile à établir.

De façon cohérente avec l’exploitation de l’écart de taux entre obligations du
Trésor et d’entreprises, nous montrons que dans les années précédant la crise de
2007-2009, les plus gros dealers ont détenu des stocks d’obligations d’entreprise de
plus en plus grands, et des stocks symétriques d’obligations du Trésor vendues à
découvert (i.e. empruntées et vendues), tandis que ces positions n’ont pas été re-
constituées après la crise. La mise en évidence de cette stratégie éclaire le rôle des
dealers dans la formation des spreads de crédit des obligations d’entreprises, dont il
a été montré que le niveau agrégé influe sur les coûts de financement des entreprises
et ainsi prédit statistiquement le niveau d’activité économique.

Dans le deuxième chapitre, nous répondons théoriquement à la question suiv-
ante: pourquoi les dealers échangent des dérivés de type forward ou future (i.e.
des contrats à terme) plutôt que d’échanger,directement l’actif sous-jacent. Nous
proposons un modèle d’équilibre dynamique dans lequel les dealers s’achètent et
se vendent leurs inventaires excédentaires ou déficitaires de façon progressive, en
raison d’une concurrence imparfaite. Cependant, en cours d’achat ou de vente,
d’autres investisseurs peuvent également acheter ou vendre de façon imprévue, ce
qui fait monter ou descendre le prix: ces transactions représentent un risque pour
les dealers, auquel ils sont exposés de façon opposée: les acheteurs craignent que les
autres investisseurs achètent en même temps qu’eux, les vendeurs que les investis-
seurs vendent. Cette exposition opposée crée des gains à échanger le risque lié à ces
achats ou ventes imprévues, ce qui peut être réalisé ou approximé par des contrats
à terme de maturité plus courte que l’horizon de trading des dealers.

Ces produits dérivés ralentissent l’échange et diminuent la quantité d’actif sous-
jacent échangée, ce qui implique une perte brute pour les dealers ; cependant cette
perte est plus que compensée par le bénéfice d’un surplus des transactions futures
plus sûr, c’est-á-dire d’une meilleure gestion de l’échange dynamique.

Sur le plan descriptif, l’équilibre avec produits dérivés ressemble à la situa-
tion qui prévalait avant la crise de 2007-2009; tandis que l’équilibre sans dérivés
ressemble à la situation post-crise, avec des réglementations limitant l’effet de levier
des grandes banques, et des dealers moins enclins à porter longtemps des stocks.
Ce modèle n’incorpore pas de possibilité de défaut ni de contraintes financières
auxquelles les dealers sont soumis en réalité, et qui apparaissent cruciales pour ex-
pliquer l’amplification des crises.
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Dans le troisième chapitre, nous explorons une raison possible pour laquelles
les marchés financiers sont fragmentés. La question de la fragmentation est sous-
jacente à celle des aberrations de prix évoquées dans le premier chapitre, ainsi que
les équilibres d’inventaires qui sous-tendent l’utilisation de produits dérivés dans le
deuxième chapitre. Nous montrons théoriquement qu’en concurrence imparfaite et
avec plusieurs opportunités de trading dans le futur, les dealers choisissent d’ouvrir
un marché parallèle, i.e. de fragmenter le marché, pour extraire de la rente de leur
clients, ce qui nuit à ces clients.
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Abstract

I study broker-dealers’ trading activity in the US corporate bond market. I find ev-
idence of market making and of proprietary trading exploiting possible mispricings.
Market making occurs when customers both buy and sell a bond in a day, which
happens half of the time: as predicted by market making theories with adverse se-
lection or inventory costs, prices go down (up) as customers sell (buy). Otherwise,
evidence is in favor of broker-dealer initiated trades, i.e. proprietary trading: prices
go up (down) when customers sell (buy). I test one aspect of proprietary trading
predicted by theories of limits of arbitrage: dealers buy (sell) bonds that are rela-
tively cheap (expensive) with respect to bonds of similar maturity, or with respect
to Treasury bonds. These proprietary trading strategies are reduced after the crisis.
Relatedly I show that before the 2007-2009 crisis, large broker-dealers borrowed and
sold Treasury bonds in amounts similar to their corporate bond holding, but not
after.



1.1 Introduction

Dealers are core intermediaries in financial markets. There is ambiguity about
what they do, while knowing more about it would help understand their impact on
asset prices,1 their role in the 2007-2009 crisis and to assess subsequent regulation.
They are often viewed as market makers : they buy or sell on customer demand, then
revert the trade. But the macro-finance literature suggests that they trade actively,
which is proprietary trading,2 but remains elusive on the underlying trading activity.
Is an empirical distinction between proprietary trading and market making possible?
What are broker-dealers’ trading strategies? What are the associated risks?

To answer these questions I empirically study dealer transactions in the US cor-
porate bond market. I find evidence of both market making and proprietary trading.
About half of bond×day observations contradict predictions of market making theo-
ries: prices tend to go up (down) when broker-dealers’ customers sell (buy). Second,
for these observations, broker-dealers buy (sell) more bonds that were cheap (expen-
sive) compared with other bonds, as in limits of arbitrage theories. Third, I give
suggestive evidence that proprietary traders’ financing constraints generate risks for
them, which materialized at the onset of the crisis in July 2007, with no obvious
link to their prop trading strategies. Fourth, after the crisis, the proprietary trading
strategies I documents are reduced.

I use customer-to-dealer transaction data for a large sample of liquid, investment
grade bonds from FINRA’s TRACE reporting system. On top of having macroeco-
nomic relevance3 the US corporate bond market also allows to focus on broker-dealer
trades. In other markets like equity markets, isolating broker-dealer trades is gen-
erally impossible because the type of trader behind a given order is not disclosed.

To distinguish between market making and proprietary trading, I rely on testable
predictions from economic theories. The first prediction is about who initiates the
trade, implying opposite correlations between short-term price changes and customer
trades. Under market making, the customer initiates the trade, implying that prices
go down (up) when customers sell (buy).This is because a customer can be informed
so his trade signals asset value,4 or because risk averse market makers require a
higher expected return to hold more risk.5 By contrast, I understand proprietary
trading broadly: the dealer compares prevailing prices with his/her assessment on
the asset value, based on public and/or private information, and trades on it. Thus
under dealer proprietary trading, dealers initiate the trade, and prices should go up
when dealers buy, i.e. when customers sell, and conversely.

1See for instance Adrian, Etula, and Muir (2014), He, Kelly, and Manela (2017), Adrian and
Shin (2009, 2010), Gilchrist and Zakrajsek (2012), Rapp (2016) and Siriwardane (2019).

2Proprietary trading can be viewed as an extended notion of market making: this paper is then
about documenting new aspects of market making.

3Corporate-Treasury spreads forecast economic activity and recessions: cf. in particular Philip-
pon (2009), Gilchrist and Zakrajsek (2012), Gilchrist and Mojon (2017), Lopez-Salido, Stein, and
Zakrajsek (2017).

4Kyle (1985), Glosten and Milgrom (1985)
5Stoll (1978), Ho and Stoll (1981), Grossman and Miller (1988).
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Then I test a second prediction from one theory of proprietary trading: that
dealers trade on spreads in the cross-section of bonds that they think not justified
by issuer’s fundamentals. Then he/she buys the cheaper asset, and sells the more
expensive asset and expects a profit. This is the situation described by theories of
limits of arbitrage,6 with proprietary traders being the analogs of arbitrageurs. I do
not assess whether a low price is too low.

As first suggestive evidence of this form of dealer proprietary trading, figure 1.1
plots corporate bonds and Treasury bonds holding of Primary Dealers, i.e. large
broker-dealers for which the New York Fed releases inventory data, and corporate-to-
Treasury spreads indices for A and BBB bonds.7 Primary Dealer trading activity is
in my TRACE sample. Strikingly before the crisis, the large net corporate holdings
were mirrored by negative net Treasury holdings, a fact not reported in the literature:
it means Primary Dealers borrowed and sold Treasury bonds, i.e. held a short
position. If this was proprietary trading, Treasury bond prices should go down and
corporate bond prices should go up: this is what corporate spreads indicate. The
BBB index even decreases as Primary Dealers holdings go up. After the crisis, the
long/short position is not rebuilt, while spreads are higher and more volatile.

Thus I expect broker-dealers to do both proprietary trading and market making:
to distinguish between the two, I find an intuitive criterion and check whether it
holds in the data. The criterion is as follows. Suppose that on a given day for a
given bond, order flow is a partial or full roundtrip: customers both buy and sell
within a day. This may reveal that dealers have, say, bought bonds from customers
but are unwilling to hold them so start to re-sell them within the day: this suggests
market making. By contrast, suppose order flow is one-way : customers only buy or
sell. This may be either because they they are making market but are not able to
reverse the trade quickly, or because they are actually willing to hold the position
because it enters a proprietary trading strategy.

To test the prediction about price changes and customer trades, I use price
impact regressions, a standard tool in empirical market microstructure: I regress
price changes on customer daily purchases net of daily sales, controlling for plausible
determinants of these changes including stock return, long and short rate changes.

I find that the coefficient for one-way order flow is as predicted by limits of arbi-
trage theories, except during the crisis, while it is as consistent with market making
on days with partial roundtrips. Running the price impact regression without distin-
guishing between one-way and partial roundtrips, the coefficient is consistent with
market making, which suggests raw price impact regressions may mislead to a con-
clusion that broker-dealers are always passive market makers. Quantitatively, on
average a $1 million customer net sale is associated with a price increase by 1.5 ba-
sis point. To explore heterogeneity within one-way observations, I add interactions

6Cf. Gromb and Vayanos (2002, 2010, 2018).
7Median spread in bonds from my sample with 4-6 years residual maturities. The spread is the

log price difference between a fictitious risk-free price of a bond with the same cash flows discounted
with the Treasury yield curve.
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Figure 1.1: Primary Dealers holdings in corporate bonds and Treasury bonds (all
maturities above 3 months), and corporate-Treasury spreads for A and BBB bonds
with 4-6 years residual maturity. Holding data are from the New York Fed, spreads
computed from my sample, all data are as of the last Wednesday of each month
(holding data are published weekly as of Wednesday).
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with dummies for the bond’s initial or residual maturity, or its age, being less than
10 years: I find that proprietary trading is concentrated on bonds with initial or
residual maturity less than 10 years, or on bonds younger than 10 years.

I look at the evolution through time. I interact one-way and partial rountrip with
dummies for time periods: I find that one-way order flow has coefficients consistent
with proprietary trading both before and after the crisis; before the crisis, customer
sales by $1 million come with an increase by 5 basis points, while it reduces to 1.7
basis point after the Dodd-Frank Act. During the crisis, the one-way coefficient
is consistent with market making and higher than the partial roundtrip coefficient,
suggesting that dealers were not willing to hold the bonds they bought (or hold the
inventory deficit) for long, but expected to be unable to re-sell (or repurchase) them
quickly.

I also discuss endogeneity concerns. In particular to address the concern that
there are common drivers of order flow and price changes, I control for risk-free rate
changes and credit risk changes through stock return, two main sources of corporate
bond price change and likely of customer willingness to trade.

Then I test the second prediction, by regressing customer order flow on lagged
measures of bond cheapness, controlling for lagged order flow, lagged price changes
and market factors. The cheapness measures are spreads between baskets of bonds.

I first test a measure in which a bond’s spread to an equivalent Treasury is
compared with the median spread in a basket of bonds with similar maturity, credit
rating and callability (presence or absence of an embedded call). This measure
captures idiosyncratic component of the bond spread. I further split one-way and
roundtrip order flow based on bond initial or residual maturity and bond age being
more or less than 10 years. I find that the measure is significant for one-way order
flow and in the expected direction for bonds with initial or residual maturity less
than 10 years, and weaker but significant results for bond age. The estimates imply
that an increase by one percentage point in the measure is associated with dealer
purchases being higher by 12%, and conversely.

I add three measures of cheapness in the regression, which are differences in
median corporate-to-Treasury spreads of different baskets of bonds. The first addi-
tional measure captures a bond’s cheapness relative to bonds with similar maturity
irrespective of their credit risk and callability, having controlled for idiosyncratic
components. The second additional measure captures arbitrage between bonds of
different maturities, having controlled for its credit risk and callability. The third ad-
ditional measure captures corporate bond cheapness with respect to Treasuries: the
former may be more expensive than the latter even after controlling for credit risk,
because of liquidity or other services they provide. It may be on average profitable
to sell Treasury bonds to buy corporate bonds. I call this measure the Treasury
convenience yield component. Primary Dealers appear to exploit it on figure 1.1.

I find significant effects on the credit risk/callability component, and on the Trea-
sury convenience yield component. When I further distinguish by age or maturity, I
find unchanged effect for the idiosyncratic component, and highly significant effects
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for the credit risk/callability and Treasury convenience yield components for bonds
with age or maturity below 10 years. The maturity component does not appear
exploited by dealers. For roundtrip order flow, coefficients are zero or small in ab-
solute value, consistently with price impact regressions. Quantitatively, I find that
an increase in the credit risk/callability measure by one percentage point for a bond
with maturity lower than 10 years is associated with higher dealer purchases by 24%.
For the Treasury convenience yield component, the effect is 15%. Breaking down
by subperiods, the corresponding coefficients imply effects of both measures higher
than 60% before the crisis and below 20% after the crisis, in line with figure 1.1.

These results suggest that 1) broker-dealers do proprietary trading on top of
market making and 2) my measures distinguish the former from the latter, which
is useful for existing regulation and 3) proprietary trading was weaker after the crisis.

Regarding the proprietary trading risks, I give suggestive evidence from the 2007-
2009 crisis that a crucial risk is not obviously linked with the underlying strategy,
but comes from margin requirements or regulatory capital requirements. Figure
1.1 shows that Primary Dealers’ net Treasury position shrank by half in July 2007,
months before major crisis events. If concerns were about the corporate-Treasury
position, lenders would probably have imposed scaling down of both legs: this is not
the case. Instead, I show that the short position cut occured a few weeks after 1) the
historical volatility of daily return on Treasuries increased with respect to the pre-
vious 18 months and 2) Primary Dealers’ CDSs, a proxy for their perceived default
risk, abruptly rose. By contrast corporate bond volatility did not vary much and
the corporate bond position was not cut. Primary Dealers also faced financing con-
straints: I show that the long and short position were funded independently through
short-term repurchase agreements, which imply haircuts. Another hypothesis, with
equivalent effect, is that regulatory capital requirements, computed with statistical
models for large dealers. This suggests that Primary Dealers faced financing con-
straints that increasing in asset volatility and their own default risk:8 a tightening
of the short side occured in July 2007.

Literature review. Several papers question the assumption that broker-dealers
are always passive, as Choi and Huh (2019): I further show that broker-dealers
initiate trades also to buy relatively cheap and sell expensive bonds. An (2019)
shows that broker-dealers initiate trades to build a wide menu of bonds to match
buyers’ preferences. Effects described in his and my papers are fully compatible;
empirically, he focuses on reversals within 15 minutes, while I focus on reversals
within a day. Other papers hint at broker-dealer proprietary trading but do not
test the hypothesis. Adrian et al. (2017) show that before the crisis, bond market
liquidity was positively related with broker-dealer leverage, but negatively after the
crisis: I exhibit long-short positions by Primary Dealers to explain this fact. In FX
markets, Du et al. (2018) show that mispricings are stronger for positions appearing
on quarterly financial statements. In equity markets, (Brogaard et al. 2014, 2019)

8Which may come from other activities than prop trading, e.g. mortgage-backed securities.
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show that high-frequency traders (HFT), which are also dealers, initiate trades.
This paper is also connected to the literature assessing post-crisis regulation.

Many papers focus on broker-dealer market making activity, showing that dealers
tend to hold position for shorter periods of time (Bessembinder, Jacobsen, Maxwell,
and Venkataraman 2018, Schultz 2017); Duffie (2018) and Saar, Jian, Yang, and
Zhu (2019) suggest this is not necessarily a bad thing. Bao et al. (2018) and Dick-
Nielsen and Rossi (2018) show that abnormal returns surrounding bond downgrades
to speculative grades have increased after the crisis. Dick-Nielsen and Rossi (2018)
also mentions decreased Primary Dealers’ corporate bond inventories: I connect this
pattern with the Treasury short position. Overall my contribution with respect to
these papers is to separate proprietary trading from market making.

Goldstein and Hotchkiss (2020) show that for the least traded bonds, in about
60% of the cases, inventory holding is less than one day. While I look at most
traded bonds for which proprietary trading is more likely, the fact they uncover is
the basis of my identification. Some papers look at dealer networks (Di Maggio et al.
2017, Friewald and Nagler 2019, Li and Schuerhoff 2019). Overall I confirm that a
large fraction of broker-dealer trading activity is market making, but I show that
broker-dealer also provide liquidity through prop trading.

Price impact regressions have seldom been run on the US corporate bond mar-
ket.9 Rapp (2016) runs such regressions with a different focus and finds results
consistent with market making. I find qualitatively similar results on average, but I
isolate a subset of proprietary trading transactions.

This paper also relates to the macro-finance literature on broker-dealers, which
does not explore broker-dealer trading strategies. Adrian and Shin (2009, 2010)
show that broker-dealers’ leverage ratio is positively correlated with asset prices,
and in particular with the market price of risk. Gilchrist and Zakrajsek (2012) show
that negative shocks to Primary Dealers’ equity is translated in higher corporate
bond/Treasury bond yield spread. Adrian, Etula, and Muir (2014) and He, Kelly,
and Manela (2017) show that Primary Dealer leverage is an important factor ex-
plaining asset prices.

The paper is divided as follows. Section 1.2 develops the empirical hypotheses.
Section 1.3 gives institutional background and presents the main dataset with sum-
mary statistics. Section 1.4 presents the price impact regressions results. Section 1.5
studies the relationship between customer order flow and bond cheapness measures.
Section 1.6 suggests that the end of Primary Dealers’ long-short strategy shown by
figure 1.1 was caused by a tightening of the margin requirement on the short Trea-
sury position. Section 1.7 discusses the implications for financial regulation and for
safe asset production by the private sector. Section 2.8 concludes.

9Possibly because pre-trade quotes are not available. In other markets price impact regressions
are standard: in the stock market, seminal papers include Glosten and Harris (1988), Hasbrouck
(1991), Madhavan and Smidt (1993), Huang and Stoll (2015). In FX market, cf. Lyons (1995),
Evans and Lyons (2002). Cf. Collin-Dufresne, Junge, and Trolle (2018) in the index CDS market.
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1.2 Empirical hypotheses

1.2.1 Theoretical predictions

Market making and proprietary trading appear complementary activities that
are hard to separate, leading practioners and some academics (e.g. Duffie 2012) to
make no difference between the two. Indeed both activities are in the end about
buying low from investors eager to sell, selling high to investors eager to buy: both
are thus liquidity provision.

In this paper I choose to make a difference between the two, based on clear
theoretical predictions and because it sheds new light on what broker-dealers do.
For convenience I borrow the terminology from the Volcker rule, which does not
imply any stance on the optimality of the Volcker rule, which is neither the only
way nor necessarily the best way to regulate proprietary trading: such assessment
is beyond the scope of this paper.

Price changes and order flow. Theories of market making and proprietary
trading give opposite predictions regarding the correlation between short-term price
changes and customer trades. Theories of market making predict that customer
sales (purchases) are associated with price decreases (increases). This is because a
customer can be informed and his trade may signal asset value (Kyle 1985, Glosten
and Milgrom 1985) or because risk averse market makers require a higher expected
return to hold more risk (Stoll 1978, Ho and Stoll 1981, Grossman and Miller 1988).

By contrast, under dealer proprietary trading prices should go up when dealers
buy, i.e. customers sell. I understand dealer proprietary trading as dealers com-
paring prevailing asset prices to their private or public information, and then trade
on it. Dealer information can be private, in which case the dealer plays the role of
the informed trader within market making theories. Dealer information can also be
public, as when there is a spread between two publicly listed assets that appears
not justified by fundamentals, but which persists because of some market frictions.
In this case dealers are expected to buy the cheaper asset and sell the more ex-
pensive asset: except that the strategy possibly involves risk over the strategy’s
terminal payoff, this is exactly the situation described by theories of limits of ar-
bitrage (Gromb and Vayanos 2002, 2010, 2018) with proprietary traders being the
analogs of arbitrageurs.

Drivers of transactions. Theories of limits of arbitrage therefore give a second
prediction: dealers should buy (sell) more a bond i that trade at low (high) price with
respect to other bonds, given bond i’s and other bonds’ respective characteristics.
In this paper I test this prediction giving up on whether a low price is indeed too
low.

However, proprietary traders may have other strategies that those predicted by
theories of limits of arbitrage: dealers may be informed on the issuer’s credit risk or
on order flow. I do not test it in this paper however.
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Figure 1.2: One-Way vs. Partial Roundtrip order flow. This figure illustrates
how some days, customer net order flow may result from transactions all in the same
direction (only customers buys or only customer sales) as in the left panel, or in both
directions as in the right panel. Partial Roundtrip order flow is likely to correspond
to market making, because it suggests dealers were unwilling to hold bonds sold by
customers for long; One-way order flow is likely to correspond to dealer proprietary
trading because it suggests dealers were willing to hold all bonds sold by customers.

1.2.2 One-way and Roundtrip days

I expect broker-dealers to do both market making and proprietary trading, which
should correspond to different subsets of transactions.

To identify these subsets I separate days where large order flow goes only one
way − only customer buys or only customer sells − from days where large order flow
results from partial or full roundtrip − a customer buy is partially or fully offset by
a customer sell − as illustrated by Figure 1.2.

I expect days with partial Roundtrip order flow to be associated with market
making. A market maker expects to re-sell (repurchase) a security he has bought
(sold) at some horizon. Partial Roundtrip order flow suggests that dealers were not
willing to hold inventory deviations from their target overnight, and that they were
able to revert part of customer initial transactions to get closer to the target.

This hypothesis is consistent with evidence by Goldstein and Hotchkiss (2020)
on the least liquid US corporate bonds: dealers tend to revert transactions within
a day in 58.2% of the roundtrips they study. In a related way, Li and Schuerhoff
(2019) show in the US municipal bond market that when some customers demand
immediacy, dealers match them more directly with other customers, meaning that a
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customer-to-dealer is more quickly associated with other customer-to-dealer trades
in the other direction. Thus if my hypothesis is true, this means that customers
initiate the trades and dealers accommodate, meaning these trades correspond to
market making by dealers.

By contrast, I expect days with One-way order flow to be associated with pro-
prietary trading. In principle One-way order flow could reflect one of two events.
Either dealers are willing to hold the bonds they have purchased from customers,
because it enters a proprietary trading strategy. Or dealers are unwilling to hold the
position overnight, but they are not able to start to revert their position because
none of their customers is willing to buy on short notice: in this case it corresponds
to market making. Thus I expect the first motive to dominate.

Do I miss roundtrips in the interdealer market? Given that I only take
customer-to-dealer trades into account to assess whether there is a partial roundtrip,
I may miss situation where dealer A trades with a customer and reverts the trade
in the interdealer market.

This causes no problem for my purposes: if dealer A reverts a trade with dealer
B and one sees no reversal with another customer, it means that dealer B was willing
to keep the position, for proprietary trading purposes if my hypothesis is true. From
the perspective of the broker-dealer sector as a whole, it means that one dealer is
willing to enter proprietary trading.

1.2.3 Hypotheses

Crossing the theoretical predictions from subsection 1.2.1 with the hypothesis
that One-way order flow is associated with prop trading, and Roundtrip order flow
with market making, I formulate the following testable hypotheses.

Hypothesis 1. On days with one-way order flow in a given bond, price increases
(decreases) are correlated with customer net sales (buys).

On days with partial roundtrip order flow in a given bond, price increases (de-
creases) are associated with customer net buys (sales).

Hypothesis 2 (Limits of arbitrage). On days with one-way order flow, dealers tend
to buy (sell) bonds that are cheap (expensive) compared with other bonds.

In this paper I understand “cheap” and “expensive” in a broad and agnostic way.
Broad, because bonds with very different risk level or maturity, for instance, can
be said to be cheap relative to one another after adjustment for risk or maturity:
one bond can have a risk premium deemed “too large” compared with the other.
Agnostic, because I am not interested in whether a spread between two bonds is
justified from a theoretical point of view or not: I am simply interested in the
positive fact that dealers take some spreads into account or not.
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1.3 Data

1.3.1 Background: broker-dealers, and the US corporate
bond market

Broker-dealers. Broker-dealers are institutions that trade a lot in financial mar-
kets: they include banks’ activities in financial market, such as Barclays Capital,
Citigroup Global Markets, Goldman Sachs & Co. or JP Morgan Securities; in the
past decade, other large players have emerged in the asset management industry,
such as BlackRock, Citadel.10.11 More precisely, a dealer is a person or company
“engaged in the business of buying and selling securities for his own account” (Sec-
tion 3(a)(5)(A) of the Securities Exchange Act of 1934) as a regular business.12 A
broker is “any person engaged in the business of effecting transactions in securities
for the account of others”. A broker-dealer is thus a person or company that acts as
a broker and/or as a dealer. In this paper I am interested only in the dealer activity
of broker-dealers.

Dealers are often viewed as market makers. But the SEC definition is broader,
as the following are typical examples of dealer activities:

• Market making: “a person who holds himself out as being willing to buy and
sell a particular security on a continuous basis;”

• Proprietary trading or arbitrage: “a person who runs a matched book of re-
purchase agreements” (in appendix 1.12 I describe how long-short positions
are implemented through repurchased agreements).

• Securitization: “a person who issues or originates securities that he also buys
and sells”.

A central point of this paper is to show that broker-dealers follow strategies
consistent with proprietary trading.

Broker-dealers have to register with the SEC, and have to join a “Self-Regulatory
Organization” (SRO) such as the FINRA and national securities exchanges: a SRO
is a professional association that assist the SEC in regulating the activities of broker-
dealers. Becoming a member of FINRA is mandatory for dealers who trade outside
exchanges, such as in the US corporate bond market.13

The US corporate bond market The US corporate bond market is over-the-
counter: investors do not trade through exchanges, but with individual broker-
dealers. It is thus unlike equity markets where trading occurs through limit-order

10Through the company BlackRock Execution Services, BlackRock Investments LLC, Citadel
Securities respectively

11A much more complete list of broker-dealers can be found on FINRA’s website:
https://www.finra.org/about/firms-we-regulate.

12Most information in this paragraph comes from Security and Exchange Commission’s website:
https://www.sec.gov/reportspubs/investor-publications/divisionsmarketregbdguidehtm.html

13https://www.sec.gov/reportspubs/investor-publications/divisionsmarketregbdguidehtm.html#III.
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book markets. Most often, customers use telephone and messaging systems to re-
quest quotes from dealers, or dealers may contact investors to make them offers. The
content of the conversations between dealers and their customers is not available in
the US corporate bond market: in particular, quotes offered by dealers, which may
be customer-specific, are not disclosed.

Some platforms have emerged to allow investors to request quotes from several
dealers at once (Hendershott and Madhavan 2015), but this does not change the
fact that investors can choose to trade with a dealer A and not with another dealer
B even if dealer B would be willing to trade.

In July 2002, dealers were requested to report all their transactions in quasi real
time in the TRACE system, which is managed by FINRA. These reports would
be instantaneously released to market participants to give them ex post market
transparency.

Broker-dealer reporting of transactions. FINRA requires all its members,
that is all broker-dealers who trade in the US corporate bond market, to report
all their transactions, both as broker and as dealer, in the corporate bond market
through TRACE system.

Therefore all transactions in the US corporate bond market that involve a broker-
dealer are in TRACE. However, it is not required by broker-dealers to enter the
type of activity the transaction is involved in such as market making or proprietary
trading, or the party who initiated the trade.

1.3.2 Data and sample selection

Data I use US corporate bonds transaction data from FINRA’s enhanced TRACE
engine, which I retrieved through WRDS. The sample runs from July 1st, 2002 to
December 31st, 2014. Each transaction report in my version of the dataset contains
a bond identifier (CUSIP), the date and time of the transaction, the transaction
price, the transaction size in terms of par value traded, whether the reporting dealer
was a buyer or a seller, and whether the trading counterparty was another dealer or
a customer. I clean the data with usual procedures described in appendix 1.9.

Daily Treasury yield curves come from Gurkaynak, Sack, and Wright (2007) and
updates by the Fed. Other financial indicators (LIBOR, TYVIX, ...) come from
various usual providers.

Sample selection I select customer-to-dealer transactions for dollar-denominated
corporate bonds with characteristics available in Mergent FISD database, with issuer
common stock to match with using WRDS CRSP-TRACE linking suite. I drop
bonds with principal value different from $1000 as these are usually non-standard,
whose payoff depend on an index (with “-linked” in their name), and with issue size
less than $10 million, as all these bonds are likely to be very illiquid. I keep bonds
with embedded options (call, put).
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I focus on most actively traded bonds: I keep bonds for which there are customer-
to-dealer trades at least 75% of its relevant business days, i.e. between first trade
and last trade, like Bao, Pan, and Wang (2011). I drop transactions for bonds with
residual maturities less than one year, as the trading patterns are special. I drop
trades that occur until 7 days after the bond’s offering date, as these are likely
related to the primary market. I drop bonds that have less than 50 observations, to
exclude bonds that are traded only a few days and then disappear.

Finally, I keep observations for investment-grade bonds. Ratings are by S&P,
Fitch and Moody’s, accessed through Mergent. When ratings from several agencies
are available, I retain the worst nonmissing one. If a bond is not rated, then I
consider it with a worse rating than any other rating.

This procedures leaves 3080 unique bonds corresponding to 546 issuers as iden-
tified by Mergent FISD.

1.3.3 Variables definitions

I study daily order flow in parallel with daily price changes. For bond i and
day t, I retain the price pi,t of the last transaction. I also keep the size qi,t of this
transaction, with the convention that qi,t > 0 if it is a customer buy, qi,t < 0 if it is
a customer sale.

Order flow I define customer order flow for bond i on day t as the sum of the
sizes of customer large buys minus the sum of the sizes of customer large sells. Large
transactions are those for which there is at least $100,000 of par value traded at once:
these trades are generally considered as of institutional size and comprise 97% of
trading volume in my sample. Formally, denoting q1

i,t, q
2
i,t, ..., q

n
i,t, ... the 1st, 2nd, ...,

nth large transaction in bond i and day t, the order flow is

OFi,t =
∑
n

qni,t 1|qni,t|>$100,000

It includes the last transaction of day t if this last transaction is large. As shown in
the summary statistics subsection 1.3.4, the distribution of order flow has fat tails.
To avoid large observations driving the regression estimates, I use the following:

ÕF i,t = sign (OFi,t)× log10 |OFi,t|

which allow to reduce the tails of the order flow distribution while keeping track of
the sign of order flow.

I will also need to distinguish between One-way and Partial Roundtrip order
flow, and sometimes with a further split between bond maturity being more or less
than a cutoff. Thus I define

ÕF
OneWay

i,t =

{
ÕF i,t if One-Way order flow

0 otherwise.
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and I define ÕF
Roundtrip

i,t for Partial Roundtrip order flow in a similar way. I also
define in an analogous way

ÕF
OneWay,M≤10y

i,t =

{
ÕF i,t if One-Way order flow and maturity ≤ 10y

0 otherwise.

and similarly for One-way order flow and bond maturity above 10 years, and Partial
Roundtrip with bond maturities above and below 10 years.

Bond spreads. I compute bond spreads in a way similar to Gilchrist and Zakra-
jsek (2012): for each bond i, I compute a risk-free price as the sum of its theoretical
cash-flows (coupons + principal at maturity, maturity being the theoretical maturity
for callable bonds) each discounted by the fitted Treasury yield curve of Gurkaynak
et al. (2007), and adjusted for accrued interest. The spread is the log of the ratio of
the risk free price to the observed price.

Subperiods In some sections of the paper I test the predictions over several sub-
periods, defined as follows:

1. Opaque, from TRACE inception (first observation on July 1st, 2002) to Febru-
ary 7th, 2005. During this period, TRACE data were released for a limited
number of bonds only, so that post-trade transparency was limited for other
bonds for which data were not released to market participants. On February
8th all transactions were disclosed. One expects a different dealer behavior
during this period.

2. Pre-Crisis, from February 8th, 2005 to June 30th, 2007.

3. Crisis, from July 1st, 2007 to April 30, 2009. The crisis dates (June 30th,
2007 to April 30, 2009) are borrowed from Bessembinder et al. (2018). Making
the crisis start in July 2007 is consistent with the increase in bond spread and
Primary Dealers’ short Treasury position cut in July 2007.

4. Post-Crisis, from May 1st, 2009 to July 20th, 2010. This period ends the
day before the Dodd-Frank Act was passed. The Dodd-Frank Act in par-
ticular contained the Volcker rule, although the implementation details were
not written at this time. However, Bessembinder et al. (2018) show large in-
vestment banks announced they shut down their proprietary trading desks,
suggesting anticipatory effects of the rule.

5. Dodd-Frank : from July 21st 2010 to the end of the sample, corresponding to
the period when the Dodd-Frank Act was voted.
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Mean Std. Dev. p5 p10 p25 p50 p75 p90 p95

Issue size ($mn) 1,026 793 268 350 500 800 1,250 2,000 2,500

Initial maturity 10.6 8.5 3 5 5 10 10 30 30

Maturity ≤ 10y 78.9% - - - - - - - -
Callable 57.8% - - - - - - - -

Table 1.1: Distribution of bond characteristics across the 3,080 bonds in the sample:
issue size in millions of dollats, maturity at issuance, and for the last two lines the
fraction of bonds with initial maturity less than 10 years, and of bonds with an
embedded call giving the bond issuer the opportunity to redeem his bond before
maturity.

Nr observations % Callable % One-way
With large trades 1,464,701 52.1 50.4
All 2,220,248 53.6 33.0

Table 1.2: Percentage of observations with callable bonds; percentage of observations
with One-way order flow (only large customer buys or only large customer sells), for
the subsample with large trades (1st line) and for all observations (2nd line).

1.3.4 Summary statistics

Whole sample

Bond characteristics. Table 1.1 provides a few summary statistics for the sample
of bonds. The first line indicates an average issue size of one billion dollars, above the
median which stands at 800 million: issues are in general large. At issuance, bonds
have an average maturity of 10.6 years, with the median and the 75th percentile
being at 10 years. As suggested by the table, most bonds have initial maturity 10
years (31.7%), 5 years (27.0%) or 30 years (9.4%), and 78.9% of bonds have initial
maturity less than or equal to 10 years. Finally, more than half of the bonds in the
sample have an embedded call as shown by the last line.

Transaction-level. Figure 1.3 gives the share of total volume that transactions
of given size represent over the whole sample. For instance transactions between $1
million and $5 million represent close to 40% of total trading volume in my sample.
The distribution does not change much across my subperiods. Large transactions,
with par value traded above $100,000, represent 97% of total trading volume.

Daily observations. This paragraph gives summary statistics about bond × day
observations. Table 1.2 shows that out of the 2.2 million observations, 1.5 million
have large transactions. Slightly more than half observations are with callable bonds,
in line with the proportion of callable bonds shown in table 1.1.
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Mean Std. dev. p5 p10 p25 p50 p75 p90 p95

OFi,t ($ million) 0 11.2 -8.7 -4.2 -.7 0 .9 4 7.9
OFi,t if One-way .1 7.1 -5.7 -2.9 -.6 .2 .8 3 5.8

∆ log pi,t × 100 0 1.85 -2.36 -1.51 -.53 0 .54 1.53 2.38

Years to maturity 7.8 8.1 1.4 1.8 2.9 5 8.5 23.7 27.7
Age (years) 3.3 2.7 .4 .7 1.4 2.6 4.5 6.9 8.2

# trades (all sizes) 7.5 13.4 1 1 2 4 8 15 22
# trades (large) 1.7 2.6 0 0 0 1 2 4 6

Table 1.3: Sample distribution of order flow OFi,t, order flow conditional on it being
One-way, of residual maturity and age conditional on having large transactions (>
$100,000) in bond i on day t. The distribution of log price changes ∆ log pi,t and of
the number of trades are unconditional. Order flow is positive when customers are
net buyers.

Table 1.3 shows the distribution of several variables. The distribution of order
flow OFi,t is symmetric, with a mean equal to the median at 0. The distribution
has fat tails, with more than 20% of the observations having absolute value above
$4 million: this motivates the use of the signed logarithm of order flow ÕF i,t in the
regressions, to compress the distribution. Conditional on order flow being one-way,
order flow is slightly skewed towards customer buys with positive mean and median.
Quantiles of one-way order flow are slightly smaller in absolute value than for the
unconditional distribution, but the order of magnitude remains the same.

The distribution of log price changes if also symmetric around zero. Log price
changes are multiplied by 100, so that they are expressed in percentage points. The
volatility of these daily price changes is suprisingly large, but mitigated in the longer
run by reversals.

The mean of residual maturity when bonds are traded is lower than the mean
bond maturity at issuance, which is partly mechanical due to the fact that resid-
ual maturity decreases through time. Interestingly, the distribution of bond ages
suggests that most observations are for relatively young bonds, with a mean and
median close to 3 years, while the 95th percentile is at 8.2 years, suggesting bond
older than 10 years are seldom traded.

Finally, the last two lines show the distribution of the number of transactions
per bond × day observation. The mean of 7.5 is low compared to equity markets
for instance; the lower median at 4 transactions suggests the mean is driven by
a few observations with many transactions. Over all observations, the number of
large transactions (more than $100,000 traded) is even lower, with a median at 1
transaction and a mean at 1.7 transaction.
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Subperiod One-Way
One-Way
M ≤ 10y

OneWay
M > 10y

Opaque 47 38 9
Pre-Crisis 56 44 11
Crisis 49 38 11
Post-Crisis 44 34 10
Dodd-Frank 51 39 13

Table 1.4: Percentage of One-way order flow and further breakdown by initial ma-
turity M , conditional on observations having large transactions.

Evolution through time

Table 1.4 plots the percentage of One-way order flow across observations by
subperiod, with a further split by initial maturity. I use the further split by maturity
in the order flow regressions in section 1.5, to better identify proprietary trading.

There is no striking change from before to after the crisis: the proportion of
One-way order flow is slightly higher during the Pre-Crisis and Dodd-Frank periods,
as is the proportion for One-way order flow and maturity below 10 years.

1.4 Price changes and order flow

In this section I test hypothesis 1 on the correlation between price changes and
customer order flow. To do this I regress daily log price changes on customer order
flow, controlling for other plausible determinants of price changes. These regressions
allow to determine whether broker-dealers act only as market makers, or if they also
follow other strategies. I also discuss potential endogeneity concerns in subsection
1.4.3

1.4.1 Specifications

Here I present three different specifications: one with order flow with no dis-
tinction between One-way and Partial Rountrip, one with the distinction, and one
with the distinction and an interaction with a dummy for the post-Lehman crisis. I
present estimation results in the next subsection.

Baseline

Here I present a benchmark specification where I do not distinguish between
One-way and Roundtrip order flow. A first limit to measuring price impact is that
pre-trade quotes are not available. These would allow to separate actual quote
movements, which are what I am interested in, from one-shot order processing costs
that are charged without impact on subsequent prices. Inspired by Foucault, Pagano,
and Roell (2014) and as in Rapp (2016) I circumvent the issue raised by the absence
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of pre-trade quotes issue by aggregating transactions at daily level, so that the price
impact component of the spread can be isolated from other order processing costs
and rents.

Thus I compute the log price difference between the last transaction of day
t and the last transaction of day t − 1, and regress it on large customer order
flow, controlling for small order flow, measures of order processing costs and various
controls. Thus I estimate the following equation:

∆ log pi,t = α + β ÕF i,t + γ′X
(p)
i,t + ε0,i,t (1.4.1)

Market making theories predict β > 0. As reviewed in subsection 1.2.1, under
dealer inventory costs and/or customer private information about bond value, one
expects customer sales (resp. purchases) to be associated with price decreases (resp.
increases): a customer sell either signals bad news about the asset value, or imposes
more risk on the dealer’s balance sheet - both of which leading the dealer to trade
at a lower price.

X
(p)
i,t is a vector of controls that contains the following variables. First, I control

for order processing costs: each price pi,t−1, pi,t is the price of an actual transaction
that can be a customer buy at the ask price, or a customer sell at the bid price lower
than the ask price. Thus I include the directions di,t−1, di,t of the the corresponding
transactions, equal to +1 for customer buys and −1 for customer sells. The empirical
microstructure literature in the US corporate bond market also suggest that order
processing costs may decrease with the size of the order because larger customers
get better terms: to the direction of the last transaction I add their signed log
sizes, sign(qi,t−1) log10 |qi,t−1| and sign(qi,t) log10 |qi,t|, with the log again to prevent
the largest observations to drive the results.

I also control for the bond issuer’s stock return, for changes in the 10 years US
Treasury yield, changes in the 3 months LIBOR, changes in rating, TYVIX (an
implied volatility index for 10 years Treasury futures) and changes in TYVIX. All
changes are daily, using closing prices.

Log price changes are ∆ log pi,t = log(pi,t/pi,t−1). Therefore ∆ log pi,t = 0.01
means the price has changed by 1 percent. To express price changes in percentage
points, in the regressions I replace ∆ log pi,t by ∆ log pi,t × 100 as in table 1.3.

Both trades and price changes may be driven by information related to the bond
issuer. Therefore I cluster standard errors by bond issuer. In the appendix I also
compute standard errors clustered by bond issuer, by maturity and by calendar
month.

One-way vs. Roundtrip

Now I distinguish between One-way and Partial Roundtrip order flow: I replace
the order flow measure by a one-way order flow measure and a partial roundtrip
order flow measure:

∆ log pi,t = α + β1 ÕF
OneWay

i,t + β2 ÕF
Roundtrip

i,t + γX
(p)
1,i,t + ε1,i,t (1.4.2)
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ÕF
OneWay

i,t equals ÕF i,t if order flow in bond i was One-way on day t; it equals zero

otherwise. Similarly ÕF
Roundtrip

i,t equals ÕF i,t if order flow in bond i on day t was a
partial roundtrip, and zero otherwise. Hypothesis 1 formally reads

β1 < 0 and β2 > 0.

Splitting order flow in the previous way is equivalent to putting an interaction of
order flow with the dummy for order flow being One-way: I include this dummy in
the vector of controlsX

(p)
1,i,t, which otherwise contains the same controls as in equation

(1.4.1). Again log pi,t is multiplied by 100 to express it in percentage points. I cluster
standard errors by bond issuer similarly to regression (1.4.1).

One-way vs. Roundtrip outside post-Lehman crisis

The financial crisis period has been special regarding prop trading: after Lehman
Brothers’ failure on September 15th, 2008, markets were reportedly highly illiquid,
which may have induced dealers to stop proprietary trading. Therefore One-way
order flow during this period may reflect only market making; in addition, market
making costs may have been very high: this would tend to bias the coefficient β1 up
in equation 1.4.2.

Therefore I interact both measures of order flow with the dummy Lehmant that
equals 1 between September 15th, 2008 and April 30th, 2009, i.e. for 7.5 months
out of the 12.5 years of my sample. The equation becomes:

∆ log pi,t = α + β1 ÕF
OneWay

i,t + β2 ÕF
Roundtrip

i,t

+ β3 ÕF
OneWay

i,t × Lehmant + β4 ÕF
Roundtrip

i,t × Lehmant

+ β0Lehmant + γX
(p)
2,i,t + ε2,i,t (1.4.3)

The vector of controlsX
(p)
2,i,t includes the dummy for one-way order flow, the Lehmant

dummy and the interaction between the two. Otherwise it contains the same controls
as in specifications 1.4.1 and 1.4.2.

1.4.2 Results

Table 1.5 presents the estimation results for equations 1.4.1, 1.4.2 and 1.4.2.
The first column reports the estimation result for the baseline regression 1.4.1.

The coefficient is positive and highly significant, consistently with market making:
running the price impact regression without distinction thus legitimates the idea that
broker-dealers are pure market makers. The estimates imply that customer net buys
by 1 million are on average associated with a price increase by log10(1, 000, 000) ×
.0033 = .02 percentage points, that is, 2 basis points. It may appear small, but
this is not my point: I distinguish between theories that imply positive or negative
coefficients, with potentially broader, systemic implications.
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Table 1.5: Regression of daily log price changes on customer order flow and controls.
ÕF i,t is the sign of order flow times the logarithm of the absolute value of order flow.
Order flow is the sum of customer large buys minus the sum of customer large sells.

A customer buy or sell is large its size is above $100,000. ÕF
OneWay

i,t equals ÕF i,t

if order flow in bond i on day t is one-way (only customer buys or only customer

sells), and zero otherwise. ÕF
Roundtrip

i,t equals ÕF i,t if order flow is not One-way, i.e.
(partial) roundtrip, and zero otherwise. Controls are issuer stock return, changes in
10 years Treasury yield, changes in 3-months LIBOR, TYVIX, an implied volatility
index for Treasury futures, and changes in TYVIX. In the second and third column,
a dummy OneWayi,tfor one-way order flow is included. Lehmant is a dummy that
equals 1 if t is between September 15th, 2008 and April 30th, 2009. In the third
column, the interaction OneWayi,t × Lehmant is included.

Baseline
One-way

vs. Roundtrip

One-way
vs. Roundtrip

Lehman interaction

ÕF i,t 0.0033∗∗∗

(10.68)

ÕF
OneWay

i,t 0.0008∗ -0.0025∗∗∗

(2.05) (-6.12)

ÕF
Roundtrip

i,t 0.0056∗∗∗ 0.0040∗∗∗

(13.67) (11.65)

Interaction with Lehmant N N Y

Constant and controls Y Y Y

R2 0.24 0.24 0.24
N 2,220,248 2,220,248 2,220,248

Standard errors clustered by bond issuer
∗ (p<0.05), ∗∗ (p<0.01), ∗∗∗ (p<0.001)
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The second column reports the results for One-way and Partial Roundtrip order
flow separately. The coefficient for One-way order flow is 7 times smaller that the
coefficient for partial Roundtrip order flow, and the difference is statistically sig-
nificant (not shown); it is however positive and just significant at 5% level. The
difference between the two coefficients is already striking.

The third column reports the estimation results for the main effects of One-way
and Roundtrip order flow, i.e. for these measures outside the crisis post-Lehman.
The coefficient for one-way order flow is now negative and highly significant, while
the other is significantly positive: this validates hypothesis 1.

1.4.3 Endogeneity concerns and robustness checks

One may be concerned about endogeneity when interpreting correlations in price
impact regressions as reflecting one class of theories or the other. Endogeneity is
certainly there, but I claim that 1) it does not raise significant concerns for my
purpose and 2) I already control for plausible sources of endogeneity.

Direction of causality

A first concern is about the direction of causality: one does not know whether
prices decrease because dealers sell (i.e. customers sell), or whether customers buy
because they see a low price. One would view the second case as a sign dealer
proprietary trading. One may view the first direction as consistent with market
making behavior, with dealers decreasing their quotes to liquidate inventory they
have just purchased.

I view the market making interpretation as misled. It is true that a market maker
willing to re-sell inventory he has just bought is quoting low price to induce customer
purchases. However this does not imply that the market maker is systematically
willing to decrease his quotes to induce customer purchases: indeed such statement
implies the market maker would systematically buy at a high price and sell at a low
price, and thus make a systematic market making loss that would drive him out of
business.

In fact, a profitable pure market maker anticipates that the re-sell price will
have to be low as well when he buys, thus buys at a lower price. This predicts that
customer buys are associated with price increases.

Therefore observing a correlation between customer buys (sales) and price de-
crease (increase) does not require any stand on the direction of causality to conclude
that it corresponds to proprietary trading. However, one may worry that common
drivers of customer net trades and price changes drive the results. I review these
concerns in what follows.

Common drivers for price changes and customer trades

One may also be concerned that there are common drivers for price changes and
customer trades: for instance public bad news may induce both prices to decrease
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and customers to sell. In this case the correlation does not seem to reflect market
making effects such as adverse selection and dealer inventory costs.

I see the reverse correlation as less problematic for my interpretation. If bad news
induce both price drops and dealer sells or customer buys, it means that dealers are
more willing to sell than their customers, who thus provide liquidity to dealers.

In any case I control for plausible common drivers of order flow and price changes,
which I review now.

Credit and risk-free rate risks. I address this endogeneity concern by control-
ling for proxies for public information. Relevant information should be primarily
about issuer’s credit quality and interest rates. Regarding credit risk, I add control
for stock return: informed traders should also trade in the stock market, as bond
credit risk and stocks valuation are both about the issuer’s asset side valuation.
Regarding interest rate movements, I control for changes in the 10 years Treasury
yield, and for the 3-months LIBOR. The LIBOR captures both short-term interest
rate movements and changes in credit risk concerns in the banking sector; including
changes in the 3-months Treasury bill instead does not change the results.

Cheapness measures One may also worry that cheapness measures forecast both
dealer purchases and price increases. I address this concern in appendix 1.10.1, in
which I show that estimates of order flow are unaffected.

Predicted order flow I also assess in appendix 1.10.2 whether other predictors
of order flow are driving the results: previous price changes, lags of order flow and
lagged stock return and interest rate changes. To do this I compute a predicted
and an unexpected component of order flow, separately for One-way and Partial
Rountrip order flow, as described in the appendix. I am interested in the unexpected
component. Again the estimates are unchanged.

Robustness to more conservative standard errors

My results are robust to additional layers of clustering: one may be concerned
that order flow is correlated with price changes within a maturity bucket, or within
a calendar month. In appendix 1.10.3 I re-run the price impact regression by com-
puting standard errors with various multiway clustering, following the methodology
by Cameron et al. (2011), and including the cheapness measures as in subsection
1.4.3 to check full robustness. The estimates remain significant at 5% level even
with three-way clustering by bond issuer, maturity and calendar month.

1.4.4 Proprietary trading: refinements

Table 1.5 shows that outside the crisis, One-way order flow corresponds on av-
erage to proprietary trading, while it does not during the crisis. One may wonder
whether such average effect hide some heterogeneity: sometimes dealers buy and do
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not sell and conversely because they are willing to hold the position, sometimes it
may be because they were not able to find a counterparty sufficiently quickly.

Here I re-run regressions of price changes over One-way and Partial Roundtrip
order flow, by further distinguishing by three different criteria: bond age, bond
maturity at issuance (initial maturity) and bond residual maturity at the time
of trade. I split the sample with according to whether the criterion is below or
above 10 years. The generic specification for criterion Z = Age, InitialMaturity,
ResidualMaturity is thus

∆ log pi,t = α + β1 ÕF
OneWay,Z≤10y

i,t + +β2 ÕF
OneWay,Z>10y

i,t

+ β3 ÕF
Roundtrip,Z≤10y

i,t + β4 ÕF
Roundtrip,Z>10y

i,t

+
∑
k

LehmanInteractionTermsk,i,t + Lehmant + γX
(p)
2,i,t + ε2,i,t

(1.4.4)

where the LehmanInteractionTermsk,i,t are interaction terms of each of the four
measures of order flow with the dummy Lehmant.

Table 1.6 shows the results, which are clear: proprietary trading is concentrated
on younger bonds (less than 10 years old), on bonds with initial maturity 10 years,
and on bonds with residual maturity 10 years. Otherwise the coefficients are con-
sistent with market making.

Overall it seems that older bonds, or bonds with longer maturity (initial or
residual), one-way order flow corresponds to market making and dealers’ inability
to revert inventory quickly towards the target. These bonds are likely less liquid, so
the results are also in line with the results by Goldstein and Hotchkiss (2020) who
find on their sample of illiquid bonds that 42% of customer trades are not reversed
within one day.

1.4.5 Evolution through time

I ran the previous regressions over the whole sample, covering plausibly very
different environments from before the crisis to after. Here I add interaction of one-
way and partial roundtrip order flows with dummies for the subperiods defined in
section 1.3.

Formally, I estimate the following, where Periodkt is a dummy for one of the above
periods Opaque, Bear Stearns to Lehman, Lehman to end of crisis, Post-Crisis, Post
Dodd-Frank, the base level being the Pre-Crisis period (the base level choice does
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Table 1.6: Regression of price changes on One-way and Partial Roundtrip order
flow, further distinguishing order flow on whether a criterion Zi,t is below or above
10 years. Criteria Z are bond age (time since issuance), bond maturity at issuance
(initial maturity), bond residual maturity at the time of trade. Each column reports
the estimation with a different criterion. Controls are issuer stock return, changes in
10 years Treasury yield, changes in 3-months LIBOR, TYVIX, an implied volatility
index for Treasury futures, and changes in TYVIX. In the second and third column,
a dummy OneWayi,tfor one-way order flow is included. Lehmant is a dummy that
equals 1 if t is between September 15th, 2008 and April 30th, 2009. Dummy main
effects are included, as well as relevant interactions terms between dummies.

Age Initial Maturity Residual Maturity

ÕF
OneWay,Z≤10y

i,t -0.0029∗∗∗ -0.0050∗∗∗ -0.0045∗∗∗

(-6.72) (-9.83) (-10.17)

ÕF
OneWay,Z>10y

i,t 0.0109∗∗∗ 0.0066∗∗∗ 0.0093∗∗∗

(5.32) (6.87) (7.50)

ÕF
Roundtrip,Z≤10y

i,t 0.0039∗∗∗ 0.0029∗∗∗ 0.0031∗∗∗

(11.21) (8.94) (9.98)

ÕF
Roundtrip,Z>10y

i,t 0.0093∗∗ 0.0085∗∗∗ 0.0090∗∗∗

(3.28) (10.97) (9.13)

Interaction with Lehmant Y Y Y
Constant and controls Y Y Y

R2 0.24 0.24 0.24
N 2,220,248 2,220,248 2,220,248

Standard errors clustered by bond issuer
∗ (p<0.05), ∗∗ (p<0.01), ∗∗∗ (p<0.001)
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not affect the results):

∆ log pi,t = α + β1 ÕF
OneWay

i,t + β2 ÕF
Roundtrip

i,t

+
∑
k

(
βk,OW ÕF

OneWay

i,t × Periodkt + βk,R ÕF
Roundtrip

i,t × Periodkt
)

+
∑
k

βk,0Period
k
t + γX

(p)
2,i,t + ε2,i,t (1.4.5)

I plot the total effects of this regression for each period, for One-way and Partial
Roundtrip coefficients separately, in figure 1.4. I scale the coefficients so that they
correspond to the price change in basis points associated with net customer purchases
by $1 million. The original coefficients are in table 1.13 in the appendix.

Proprietary trading, as shown by negative coefficients, is present before the Crisis
in the Opaque and Pre-Crisis periods, and also after the crisis in the Dodd-Frank
period. The coefficient on One-way order flow is positive during the Crisis and
strikingly higher than the coefficient on Partial Roundtrip order flow. This likely
comes from the fact that one-way order flow corresponds to positions dealers are
not willing to hold, but cannot start to offload within a day: as they probably
expect to hold these positions for longer, they entail higher price impact, for instance
associated with higher inventory holding costs.

It is also striking that coefficients before the crisis are much strongly more nega-
tive than after the Dodd-Frank Act was passed: this suggests that post-crisis regu-
lation, the Volcker rule in particular, decreased the strength of proprietary trading.
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Figure 1.4: Regression-implied log price changes associated with customer net
purchases by $1 million across sample subperiods, for One-way (red) and
Roundtrip(blue) order flow. Dashed lines are the 95% confidence intervals for each
coefficient. The Opaque period when not all TRACE transactions were disclosed to
market participants starts on July 1st, 2002 and stops on February 7th, 2005. The
Pre-Crisis period starts on February 8th, 2005 and stops on June 30th, 2007. The
Xrisis period goes from July 1st, 2007 to April 30th, 2009 (a conventional date used
in other papers). The Post-Crisis period goes from May 1st, 2009 to July 20, 2010.
The Post Dodd-Frank goes from July 21st (Dodd-Frank Act voted) to the end of
the sample.
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1.5 Order flow and lagged cheapness

In this section I test hypothesis 2. If dealers tend to buy (sell) bonds that were
cheap (expensive) the day before, it reveals prop trading activities by dealers.14 I first
focus on a simple of bond cheapness. I introduce individual corporate-to-Treasury
spreads, i.e. the spread between the bond’s yield and the yield of a fictitious bond
with the same contractual cash flows discounted with the Treasury yield curve. Then
I compare this spread to the median spread of all bonds with the same maturity,
credit risk and callability features: this is a proxy for an idiosyncratic component
of the bond’s individual spread. I find that broker-dealers indeed tend to purchase
(sell) bonds with maturity below (above) 10 years.

Then I add three spread components related to credit risk and callability given
residual maturity, to maturity and to differences between corporate bonds as a whole
and Treasury bonds. The four measures are a model-free decomposition of the
spread: it only looks at relative price differences between various subsets of bonds.
The analysis shows that broker-dealers arbitrage corporate bonds within maturities
(thus across ratings/callability) and as an asset class with respect to Treasuries.

There are potentially many proprietary trading opportunities in the corporate
bond market and in related markets, and I do not try to be exhaustive: documenting
that broker-dealers exploit at least some price differentials is enough for my purposes.
Furthermore, I proxy cheapness with various price differentials, that may or may not
be justified from a normative viewpoint: I am only interested in the fact that broker-
dealers react to these differentials, which likely shows that dealers perceive them as
mispricings.

1.5.1 A narrow measure of relative cheapness

The measure

I compute spreads as indicated in section 1.3: they are the log difference between
the observed clean bond price and a fictitious “risk-free” bond price. The latter price
is the price of a fictitious bond that has the same contractual coupons and principal,
but with these cash flows discounted with the Treasury yield curve.

There are two spurious correlations I have to avoid. First, by regressing customer
order flow on contemporaneous last spread of the day, one may simply capture
the price impact of market making trades: customer sales (purchases) would be
associated with price decrease (increase) and misleadingly be interpreted as dealers
purchasing cheap bonds. To limit this and other potential endogeneity concerns, I
regress order flow on lagged spread.

Second, the raw spread may capture mechanical effects related to the bid-ask
bounce. The problem is as follows. If the last transaction of day t was a customer

14Although this reveals nothing about their leverage.
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sale, it was executed at a lower price than if it was a customer buy just because of a
positive bid-ask spread. I may therefore capture spurious explanatory power of day
t − 1 bond spread: if 1) a customer buy at the end of day t − 1 is correlated with
customer sale at the end of day t − 1, and 2) a customer buy at the end of day t
is correlated with overall customer buys during day t, then the forecasting power of
the bond spread simply captures some mechanical features of customer order flow,
and not dealer proprietary trading. Averaging over past business days solves the
problem.

Thus to address both concerns I consider the average yi,t−1 of the last bond
spreads of the seven previous business days t − 7 to t − 1 in cheapness measures.
The choice of 7 days is conservative, while results do not materially change if I do
not average at all over business days.

I first consider a simple strategy that is close to arbitrage: bonds with similar time
until maturity, with similar credit rating and with or without an embedded call can
be viewed as close substitutes, and from this perspective should have very similar
prices.15 Therefore I group bonds by integer part of years to maturity, by credit
rating category (AAA/AA, A, BBB) and by callability. The difference between a
bond’s average spread yi,t and the median in its group ysimi,t is the cheapness measure
that captures this quasi arbitrage, and is a proxy for the idiosyncratic component
of the bond’s spread to Treasuries:

Idiosynci,t = yi,t − ysimi,t

This measure is positive if bond i is cheap, i.e. its spread is higher than the median
in the basket of similar bonds.

Baseline specification

Again I distinguish between One-way and Partial Rountrip order flow. To do it I
regress order flow on my measure of cheapness interacted with a dummy Roundtripi,t
equal to 1 if order flow is a partial roundtrip on day t for bond i.

ÕF i,t = α + ν1 Idiosync
OneWay
i,t−1 + ν2 Idiosync

Roundtrip
i,t−1

+ β′Xq
1,i,t−1 + ηi,t (1.5.1)

Dealers tend to purchase bonds that are cheap with respect to bonds that are similar
to it on One-way days if ν1 < 0. The same happens on Partial Roundtrip days if
ν2 < 0.

The regression includes controls for 10 lags of log order flow, for 10 lags of past
price changes, and the vector Xq

1,i,t−1 contains 3 lags of issuer stock return, lagged

15Assets with similar expected payoff and variance may have different prices because of different
covariances with the market portfolio. For investment grade bonds, this should come from the
credit risk component, and I do not expect the covariance between credit risk to play such a big
role with respect to other components - interest rate risk, systematic component of credit spreads,
...
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10 years Treasury yield change and lagged changes in 3 months LIBOR. I exclude
contemporaneous controls to avoid an endogeneity concern: the cheapness measure
may predict both order flow and the contemporaneous controls such as stock return
and rate changes. It also contains the dummy OneWayi,t for the order flow on
day t in bond i being one-way. I estimate equation 1.5.1 through OLS and cluster
standard errors by issuer as for price impact regressions.

Refined specification with age or maturity criteria

I regress the signed logarithm of order flow on derived cheapness measures: for
instance IdiosyncOneWay,Maturity≤10y

i,t equals Idiosynci,t if bond i has residual matu-
rity less than 10 years on day t, and day t order flow is One-way in bond i; it equals
zero otherwise. Similarly, for Roundtrip order flow and for residual maturities above
10 years. Order flow can also be split according to an age, or an initial maturity
criterion.

I thus estimate the following equation for each criterion Z being bond age, bond
initial maturity and bond residual maturity:

ÕF i,t = α + ν1 Idiosync
OneWay,Z≤10y
i,t−1 + ν2 Idiosync

OneWay,Z>10y
i,t−1

+ ν3 Idiosync
Roundtrip,Z≤10y
i,t−1 + ν4 Idiosync

Roundtrip,Z>10y
i,t−1

+ β′Xq
Z,i,t−1 + ηi,t (1.5.2)

Bond lagged cheapness is associated with dealer purchases for criterion Z less than
10 years and One-way order flow if ν1 < 0: then a higher spread (cheaper bond) is

associated with more customer sales (ÕF i,t < 0), i.e. dealer purchases. A similar
reasoning applies to ν2, ν3, ν4. The vector Xq

Z,i,t−1 includes the same controls as as
for regression 1.5.1 and adds a dummy for the criterion Z being lower than 10 years,
and its interaction term with the dummy OneWayi,t for order flow being One-way
on day t.

Results

Table 1.7 shows the results. To save space I hide coefficients for Roundtrip order
flow, which are never significant.

The coefficient for IdiosyncOneWay
i,t−1 is not significant in the first column, although

it is negative as expected. In the second column, I show the estimates of regression
1.5.2 for the age criterion: the coefficient is negative (weakly) significant for bonds
older than 10 years, and negative insignificant for bonds younger than 10 years.

The maturity criteria work better: the coefficient is negative significant for
shorter maturity bonds, whether initial (third column) or residual (fourth column).
Spreads are computed as log price differences multiplied by 100. The estimate for
the initial maturity criterion implies that a one point increase in the Idiosynci,t−1

measure is associated with a .0550 decrease in log customer purchases, meaning that
customer purchases vary by 10−0.0550 − 1 = −12%, i.e. dealer purchases increase by
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Table 1.7: Order flow regressed on lagged measure of cheapness CheapInSim, equal
to the bond spread to a fictitious Treasury bond with the same cash flows and
discounted with the Treasury yield curve of the day, minus the median of these
spreads in the basket of bonds with the same credit rating, maturity and callability.
Controls include the main effects for the dummy OneWayi,t for one-way order flow,
and in the 2nd, 3rd and 4th columns the main effect for the criterion Crit (bond age,
initial maturity and residual maturity) being less than 10 years, and its interaction
with OneWayi,t. Additional controls are 10 lags of order flow, 10 lags of bond
price changes, 3 lags of stock return and lagged 10 years Treasury yield changes.
To save space only the coefficient for Idiosync for One-way order flow are shown.
Coefficients for Roundtrip order flow are never significant.

Z None Age InitMaturity ResidMaturity

IdiosyncOneWay
i,t−1 -0.0114

(-1.54)

IdiosyncOneWay,Age≤10y
i,t−1 -0.0100 -0.0550∗∗∗ -0.0541∗∗∗

(-1.29) (-4.06) (-4.26)

IdiosyncOneWay,Age>10y
i,t−1 -0.0209∗ 0.0095∗ 0.0121∗

(-2.06) (2.03) (2.55)

Roundtrip order flow Y Y Y Y
Constant and controls Y Y Y Y

R2 0.00 0.00 0.00 0.00
N 2,316,162 2,316,162 2,316,162 2,316,162

Standard errors clustered by bond issuer
∗ (p<0.05), ∗∗ (p<0.01), ∗∗∗ (p<0.001)
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12%. The estimate is similar for the residual maturity criterion. For longer matu-
rity bonds (by both measures) the estimate is slightly positive significant, suggesting
customer proprietary trading.

1.5.2 More general proprietary trading strategies

In this section I investigate additional arbitrage strategies by decomposing the
bond spread in four model-free components including that of section 1.5.1. The
decomposition brings stronger evidence of dealer proprietary trading and isolates
three relevant broker-dealer trading strategies:

• between similar bonds as in subsection 1.5.2

• between bonds of similar maturities, irrespective of their credit rating/maturities

• between corporate bonds and Treasury bonds, which is consistent with figure
1.1.

A model-free spread decomposition

A given bond can enter proprietary trading strategies because of one or several
of its characteristics. Broker-dealers could arbitrage between highly similar bonds
in terms of maturity, credit rating and embedded options; or between bonds that
have similar maturities, irrespective of their credit rating and embedded options;
or between baskets of bonds of similar maturities; or between corporate bonds and
Treasury bonds as asset classes. To capture possibly perceived trading opportunities
along each of these dimensions, for each bond i I decompose its spread at the end
of day t (averaged over the past 7 business days up to t) as the sum of four bond
cheapness measures:

yi,t = (yi,t − ysimi,t )︸ ︷︷ ︸
Idiosynci,t

+ (ysimi,t − yτi,t)︸ ︷︷ ︸
CreditCalli,t

+ (yτi,t − y1−7
i,t )︸ ︷︷ ︸

Maturityi,t

+ y10
i,t︸︷︷︸

TreasuryConvi,t

(1.5.3)

where:

• ysimi,t is the median of yi,t in the group of bonds with the same rating category
(AAA/AA, A, BBB), the same residual maturity rounded to the year and the
same callability (presence or absence of an embedded call) as bond i;

• yτi,t is the median of yi,t in the group of bonds with the same residual maturity
τ (rounded to the year) as bond i;

• y10
i,t is the median spread of bonds with residual maturity less than 10 years if it

is the case for bond i, and the median spread for bonds with residual maturity
more than 10 years otherwise.
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Each term between parenthesis in (1.5.3) is a spread differential that captures one
of the strategies described above, in isolation from the others.

To visualize the components of spread from equation 1.5.3, I consider a “spread
curve”, by analogy with a yield curve for Treasury bonds: as illustrative examples,
Figure 1.5 plots bond spreads as a function of residual maturity, for randomly chosen
dates. Each component in equation 1.5.3 reflects an aspect of figure 1.5:

• Idiosynci,t - Scatter thickness within rating category/callability :16 a bond is
considered cheap (expensive) with respect to similar bonds as assessed through
credit risk, maturity, and the presence of embedded call or not17); it thus
capture a bond idiosyncratic component of its yield;

• CreditCalli,t - Scatter thickness across ratings/callability : bonds with similar
credit risk maturity and callability are considered overall cheap (expensive)
with bonds of similar maturity τ ; it thus jointly captures credit risk and calla-
bility components of the spread, controlling for maturity;

• Maturityi,t - Scatter slope: bonds of a given maturity τ are considered cheap
(expensive) with respect to bonds of another maturity τ ′;

• TreasConvi,t - Scatter level : bonds within a broad maturity bucket are con-
sidered cheap (expensive) with respect to Treasuries. It captures safe asset
demand arbitrage.

I regress order flow on each of the terms in parenthesis in (1.5.3) separately
for the three criteria Z = Age, InitMaturity, ResidMaturity below and above 10
years, interacting cheapness measures with the dummy OneWayi,t used in the price
impact regressions, and controlling lags of order flow, lags of price changes and other
lagged market factor changes:

ÕF i,t = α +
∑
x

(
νx1 Idiosync

x
i,t−1 + νx2CreditCall

x
i,t−1

+ νx3Maturityxi,t−1 + νx4TreasConv
x
i,t−1

)
+ β′Xq

i,t−1 + ηi,t
(1.5.4)

with

x =(OneWay, Z ≤ 10y), (OneWay, Z > 10y),

(Roundtrip, Z ≤ 10y), (Roundtrip, Z > 10y).

For consistency I stick to the previous convention that customer buys correspond
to positive order flow, and vice-versa. If dealers are also arbitrageurs, then we expect
them to buy cheap bonds and sell expensive bonds to customers.

16Callability is not distinguished on Figure 1.5.
17Callable corporate bonds, i.e. with an option to the issuer to redeem the bond before maturity,

are highly frequent. The option to call the bond e.g. to reissue at lower rate should be priced and
incorporated into the bond spread.

32



0

10

20

30

40

0 5 10 15 20 25 30

05Jun2006

0

10

20

30

40

0 5 10 15 20 25 30

05Jun2008

0

10

20

30

40

0 5 10 15 20 25 30

05Jun2012

0

10

20

30

40

0 5 10 15 20 25 30

05Jun2014

Sp
re

ad
 (%

)

Corporate-Treasury spreads vs. years to maturity

AAA/AA A BBB

Figure 1.5: Visualizing potential proprietary trading opportunities. Bond spreads as
a function of residual maturity for four randomly chosen dates, by rating category
(bonds with maturity more than 30 years not shown). These graphs illustrate four
trading opportunities that could be perceived by broker-dealers or their customers.
The first two ones show up as the scatter’s thickness: bonds within the same rat-
ing category and callability (not distinguished) may have spreads considered too
different (upper right and lower left panels); and bonds within the same maturity
(irrespective of rating/callability) may have different spread. The third one is re-
lated to the slope of the scatter: bonds of different maturities may trade at spreads
considered too different. The fourth one relates to the level of the scatter: corpo-
rate bonds as an asset class may be considered cheap with respect to Treasuries.
Strategies involve selling bonds considered expensive and buying bonds considered
cheap.
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Dealer proprietary trading again implies νxk < 0 for at least one measure; I also
expect the coefficient for one-way order flow and criterion Z ≤ 10 years to be the
largest in absolute terms and the most significant. For instance bonds that are cheap
with respect to similar ones are those with high spread with respect to the median
in its similarity group (yi,t−1 − ysimi,t−1 > 0) and are expected under dealer arbitrage
to be associated with more customer sales: thus we expect a negative coefficient ν1.

Results

Table 1.8 shows the estimation results for One-way order flow, while table 1.14
in the appendix shows them for Partial Roundtrip order flow.

The first column in table 1.8 gives a negative significant coefficient for the
CreditCall component of the spread and a highly significant for the TreasConv
component: dealers appear to manage bonds by maturity bucket irrespective of rat-
ing and callability; similarly they buy corporate bonds as long as they are overall
cheap with respect to Treasury bonds. In table 1.14, in the first column only the
TreasConv component is negative significant, to a weak level. The second column,
where observations are split according to bond age, gives similar results.

The results are more striking when observations are split according to bond
initial maturity or residual maturity: the CheapInSim measure becomes highly
significant, as the CreditCall and TreasConv components. For shorter maturities,
dealers appear to buy (sell) more bonds that are cheap (expensive) with respect to
similar bonds in terms of rating, maturity and callability, with respect to bonds of
the same maturity, and with respect to Treasury bonds. The CreditCall component
appears especially strong: the coefficient implies that a one percentage point increase
in this measure is associated with an increase by −(10−.1211 − 1) = 24% in dealer
purchases.

1.5.3 Evolution through time and plausible impact of regu-
lation

In this section I run regression (1.5.4), splitting by age and maturity being below
or above 10 years on the same subperiods as for price impact regressions.

Tables 1.9 gives the results with the split over initial maturities (results are very
similar with residual maturity). To save space and focus on proprietary trading be-
havior I show only coefficients for one-way order flow and bonds with initial maturity
M ≤ 10 years. I show the other coefficients in table 1.15 in appendix.

The evolution across periods is clear: before the crisis, the coefficients are larger
in absolute value than during the Post-Dodd-Frank period, especially for the CreditCall
and TreasConv measures that are the most relevant. If the CreditCall measure for
a shorter maturity bond (2nd line) is one percentage point higher, dealers tend to
buy it more by 10−.4542 − 1 = 65% during the Pre-Crisis period (second column),
while it falls to 15% after the crisis (sixth column). For the TreasConv measure,
the effects of a one percentage point increase are 62% more dealer purchase before
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Table 1.8: Order flow regressed on four lagged measures of cheapness. Idiosync is
the difference between the bond’s spread yi,t to an equivalent Treasury bond minus
the median ysimi,t of these spreads in the basket of bonds with the same credit rating,
maturity and callability. CreditCalli,t is equal to ysimi,t minus the median spread for
all bonds with the same maturity yτi,t. Maturityi,t is equal to yτi,t minus the median
y10
i,t , the median spread of all bonds that have residual maturity below 10 years if

it is the case for bond i, or above 10 years otherwise. Controls include the dummy
OneWayi,t for one-way order flow, and where applicable the dummy for the criterion
Z (bond age, initial maturity and residual maturity) being less than 10 years, and
its interaction with OneWayi,t. Additional controls are 10 lags of order flow, 10
lags of bond price changes, 3 lags of stock return and lagged 10 years Treasury
yield changes. To save space only the coefficients for One-way order flow are
shown. Coefficients for Roundtrip order flow are shown in table 1.14.

NoCrit Age InitMaturity ResidMaturity

IdiosyncOneWay
i,t−1 -0.0127

(-1.83)

IdiosyncOneWay,Z≤10y
i,t−1 -0.0116 -0.0496∗∗∗ -0.0492∗∗∗

(-1.62) (-4.58) (-4.82)

IdiosyncOneWay,Z>10y
i,t−1 -0.0265 0.0095∗ 0.0132∗∗

(-1.96) (2.04) (2.77)

CreditCallOneWay
i,t−1 -0.0176∗

(-2.08)

CreditCallOneWay,Z≤10y
i,t−1 -0.0206∗ -0.1211∗∗∗ -0.1215∗∗∗

(-2.19) (-11.46) (-12.36)

CreditCallOneWay,Z>10y
i,t−1 -0.0100 0.0119∗ 0.0179∗∗

(-0.71) (2.11) (3.13)

MaturityOneWay
i,t−1 0.0156∗∗∗

(3.55)

MaturityOneWay,Z≤10y
i,t−1 0.0181∗∗∗ 0.0321∗∗∗ 0.0270∗∗∗

(3.75) (3.91) (3.53)

MaturityOneWay,Z>10y
i,t−1 -0.0055 0.0082 0.0088

(-0.51) (1.59) (1.63)

TreasConvOneWay
i,t−1 -0.0443∗∗∗

(-9.12)

TreasConvOneWay,Z≤10y
i,t−1 -0.0449∗∗∗ -0.0733∗∗∗ -0.0664∗∗∗

(-8.31) (-5.77) (-5.84)

TreasConvOneWay,Z>10y
i,t−1 -0.0017 -0.0155∗ -0.0587∗∗∗

(-0.18) (-2.38) (-5.86)

Constant and controls Y Y Y Y

R2 0.00 0.00 0.00 0.00
N 2,316,162 2,316,162 2,316,162 2,316,162

Standard errors clustered by bond issuer
∗ (p<0.05), ∗∗ (p<0.01), ∗∗∗ (p<0.001)
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Table 1.9: Order flow regressed on four lagged components of bond spread
Idiosynci,t−1, CreditCalli,t−1, Maturityi,t−1 and TreasConvi,t−1 (see table 1.8 for
details on the components), broken down by One-way / partial Rountrip order flow
and bond initial maturity M being below or above 10 years. Controls include the
dummyOneWayi,t for one-way order flow, and where applicable the dummy for bond
initial maturity M being less than 10 years, and its interaction with OneWayi,t. Ad-
ditional controls are 10 lags of order flow, 10 lags of bond price changes, 3 lags of
stock return and lagged 10 years Treasury yield changes. To save space only the
coefficients for one-way order flow and bonds of maturity M ≤ 10 years
are shown. Other coefficients are in table 1.15

Opaque Pre-Crisis Crisis Post-Crisis Dodd-Frank

IdiosyncOneWay,M≤10y
i,t−1 -0.0886∗∗ -0.0528 -0.1188∗∗∗ -0.0243 -0.0029

(-3.02) (-0.67) (-7.79) (-1.61) (-0.24)

CreditCallOneWay,M≤10y
i,t−1 -0.1310∗∗∗ -0.4542∗∗∗ -0.1315∗∗∗ -0.0865∗∗∗ -0.0717∗∗∗

(-3.94) (-6.79) (-7.67) (-3.38) (-3.49)

MaturityOneWay,M≤10y
i,t−1 0.0391 -0.0134 0.0440∗ 0.0511∗ 0.0235∗

(0.88) (-0.26) (2.24) (2.16) (2.36)

TreasConvOneWay,M≤10y
i,t−1 -0.1493∗∗ -0.4195∗∗∗ -0.1140∗∗∗ -0.1039∗∗∗ -0.0830∗∗∗

(-3.16) (-6.70) (-5.16) (-4.04) (-4.51)

R2 0.00 0.01 0.01 0.00 0.00
N 327,389 328,629 276,026 242,140 1,141,978

Standard errors clustered by bond issuer.
∗ (p<0.05), ∗∗ (p<0.01), ∗∗∗ (p<0.001)
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the crisis, and 17% after the crisis.
This is likely to be related to post-crisis regulation, what was indeed intended by

the Volcker rule: it seems that prop trading was reduced. The Volcker rule was fully
enforced in 2015, after the end of my sample. As widely noticed in the literature, it
may have had effects well before 2015: it was announced as the Dodd-Frank act was
voted on July 21st, 2010, and Bessembinder et al. (2018) noticed that many large
investment banks shut their proprietary trading desks as early as 2011-2012.

1.5.4 Consistency with evidence on Primary Dealers

In order flow regression results, the measure TreasConv comes with a high and
highly significant coefficient: broker-dealers thus appear to purchase more corpo-
rate bonds to the extent they are cheap with respect to Treasury bonds, possibly
even after adjustment for risk. Primary Dealers trading activity is included in my
sample, as Primary Dealers are registered as broker-dealers. This is consistent with
evidence from Primary Dealers in figure 1.1: Primary Dealers accumulated bond in-
ventories, while they borrowed Treasury bonds to sell them; figure 1.1 also suggests
this compressed corporate bond spreads.

In addition, the coefficient on the measure TreasConv sharply decreases at the
onset with the crisis and remains stable until after the crisis: this is again consistent
with figure 1.1, as Primary Dealers short Treasury position was cut at the onset of
the crisis, and did not reconstruct their long corporate, short Treasury position. The
coefficient on TreasConv is not zero after the crisis however: this simply suggests
that broker-dealers other than Primary Dealers are exploiting corporate-to-Treasury
spreads. This also suggests that Primary Dealers had a comparative advantage in
this strategy, either because of their Primary Dealer status (they underwrite and
make markets for Treasury bonds) or to the bank status many Primary Dealers
have, or for another reason.

1.6 Why proprietary trading stopped in July 2007:

the plausible role of margin constraints and

capital requirements

As shown by figure 1.1, Primary Dealers were net long in corporate bonds, and
net short in Treasury bonds before the crisis. However, in July 2007 the Treasury
position was cut by half, leaving Primary Dealers with an unhedged interest rate
exposure on their corporate bond holdings. Primary Dealers started shrinking their
corporate bond inventory only months later, in January 2008.

In the following I explore plausible causes for this. First I give suggestive evidence
that Primary Dealers were facing separate financing constraints for each leg of the
strategy, with two origins. Second, I give suggestive evidence that Primary Dealers’
short Treasury position shrinkage in July 2007 was related to a tightening of the
financing constraint on the Treasury side. Overall, the evidence appears consistent
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with the assumption made in Gromb and Vayanos (2002) on arbitrageurs’ financing
contraints.

1.6.1 Financing constraints #1: repos and reverse repos

A proprietary trader’s long and short positions are implemented as follows: the
long positions are implemented with repurchase agreements (repos) and the short
by reverse repos - Primary Dealers lend cash to their counterparties so that they get
the desired collateral, and sell this collateral. I give more details in appendix 1.12
and what a proprietary traders’ balance sheet looks like (figure 1.11).

Repo financing of corporate bonds. Together with corporate bond net out-
right position (solid thin blue line), Figure 1.6 plots Primary Dealers’ net financing
positions for corporate bonds (solid thick blue line). Net financing are net funds
received with an opposite transfer of corporate bonds for financing purposes: re-
pos and reverse repos, security lending and borrowing, collateralized borrowing and
loans, etc., that we generically label“net repo position”for convenience. It is positive
if PD are net cash borrowers, i.e. net security lenders.

It also plots the position in such contracts that are easily “runnable” (dashed
red line): with overnight maturity or on a continuing basis, i.e. with no specific
maturity but that can be ended on demand. The difference between the solid thick
line (all repos) and the dashed line (overnight repos) is thus net amount of repos
with maturity of at least two days. The match of both curves with corporate bond
net outright position is good, suggesting that most of Primary Dealers’ corporate
bond position was indeed financed with runnable repos, and that corporate bonds
were mainly used as collateral for the outright position purpose.

Drop in net reverse repos financing of Treasury bond. Figure 1.7 plots the
same graph for Treasury positions. The thick line shows that Primary Dealers are
structurally net Treasury borrowers (they lend funds and receive Treasury securi-
ties as collateral), and that they borrowed more securities than they sold short as
comparison with the outright position shows. The securities borrowed that were not
sold were likely to be kept as collateral for loans provided by Primary Dealers to
their customers. After the crisis, Primary Dealers were still net Treasury borrowers,
while they held Treasury bonds outright.

The July 2007 cut in the short position was associated with a cut of similar
magnitude in the total net repo position. The overnight net repo position (dashed
line) exhibits a similar break of comparable magnitude; it also increases a few months
ahead (end of 2006) without a similar pattern in total position: this suggests that
security lenders gradually shortened the maturity of their loans before they started
to run on the security lending contracts.

Therefore it is likely that Primary Dealers’ financing constraint on the reverse
repo position became more binding in July 2007, which imposed a reduction in the
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Figure 1.6: Repo financing of Primary Dealers’ corporate bond inventories.
This graph plots Primary Dealers corporate bond inventory (solid, thin blue line),
together with net borrowing collateralized by corporate bonds (thick, solid black line)
and net borrowing with overnight maturity (dashed red line). The good fit between
the three curves before the crisis suggests that most corporate bond inventories were
funded through very short-term repos.
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Figure 1.7: Reverse repo funding of Treasuries and run. This graph plots
Primary Dealers net inventories in Treasury securities (excluding inflation-protected
and T-Bills), together with net collateralized borrowing with Treasuries as collateral
(thick, solid brown line) and net collateralized borrowing collateralized by Treasuries
that are overnight (dashed green line)
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Treasury short position. However, similar constraints stem from regulatory capital
requirements, as exposed in the next subsection.

1.6.2 Financing constraints #2: regulatory capital require-
ments

Broker-dealers also face capital requirements set by the Securities Exchange Act
of 1934 and implemented by their regulator, the Security and Exchange Commis-
sion.18 The most important points for my purpose here are the following:

• these capital requirements have to be met at all times,19 and the broker-dealer
has to notify the SEC or the FINRA immediately when it is approaching the
limit. In practice, it seems that daily mark-to-market is the lowest frequency
of computation admitted by FINRA.20

• Broker-dealer equity, net of haircuts on securities long and on short positions,
is higher than a fraction of dealer indebtedness

• The haircuts can be computed using dealers’ own internal statistical models

1.6.3 Financing constraints at the onset of the 2007-2009
crisis: suggestive evidence

The July 2007 drop in the short Treasury position may have been caused by
a tightening of haircuts on the Treasury borrowing contracts, a supply effect. By
contrast, it could also be Primary Dealers who reduced their demand for Treasury
borrowing because they were willing to reduce the short position. I am not able
to unambiguously test one hypothesis against the other because I am not aware of
dataset on haircuts over the period, but several elements point to Primary Dealers
undergoing a tightening of haircuts.

First, after July 2007 Primary Dealers had a new exposure to interest rate risk on
half of their corporate bond inventories, as shown on figure 1.1: they subsequently
liquidated these inventories, suggesting that this new exposure was not desired.
Lehman’s collapse in September 2008 and a further drop in the Treasury short
position came just the long-short position became balanced.

Second, I give suggestive evidence that the position cut was associated with an
increase in haircut on Treasury reverse repos. Haircuts for Primary Dealers are
likely to increase with the underlying asset volatility (as a proxy for the risk of price
decrease for repo, or increase for reverse repo) and with Primary Dealers’ default
risk.

18Capital requirements are defined in Rule 15c3-1 of the Securities Exchange Act of 1934, com-
monly referred to as the “Net Capital Rule” dates back to 1975.

19Including intraday
20https://www.finra.org/rules-guidance/key-topics/portfolio-margin/faq
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Figure 1.8: This graph plots the 2-months rolling-window standard deviation of
10 years Treasury yield daily changes and Primary Dealers’ (PDs’) net reverse repo
position in US Treasuries, i.e. minus the amount of Treasuries borrowed by Primary
Dealers. The black vertical line is on July 25th, 2007 when PDs’ outright position in
Treasuries began to shrink in absolute terms: it coincides with a decrease in the PD
Treasury borrowing. The volatility of the 10 years yield increased by half in June
2007.

Regarding asset volatilities, figures 1.8 and 1.9 plot the two-month rolling-window
volatility of daily changes in the 10 years Treasury yield, and on the cross-sectional
median two-month rolling-window volatility of daily returns on a portfolio of cor-
porate bonds. The portfolio retains bonds within my sample whose maturity is
between 4 and 6 years and whose rating is at least AA. This relatively tight sub-
sample avoids volatility related to slope and thickness of the spread curve, but the
results carry over when the portfolio is broadened.

These figures show that the volatility of 10 years bond clearly increased in June
2007, from a recent history average level between 3 and 4% to about 5.5%, and
increase by roughly 50%. By contrast, the historical volatility of corporate bonds
did not appear to rise much with respect to the levels observed in the previous 18
months.

However, earlier in the sample the volatility of 10 years Treasury bonds was
higher, up to 6%. This suggests that asset volatility is not the only driver of haircuts.
Another potential determinant is PD default risk, as argued by Copeland et al.
(2010) from data starting in March 2008. Figure 1.10 plots an equal-weighted index
of 7 Primary Dealers CDS (the major investment banks with US parents), as a proxy
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Figure 1.9: 2 month rolling-window volatility of corporate bonds (returns on the
median price of a portfolio investment grade, maturities between 4 and 6 years)
and Primary Dealers’ net position in repo contracts involving corporate bonds. The
vertical line marks 25th July 2007 when PDs started shrinking the net short Treasury
position. The graph shows basically no connection between the two even during the
weeks before July 2007. It also shows that corporate bond volatility rose right after
the short Treasury position cut.
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Figure 1.10: CDS index for 7 Primary Dealers with US parent. This graph plots
and equal-weighted five years CDS index for all Primary Dealers with available CDS
in US dollars, for senior unsecured debt except Bear Stearns (subordinated debt).
These include the major US investment banks. Individual CDS movements are
broadly parallel. The vertical line is on July 25th, 2007, when Primary Dealers’
aggregate short Treasury position began to shrink.

for default risk (individual movements are broadly parallel): CDS spreads increased
sharply in July 2007.

However, default risk alone cannot explain haircut increases, as these should also
have impacted repos involving corporate bonds and thus simultaneous shrinkage of
both the long corporate position and the short Treasury position.

Overall this suggests that lender may begin to start revising haircuts when default
risk becomes more of a concern. Default risk may arise because of other Primary
Dealer activities than the proprietary trading strategy I document.

1.7 Implications for financial regulation

The results in my paper show that dealers are not only market makers, but also
proprietary traders who exploit price spreads they think not justified by fundamen-
tals. The Volcker rule bans the latter for bank-affiliated dealers, while in principle
still allowing the former.
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Proprietary trading is not per se bad. By uncovering some proprietary trad-
ing strategies, I do not mean to say what regulation is optimal, if regulation is
needed. Proprietary trading as described by theories of limits of arbitrage is to
some extent liquidity provision, and bears many similarities with market making as
described by above theories. In both cases, the market is fragmented, and market
makers or prop traders bridge the gap between investors eager to sell and investors
eager to buy, which is a priori improving social welfare of all market participants.21

The macro-finance literature suggests that when broker-dealers buy, this com-
presses risk premia (Adrian and Shin 2009, Adrian et al. 2014). Again this does not
necessarily means that they take excessive risk: if markets are fragmented before
broker-dealers enter, risk-sharing is limited and asset risk premia are high. When
broker-dealers enter, they may improve risk sharing, so that all investors are more
willing to take risk and compress equilibrium risk premia: in this case this is socially
optimal.

“Risk-shifting” and “margin constraint” problems Indeed, Volcker (2010)
asserts that proprietary trading is socially useful even if risky. The assumption
underlying the Volcker rule is that broker-dealers that are in large banking groups
have access to public bailouts or liquidity backstops by the Fed: thus they do not
internalize the downside risk of their strategies, leading them to take excessive risk.
In what follows I label this assumption the “risk-shifting problem”.

There are two interpretations of the risk-shifting problem. The first one relates
to proprietary trading strategies themselves, as they are inherently too risky: for
instance, dealers could bet on spreads that reflect differences in issuers’ fundamentals
with 50% probability. If it is not the case, dealers win, if indeed fundamentals
matters, depositors lose.

A second interpretation of the risk-shifting problem is that it stems from a margin
constraint problem: even if they correct true mispricings, dealers are subject to
financing constraints that have to be met at interim dates before the strategy pays
off. A risk is that these constraints bind for a reason unrelated to the proprietary
trading strategy, forcing liquidation at fire sales prices and thus causing losses. In
section 1.6 I suggest this is an important driver of the 2007-2009 financial crisis.
Fire sales losses may be the risk that is not internalized by bank-affiliated dealers
because they expect to pass it to depositors or taxpayers.

However, as I show in the next paragraph, a growing literature points to the role
of the pecuniary externality that these financing constraints generate.

The Volcker rule only partially addresses the margin constraint problem.
The margin constraint problem is likely to arise even outside the banking sector.
Several papers have noted that a pecuniary externality stemming from these margin
constraints, together with competition between dealers, leads to ex ante too large

21Although Hart (1975) shows that welfare improvement is warranted only if market makers or
prop traders fully complete the markets.
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dealer positions and thus larger losses.22

In the risk-shifting case, bank-affiliated dealers take excessive risk because the
perspective of bank public bailout make them insensitive to losses: the externality
is on bank’s creditors. Therefore it is largely unclear that the Volcker rule in its
principle has prevented the financial system from proprietary trading-related risks.

If proprietary trading needs regulation, then regulation should address the mar-
gin constraint problem. This is beyond the scope of this paper.

1.8 Conclusion

In this paper I show that not all dealer trading in the US corporate bond market
is market making in the sense of standing ready to buy or sell on customer demand.
Dealers also trade actively to exploit spreads in the cross-section of bonds that may or
may not be justified by fundamentals. Shedding light on their behavior contributes
to a better understanding of the findings of the intermediary asset pricing literature,
and to the understanding of crises.

The intermediary asset pricing literature has found that broker-dealer leverage
and/or asset growth is an explanatory factor of asset prices, but it remains elusive
on what this leverage consists in. This paper suggests that long-short strategies that
tend to compress spreads are an important determinant of dealer leverage.

Many papers have found that the level of corporate bond spreads predicts future
economic activity. I have shown that dealers are responsive mainly to the spread
between Treasury bonds and corporate bonds, both from transaction and holding
data, and that this responsiveness is correlated with the level of spreads in the
aggregate. Therefore dealers may have a central role in shaping asset prices and
investment.

In addition, proprietary trading appears to come with constraints that began to
bind at the onset of the crisis, likely forcing dealer to liquidate their positions at fire
sales prices and triggering the corporate bond market crisis. This problem has at best
been partially addressed by existing regulation such as the Volcker rule: therefore
such regulation may not preclude forced liquidation even with tight regulation of
the banking sector.

22Cf. e.g. Gromb and Vayanos (2002), Lorenzoni (2008), Brunnermeier and Pedersen (2008),
Stein (2012)
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1.9 Appendix 1: Data

Cleaning. For each bond, I drop transactions within 7 days before and 7 days
after the bond’s offering date, because primary market transaction are very specific.

TRACE includes transaction information with prices, quantity, the direction
of the trade (buy or sell) and whether the counterparty to the reporting dealer is a
customer or another dealer. I clean the data following Dick-Nielsen (2014) to remove
explicit reporting errors, when-issued transactions and special trading under special
circumstances. I remove interdealer transactions.

I remove transactions with price lower than 80% or higher than 120% of the
median price of the day, or with price lower than $1 or higher than $500. I remove
transactions with amounts lower than the par value of one bond, or higher than the
offered amount for the bond are removed.

Stock prices and returns. I retain bonds for which a stock price is available
(average of end-of-day bid and ask), using the WRDS Bond-CRSP linking suite at
PERMCO (company) level for CRSP. I use common stocks (CRSP share code’s
first digit equal to 1); whenever there are several common stock classes for a single
company, I use the average common stock prices weighted by the number of shares
outstanding. I do not adjust stock returns are not adjusted for dividend payment or
annoucement: dividend decisions may have an impact on the company’s perceived
credit risk.

1.10 More on testing hypothesis 1

1.10.1 Regression with cheapness measures

To address the concern that cheapness measures defined in equation (1.5.3) may
forecast both dealer purchases (sales) and price decreases (increases), I add these
measures in regression (1.4.3), interacting them with the Lehmant dummy.

∆ log pi,t = α + β1 ÕF
OneWay

i,t + β2 ÕF
Roundtrip

i,t

+ β3 ÕF
OneWay

i,t × Lehmant + β4 ÕF
Roundtrip

i,t × Lehmant

+
∑
x

(
νx1 Idiosync

x
i,t−1 + νx2CreditCall

x
i,t−1

+ νx3Maturityxi,t−1 + νx4TreasConv
x
i,t−1

)
+
∑
k

LehmanInteractionTermsi,t

+ γX
(p)
2,i,t + ε3,i,t (1.10.1)
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where the LehmanInteractionTerms are the cheapness measures IdiosyncOneWay
i,t−1 ,

IdiosyncRoundtripi,t−1 , CreditCallOneWay
i,t−1 , etc. times the dummy Lehmant, and

x = OneWay,Roundtrip

I also include the Lehmant, OneWayi,t dummies and their interaction in the vector

of controls X
(p)
3,i,t.

Table 1.10 shows that the coefficient on One-way order flow is unaffected by the
presence of the cheapness measures: it stands at 0.0024, while it was at 0.0025 in
table 1.5

1.10.2 Regression with predicted order flow

I also assess whether other predictors or order flow are driving the results: pre-
vious price changes, lags of order flow and lagged stock return and interest rate
changes. To do this I compute a predicted and an unexpected component of order
flow, separately for One-way and Partial Rountrip order flow, as follows:

ÕF
x

i,t = αx +
10∑
k=1

ρkÕF i,t−k +
10∑
k=1

µk∆ log pi,t−k + γX1,i,t−1︸ ︷︷ ︸̂̃
OF

x

i,t

+ηxi,t

where the vector X1,i,t−1 includes lagged stock return and interest rate changes.
Then I regress price changes on the predicted and unpredicted components of

order flow, still with the interaction with the Lehmant dummy as in the main
regression:

∆ log pi,t = α + β1
̂̃
OF

OneWay

i,t + β2
̂̃
OF

Roundtrip

i,t

+ β3 ÕF
OneWay

i,t × Lehmant + β4 ÕF
Roundtrip

i,t × Lehmant

+ β0Lehmant + γX
(p)
2,i,t + ε2,i,t

The regressor of interest are the unexpected components of order flow ηOneWay
i,t and

ηRoundtripi,t .

Table 1.11 presents the results. The coefficient on ηOneWay
i,t and ηRoundtripi,t are

very close to the estimates of One-Way and Partial Roundtrip order flow in table
1.5, which were at −0.0025 and 0.0040 respectively.

1.10.3 Robustness to multiway clustering

I re-run regression 1.10.1, computing standard errors in more conservative ways:
I allow clustering by the number of years to bond maturity, and by calendar month,
following the methodology by Cameron et al. (2011). One concern with the maturity
clustering is that the number of clusters along this dimension is close to 30, which
may not be sufficient. In any case the results are robust, as shown by table 1.12.
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Table 1.10: Regression of daily log price changes on customer order flow, cheapness
measures and controls. ÕF i,t is the sign of order flow times the logarithm of the
absolute value of order flow. Order flow is the sum of customer large (above $100,000)

buys minus the sum of customer large sells. ÕF
OneWay

i,t equals ÕF i,t if order flow
in bond i on day t is one-way (only customer buys or only customer sells), and

zero otherwise. ÕF
Roundtrip

i,t equals ÕF i,t if order flow is not One-way, i.e. (partial)
roundtrip, and zero otherwise. Cheapness measures are defined in equation (1.5.3).
Controls are issuer stock return, changes in 10 years Treasury yield, changes in
3-months LIBOR, TYVIX, an implied volatility index for Treasury futures, and
changes in TYVIX. In the second and third column, a dummy OneWayi,tfor one-
way order flow is included. Lehmant is a dummy that equals 1 if t is between
September 15th, 2008 and April 30th, 2009. The interaction OneWayi,t×Lehmant
is included.

∆ log pi,t

ÕF
OneWay

i,t -0.0024∗∗∗

(-6.10)

ÕF
Roundtrip

i,t 0.0041∗∗∗

(11.82)

CheapInSimOneWay
i,t−1 0.0014

(1.37)

CreditCallOneWay
i,t−1 0.0023

(1.79)

MaturityOneWay
i,t−1 -0.0009

(-0.88)

TreasConvOneWay
i,t−1 0.0045∗∗∗

(5.83)

CheapInSimRoundtrip
i,t−1 0.0040∗∗

(2.69)

CreditCallRoundtripi,t−1 0.0019∗

(2.52)

MaturityRoundtripi,t−1 0.0014
(1.79)

TreasConvRoundtripi,t−1 0.0022∗∗∗

(4.37)

Interaction with Lehmant Y

Constant and controls Y

R2 0.24
N 2,203,723

Standard errors clustered by bond issuer
∗ (p<0.05), ∗∗ (p<0.01), ∗∗∗ (p<0.001)
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Table 1.11: Regression of daily log price changes on customer order flow, cheapness
measures and controls. ÕF i,t is the sign of order flow times the logarithm of the
absolute value of order flow. Order flow is the sum of customer large (above $100,000)

buys minus the sum of customer large sells. ÕF
OneWay

i,t equals ÕF i,t if order flow
in bond i on day t is one-way (only customer buys or only customer sells), and

zero otherwise. ÕF
Roundtrip

i,t equals ÕF i,t if order flow is not One-way, i.e. (partial)
roundtrip, and zero otherwise. Controls are issuer stock return, changes in 10 years
Treasury yield, changes in 3-months LIBOR, TYVIX, an implied volatility index
for Treasury futures, and changes in TYVIX. In the second and third column, a
dummy OneWayi,t for one-way order flow is included. Lehmant is a dummy that
equals 1 if t is between September 15th, 2008 and April 30th, 2009. The interaction
OneWayi,t × Lehmant is included.

∆ log pi,t

ηOneWay
i,t -0.0027∗∗∗

(-6.47)

ηRoundtripi,t 0.0037∗∗∗

(11.01)̂̃
OF

OneWay

i,t -1.5375∗∗∗

(-7.17)̂̃
OF

Roundtrip

i,t 3.4071∗∗∗

(7.50)

R2 0.24
N 2,212,269

Standard errors clustered by bond issuer
∗ (p<0.05), ∗∗ (p<0.01), ∗∗∗ (p<0.001)
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Table 1.12: Regression of daily log price changes on customer order flow and controls,
clustering standard errors by the variable indicated in column header. ÕF i,t is the
sign of order flow times the logarithm of the absolute value of order flow. Order flow
is the sum of customer large buys minus the sum of customer large sells. A customer

buy or sell is large its size is above $100,000. ÕF
OneWay

i,t equals ÕF i,t if order flow
in bond i on day t is one-way (only customer buys or only customer sells), and

zero otherwise. ÕF
Roundtrip

i,t equals ÕF i,t if order flow is not One-way, i.e. (partial)
roundtrip, and zero otherwise. Controls are bond cheapness measures, issuer stock
return, changes in 10 years Treasury yield, changes in 3-months LIBOR, TYVIX, an
implied volatility index for Treasury futures, and changes in TYVIX. In the second
and third column, a dummy OneWayi,tfor one-way order flow is included. Lehmant
is a dummy that equals 1 if t is between September 15th, 2008 and April 30th, 2009.
The interaction OneWayi,t × Lehmant is included.

Issuer/Month Issuer/Mat Issuer/Month/Mat

ÕF
OneWay

i,t -0.0024∗∗ -0.0024∗∗∗ -0.0024∗

(-2.73) (-4.36) (-2.50)

ÕF
Roundtrip

i,t 0.0041∗∗∗ 0.0041∗∗∗ 0.0041∗∗∗

(9.19) (6.78) (5.44)

Cheapness measures Y Y Y
Interaction with Lehmant Y Y Y
Constant and controls Y Y Y

R2 0.24 0.24 0.24

N 2,203,723 2,203,723 2,203,723

Standard errors clustered by bond issuer
∗ (p<0.05), ∗∗ (p<0.01), ∗∗∗ (p<0.001)
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1.10.4 Estimation table for regression through time

Table 1.13 shows the estimation results of regression 1.4.5. I plot the coefficients
for each subperiods in figure 1.4.
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Table 1.13: Regression of daily log price changes on customer order flow and controls,
interacted with subperiod dummies. Coefficients are plotted on figure 1.4 ÕF i,t is
the sign of order flow times the logarithm of the absolute value of order flow. Order
flow is the sum of customer large buys minus the sum of customer large sells. A

customer buy or sell is large its size is above $100,000. ÕF
OneWay

i,t equals ÕF i,t

if order flow in bond i on day t is one-way (only customer buys or only customer

sells), and zero otherwise. ÕF
Roundtrip

i,t equals ÕF i,t if order flow is not One-way, i.e.
(partial) roundtrip, and zero otherwise. Controls are issuer stock return, changes in
10 years Treasury yield, changes in 3-months LIBOR, TYVIX, an implied volatility
index for Treasury futures, and changes in TYVIX. In the second and third column,
a dummy OneWayi,tfor one-way order flow is included. Lehmant is a dummy that
equals 1 if t is between September 15th, 2008 and April 30th, 2009.

Opaque

ÕF
OneWay

i,t -0.0069∗∗∗

(-6.02)

ÕF
Roundtrip

i,t 0.0004
(0.51)

Pre-Crisis

ÕF
OneWay

i,t -0.0077∗∗∗

(-10.38)

ÕF
Roundtrip

i,t 0.0008
(1.30)

Crisis

ÕF
OneWay

i,t 0.0341∗∗∗

(10.04)

ÕF
Roundtrip

i,t 0.0193∗∗∗

(8.31)

Post-Crisis

ÕF
OneWay

i,t 0.0049∗∗∗

(4.60)

ÕF
Roundtrip

i,t 0.0063∗∗∗

(7.38)

Post-Dodd-Frank

ÕF
OneWay

i,t -0.0029∗∗∗

(-4.98)

ÕF
Roundtrip

i,t 0.0049∗∗∗

(10.28)∗∗∗

R2 0.24
N 2,220,248

Clustered by bond issuer
∗ (p<0.05), ∗∗ (p<0.01), ∗∗∗ (p<0.001)
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1.11 Appendix 2: More on testing Hypothesis 2

1.11.1 General proprietary trading strategies: coefficients
for Roundtrip order flow

Table 1.14 complements table 1.8 by showing coefficients for the four compo-
nents of the bond spread for Partial Roundtrip order flow. The coefficients are less
significant than for One-Way order flow, and in any case of smaller magnitude.

1.11.2 Evolution through time

Initial maturity: other regression coefficients

Table 1.15 complements table 1.9 by giving the coefficients on One-way order
flow and initial maturities more than 10 years, and for Partial Roundtrip order flow.
Coefficients are not not often significant and in any case of lower magnitude than
for one-way order flow and shorter maturities.

Results with residual maturity

Table 1.16 and 1.17 show the results of running regression 1.5.2 by subperiod
with a breakdown by bond residual maturity.

The results are qualitatively similar to the results with the split by initial matu-
rity. The coefficient for the TreasConv measure for one-way order flow, bonds with
maturities below 10 years, is however weaker, although still strongly negative signif-
icant. The evolution through time is still in the direction of decreased proprietary
trading after the crisis.
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Table 1.14: Order flow regressed on four lagged measures of cheapness. Idiosync is
the difference between the bond’s spread yi,t to an equivalent Treasury bond minus
the median ysimi,t of these spreads in the basket of bonds with the same credit rating,
maturity and callability. CreditCalli,t is equal to ysimi,t minus the median spread for
all bonds with the same maturity yτi,t. Maturityi,t is equal to yτi,t minus the median
y10
i,t , the median spread of all bonds that have residual maturity below 10 years if

it is the case for bond i, or above 10 years otherwise. Controls include the dummy
OneWayi,t for one-way order flow, and where applicable the dummy for the criterion
Crit (bond age, initial maturity and residual maturity) being less than 10 years, and
its interaction with OneWayi,t. Additional controls are 10 lags of order flow, 10 lags
of bond price changes, 3 lags of stock return and lagged 10 years Treasury yield
changes. To save space only the coefficients for Roundtrip order flow are
shown. Coefficients for One-way order flow are shown in table 1.8.

NoCrit Age InitMaturity ResidMaturity

IdiosyncRoundtripi,t−1 0.0014
(1.20)

IdiosyncRoundtrip,Z≤10y
i,t−1 0.0016 0.0030 0.0029

(1.24) (1.41) (0.28)

IdiosyncRoundtrip,Z>10y
i,t−1 0.0037 0.0007 0.0003

(1.55) (0.60) (1.46)

CreditCallRoundtripi,t−1 -0.0019
(-1.58)

CreditCallRoundtrip,Z≤10y
i,t−1 -0.0025 -0.0137∗∗∗ -0.0117∗∗∗

(-1.78) (-3.52) (-3.44)

CreditCallRoundtrip,Z>10y
i,t−1 0.0023 0.0005 0.0002

(0.97) (0.43) (0.16)

MaturityRoundtripi,t−1 0.0004
(0.33)

MaturityRoundtrip,Z≤10y
i,t−1 0.0006 0.0080∗∗ 0.0069∗∗

(0.51) (2.74) (2.84)

MaturityRoundtrip,Z>10y
i,t−1 0.0020 0.0003 0.0003

(0.90) (0.30) (0.29)

TreasConvRoundtripi,t−1 -0.0033∗

(-2.36)

TreasConvRoundtrip,Z≤10y
i,t−1 -0.0034∗ 0.0027 0.0020

(-2.21) (0.77) (0.68)

TreasConvRoundtrip,Z>10y
i,t−1 0.0016 0.0016 0.0023

(1.13) (1.30) (1.20)

Constant and controls Y Y Y Y

R2 0.00 0.00 0.00 0.00
N 2,316,162 2,316,162 2,316,162 2,316,162

Standard errors clustered by bond issuer
∗ (p<0.05), ∗∗ (p<0.01), ∗∗∗ (p<0.001)
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Table 1.15: Order flow regressed on four lagged components of bond spread
Idiosynci,t−1, CreditCalli,t−1, Maturityi,t−1 and TreasConvi,t−1 (see table 1.8 for
details on the components), broken down by One-way / partial Rountrip order flow
and bond initial maturity M being below or above 10 years. Controls include the
dummyOneWayi,t for one-way order flow, and where applicable the dummy for bond
initial maturity M being less than 10 years, and its interaction with OneWayi,t. Ad-
ditional controls are 10 lags of order flow, 10 lags of bond price changes, 3 lags of
stock return and lagged 10 years Treasury yield changes. To save space only the
coefficients for one-way order flow and bonds of maturity M > 10 years,
and for Partial Roundtrip order flow, are shown.

Opaque Pre-Crisis Crisis Post-Crisis Dodd-Frank

IdiosyncOneWay,M>10y
i,t−1 -0.0190 0.0122∗ -0.0011 0.0065 0.0223∗∗∗

(-1.92) (2.18) (-0.11) (0.54) (3.34)

CreditCallOneWay,M>10y
i,t−1 0.0015 0.0221 -0.0046 0.0199 0.0211∗∗

(0.19) (1.52) (-0.59) (1.51) (2.73)

MaturityOneWay,M>10y
i,t−1 -0.0250∗∗ 0.0320∗∗∗ 0.0111 -0.0004 0.0074

(-2.97) (3.53) (1.11) (-0.03) (0.94)

TreasConvOneWay,M>10y
i,t−1 -0.0063 -0.0314 -0.0582∗∗∗ 0.0345∗ 0.0017

(-0.30) (-1.30) (-6.03) (2.57) (0.22)

IdiosyncRoundtrip,M≤10y
i,t−1 0.0018 -0.0040 -0.0045 0.0076 0.0135∗

(0.15) (-0.43) (-1.25) (1.76) (2.52)

CreditCallRoundtrip,M≤10y
i,t−1 -0.0338∗∗ -0.0802∗∗ -0.0100 0.0034 -0.0024

(-2.79) (-3.06) (-1.79) (0.33) (-0.36)

MaturityRoundtrip,M≤10y
i,t−1 0.0324∗ 0.0077 0.0050 0.0088 0.0052

(2.12) (0.39) (0.76) (1.00) (1.55)

TreasConvRoundtrip,M≤10y
i,t−1 -0.0209 -0.0042 0.0067 -0.0092 -0.0014

(-1.16) (-0.20) (1.13) (-0.85) (-0.27)

IdiosyncRoundtrip,M>10y
i,t−1 -0.0060 0.0004 0.0015 0.0042∗ 0.0012

(-1.88) (0.45) (1.06) (2.09) (0.39)

CreditCallRoundtrip,M>10y
i,t−1 0.0020 -0.0003 0.0018 0.0073∗ -0.0030

(1.11) (-0.12) (0.83) (2.01) (-1.21)

MaturityRoundtrip,M>10y
i,t−1 -0.0040 -0.0011 0.0015 0.0084∗∗ 0.0000

(-1.09) (-0.69) (0.68) (2.80) (0.02)

TreasConvRoundtrip,M>10y
i,t−1 0.0104∗ 0.0023 0.0014 -0.0065 0.0022

(2.06) (0.46) (0.60) (-1.25) (1.19)

R2 0.00 0.01 0.01 0.00 0.00
N 327,389 328,629 276,026 242,140 1,141,978

Standard errors clustered by bond issuer.
∗ (p<0.05), ∗∗ (p<0.01), ∗∗∗ (p<0.001) 56



Table 1.16: Order flow regressed on four lagged components of bond spread
Idiosynci,t−1, CreditCalli,t−1, Maturityi,t−1 and TreasConvi,t−1 (see table 1.8 for
details on the components), broken down by One-way / partial Rountrip order flow
and bond residual maturity T being below or above 10 years. Controls include
the dummy OneWayi,t for one-way order flow, and where applicable the dummy
for bond residual maturity T being less than 10 years, and its interaction with
OneWayi,t. Additional controls are 10 lags of order flow, 10 lags of bond price
changes, 3 lags of stock return and lagged 10 years Treasury yield changes. To save
space only the coefficients for One-way order flow are shown.

Opaque Pre-Crisis Crisis Post-Crisis Dodd-Frank

IdiosyncOneWay,T≤10y
i,t−1 -0.0843∗ -0.0497 -0.1171∗∗∗ -0.0259 -0.0005

(-2.60) (-0.73) (-8.00) (-1.92) (-0.04)

CreditCallOneWay,T≤10y
i,t−1 -0.1459∗∗∗ -0.4025∗∗∗ -0.1299∗∗∗ -0.0957∗∗∗ -0.0711∗∗∗

(-4.05) (-6.03) (-8.12) (-3.83) (-3.52)

MaturityOneWay,T≤10y
i,t−1 0.0316 -0.0025 0.0293 0.0363 0.0228∗

(0.77) (-0.05) (1.70) (1.67) (2.37)

TreasConvOneWay,T≤10y
i,t−1 -0.0534 -0.1784∗∗∗ -0.1072∗∗∗ -0.0994∗∗∗ -0.0724∗∗∗

(-1.57) (-3.58) (-5.07) (-4.12) (-3.93)

IdiosyncOneWay,T>10y
i,t−1 -0.0231∗ 0.0136∗ 0.0066 0.0096 0.0217∗∗

(-2.22) (2.27) (0.62) (0.79) (3.26)

CreditCallOneWay,T>10y
i,t−1 0.0081 0.0243 0.0017 0.0245 0.0251∗∗

(1.09) (1.68) (0.22) (1.73) (3.19)

MaturityOneWay,T>10y
i,t−1 -0.0201∗∗ 0.0332∗∗∗ 0.0139 0.0006 0.0026

(-2.61) (3.65) (1.31) (0.04) (0.35)

TreasConvOneWay,T>10y
i,t−1 -0.0835∗∗ -0.0684 -0.0765∗∗∗ 0.0687∗ -0.1135∗∗∗

(-2.61) (-1.01) (-5.69) (2.23) (-7.20)

R2 0.00 0.01 0.01 0.00 0.00
N 327,389 328,629 276,026 242,140 1,141,978

Clustered by firm, month, years to maturity
∗ (p<0.05), ∗∗ (p<0.01), ∗∗∗ (p<0.001)
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Table 1.17: Order flow regressed on four lagged components of bond spread
Idiosynci,t−1, CreditCalli,t−1, Maturityi,t−1 and TreasConvi,t−1 (see table 1.8 for
details on the components), broken down by One-way / partial Rountrip order flow
and bond residual maturity T being below or above 10 years. Controls include
the dummy OneWayi,t for one-way order flow, and where applicable the dummy
for bond residual maturity T being less than 10 years, and its interaction with
OneWayi,t. Additional controls are 10 lags of order flow, 10 lags of bond price
changes, 3 lags of stock return and lagged 10 years Treasury yield changes. To save
space only the coefficients for Partial Roundtrip order flow are shown.

Opaque Pre-Crisis Crisis Post-Crisis Dodd-Frank

IdiosyncRoundtrip,T≤10y
i,t−1 -0.0004 -0.0048 -0.0034 0.0080 0.0125∗∗

(-0.04) (-0.73) (-0.99) (1.93) (2.64)

CreditCallRoundtrip,T≤10y
i,t−1 -0.0294∗∗ -0.0522∗∗ -0.0094 0.0065 -0.0001

(-2.71) (-2.72) (-1.82) (0.70) (-0.02)

MaturityRoundtrip,T≤10y
i,t−1 0.0289∗ 0.0023 0.0013 0.0094 0.0053

(2.14) (0.15) (0.25) (1.26) (1.86)

TreasConvRoundtrip,T≤10y
i,t−1 -0.0072 -0.0090 0.0027 -0.0100 0.0009

(-0.58) (-0.66) (0.54) (-1.12) (0.23)

CheapInSimRoundtrip,T>10y
i,t−1 -0.0063 0.0000 0.0013 0.0035∗ 0.0005

(-1.95) (0.01) (0.85) (2.11) (0.17)

CreditCallRoundtrip,T>10y
i,t−1 0.0020 -0.0014 0.0017 0.0059 -0.0041

(1.16) (-0.61) (0.72) (1.72) (-1.53)

MaturityRoundtrip,T>10y
i,t−1 -0.0040 -0.0016 0.0012 0.0075∗ 0.0003

(-1.09) (-1.02) (0.51) (2.43) (0.14)

TreasConvRoundtrip,T>10y
i,t−1 0.0023 0.0246 0.0067 -0.0090 -0.0010

(0.24) (1.66) (1.65) (-1.05) (-0.20)

R2 0.00 0.01 0.01 0.00 0.00
N 327,389 328,629 276,026 242,140 1,141,978

Clustered by firm, month, years to maturity
∗ (p<0.05), ∗∗ (p<0.01), ∗∗∗ (p<0.001)
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1.12 Appendix 3: Repos, reverse repos, long and

short positions

Repos or collateralized loans are ways for an investor with limited capital to
fund the acquisition of an asset: the investor borrows cash up to some horizon and
gives the asset as collateral to the lender. In general the lender does not finance
the full amount of the purchase, so that the investor has to complete the purchase
amount with his capital. This ensures that if the borrower fails, the lender can
sell the collateral and recover a high fraction of his loan even if the asset price has
decreased. The ratio between the amount of investor’s own capital required to fund
the asset and the market value of the asset is called the haircut. Haircuts are thus
financing constraints.

Reverse repos go in the opposite direction: instead of borrowing cash, the investor
borrows a security and gives cash as collateral to the security lender. Similarly to
repos, the security lender may require an amount of cash collateral that is higher
than the market value of the asset, so that the investor has to find cash, typically
from his own funds, to finance the cash collateral. For reverse repos I call haircut
the ratio of the value of the cash collateral that is funded on the investor’s own
funds, to the market value of the security when the loan is made.

Repos and reverse repos are mirror images of each other: a repo for the investor
is a reverse repo from the perspective of his (cash) lender. Positive haircuts from the
perspective of one agent correspond to negative from the perspective of the other
agent. Therefore the definition of haircuts depends on which agent one considers:
here I define haircuts from the perspective of Primary Dealers.

In a reverse repo, the investor can sell the security he has borrowed as long as he
comes back with an identical security at the expiration of the contract. In the interim
period, the security borrowed and sold becomes a liability. The investor who sells
the security makes a loss if he repurchases the asset at a higher price, and gains if he
repurchases at a lower price. Reverse repos are thus used to implement short-selling.

In the definition I adopt here, arbitrage involves long and short position in cor-
related assets. A long position, consists in buying and holding an asset for some
period of time and being exposed to the risk of a low payoff. A short position is the
short-selling of a security as described above, so that the investor carrying a short
position is exposed to the risk of a high payoff. When securities on the long and
short legs of the strategy comove, the risks associated with each leg are partially or
completely offset.

Implementing a long-short strategy naturally leads to using a combination of a
repo to fund the long leg and a reverse repo to fund the short leg, as illustrated on
figure 1.11. An investor with limited capital is willing to borrow a security: he has
to finance the cash collateral, which is a loan to the security lender. To do this he
benefits from an unsecured loan L, presumably from a clearing agent who knows
his positions and thus his ability to reimburse well. Then the investor receives the
security borrowed, for a lower value than the loan he grants reflecting the haircut. By
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selling the security borrowed, the investor gets cash, while he still owes the security
at expiration of the security lending contract which now appear as a liability. With
the cash he could purchase the asset on the long side of the strategy: then the
unsecured lender may require to have it as collateral for the initial loan L, which
would improve its terms; or he could equivalently redeem the loan L with the cash,
and enter a separate repo to implement the long side. Both imply a repo and a
reverse repo. In the following subsection I show that Primary Dealers appeared to
implement their strategies in this way.

Such implementation implies distinct financial contraints for each leg of the long-
short strategy, as each leg involves potentially different haircuts.
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Figure 1.11: Simplified balance sheet of an arbitrageur. The long posi-
tion (blue, without hatches), in corporate bonds for illustrative purpose, is funded
through collateralized debt or repo contracts. The short position (green, with
hatches), in Treasuries for illustration, is funded through a reverse repo: Treasury
securities are borrowed from security lenders, the arbitrageur granting a loan to the
security lender as collateral.
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Chapter 2

Imperfect Competition, Dynamic
Trading and Forward Contracts

Abstract

I study why financial institutions trade forward and future contracts on assets they
could buy or sell directly. I provide a dynamic trading model in which this occurs
because of 1) imperfect competition and 2) uncertainty about future customer trades.
Under imperfect competition, risk averse traders realize gains from trading inventory
imbalances slowly, leaving them differentially exposed to a supply shock: sellers fear
customers sells that depress prices, buyers fear customer buys that increase prices.
Opposite exposure to the supply shock implies gains from trading the risk through
forward contracts: in equilibrium sellers of the asset sell forwards to buyers, and risk
sharing in the asset is slowed down. The cost of slower risk sharing is compensated
by the benefit of more certain future trading surplus. Traders are more willing to
create inventory imbalance with forward contracts, leading to tighter spreads and/or
higher trading volume in fragmented markets.
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2.1 Introduction

Forward, futures and swap contracts are pervasive in fixed income, commodities
and currency markets. These derivative contracts allow traders to buy or sell at a
future date an underlying asset at a pre-agreed price.1 In some cases, these contracts
arise because the underlying asset does not yet exist at the time of the contract, while
traders want to hedge against the price risk.2 But in many cases, these contracts
arise with an underlying asset that already exists: financial institutions often hedge
holdings of a tradeable security with corresponding forwards or swaps, or purchase
forwards or swaps instead of purchasing the underlying3. To offload the risk, they
could sell their holdings directly and invest the proceeds in riskless cash. Why do
traders trade forwards when the underlying asset is available for trade? What are
the effects on inventory holdings and traders’ welfare?

To answer these questions, in this paper I provide a dynamic trading model
where forward contracts endogenously emerge. Forward contracts’ role is to insure
against supply or demand shocks on the underlying asset that impact the price in
the course of trading: under imperfect competition, trading is slow and buyers of
the asset fear a high price in the future, sellers fear a low price. In equilibrium sellers
of the underlying asset sell forwards to buyers and delay selling of the underlying.
Underlying risk sharing is impeded, a cost that is more than compensated for traders
by the benefit of better management of dynamic trading. Under perfect competition,
sellers sell all their inventories immediately and forwards are not traded.

I study a model in which risk averse traders, called dealers for concreteness,4 can
trade a risky asset at two dates 0 and 1. Dealers differ by their initial inventories
of the asset, and have identical preferences and information. At each trading date,
dealers meet in a centralized market. At date 1, some exogenous customers post an
inelastic quantity that is unknown at date 0 and independent from the asset payoff.
Date 1 price is low when customers sell, and vice versa.

To show why forward contracts endogenously emerge under imperfect competi-
tion, I provide a preliminary result: under imperfect competition, trading is slow
because of a static effect and of a dynamic effect. The static effect is classical: at
each date dealers care about the impacts of their demand schedules on the con-
temporaneous asset price, which leads them to realize each period only a fraction
of remaining gains from trade. The dynamic effect is that at date 0, dealers care
about the impact of their trade on date 1 price. By selling more at date 0, sellers
reduce their need to sell at date 1, which raises date 1 price and thus increases the

1Forward contracts are traded bilaterally, futures are listed. Swaps are portfolios of forward
contracts (cf. e.g. Hull 2003, Stulz 2004).

2E.g. a farmer sells his/her crop forward before it has grown, or a company buys domestic
currency forward because it anticipates future cash inflows in foreign currency from sales abroad.

3McDonald and Paulson (2015) notice that in 2007, AIG not only bought exposures to corporate
bonds credit risk through credit default swaps, but also to the interest rate component through
interest rate swaps. They could have purchased corporate bonds directly instead.

4In the US, dealers are economic agents who trade in financial markets for their own account
as a regular business. The largest are within large banking or asset management groups. Their
activity is regulated by the SEC.
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profitability of selling one unit at date 1: therefore selling more at date 0 implies an
increased opportunity cost of not delaying trade to date 1. A symmetric mechanism
operates for buyers. As reviewed shortly, this second effect drives the impact of
forward contracts on the pace of trading. By contrast, under perfect competition,
none of the two effects play: therefore all gains from trade are realized and dealers
equate their inventories at date 0.

To get the main result of the paper, I first introduce the risk that forward con-
tracts allow to share: at date 1, exogenous customers buy or sell a quantity that is
unknown at date 0, which makes date 1 price increase or decrease. Under imperfect
competition, buyers and sellers have opposite exposure to this risk: sellers at date
0 are still willing to sell at date 1 and they fear that customers will simultaneously
sell, which would lower the date 1 price; symmetrically buyers fear that customers
buy at date 1. Thus buyers and sellers are exposed in an opposite way to the supply
shock, i.e. there are gains from trading this risk.

Then I introduce forward contracts maturing at date 1, thus indexed on the sup-
ply shock, as a means of trading exposures to the supply shock. Forward contracts
by definition pay off the difference between the realized price of the asset, and a
pre-agreed forward price. In my model, there are two sources of variation between
date 0 and date 1 price: information on dealers’ final payoff that arrive at date 1,
and the supply shock. I study two contracts separately. The first one, contract a,
has a payoff linear in the supply shock, and can be implemented as a forward if
the price moves between date 0 and date 1 only because of the supply shock. The
second contract, labelled b, has a payoff linear in both the supply shock and date
1 information and is implemented as a forward even with date 1 information about
the asset payoff and is approximated by contract a if date 1 information is not too
high; the latter condition can be viewed as a shortcut for date 1 being not too far
away in calendar time. I refer to both as forwards for simplicity. In equilibrium,
sellers of the underlying asset sell forward contracts, so that they gain if the price
is lower than expected, and buyers take the other side.

The second important result of this is that introducing forward contracts slows
down and decrease risk sharing in the underlying asset. To understand this, I show
that uncertainty about the supply shock accelerates trading in the underlying as-
set, because it decreases the dynamic effect of imperfect competition: unexpected
customer buys or sells make date 1 price move in unexpected direction, making
the value of managing date 1 price lower. uncertainty about the supply shock in
turn mitigates incentives to postpone trade to date 1. As forward contracts hedge
against adverse movement of prices, they allow dealers to behave as if there was
no uncertainty about the supply shock, which slows down trading. In addition, as
postponing one unit of date 0 asset trade translates into less than one unit of date
1 trade, the total quantity traded is decreased with forward contracts. The effect is
also present for contract b if the variance of date 1 information is not too high. Thus
instead of equating buyers’ and sellers’ marginal utilities of asset holdings, forward
contracts make them differ even more at date 1.

The third important result is that in spite of the cost of decreased underlying risk

64



sharing, dealers are better off with contract a: this is because of the compensating
benefit of making date 1 surplus more certain and more controllable.

Finally, I observe that the value dealers derive from trading increases with the
square of initial inventory differences, i.e. with gains from trade. This gives incen-
tives for dealers to trade bilaterally to create inventory imbalances and capture the
trading rent. I run a simple exercise to show that derivatives increase the willingness
of dealers to trade over-the-counter, since trading over-the-counter allow to create
interdealer gains from trade.

This setting with forward contracts resembles the situation before the 2007-
2009 crisis, with large dealers holding very large asset and derivative positions.
Dealers held large bond positions hedged by derivatives, credit default swaps in
particular which can be viewed as portfolios of forward contracts. After the crisis,
several regulations have impeded holding of risk for large dealers through various
balance sheet costs on bank-affiliated dealers: the setting without forward contracts
is reminiscent of this situation.

Consistently with the empirical findings that after the crisis dealers hold positions
for a shorter period of time (Dick-Nielsen and Rossi 2018), dealers in my model are
quicker to revert inventory imbalances. However, my model suggests that the risk
bearing capacity of dealers does not only serve to bring more liquidity, but is also
useful for rent extraction.

Literature review. This paper first contributes to a growing literature on the
economics of derivatives. Allaz and Vila (1993) also study how forward contracts
emerge under imperfect competition: their main point is that forward emerge even
without risk, and forward transactions make producers worse off. With a very dif-
ferent setting I find opposite results. Biais et al. (2016) and Biais et al. (2019) study
how derivatives impede risk management, and how margin requirements can miti-
gate the problem. Biais et al. (2019) explore how moral hazard affects risk sharing
through derivatives. Gains from trading risk arise from differences in preferences in
a competitive setting, while I make gains from trading derivatives through imper-
fect competition with identical preferences. Oehmke and Zawadowski (2015, 2016)
show that when swaps have exogenously low transaction costs, the natural holder
of derivatives are those with short-term horizon, while long term investors hold the
underlying. In my model transaction costs are endogenously low, because forwards
have a shorter maturity than the underlying.

This paper also connects to the literature on dynamic trading with imperfectly
competitive double auctions. Vayanos (1999), Du and Zhu (2017) and Rostek and
Weretka (2015) study dynamic trading strategies without forward contracts. Duffie
and Zhu (2017) and Antill and Duffie (2018) explore the ability of size discovery
mechanisms to overcome the inefficiency. My paper is to my knowledge the first to
make forward contract emerge in this context.

The paper is organized as follows. Section 2.2 presents the setting and solves the
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competitive benchmark. Section 2.3 solves the imperfect competition equilibrium
without forward contracts, and derives the result that uncertainty on the supply
shock accelerates trading. Section 2.4 highlights the gains from trading the risk
on the supply shock. Section 2.5 introduces forward contracts and solves for the
equilibrium. Section 2.6 gives dealer welfare with and without derivatives, and
compares them. Section 2.7 gives an analysis of spreads and trading volumes in
OTC markets. Section 2.8 concludes.

2.2 Setting and competitive benchmark

2.2.1 Setting

There are four dates t = 0, 1, 2. There is one risky asset that pays off at t = 2 an
ex ante unknown amount v per unit. At each date, before any action takes place, a
public signal εt is released: ε1 and ε2 are independent and normally distributed with
mean 0 and respective variances σ2

1 and σ2
2. Thus v = v0 + ε1 + ε2 and we denote vt

the expectation of v conditional on information released at t. There is also a riskless
asset (cash) that can be purchased or sold without constraint by a perfectly elastic
supplier. We normalize its gross return to 1.

There are two types of traders i = 1, 2, which I call dealers for concreteness.
Dealers of class i maximize the expected utility of their terminal wealth Wi described
below. Each class contains N ≥ 2 dealers5. Their utility is negative exponential
(CARA), with risk aversion parameter γ for both classes. Dealers of class i all start
with initial inventory Ii,0 of the risky asset at date 0: interdealer gains from trade
arise from inventory differences. Dealers are all forward-looking and fully rational:
in particular, they perfectly anticipate at date 0 the date 1 equilibrium and adjust
their actions accordingly. When considering dealers of class i, I use the notation −i
to refer to dealers of the other class.

At date 0, dealers can meet in a centralized market, where they post demand
schedules. A walrasian auctioneer computes the equilibrium price pc0 (competitive
case) or p∗0 (imperfectly competitive case) that clears the market. All dealers of
class i post the same demand schedule qi,0(p0) and therefore purchase the same
equilibrium quantity q∗i,0 ≡ q∗i,0(p∗0) (replace the star by a c for the competitive
market). This holds whether the market is perfectly competitive or not, and I
further specify the equilibrium concept when dealers are strategic in section 2.3.
Symmetry of demand schedules within a class of dealers is an equilibrium outcome
when market are competitive, while when traders are strategic, such equilibria exist
and are a natural focus of analysis. The market clearing condition at date 0 is thus
Nq∗1,0(p∗0) +Nq∗2,0(p∗0) = 0, i.e.

q∗1,0(p∗0) + q∗2,0(p∗0) = 0 (2.2.1)

5This makes the total number of traders in each market greater than 3, a necessary condition
to have equilibrium in linear strategies. When there are only two traders, Du and Zhu (2017) show
existence of equilibria in non-linear strategies.
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At date 1, the market re-opens, and an external infinitely risk averse customer
has a liquidity shock and is willing to sell Q units of the security (thus when Q > 0,
the customer is willing to sell and vice versa).6 Again the market is walrasian, with
market clearing price p∗1, and the assumption about date 1 competitiveness of dealers
is naturally consistent with that of date 0. dealers arrive in the date 1 market with
inventories Ii,1 = Ii,0 + qi,0, where qi,0 is the quantity traded at date 0. Market
clearing at t = 1 thus writes Nq∗1,1(p∗1) +Nq∗2,1(p∗1) = Q, i.e.

q∗1,1(p∗1) + q∗2,1(p∗1) =
Q

N
(2.2.2)

Dealers of both classes do not know the value of Q at date 0, and it is publicly
revealed simultaneously with ε1 at date 1 before the market opens. A public noisy
signal on Q is released at date 0 before the market opens (thus there is no information
asymmetry): all dealers share the common belief at date 0 that Q is normally
distributed with mean E0[Q] and variance N2σ2

q . In addition, we assume that Q is
independent of ε1 and ε2, and that this is common knowledge. Independence of Q
and εt means that Q is a pure private value or liquidity shock: this captures the real
life feature that an investor may sometime need cash when other market participants
don’t, e.g. a mutual fund or a life insurer facing indiosyncratic withdrawals, or that
the investor has got news on its future cash needs and adjusts his portfolio (maturity,
liquidity, ...) accordingly.

With initial inventory Ii,0, quantities qi,0 and qi,1 purchased at t = 0 and t = 1
at respective prices p0 and p1, the terminal wealth of class i traders is

Wi = Ii,0v + qi,0(v − p0) + qi,1(v − p1) (2.2.3)

Equilibria are solved by backward induction, consistently with dealer full ratio-
nality. The appropriate equilibrium concepts are defined in the relevant sections.

2.2.2 Competitive equilibrium

To give the intuitions which and where derivative contracts may be used in equi-
librium, I first solve the date 1 competitive equilibrium and compute the associated
equilibrium utility which is a function of Q. Then I derive intuitions on the impact
of Q and the associated risk that carry over for the imperfect competition case,
which is formally very similar in this respect.

I look for competitive equilibria defined as sets of demand schedules (q∗i,0(p0), q∗i,1(p1))
(i = 1, 2) and equilibrium prices pc0, p

c
1 such that:

1. All traders are price-takers;

2. For each class of trader i, date 1 demand schedules q∗i,1(p1) maximize their
expecetd utility of terminal wealth Wi given information available at date 1;

6The analysis is isomorphic to that of a liquidity shock of size Q/N that hits each trader of a
given class i (e.g. a customer who has traded only with traders of class i), although the equilibrium
allocations and prices differ in the imperfect competition setting.

67



3. For each class of trader i, date 0 demand schedules q∗i,0(p0) maximize their
expected utility of terminal wealth Wi given information available at date 0
and anticipated equilibrium outcomes at date 1;

4. The market clearing conditions (3.2.2) and (3.2.3) hold.

Again I make the slight abuse of notation that that symmetry of traders of class
i is included in the definition, while it is in fact an equilibrium outcome. I look for
equilibria by backward induction.

Date 1 equilibrium

Dealers of class i maximize over qi,1 the expected utility of trader i is, since the
only uncertainty is on the normally distributed variable ε2,

E1

[
−e−γWi

]
= − exp

{
−γW̃i,1

}
where

W̃i,1 = Ii,0v1 + qi,0(v1 − p0) + qi,1(v1 − p1)− γ

2
σ2

2(Ii,1 + qi,1)2 (2.2.4)

As the utility function is increasing, all happens as if dealers of class i maximized
the certainty equivalent W̃i,1 of their wealth. From the first order condition of this
maximization problem one easily derives the optimal competitive demand schedule:

qci,1(p1) =
v1 − p1

γσ2
2

− Ii,1 (2.2.5)

Demand increases when the expected terminal payoff v1 is larger with respect to the
purchase price p1, when dealers’ risk aversion γ is low, and when the terminal payoff
variance σ2

2 is low. Plugging optimal demands into the market clearing condition
(3.2.3), it is straightforward to derive the equilibrium price

pc1 = v1 − γσ2
2

Q∗c
2

(2.2.6)

with Q∗c = I1,1 + I2,1 +
Q

N

Notice that with date 0 market clearing condition (3.2.2), one has I1,1 + I2,1 =
I1,0 + I2,0. The equilibrium price is therefore equal to the expected value of the asset
minus a risk premium that increases if risk aversions increase, if the uncertainty σ2

2

over the asset terminal payoff v increases, and if the quantity held by traders after
date 1 trade increases. In particular, if customers are net sellers (Q > 0), then the
equilibrium price decreases and vice versa, which is intuitive.

Plugging equilibrium price (2.2.6) into optimal demand schedule (2.2.5), one gets
the equilibrium quantities purchased and post-trade inventories held by traders of
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class i (denoting the other class of traders by −i):

Ii,1 + qci,1 =
Q∗c
2

(2.2.7)

qci,1 =
Q∗c
2
− Ii,1 =

I−i,1 − Ii,1
2

+
Q

2N
(2.2.8)

Equilibrium post trade inventories show that the total inventory in the market is
evenly split across dealers.

Dealer valuation of the surplus of date 1 trade

After date 1 trade, from 2.2.4, dealer i certainty equivalent of wealth can be
decomposed as

W̃ c
i,1 = Ii,0v1 + qi,0(v1 − p0)− γσ2

2

2
(Ii,0 + qi,0)2 + Sc1 (2.2.9)

with Sc1 = qci,1(v1 − pc1)−
(
γσ2

2

2
(Ii,1 + qci,1)2 − γσ2

2

2
(Ii,1)2

)
(2.2.10)

The first terms are the classical mean-variance value of date 0 inventory position
after date 0 trade, while Sc1 is the net surplus of date 1 transaction. Sc1 is the sum
of two terms: qci,1(v1− pc1) is the expected payoff from the trade, while the difference
in bracket is the impact of the change in dealer i’s inventory position on her risk
holding cost.

Plugging equilibrium price 2.2.6, inventory 2.2.7 and quantity traded 2.2.8 into
the expression for S1 leads to

Sc1 =
γσ2

2

2

(
q∗1,1
)2

(2.2.11)

=
γσ2

2

2

(
Q∗c
2
− Ii,0 − qi,0

)2

(2.2.12)

Sc1 is proportional to the square of the quantity traded, which also holds under
imperfect competition. It can also be influenced by date 0 trading choice qi,0. Finally,
it is quadratic in Q: dealer i cares both about the price and the quantity traded,
and both are impacted by Q.

Plugging 2.2.12 into 2.2.10 and taking the certainty equivalent with respect to
both ε1 and Q using lemma 11 in the appendix, one gets the date 0 certainty equiv-
alent of wealth for dealer i:

W̃i,0 = Ii,0v0 + qi,0(v0 − p0)− γ

2
(σ2

1 + σ2
2)(Ii,0 + qi,0)2

+
γσ2

2

2

1

1 + xc

(
E0[qci,1]

)2
+

1

2γ
ln (1 + xc) (2.2.13)

with qci,1 =
Q∗c
2
− Ii,0 − qi,0 and xc = γ̄2

cσ
2
2σ

2
q
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The first term is the expected payoff from the initial inventory Ii,0, the second
term if the expected profit from date 0 trade, the third term is the cost of risk
associated with holding asset inventory until maturity. These terms reflect a classical
mean-variance trade-off.

The fourth term is new and reflects the opportunity of short-term capital gains for
dealer i: it shows that y maximizing the difference between his post-trade inventory
Q∗/2 and his initial position, dealer i maximizes the surplus from the transaction
(and thus the share he gets from it). Therefore, by choosing his demand qi,0, a class
i dealer faces a potential tradeoff between optimizing the Hold-To-Maturity (HTM)
component of his payoff, and the short-term component.

However, the fourth term decreases when the uncertainty σ2
q over the supply

shock increases: when uncertainty about the liquidity shock Q is large, there is a high
probability that Q takes extreme values, which 1) makes date 1 surplus very large
irrespective of the direction of the liquidity shock and 2) increase the probability
that optimization was in the wrong direction (e.g. large ex ante sells expecting large
customer sells, but large customer buys realize). Therefore the marginal payoff of
optimizing is lower, and indeed I show in the next subsection that the weight of this
term in traders’ certainty equivalent of wealth and optimal demand decreases.

The fifth term 1/2γ × ln(1 + xc) also comes from the quadratic dependence
of interim utility on the supply shock, but is independent of trader i’s demand.
It increases with uncertainty about the supply shock σ2

q : when it is more likely
that the supply shock takes more extreme values, it is more likely that the date 1
surplus is higher, which makes trader i better off. It does not intervene in dealer i’s
optimization problem however.

Competitive equilibrium: date 0

Optimal demand schedules. The optimal demand qci,0(p0) maximizes the cer-
tainty equivalent of wealth (2.2.13). The problem is solved by the unique solution
to the following first order condition:7

v0 − p0 = γ(σ2
1 + σ2

2)
(
Ii,0 + qci,0(p0)

)
− γ̄cσ

2
2

1 + xc

(
E0[Q∗c ]−

γi
γ̄c

(
Ii,0 + qci,0(p0)

))
xc = γ̄2

cσ
2
2σ

2
q

Rearranging leads to

qci,0(p0) =
v0 − p0

γ(σ2
1 + δcσ2

2)
− σ2

2

σ2
1 + δcσ2

2

1

1 + xc
E0

[
Q∗c
2

]
− Ii,0 (2.2.14)

with δc =
xc

1 + xc
∈ [0, 1)

The optimal demand is the sum of a quasi hold-to-maturity demand (first term),
analogous to the two periods demand (2.2.5), and the short term profit demand,

7It is straightforward to check that the problem is strictly concave, as 1/(1 + x2c) < 1.
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that appears as an arbitrage demand (second term). Both terms are impacted by
the uncertainty about the liquidity shock σ2

q .
Consider the second term first. The term inside the expectation is the equilibrium

date 0 inventory that trader i expects to carry from date 1 to date 2. Suppose for
simplicity that σ2

1 = σ2
2 and that the variance of the supply shock is zero: then the

term boils down to minus the date 1 equilibrium inventory. This means that at date
0, trader i is willing to sell the asset inventory he expects to repurchase at date 1,
likely at a profit: it thus reflects an opportunity to realize a short-term capital gain.

However when the uncertainty about the supply shock Q increases, the coefficient
in front of the expected inventory decreases: if σ2

1 = σ2
2, then the coefficient equals

1/(1 + 2xc), which reflect the fact that the reversal of the date 0 selling is uncertain.
Then trader 1 may well end up holding too little or too much inventory to maturity
with respect to the optimal quantities qi,0, qi,1 when the liquidity shock is known
with certainty.

Uncertainty about the reversal leads trader i to put less weight on the arbitrage
term, while he becomes more conservative on the Hold-to-Maturity component of
his demand. As reversal of date 0 selling is more uncertain, holding the excess or
deficit of asset inventory to maturity is more likely: this translates into a variance
that becomes closer to σ2

1 + σ2
2, the variance of v from date 0.

Uncertainty about Q and trader horizon. When the liquidity shock is known
ex ante for sure (σ2

q = 0 ⇒ xc = 0), the factor δc is zero: thus the effective holding
horizon is t = 1, as only γσ2

1 appears in the denominator of the first term. Therefore
trader i has optimally short horizon whenever he is sure to be able to reverse his
position in the short term. Conversely, when a trader is not sure to be able to reverse
his position in the short run, he puts some probability of holding it for a longer time
and therefore has a longer horizon.

As σ2
q increases, the coefficient δc in front of σ2

2 in (2.2.14) increases and becomes
closer to 1 as σ2

q becomes arbitrarily large. This is as if the trader was increasingly
concerned about the terminal payoff at date 3, rather than about the short term
return.

Competitive equilibrium. The equilibrium prices and quantities are stated in
the following proposition, proven in the appendix.

Proposition 1. The equilibrium price is

pc0 = v0 − γ(σ2
1 + σ2

2)
I1,0 + I2,0

2
− γσ2

2

1 + xc
E0

[
Q

2N

]
(2.2.15)

The risk premium is the sum of a hold-to-maturity component (second term), and of
an short-term arbitrage component (third term) that is proportional to the expected
date 1 liquidity shock: the price is higher when customer purchases are expected
(E0[Q] < 0) and vice versa. The sensitivity to the date 1 liquidity shock decreases
as uncertainty about it increases.
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Equilibrium trade and post-trade inventories are

qci,0 =
I−i,0 − Ii,0

2
(2.2.16)

Ii,0 + qci,0 =
I1,0 + I2,0

2
(2.2.17)

qci,1 =
Q

2N
(2.2.18)

Risk sharing is Pareto optimal.

Inventories are equalized right after date 0 trade: all interdealer gains from trade
are realized at date 0. By market clearing, as date 1 customers are price inelastic,
the short term capital gain demand has no impact on the quantities traded and all
effect goes in the price.

2.3 Equilibrium with imperfect competition and

uncertainty about future customer demand

In this section I derive the equilibrium when dealers are imperfectly competitive
in that they manage the price impact of their trades (cf. subsection 3.3.1), but
without derivative contracts allowed.

Dealers then reach only progressively their final inventory positions. In fact, at
date 0 imperfect competition plays both in a static and in a dynamic way: dealers
manage the impact of their trade on the contemporaneous price (static effect) and
on subsequent price (dynamic effect).

Crucially, I show in subsection 2.3.3 that when uncertainty about Q is higher,
dealers converge more quickly to the final allocation, and eventually get closer to
the efficient allocation.

2.3.1 Date 1

In this section, I look for Nash equilibria in demand schedules in the date 1
market. As there is no asymmetric information, there is an equilibrium multiplicity
problem (Klemperer and Meyer 1989). I use the usual trembling-hand stability
criterion to select a unique equilibrium (cf. Vayanos 1999).

At date 1, the expected utility to be maximized by trader k in class i is given
by (2.2.4). By contrast with competitive markets, traders now take the impact of
their demand on the equilibrium price into account: they conjecture the equilibrium
residual demand curve that is the sum of all other traders’ demand curves. For
a given quantity qi,1 demanded by trader i, this residual demand curve implies an
equilibrium price p1, and a marginal increase in the quantity demanded by trader i
implies a marginal price impact ∂p1/∂qk,i,1. Differentiating the certainty equivalent
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of wealth (2.2.4), trader k’ first order condition is:

v1 − p1 − qk,i,1
∂p1

∂qk,i,1
= γσ2

2(Ii,1 + qk,i,1)

Following the literature on market with Nash equilibria in demand schedules,8 I
conjecture linear strategies in equilibrium: there optimal strategies are linear when-
ever other market participants use linear strategies, but individual strategies are not
constrained to be linear. Thus trader k in class i expects to face a linear residual de-
mand curve of conjectured slope 1/λk,i,1, so that ∂p1/∂qi,1 = λk,i,1. To ease notation
I slightly anticipate on the equilibrium result that all traders k within class i follow
symmetric strategies, thus I drop the k subscript, so that her optimal demand is:

q∗k,i,1(p1, λi,1) =
v1 − p1

λi,1 + γσ2
2

− γσ2
2

λi,1 + γσ2
2

Ii,1 (2.3.1)

Therefore the residual demand curve faced by trader k in class i, summing optimal
demand (3.3.1) over other traders, has slope (N − 1)(λi,1 + γσ2

2) + N(λ−i,1 + γσ2
2).

Requiring consistency of conjectured equilibrium slope of the residual demand curve
and the actual ones:

λi,1 =
(
(N − 1)(λi,1 + γσ2

2)−1 +N(λ−i,1 + γσ2
2)−1

)−1
(2.3.2)

Definition 1. A date 1 equilibrium with imperfect competition is a set of demand
schedules as in (3.3.1), of λ1,1 and λ2,1 that solve (3.3.2) and a price p∗1 such that
the market clearing condition (3.2.3) holds.

Proposition 2 (Vayanos (1999), Malamud and Rostek (2017)). A date 1 equilib-
rium in linear strategies with imperfect competition exists and is unique. In this

equilibrium, λ1,1 = λ2,1 =
γσ2

2

2N−2
so that equilibrium demand schedules are:

q∗i,1(p1) =
2N − 2

2N − 1

[
v1 − p1

γσ2
2

− Ii,1
]

(2.3.3)

The equilibrium quantities traded and post trade inventories are

q∗i,1 =
2N − 2

2N − 1

Ii,1 − I−i,1
2

+
Q

2N
(2.3.4)

Ii,1 + q∗i,1 =
Q∗

2
+

1

2N − 1
Ii,1 (2.3.5)

The equilibrium price is

p∗1 = v1 − γ̄σ2
2Q
∗ (2.3.6)

with

{
Q∗ = 2N−2

2N−1
(I1,1 + I2,1) + Q

N

γ̄ = 2N−1
2N−2

γ
2

8Cf. Kyle (1989), Vayanos (1999), Malamud and Rostek (2017) among many others.
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The quantity traded by dealer i is reduced by a factor (2N − 2)/(2N − 1) with
respect to the competitive equilibrium, as shown in equation (3.3.4). This naturally
results in an equilibrium quantity traded (3.3.4) reduced by the same factor and in
imperfect risk sharing: class i traders retain a fraction 1/(2N − 1) of their initial
inventory Ii,1 as shown in equation (3.3.5).

Notice that the quantity traded by each class of dealers depends on date 0 equi-
librium trade, as Ii,1 = Ii,0 + q1,0. The equilibrium date 1 trade is fully solved in
subsection 2.3.3.

The equilibrium price equals the underlying asset expected payoff conditional on
information available at date 1 minus a risk premium that is the risk aversion γ
times a markup factor (2N − 1)/(2N − 2) related to imperfect competition, times
the asset variance σ2

2, while Q∗ is the total quantity put on the market by all traders
divided by N .

2.3.2 Date 0 equilibrium

I look for a Nash equilibrium in demand schedules as for date 1, with the ad-
ditional requirement that dealers’ strategies are conditional only on their initial
inventories, so that all traders within a class i follow symmetric strategies.

At date 0, dealers perform the same intertemporal arbitrage as they do in the
competitive case. However, they now take the impact of their trades on two prices
into account: the direct impact on the contemporaneous price p0, analogous to the
date 1 equilibrium, and the indirect impact on future price p1.

The indirect price impact plays as follows. Suppose customers learn at date 0
that customers are expected to sell. Then they decrease their demand in order to
be able to sell the asset if possible at a high price, to repurchase at date 1 at a lower
price because customers sell. But conditional on other traders’ strategies, if a trader
succeeds in selling, he will arrive at date 1 with a lower inventory, thus a higher
demand, which tends to raise the price and lowers the spread he can make.

I do not model the indirect impact as an impact on a date 1 residual demand
curve. Instead, I assume rational expectations on equilibrium price and quantities:
dealer k within class i conjectures symmetric equilibrium trades qel,−i,0 = qe−i,0 for
all dealers in the other class −i, and qel,i,1 = qei,1 for other dealers (l 6= k) in his
class i. This leads to conjectured date 1 initial inventory Ie−i,1 = I−i,0 + qe−i,0, and
Iel,i,1 (l 6= k). Dealer k optimizes according to this conjecture. In equilibrium, these
conjectures coincide with actual equilibrium quantities:

qei,0 = q∗i,0(p∗0). (2.3.7)

The certainty equivalent of wealth can be written (cf. lemma 18 in the appendix):

Ŵk,i,0 = Ii,0v0 + qk,0(v0 − p0)− γ(σ2
1 + σ2

2)

2
(Ik,1)2 + Ŝ∗k,1(qk,0) (2.3.8)
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where

Ŝ∗k,1(qk,0) =
2N

2N − 2

1

1 + αx

γσ2
2

2

(
γ̄

γ
E0

[
q∗i,1]
])2

=
α

1 + αx

γσ2
2

2

(
γ̄

γ
E0

[
Q

N

]
+
Īe−i,1

2
+
N − 1

N

Īei,1
2
−
(

1− 1

2N

)
Ik,1

)2

and x = γ̄2σ2
2σ

2
q and α = 2N(2N−2)

(2N−2)2
is increasing with N and is strictly between 0

and 1. The first order condition of the maximization of the above criterion, together
with a consistency condition of price impacts λi,0 analogous to (3.3.2), leads to
equilibrium demand schedules that are identical across dealers of class i (cf. lemma
19 in appendix):

q∗i,0(p0) =
2N − 2

2N − 1

[
v0 − p0

γ(σ2
1 + δσ2

2)
− Ii,0

−2N − 2

2N − 1

1

1 + αx

γσ2
2

γ(σ2
1 + δσ2

2)

(
γ̄

γ
E0

[
Q

N

]
+
Īe−i,1

2
+
N − 1

N

Īei,1
2

)]
(2.3.9)

where δ = 1− N−1
N

1
1+αx

∈ [0, 1). There are a few differences between this imperfectly
competitive demand schedule and the competitive one. Similarly to the date 1
equilibrium, all terms in the demand schedule are reduced by a factor by (2N −
2)/(2N − 1) < 1. In addition, consider the first term representing the hold-to-
maturity component of demand: it is divided by a variance σ2

1 + δσ2
2 where δ ∈ [0, 1)

and is analogous to the competitive case. But unlike the competitive case, when
the supply shock Q is known for sure (σ2

q = 0), δ = 1/N > 0. It reflects the fact
that dealer i has to keep part of his position built at date 0 until maturity, as risk
sharing is limited by imperfect competition at date 1. Otherwise δ increases with
σ2
q and converges to 1 as σ2

q becomes arbitrarily large, as in the competitive case:
dealer k’s effective horizon converges to t = 2.

Plugging (3.3.9) into the market clearing condition (3.2.2), and imposing con-
sistency of conjectures on others’ trades (3.3.7), I derive the following proposition,
fully proven in the appendix.

Proposition 3. At date 0, the equilibrium quantity traded by class 1 traders is

q∗1,0 =
1

1 + A(σ2
q )

I2,0 − I1,0

2
(2.3.10)

where A(·) is the demand reduction rate. It is positive and decreases with σ2
q .

A(·) is the sum of a static demand reduction rate and of a positive dynamic
demand reduction rate. The static demand reduction rate is the same as the one
obtained in the static date 1 market. The dynamic demand reduction rate is positive
and falls to zero as σ2

q goes to infinity.
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The date 0 equilibrium price is:

p∗0 = v0 − γ(σ2
1 + σ2

2)
I1,0 + I2,0

2
− γσ2

2

1 + αx
E0

[
Q

2N

]
(2.3.11)

As expected with imperfect competition, the equilibrium quantity traded |q∗1,0| is
lower than the competitive quantity qc1,0 = (I2,1 − I1,1)/2 since A(·) is positive. The
properties of A also imply that for finite σ2

q , the reduction 1/(1 + A) in quantity
traded is lower than in the static case: this simply reflects the fact that dealer i
cares about the impact of his trade on two prices p0 and p1.

However, as σ2
q increases, a dealer of class i cares less about what happens at

date 1, including her impact on date 1 price: she restricts her trade less. When σ2
q

becomes very large, the demand reduction factor converges to the static case: dealer
i trades as if there was no trading opportunity at date 1.

2.3.3 Uncertainty about Q slows down trading

I am now able to fully solve for the equilibrium quantities: combining 3.3.4 and
3.3.10, one gets the date 1 quantity traded by dealers 1 (and symmetrically for
dealers 2):

q∗1,1 =
2N − 2

2N − 1
×

A
(
σ2
q

)
1 + A

(
σ2
q

) × I2,0 − I1,0

2
+

Q

2N
(2.3.12)

There is a trade postponement effect: when A increases, date 0 quantity is reduced
as shown by (3.3.10), but date 1 quantity increases. However not all quantity is
postponed to date 1 when A is higher, as shown by the total quantity traded at
dates 0 and 1:

q∗1,0 + q∗1,1 =
1 + 2N−2

2N−1
A(σ2

q )

1 + A(σ2
q )

× I2,0 − I1,0

2
+

Q

2N
(2.3.13)

The total quantity traded increases when A(σ2
q ) increases. Given that A(σ2

q ) de-
creases with σ2

q , one can conclude the following.

Theorem 1. When the uncertainty σ2
q over date 1 customer supply shock decreases,

dealers postpone and reduce risk sharing.

The intuition is easy to grasp. Consider sellers: when σ2
q decreases, the uncer-

tainty about date 1 price p∗1 decreases, so that it the gains from postponing trade to
date 1 to limit price impact increase.

This result is crucial because I show in later section that with derivatives, dealers
behave as if σ2

q was lower than it actually is.
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2.4 Imperfect competition creates gains from trad-

ing risk over Q

In this section I show that imperfect competition creates gains from trading the
risk on Q because buyers and sellers then have opposite exposure to a risk on Q.
There are two effects that play in the same direction. To show these effects I come
back to dealer utilities post date 1 trade under perfect and imperfect competition.
In both cases, they can be written:

W eq
i,1 = Ii,0v1 + qeqi,0(v1 − p0)− γσ2

2

2

(
Ieqi,1
)2

+ Seqi,1 (2.4.1)

with Seqi,1 = qeqi,1(v1 − peq1 )− γσ2
2

2

[(
Ieqi,1 + qeqi,1

)2 − (Ieqi,1)2
]

(2.4.2)

where the superscript eq ∈ {c, ∗} refers to equilibrium variables under perfect and
imperfect competition. All effects of Q on dealer i’s marginal utilities go through the
net surplus Seqi,1 from date 1 transaction. Seqi,1 is composed of the expected payoff com-

ponent qeqi,1(v1−peq1 ), and the impact on risk holding cost
γσ2

2

2

[(
Ii,1 + qeqi,1

)2 − (Ieqi,1)2
]
.

The two effects relate to each of these components. To compute the equilibrium
values of these components, notice that the date 1 equilibrium price is

peq1 = v1 − γσ2
2

I1,0 + I2,0

2
− Ceqγσ2

2

Q

2N
(2.4.3)

where under perfect competition Cc = 1, and under imperfect competition C∗ =
2N−1
2N−2

> 1. Optimal quantity traded and inventories are

qeqi,1 = Beq
Ieq−i,1 − I

eq
i,1

2
+

Q

2N
(2.4.4)

Ieqi,1 + qeqi,1 =
Beq

2
Ieq−i,1 +

(
1− Beq

2

)
Ieqi,1 +

Q

2N
(2.4.5)

where Bc = 1 under perfect competition: this is because all gains from trade are
exhausted at date 0 so that dealers arrive at date 1 with equal inventories. Under
imperfect competition, B∗ = 2N−2

2N−1
∈ (0, 1).

First effect: price risk. Under imperfect competition, dealers with higher initial
inventory at date 0 still have higher inventory and are willing to sell at date 1: thus
they dislike when customers sell at the same time as them because it decreases the
price at which they sell. Symmetrically dealers with low initial inventory dislike
when customers buy at the same time as them. This is not the case under perfect
competition, because all interdealer gains from trade are exhausted at date 0 and
all dealers arrive with symmetric inventories at date 1.
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Formally, this effect relates to the expected payoff component of date 1 surplus:
using equilibrium price 2.4.3 and quantity 2.4.4, one sees that

qeqi,1(v1 − peq1 ) =

(
B
Ieq−i,1 − I

eq
i,1

2
+

Q

2N

)
︸ ︷︷ ︸

qeqi,1

γσ2
2

(
Ieqi,1 + Ieq−i,1

2
+ C

Q

2N

)
︸ ︷︷ ︸

v1−peq1

A given realization of Q has three effects on the expected payoff of date 1 trans-
action. The first is that the quantity Q impacts expected return at which interdealer
gains from trade are realized, which is the term γσ2

2Q/2N × (Ieq−i,1 − I
eq
i,1)/2: dealers

with high initial inventories are sellers (Ieq−i,1 − Ieqi,1 < 0) and make an unexpected
profit when customers are buyers (Q < 0), while they make an unexpected loss
when customers sell at the same time as them Q > 0). By contrast, dealers with
low initial inventory make a loss when customers buy at the same time as them, and
make an unexpected profit when customers are sellers. This effect is not present
under perfect competition, because gains from trade are exhausted at date 1, so
that Ici,1 = Ic−i,1.

Second, Q affects the quantity traded given the price, to which the term Q/N ×
γσ2

2(Ieqi,1 + Ieq−i,1)/2 corresponds. Both classes of dealers are exposed in the same way
to this risk under perfect and imperfect competition, with the same marginal utility:
it is not obvious that there is room for trading this part of the risk.

Third, Q has a second order effect represented by (Q/2N)2, which is always posi-
tive: unexpected customer sales occur at an unexpectedly low price, which increases
the surplus both classes of dealers earn. Again all dealers are exposed in the same
way to this risk, with the same marginal utilities related to this effect.

Overall I conclude that only the price effect leads marginal utilities between
buyers and sellers make marginal expected payoff from date 1 transaction differ for
each dealers.

Second effect: asymmetric effect of Q on holding costs. The quadratic form

of risk holding costs
γσ2

2

2
(Ieqi,1 + qeqi,1)2, and the fact that all dealers get the same share

of customer trades, implies that dealers with large date 1 initial inventory Ieqi,1 incur
a larger cost (relief) than buying dealers when customers sell (buy) than dealers
with low date 1 initial inventory. Indeed the marginal holding cost for dealer i is

∂
γσ2

2

2
(Ieqi,1 + qeqi,1)2

∂Q
= −γσ

2
2

4N

(
Beq

2
Ieq−i,1 +

(
1− Beq

2

)
Ieqi,1 +

Q

2N

)
As under imperfect competition B∗ < 1, selling dealers (with Ieqi,1 > Ieq−i,1) face a
larger marginal cost of customer trades than buying dealers.

The first and the second effect go in the same direction, which leads to the
following proposition.

Proposition 4. Dealers are exposed in an opposite way to the risk on date 1 price
that customers’ supply shock Q generates. When customers sell (Q > 0), dealers
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starting date 1 with a higher inventory are marginally worse off than dealers with
low inventory. The relation is reversed when customers buy. Thus there are gains
from trading this risk.

Thus under imperfect competition where dealers still have unequal inventories
after date 0 trade, there are gains from dealers trading risk on Q.

Under perfect competition, dealers have equal inventories after date 0 trade and
there are no gains from trading risk on Q.

2.5 Equilibrium with derivatives and imperfect

competition

In this section I study the equilibrium when derivatives are allowed. Specifically,
I study two equilibria with imperfect competition, each with a different derivative
contract. The first contract is linear in Q and allows to isolate the effect of hedging
the associated risk; however it can be implemented as a forward contract under
more restrictive conditions. The second contract can be implemented as a forward
contract in general.

As both contracts have qualitatively similar impact on the dynamic of trading,
I expose equilibrium results simultaneously.

2.5.1 The derivative contracts

I thus introduce several contracts that are prima facie abstract, and equilibrium
resolution shows that they can be implemented as forward or swap contracts. They
are indexed on plausibly not directly observable variables, but in equilibrium they
are function of observable prices.

Contract a: Linear payoff in Q. As uncertainty about Q is the root of the
effects studied above, I study a contract whose payoff depends only on Q first: it
isolates the effect of hedging of Q that intervenes in forward contracts. Beyond the
theoretical interest of isolating the pure effect of trading the risk on Q, I also later
show that they can be interpreted as forward contracts when σ2

1 = 0. With this
contract, one unit purchased of such contract pays off at t = 1

va = αγ̄σ2
2

Q

N
,

where the normalization by the constant αγ̄σ2
2 is convenient and without loss of

generality. At date 0, va is normally distributed, with mean µa = αγ̄σ2
2 E0

[
Q
N

]
and

and variance σ2
a = α2γ̄2σ4

2σ
2
q = α2σ2

2x. Trader k of class i purchases ak units of the
contract at unit price πa, which is in zero net supply. Slightly anticipating on the
equilibrium result that dealers within class i all post the same demand schedule and
denoting pa0 the equilibrium price of the underlying asset when contract a is traded,
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the market clearing condition is

a∗1(pa0, π
∗
a) + a∗2(pa0, π

∗
a) = 0 (2.5.1)

Purchasing the contract means receiving a cash compensation when external
customers sell more. It therefore acts as a hedge against unexpectedly low price for
the reason that customers unexpectedly sold.

Contract b: forward contract. Next I study a contract whose payoff is given
by:

vb = −αε1 + αγ̄σ2
2

Q

N

I show later that they can it implemented as a forward contract even when σ2
1 > 0:

buying the contract is equivalent to selling a forward.
One already sees that they are conditonal on all random variables which realize

at date 1. It is straightforward to show that vb = α(E0[p∗1] − p∗1). The proof that
contract b can be implemented as a forward is in subsection 2.5.3.

The expected payoff and variance of the payoff vb are µb = αγ̄σ2
2 E0

[
Q
N

]
and

σ2
b = α2σ2

1 + α2γ̄2σ4
2σ

2
q = α2(σ2

1 + σ2
2x). Dealer k of class i purchase a quantity bk of

this contract at price πb. Denoting pb0 the equilibrium price of the underlying asset
when contract b is traded, and slightly anticipating on the equilibrium result that
dealers within class i all post the same demand schedule b∗i (p

b
0, πb), a similar market

clearing condition applies:

b∗1(pb0, π
∗
b ) + b∗2(pb0, π

∗
b ) = 0 (2.5.2)

2.5.2 What derivatives hedge

Here I show what hedging role derivatives have by exhibiting the marginal val-
uations of the underlying asset and that of derivatives. In particular I show why
both imperfect competition and risk on Q are necessary to generate trading in the
underlying asset.

Contract a. Denote Ŵ a
i,0(qi,0, ai) the date 0 certainty equivalent of wealth for

trader i.

Lemma 1. The marginal valuation for the derivative is

∂Ŵ a
k,i,0

∂ak
=
µa − (1 + αx)πa − γσ2

aak
1 + αx

− λaqqk,0 − λaaak

+ νγσ2
2Ik,1 −

2N

2N − 1
νγσ2

2

(
Īe−i,1

2
+
N − 1

N

Īei,1
2

)

where x = γ̄2σ2
2σ

2
q and ν = 2N−2

2N−1
αx

1+αx
∈ [0, 1).
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The first term reflects the classical mean-variance trade-off for buying the deriva-
tive, irrespective of what it hedges. It is discounted by a factor 1+αx because dealer
i is sensitive to the square of Q. The second and third terms in λaq and λaa reflect
dealer i’s price impact management, which results in imperfect competition.

The fourth term in Ik,1 is the hedging term: it is positive, so that a higher long
position in the underlying inventory Ik,1 is associated with a higher marginal value
of the contract.

Lemma 2. The marginal valuation for the underlying asset, conditional on pur-
chasing the derivative in quantity ai, is

∂Ŵ a
k,i,0

∂qk,0
= v0 − p0 − γ(σ2

1 + δσ2
2)(Ii,0 + qk,0)− λqqqi,0 − λqaak

− 2N − 1

2N

µa
1 + αx

− 2N − 2

2N − 1

γσ2
2

1 + αx2

(
Īe−i,1

2
+
N − 1

N

Īei,1
2

)
+ νγσ2

2ak

where δ = 1− N−1
N

1
1+αx

and ν = 2N−2
2N−1

αx
1+αx

∈ [0, 1).

The first line reflects the classical marginal value of holding the asset until ma-
turity, and dealer i’s price impact management (last two terms). A marginal unit
of the underlying asset brings expected profit v0 − p0, but dealer i also incurs a
marginal cost from holding asset risk γ(σ2

1 + σ2
2)(Ii,0 + qi,0) for two periods. It also

has an impact on both the underlying asset price p0, and on the derivative price πa.
On the second line, the first term reflects the marginal value on date 1 surplus. The
last term shows that purchasing the derivative (selling a forward) also increases the
marginal value of holding the underlying asset whenever σ2

q > 0: this is consistent
with the derivative allowing to keep inventory for a longer period of time.

Contract b. For contract b, marginal valuations are similar to that of contract a,
except for an additional dependence on σ2

1 since the payoff of contract b is propor-
tional to ε1.

Lemma 3. For contract b, the marginal valuation fo the underlying asset and con-
tract b are

∂Ŵ b
k,i,0

∂qk,0
= v0 − p0 − λbqqqk,0 − λbqbbk − γ(σ2

1 + δσ2
2)Ik,1 + αγ

(
σ2

1 +
2N − 1

2N
νbσ

2
2

)
bk

− γσ2
2

1 + αx
E0

[
Q

2N

]
− 2N − 2

2N − 1

γσ2
2

1 + αx

(
Īe−i,1

2
+
N − 1

N

Īei,1
2

)
(2.5.3)

with δ = 1− N−1
N

1
1+αx

and νb = αx
1+αx

, and

∂Ŵ b
k,i,0

∂bk
=

µb
1 + αx

− πb − αγ
(
ασ2

1 + νbσ
2
2

)
bk − λbbqqk,0 − λbbbbk

+ αγ

(
σ2

1 +
2N − 1

2N
νbσ

2
2

)
Ik,1 − ανbγσ2

2

(
Īe−i,1

2
+
N − 1

N

Īei,1
2

)
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2.5.3 Implementation as forward contracts

The following proposition now shows when contracts a and that contract b can
be implemented as forward contracts.

Proposition 5. In the equilibrium with contract a, the equilibrium price for contract
a is:

π∗a =
µa

1 + αx

In the equilibrium with contract b, the equilibrium price for contract b is:

π∗b =
µb

1 + αx
+ αγσ2

1

I1,0 + I2,0

2

The underlying asset price p∗a0 in the equilibrium with contract a, and p∗b0 in the
equilibrium with contract b, are both equal to the price with imperfect competition
and without derivatives:

pa0 = pb0 = p∗0 (2.5.4)

The payoff of buying contract b is that of a selling a forward:

vb − πb = α
(
pf0 − p∗1

)
where the forward price is

pf0 = v0 − γ(σ2
1 + σ2

2)
I1,0 + I2,0

2
− γ̄σ2

2

1 + αx
E0

[
Q

N

]
When there no information about the terminal payoff arrives at date 1 (σ2

1 = 0),
contract a can be similarly implemented as a forward, with the forward price equal
to pf0 .

The proposition is proven in appendix. The price of contract a is simply the
expected value of the contract, discounted at rate αx proportional to σ2

q . There is
no derivative inventory risk premium because the contract is in zero net supply. For
contract b, the price is similar but a premium attached to underlying inventory risk
appears: it comes from the fact that contract b’s payoff is a function of ε1.

2.5.4 Equilibrium trades

Theorem 1 shows that without derivatives, when the uncertainty about customer
date 1 trade σ2

q decreases, interdealer trading is slowed down and risk sharing is de-
creased. As contracts a and b both hedge against this risk, I expect that dealers
would behave as if the uncertainty σ2

q was low. This is what the following proposi-
tions confirm.
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Proposition 6 (Contract a). In the equilibrium with contract a, the date 0 and date
1 equilibrium quantities are for dealer i

qai,0 =
1

1 + A(0)

I−i,0 − Ii,0
2

(2.5.5)

qai,1 =
2N − 2

2N − 1
× A(0)

1 + A(0)
× I−i,0 − Ii,0

2
+

Q

2N
(2.5.6)

aei,1 = −1

2
qID,ai,1 (2.5.7)

where A(0) is the date 0 demand reduction rate A(σ2
q ) from proposition 12 when

σ2
q = 0, and qID,ai,1 = qai,1−

Q
2N

the quantity traded that stems from difference in dealer
inventories just before date 1 trade.

In equilibrium, dealers with high inventory, who are the underlying asset sell-
ers, purchase the derivative. This was expected from the computation of marginal
valuations in subsection 2.5.2.

For contract b, the equilibrium quantities traded of the underlying asset are
formally the same, except that the demand reduction rate Ab(σ

2
q ) differs. Ab is

compared to A(σ2
q ) in subsection 2.6.1.

Proposition 7 (Contract b). In the equilibrium with contract b, the date 0 and date
1 equilibrium quantities are

qbi,0 =
1

1 + Ab(σ2
q )

I−i,0 − Ii,0
2

(2.5.8)

qbi,1 = qID,bi,1 +
Q

2N
(2.5.9)

bei = −1 + κb2
2

qID,bi,1 (2.5.10)

where

qID,bi,1 =
2N − 2

2N − 1
×

Ab(σ
2
q )

1 + Ab(σ2
q )
× I−i,0 − Ii,0

2

and where Ab(σ
2
q ) is the date 0 demand reduction rate with contract b, and κb2 is a

positive (negative) constant whenever σ2
1/σ

2
2 is above (below) a threshold.

The quantity of forward contract traded is also proportional to the interdealer
quantity qID,bi,1 and goes in the same direction (sellers of the underlying buy the
contract, i.e. sell the forward), but the coefficient of proportionality differs.

The amount of derivative trading, both contract a and contract b, is proportional
to the quantity of trades related to interdealer gains from trade: it is zero in the
perfect competition limit (N → ∞) as the date 0 demand reduction rate A(0)
becomes zero. This leads to the following.

Corollary 1. Under perfect competition, contracts a and b are not traded.
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2.6 Dealer welfare effects of adding contract a

2.6.1 The cost of contract a and b: interdealer risk sharing
is slowed down and decreased

Contract a allows dealers to hedge the price risk they face when they are willing
to postpone from date 0 to date 1: this implies that they are more willing to postpone
trade, which is intuitive and follows theorem 1. The following proposition confirms
this for contract b.

Proposition 8. One has for σ2
1/σ

2
2 not too high, or for σ2

1/σ
2
2 higher and σ2

q not too
high,

Ab(σ
2
q ) > A(σ2

q )

so that

qbi,0, q
a
i,0 < q∗i,0

qbi,1, q
a
i,1 > q∗i,1

Contracts a and b thus slow down interdealer trading and decrease interdealer risk
sharing.

The first part of this proposition is lemma 10 in the appendix, and inequalities
in quantity traded immediately follow with inspection of equilibrium quantities.

2.6.2 Benefit of contract a: hedging of date 1 surplus

In section 2.5.2 I showed that under imperfect competition, as there remains
interdealer gains from underlying asset trade, dealers face opposite exposure to the
risk on Q. This comes from a price effect, and from an effect on the holding cost
that goes in the same direction. Contract a is designed to realize these gains from
trading the risk on Q.

This results in a higher value of date 1 surplus from transaction with customers.
To show this, proposition 9 first decomposes dealer i’s equilibrium utility into a clas-
sical mean-variance component, and date 0 and date 1 surpluses from transactions.

Proposition 9. Under imperfect competition with no derivatives, the equilibrium
certainty equivalent of wealth for dealers of class i is

Ŵ ∗
i = Ii,0v0 −

γ(σ2
1 + σ2

2)

2
(I1,0)2 + Ŝ∗i,0 + Ŝ∗i,1 (2.6.1)

where the Ŝai,t are the certainty equivalents of the surpluses from date t transactions
that dealer i get:

Ŝ∗i,0 =
γ

2

(
σ2

1 + σ2
2

)
(1 + 2A0)

(
q∗1,0
)2

+
γσ2

2

1 + αx
q∗i,0 E0

[
Q

2N

]
Ŝ∗i,1 = (1 + 2A1)

γσ2
2

2

(
E0

[
q∗i,1
])2

1 + αx
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where A0 ≡ A
(
σ2
q

)
and A1 ≡ 1

2N−2
.

The proof of this proposition is in the appendix. The first two terms are the
classical mean-variance preferences associated with dealer i’s initial inventory. The
third and fourth term come from the gains from date 0 and date 1 trade. Ŝ∗i,0 is
the sum of one term proportional to the square of the quantity traded by dealer i,
and to one term proportional to the expectation of future customer demand. The
latter is a transfer between dealer i and dealer −i, as the sum of these terms over
all dealers equals zero by market clearing.

The certainty equivalent from date 1 surplus Ŝ∗1,1 discounts the surplus by a
factor (1+αγ̄2σ2

2σ
2
q )
−1, reflecting the risk associated with Q: the higher σ2

q , the more

the surplus is discounted and S̃∗1,1 becomes arbitrarily close to zero as σ2
q becomes

arbitrarily large.
It is also interesting to compare the utilities of buyers and sellers as a function of

the expectation of date 1 customer trades. Suppose that customers are expected to
sell (E0[Q] > 0). Then at date 0, the date 0 equilibrium price is lower (cf. equation
(3.3.11)), which raises the utility of buyers of the asset (q∗i,0 > 0): this shows up in
S∗i,0 as a term proportional to E0[Q/N ]× q∗i,0. The same effect plays at date 1: date
1 price is expected to be low, and date 0 purchasers continue to purchase at date
1. This shows up as E0[q∗i,1] = E0

[
Q

2N

]
+ 2N−2

2N−1
A

1+A

I−i,0−Ii,0
2

is higher for dealers with
low initial inventory.

With derivative contract a, dealer i’s utility takes a similar form, but the expres-
sion of date 0 and date 1 surpluses is modified. Proposition 10 shows in particular
that with contract a, the certainty equivalent of date 1 surplus does not shrink to
zero anymore as σ2

q grows.

Proposition 10. Under imperfect competition with derivatives, the equilibrium util-
ity of dealers of class 1 is

Ŵ a
i,0 = Ii,0v0 −

γ(σ2
1 + σ2

2)

2
(Ii,0)2 + Ŝai,0 + Ŝai,1 (2.6.2)

where the Ŝai,t are the certainty equivalents of the surpluses from date t transactions
that dealer i get:

Ŝai,0 =
γ

2

(
σ2

1 + σ2
2

)
(1 + 2Aa0)

(
qai,0
)2

+
αγ̄σ2

2

1 + αx
qai,0 E0

[
Q

2N

]
Ŝai,1 = γσ2

2

{
Nη

2N − 1

(
1− 2N − 2

2N − 1

η

4

)(
qID,ai,1

)2

+
1 + 2A1

1 + αx

((
1− 2N − 2

2N − 1

η

2

)
qID,ai,1 + E0

[
Q

2N

])2
}

+
Nη

2N − 2

γσ2
2

1 + αx
qID,ai,1 E0

[
Q

2N

]
with Aa0 = A(0), A1 = 1

2N−2
and qID,a1,1 = 2N−2

2N−1
A(0)

1+A(0)

I2,0−I1,0
2

is the quantity corre-

sponding to pure interdealer gains from trade at date 1, and η =
σ2
1+σ2

2

Nσ2
1+σ2

2
.

In particular, Ŝai,1 does not converge to zero as σ2
q becomes infinite.
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This proposition is proven in the appendix. Date 1 surplus is now the sum of a
positive term that does not vary with uncertainty σ2

q over Q, and a term that shrinks
to zero as σ2

q grows larger: thus date 1 surplus remains bounded below by a strictly
positive value, reflecting the hedging provided by contract a.

In the following subsection I show that the value of date 1 surplus is higher with
derivatives is higher for all values of σ2

q .

2.6.3 Contract a increases dealers’ welfare

Here I show that for for all values of σ2
q , and all values of parameters, introducing

derivatives raises dealers’ utility.

Theorem 2. Suppose E0[Q] = 0. Then all dealers’ utility is raised with the intro-
duction of contract a:

Ŵ a
i,0 > Ŵ ∗

i,0, i = 1, 2

This is because the cumulative value of trading the asset is higher with derivatives:

Ŝai,0 + Ŝai,1 > Ŝ∗i,0 + Ŝ∗i,1

The proof is in the appendix, with the second statement being immediate from
dealer utilities in propositions 9 and 10. The theorem thus says that the derivative
cost of posponing and reducing profitable trade is more than offset by the benefit of
sharing risk over Q.

2.7 Spreads and trading volume in over-the-counter

market with and without derivatives

In this section I investigate how forward contracts impact spreads in an over-
the-counter market. Utilities derived in previous sections are increasing in trading
values, therefore in inventory differences between dealers: this creates a value for
decentralized trading where one class of dealers purchases a block to benefit from
the associated gain from trade.

In this section I run a simple exercise: I introduce unmodelled customers at date
0 willing to trade a quantity Q0 that is inelastic, and I allow them to deal with a
single class of dealers in a separate market, making it resemble an OTC market. In
particular this assumes that the interdealer market is shut down to customers, which
is often the case empirically. For simplicity I assume E0[Q] = 0 in this section.

Dealer valuations of OTC trades increase with derivatives. Dealer date 0
utilities shown in propositions 9 and 10 can generally be written,

Ŵi,0 = Ii,0v0 −
γ(σ2

1 + σ2
2)

2
(Ii,0)2 + γθ

(
I2,0 − I1,0

2

)2

︸ ︷︷ ︸
Ŝi,0+Ŝi,1

86



The first two terms reflect dealers’ valuation of their endowment if they held it to
maturity: it is a simple mean-variance criterion. The second term is the trading
value, which is the sum of surpluses from future transactions. The parameter θ is
derived from the proofs of propositions 9 and 10, depend on the setting:

θc = γ
σ2

1 + σ2
2

2

θ∗ = θc − γ
(

A(σ2
q )

1 + A(σ2
q )

)2(
σ2

1 + σ2
2

2
− α

2

σ2
2

1 + αx

)
θa = θc − 1

2

(
A(0)

1 + A(0)

)2
{
σ2

1 + (1− α)σ2
2 + ασ2

2

αx

1 + αx

(
1− 2N − 2

2N − 1

η

2

)2
}

Crucially, the trading value depends on the difference between dealer 1 and dealer
2 inventories. A way of making inventory difference appear for dealers is to trade
with external customers bilaterally, i.e. in an over-the-counter (OTC) market.

I assume that before trading OTC, dealers start with symmetric inventory I.
Dealer 1’s utilities derived from purchasing q1,OTC at price pOTC are then

Ŵi,0 = Iv0 + q1,OTC(v0 − pOTC)− γ(σ2
1 + σ2

2)

2
(I + q1,OTC)2 + γθ (q1,OTC)2

Notice that theorem 2 has shown that θa > θ∗.

Corollary 2. With contract a, dealers are more willing to pay for OTC trades than
without derivatives.

A natural consequence of this is that dealers’ willingness to pay for the asset in
the OTC market increases with derivatives. Assume σ2

1/σ
2
2 is sufficiently large so

that dealer utilities remain concave in q1,OTC . Suppose that customers choose to
trade an equal quantity with dealers of class 1, whose number N is greater than 3 to
ensure existence of an equilibrium in linear strategies. Class 1 dealers post demand
schedules by taking care about their price impact, and I denote pOTC the market
clearing price. Dealer 1’s utilities derived from purchasing q1,OTC at price pOTC are

Ŵi,0 = Iv0 + q1,OTC(v0 − pOTC)− γ(σ2
1 + σ2

2)

2
(I + q1,OTC)2 + γθ (q1,OTC)2

Their marginal valuation for the asset is therefore, again assuming linear prices:

∂Ŵ1,0

∂q1,OTC

= v0 − pOTC − qi,OTCλOTC − γ
(
σ2

1 + σ2
2

)
I − γ

(
σ2

1 + σ2
2 − 2θ

)
q1,OTC

= v0 − pOTC − qi,OTCλOTC − γ
(
σ2

1 + σ2
2

)
I − 2γ (θc − θ) q1,OTC

In equilibrium, following similar analysis to previous section, one has λ = (N −
2)−1. Equating the marginal valuation to zero and rearranging leads to the following
demand function:

q1,OTC(pOTC) =
N − 2

N − 1

v0 − pOTC
γ(σ2

1 + σ2
2 − 2θ)

− N − 2

N − 1

σ2
1 + σ2

2

γ(σ2
1 + σ2

2 − 2θ)
I

Dealers’ demand increases, and their price elasticity decreases, with the trading
valuation parameter θ.
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Spread with inelastic customers. The market clearing condition isNqi,OTC(p∗OTC) =
Q0, leading to the equilibrium price

p∗OTC = v0 − γ(σ2
1 + σ2

2)I − 2
N − 1

N − 2
γ(θc − θ)Q0

N

Each dealer of class 1 gets a quantity Q0/N after OTC trade. The date 0 price in
the interdealer market is, following (3.3.11):

p∗0 = pa0 = v0 − γ(σ2
1 + σ2

2)

(
I +

Q0

2N

)
Therefore the spread with respect to the interdealer price that dealers charge in the
OTC market is

S = p∗OTC − p∗0 = −γ
(

N

2(N − 2)

(
σ2

1 + σ2
2

)
+ 2

N − 1

N − 2
θ

)
Q0

2N

Trading volume with elastic customers. It is easy to see that a higher willing-
ness to pay for the underlying also creates more trading volume when customers are
elastic. Assume that the opposite of the equilibrium demand schedule of customers
is

Q0(pOTC) = Q0 + λpOTC

with λ > 0. The market clearing condition is Nq1,OTC(p′OTC) = Q0 + λp′OTC and it
is easy to see that the equilibrium quantity increases in trading valuation parameter
θ.

2.8 Conclusion

In this paper, I provide a model in which imperfect competition in a dynamic
trading context generates gains from trading risk over a supply shock in the future:
risk averse dealers trade an asset slowly, and in the course of trading they fear that
external customers unexpectedly buy or sell. Sellers fear that customers sell at the
same time as them, lowering the average selling price; buyers fear the opposite:
buyers and sellers have an opposite exposure to this supply shock. With perfect
competition, dealers gains from trade are realized immediately, so that they are
exposed to the supply shock in the same way: there are no gains from trading the
supply shock risk.

I allow market participants, labelled dealers, to trade contracts that are linear
in the supply shock and can be implemented as forward contracts. In equilibrium,
sellers sell the foward contracts to buyers, and trade less initially: they keep their
inventory for a longer period in spite of gains from trade. This is a cost that is
more than compensated for dealers by the following benefit: derivatives both reduce
the risk from future transaction income, and allos them to better to control their
dynamic trading strategies.
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In equilibrium, dealer utilities are the sum of a risk-adjusted return on their
initial inventory, and of a trading value which is the sum of the surpluses made from
trading. The trading value increases with interdealer gains from trade, i.e. inventory
imbalances. Thus dealers have incentives to trade in decentralized markets to create
imbalances and capture the trading value. Forward contracts increase the trading
value: therefore it increases the willingness to pay for the asset in decentralized
markets: this leads to tighter spreads and/or larger trading volume.

This paper thus contributes to the understanding of what financial institutions
do with derivatives.
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2.9 Appendix: Proofs

2.9.1 Proof of proposition 1

Plugging optimal demand (2.2.14) into the market clearing condition (3.2.2), one
gets(

1

γ1

+
1

γ2

)
v0 − p∗0
σ2

1 + δcσ2
2

− σ2
2

(σ2
1 + δcσ2

2)(1 + x2c)

(
γ1

γ1 + γ2

+
γ2

γ1 + γ2

)
E0[Q∗c ] = 0

Rearranging one gets the equilibrium price formula (2.2.15). Plugging the equilib-
rium price formula into the optimal demand schedule (2.2.14), one gets

Ii,0 + q∗i,0(p∗0) =
γ̄c(σ

2
1 + σ2

2)(I1,0 + I2,0) +
γ̄cσ2

2

1+x2,c
E0

[
Q
N

]
γi(σ2

1 + δcσ2
2)

− σ2
2

σ2
1 + δcσ2

2

1

1 + x2,c

E0

[
γ−i

γ1 + γ2

Q∗c

]
=

γ−i
γ1 + γ2

1

σ2
1 + δcσ2

2

(
σ2

1 + σ2
2 −

σ2
2

1 + x2,c

)
(I1,0 + I2,0)

=
γ−i

γ1 + γ2

(I1,0 + I2,0)

Optimal risk sharing comes from the competitiveness of the market (first welfare
theorem).

2.9.2 Proof of proposition 12: date 0 imperfect competition
equilibrium without derivatives

Demand schedules

I first general results when risk aversions differ across groups: γ1 6= γ2. From
proposition 11, the post-trade certainty equivalent of wealth at date 1 is given by
the following lemma, proven in the appendix.

Lemma 4. The interim expected utility for a trader k in class i is − exp
{
−γiŴk,i,1

}
,

where Ŵi,1 is the interim certainty equivalent of wealth given by:

Ŵk,i,1 = Ik,0v1 + qk,0(v1 − p0)− γσ2
2

2
(Ik,1)2 + α

γσ2
2

2

(
γ̄

γ
Q∗ − Ik,1

)2

(2.9.1)

= Ik,0v1 + qk,0(v1 − p0)− γσ2
2

2
(Ik,1)2 +

2N

2N − 2

γσ2
2

2

(
q∗k,1
)2

(2.9.2)

where α = 2N(2N−2)
(2N−1)2

= 1− 1
(2N−1)2

.

Proof. Plugging equilibrium price (3.3.6) and quantities (3.3.4) into the date 1 cer-
tainty equivalent of wealth (2.2.4), one gets

Ŵk,1 = Ik,0v1 + qk,0(v1 − p0)− γσ2
2

2
(Ik,1)2 + q∗k,1(v1 − p∗1)− γσ2

2

2

((
Ik,1 + q∗k,1

)2 − (Ik,1)2
)
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Recognizing
v1−p∗1
γσ2

2
= 2N−1

2N−2
q∗k,1 + Ik,1 and rearranging one get

Ŵk,i,1 = Ik,0v1 + qk,0(v1 − p0)− γσ2
2

2
(Ik,1)2

+ q∗k,1γσ
2
2

(
2N − 1

2N − 2
q∗k,1 + Ik,1

)
− γσ2

2

2

(
2Ik,1 + q∗k,1

)
q∗k,1

= Ik,0v1 + qk,0(v1 − p0)− γσ2
2

2
(Ik,1)2 +

(
2N − 1

2N − 2
− 1

2

)
γσ2

2

(
q∗k,1
)2

which leads to the desired formulas.

It is then possible to compute the certainty equivalent of wealth at date 0.

Lemma 5. The date 0 certainty equivalent of wealth for trader k in class i is:

Ŵk,i,0 = Ii,0v0 + qk,0(v0 − p0)− γ(σ2
1 + σ2

2)

2
(Ik,1)2 +

1

2

2N

2N − 2

γσ2
2

1 + αx

(
E0

[
q∗k,1
])2

(2.9.3)

= Ik,0v0 + qk,0(v0 − p0)− γ(σ2
1 + σ2

2)

2
(Ik,1)2

+
α

2

γσ2
2

1 + αx

(
γ̄

γ
E0

[
Q

N

]
+
Īe−i,1

2
+
N − 1

N

Īei,1
2
− 2N − 1

2N
Ik,1

)2

(2.9.4)

where x = γ̄2σ2
2σ

2
q and γ̄ = 1

2
2N−1
2N−2

. Īe−i,1 and Īei,1 are the rational expectations of
average dealer inventories after date 1 trade.

Proof. Start from interim expected utility (3.7.2). Take the certainty equivalent
with respect to ε1 first, which gives

Ŵk,0|Q = Ii,0v1 + qk,0(v1 − p0)− γ(σ2
1 + σ2

2)

2
(Ik,1)2 + α

γσ3
2

2

(
γ̄

γ
Q∗ − Ik,1

)2

Then take the certainty equivalent with respect to Q following lemma 11, which
gives the desired formula.

For the rational expectations: Q∗ is an outcome of date 0 trade, as it depends
on dealers’ average inventories in each class. Dealer k’s trade has an impact on date
his class’ average inventory

Īei,1 ≡
1

N

N∑
l=1,l 6=k

Iel,i,1 +
Ik,1
N

=
N − 1

N
Īei,1 +

Ik,1
N

where the second line follows from rational expectation of a symmetric equilibrium.
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Lemma 6. In equilibrium, all dealers within class i submit the same optimal demand
schedules as follows:

q∗i,0(p0) =
2N − 2

2N − 1

[
v0 − p0

γ(σ2
1 + δσ2

2)
− Ik,0

−2N − 2

2N − 1

1

1 + αx

σ2
2

σ2
1 + δσ2

2

(
γ̄

γ
E0

[
Q

N

]
+
Īe−i,1

2
+
N − 1

N

Īei,1
2

)]
(2.9.5)

It depends on trader k’s expectation on other traders’ equilibrium trades.

Proof. Differentiate the certainty equivalent of wealth (3.7.4) with respect to qi,0,
taking into account its price impact that is conjectured to be constant (and denoted
λi,0). Equating to zero to get the first-order condition:

v0 − p0 = qk,0(λk,0 + γ(σ2
1 + σ2

2))qk,0 + γ(σ2
1 + σ2

2)Ik,0

+
2N − 2

2N − 1

γσ2
2

1 + αx

(
γ̄

γ
E0

[
Q

N

]
+
Īe−i,1

2
+
N − 1

N

Īei,1
2
− 2N − 1

2N
Ik,1

)
= (λk,0 + γ(σ2

1 + δσ2
2))qi,0 + γ(σ2

1 + δσ2
2)Ii,0

+
2N − 2

2N − 1

γσ2
2

1 + αix2

(
γ̄

γ
E0

[
Q

N

]
+
Īe−i,1

2
+
N − 1

N

Īei,1
2

)
where

δ = 1− N − 1

N

1

1 + αx
∈ [0, 1].

It is thus straightforward to check that the second derivative of Ŵi,0 is negative, so
that the problem is strictly concave. Using proposition 1 of Malamud and Rostek
(2017)

λk,0 =
γ(σ2

1 + δσ2
2)

2N − 2

Plugging equilibrium price impacts λk,0 in the first order condition and rearranging,
one gets the desired formula.

Equilibrium price and quantity

The date 0 market clearing condition can be written:

v0 − p∗0
γ(σ2

1 + δσ2
2)

=
I1,0 + I2,0

2
+

2N − 2

2N − 1

1

1 + αx

γσ2
2

γ(σ2
1 + δσ2

2)

(
γ̄

γ
E0

[
Q

N

]
+

2N − 1

2N

Īe1,1 + Īe2,1
2

)
By market clearing at date 0, Īe1,1 + Īe2,1 = I1,0 +I2,0; in addition, recalling γ̄ = 1

2
2N−1
2N−2

,
one has

v0 − p∗0 = γ(σ2
1 + δσ2

2)
I1,0 + I2,0

2
+

2N − 2

2N

γσ2
2

1 + αx

I1,0 + I2,0

4
+

γσ2
2

1 + αx
E0

[
Q

2N

]
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Recalling the definition of δ, the equilibrium price is therefore:

p∗0 = v0 − γ(σ2
1 + σ2

2)
I1,0 + I2,0

2
− γσ2

2

1 + αx
E0

[
Q

2N

]
(2.9.6)

Plugging 3.7.6 into the equilibrium demand schedule for class 1 traders:

q∗1,0 =
2N − 2

2N − 1

[
I2,0 − I1,0

2
+

2N − 2

2N − 1

1

1 + αx

σ2
2

σ2
1 + δσ2

2

(
γ̄

γ
E0

[
Q

N

]
+

2N − 1

2N

Īe1,1 + Īe2,1
2

)

−2N − 2

2N − 1

1

1 + αx

σ2
2

σ2
1 + δσ2

2

(
γ̄

γ
E0

[
Q

N

]
+
Īe2,1
2

+
N − 1

N

Īe1,1
2

)]

=
2N − 2

2N − 1

[
I2,0 − I1,0

2
+

2N − 2

2N − 1

1

1 + αx

σ2
2

σ2
1 + δσ2

2

(
Īe1,1 − Īe2,1

4N

)]

=
2N − 2

2N − 1

[
I2,0 − I1,0

2
+

1

2N − 1

N − 1

N

1

1 + αx

σ2
2

σ2
1 + δσ2

2

(
I1,0 − I2,0

2
+ q∗i,0

)]
where the third line used the equilibrium condition qe2,0 = q∗2,0 and market clearing
3.2.2. Thus(

2N − 1

2N − 2
− N − 1

N(2N − 1)

1

1 + αx

σ2
2

σ2
1 + δσ2

2

)
q∗i,0 =

(
1− N − 1

N(2N − 1)

1

1 + αx

σ2
2

σ2
1 + δσ2

2

)
I2,0 − I1,0

2

Notice that with δ = 1− N−1
N

1
1+αx

,

1− N − 1

N(2N − 1)

1

1 + αx

σ2
2

σ2
1 + δσ2

2

=
σ2

1 +
(
1− 2N−2

2N−1
1

1+αx

)
σ2

2

σ2
1 +

(
1− 2N−2

2N
1

1+αx

)
σ2

2

> 0

This and rearranging leads to the desired equilibrium quantity:

q∗i,0 =
1

1 + A(σ2
q )

I2,0 − I1,0

2
(2.9.7)

where

A(σ2
q ) =

1

2N − 2

σ2
1 +

(
1− N−1

N
1

1+αx

)
σ2

2

σ2
1 +

(
1− 2N−2

2N−1
1

1+αx

)
σ2

2

where the dependence in σ2
q in the right-hand side goes through δ and x, to get

formula 3.3.10. The properties of A(σ2
q ) are derived in lemma 7 in appendix 2.9.3.

It is also possible to write

A(σ2
q ) =

1

2N − 2︸ ︷︷ ︸
Astatic

+
1

1 + αx

1

(2N − 2)(2N − 1)

σ2
2

σ2
1 +

(
1− α

2
1

1+αx

)
σ2

2︸ ︷︷ ︸
Adynamic

The static demand reduction rate deserves its name because 1/(1 +Astatic) = 2N−2
2N−1

,
which is the same reduction factor as in the date 1 market which is a static game.
It is straightforward to show that Adynamic converges to zero as σ2

q , thus x, tends to
infinity.

The date 1 quantity is computed straightforwardly from 3.7.7 and 3.3.4.
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2.9.3 Properties of the demand reduction rate A(σ2
q)

Define for z = 1
1+αγ̄2σ2

2σ
2
q
∈ [0, 1] the ratio

Ã(z) =
1

2N − 2

σ2
1 +

(
1− N−1

N
z
)
σ2

2

σ2
1 +

(
1− 2N

2N−1
N−1
N
z
)
σ2

2

so that A(σ2
q ) = Ã(z).

Lemma 7. Then whatever the finite parameters N ≥ 2, σ2
1 ≥ 0 and σ2

2 > 0:

1. The function Ã : z 7→ Ã(z) is strictly increasing so that A(σ2
q ) strictly decreases

in σ2
q .

2.

1 < (2N − 2)A(σ2
q ) <

3

2
The lower bound 1 the limit of (2N − 2)A(σ2

q ) when σ2
q becomes infinite. The

upper bound 3/2 is attained only in the perfect competition limit (N → ∞)
when both σ2

1 = 0 and σ2
q = 0.

3. Therefore

0 < A(σ2
q ) <

3

4
1

2
<

2N − 2

2N − 1
2

<
1

1 + A(σ2
q )
<

2N − 2

2N − 1

1

2N − 1
<

A(σ2
q )

1 + A(σ2
q )
≤ 3

2

1

2N − 1
2

≤ 3

7

Proof. For 1., compute the derivative

Ã′(z) =
σ2

2

2N(2N − 2)

σ2
1 + σ2

2(
σ2

1 +
(
1− 2N−2

2N−1
N−1
N
z
)
σ2

2

)2 > 0

For 2., the first inequality is easily derived from z ≥ 0; the case z = 0 corresponds
to σ2

q →∞. For the second inequality, given that Ã(·) is increasing,

(2N − 2)Ã(z) ≤ (2N − 2)Ã(1) =

σ2
1

σ2
2

+ 1− N−1
N

σ2
1

σ2
2

+ 1− 2N
2N−1

N−1
N

≤
1− N−1

N

1− 2N
2N−1

N−1
N

= 2− 1

N

where the last inequality follows from the fact that the ratio Ã(1) is decreasing in
the ratio σ2

1/σ
2
2. Given that N ≥ 2, one finally gets the desired inequality

(2N − 2)A(z) ≤ 3

2
.

For 3. and 4., applying the mappings x 7→ 1/(1+x) and x 7→ x/(1+x) to inequalities
derived in 2. (all members in these inequalities are greater than −1 so the first
mapping reverses ordering, the second preserves it), one gets the desired inequalities.
The last inequality is found by applying N = 2.
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2.9.4 Resolution of date 0 equilibrium with contract a

Proof of lemmas 1 and 2

To compute the marginal valuations, I first compute the date 0 utility as a
function of qi,0 and ai.

Lemma 8. The certainty equivalent of wealth of trader k in class i is at date 0, given
conjectures on other traders’ equilibrium average post trade inventories Īe,1 = Ii,0+qei,0
Īe−i,1 = I−i,0 + qe−i,0:

Ŵ a
k,i,0(qi,0, ai) = Ii,0v0 + qk,0(v0 − p0)− ak

(
πa + αγσ2

2

Īei,1 + Īe−i,1
2

)
− γ

2

((
σ2

1 + (1− α)σ2
2

)
(Ik,1)2 + ασ2

2(Ik,1 − ak)2
)

+
1

2

αγσ2
2

1 + αx

(
γ̄

γ
E0[Q∗]− Ik,1 + ak

)2

+ cst (2.9.8)

Proof. From the proof of lemma 18, one has with contract a’s payoff purchased in
quantity ak:

Ŵk,i,1 = Ik,0v1 + qk,0(v1 − p0)− γσ2
2

2
(Ik,1)2 +

N

2N − 2
γσ2

2

(
q∗k,1
)2

+ ak

(
αγ̄σ2

2

Q

N
− πa

)
= Ik,0v1 + qk,0(v1 − p0)− γσ2

2

2
(Ik,1)2 + ak

(
αγ̄σ2

2Q
∗ − αγσ2

2

Īei,1 + Īe−i,1
2

− πa

)

+
α

2
γσ2

2

((
γ̄

γ
Q∗
)2

− 2
γ̄

γ
Q∗Ik,1 + (Ik,1)2

)

= Ik,0v1 + qk,0(v1 − p0)− γσ2
2

2

(
(1− α)(Ik,1)2 + α(Ik,1 − ak)2

)
− ak

(
αγσ2

2

Īei,1 + Īe−i,1
2

+ πa

)

+
α

2
γσ2

2

((
γ̄

γ
Q∗
)2

− 2
γ̄

γ
Q∗(Ik,1 − ak) + (Ik,1 − ak)2

)

= Ik,0v1 + qk,0(v1 − p0)− γσ2
2

2

(
(1− α)(Ik,1)2 + α(Ik,1 − ak)2

)
− ak

(
αγσ2

2

Īei,1 + Īe−i,1
2

+ πa

)
+
α

2
γσ2

2

(
γ̄

γ
Q∗ − Ik,1 + ak

)2

Then take the certainty equivalent of this with respect to ε1 and apply lemma
11 to get 2.9.8.

I conjecture linear demand schedules, thus linear dependence of prices in qi,0
and ai. With two assets, a trader cares about cross-asset price impacts ∂p0/∂ai
and ∂π/∂qi,0. All derivatives of price with respect to quantities are thus constant.
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By symmetry of risk aversions, the price impacts are the same for all traders (cf.
Proposition 1 in Malamud and Rostek 2017) I denote the matrix of price impacts

Λa =

(
λqq λqa
λaq λaa

)
Differentiating 2.9.8 with respect to qk,0, remembering that

∂Īei,1
∂qk,1

= 1
N

:

∂Ŵk,i,0

∂qk,0
= v0 − p0 − λqqqk,0 − λqaak − γ(σ2

1 + σ2
2)(Ii,0 + qk,0) + αγσ2

2ak −
αγσ2

2

2N
ak

− 2N − 1

2N

αγσ2
2

1 + αx

(
γ̄

γ
E0

[
Q

N

]
+
Īe−i,1

2
+
N − 1

N

Īei,1
2
− 2N − 1

2N
Ik,1 + ak

)
= v0 − p0 − λqqqi,0 − λqaai − γ(σ2

1 + δσ2
2)(Ii,0 + qk,0) +

2N − 2

2N − 1
νγσ2

2ak

− 2N − 2

2N − 1

γσ2
2

1 + αx

(
γ̄

γ
E0

[
Q

N

]
+
Īe−i,1

2
+
N − 1

N

Īei,1
2

)
∂Ŵk,i,0

∂qk,0
= v0 − p0 −

2N − 1

2N

µa
1 + αx

− λqqqi,0 − λqaak − γ(σ2
1 + δσ2

2)(Ii,0 + qk,0)

+ νγσ2
2ak −

2N − 2

2N − 1

γσ2
2

1 + αx2

(
Īe−i,1

2
+
N − 1

N

Īei,1
2

)
where δ = 1− N−1

N
1

1+αx
and ν = 2N−2

2N−1
αx

1+αx
∈ [0, 1). This proves lemma 2.

Then differentiating 2.9.8 with respect to ak:

∂Ŵk,i,0

∂ak
= −πa − λaqqk,0 − λaaak + αγσ2

2(Ik,1 − ak)− αγσ2
2

Īei,1 + Īe−i,1
2

+
αγσ2

2

1 + αx

(
γ̄

γ
E0

[
Q

N

]
+
Īe−i,1

2
+
N − 1

N

Īei,1
2
− 2N − 1

2N
Ik,1 + ak

)

= −πa − λaqqk,0 − λaaak +
2N − 1

2N
α

(
1− 1

1 + αx

)
γσ2

2Ik,1 − α
(

1− 1

1 + αx

)
γσ2

2ak

+
αγ̄σ2

2

1 + αx
E0

[
Q

N

]
− αγσ2

2

(
1− 1

1 + αx

)(
Īe−i,1

2
+
N − 1

N

Īei,1
2

)
=

µa
1 + αx

− πa − λaqqk,0 − λaaak + νγσ2
2Ik,1 −

2N

2N − 1
νγσ2

2ak

− 2N

2N − 1
νγσ2

2

(
Īe−i,1

2
+
N − 1

N

Īei,1
2

)
∂Ŵk,i,0

∂ak
=
µa − γσ2

aak
1 + αx

− πa − λaqqk,0 − λaaak + νγσ2
2Ik,1 −

2N

2N − 1
νγσ2

2

(
Īe−i,1

2
+
N − 1

N

Īei,1
2

)
The last line has used 2N

2N−1
ν = 2N(2N−2)

(2N−1)2
αx

1+αx
= α2x

1+αx
. This proves lemma 1.
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Proof of proposition 5 (contract a)

The first order conditions equate the derivatives of lemma 1 and 2 to zero. With
matrix notations, they can be written

Ma

(
v0
µa

1+αx

)
−
(
p0

πa

)
= (Λa + γΣa)

(
qk,0
ak

)
+ γ(Σa +Ka)

(
Ii,0

Īe−i,1
2

+ N−1
N

Īei,1
2

)
(2.9.9)

where

Ma =

(
1 −

(
1− 1

2N

)
0 1

)
,

Σa =

(
σ2

1 + δσ2
2 −

(
1− 1

2N

) σ2
a

1+αx

−
(
1− 1

2N

) σ2
a

1+αx
σ2
a

1+αx

)
,

Ka =

(
0 2N−2

2N−1
σ2

2

0 0

)
⇒ Σa +Ka =

(
σ2

1 + δσ2
2

2N−2
2N−1

σ2
2

1+αx

−
(
1− 1

2N

) σ2
a

1+αx
σ2
a

1+αx

)

Σa is symmetric, now check that it is positive definite: it has a first diagonal coeffi-
cient that is positive, and its determinant is positive:

|Σa| = νσ2
2

(
2N

2N − 1
σ2

1 +

(
2N

2N − 1
δ − ν

)
σ2

2

)
=

2N

2N − 1
νσ2

2

(
σ2

1 +

(
1− N − 1

N

1

1 + αx
− 2N − 1

2N

2N − 2

2N − 1

αx

1 + αx

)
σ2

2

)
=

2N

2N − 1
νσ2

2

(
σ2

1 +

(
1− N − 1

N

)
σ2

2

)
Therefore

|Σa| =
σ2
a

1 + αx

(
σ2

1 +
σ2

2

N

)
> 0 (2.9.10)

Σa is not the covariance matrix of the underlying asset and of contract a (their
covariance should be zero): wealth is not normally distributed because of Q. As
ν = 0 whenever σ2

q = 0, the matrix is not invertible whenever the supply shock is
known for sure.

The equilibrium price impact matrix λ is given by the equation (assuming in-
vertibility, which is verified in equilibrium):

Λa =
(
(2N − 1)(Λa + γΣ)−1

)−1

so that

Λa =
1

2N − 2
γΣa (2.9.11)
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The first order conditions become

Ma

(
v0
µa

1+αx

)
−
(
p0

πa

)
=

2N − 1

2N − 2
γΣa

(
qak,0(p0, πa)
a∗k(p0, πa)

)
+ γ(Σa +Ka)

(
Ii,0

Īe−i,1
2

+ N−1
N

Īei,1
2

)

This gives the equilibrium demand schedules:(
q∗i,0(p0, π)
a∗i (p0, π)

)
=

2N − 2

2N − 1
γ−1Σ−1

a

(
Ma

(
v0
µa

1+αx

)
−
(
p0

πa

))
− 2N − 2

2N − 1
(Id2 + Σ−1

a Ka)

(
Ii,0

Īe−i,1
2

+ N−1
N

Īei,1
2

)
(2.9.12)

where Id2 is the two-dimensional identity matrix. From (2.9.10) one has

Σ−1
a =

(
(σ2

1 + σ2
2/N)

−1
(1− 1/2N) (σ2

1 + σ2
2/N)

−1

(1− 1/2N) (σ2
1 + σ2

2/N)
−1

(
σ2
a

1+αx

)−1

+ (1− 1/2N)2 (σ2
1 + σ2

2/N)
−1

)

Now I compute

Id2 + Σ−1
a Ka =

(
1 κa1

0 1 + κa2

)
with

{
κa1 = 2N−2

2N−1

σ2
2

σ2
1+σ2

2/N

κa2 = N−1
N

σ2
2

σ2
1+σ2

2/N

Applying market clearing conditions (3.2.2) and (2.5.1), one gets the equilibrium
risk premia:

Ma

(
v0
µa

1+αx

)
−
(
pa0
π∗a

)
= γ(Σa +Ka)

(
I1,0+I2,0

2
2N−1

2N

Īe1,1+Īe2,1
2

)
(2.9.13)

The equilibrium asset prices are given by the following, given that Iei,1 + Ie−i,1 =
I1,0 + I2,0

Ma

(
v0
µa

1+αx

)
−
(
pa0
π∗a

)
= γ(Σa +Ka)

(
1

1− 1
2N

)
I1,0 + I2,0

2

=

(
σ2

1 +
(
δ + 2N−2

2N
1

1+αx

)
σ2

2

0

)
I1,0 + I2,0

2

Recognizing δ + 2N−1
2N

2N−2
2N−1

1
1+αx

= 1 and αγ̄ = 2N
2N−1

γ/2, this leads to:

pa0 = v0 − γ
(
σ2

1 + σ2
2

) I1,0 + I2,0

2
− γσ2

2

1 + αx2

E0

[
Q

2N

]
(2.9.14)

π∗a =
2N

2N − 1

γσ2
2

1 + αx
E0

[
Q

2N

]
(2.9.15)
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Proof of proposition 6

Plugging equilibrium risk premia 2.9.13 into class 1 traders’ equilibrium demands
schedule 2.9.12:(

qa1,0(pa0, π
∗
a)

a∗1(pa0, π
∗
a)

)
=

2N − 2

2N − 1
(Id2 + Σ−1

a Ka)

(
I1,0+I2,0

2
2N−1

2N

Ie1,1+Ie2,1
2

)

− 2N − 2

2N − 1
(Id2 + Σ−1

a Ka)

(
I1,0

Īe2,1
2

+ N−1
N

Īe1,1
2

)

=
2N − 2

2N − 1
(Id2 + Σ−1

a Ka)

(
I2,0−I1,0

2
1

2N

Īe1,1−Īe2,1
2

)

Therefore the equilibrium quantities verify the following equations:

qa1,0(pa0, π
∗
a) =

2N − 2

2N − 1

I2,0 − I1,0

2
+
κa1

2N

2N − 2

2N − 1

I1,0 + qe1,0 − I2,0 − qe2,0
2

a∗1(pa0, π
∗
a) =

1 + κa2

2N

2N − 2

2N − 1

I1,0 + qe1,0 − I2,0 − qe2,0
2

imposing consistency conditions qai,0 = qei,0 and date 0 market clearing qa2,0 = −qa1,0:

qa1,0 =
(

1− κa1

2N

) 2N − 2

2N − 1

I2,0 − I1,0

2
+
κa1

2N

2N − 2

2N − 1
qa1,0

a∗1 =
1 + κa2

2N

2N − 2

2N − 1

(
I1,0 − I2,0

2
+ qa1,0

)
This leads to

qa1,0 =
1− κa1/2N

1− κa1
2N

2N−2
2N−1

2N − 2

2N − 1

I2,0 − I1,0

2

=
1− κa1/2N

1− κa1/2N + 1
2N−2

I2,0 − I1,0

2

=
1

1 + 1
2N−2

(
1− κa1

2N

)−1

I2,0 − I1,0

2

Notice that

1− κa1

2N
=
σ2

1 + σ2
2/N − 2N−2

2N−1
1

2N
σ2

2

σ2
1 + σ2

2/N
=
σ2

1 +
σ2
2

2N−1

σ2
1 + σ2

2/N
< 1

=
1

(2N − 2)A(0)
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where A(0) is the demand reduction rate when there is no uncertainty on Q. Plug-
ging the expression for 1 − κa/2N into equilibrium quantity and small rearranging
leads to:

qa1,0 =
1

1 + A(0)

I2,0 − I1,0

2
(2.9.16)

The equilibrium quantity of contract a is

a∗1 = −1 + κa2

2N

2N − 2

2N − 1

(
1− 1

1 + A(0)

)
I2,0 − I1,0

2

a∗1 = −1 + κa2

2N

2N − 2

2N − 1

A(0)

1 + A(0)

I2,0 − I1,0

2
(2.9.17)

with κa2 =
N − 1

N

σ2
2

σ2
1 + σ2

2/N

Another way to write the result is

a∗1 = −η
2
qID,a1,1 (2.9.18)

η =
σ2

1 + σ2
2

Nσ2
1 + σ2

2

Finally, the date 1 quantity traded is obtained straightforwardly from 3.3.4 and q∗1,0.

2.9.5 Resolution of date 0 equilibrium with forward con-
tracts

For computational convenience, I study the contract with payoff

vb = −αε1 + αγ̄σ2
2

Q

N

Proof of lemma 3

I first compute the date 0 certainty equivalent of wealth as a function of qi,1 and
bi.

Lemma 9. The date 0 certainty equivalent of wealth is

Ŵ b
k,0 = Ii,0v0 + qi,0(v0 − p0)− bkπb −

γ

2

(
σ2

1(Ii,1 − αbk)2 + ασ2
2(Ik,1 − bk)2 + (1− α)(Ik,1)2

)
+

1

2

αγσ2
2

1 + αx

(
γ̄

γ
E0

[
Q

N

]
+
Īe−i,1

2
+
N − 1

N

Īi,1
2
− 2N − 1

2N
Ik,1 + bk

)2

− αγσ2
2

Īe−i,1 + Īi,1

2

(2.9.19)
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Proof. After date 1 trade, the certainty equivalent of wealth of trader i is, from
3.3.10 and 3.3.6 and the derivative payoff

Ŵ b
k,i,1 = Ii,0v0 + qk,0(v0 − p0)− bkπb + (Ii,0 + qk,0 − αbk)ε1 −

γσ2
2

2
(Ii,0 + qk,0)2

+
αγσ2

2

2

(
γ̄

γ
E0 [Q∗]− Ik,1

)2

+ bkαγ̄σ
2
2

Q

N

= Ii,0v0 + qk,0(v0 − p0)− bkπb + (Ii,0 + qk,0 − αbk)ε1 −
γσ2

2

2
(Ii,0 + qk,0)2

+
αγσ2

2

2

((
γ̄

γ
Q∗
)2

− 2
γ̄

γ
Q∗(Ii,1 − bi) + (Ik,1 − bk)2

)
+
αγσ2

2

2
(Ik,1)2

− αγσ2
2

2
(Ik,1 − bk)2 − αγσ2

2

Īe−i,1 + Īei,1
2

bk

= Ii,0v0 + qi,0(v0 − p0)− bkπb + (Ik,1 − αbk)ε1 −
γ

2

(
(1− α)σ2

2(Ik,1)2 + ασ2
2(Ik,1 − bk)2

)
+
αγσ2

2

2

(
γ̄

γ
Q∗ − (Ik,1 − bk)

)2

− αγσ2
2

Īe−i,1 + Īei,1
2

bk

Taking the certainty equivalent of wealth with respect to ε1 and Q leads to

Ŵ b
k,0 = Ik,0v0 + qk,0(v0 − p0)− bkπb −

γ

2

(
σ2

1(Ik,1 − αbk)2 + ασ2
2(Ik,1 − bk)2 + (1− α)(Ik,1)2

)
+

1

2

αγσ2
2

1 + αx

(
γ̄

γ
E0 [Q∗]− Ik,1 + bk

)2

− αγσ2
2

Īe−i,1 + Īei,1
2

bk

Taking the expression in 3.3.6 for Q∗ leads to the desired formula.

Then differentiating (2.9.19) with respect to qi,0:

∂Ŵ b
k,i,0

∂qi,0
= v0 − p0 − λbqqqk,0 − λbqbbk − γ

(
σ2

1(Ik,1 − αbk) + ασ2
2(Ik,1 − bk) + (1− α)σ2

2Ik,1
)

− 2N − 1

2N

αγσ2
2

1 + αx

(
γ̄

γ
E0

[
Q

N

]
+
Īe−i,1

2
+
N − 1

N

Īei,1
2
− 2N − 1

2N
Ik,1 + bk

)

− 1

2N

αγσ2
2

2
bk

= v0 − p0 − λbqqqk,0 − λbqbbk − γ
(
σ2

1 + σ2
2

)
Ik,1 +

(
ασ2

1 + α
2N − 1

2N

)
bk

− 2N − 1

2N

αγσ2
2

1 + αx

(
γ̄

γ
E0

[
Q

N

]
+
Īe−i,1

2
+
N − 1

N

Īei,1
2
− 2N − 1

2N
Ik,1 + bk

)
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Rearranging leads to

∂Ŵ b
k,i,0

∂qk,0
= v0 − p0 − λbqqqk,0 − λbqbbk − γ(σ2

1 + δσ2
2)Ik,1 + αγ

(
σ2

1 +
2N − 1

2N
νbσ

2
2

)
bk

− γσ2
2

1 + αx
E0

[
Q

2N

]
− 2N − 2

2N − 1

γσ2
2

1 + αx

(
Īe−i,1

2
+
N − 1

N

Īei,1
2

)
(2.9.20)

with

δ = 1− N − 1

N

1

1 + αx
and νb =

αx

1 + αx

Then differentiating 2.9.19 with respect to bk:

∂Ŵ b
k,i,0

∂bk
= −πb − λbbqqk,0 − λbbbbk + γ

(
ασ2

1(Ik,1 − αbk) + ασ2
2(Ik,1 − bk)

)
+

αγσ2
2

1 + αx

(
γ̄

γ
E0

[
Q

N

]
+
Īe−i,1

2
+
N − 1

N

Īei,1
2
− 2N − 1

N
Ik,1 + bk

)

− αγσ2
2

Īe−i,1 + Īei,1
2

= −πb − λbbqqk,0 − λbbbbk + αγ
(
σ2

1 + σ2
2

)
Ik,1 − αγ

(
ασ2

1 + σ2
2

)
bk

+
αγσ2

2

1 + αx

(
γ̄

γ
E0

[
Q

N

]
+
Īe−i,1

2
+
N − 1

N

Īei,1
2
− 2N − 1

N
Ik,1 + bk

)

− αγσ2
2

(
Īe−i,1

2
+
N − 1

N

Īei,1
2

+
Ik,1
2N

)

Rearranging leads to

∂Ŵ b
k,i,0

∂bk
= −πb − λbbqqk,0 − λbbbbk + αγ

(
σ2

1 +
2N − 1

2N
νbσ

2
2

)
Ik,1 − αγ

(
ασ2

1 + νbσ
2
2

)
bk

+
γσ2

2

1 + αx
E0

[
Q

2N

]
− ανbγσ2

2

(
Īe−i,1

2
+
N − 1

N

Īei,1
2

)
(2.9.21)

which proves lemma 3.

Proof of proposition 5 (contract b)

Optimal demand schedules. From 2.9.20 and 2.9.21, the first order conditions
can be expressed in matrix form as follows:

Mb

(
v0
µb

1+αx

)
−
(
p0

πb

)
= (Λb + γΣb)

(
qk,0
bk

)
+ γ(Σb +Kb)

(
Ii,0

Īe−i,1
2

+ N−1
N

Īei,1
2

)
(2.9.22)
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where

Mb =

(
1 −

(
1− 1

2N

)
0 1

)
,

Σb =

(
σ2

1 + δσ2
2 −α

(
σ2

1 + 2N−1
2N

νbσ
2
2

)
−α
(
σ2

1 + 2N−1
2N

νbσ
2
2

)
α (ασ2

1 + νbσ
2
2)

)
,

Kb =

(
0 ασ2

1 + 2N−2
2N−1

σ2
2

0 −α2σ2
1

)
⇒ Σb +Kb =

(
σ2

1 + δσ2
2

2N−2
2N−1

σ2
2

1+αx

−α
(
σ2

1 + 2N−1
2N

νbσ
2
2

)
ανbσ

2
2

)

This gives the equilibrium demand schedules, which are identical across all dealers
of the same class i:(

qbi,0(p0, πb)
b∗i (p0, πb)

)
=

2N − 2

2N − 1
γ−1(Σb)

−1

(
Mb

(
v0
µb

1+αx

)
−
(
p0

πb

))
− 2N − 2

2N − 1

(
Id2 + (Σb)

−1Kb

)( Ii,0
Īe−i,1

2
+ N−1

N

Īei,1
2

)
(2.9.23)

where Id2 is the two-dimensional identity matrix. Now I compute (Σb)
−1. The

determinant of Σb is

|Σb| = α

{
(σ2

1 + δσ2
2)(ασ2

1 + νbσ
2
2)− α

(
σ2

1 +
2N − 1

2N
νbσ

2
2

)2
}

= ασ2
2

{[
αδ + νb − 2α

(
1− 1

2N

)
νb

]
σ2

1 +

[
δ − α

(
1− 1

2N

)2

νb

]
νbσ

2
2

}

Recognizing δ = 1− N−1
N

1
1+αx

, one gets

|Σb| = ασ2
2

{[
νb + α

(
1− 1

1 + αx
+

1

N

1

1 + αx
−
(

2− 1

N

)
αx

1 + αx

)]
σ2

1 +
νb
N
σ2

2

}
= ασ2

2

{[
(1− α)νb +

1

N

]
σ2

1 +
νb
N
σ2

2

}
which is strictly positive. Therefore as the first diagonal term of Σb is also positive,
Σb is positive definite and dealer i’s problem is strictly concave. Thus

(Σb)
−1 = |Σb|−1

(
α(ασ2

1 + νbσ
2
2) α

(
σ2

1 +
(
1− 1

2N

)
νbσ

2
2

)
α
(
σ2

1 +
(
1− 1

2N

)
νbσ

2
2

)
σ2

1 + δσ2
2

)

=
1

σ2
2

 ασ2
1+νbσ

2
2

((1−α)νb+
1
N )σ2

1+
νb
N
σ2
2

σ2
1+(1− 1

2N )νbσ2
2

((1−α)νb+
1
N )σ2

1+
νb
N
σ2
2

σ2
1+(1− 1

2N )νbσ2
2

((1−α)νb+
1
N )σ2

1+
νb
N
σ2
2

1
α

σ2
1+δσ2

2

((1−α)νb+
1
N )σ2

1+
νb
N
σ2
2


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Equilibrium prices. Applying market clearing conditions (3.2.2) and (2.5.1), one
gets the equilibrium risk premia:

Mb

(
v0
µb

1+αx

)
−
(
pb0
π∗b

)
= γ(Σb +Kb)

(
I1,0+I2,0

2
2N−1
N

Īe1,1+Īe2,1
2

)
(2.9.24)

Explicit computation

Proof of proposition 7

Plugging equilibrium risk premia 2.9.24 into class 1 traders’ equilibrium demand
schedules 2.9.23:(

qb1,0(pb0, π
∗
b )

b∗1(p∗0, π
∗
b )

)
=

2N − 2

2N − 1
(Id2 + Σ−1

b Kb)

(
I1,0+I2,0

2
2N−1

2N

Īe1,1+Īe2,1
2

)

− 2N − 2

2N − 1
(Id2 + Σ−1

b Kb)

(
I1,0

Īe2,1
2

+ N−1
N

Īe1,1
2

)

=
2N − 2

2N − 1
(Id2 + Σ−1

b Kb)

(
I2,0−I1,0

2
Īe1,1−Īe2,1

4N

)
With

Id2 + Σ−1
b Kb =

(
1 κb1
0 1 + κb2

)
one gets, using the equilibrium conditions qei,0 = q∗i,0(p∗0, π

∗
b ) and market clearing

condition 3.2.2:(
qb1,0(pb1, π

∗
b )

b∗1(pb1, π
∗
b )

)
=

2N − 2

2N − 1

(
I2,0−I1,0

2
+

κb1
2N

I1,0−I2,0+2q∗1,0
4

1+κb2
2N

I1,0−I2,0+2qb1,0
2

)
This implies

qb1,0

(
1− κb1

2N

2N − 2

2N − 1

)
=

(
1− κb1

2N

)
2N − 2

2N − 1

I2,0 − I1,0

2

and after rearranging:

qb1,0 =
1

1 + Ab(σ2
q )

I2,0 − I1,0

2
(2.9.25)

with Ab(σ
2
q ) =

1

2N − 2

(
1− κb1

2N

)−1

Plugging this into the expression for b∗1 leads to

b∗1 = −2N − 2

2N − 1
× 1 + κb2

2N
×

Ab(σ
2
q )

1 + Ab(σ2
q )
× I2,0 − I1,0

2
(2.9.26)
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Computation of qb1,0. One has

Σ−1
b Kb =

(
0 κb1
0 κb2

)
where

κb1 =
(ασ2

1 + νbσ
2
2)
(
ασ2

1 + 2N−2
2N−1

σ2
2

)
− α2σ2

1

(
σ2

1 +
(
1− 1

2N

)
νbσ

2
2

)
σ2

2

[(
(1− α)νb + 1

N

)
σ2

1 + νb
N
σ2

2

]
=

(
α
(
1− α 2N−1

2N

)
νb + α 2N−2

2N−1

)
σ2

1 + 2N−2
2N−1

νbσ
2
2(

(1− ανb) + 1
N

)
σ2

1 + νb
N
σ2

2

=
α
(

2N−2
2N−1

+
(
1− 2N−2

2N−1

)
νb
)
σ2

1 + 2N−2
2N−1

νbσ
2
2(

(1− α)νb + 1
N

)
σ2

1 + νb
N
σ2

2

=
α 2N−2+νb

2N−1
σ2

1 + 2N−2
2N−1

νbσ
2
2(

(1− α)νb + 1
N

)
σ2

1 + νb
N
σ2

2

The second line has used α 2N−1
2N

= 2N−2
2N−1

. In particular

1− κb1
2N

=

(
(1− α)νb + 1

N
− α

2N
2N−2+νb

2N−1

)
σ2

1 +
(
νb
N
− 1

2N
2N−2
2N−1

νb
)
σ2

2(
(1− α)νb + 1

N

)
σ2

1 + νb
N
σ2

2

=

((
1− α

(
1 + 1

2N(2N−1)

))
νb + 1

N

(
1− α

2
2N−2
2N−1

))
σ2

1 + 1
N

(
1− 1

2
2N−2
2N−1

)
νbσ

2
2(

(1− α)νb + 1
N

)
σ2

1 + νb
N
σ2

2

=

((
1− α 2N−1

2N

)
νb + 1

N

(
1− α

2
2N−2
2N−1

))
σ2

1 + 1
2N−1

νbσ
2
2(

(1− α)νb + 1
N

)
σ2

1 + νb
N
σ2

2

=

(
1

2N−1
νb + 1

N

(
1− α

2
2N−2
2N−1

))
σ2

1 + 1
2N−1

νbσ
2
2(

(1− α)νb + 1
N

)
σ2

1 + νb
N
σ2

2

so that

Ab(σ
2
q ) =

1

2N − 2
×

(
(1− α)νb + 1

N

)
σ2

1 + νb
N
σ2

2(
1

2N−1
νb + 1

N

(
1− α

2
2N−2
2N−1

))
σ2

1 + 1
2N−1

νbσ2
2

(2.9.27)

Together with 2.9.25, this gives equilibrium date 0 quantity traded qbi,0.
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Computation of b∗i The second coefficient κb2 of Σ−1
b Kb is, recognizing α

(
1− 1

2N

)
=

2N−2
2N−1

,

κb2 =

(
σ2

1 +
(
1− 1

2N

)
σ2

2

) (
ασ2

1 + 2N−2
2N−1

σ2
2

)
− α2σ2

1α
−1(σ2

1 + δσ2
2)

σ2
2

[(
(1− α)νb + 1

N

)
σ2

1 + νb
N
σ2

2

]
=

(
2N−2
2N−1

+ α
(
1− 1

2N

)
− αδ

)
σ2

1 +
(
1− 1

2N

)
2N−2
2N−1

σ2
2(

(1− α)νb + 1
N

)
σ2

1 + νb
N
σ2

2

=
α
(
2
(
1− 1

2N

)
− 1 + N−1

N
1

1+αx

)
σ2

1 + N−1
N
σ2

2(
(1− α)νb + 1

N

)
σ2

1 + νb
N
σ2

2

=
N − 1

N

α
(
1 + 1

1+αx

)
σ2

1 + σ2
2(

(1− α)νb + 1
N

)
σ2

1 + νb
N
σ2

2

And it is easy to see that κb2 > 0. In addition, κb2 decreases as σ2
q increases, since the

numerator depends on σ2
q through 1

1+αx
which decreases with σ2

q , and the denomi-
nator through νb = αx

1+αx
which increases as σ2

q increases.

Computation of q∗1,1. From 3.3.10 and q∗1,0, one has

q∗1,1 =
2N − 2

2N − 1
×

Ab(σ
2
q )

1 + Ab(σ2
q )
× I2,0 − I1,0

2

Proof of proposition 8

The first part of the proposition is the following lemma, partially proven at this
stage.

Lemma 10. There exists y0 > 0 such that for σ2
1/σ

2
2 < y0,

Ab(σ
2
q ) > A(σ2

q )

For σ2
1/σ

2
2 > y0, there exists z0(y) such that

1

1 + αx
> z0 ⇒ Ab(σ

2
q ) > A(σ2

q )

1

1 + αx
< z0 ⇒ Ab(σ

2
q ) < A(σ2

q )

Proof. The goal is to assess when Ab(σ
2
q )− A(σ2

q ) > 0. One has

(2N − 2)
(
Ab(σ

2
q )− A(σ2

q )
)

=

(
(1− α)νb + 1

N

)
σ2

1 + νb
N
σ2

2(
νb

2N−1
+ 1

N

(
1− α

2
2N−2
2N−1

))
σ2

1 + νb
2N−1

σ2
2

−
σ2

1 +
(
1− N−1

N
(1− νb)

)
σ2

2

σ2
1 +

(
1− 2N−2

2N−1
(1− νb)

)
σ2

2
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I first look at when Ab(σ
2
q ) > A(0), as the second inequality comes from lemma

7. Reducing the difference to the same denominator, the sign of Ab(σ
2
q ) − A(0) is

that of the numerator

φ =

[
(1− α)νb +

1

N
− νb

2N − 1
− 1

N

(
1− α

2

2N − 2

2N − 1

)]
σ4

1

+

[
νb
N

(
1− 2N − 2

2N − 1
(1− νb)

)
−
(

1− N − 1

N
(1− νb)

)
νb

2N − 1

]
σ4

2

+

[
1

2N − 1

(
νb

2N − 1
+

1

N

)(
1− 2N − 2

2N − 1
(1− νb)

)
+
νb
N
− νb

2N − 1

−
(

1− N − 1

N
(1− νb)

)(
νb

2N − 1
+

1

N

(
1− α

2

2N − 2

2N − 1

))]
σ2

1σ
2
2

=
2N − 2

(2N − 1)2

[
2N − 2

2N − 1
− νb

]
σ4

1 +
2N − 2

2N(2N − 1)
νbσ

4
2

+

[
1

N

(
1

2N − 1

(
1 +

(
2N − 2

2N − 1

)2
)
− 1

N

)
+

(
1

(2N − 1)2
+

1

N
− 2

2N − 1

)
νb

+
2N − 2

2N − 1

(
1

2N − 1
− 1

2N

)
ν2
b

]
σ2

1σ
2
2

The second line has used α = 1− 1
(2N−1)2

= 2N(2N−2)
(2N−1)2

. Plotting the expression above

for y =
σ2
1

σ2
2

and νb = αx
1+αx

for various values of N ≥ 2 gives the conjecture.

The remaining part applies lemma 10 to the equilibrium quantities of proposi-
tions 12, 6 and 7, with elementary comparisons.

2.9.6 Welfare analysis

Proof of proposition 9

Proof. The certainty equivalent of wealth at date 0 is for trader 1

Ŵ1,0 = I1,0v0 + q∗1,0(v0 − p∗0)− γ

2
(σ2

1 + σ2
2)(I∗1,1)2︸ ︷︷ ︸

ŴHTM
1,0

+
2N

2N − 2

γσ2
2

1 + αx

(
E0

[
q∗1,1
])2︸ ︷︷ ︸

Ŝ∗1,1

Compute the HTM value. One has

ŴHTM
1,0 = I1,0v0 −

γ(σ2
1 + σ2

2)

2
(I1,0)2 + q∗1,0(v0 − p∗0)− γ

2
(σ2

1 + σ2
2)
[
(I∗1,1)2 − (I1,0)2

]
= I1,0v0 −

γ(σ2
1 + σ2

2)

2
(I1,0)2 + q∗1,0

(
v0 − p∗0 −

γ

2
(σ2

1 + σ2
2)(2I1,0 + q∗1,0)

)
= I1,0v0 −

γ(σ2
1 + σ2

2)

2
(I1,0)2 + q∗1,0

(
γ(σ2

1 + σ2
2)
I2,0 − I1,0 − q∗1,0

2
+

γσ2
2

1 + αx
E0

[
Q

2N

])
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Denoting A ≡ A(σ2
q ) to ease notation and plugging equilibrium quantity 3.7.7:

ŴHTM
1,0 = I1,0v0 −

γ(σ2
1 + σ2

2)

2
(I1,0)2

+
1

1 + A

I2,0 − I1,0

2

(
γ(σ2

1 + σ2
2)

(
1− 1

2

1

1 + A

)
I2,0 − I1,0

2
+

γσ2
2

1 + αx
E0

[
Q

2N

])
= I1,0v0 −

γ(σ2
1 + σ2

2)

2
(I1,0)2

+
1

1 + A

I2,0 − I1,0

2

(
γ(σ2

1 + σ2
2)

2

1 + 2A

1 + A

I2,0 − I1,0

2
+

γσ2
2

1 + αx
E0

[
Q

2N

])
This can also be re-written:

ŴHTM
1,0 = I1,0v0 −

γ(σ2
1 + σ2

2)

2
(Ii,0)2

+
γ(σ2

1 + σ2
2)

2
(1 + 2A)

(
q∗1,0
)2

+
γσ2

2

1 + αx
q∗1,0 E0

[
Q

2N

]
︸ ︷︷ ︸

S∗1,0

Proof of proposition 10

Proof. The date 0 certainty equivalent of wealth is, omitting the constant 1/2γ ln(1+
αx):

Ŵ a
1,0 = I1,0v0 + qai,0(v0 − p∗0)− a∗1

(
π∗a + αγσ2

2

I1,0 + I2,0

2

)
− γ

2

((
σ2

1 + (1− α)σ2
2

)
(Iai,1)2 + ασ2

2(Ia1,1 − a∗1)2
)

+
N

2N − 2

γσ2
2

1 + αx

(
E0

[
qa1,1
]

+
2N − 2

2N − 1
a∗i

)2

= I1,0v0 + qai,0(v0 − p∗0)− a∗1
(
π∗a + αγσ2

2

I1,0 + I2,0

2

)
− γ

2

((
σ2

1 + σ2
2

)
(Iai,1)2 + ασ2

2a
∗
1(a∗1 − 2Ia1,1

)
+

N

2N − 2

γσ2
2

1 + αx

(
E0

[
qa1,1
]

+
2N − 2

2N − 1
a∗i

)2
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Now denote A ≡ A(0) to ease notation. First notice that a∗1 = −η
2
qID,a1,1 and write

qa1,1 = qID,a1,1 + Q
2N

. Also plug the date 0 equilibrium prices to get

Ŵ a
1,0 = I1,0v0 −

γ(σ2
1 + σ2

2

2
(I1,0)2 + qai,0(v0 − p∗0)− γ(σ2

1 + σ2
2)

2

(
(I1,0 + qai,0)2 − (I1,0)2

)
− a∗1

(
π∗a + αγσ2

2

I1,0 + I2,0

2
+ αγσ2

2

(
a∗1
2
− I1,0 − qa1,0

))
+

N

2N − 2

γσ2
2

1 + αx

((
1− 2N − 2

2N − 1

η

2

)
qID,a1,1 + E0

[
Q

2N

])2

= I1,0v0 + qai,0

(
γ(σ2

1 + σ2
2)
I2,0 + I1,0

2
+

γσ2
2

1 + αx
E0

[
Q

2N

]
+
γ(σ2

1 + σ2
2)

2

(
2I1,0 + qai,0)

))
+
η

2
qID,a1,1

(
2N

2N − 2

γσ2
2

1 + αx
E0

[
Q

2N

]
+ αγσ2

2

(
I2,0 − I1,0

2
− qa1,0 −

η

4
qID,a1,1

))
+

N

2N − 2

γσ2
2

1 + αx

((
1− 2N − 2

2N − 1

η

2

)
qID,a1,1 + E0

[
Q

2N

])2

= I1,0v0 + qai,0γ(σ2
1 + σ2

2)

(
1− 1

2(1 + A)

)
I2,0 − I1,0

2
+ qa1,0

γσ2
2

1 + αx
E0

[
Q

2N

]
+
η

2
qID,a1,1

(
2N

2N − 2

γσ2
2

1 + αx
E0

[
Q

2N

]
+

2N

2N − 1
γσ2

2

(
1− 2N − 2

2N − 1

η

4

)
qID,a1,1

)
+

N

2N − 2

γσ2
2

1 + αx

((
1− 2N − 2

2N − 1

η

2

)
qID,a1,1 + E0

[
Q

2N

])2

= I1,0v0 +
γ(σ2

1 + σ2
2)

2

1 + 2A

(1 + A)2

I2,0 − I1,0

2
+

(
qa1,0 +

Nη

2N − 2
qID,a1,1

)
γσ2

2

1 + αx
E0

[
Q

2N

]
+

Nη

2N − 1
γσ2

2

(
1− 2N − 2

2N − 1

η

4

)(
qID,a1,1

)2

+
N

2N − 2

γσ2
2

1 + αx

((
1− 2N − 2

2N − 1

η

2

)
qID,a1,1 + E0

[
Q

2N

])2

Proof of theorem 2

Denote ∆Ŵ a
i,0 ≡ Ŵ a

i,0 − Ŵ ∗
i,0 and assume E0[Q] = 0. One has, observing that

1+2A
(1+A)2

= 1−
(

A
1+A

)2
and denoting for convenience A ≡ A(σ2

q ),

∆Ŵ a
1,0 =

γσ2
2

2

{
−
(

A(0)

1 + A(0)

)2 [
y + 1− αz − α(1− z)

2N − 2

2N − 1
η

(
1− 2N − 2

2N − 1

η

4

)]

+

(
A

1 + A

)2

[y + 1− αz]

}(
I2,0 − I1,0

2

)2

(2.9.28)

=
γσ2

2

2

(
A(0)

1 + A(0)

)2(
I2,0 − I1,0

2

)2

ψ(y, z,N) (2.9.29)
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where y = σ2
1/σ

2
2 and z = 1

1+αx
∈ (0, 1] and, given

A(σ2
q )

1 + A(σ2
q )

=
1

1 + (2N − 2)
y+1−α

2
z

y+1−α
4
z

.

it is possible to write ψ as

ψ(y, z,N) =
[
(φ(y, z,N))2 − 1

]
(y + 1− αz) + α(1− z)η

(
1− 2N − 2

2N − 1

η

4

)

with


φ(y, z,N) = 1+(2N−2)R(y,1)

1+(2N−2)R(y,z)

R(y, z) =
y+1−α

2
z

y+1−α
4
z

η = 1
N

y+1
y+1/N

Now I prove that ψ(y, z,N) > 0 for all y ≥ 0, z ∈ (0, 1] and N ≥ 2. First

φ2 − 1 = (φ+ 1)(φ− 1)

and rewrite

φ(y, z,N) =
y + 1− N−1

N
z

y + 1
N

×
y + 1− N−1

N
+ (2N − 2)

(
y + 1−

(
1 + 1

2N−1

)
N−1
N

)
y + 1− N−1

N
z + (2N − 2)

(
y + 1−

(
1 + 1

2N−1

)
N−1
N

)
z

=
y + 1− N−1

N
z

y + 1
N

×
y + 1

N
−
(

2N−2
2N−1

)2 1
2N

y + 1− N−1
N
z −

(
2N−2
2N−1

)2 1
2N
z

so that

φ− 1 =

(
y + 1− N−1

N
z
) (
y + 1

N
−
(

2N−2
2N−1

)2 1
2N

)
−
(
y + 1

N

) (
y + 1− N−1

N
z −

(
2N−2
2N−1

)2 1
2N
z
)

(
y + 1

N

) (
y + 1− N−1

N
z −

(
2N−2
2N−1

)2 1
2N
z
)

=
−(y + 1)

(
2N−2
2N−1

)2 1
2N
−
(
y + 1

N

)
N−1
N
z + N−1

N

(
2N−2
2N−1

)2 1
2N
z +

(
y + 1

N

)
N−1
N

(
1 + 2N−2

(2N−1)2

)
z(

y + 1
N

) (
y + 1− N−1

N
z −

(
2N−2
2N−1

)2 1
2N
z
)

=
−(y + 1)

(
2N−2
2N−1

)2 1
2N

+ N−1
N

(
2N−2
2N−1

)2 1
2N
z +

(
y + 1

N

)
2N−2

2N
2N−2

(2N−1)2
z(

y + 1
N

) (
y + 1− N−1

N
z −

(
2N−2
2N−1

)2 1
2N
z
)

=

(
2N − 2

2N − 1

)2
1

2N

−(y + 1) + N−1
N
z +

(
y + 1

N

)
z(

y + 1
N

) (
y + 1− N−1

N
z −

(
2N−2
2N−1

)2 1
2N
z
)

=
1

2

(
2N − 2

2N − 1

)2
1

N

y + 1

y + 1
N

1− z(
y + 1

N

) (
y + 1− N−1

N
z −

(
2N−2
2N−1

)2 1
2N
z
)
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which yields

(φ2 − 1)(y + 1− αz) =
1 + φ

2

(
2N − 2

2N − 1

)2
1

N

y + 1

y + 1
N

(1− z)(y + 1− αz)(
y + 1

N

) (
y + 1− N−1

N
z −

(
2N−2
2N−1

)2 1
2N
z
)

Thus

ψ =

(
2N − 2

2N − 1

)2
1− z
N

y + 1

y + 1
N

{
2N

2N − 1

(
1− 2N − 2

2N − 1

1

4N

y + 1

y + 1
N

)

−1 + φ

2

y + 1− αz

y + 1− N−1
N

(
1−

(
2N−2
2N−1

)2
)
z


=

(
2N − 2

2N − 1

)2
1− z
N

y + 1

y + 1
N

{
1 +

1

2N − 1
− 1

2

2N − 2

(2N − 1)2

y + 1

y + 1
N

−1 + φ

2

y + 1− αz

y + 1− N−1
N

(
1−

(
2N−2
2N−1

)2
)
z


If z = 1, i.e. σ2

q = 0, then ψ = 0. If z < 1, the sign of ψ is that of the expression

inside the brackets. First, y+1
y+1/N

has its maximum at y = 0 and then equals N , so
that

2N − 2

(2N − 1)2

y + 1

y + 1/N
≤ α

2
.

For the term on the second line, first observe that φ < 1, which comes from the
easily proven fact that R(y, z) decreases with z, so that (1 + φ)/2) < 1. Then, since

α =
2N(2N − 2)

(2N − 1)2
<

2N − 2

2N

(
1−

(
2N − 2

2N − 1

)2
)

one has

y + 1− αz

y + 1− N−1
N

(
1−

(
2N−2
2N−1

)2
)
z
≤ 1− αz

1− N−1
N

(
1−

(
2N−2
2N−1

)2
)
z

≤ 1− α

1− N−1
N

(
1−

(
2N−2
2N−1

)2
)

=
1

(2N − 1)2 − N−1
N

((2N − 1)2 − (2N − 2)2)

=
1

1
N

(2N − 1)2 + N−1
N

(2N − 2)2

≤ 1

(2N − 2)2
≤ 1

2
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Therefore

ψ ≥
(

2N − 2

2N − 1

)2
1− z
N

y + 1

y + 1
N

{
1 +

1

2N − 1
− α

4
− 1

2

}
Since α < 1, 1− α/4− 1/2 > 0 and ψ(y, z,N) > 0. QED.

2.9.7 A technical lemma

Let X ∼ N (µ,Σ) a normal vector of dimension p (|Σ| > 0), and A a symmetric
matrix. Then one seeks to compute E[exp(−γX ′AX)] where A is a symmetric
matrix.

Lemma 11. Suppose I + 2γAΣ is positive definite, then

E[exp(−γX ′AX)] =
1√

|I + 2γAΣ|
exp

{
−γµ′(I + 2γAΣ)−1Aµ

}
Proof.

E[exp(−γX ′AX)] =

∫
Rp

1√
2π|Σ|

exp

{
−γx′Ax− 1

2
(x− µ)′Σ−1(x− µ)

}
dx

where dx ≡ dx1dx2...dxp. One first computes

Q(x) = −γx′Ax− 1

2
(x− µ)′Σ−1(x− µ)

= −1

2
(x− µ)′(Σ−1 + 2γA)(x− µ)− 2γµ′A(x− µ)− γµ′Aµ

Suppose that (Σ−1 +2γA) is the inverse of a covariance matrix, then the formula
will give almost the moment generating function of a normal variable with covariance
matrix [(I + 2γAΣ)Σ−1]

−1
= Σ(I + 2γAΣ)−1.

E
[
e−γX

′AX
]

=
e−γµ

′Aµ√
|I + 2γAΣ|

∫
Rp

1√
2π|Σ||I + 2γAΣ|−1

e−2γµ′A(x−µ)e−
1
2

(x−µ)′[Σ(I+2γAΣ)−1]−1(x−µ)dx

=
1√

|I + 2γAΣ|
exp

{
γµ′AΣ(I + 2γAΣ)−1Aµ− γµ′Aµ

}
=

1√
|I + 2γAΣ|

exp
{
γµ′ (2γAΣ− (I + 2γAΣ)) (I + 2γAΣ)−1Aµ

}
=

1√
|I + 2γAΣ|

exp
{
−γµ′(I + 2γAΣ)−1Aµ

}
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Chapter 3

Dynamic Trading and Endogenous
Market Fragmentation

Abstract

I study the opportunity for dealers, i.e. intermediaries in financial markets to open
restricted markets parallel to a centralized, all-to-all market. In a dynamic trading
model with imperfect competition, dealers have the opportunity to open a parallel
market so that a restricted subset of them trades with customers. Dealers in the
parallel market choose to have all customer trades in the parallel market, which
makes both customers and dealers not trading in the parallel market worse off.
Before dealers learn whether they will have an opportunity to trade with customers
in the parallel market, they choose to open the parallel market, as long as the surplus
from future transactions are sufficiently high compared with the cost of holding the
asset until future transaction, highlighting the role of dynamic trading rent.
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3.1 Introduction

In many asset markets, traders do not meet all in a single venue, but trade occurs
within and across small groups forming a network. Examples include bond or swap
markets where investors deal with a single market maker at a time. There have
been large debate on whether such structure is good from a social point of view,
and on how these network form. For instance, after the 2007-2009 crisis, the Dodd-
Frank Act imposed the possibility for investors to trade swaps in centralized markets.
But there is evidence that some investors have continued to trade over-the-counter
instead (Collin-Dufresne et al. 2018).

In this paper I study a dynamic trading model in which some agents, called
dealers, optimally choose to open a parallel market to trade with customers, because
it allows a subset of them to create inventory imbalances with other dealers, and
earn trading rents. Even if dealers not trading in the parallel market are worse off
with parallel trading, they choose to open the market if ex ante they do not know if
they will be able to trade in the parallel market. When the parallel market is open,
customers trade at a worse price than in the centralized market, because there is
less competition in the market with less dealers. Therefore market fragmentation in
this case is Pareto dominated.

I study a model in which risk averse traders (dealers), can trade a risky asset
in a centralized market at two dates 0 and 1. Before the date 0 market opens,
dealers choose whether they open a parallel market, before they know whether they
will actually be in the subset that participates in the parallel market. Dealers are
assigned to one group or the other with equal probability. This timing captures the
idea that the market structure is given before customers express potential trading
needs to their dealers. Then customers disclose the quantity they want to trade, and
dealers participating in the parallel market decide what fraction of the order they
want customers to trade with them, and what fraction in the centralized market.
After parallel trading, all dealers, and the customer if required to trade in the parallel
market, meet in the date 0 centralized market; all dealers again meet at date 1 in
the centralized market. Before date 1 trading, some public news about the terminal
payoff of the asset arrives.

I also assume that dealers care about the price impact of their trades, i.e. there
is imperfect competition: as in Kyle (1989) or Vayanos (1999), I look for Nash
equilibria in demand schedules. Under perfect competition, it is easy to show that
dealers and customers would be indifferent between opening and not opening the
parallel market, provided nothing happens between the two markets.

I first compute the trading rent associated with progressive liquidation of inven-
tory imbalances. To do this I solve the equilibrium at dates 0 and 1 in the centralized
market. Because of imperfect competition, dealers realize gains from trade progres-
sively, and they do not realize all gains from trade at the end of date 1. The utility
of a dealer can be nicely decomposed into a static, or hold to maturity component,
that gives the utility of the dealer if there was no interim trading opportunity, and
into a trading rent component that corresponds to the surplus of all date 0 and date
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1 transactions.
To assess the opportunity for dealers of each class, those who trade in the parallel

market, and those who do not, I solve the equilibrium in the parallel market. All
dealers start with the same zero initial inventory. The zero initial position is without
loss of generality. In a first step, I assume that dealers take as given the quantity
available in the parallel market and the quantity posted by customers in the central-
ized market. Dealers charge a higher spread to the customers in the parallel market
than in the centralized market, because there are less dealers, thus less competition,
in the parallel market.

In a second step, I compute each class of dealers’ preference over the fraction
of customers’ quantity to be traded in the parallel market. Dealers trading in the
parallel market prefer that all customer trading happens in the parallel market.
This is in particular because in the parallel market, competition is softened due to
the lower number of dealers. By contrast, dealers not participating in the parallel
market prefer that all customer trading occurs in the centralized market, because
they get higher rents in the centralized market.

Ex ante, when dealers decide their market structure before they know if their
customers will have trading needs, dealers thus face a risk: if they vote for the
opening of the centralized market, they face the risk of not being able to decide to
direct customer trades to the centralized market and thus to get lower utility; but if
they are in the group trading in the parallel market, they get a higher rent. I show
that the expected payoff from opening the parallel market is positive. However,
dealers are risk averse, so must weigh the expected utility from opening the parallel
market versus the expected utility of ex ante directing all customer trades to the
centralized market.

I show that when the variance of public news arriving at date 1 is low relative
to the total variance of the terminal payoff, dealers choose to open the parallel
market. When the variance of date 1 news is relatively high, they choose to direct
all customer trades to the centralized market. This suggests that dealers’ ability
to trade the position they have built in the parallel market in a dynamic way is
crucial to the decision to open the market: when variance of date 1 public news,
the cost of holding the asset until date 1 is high relative to the date 1 surplus and
the date 0 market looks more like a static market. A higher variance of date 1 news
may result from a more remote date 1 trading date: therefore, in this model market
fragmentation results from the ability of dealers to dynamically trade with trading
rounds in a limited period of time.

Opening the parallel market is Pareto-dominated in this setting, as customers
trade at a worse price than in the centralized market.

As a robustness check, I study the case where trade in the parallel market and
in the date 0 centralized market occur simultaneously rather than sequentially, us-
ing the methods of Malamud and Rostek (2017). I show that this results in higher
apparent competition in the parallel market, while the equilibrium is unchanged in
the centralized market. Consistently with the unchanged centralized market equi-
librium, dealers not trading in the parallel market still prefer that customers trade
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in the parallel market. Dealers in trading in the parallel market still prefer that all
customer trading occurs in the parallel market. Before dealers learn whether they
will trade in the parallel market, the expected payoff of opening the parallel market
is still positive, and for risk aversion not too high, it is still preferable for dealers to
open the parallel market.

Literature review. Relevant papers include Duffie et al. (2005), Atkeson et al.
(2015) Dugast et al. (2019). Vayanos (1999), Duffie and Zhu (2017), Antill and
Duffie (2018), Rostek and Weretka (2015). This paper differs from Malamud and
Rostek (2017) in that I endogenize the network structure, while they assess the
welfare implication of given network structures.

3.2 Setting

There are three dates t = 0, 1, 2. There is one risky asset that pays off at t = 2 an
ex ante unknown amount v per unit. At each date, before any action takes place, a
public signal εt is released: ε1 and ε2 are independent and normally distributed with
mean 0 and respective variances σ2

1 and σ2
2. Thus v = v0 + ε1 + ε2 and we denote vt

the expectation of v conditional on information released at t. There is also a riskless
asset (cash) that can be purchased or sold without constraint by a perfectly elastic
supplier. We normalize its gross return to 1.

There are two types of traders i = 1, 2, which I call dealers for concreteness;
there are also customers to be described shortly. Dealers of class i maximize the
expected utility of their terminal wealth Wi described below. Each class contains
N ≥ 2 dealers1. Their utility is negative exponential (CARA), with risk aversion
parameter γ > 0 for both classes. Dealers of class i all start with zero initial
inventory of the risky asset. Dealers are all forward-looking and fully rational: in
particular, they perfectly anticipate at date 0 the date 1 equilibrium and adjust their
actions accordingly. When considering dealers of class i, I use the notation −i to
refer to dealers of the other class.

Dealers can meet at t = 0 and t = 1 in a centralized market. At date t = −1,
they vote on the following alternative:

• either they admit customers to a trade with one class i of dealers, customers
truthfully disclose the size Q0 of their order and dealers decide what fraction
w of Q0 they take in the parallel market, and what fraction 1− w they leave
for the centralized market

• or they do not open the parallel market.

The assignment to one class of dealers, rather than with a strategically chosen num-
ber of dealers, is for simplicity.

1This makes the total number of traders in each market greater than 3, a necessary condition
to have equilibrium in linear strategies. When there are only two traders, Du and Zhu (2017) show
existence of equilibria in non-linear strategies.
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Importantly, when voting, dealers do not know if they will be in the group trading
in the parallel market, or not. Therefore, as dealers are ex ante symmetric, if they
are not ex ante indifferent between customers trading in the centralized market and
them trading in the parallel market, then unanimity obtains so that the voting rule
does not matter.

The random assignment of customer trades to a class of dealers may capture
the fact that each class of dealers has its own pool of customers, and customers’
trading need in each pool occur randomly; it therefore does not necessarily imply
that customers randomly chose the dealers they trade with.

At date 0, if customers trade in the parallel market, they trade a quantity Qd

with the N dealers they are assigned. These dealers post demand schedules, and a
walrasian auctioneer computes a market clearing price p∗d. I look for equilibria in
which dealers with the same characteristics post the same demand schedules, which
rules out mixed strategies: as dealers differ only by initial inventory, depending
on whether they trade or not in the parallel market, all dealers of class i post the
same demand schedule q∗i,0(pd) and therefore purchase the same equilibrium quantity
q∗i,d ≡ q∗i,d(p

∗
d). The market clearing condition in the parallel market is therefore,

assuming without loss of generality that dealers of class 1 are assigned the trade:

q∗1,d(p
∗
0) =

Qd

N
(3.2.1)

Then all 2N dealers meet in a centralized market with inventory Ii,0 = 0 if
they have traded with customers, and Ii,0 = q∗i,d. They post demand schedules in a
similar way to the parallel market. A walrasian auctioneer computes the equilibrium
price p∗0 that clears the market. I also allow for customers to post an arbitrary
quantity Qc in the centralized market. If dealers have denied access of the centralized
market to customers, then Qc = 0. The market clearing condition at date 0 is thus
Nq∗1,0(p∗0) +Nq∗2,0(p∗0) = Qc, i.e.

q∗1,0(p∗0) + q∗2,0(p∗0) =
Qc

N
(3.2.2)

Viewing Qc + Qd = Q0 as a single customer order, I forbid customers to trade in
one direction in the centralized market, and in the other direction in the parallel
market. Therefore I denote Qd = wQ0 and Qc = (1 − w)Q0, with the constraints
that w ∈ [0, 1].

At date 1, the centralized market re-opens, and an external infinitely risk averse
customer has a liquidity shock and is willing to sell Q units of the security (thus when
Q > 0, the customer is willing to sell and vice versa).2 Again the market is walrasian,
with market clearing price p∗1, and the assumption about date 1 competitiveness of
dealers is naturally consistent with that of date 0. dealers arrive in the date 1 market

2The analysis is isomorphic to that of a liquidity shock of size Q/N that hits each trader of a
given class i (e.g. a customer who has traded only with traders of class i), although the equilibrium
allocations and prices differ in the imperfect competition setting.
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with inventories Ii,1 = Ii,0 + qi,0, where qi,0 is the quantity traded at date 0. Market
clearing at t = 1 thus writes Nq∗1,1(p∗1) +Nq∗2,1(p∗1) = Q, i.e.

q∗1,1(p∗1) + q∗2,1(p∗1) =
Q

N
(3.2.3)

Dealers of both classes do not know the value of Q at date 0, and it is publicly
revealed simultaneously with ε1 at date 1 before the market opens. A public noisy
signal on Q is released at date 0 before the market opens (thus there is no information
asymmetry): all dealers share the common belief at date 0 that Q is normally
distributed with mean E0[Q] = 0 and variance N2σ2

q . In addition, we assume that Q
is independent of ε1 and ε2, and that this is common knowledge. Independence of Q
and εt means that Q is a pure private value or liquidity shock: this captures the real
life feature that an investor may sometime need cash when other market participants
don’t, e.g. a mutual fund or a life insurer facing indiosyncratic withdrawals, or that
the investor has got news on its future cash needs and adjusts his portfolio (maturity,
liquidity, ...) accordingly.

With initial inventory Ii,0, quantities qi,0 and qi,1 purchased at t = 0 and t = 1
at respective prices p0 and p1, the terminal wealth of class i traders is

Wi = Ii,0v + qi,0(v − p0) + qi,1(v − p1) (3.2.4)

Dealers are imperfectly competitive in that they manage the price impacts of
their trades. I look for Nash equilibria in demand schedules in the date 1 market.
As there is no asymmetric information, there is an equilibrium multiplicity problem
(Klemperer and Meyer 1989). I use the usual trembling-hand stability criterion to
select a unique equilibrium (cf. Vayanos 1999).

I solve for equilibrium by backward induction, consistently with dealer full ra-
tionality. In particular, at date 0 dealers have rational expectations on how date 0
equilibrium impacts date 1 equilibrium.

3.3 Equilibrium in the centralized market

3.3.1 Date 1

In this section, I look for Nash equilibria in demand schedules in the date 1
market. As there is no asymmetric information, there is an equilibrium multiplicity
problem (Klemperer and Meyer 1989). I use the usual trembling-hand stability
criterion to select a unique equilibrium (cf. Vayanos 1999).

At date 1, the expected utility to be maximized by trader k in class i is given
by (2.2.4). By contrast with competitive markets, traders now take the impact of
their demand on the equilibrium price into account: they conjecture the equilibrium
residual demand curve that is the sum of all other traders’ demand curves. For
a given quantity qi,1 demanded by trader i, this residual demand curve implies an
equilibrium price p1, and a marginal increase in the quantity demanded by trader i

118



implies a marginal price impact ∂p1/∂qk,i,1. Differentiating the certainty equivalent
of wealth (2.2.4), trader k’ first order condition is:

v1 − p1 − qk,i,1
∂p1

∂qk,i,1
= γσ2

2(Ii,1 + qk,i,1)

Following the literature on market with Nash equilibria in demand schedules,3 I
conjecture linear strategies in equilibrium: there optimal strategies are linear when-
ever other market participants use linear strategies, but individual strategies are not
constrained to be linear. Thus trader k in class i expects to face a linear residual de-
mand curve of conjectured slope 1/λk,i,1, so that ∂p1/∂qi,1 = λk,i,1. To ease notation
I slightly anticipate on the equilibrium result that all traders k within class i follow
symmetric strategies, thus I drop the k subscript, so that her optimal demand is:

q∗k,i,1(p1, λi,1) =
v1 − p1

λi,1 + γσ2
2

− γσ2
2

λi,1 + γσ2
2

Ii,1 (3.3.1)

Therefore the residual demand curve faced by trader k in class i, summing optimal
demand (3.3.1) over other traders, has slope (N − 1)(λi,1 + γσ2

2) + N(λ−i,1 + γσ2
2).

Requiring consistency of conjectured equilibrium slope of the residual demand curve
and the actual ones:

λi,1 =
(
(N − 1)(λi,1 + γσ2

2)−1 +N(λ−i,1 + γσ2
2)−1

)−1
(3.3.2)

Definition 2. A date 1 equilibrium with imperfect competition is a set of demand
schedules as in (3.3.1), of λ1,1 and λ2,1 that solve (3.3.2) and a price p∗1 such that
the market clearing condition (3.2.3) holds.

Proposition 11 (Vayanos (1999), Malamud and Rostek (2017)). A date 1 equilib-
rium with imperfect competition exists and is unique. In this equilibrium, λ1,1 =

λ2,1 =
γσ2

2

2N−2
so that equilibrium demand schedules are:

q∗i,1(p1) =
2N − 2

2N − 1

[
v1 − p1

γσ2
2

− Ii,1
]

(3.3.3)

The equilibrium quantities traded and post trade inventories are

q∗i,1 =
2N − 2

2N − 1

Ii,1 − I−i,1
2

+
Q

2N
(3.3.4)

Ii,1 + q∗i,1 =
Q∗

2
+

1

2N − 1
Ii,1 (3.3.5)

The equilibrium price is

p∗1 = v1 − γ̄σ2
2Q
∗ (3.3.6)

with

{
Q∗ = 2N−2

2N−1
(I1,1 + I2,1) + Q

N

γ̄ = 2N−1
2N−2

γ
2

3Cf. Kyle (1989), Vayanos (1999), Malamud and Rostek (2017) among many others.
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3.3.2 Date 0

For date 0, I assume rational expectations on equilibrium price and quantities:
dealer k within class i conjectures symmetric equilibrium trades qel,−i,0 = qe−i,0 for
all dealers in the other class −i, and qel,i,1 = qei,1 for other dealers (l 6= k) in his
class i. This leads to conjectured date 1 initial inventory Ie−i,1 = I−i,0 + qe−i,0, and
Iel,i,1 (l 6= k). Dealer k optimizes according to this conjecture. In equilibrium, these
conjectures coincide with actual equilibrium quantities:

qei,0 = q∗i,0(p∗0). (3.3.7)

The certainty equivalent of wealth can be written (cf. lemma 18 in the appendix):

Ŵk,i,0 = Ii,0v0 + qk,0(v0 − p0)− γ(σ2
1 + σ2

2)

2
(Ik,1)2 + Ŝ∗k,1(qk,0) (3.3.8)

where

Ŝ∗k,1(qk,0) =
2N

2N − 2

1

1 + αx

γσ2
2

2

(
γ̄

γ
E0

[
q∗i,1]
])2

=
α

1 + αx

γσ2
2

2

(
γ̄

γ
E0

[
Q

N

]
+
Īe−i,1

2
+
N − 1

N

Īei,1
2
−
(

1− 1

2N

)
Ik,1

)2

and x = γ̄2σ2
2σ

2
q and α = 2N(2N−2)

(2N−2)2
is increasing with N and is strictly between 0

and 1. The first order condition of the maximization of the above criterion, together
with a consistency condition of price impacts λi,0 analogous to (3.3.2), leads to
equilibrium demand schedules that are identical across dealers of class i (cf. lemma
19 in appendix):

q∗i,0(p0) =
2N − 2

2N − 1

[
v0 − p0

γ(σ2
1 + δσ2

2)
− Ii,0

−2N − 2

2N − 1

1

1 + αx

γσ2
2

γ(σ2
1 + δσ2

2)

(
γ̄

γ
E0

[
Q

N

]
+
Īe−i,1

2
+
N − 1

N

Īei,1
2

)]
(3.3.9)

where δ = 1− N−1
N

1
1+αx

∈ [0, 1). There are a few differences between this imperfectly
competitive demand schedule and the competitive one. Similarly to the date 1
equilibrium, all terms in the demand schedule are reduced by a factor by (2N −
2)/(2N − 1) < 1. In addition, consider the first term representing the hold-to-
maturity component of demand: it is divided by a variance σ2

1 + δσ2
2 where δ ∈ [0, 1)

and is analogous to the competitive case. But unlike the competitive case, when
the supply shock Q is known for sure (σ2

q = 0), δ = 1/N > 0. It reflects the fact
that dealer i has to keep part of his position built at date 0 until maturity, as risk
sharing is limited by imperfect competition at date 1. Otherwise δ increases with
σ2
q and converges to 1 as σ2

q becomes arbitrarily large, as in the competitive case:
dealer k’s effective horizon converges to t = 2.
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Plugging (3.3.9) into the market clearing condition (3.2.2), and imposing con-
sistency of conjectures on others’ trades (3.3.7), I derive the following proposition,
fully proven in appendix.

Proposition 12. At date 0, the equilibrium quantity traded by class 1 traders is

q∗1,0 =
1

1 + A(σ2
q )

I2,0 − I1,0

2
+
Qc

2N
(3.3.10)

where A(·) is the demand reduction rate. It is positive and decreases with σ2
q .

A(·) is the sum of a static demand reduction rate and of a positive dynamic
demand reduction rate. The static demand reduction rate is the same as the one
obtained in the static date 1 market. The dynamic demand reduction rate is positive
and falls to zero as σ2

q goes to infinity.
The date 0 equilibrium price is:

p∗0 = v0 − γ(σ2
1 + σ2

2)
I1,0 + I2,0

2
− γs Qc

2N
(3.3.11)

where

s =
2N − 1

2N − 2
(σ2

1 + σ2
2)− 1

2N

σ2
2

1 + αx

x = γ̄2σ2
2σ

2
q

γ̄ =
γ

2

2N − 1

2N − 2

Equilibrium utilities. Plugging the equilibrium price and quantity traded in the
centralized market in the certainty equivalent of wealth, one finds the following
expression that is conditional on inventory Ii,0 = 0 for dealers who have not traded
in the centralized market, or qi,d for those who have. The lemma is fully proven in
the appendix.

Lemma 12. The equilibrium date 0 certainty equivalent of wealth of a dealer of
class i arriving with inventory Ii,0 in the date 0 centralized market is:

Ŵ n
i,0(Qc) =Ii,0v0 −

γ(σ2
1 + σ2

2)

2
(Ii,0)2

+ γθncc

(
Qc

2N

)2

+ γθncd
Qc

2N

I−i,0 − Ii,0
2

+ γ
θndd
2

(
I−i,0 − Ii,0

2

)2

(3.3.12)

where, denoting A ≡ A(σ2
q ),

θncc = s− σ2
1 + σ2

2

2
=

(
1 +

1

N − 1

)
σ2

1 + σ2
2

2
+

1

2N

σ2
2

1 + αx

θncd =
(σ2

1 + σ2
2)A+ s

1 + A

θndd = σ2
1 + σ2

2 −
(

A

1 + A

)2(
σ2

1 +

(
1− α

1 + αx

)
σ2

2

)
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The certainty equivalent of wealth is the sum of a mean variance criterion (first
line of 3.3.12) and of the value of the surplus of date 0 and date 1 transactions (second
line). The latter is itself the sum of a term corresponding to the surplus made from
the customer transaction on the centralized market (in Q2

c), a term corresponding to
interdealer transactions (in (I−i,1− Ii,1)2), which themselves come from transactions
in the parallel market; the cross term (in Qc × (I−i,0 − Ii,0) comes from the fact
that customer transactions in the interdealer market changes the interdealer terms
of trade: if customers sell in the centralized market (Qc > 0), then selling dealers
(for which I−i,0 − Ii,0 < 0) sell at a lower price, which decreases their utility.

3.3.3 Equilibrium in the parallel market

Customer-to-dealer market equilibrium price

If dealer k of class 1 has bought qk,d in the parallel market to the customers
at price pd, while dealers of class 2 have no inventory, the inventory difference is
∆I = qd and the certainty equivalent of wealth for dealer k is:

Ŵk,d = q1,d(v0 − pd)−
γ(σ2

1 + σ2
2)

2
(qd)

2 + γθcc

(
Qc

2N

)2

+ γθcd
Qc

2N

qd
2

+ γ
θdd
2

(qd
2

)2

The first order condition for the maximization of Wk is

v0 − pd = λkqk,d + γ

(
σ2

1 + σ2
2 −

θdd
4

)
qk,d − γ

θcd
2

Qc

2N

Analogously to other equilibria (date 0, date 1), the equilibrium price impact is:

λk =
γ(σ2

1 + σ2
2 − θdd/4)

N − 2

so that the equilibrium demand schedule of trader k is identical for all traders of
class 1:

q∗1,d(pd) =
2N − 2

2N − 1

(
v0 − pd

γ(σ2
1 + σ2

2 − θdd/4)
− θcd

2(σ2
1 + σ2

2 − θdd/4)

Qc

2N

)
The market clearing condition is Nq1,d = Qd, i.e.

v0 − p∗d
γ(σ2

1 + σ2
2 − θdd/4)

=
θcd

2(σ2
1 + σ2

2 − θdd/4)

Qc

2N
+
N − 1

N − 2

Qd

N

which can be rearranged to lead to the following proposition.

Proposition 13. In the parallel market, the equilibrium price is

p∗d = v0 − γ
θcd
2

Qc

2N
− γ

(
σ2

1 + σ2
2 −

θdd
4

)
N − 1

N − 2

Qd

N
(3.3.13)

while each dealer of class 1 gets the same quantity

q1,d =
Qd

N
(3.3.14)

122



The equilibrium price is the expected value of the asset minus a discount propor-
tional to Qc, and another proportional to Qd. The first, proportional to Qc, reflect
the anticipation by dealers that they will trade at a low price p∗0 in the centralized
market if customers sell there (Qc > 0), which reduces the terms of trade in the
interdealer market. The second discount is a risk premium for holding the asset
until maturity γ(σ2

1 + σ2
2) which is decreased by the surplus that dealers will make

in later transactions, thus the θdd.

The centralized/parallel market spread

Buying a quantity Qd/N in the parallel market, and re-selling in the centralized
market, dealers of class 1 get the following spread, obtained by taking the difference
between 3.3.11 with I1,0 + I2,0 = Qd

N
and 3.3.13, one gets

p∗0 − p∗d = γ

(
N − 1

N − 2

(
σ2

1 + σ2
2 −

θdd
4

)
− σ2

1 + σ2
2

2

)
Qd

N
+ γ

(
θcd
2
− s
)
Qc

2N

In the appendix I show that this boils down to

Lemma 13.

p∗0 − p∗d = γ
(
sd1σ

2
1 + sd2σ

2
2

) Qd

2N
− γ

(
sc1σ

2
1 + sc2σ

2
2

) Qc

2N
(3.3.15)

where sd1, sd2, sc1, sc2 > 0.

Therefore, assuming first that Qc = 0, dealers of class 1 make a positive spread
on the quantity Qd they buy. However, the spread decreases if Qc > 0: if customers
sell both in the centralized market and in the parallel market and in the same
direction, dealers do not fully pass the decrease in centralized market terms of trade
through the parallel market. This points towards a preference of dealers trading in
the parallel market for having no trade in the centralized market.

Equilibrium utility for dealers trading in the parallel market.

Lemma 14. Dealers of class 1 have equilibrium utility

Ŵ1 =
γ

2

N

N − 2

(
σ2

1 + σ2
2 −

θdd
4

)(
Qd

N

)2

+ γθcc

(
Qc

2N

)2

+ γθcd
Qc

2N

Qd

N

Proof. The certainty of wealth, plugging equilibrium price 3.3.13 and quantity 3.3.14,
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is

Ŵ1 =
Qd

N

(
γ
θcd
2

Qc

2N
+
N − 1

N − 2

(
σ2

1 + σ2
2 −

θdd
4

)
Qd

N

)
− γ(σ2

1 + σ2
2)

2

(
Qd

N

)2

+ γθcc

(
Qc

2N

)2

+ γθcd
Qc

2N

Qd

2N
+ γ

θdd
2

(
Qd

2N

)2

= γ

[
N − 1

N − 2

(
σ2

1 + σ2
2 −

θdd
4

)
− σ2

1 + σ2
2

2
+
θdd
8

](
Qd

N

)2

+ γθcc

(
Qc

2N

)2

+ γ [θcd + θcd]
Qc

2N

Qd

2N

=
γ

2

N

N − 2

(
σ2

1 + σ2
2 −

θdd
4

)(
Qd

N

)2

+ γθcc

(
Qc

2N

)2

+ γθcd
Qc

2N

Qd

N

3.4 Dealers’ preferred trading venue

In this section I examine whether dealers prefer customers to trade in the cen-
tralized or in the parallel market, which is the main question of the paper. Denote
w the fractin of their total order Q0 that customers trade in the parallel market,
so that the fraction traded in the centralized market is 1 − w. To avoid customers
buying in the centralized market and selling in the parallel market or conversely, I
constrain w to be in [0, 1].

3.4.1 Dealers prefer all or nothing in the parallel market

The certainty equivalent of wealth is, from lemma 14:

Ŵ1(w) = γ

[
1

2

N

N − 2

(
σ2

1 + σ2
2 −

θdd
4

)
w2 +

θcc
4

(1− w)2 +
θcd
2
w(1− w)

](
Q0

N

)2

(3.4.1)

Given the constraint w ∈ [0, 1], I show in the appendix the following proposition.

Proposition 14. Dealers trading in the parallel market prefer that all customer
trading happens in the parallel market (w = 1), thus force customers to trade with
them in the parallel market.

Dealers who do not trade in the parallel market prefer that all customer trading
happens in the centralized market (w = 0).

A sketch of proof is as follows. For traders trading in the parallel market, the
certainty equivalent of wealth Ŵ1 is a convex quadratic function of w, so that the
maximum is attained either for w = 0 or for w = 1. Then I show that Ŵ1(1) >

Ŵ1(0). For traders not trading in the parallel market, Ŵ2 is a quadratic concave
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function of w, and its unconstrained maximum (i.e. for w any real number) is
negative: thus the constrained maximum (w ∈ [0, 1]) is at w = 0.

Thus ex post, dealers who are not assigned the trade would vote for customers
trading only in the centralized market.

3.4.2 Dealers’ ex ante preference for opening the parallel
market

However, before knowing if they belong to the class that is assigned the customer
order, dealers may vote on opening the parallel market, or not. Their ex ante utility
if they open the parallel market (thus imposing w = 1) is

c

2

(
−e−γŴ1(1) − e−γŴ2(1)

)
for some positive constant c, while their utility if they do not open the parallel
market (w = 0) is

c

2

(
−e−γŴ1(0) − e−γŴ2(0)2

)
= −ce−γŴ2(0)

One has the following theorem, which is the main result of the paper.

Theorem 3. For σ2
1/σ

2
2 not too large, dealers choose to open the parallel market.

When σ2
1/σ

2
2 becomes large, dealers prefer trading in the centralized market.

Customers get a worse price when they trade only in the parallel market than if
they trade in the centralized market. Thys they are worse off when dealers open the
parallel market.

The fact that when σ2
1 >> σ2

2, dealers choose to trade in the centralized market
suggests a link between over-the-counter trading dynamic trading. In fact, in this
case, the market becomes close to static as date 1 trading surplus becomes small
with respect to the cost of holding the asset from date 0 to date 1.

3.5 Simultaneous trading in the parallel and date

0 centralized market

In this section I change the timing assumption regarding trading in the parallel
and n in the date 0 centralized market: in the baseline setting, trading in the parallel
market occured before trading in the centralized market; now I assume that trading
in the parallel and date 0 centralized market occur simultaneously.

The date 0 equilibrium changes only in the parallel market, where customers
trade at a better price. Equilibrium in the centralized market is not changed.

Ultimately, dealers who are allowed to trade in the parallel market are still better
off when all customer trading happens in the parallel market. Ex ante, dealers still
prefer when
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3.5.1 Equilibrium

Traders not trading in the parallel market. Traders of class 2 do not trade
with customers. For a trader k in class 2, the certainty equivalent of wealth at date
0 is

Ŵk,2,0 = Ik,2,0v0 + qk,2,0(v0 − pc) +
1

2

2N

2N − 2

γσ2
2

1 + αx

(
E0

[
q∗k,2,1

])2

where

q∗k,2,1 =
2N − 2

2N − 1
(Q∗ − Ik,2,1)

=
2N − 2

2N − 1

(
Q1

2N
+
Īe1,1
2

+
Īe2,1
2
− Ik,2,1

)

Īei,1 is the rational expectation of the average inventory of dealers of class i after
date 0 trades. These expectations are common to everyone. Dealers of class 2 are
sensitive to the impact they have on this average inventory, which goes through the
following identity:

Īe2,1 =
1

N

N∑
l=1,l 6=k

Iek,2,1 +
Ik,2,1
N

As all traders within the same class are expected to have symmetric equilibrium
trades, the identity can be written

Īe2,1 =
N − 1

N
Īe2,1 +

Ik,2,1
N

Therefore traders of class 2 maximize

Ŵk,2,0 = Ik,2,0v0 + qk,2,0(v0 − pc)

+
1

2

2N(2N − 2)

(2N − 1)2

γσ2
2

1 + αx

(
Īe1,1
2

+
N − 1

N

Īe2,1
2
− 2N − 1

2N
Ik,2,1

)2

Their first order condition is

v0 − pc = λ2 qk,2,0 + γ(σ2
1 + δσ2

2)Ik,2,1 +
2N − 2

2N − 1

(
Īe1,1
2

+
N − 1

N

Īe2,1
2

)

where δ = 1 − N−1
N

1
1+αx

and x = γ̄2σ2
2σ

2
q . It is easy to check that the problem is

strictly concave in qk,2,0.
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Traders trading in the OTC market. Trader k in class 1 trades a quantity qk,d
with customers in the fragmented market, and qk,1,0 in the centralized market. The
certainty equivalent of wealth is analogous to that of class 2 traders:

Ŵk,1,0 = Ik,1,0v0 + qk,d(v0 − pd) + qk,1,0(v0 − pc)

+
1

2

2N(2N − 2)

(2N − 1)2

γσ2
2

1 + αx

(
Īe2,1
2

+
N − 1

N

Īe1,1
2
− 2N − 1

2N
Ik,1,1

)2

This trader optimizes simultaneously on both quantities qk,d and qk,1,0 so that the
first order conditions arev0 − pc = λccqk,1,0 + λcdqk,d + γ(σ2

1 + δσ2
2)(I + qk,d + qk,1,0) + 2N−2

2N−1

γσ2
2

1+αx

(
Īe2,1

2
+ N−1

N

Īe1,1
2

)
v0 − pd = λdcqk,1,0 + λddqk,d + γ(σ2

1 + δσ2
2)(I + qk,d + qk,1,0) + 2N−2

2N−1

γσ2
2

1+αx

(
Īe2,1

2
+ N−1

N

Īe1,1
2

)
which can be re-written in matrix form(

v0 − pc
v0 − pd

)
=

(
γ(σ2

1 + δσ2
2)

(
1 1
1 1

)
+ Λ

)(
qk,1,0
qk,d

)
+

(
γ(σ2

1 + δσ2
2)I +

2N − 2

2N − 1

γσ2
2

1 + αx

(
Īe2,1
2

+
N − 1

N

Īe1,1
2

))(
1
1

)
where

Λ =

(
λcc λcd
λdc λdd

)
Equilibrium price impact matrix. The equilibrium λ2 and Λ obey the following
equations, denoting σ2 = σ2

1 + δσ2
2 to ease notation:

Λ =

 N
γσ2+λ2

(
1 0

0 0

)
+ (N − 1)

(
γσ2

(
1 1

1 1

)
+ Λ

)−1
−1

λ2 =

 N−1
γσ2+λ2

(
1 0

0 0

)
+N

(
γσ2

(
1 1

1 1

)
+ Λ

)−1
−1

1,1

(3.5.1)

Lemma 15. There is a unique solution to the system (3.5.1) such that γσ2

(
1 1
1 1

)
+

Λ is invertible. It is:

Λ =
γ(σ2

1 + δσ2
2)

2N − 2

(
1 1
1 1 + y

)
(3.5.2)

λ2 =
γ(σ2

1 + δσ2
2)

2N − 2
(3.5.3)

where y = N
(N−1)(2N−1)

.
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The lemma is proven in appendix. The coefficient λcc in Λ is the same as if there
was no parallel market. The off-diagonal terms λcd and λdc reflect an arbitrage of
the same asset in different markets: buying more in the parallel market, for class
1 traders implies an increase in decentralized price pd, which induces other class 1
traders to buy more of the same asset in the centralized market, and symmetrically
for the other cross-market impact.

Plugging the solution into the first order condition yields(
v0 − pc
v0 − pd

)
= γ(σ2

1 + δσ2
2)

2N − 1

2N − 2

(
1 1
1 1 + y

2N−1

)(
qk,1,0
qk,d

)
+

2N − 2

2N − 1

γσ2
2

1 + αx

(
Īe2,1
2

+
N − 1

N

Īe1,1
2

)(
1
1

)
which can be inverted to(
q∗k,1,0(pc, pd)
q∗k,d(pc, pd)

)
=

2N − 2

2N − 1

1

γ(σ2
1 + δσ2

2)

2N − 1

y

(
1 + y

2N−1
−1

−1 1

)
×

[(
v0 − pc
v0 − pd

)
− 2N − 2

2N − 1

γσ2
2

1 + αx

(
Īe2,1
2

+
N − 1

N

Īe1,1
2

)(
1
1

)]

=
2N − 2

2N − 1

1

γ(σ2
1 + δσ2

2)

(
v0 − pc + 2N−1

y
(pd − pc)

2N−1
y

(pc − pd)

)
− 2N − 2

2N − 1

(
2N − 2

2N − 1

σ2
2

(σ2
1 + δσ2

2)(1 + αx)

(
Īe2,1
2

+
N − 1

N

Īe1,1
2

))(
1
0

)
The market clearing conditions apply in the parallel market, which write, given that
all class 1 traders post identical demand schedules:

2N − 2

y

p∗c − p∗d
γ(σ2

1 + δσ2
2)

=
Qd

N

and in the centralized market, where class 1 and class 2 traders meet:

2
v0 − p∗c

γ(σ2
1 + δσ2

2)
+

2N − 2

y

p∗d − p∗c
γ(σ2

1 + δσ2
2)

− 2N − 2

2N − 1

σ2
2

(σ2
1 + δσ2

2)(1 + αx)

(
Īe2,1 + Īe1,1

) 2N − 1

2N
=

2N − 1

2N − 2

Qc

N

Plugging the OTC market clearing condition, observing that Īe1,1 + Īe2,1 = Qd
N

+ Qc
N

v0 − p∗c
γ(σ2

1 + δσ2
2)
− Qd

2N
− 2N − 2

2N

σ2
2

(σ2
1 + δσ2

2)(1 + αx)

(
Qd

2N
+
Qc

2N

)
=

2N − 1

2N − 2

Qc

2N

This leads to the following proposition.
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Proposition 15. The equilibrium price in the centralized and parallel market are

p∗c = v0 − γ(σ2
1 + σ2

2)
Qd

2N
− γs Qc

2N
(3.5.4)

p∗c − p∗d = γ(σ2
1 + δσ2

2)
N

(N − 1)2(2N − 1)

Qd

2N
(3.5.5)

where

s =
2N − 1

2N − 2
(σ2

1 + σ2
2)− 1

2N

σ2
2

1 + αx

The equilibrium quantity traded in the centralized market is

q∗1,0 =
1

1 + A(σ2
q )

Qd

2N
+
Qc

2N
(3.5.6)

where A(σ2
q ) is positive and decreases as σ2

q increases.

With respect to the equilibrium with sequential trading in the parallel market,
the centralized market price and quantity traded are identical. What changes is the
parallel market price p∗d. In particular, the spread p∗c − p∗d does not depend on the
quantity Qc traded in the centralized market.

The spread p∗c − p∗d is a measure of price dispersion in an OTC market. It
increases with risk aversion: in periods of market stress, risk aversions increase
(possibly because of tighter financing constraints) and price dispersion increases.
Price dispersion also increases when uncertainty σ2

q on order flow increases (making
δ increase).

Dealers’ equilibrium utilities. As only the price in the parallel market changes
with respect to the sequential trading case, dealers not trading in the parallel market
have identical utilities as in the sequential trading case. The other dealers’ utility is
given in the following lemma.

Lemma 16. Dealers trading in the parallel market have equilibrium utility

Ŵ1(Qc, Qd) =

{[
σ2

1 + σ2
2

2

(
1 +

2N

(N − 1)2(2N − 1)

)
+

σ2
2

1 + αx

1

(N − 1)(2N − 1)
+
θdd
8

]
w2

+
θcc
4

(1− w)2 +
s+ θcd

4
w(1− w)

}
γ

(
Q0

N

)2

(3.5.7)

Proof. The certainty of wealth, plugging equilibrium price 3.5.5 and quantity 3.5.6,
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is

Ŵ1 =
Qd

N

(
γ

(
(σ2

1 + σ2
2)

(
1 +

N

(N − 1)2(2N − 1)

)
+

σ2
2

1 + αx

1

(N − 1)(2N − 1)

)
Qd

2N
+ γs

Qc

2N

)
− γ(σ2

1 + σ2
2)

2

(
Qd

N

)2

+ γθcc

(
Qc

2N

)2

+ γθcd
Qc

2N

Qd

2N
+ γ

θdd
2

(
Qd

2N

)2

= γ

[
(σ2

1 + σ2
2)

(
1 +

N

(N − 1)2(2N − 1)

)
+

σ2
2

1 + αx

1

(N − 1)(2N − 1)
− σ2

1 + σ2
2

2
+
θdd
8

](
Qd

N

)2

+ γθcc

(
Qc

2N

)2

+ γ [s+ θcd]
Qc

2N

Qd

2N

= γ

[
σ2

1 + σ2
2

2

(
1 +

2N

(N − 1)2(2N − 1)

)
+

σ2
2

1 + αx

1

(N − 1)(2N − 1)
+
θdd
8

](
Qd

N

)2

+ γθcc

(
Qc

2N

)2

+ γ
s+ θcd

2

Qc

2N

Qd

N

Then plug Qd = wQ0 and Qc = (1− w)Q0.

3.5.2 Dealers’ preferred trading venue

In the previous subsection, I showed that only the equilibrium price in the parallel
market changes with respect to the equilibrium where trading in the parallel market
occurs first. Therefore the preference of dealers who do not trade in the parallel
market are unchanged: in particular, they still ex post prefer to have all customer
trading in the centralized market.

I reconsider the preference of dealers who trade in the centralized market.

Proposition 16. Dealers who trade in the parallel market prefer that all customer
trading happens in the parallel market.

The proposition is proven in the appendix. Now I revisit dealers’ choice ex ante.

Theorem 4. Before they learn whether they will trade in the parallel market, dealers’
expected payoff is higher than the expected payoff from trading in the centralized
market only.

For γσ2
2 not too high, dealers ex ante choose to open the parallel market. Cus-

tomers are worse off than when they trade only in the centralized market.

The theorem is proven in the appendix. Therefore the equilibrium and welfare
conclusions remain qualitatively the same as in the case where dealers trade in the
parallel market before they trade in the centralized market.
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3.6 Conclusion

In this paper I provide a model of endogenous market fragmentation: dealers
choose to open a market that is parallel to the all-to-all, centralized market. In
doing this they extract rents to customers, who are worse off, while dealers who do
not trade in the parallel market are worse off. However, if dealers do not know ex
ante if they will be in the pool of dealers trading in the parallel market - capturing
the idea that they do not know if their own pool of customers will have trading
needs - dealers choose to open the parallel market as long as they expect trading
opportunities with a cost of carrying the asset until the opportunity materializes is
not too high. This paper thus contributes to the literature on endogenous networks.
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3.7 Appendix: Proofs

3.7.1 Resolution of date 0 equilibrium without derivatives

Demand schedules

From proposition 11, the post-trade certainty equivalent of wealth at date 1 is
given by the following lemma, proven in the appendix.

Lemma 17. The interim expected utility for a trader k in class i is − exp
{
−γiŴk,i,1

}
,

where Ŵi,1 is the interim certainty equivalent of wealth given by:

Ŵk,i,1 = Ik,0v1 + qk,0(v1 − p0)− γσ2
2

2
(Ik,1)2 + α

γσ2
2

2

(
γ̄

γ
Q∗ − Ik,1

)2

(3.7.1)

= Ik,0v1 + qk,0(v1 − p0)− γσ2
2

2
(Ik,1)2 +

2N

2N − 2

γσ2
2

2

(
q∗k,1
)2

(3.7.2)

where α = 2N(2N−2)
(2N−1)2

= 1− 1
(2N−1)2

.

Proof. Plugging equilibrium price (3.3.6) and quantities (3.3.4) into the date 1 cer-
tainty equivalent of wealth (2.2.4), one gets

Ŵk,1 = Ik,0v1 + qk,0(v1 − p0)− γσ2
2

2
(Ik,1)2 + q∗k,1(v1 − p∗1)− γσ2

2

2

((
Ik,1 + q∗k,1

)2 − (Ik,1)2
)

Recognizing
v1−p∗1
γσ2

2
= 2N−1

2N−2
q∗k,1 + Ik,1 and rearranging one get

Ŵk,i,1 = Ik,0v1 + qk,0(v1 − p0)− γσ2
2

2
(Ik,1)2

+ q∗k,1γσ
2
2

(
2N − 1

2N − 2
q∗k,1 + Ik,1

)
− γσ2

2

2

(
2Ik,1 + q∗k,1

)
q∗k,1

= Ik,0v1 + qk,0(v1 − p0)− γσ2
2

2
(Ik,1)2 +

(
2N − 1

2N − 2
− 1

2

)
γσ2

2

(
q∗k,1
)2

which leads to the desired formulas.

It is then possible to compute the certainty equivalent of wealth at date 0.

Lemma 18. The date 0 certainty equivalent of wealth for trader k in class i is:

Ŵk,i,0 = Ii,0v0 + qk,0(v0 − p0)− γ(σ2
1 + σ2

2)

2
(Ik,1)2 +

1

2

2N

2N − 2

γσ2
2

1 + αx

(
E0

[
q∗k,1
])2

(3.7.3)

= Ik,0v0 + qk,0(v0 − p0)− γ(σ2
1 + σ2

2)

2
(Ik,1)2

+
α

2

γσ2
2

1 + αx

(
γ̄

γ
E0

[
Q

N

]
+
Īe−i,1

2
+
N − 1

N

Īei,1
2
− 2N − 1

2N
Ik,1

)2

(3.7.4)
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where x = γ̄2σ2
2σ

2
q and γ̄ = 1

2
2N−1
2N−2

. Īe−i,1 and Īei,1 are the rational expectations of
average dealer inventories after date 1 trade.

Proof. Start from interim expected utility (3.7.2). Take the certainty equivalent
with respect to ε1 first, which gives

Ŵk,0|Q = Ii,0v1 + qk,0(v1 − p0)− γ(σ2
1 + σ2

2)

2
(Ik,1)2 + α

γσ3
2

2

(
γ̄

γ
Q∗ − Ik,1

)2

Then take the certainty equivalent with respect to Q following lemma 11, which
gives the desired formula.

For the rational expectations: Q∗ is an outcome of date 0 trade, as it depends
on dealers’ average inventories in each class. Dealer k’s trade has an impact on date
his class’ average inventory

Īei,1 ≡
1

N

N∑
l=1,l 6=k

Iel,i,1 +
Ik,1
N

=
N − 1

N
Īei,1 +

Ik,1
N

where the second line follows from rational expectation of a symmetric equilibrium.

Lemma 19. In equilibrium, all dealers within class i submit the same optimal de-
mand schedules as follows:

q∗i,0(p0) =
2N − 2

2N − 1

[
v0 − p0

γ(σ2
1 + δσ2

2)
− Ik,0

−2N − 2

2N − 1

1

1 + αx

σ2
2

σ2
1 + δσ2

2

(
γ̄

γ
E0

[
Q

N

]
+
Īe−i,1

2
+
N − 1

N

Īei,1
2

)]
(3.7.5)

It depends on trader k’s expectation on other traders’ equilibrium trades.

Proof. Differentiate the certainty equivalent of wealth (3.7.4) with respect to qi,0,
taking into account its price impact that is conjectured to be constant (and denoted
λi,0). Equating to zero to get the first-order condition:

v0 − p0 = qk,0(λk,0 + γ(σ2
1 + σ2

2))qk,0 + γ(σ2
1 + σ2

2)Ik,0

+
2N − 2

2N − 1

γσ2
2

1 + αx

(
γ̄

γ
E0

[
Q

N

]
+
Īe−i,1

2
+
N − 1

N

Īei,1
2
− 2N − 1

2N
Ik,1

)
= (λk,0 + γ(σ2

1 + δσ2
2))qi,0 + γ(σ2

1 + δσ2
2)Ii,0

+
2N − 2

2N − 1

γσ2
2

1 + αix2

(
γ̄

γ
E0

[
Q

N

]
+
Īe−i,1

2
+
N − 1

N

Īei,1
2

)
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where

δ = 1− N − 1

N

1

1 + αx
∈ [0, 1].

It is thus straightforward to check that the second derivative of Ŵi,0 is negative, so
that the problem is strictly concave. Using proposition 1 of Malamud and Rostek
(2017)

λk,0 =
γ(σ2

1 + δσ2
2)

2N − 2

Plugging equilibrium price impacts λk,0 in the first order condition and rearranging,
one gets the desired formula.

Equilibrium price and quantity

The date 0 market clearing condition can be written:

v0 − p∗0
γ(σ2

1 + δσ2
2)

=
I1,0 + I2,0

2
+

2N − 2

2N − 1

1

1 + αx

γσ2
2

γ(σ2
1 + δσ2

2)

(
2N − 1

2N

Īe1,1 + Īe2,1
2

)
+

2N − 1

2N − 2

Qc

2N

By market clearing at date 0, Īe1,1 + Īe2,1 = I1,0 + I2,0 + Qc
N

; in addition, recalling

γ̄ = 1
2

2N−1
2N−2

, one has

v0 − p∗0 = γ(σ2
1 + δσ2

2)
I1,0 + I2,0

2
+

2N − 2

2N

γσ2
2

1 + αx

I1,0 + I2,0

2

+ γ

(
σ2

1 + δσ2
2 +

2N − 2

2N − 1

2N − 2

2N

σ2
2

1 + αx

)
2N − 1

2N − 2

Qc

2N

= γ(σ2
1 + σ2

2)
I1,0 + I2,0

2

+ γ

(
σ2

1 + σ2
2 −

1

2N − 1

2N − 2

2N

σ2
2

1 + αx

)
2N − 1

2N − 2

Qc

2N

Recalling the definition of δ, the equilibrium price is therefore:

p∗0 = v0 − γ(σ2
1 + σ2

2)
I1,0 + I2,0

2
− γsn Qc

2N
(3.7.6)

where

sn =
2N − 1

2N − 2

(
σ2

1 + σ2
2

)
− 1

2N

σ2
2

1 + αx
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Plugging 3.7.6 into the equilibrium demand schedule for class 1 traders:

q∗1,0 =
2N − 2

2N − 1

[
I2,0 − I1,0

2
+

2N − 2

2N − 1

1

1 + αx

σ2
2

σ2
1 + δσ2

2

(
γ̄

γ
E0

[
Q

N

]
+

2N − 1

2N

Īe1,1 + Īe2,1
2

)

−2N − 2

2N − 1

1

1 + αx

σ2
2

σ2
1 + δσ2

2

(
γ̄

γ
E0

[
Q

N

]
+
Īe2,1
2

+
N − 1

N

Īe1,1
2

)]

=
2N − 2

2N − 1

[
I2,0 − I1,0

2
+

2N − 2

2N − 1

1

1 + αx

σ2
2

σ2
1 + δσ2

2

(
Īe1,1 − Īe2,1

4N

)]

=
2N − 2

2N − 1

[
I2,0 − I1,0

2
+

1

2N − 1

N − 1

N

1

1 + αx

σ2
2

σ2
1 + δσ2

2

(
I1,0 − I2,0

2
+ q∗i,0

)]
where the third line used the equilibrium condition qe2,0 = q∗2,0 and market clearing
3.2.2. Thus(

2N − 1

2N − 2
− N − 1

N(2N − 1)

1

1 + αx

σ2
2

σ2
1 + δσ2

2

)
q∗i,0 =

(
1− N − 1

N(2N − 1)

1

1 + αx

σ2
2

σ2
1 + δσ2

2

)
I2,0 − I1,0

2

Notice that with δ = 1− N−1
N

1
1+αx

,

1− N − 1

N(2N − 1)

1

1 + αx

σ2
2

σ2
1 + δσ2

2

=
σ2

1 +
(
1− 2N−2

2N−1
1

1+αx

)
σ2

2

σ2
1 +

(
1− 2N−2

2N
1

1+αx

)
σ2

2

> 0

This and rearranging leads to the desired equilibrium quantity:

q∗i,0 =
1

1 + A(σ2
q )

I2,0 − I1,0

2
(3.7.7)

where

A(σ2
q ) =

1

2N − 2

σ2
1 +

(
1− N−1

N
1

1+αx

)
σ2

2

σ2
1 +

(
1− 2N−2

2N−1
1

1+αx

)
σ2

2

where the dependence in σ2
q in the right-hand side goes through δ and x, to get

formula 3.3.10. The properties of A(σ2
q ) are derived in lemma 7 in appendix 2.9.3.

It is also possible to write

A(σ2
q ) =

1

2N − 2︸ ︷︷ ︸
Astatic

+
1

1 + αx

1

(2N − 2)(2N − 1)

σ2
2

σ2
1 +

(
1− α

2
1

1+αx

)
σ2

2︸ ︷︷ ︸
Adynamic

The static demand reduction rate deserves its name because 1/(1 +Astatic) = 2N−2
2N−1

,
which is the same reduction factor as in the date 1 market which is a static game.
It is straightforward to show that Adynamic converges to zero as σ2

q , thus x, tends to
infinity.

The date 1 quantity is computed straightforwardly from 3.7.7 and 3.3.4.
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3.7.2 Proof of lemma 12

Proof. The certainty equivalent of wealth at date 0 is for trader 1

Ŵ1,0 = I1,0v0 + q∗1,0(v0 − p∗0)− γ

2
(σ2

1 + σ2
2)(I∗1,1)2︸ ︷︷ ︸

ŴHTM
1,0

+
2N

2N − 2

γσ2
2

1 + αx

(
E0

[
q∗1,1
])2︸ ︷︷ ︸

Ŝ∗1,1

Compute the HTM value. One has

ŴHTM
1,0 = I1,0v0 −

γ(σ2
1 + σ2

2)

2
(I1,0)2 + q∗1,0(v0 − p∗0)− γ

2
(σ2

1 + σ2
2)
[
(I∗1,1)2 − (I1,0)2

]
= I1,0v0 −

γ(σ2
1 + σ2

2)

2
(I1,0)2 + q∗1,0

(
v0 − p∗0 −

γ

2
(σ2

1 + σ2
2)(2I1,0 + q∗1,0)

)
= I1,0v0 −

γ(σ2
1 + σ2

2)

2
(I1,0)2 + q∗1,0

(
γ(σ2

1 + σ2
2)
I2,0 − I1,0 − q∗1,0

2
+ γs

Qc

2N

)
Denoting A ≡ A(σ2

q ) and ∆I = I2,0− I1,0 to ease notation and plugging equilibrium
quantity 3.7.7:

ŴHTM
1,0 = I1,0v0 −

γ(σ2
1 + σ2

2)

2
(I1,0)2

+

(
1

1 + A

∆I

2
+
Qc

2N

)(
γ(σ2

1 + σ2
2)

(
1− 1

2

1

1 + A

)
∆I

2
+ γ

(
s− σ2

1 + σ2
2

2

)
Qc

2N

)
= I1,0v0 −

γ(σ2
1 + σ2

2)

2
(I1,0)2 +

γ(σ2
1 + σ2

2)

2

1 + 2A

(1 + A)2

(
∆I

2

)2

+ γ

(
s− σ2

1 + σ2
2

2

)(
Qc

2N

)2

+
γ

1 + A

(
σ2

1 + σ2
2

2
(1 + 2A) + s− σ2

1 + σ2
2

2

)
Qc

2N

∆I

2

And

Ŝ∗1,1 =
α

2

γσ2
2

1 + αx

(
A

1 + A

∆I

2

)2

Denote

θndd
2

=
(σ2

1 + σ2
2)

2

1 + 2A

(1 + A)2︸ ︷︷ ︸
1−( A

1+A)
2

+
α

2

σ2
2

1 + αx

(
A

1 + A

)2

θndd = σ2
1 + σ2

2 −
(
σ2

1 +

(
1− α

1 + αx

)
σ2

2

)(
A

1 + A

)2

and

θncd =
(σ2

1 + σ2
2)A+ s

1 + A
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3.7.3 Proof of lemma 13

p∗0 − p∗d = γ

(
1

2

N

N − 2

(
σ2

1 + σ2
2

)
− N − 1

N − 2

θdd
4

)
Qd

N

+ γ

(
σ2

1 + σ2
2

2

A

1 + A
−
(

1− 1

2(1 + A)

)
s

)
Qc

2N

=
γN

N − 2

((
σ2

1 + σ2
2

)
−
(

1− 1

N

)
θdd
2

)
Qd

2N

+ γ

(
σ2

1 + σ2
2

2

A

1 + A
− 1 + 2A

2(1 + A)

(
2N − 1

2N − 2
(σ2

1 + σ2
2)− 1

2N

σ2
2

1 + αx

))
Qc

2N

=
γN

N − 2

((
σ2

1 + σ2
2

)
−
(

1− 1

N

)
1

2

(
σ2

1 + σ2
2 −

(
A

1 + A

)2(
σ2

1 +

(
1− α

1 + αx

)
σ2

2

)))
Qd

2N

+
γ

2

(
(σ2

1 + σ2
2)

A

1 + A
− 1 + 2A

1 + A

2N − 1

2N − 2
(σ2

1 + σ2
2) +

1 + 2A

1 + A

2N − 1

2N(2N − 2)

σ2
2

1 + αx

)
Qc

2N

=
γN

N − 2

((
σ2

1 + σ2
2

) N + 1

2N
+
N − 1

2N

(
A

1 + A

)2(
σ2

1 +

(
1− α

1 + αx

)
σ2

2

))
Qd

2N

+
γ

2

(
−(σ2

1 + σ2
2)

(
1 +

1

2N − 2

1 + 2A

1 + A

)
+

1 + 2A

1 + A

2N − 1

2N(2N − 2)

σ2
2

1 + αx

)
Qc

2N

=
γ

2(N − 2)

((
σ2

1 + σ2
2

)
(N + 1) + (N − 1)

(
A

1 + A

)2(
σ2

1 +

(
1− α

1 + αx

)
σ2

2

))
Qd

2N

− γ

2

((
1 +

1

2N − 2

1 + 2A

1 + A

)
σ2

1 +

(
1 +

1

2N − 2

1 + 2A

1 + A
− 1 + 2A

1 + A

2N − 1

2N(2N − 2)

1

1 + αx

)
σ2

2

)
Qc

2N

=
γ(N + 1)

2(N − 2)

[(
N + 1

N − 1
+

(
A

1 + A

)2
)
σ2

1 +

(
N + 1

N − 1
+

(
A

1 + A

)2(
1− α

1 + αx

))
σ2

2

]
Qd

2N

− γ

2

((
1 +

1

2N − 2

1 + 2A

1 + A

)
σ2

1 +

(
1 +

1

2N − 2

1 + 2A

1 + A

(
1− 2N − 1

2N

1

1 + αx

))
σ2

2

)
Qc

2N

Then identify sd1, sd2, sc1, sc2 with the above expression. sd1 and sc1 are obviously
positive. sd2 > 0 because α = 1− 1

(2N−1)2
< 1, and 1

1+αx
< 1. For sc2, given 1

1+αx
< 1,

2sc2 > 1 +
1

2N − 2

1 + 2A

1 + A

(
1− 2N − 1

2N

)
= 1 +

1

2N − 2

1 + 2A

1 + A

1

2N
> 0

3.7.4 Proof of proposition 14

Without loss of generality, assume that dealers of class 1 are assigned the cus-
tomer order in the parallel market, and dealers of class 2 do not trade in the parallel
market. I review the utility of class 1 dealers first, then the utility of class 2 dealers.
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Class 1 dealers. I first prove that the certainty equivalent of wealth 3.4.1 is convex
in w. As it is quadratic, this implies that the maximum is attained for w = 0 or 1.
Then I show that the maximum is attained at w = 1.

Lemma 20. The certainty equivalent of wealth 3.4.1 is a convex function of w.

Proof. One has, from 3.4.1 and lemma 12:

d2Ŵ1

dw2
=

N

N − 2

(
σ2

1 + σ2
2 −

θdd
4

)
+
θcc
2
− θcd

=
N

N − 2

(
1− 1

4

(
1−

(
A

1 + A

)2
))

(σ2
1 + σ2

2) +
1

4

N

N − 2

(
A

1 + A

)2
ασ2

2

1 + αx

+
s

2
− σ2

1 + σ2
2

4
− A

1 + A
(σ2

1 + σ2
2)− s

1 + A

where A = A(σ2
q . Notice that

K ≡ s

2
− σ2

1 + σ2
2

4
− A

1 + A
(σ2

1 + σ2
2)− s

1 + A

= s

(
A

1 + A
− 1

2

)
+

(
1

4
− A

1 + A

)
(σ2

1 + σ2
2)

=

(
2N − 1

2N − 2

(
A

1 + A
− 1

2

)
+

1

4
− A

1 + A

)
(σ2

1 + σ2
2) +

(
1

2
− A

1 + A

)
1

2N

σ2
2

1 + αx

=

(
1

2N − 2

A

1 + A
− 1

2

(
2N − 1

2N − 2
− 1

2

))
(σ2

1 + σ2
2) +

(
1

2
− A

1 + A

)
1

2N

σ2
2

1 + αx

=

(
1

2N − 2

A

1 + A
− 1

2

(
1

2
+

1

2N − 2

))
(σ2

1 + σ2
2) +

(
1

2
− A

1 + A

)
1

2N

σ2
2

1 + αx

=

(
1

2N − 2

(
A

1 + A
− 1

2

)
− 1

4

)
(σ2

1 + σ2
2) +

(
1

2
− A

1 + A

)
1

2N

σ2
2

1 + αx

Thus

d2Ŵ1

dw2
=

[
N

N − 2

(
1− 1

4

(
1−

(
A

1 + A

)2
))
− 1

2N − 2

(
1

2
− A

1 + A

)
− 1

4

]
(σ2

1 + σ2
2)

+

[
α

4

N

N − 2

(
A

1 + A

)2

+

(
1

2
− A

1 + A

)
1

2N

]
σ2

2

1 + αx

=

[
1

2
−
(

A

1 + A

)2

+
2

N − 2

(
3

4
−
(

A

1 + A

)2

− N − 2

4(N − 1)

(
1

2
− A

1 + A

))]
(σ2

1 + σ2
2)

+

[
α

4

N

N − 2

(
A

1 + A

)2

+

(
1

2
− A

1 + A

)
1

2N

]
σ2

2

1 + αx

In another paper I show that

0 <
1

2N − 1
≤ A

1 + A
≤ 3

2

1

2N − 1/2
≤ 3

7
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Since 3/7 < 1/2, the term in
σ2
2

1+αx
is positive. For the term in σ2

1 + σ2
2:

ψ ≡ 1

2
−
(

A

1 + A

)2

+
2

N − 2

(
3

4
−
(

A

1 + A

)2

− N − 2

4(N − 1)

(
1

2
− A

1 + A

))

≥ 1

2
−
(

3

7

)2

+
2

N − 2

(
3

4
−
(

3

7

)2

− N − 2

4(N − 1)

1

2

)

>
1

2
−
(

3

7

)2

+
2

N − 2

(
3

4
−
(

3

7

)2

− 1

8

)
> 0

Thus ∂2Ŵ1

∂w2 > 0.

Given that the certainty equivalent of wealth 3.4.1 is quadratic and convex in w,
its maximum is either at w = 0 or w = 1. It remains to show that Ŵ1(1) > Ŵ1(0).
One has

γ−1Ŵ1(1) =
1

2

N

N − 2

(
σ2

1 + σ2
2 −

θdd
4

)
γ−1Ŵ1(0) =

θcc
4

Thus

Ŵ1(1)− Ŵ1(0)

γ
=

(
1

2
+

2

N − 2

)((
1−

(
A

1 + A

)2
)

(σ2
1 + σ2

2) +

(
A

1 + A

)2
ασ2

2

1 + αx

)

− 1

4

(
2N − 1

2N − 2
(σ2

1 + σ2
2)− 1

2N

σ2
2

1 + αx

)
=

((
1

2
+

2

N − 2

)(
1−

(
A

1 + A

)2
)
− 1

4

(
1 +

1

2N − 2

))
(σ2

1 + σ2
2)((

1

2
+

2

N − 2

)(
A

1 + A

)2

+
1

2N

)
σ2

2

1 + αx

The term in
σ2
2

1+αx
is clearly positive. The term in σ2

1 + σ2
2 is

φ ≡
(

1

2
+

2

N − 2

)(
1−

(
A

1 + A

)2
)
− 1

4

(
1 +

1

2N − 2

)

≥
(

1

2
+

2

N − 2

)(
1−

(
3

7

)2
)
− 1

4

(
1 +

1

2N − 2

)
=

1

2
×
(

1− 9

49

)
− 1

4︸ ︷︷ ︸
>0

+
2

N − 2

(
1− 9

49
− N − 2

4(N − 1)

1

4

)
︸ ︷︷ ︸

≥1− 9
49
− 1

16
>0

> 0
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Therefore Ŵ1(1) − Ŵ1(0). Thus the maximum of Ŵ1(w) for w ∈ [0, 1] is attained
for w = 1, which proves the first part of the proposition.

Class 2 dealers.

Lemma 21. The certainty equivalent of wealth 3.3.12 for I2,0 = 0 is a concave
function of w.

Proof. The certainty equivalent of wealth for class 2 dealers is, from 3.3.12,

Ŵ2(w) = γ

[
θcc
4

(1− w)2 +
θcd
4
w(1− w) +

θdd
8
w2

](
Q0

N

)2

Thus

dŴ2

dw
= γ

[
−θcc

2
(1− w) +

θcd
4

(1− 2w) +
θdd
4
w

](
Q0

N

)2

and

d2Ŵ2

dw2
=
γ

2

[
θcc − θcd +

θdd
2

](
Q0

N

)2

One has

B ≡ θcc − θcd +
θdd
4

= s− σ2
1 + σ2

2

2
− A

1 + A
(σ2

1 + σ2
2)− s

1 + A

+
1

4

(
1−

(
A

1 + A

)2
)

(σ2
1 + σ2

2) +
α

4

(
A

1 + A

)2
σ2

2

1 + αx

=
A

1 + A
s−

(
1

2
+

A

1 + A

)
(σ2

1 + σ2
2)

+
1

4

(
1−

(
A

1 + A

)2
)

(σ2
1 + σ2

2) +
α

4

(
A

1 + A

)2
σ2

2

1 + αx

=
A

1 + A
s−

(
1

2
+

A

1 + A

(
1 +

A

1 + A

))
(σ2

1 + σ2
2) +

α

4

(
A

1 + A

)2
σ2

2

1 + αx

=

(
−1

2
+

A

1 + A

(
2N − 1

2N − 2
− 1− A

1 + A

))
(σ2

1 + σ2
2) +

(
α

4

(
A

1 + A

)2

− A

1 + A

1

2N

)
σ2

2

1 + αx

= −σ
2
1 + σ2

2

2
+

A

1 + A

[(
1

2N − 2
− A

1 + A

)
(σ2

1 + σ2
2) +

(
α

2

A

1 + A
− 1

2N

)
σ2

2

1 + αx

]
As 1

2N−1
< A

1+A
≤ 3

2
1

2N− 1
2

, one has

B ≤ A

1 + A

[(
1

2N − 2
− 1

2N − 1

)
(σ2

1 + σ2
2) +

(
α

2

3

2

1

2N − 1/2
− 1

2N

)
σ2

2

1 + αx

]
=

A

1 + A

[(
1

2N − 2
− 1

2N − 1

)
(σ2

1 + σ2
2) +

1

2N

(
α× 3

4

2N

2N − 1/2
− 1

)
σ2

2

1 + αx

]
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One has 1
2N−2

− 1
2N−1

< 0 for N ≥ 2, and since α < 1 and 2N
2N−1/2

≥ 4
7/2

= 8/7, one

has α× 3
4

2N
2N−1/2

− 1 < 0. So B < 0, which finishes the proof.

Since Ŵ2(w) is concave and quadratic in w, it admits a global maximum. This

global maximum wu2 solves dŴ2

dw
= 0, i.e.

−θcc
2

(1− wu2 ) +
θcd
4

(1− 2wu2 ) +
θdd
4
wu2 = 0

Rearranging leads to

wu2 =
θcc − θcd

2
θdd
4

+ θcc − θcd
(3.7.8)

I successively compute the numerator and the denominator of 3.7.8.

θcc −
θcd
2

= s− σ2
1 + σ2

2

2
− σ2

1 + σ2
2

2

A

1 + A
− s

2(1 + A)

=
1 + 2A

1 + A

(
s

2
− σ2

1 + σ2
2

2

)
=

1

2

1 + 2A

1 + A

(
1

2N − 2
(σ2

1 + σ2
2)− 1

2N

σ2
2

1 + αx

)
=

1

2

1 + 2A

1 + A

(
σ2

1

2N − 2
+

(
1

2N − 2
− 1

2N

1

1 + αx

)
σ2

2

)
and notice that 1

2N−2
> 1

2N
1

1+αx
so that θcc− θcd

2
is strictly positive for all parameter

values. The denominator is exactly equal to d2Ŵ2

dw2 , which has already been proven
to be negative.

Therefore wu2 < 0. It implies that the maximum of Ŵ2(w) for w ∈ [0, 1] is
attained at w∗2 = 0. QED.

3.7.5 Proof of theorem 3

The theorem has two parts: the ex ante welfare of dealers, and the welfare of
customers.

Dealers’ ex ante welfare. Dealers’ ex ante welfare is improving when customers
trade in the OTC market if and only if

−1

2

(
e−γŴ1(1) + e−γŴ2(1)

)
> −e−γŴ2(0)

which is equivalent to

1

2

(
e−γ(Ŵ1(1)−Ŵ2(0)) + e−γ(Ŵ2(1)−Ŵ2(0))

)
< 1 (3.7.9)
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One has

Ŵ1(1)− Ŵ2(0) =
1

2

N

N − 2

(
σ2

1 + σ2
2 −

θdd
4

)
− θcc

4

=
1

2

[(
1 +

2

N − 2

)(
3

4
+

1

4

(
A

1 + A

)2
)

(σ2
1 + σ2

2) +

(
A

1 + A

)2
α

4

σ2
2

1 + αx

]

− 1

4

((
1 +

1

2N − 2
− 1

2

)
(σ2

1 + σ2
2)− 1

2N

σ2
2

1 + αx

)
=

1

2

[(
1 +

2

N − 2

)(
3

4
+

1

4

(
A

1 + A

)2
)
− 1

2

(
1

2
+

1

2N − 2

)]
(σ2

1 + σ2
2)

+
1

8

(
α

(
A

1 + A

)2

+
1

N

)
σ2

2

1 + αx

=
1

2

[
1

2
+

1

4

(
A

1 + A

)2

+
2

N − 2

(
3

4
+

1

4

(
A

1 + A

)2

− 1

8

N − 2

N − 1

)]
(σ2

1 + σ2
2)

+
1

8

(
α

(
A

1 + A

)2

+
1

N

)
σ2

2

1 + αx

and

4(Ŵ1(1)− Ŵ2(0)) =

[
1 +

1

2

(
A

1 + A

)2

+
2

N − 2

(
3

2
+

1

2

(
A

1 + A

)2

− 1

4

N − 2

N − 1

)]
(σ2

1 + σ2
2)

+
1

2

(
α

(
A

1 + A

)2

+
1

N

)
σ2

2

1 + αx

The coefficients in (σ2
1 +σ2

2) and in
σ2
2

1+αx
are clearly positive, given in particular that

N−2
N−1

< 1.
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Now consider the second payoff differential:

4(Ŵ2(1)− Ŵ2(0)) =
θdd
2
− θcc

=

(
1−

(
A

1 + A

)2
)
σ2

1 + σ2
2

2
+
α

2

(
A

1 + A

)2
σ2

2

1 + αx

−
((

1

2
+

1

2N − 2

)
(σ2

1 + σ2
2)− 1

2N

σ2
2

1 + αx

)
= −

(
1

2

(
A

1 + A

)2

+
1

2N − 2

)
(σ2

1 + σ2
2)

+
1

2

(
α

(
A

1 + A

)2

+
1

N

)
σ2

2

1 + αx

= −

((
A

1 + A

)2

+
1

N − 1

)
σ2

1

2

−

((
A

1 + A

)2(
1− α

1 + αx

)
+

1

N − 1
− 1

N

1

1 + αx

)
σ2

2

2

The term in σ2
1 is clearly negative, and the term in σ2

2 is also negative because
α/(1 + αx) < 1 and 1

N−1
> 1

N
1

1+αx
.

The expected payoff from opening the OTC market is positive:

ϕ ≡ Ŵ1(1) + Ŵ2(1)

2
− Ŵ2(0)

=

[
1− 1

2N − 2
+

2

N − 2

(
3

2
+

1

2

(
A

1 + A

)2

− 1

4

N − 2

N − 1

)]
(σ2

1 + σ2
2)

+

(
α

(
A

1 + A

)2

+
1

N

)
σ2

2

1 + αx

The term in σ2
1 +σ2

2 is positive because 1− 1
2N−2

> 0 and 3
3
− 1

4
N−2
N−1

> 0. The second
term is clearly positive.

Now using these expressions to plot the function(
σ2

1

σ2
2

, N

)
7−→ 1− 1

2

(
e−γ(Ŵ1(1)−Ŵ2(0)) + e−γ(Ŵ2(1)−Ŵ2(0))

)
for various values of z ∈ [0, 1] and of γ, one sees that given N , there is a yN for
which y < yN implies that dealers’ expected utility is higher when they open the
parallel market.
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Customers’ welfare. If dealers trade in the centralized market (w = 0), they get,
from 3.3.11:

Q0 p
∗
0(w = 0) = Q0

(
v0 − γ

s

2

Q0

N

)
If they trade in the parallel market (w = 1), they get, from 3.3.13:

Q0 p
∗
d(w = 1) = Q0

(
v0 − γ

N − 1

N − 2

(
σ2

1 + σ2
2 −

θdd
4

)
Q0

N

)
Then compute, denoting to ease notation p∗0(w = 0) = p∗0 and p∗d(w = 1) = p∗d,

N

γQ0

(p∗d − p∗0) =
1

2
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− 1
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)
− N − 1
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2
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2
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− 1
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1
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(
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1
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1
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4
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1
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1
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− 1−
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1

N − 1
−
(

1− 2
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1
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1− α

1 + αx

)(
A
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)2
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2

Given that N ≥ 2 and A ≥ 0, it is easy to see that the coefficient in σ2
1 is negative.

It follows, also from observation that α < 1 and 1
1+αx

< 1, that the coefficient in
σ2

2 is negative. Thus the unit spread that customers get from trading in the parallel
market is higher that the spread they get from trading in the centralized market.

3.7.6 Proof of proposition 16

I first show that dealers’ equilbrium utility is convex, which together with the
fact that it is quadratic implies that its maximum is either at w = 0 or at w = 1.
Then I show that Ŵ1(1) > Ŵ1(0).
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Utility is convex. I have to show that the equilibrium certainty equivalent of
wealth from lemma 16 has a positive second derivative:

dŴ1

dw
∝
(

(σ2
1 + σ2

2)(1 + 2ζ) +
2

(N − 1)(2N − 1)

σ2
2
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θdd
4
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2
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4
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, so that
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One has
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where z = 1
1+αz

< 1, and the inequality follows from A
1+A
≤ 3

2
1

2N−1/2
≤ 3

7
. It is easy

to see that

1− 1

2

1− 3
7(N−1)

1 + A
> 0

and to show that 2
(N−1)(2N−1)

− 3/4
N(2N−1/2)

> 0. Thus the certainty equivalent of
wealth is convex for dealers trading in the parallel market.

Dealers trading in the parallel market prefer w = 1. Consider

Ŵ1(0) =
θcc
4

=
1

8

[(
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and
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8σ2
2

1 + αx

]

Comparing the terms in (σ2
1 + σ2

2) and in σ2
2/(1 + αx) in the two expressions, given

ζ > 0 and
(

A
1+A

)2
< 1, it is straightforward to see that Ŵ1(1) > Ŵ1(0). QED.

3.7.7 Proof of theorem 4

The expected payoff is higher for . The expected payoff of opening the parallel
market is, denoting z = (1 + αx)−1,

Ŵ1(1) + Ŵ2(1)

2
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]
This is to be compared with the expected payoff of shutting the parallel market:
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Now compare the coefficients in σ2

1 + σ2
2 in each expression: as 1−

(
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1+A
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, one has

1 + 2y + 1/2
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)
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As far as the coefficients in σ2
2z are concerned, the coefficient is positive in the first

expression and negative in the second expression. Thus

Ŵ1(1) + Ŵ2(1)

2
> Ŵ2(0)

Expected utility effect of opening the parallel market. The statement that
when γσ2

2 is not too high, dealers prefer to open the parallel market comes from the
previous point: as the expected payoff of opening the parallel market is higher than
that of leaving it closed, by continuity, the inequality is preserved as γσ2

2 is not too
high.

Customers’ welfare. Given that p∗d < p∗0 when customers sell (and conversely if
they buy), as shown by proposition 15, customers are worse off if they are forced to
trade in the parallel market.
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