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Abstract

Governments sometimes encourage or impose individual self-protection

measures, such as wearing a protective mask in public during an epi-

demic. However, by reducing the risk of being infected by others, more

self-protection may lead each individual to go outside the house more

often. In the absence of lockdown, this creates a “collective offsetting

effect”, since more people outside means that the risk of infection is

increased for all. However, wearing masks also creates a positive ex-

ternality on others, by reducing the risk of infecting them. We show

how to integrate these different effects in a simple model, and we dis-

cuss when self-protection efforts should be encouraged (or deterred)

by a social planner.

1 Introduction

This note considers an economy where citizens enjoy going outside the house,

though this increases the risk of catching, and spreading, a disease. In this

economy, we examine the impact on welfare of a compulsory self-protection

regulatory measure, such as wearing a mask in public. While several countries
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have adopted such policies in the hope of limiting infection rates for the

COVID-19, this note calls for a detailed analysis of these policies.

One may first wonder why governments interfere in self-protection deci-

sions that are normally left to individual sovereignty. Therefore, the first

issue to be clarified is the dual role of a mask: it protects the wearer from

being infected by others, but it may also protect others from being infected

by the wearer. The latter is a positive externality that justifies a public

intervention.

A second step is to take into account that agents adapt their behavior to

the regulatory measure. Indeed, since wearing a protective mask decreases

the risk that an individual catches the disease, it may in turn incite this

individual to go more often outside, or more generally to increase his exposure

to risk. This offsetting effect refers to the well-known Peltzman (1975)’s

article about car seatbelts. This effect by itself cannot reduce the individual’s

welfare since the risk exposure (e.g., the time spent outside the house, or the

driving speed of the car) is optimally chosen by the individual.

Things become even more complex when taking into account the collective

nature of an epidemic. Indeed, the probability that an agent becomes infected

depends not only on the time he spends outside, but also on how much time

other agents spend outside. This generates a “collective offsetting effect”:

since everybody has an extra incentive to go outside when wearing a mask, it

becomes theoretically possible that such a compulsory increase in individual

self-protection eventually hurts welfare (even if masks are costless), once

these behavioral responses are taken into account.

In this note, we develop a model to evaluate these different effects, in

the spirit of Hoy and Polborn (2015) (see the related literature below). A

key role is played by the probability of being infected, which depends on

four variables: the agent’s choice of risk-exposure (i.e., how much time spent

outside), the agent’s compulsory level of self-protection, and the same two

variables averaged across the general population.

Our paper uses a particular (but fairly general) parametrization of this

probability of infection to characterize the risk and welfare consequences of a

policy mandate that individuals adopt a level of self-protection. Superficially,

it might seem obvious that: (i) mandating protection will lower aggregate

risk; and (ii) because of the externalities, a mandate will, at the margin,

improve welfare. The paper shows that neither (i) nor (ii) is true, in general.

More specifically, we obtain two main results. First, whether an increase

in the mandatory level of self-protection reduces or increases the equilibrium
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probability of infection depends only on the value of the demand elasticity

of risk-exposure with respect to the marginal probability of getting infected.

The generality of this result is striking, and it vindicates the view that be-

haviors matter more than technologies. Indeed, the equilibrium effect on the

probability of infection does not depend on the protection offered by a mask,

to the mask wearer or to other agents, or on how frequently people meet

when they spend time outside.

Second, we characterize when public incentives for self-protection exceed

private incentives. This is the case in particular when the above elasticity is

not too high (so that the collective offsetting effect is not too strong), and

self-protection is asymmetrical, i.e., the benefits from wearing a mask are

borne by other agents more than by the wearer.

A general conclusion is that a public policy that relies only on mandatory

self-protection may turn out to be ineffective, or even counter-productive.

This may explain why public policies against the current pandemic often rely

both on mandatory mask wearing, and on social distancing (or lockdowns).

We also note that these results may help to evaluate the impacts of other self-

protection devices such as seatbelts in transport, helmets in sports (Schelling

1973), or the use of condoms or anti-infection drugs (such as the PrEP for

HIV) in health for instance.

1.1 Related literature

Peltzman (1975) provides support for the idea that people adjust their be-

havior in response to the perceived level of risk, becoming less careful if they

feel more protected. He shows empirically that imposing seatbelts to drivers

led to an increase in the number of car accidents, thus offsetting the benefit of

the reduction in accident severity. Similarly, Viscusi (1984) examines the im-

pact of a Food and Drug Administration (FDA)’s regulation imposing child

resistant packaging on drugs, and provides evidence that parents reacted by

increasing children’s access to drugs. In a recent contribution, Chong and

Restrepo (2017) review the empirical literature on the Peltzman effect.

Hoy and Polborn (2015) study the impact of a better self-protection tech-

nology in a general strategic model with externalities. They derive conditions

on the model’s primitives under which an improved technology increases or

decreases players’ equilibrium utilities. We extend their analysis by com-

paring private and public incentives to self-protect, and by considering that

self-protection may also help protect others (as is the case with masks).
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Gossner and Picard (2005) also study the value of an improvement in risk

protection (i.e., road safety) in the presence of an offsetting effect. However,

in their model, the interaction across agents does not come from individual

self-protection efforts, but from a financial externality through the insurance

market.

Finally, several papers (e.g., Shogren and Crocker 1991, Muermann and

Kunreuther 2008, Lohse et al. 2012) examine a collective self-protection

model where the probability that an agent faces a damage depends on his

own as well as others’ actions as a result of a Nash equilibrium. However,

these papers do not specifically study how a better self-protection technology

affects this probability, and in turn affects the agents’ behavioral response

and welfare.

2 A simple model

Preferences For a representative individual, the basic trade-off is between

spending time  outside the house, with utility (), and reducing the prob-

ability  of being infected, with a utility cost that we normalize to one. The

self-protection level  allows to reduce this probability, but it is costly. Over-

all, an agent’s preferences are represented by the following function of four

variables:

()− ()− ( )

We assume that  is strictly concave, and that  is weakly convex, with

suitable Inada conditions. The key role is played by the probability function

. It is assumed twice differentiable. It increases with the choice of risk-

exposure , and also with the other agents’ choice  of the same variable.

Similarly, it is reduced by the self-protection effort , and also by the other

agents’ self-protection efforts . We make the following functional form

assumption:

Assumption 1 Let ( ) = +1() with   ≥ 0, and func-
tion   0 decreasing in both arguments.

One justification is as follows. The variables  and  determine the

number of meetings, or interactions, between the agent under consideration,

and the other agents. A multiplicative form is natural, as is assumed in
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many matching models, or in simple epidemiological models such as the S-

I-R model (see Garibaldi et al., 2020.) The latter model typically focuses

on the linear case when  = 0 and  = 1, and we slightly generalize it to

allow for non-linearities. The function  is not necessarily symmetrical: one

may protect others by wearing a mask, without being protected from others’

infections.1 The relative importance of these two effects will be measured by

the ratio . This ratio may be high for masks, but it may take different

values for other decisions such as wearing gloves (probably a low value for

this ratio) or washing his hands (maybe a more symmetric case in which the

ratio is close to one). We do not claim expertise here. Our contribution will

be to show that this ratio plays a key role in the study of efficient policies.

Remarks on self-insurance vs. self-protection Under the general form

()− ()− ( )

there is no distinction between self-insurance and self-protection. Indeed,

 can be interpreted as the product between the probability of an accident

and the loss in utility associated to this accident. Therefore, whether a

multiplicative shock impacts the probability or the loss is irrelevant: the

comparative statics exercise is formally identical.

A related remark is that the two decisions  and  play symmetrical roles,

and in fact (−) can be seen as a costly self-protection effort.2 We only depart
from this symmetrical approach when we formulate Assumption 1, which is

based on an analysis of infection probabilities, and not on an evaluation of

damages; and when we consider that the policy imposes a mandatory level

for , and not for .

Individual decisions Given his environment, as characterized by the val-

ues of  and , an agent chooses  and  by maximizing utility, with two

first-order conditions (subscripts denote partial derivatives):

0() = ( ) − 0()− ( ) = 0 (1)

1Note that the degree of self-protection  is modeled as a continuous variable. For

masks, one may think about the proportion of time when a mask is worn, or about an

approximation for the existence of various types of masks (e.g., home made cloth masks,

surgical masks or N95 respirators). Note that in general when a mask is more protective

to the wearer, it is also more protective to other agents.
2We thank an anonymous referee for this remark.
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The second first-order condition is active only when  is not a compulsory

requirement, namely when  is a voluntary decision made by the individual.

It will be used to compare private and public incentives for self-protection.

The first condition defines a choice  as a function of ; this function is

increasing. This emphasizes an individual offsetting effect: a higher level

of self-protection makes the agent increase his exposure to risk (this effect

is quite general and does not depend on the specific functional form in As-

sumption 1.) This condition also invites us to define  as the elasticity of the

risk-exposure  with respect to the marginal probability of infection , by

the equality:

 = − 0()
00()



3 Policy and equilibrium

Consider a continuum of identical agents, with the above preferences. A

social planner imposes the value of the self-protection effort  to some man-

date , so that  =  = .3 Each agent reacts accordingly by choosing , as

explained above. Because each such choice depends on the other agents’ av-

erage choice , one has to characterize a Nash equilibrium. Under standard

regularity assumptions, and in particular under Assumption 1, there exists a

unique Nash equilibrium () for each value of , and it is characterized by

the following equality:

0(()) = (() ()  ) (2)

It is easily checked (see the Appendix) that under Assumption 1, ()

is increasing with . This is the collective offsetting effect: when everybody

wears a mask, everybody goes outside more often, and the equilibrium orga-

nizes all these decisions in a consistent way.

3For the sake of simplicity, we do not allow the agents to go beyond the mandate by

choosing   . This avoids studying a system of two first-order conditions, and this

allows us to reduce the number and complexity of assumptions. For the same reason, we

do not study corner solutions, by assuming Inada conditions.
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3.1 Effect of the policy on the equilibrium probability

of infection

The equilibrium probability of infection

∗() ≡ (() ()  )

depends on the policy , as follows:

∗


() = ( + ) + ( + )

0()

The first term in parenthesis is negative: it is the direct effect of imposing

 to all agents. But the second term is the collective offsetting effect, and

it goes in the opposite direction. Using Assumption 1, we can provide a

clearcut result, as follows:4

Proposition 1 Under Assumption 1, the equilibrium probability of infection

∗ decreases with the compulsory self-protection effort  if and only if the
elasticity of risk-exposure with respect to the probability of infection is less

than one, i.e.   1.

The idea that equilibrium infection rates are impacted by individual be-

haviors is intuitive: if behaviors react strongly to a mandate on masks, these

rates may even increase. What is remarkable is that in equilibrium, only

these behaviors matter, as captured by the elasticity . For example, in the

knife-edged case () = (), so that  = 1, the mandate has absolutely no

effect on the equilibrium rates of infection. More generally, the equilibrium

rates of infection do not depend on the cost of masks, on whether they are

effective to protect oneself or others, or on the particularities of the meeting

process, as captured by the values of  and . This result therefore under-

lines the fundamental role of behaviors, in contrast with technologies. It calls

for more empirical investigations of the value of the elasticity .

3.2 Public vs. private incentives for self-protection

In a welfarist vision of the world, a public policy should aim at maximizing

welfare, which is in general not equivalent to minimizing the probability of

infection. Here, welfare is

 () = (())− ()− (() ()  )

4The proofs of the Propositions are given in the Appendix.
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so that, thanks to the envelope theorem:

 0() = (−0()− ) + (− − 
0()) (3)

The first two terms measure the private incentive for self-protection, as

observed in the paragraph on individual decisions (see (1)). The public policy

should support or deter self-protection, according to the sign of the remaining

terms. The direct effect (−) is positive: this is the positive externality
of wearing a mask, normally justifying a public policy. But the collective

offsetting effect (due to others’ reaction) goes once more in the opposite

direction: masks lead people to increase their risk-exposure.

To go further, we use our assumption regarding the shape of the proba-

bility. We obtain:

Proposition 2 Under Assumption 1, public policy should support manda-

tory self-protection if and only if the following inequality holds:



 + 1





( )

The left-hand side is a measure of the elasticity of behavior. In particular,

when the probability of infection is simply proportional to  (i.e.,  = 0) and

 (i.e.,  = 1), then this term reduces to the elasticity . The right-hand

side is the ratio of the strength of the positive externality , to the strength

of the self-protection effect . In a symmetrical case, the two effects are

equivalent, and then we would be back to the inequality   1. To illustrate

the inequality, we further discuss a few simple cases.

The case when individuals do not react When risk-exposure is fixed,

approximated here by  → 0, then the positive externality alone (  0)

justifies a public support to self-protection. More generally, a decrease in 

favors public support.

The case when the offsetting effect is purely individual This case

corresponds to a probability of infection that does not depend on , i.e.

 = 0. In that case, a public policy is also justified.5 The effect on the

5It may seem strange at first that public policy is justified even if others’ risk exposure

does not affect its own infection probability. However, note that there are still externalities

through others’ self-protection choices , justifying policy intervention.
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probability of infection still depends on the same comparison of  to 1. More

generally, a decrease in  increases public support. This case also emphasizes

the opposing effect of  and , namely the parameters that control the impact

of others’ and its own risk exposure choices on the infection probability.

The case when self-protection does not protect others In standard

self-protection cases, such as for seatbelts or helmets, there is no positive

externality associated with self-protection, i.e.  = 0.6 In those cases,

public policy should not support individual self-protection, but rather deter

it in fact. This holds as soon as there is a strictly positive collective offsetting

effect through   0, which makes everyone increasing risk-exposure at an

over-optimal collective level.

3.3 The first-best case

We conclude the analysis with a remark about the first-best case, i.e., when

the social planner can choose both  and . This case is defined by maxi-

mizing over  and  the social objective

()− ()− (   )

with the following two first-order conditions:

0()−  −  = 0 − 0()−  −  = 0 (4)

It is useful to compare these conditions to those derived precedently when

the social planner can only control . The extra negative term (−) in the
first condition in (4) compared to (2) emphasizes that the first-best policy

accounts for the negative externality induced by going outside, thus putting

a downward pressure on . Moreover, observe that the second condition in

(4) does not contain the negative term (−0()) exhibited in the second-
best policy (see (3)). This is because there is no collective offsetting effect

in the first-best policy, which puts an upward pressure on  compared to the

second-best policy. Overall, one expects a higher value for  and a lower

value for  in the first-best, compared to the case we have studied so far in

6We exclude here the externalities passing through the health system.
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which the social planner could not control ,7 and thus a reduction in the

infection probability.

4 Conclusion

We have discussed whether individual self-protection measures should be

publicly encouraged in a situation where self-protection induces both exter-

nalities and offsetting effects. We have shown that this should be the case

when the collective offsetting effect is not too strong. We have also shown

that this depends on the respective strength of the two-sided impact of self-

protection: protecting oneself and protecting others.

We finally emphasize several assumptions of our analysis that limit its

practical policy relevance in face of an epidemic such as COVID-19. First,

we assume in Propositions 1 and 2 that the government can control indi-

vidual self-protection measures such as wearing a mask in public but cannot

control individual risk-exposure such as the time spent outside their home

by citizens. Hence, we essentially consider a post-lockdown economy where

people can go outside freely, and in which (costly) masks are made available

and possibly compulsory for everyone. As discussed in subsection 3.3, this is

sub-optimal, and one can interpret our results as showing that a simultaneous

regulation of both social distancing (lower ) and mask-wearing (higher )

has clear advantages when individual behavior responds to incentives (high

elasticities).

Second, we assume that individuals correctly perceive the risks. Yet, if

the public for instance overestimate the efficacy of the mask as a protective

technology, individuals may mistakenly over-expose themselves to the risk

because of a “feeling of safety”. This may call for public intervention (Salanié

and Treich, 2009), or for information campaigns that may be effective when

citizens hold incorrect beliefs. Our model suggests in particular a novel

misperception channel: an individual might misestimate the key ratio ,

for instance by believing that wearing a mask protects him while it mostly

protects others.

Third, as in Hoy and Polborn (2015), we consider a continuum of identical

agents. In particular, we do not keep track of the health status (susceptible

7Note that the observation of these effects from a one-to-one comparison of each first-

order condition is not enough to compare the optimal levels of  and  under the first-

and second-best policies. This comparison is complex and left for future research.
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or infected) of agents. An extension to heterogeneity in a static context,

along the lines of Hoffmann and Rothschild (2019), is an interesting topic

that we leave for future research. Furthermore, embedding the analysis in

a fully dynamic epidemiological model would be interesting but also much

more complex.8

Finally, there are certainly other (positive) externalities associated with

going outside during an epidemic. The deployment of masks in public areas

and workplaces may help the global economy restart with benefits for all

(Polyakova et al. 2020). Hence, our study only enlightens a few specific

facets of a much broader and complex economic problem.
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Proof Appendix:

The proofs of Propositions 1 and 2 simplify the general equations in the

text, by applying Assumption 1. The Nash equilibrium outcome () is

characterized by

0(()) = ( + 1)()+( )

so that, using obvious simplifying notations, the derivative 0() is given by:

0()
£
00 − ( + 1)( + )()+−1

¤
= ( + 1)()+( + )

Now, from the definition of  and the first-order condition, one has

00 = − 0

()
= − 

()
= −1


( + 1)()+−1

so that

0()

∙
−1

− ( + )

¸
= ()

 + 




Because () is decreasing with both arguments, this shows that ()

is increasing. The derivative of the probability ∗ with respect to  is

()+1+( + ) + ( + 1 + )()+0()
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and has the same sign as

()( + )(
1


+  + )− ( + 1 + )()

 + 



which has the same sign as

 + 1 +  − (1

+  + ) = 1− 1




This shows Proposition 1. For Proposition 2, the difference between pub-

lic and private first-order conditions equals

− − 
0() = ()+[−() − 0()]

which has the same sign as

−(1

+  + ) + ( + )

from which we get the inequality in the Proposition.
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