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Abstract

The Keller-Segel system describes the collective motion of cells that are attracted by a chemical
substance and are able to emit it. In its simplest form, it is a conservative drift-diffusion equa-
tion for the cell density coupled to an elliptic equation for the chemo-attractant concentration.
This paper deals with the rate of convergence towards a unique stationary state in self-similar
variables, which describes the intermediate asymptotics of the solutions in the original variables.
Although it is known that solutions globally exist for any mass less 87, a smaller mass condition
is needed in our approach for proving an exponential rate of convergence in self-similar variables.
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1. Introduction and main results

In its simpler form, the Keller and Segel system reads

ou

EzAu—V-(qu) xeR?, t>0,
-Av=u xeR?, >0, (1)
u(,t=0=n9p =0 xeR?.

Throughout this paper, we shall assume that

np € LY(R*, (1 + [x*)dx), nglogny € L'(R*,dx), and M := f no(x)dx <8x. (2)
]RZ
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These conditions are sufficient to ensure that a solution in a distribution sense exists globally in
time and satisfies M = f]RZ u(x,t)dx for any t > 0, see [9, 7, 4]. In dimension d = 2, the Green
kernel associated to the Poisson equation is a logarithm and we shall consider only the solution
givenby v = — % log|:|*u . Such a non-linearity is critical in the sense that the system is globally
invariant under scalings. To study the asymptotic behaviour of the solutions, it is therefore more
convenient to work in self-similar variables. Define the rescaled functions n and ¢ by

1 X X
u(x,t) = Rz_(t) n (%,T(Z‘)) and v(x, 1) = c(%,‘r(z‘)) 3)
with R(#) = V1 + 2t and 7(¢) = log R(¢) . The rescaled system is

%ZAI’Z—V-(H(VC—X)) xeR?, >0,
1

c=—-—log|-|*n xeR2, >0, 4)
2n

n,t=0)=ny=>0 xeR2.

Under Assumptions (2), it has been proved in [4] that
lim ||I’l(, 1) — nOOHLl(RZ) =0 and lim ||VC(, ) VCOOHLZ(]RZ) =0
t—00 t—o0

where (71, C) 1s the unique solution of
o ColP/2

R =M ——————
[ €2 dix

1
=—-Acw, Wwith co =——log| |*n.
2n

Moreover, no, is smooth and radially symmetric. The uniqueness has been established in [2].
As |x| = +00, N, is dominated by e"!=9"/2 for any € € (0, 1), see [4, Lemma 4.5]. From the
bifurcation diagram of |11l ~(r2) as a function of M, it follows that

zv}i—l}(i ”nm”L‘”(RZ) =0. %)

Under the assumption that the mass of the initial data is small enough, we first obtain es-
timates of the time decay rate of the L”-norms of the solution u# of (1). Similar bounds have
been obtained in several papers on Keller-Segel models such as [12, 11, 6] (also see references
therein). The interested reader may refer to [1, 13] for recent results relating the parabolic-
parabolic and the parabolic-elliptic Keller-Segel systems. Nevertheless none of these previous
works deals with (1). See Remark 2 below for more details. In a second step we prove the
convergence of n(f) to n. in the weighted Sobolev space H 1(e"“z/ 4dx) as t — +oco. Finally, we
establish our main result, an exponential rate of convergence of n(¢) to ne in LX(nZh:

Theorem 1. There exists a positive constant M* such that, for any initial data ng € L*(nZ}! dx)
of mass M < M* satisfying (2), the rescaled Keller-Segel system (4) has a unique solution n €
CO(R*, L"(R?)) N L®((t, 00) X Rz)for any T > 0. Moreover, there are two positive constants, C

and 6, such that
d
f In(t, ) = nee()P —— < Ce™®' V>0,
R? Moo (X)
As a function of M, ¢ is such that limy_,o, 6(M) = 1.
2



Remark 1. As it has been provedin 7, 4, 3], the condition M < 8 & is necessary and sufficient for
the global existence of the solutions of (1) under Assumption (2). The extra smallness condition
in Theorem 1 appears at two levels in our proof:

1. We first prove a uniform decay estimate of the solution of (1) by the method of the trap.
Our estimates and the version of the Hardy-Littlewood-Sobolev (HLS) inequality we use
require that M < M for some positive, explicit constant M; . This question is dealt with
in Section 2.

2. Rates of convergence in self-similar variables are given by the spectral gap of a linearised
operator, denoted by £, which is associated to (4). This gap is estimated by a perturbation
method, which gives two further restrictions on M . See Sections 4 and 5.

The first occurrence of an extra smallness condition, in the proof of the sharp time decay of the
L? norms, is not surprising. It appears in several similar estimates as for example in [12, 11, 6]
and references therein. On the other hand, the estimate of the spectral gap of the linearised
operator L is rather crude. See Remark 4 for more comments in this direction.

Under a smallness condition for the mass, we shall also obtain a uniqueness result for the
solutions of (4), see Section 5. For sake of simplicity, we shall speak of the solution of (4), but,
in the preliminary results, the solution has to be understood as a solution of the system which is
achieved as a limit of an approximation procedure, as in [9, 4].

Our results are actually stronger than the ones stated in Theorem 1. We can indeed consider
any solution of (4) as in [4]:

ne CORY, L'(R?),
nlogn, n|x* € L*(R*, L'(R?),
2V i+ x Vn— VnVe e LY(R*, L*(R?)) ,

and prove all a priori estimates by standard but tedious truncation methods that we shall omit in
this paper.

2. Decay Estimates of u(t) in L*(R?)
In this section we consider the Keller-Segel system (1), in the original variables.

Lemma 2. There exists a positive constant M| such that, for any mass M < M, there is a
positive constant C = C(M) such that, ifu € C°R*, L'(R?») n L2 (R} X R?) is a solution of (1)
with initial datum ny satisfying (2), then

||M(t)||Lw(R2) <Cr!' Vi>o0.

Proof. The result of Lemma 2 is based on the method of the trap, which amounts to prove
that H(¢ ||u(-, |~ ®2) » M) < 0 where z — H(z, M) is a continuous function which is negative on
[0, z1) and positive on (z1, z2) for some z;, z2 such that 0 < z; < zp < o0 Since ¢ - ¢ ||u(-, )L~ g2)
is continuous and takes value 0 at ¢ = 0, this means that 7 ||u(-, 1)||L~®2) < 21 < zo(M) for any
t > 0, where H(zo(M), M) = sup,, .,; H(z, M) > 0. See Fig. 1.



Fix some 7y > 0. By Duhamel’s formula, a solution of (1) can be written as

u(x,to+1) = f N(x—y, D) u(y, o) dy+ff Nx—y,t—5) V-[u(y, to + 5) Vv(y, 10 + )] dy ds
R2 0 Jr2
(6)

where N(x,17) = .- e /@ denotes the heat kernel. Next observe that

jo‘r N(x—y,t $) V-[u(y, to + s) Vv(y, to + 8)| dy ds —Zf e —(, 1= s)*[( pye )( t0+s)] ds.

i=1,2

Taking L™ norms in (6) with respect to the space variable, we arrive at

1 ov
It Dl < el + 3 f |55 ci- 9+ [yl as.

L>(R?)

We now consider the convolution term. By Young’s inequality and because of the expression for
the kernel N, we can bound it using k- = |[ON/dx; (-, 1| - g2) by

ON

! Ov
fo a_xi(.,t— 5) * [(u 3_)61')("t0 + s)] . ds
ON ov
< —(,t- (-, 0+ 5) ds
f (3)(, L7(R?) ( (3)(, ) 0 1P (R?)
v
=Ky | (t-— s)_(l_é)_% u—\)_,t+s) ds
fo ( (9xi) 0 IP(R2)

where 1/0 + 1/p = 1. To enforce integrability later, we impose o~ < 2. On the one hand

(u %)(-, to + 5)

with 1/p + 1/g = 1/p, by Holder’s inequality, whereas, on the other hand,

< lul, to + Sl @2y
(R

av
a_x[(" t() + S)

L1(R?)

C
< LHLs

(G, t0+5) <
L‘I(RZ) 27T

llee(-, 2o + $)Il 1 r2y

|5

with 1/r — 1/q = 1/2, by the HLS inequality. Here Vv is given by the convolution of u# with
the function x — —x;/(27|x|?) and Cyrs denotes the optimal constant for the HLS inequality.
Collecting all these estimates and using the fact that ||u(-, H)||,1®2) = M for any ¢ > 0, we arrive at
M
4t

o+ C
< frlusy, f(r 970E (1o + I ds

T

lleeC-, 20 + Ol g2y —

L® (RZ

ks C 1
= KOS s f (1= 9 1y + 52 (t0 + 9) G 1o + oy |7

Now take #y = ¢, and multiply the inequality by 27 to get

2t lu(-, 20|l ey — o

1_1

2Ky C 141 ! L3 1,1 2-3-3
sﬂMﬁrtf(t—s)rr—z(t+s)p+r 2+ )Mot + sy |7 ds
T 0

4



Observe that for any # > 0 we have

sup (£ + ) lluC, £ + $)llp= @2y < sup 2s [lu(:, 28)l|p~ @) =: Y (1)

0<s<t O<s<t

2-0

!
1.3 1,1
tf(t—s)rf(t+s)p+r 2ds =
0

From Duhamel’s formula (6), it follows that u € CO/(R*, L*(R?) and ¥ is continuous. Hence we

have

2o Cins it @y, 11

n 2-0’ p r

M
w0 < 5+ Co ()" with Co=

Consider the function H(z, M) = z—Cy 2’ —M/(2n) , so that H(y(f), M) < 0 and notice that6 > 1.
For M > 0 fixed, z — H(z, M) achieves its maximum H(zo(M), M) = %1 (Co0)//179 — M 4t
7 = zo(M) = (Co6)"/1=9. For M small enough, as we shall see below, H(zo(M), M) > 0. Since
¥ is continuous and ¥(0) = 0 then y¥(#) < zo(M) for any ¢ > 0. This provides an L™ estimate on
¢ which is uniformin¢ > 0.

H(z0(M),M)
H(z M)
0 #0(M) z

20(Mo(p))

M
2m
Mo(p) H(z, My(p))

27

Figure 1: The method of the trap amounts to prove that H(z, M) < 0 implies that z = y(z) is bounded by zo(M) as long
as H(zo(M), M) > 0, i.e. for M < My(p). For some p > 4, the plots of the functions z — H(z, M) with M < M(p) and
z — H(z, Mo(p)) are shown above.

Recall that the exponents o, p, p, ¢ and r are related by

}T+})=1, l<o<?2,
1 1 1

ptaTpe  Prd>2
1 1 1

7-;25, r>1.

For the choice r = 4/3, g = 4, it is known, see [10], that the optimal constant in the HLS
inequality is Cprs = 2 V7. As a consequence, we have Cy = 4% M3 5%, with o = 3;‘_’ T
The exponent p > 4 still has to be chosen. A tedious but elementary computation shows that
there exists My(p) such that H(zo(M), M) > 0 if and only if M < My(p) and SUP (4, +00) My(p) =

lim,,_, e Mo(p) ~ 0.822663 . O

A simple interpolation argument then gives the following corollary.
5




Corollary 3. For any mass M < M, and all p € [1, 0], there exists a positive constant C =
C(p, M) with limy;_,o, C(p, M) = 0, such that, if u is a solution of (1) as in Lemma 2,

1
lu@)llpp@ey < C77 vie>0.

Remark 2. Similar decay rates for the L” norms of the solutions to global Keller-Segel systems
have been obtained in a large number of previous references, but always in slightly different situ-
ations. For instance, in [12], the authors consider a parabolic-parabolic Keller-Segel system with
small and regular initial data. More recently, in [6] a parabolic-parabolic Keller-Segel system is
considered for small initial data and spatial dimension d > 3. On the other hand, a parabolic-
elliptic system is treated in [11] where the equation for the chemo-attractant is slightly different
from ours.

Remark 3. The rates obtained in Corollary 3 are optimal as can easily be checked using the
self-similar solutions (7, ¢« ) of (4) defined in Section 1. This is the subject of the next section.
3. L? and H! estimates in the self-similar variables

Consider now the solution (n, ¢) defined in the introduction by (3) and solving (4). By Corol-
lary 3 we immediately deduce that, for any p € (1, o],

||n(t)||L,,(R2) <C; Vt>0 (7)

for some positive constant C; . A direct estimate gives

t t t
27 ||Ve(d)|| - < supf nt») dy < supf n(t,y) dy + supf n(t,y) dy

xeR? JR2 1X — )] xeR? Jjmyi=1 X = VI xeR? Jimyi<t X = VI

M b1\
<27 55) 77 nll ooy

P
where the last term has been evaluated by Holder’s inequality with p > 2. Hence we obtain
IVeDllpoqmey < C2 V>0 8)
Lemma 4. In (7) and (8), the constants Cy and C, depend on M and are such that

lim C(M)=0 i=1,2.
M—0,

Proof. This result can easily be retraced in the above computations. Details are left to the reader.

O
With K = K(x) = ""/2, let us rewrite the equation for 1 as
0 1
6—’:—EV~(KVn)=—Vc-Vn+2n+n2. 9)

We are now interested in the bounds satisfied by the function n(f) in the weighted spaces L*(K)
and H'(K).



Proposition 5. For all masses M € (0, M), there exists a positive constant C such that, if n is a
solution of (9) with initial data ny € LX(K) satisfying (2), then

Proof. 'We multiply the equation (9) by n K and integrate by parts to obtain

1
1d |n|2de+f |Vn|2de=—f nvc.vanx+2f ndex+f n® Kdx . (10)
2 dt Jre R2 R? R2 R?

As in [8, Corollary 1.11], we recall that for any g > 2 and € > 0, there exists a positive constant
C(&, g) such that

f n* Kdx<e f |Vn|* K dx + C(g, q) ||n||iq(R2).
R2 R2

This estimate, (7) and (8) give a bound of the right hand side of (10), namely

'—f nVc-Vanx+2f ndex+fn3de
R? R? R?

up to the multiplication of £ by a constant that we omit for simplicity, from which we deduce
that,

<e| |Va?Kdx+C
RZ

1d
——f |n|2de+(1—s)f \Vaf> Kdx < C .
2dt RZ RZ

We finally use the classical inequality, which is easily recovered by expanding the square in
Jo V(KO K~ dx > 0, namely

1
Inf? K dx < 3 f |Vn|> K dx
R2 R2

as in [8] to obtain a uniform bound of n(z) in L*(K). ([l

Next we deduce a uniform bound in H'(K) .
Corollary 6. Under the assumptions of Proposition 5, there exists T > 0 and C > 0 such that
IOl e, < C max{l, %} Vis0.
Proof. Since n is a classical solution of (9), it also solves the corresponding integral equation,

n(t, x) = S () no(x) — f S(t—1s)(Vc-Vn)(s)ds + f S(t—s)2n+n>)(s)ds
0 0

where S () is the linear semi-group generated by the operator —K~! V-(K V) on the space L*(K).
Then

8 8
Ol e, < 1S @) noll o + f 1S (=) (Ve-Vm)(s)llmcr ds+ f 1S (1) @t )l o ds
0 0



Using IS (@) Al gy < « (1 + 1~172) [1Allz2x, for some k > 0, and (8), we obtain
% (IOt = 1S @) mollon i)
< j; t(l + ﬁ)II(Vc ISz ds + f r (1 N %)II(Zn + )l ds
< [ (14 <) IWellces Ttz s+ [ (14 =) s+ Il i) s
<G f ' (14 =) I9n@ s ds + @ + 1) f (14 4= ) Il ds

with C; defined in (7) and C in (8). Hence, for any 7 > 0 fixed, we have

1 1 ' 1
; ||n(t+ T)”H'(K) < (1 + ﬁ) Cl + C3j; (1 + ﬁ)”l’l(é"}‘ T)”H'(K) ds (11)

with C3 = max{C,,2 + C;}. Let

!
H(T) = su f(1+;)||n(s+r)|| ds .
te(O,IT)") o Vizs H'(K)

If we choose T > 0 such that i = C3f0 ( + —)ds = G(T + 2\/7), that is, T =
2
( V1+ (2kC3)1 - 1) , then an integration of (11) on (0, T') gives

1 ! 1 1 ! 1
=(n+4ﬁ+T)cl+iH(T),
2k

that is
H(T) <2(n+4VT + T) kC) .

Injecting this estimate into (11), we obtain

1

=t + Dl ) < (1 + L) Ci+Cs H(T) < (1 + L) Ci+2(r+4VT +T) Ci Gy

K Vi Vi
for any t € (0, T) . This bounds [|[n(T + 7)|| 51 (k) for any 7 > 0, and thus completes the proof with
C given by the right hand side of the above inequality att =T . O

We shall actually prove that n(f) can be bounded not only in H'(K) but also in H'(nZ!).

However, in order to prove that, we need a spectral gap estimate, which is the subject of the next
section.

4. A spectral gap estimate

Introduce f and g defined by

n(x, 1) = ne(x)(1 + f(x,1)) and c(x, 1) = coo(X)(1 + g(x,0)) .
8



By (4), (f, g) is solution of the non-linear problem

a_f‘_L(t’x’f’g)z_LV'[fnooV(gCOO)] XER27t>09
ot Noo (12)
—A(ce 8) = [ xeR?, >0,

where L is the linear operator given by
1
L([,X,f,g) = l’l_ V. [noov(f_gcoo)] .

The conservation of mass is replaced here by fRZ fnedx=0.

Lemma 7. Let o be a positive real number. For any g € H' 0 L'(R?) such that fRZ gdx =0, we

have
L 2 2
IVelI" + — Il | dx = = | lgl"dx.
R2 40' R2

Proof. The Poincaré inequality for the Gaussian measure dy,(x) = e /@9 dx is given by
af IVF? duy > f If”* dus Y f € H'(duy) such that f fdu,=0.
R? R? R?

The result holds with g = fe /47 Notice that for o = 1, the second eigenvalue of the
harmonic oscillator in R? is 2, thus establishing the optimality in both of the above inequalities.
The case o # 1 follows from a scaling argument. O

Proposition 8. Consider a stationary solution ne, of (4). There exist a constant M, € (0, 8x)
and a function A = A(M) such that, for any M € (0, M), A(M) > 0 and

VS oo dx > A(M)f If? neo dx ¥ f € H' (o dx) such that f frewdx=0.
R2 R2 R2

Moreover, limpy0, A(M) = 1.

Proof. We define h = \Ine f = \/ze")dz/‘”"w/zf with A = M (f]RZ e WP l4+es/2 dx)il. By
expanding the square, we find that

2 1 1
AV ne = |VHI> + %h2+ ZIch|2h2+th-(x—ch)— Ex-chhz.

An integration by parts shows that

fhwz-xdxz—f K dx .
R2 R2

Another integration by parts and the definition of c., give

1 1 1
f hVh-Vee dx = —f 1 (~Acw) dx = —f W ne dx < ||noo||Lw<Rz)f W dx .
R2 2 R2 92 R2 2 R2



Recall that by (5), limy/0, |l ~®2) = 0. On the other hand, we have

1 21 P 1 o2
—fx-chhzdeU ﬁhzdﬂ—”—f IVewl i dx
2 R2 0'2 R2 4 40'2—1 R2

for any o > 1. Hence it follows from Lemma 7 that

2 2
2 T IVeolljomy 1
A ViPhode>|=-1- —————— — ~ |Inoll;= W d
jﬂ;2| SfI"ne dx [0_ o2 —1) 2||n Il (R2) fRZ X

—_———
<A(M) =4 foo |fP o dx

The coefficient A(M) is positive for any M < M, with M, > 0, small enough, according to (5), (8)
and Lemma 4. Notice that for each given value of M < Mj, an optimal value of o € (1,2) can
be found. O

We shall now consider the case of an initial data ny such that ny/ne. € L*(ne), which is a
slightly more restrictive case than the framework of Section 3. Indeed, there exists a constant
C > O such that for any x € R? with |x| > 1 we have |co+M/(27) log|x]| < C, see [4, Lemma4.3],
whence 1o, K = ¢ behaves like O(|x]™/?) as |x| — oo. If (n, ¢) is a solution of (4), then
on —nmv-(ivn) =(Vew =Ve) - Vn+2n+n>.
ot Neo

Corollary 9. Under the assumptions of Theorem 1, if M < M, then any solution of (4) is
bounded in L™ (R*, Lz(n;l dx)) N L=((1, ), H'(n7! dx)) for any v > 0.

Proof.  The uniform bound in L*(nZ! dx) follows from (10), up to the replacement of K by
1/ne , which is straightforward. As for the bound in L*((r, c0), H'(nZ! dx)), one can observe

that the linear semi-group S (¢) generated by the self-adjoint operator —n, V(t Vn) on the space
L*(ny)), with domain H?(n_)), satisfies [IS () nollg1 izt ax) < % 701l ;2,22 ax) for some k > 0, see
for instance [5, Theorem VII.7]. The estimate then follows as in Corollary 6. O

5. Proof of Theorem 1

This Section is devoted to the proof of our main result. If we multiply equation (12) by f n
and integrate by parts, we get

1
—if |f|2noodx+f IVflznoodxzf Vf-V(gcoo)noodx+f VI V(g Coo) f oo dx .
2dt ]RZ RZ RZ RZ

13)
The first term of the right hand side can be estimated as follows. By the Cauchy-Schwarz in-
equality, we know that

fz Vf-V(gcw) neo dx < IV fll 2y axy 1IV(& Coollli2ine, ay -
R
By Holder’s inequality, for any g > 2 we have

- 1
V(g cco)llzu, ay < M “lq OnnanL‘f(Rz) V(8 collaqe) -



The HLS inequality with 1/p = 1/2 + 1/q then gives

7/

1
1 q . C
||V(gcm)||Lq(Rz)sﬂ( fR s | dx) <52 I nesllges, -

.. 5 s . 1/2 .
By Holder’s inequality, || f 7teoll g2y < I1f 111200, a0 M2coll L{,/z (2, from which we get

fz Vi V(g cw) f e dx < Collfllzme an IV 2, ax) (14)
R
where C, = C,(M) := Curs 2n)~! M/2-1Va ||nw||i{,,22(R2) |Inoo||zé:’(R2) goestoOQas M — 0.

As for the second term in the right hand side of (13), using g c = ¢ — ¢ and the Cauchy-
Schwarz inequality, we have

fz Vf-V(gcw) frnodx < |[Ve— VCOO||L°°(R2) “f”Lz(nmdx) ||Vf||L2(noo dx)
R

IA

(||VC||L°°(R2) + ||VC00||L°°(R2)) ||f||L2(noo dx) ”VfHLZ(nm dx) -

We observe that V(g ¢w) = Ve — Ve is uniformly bounded since [|Vcl| g2y < C2(M) by (8), and
IVceoll g2y is also bounded by C,(M), for the same reasons.

fz Vf ' V(g Cm)fnoo dx < ZCZ(M) Hf”Lz(nDo dx) ”Vf”Lz(nmdx) . (15)
R

Moreover, according to Lemma 4, we know that limy,_,g, Co(M) = 0.

By Proposition 8, [|fll;21. avy < IV flli2ne axy / VAM) with limp0- A(M) = 1. Collect-
ing (14) and (15), we obtain

1d

14 C.(M) +2 G
2 dt ’

zmd_—l—MfVZOOd ith y(M) :=
fRzmn x<=[1=yOn)] [ V/Pnods with yo) —

We observe that limy,_,o+ y(M) = 0. As long as y(M) < 1, we can use again Proposition 8 to get

1d
—— | 1fPnedx< —5[ If? neo dx  with 6= A(M) [1 —y(M)] . (16)
2dt Jre R2

Using a Gronwall estimate, this establishes the decay rate of ||fl| 12, ax) = % R’

If n; and n, are two solutions of (4) in CO(R*, L'(R?)) N L®((t, o) x R?) for any 7 > 0,
Inequality (16) also holds for f = (ny — n1)/n-. As a consequence, if the initial condition is the

same, then n; = n,, which proves the uniqueness result and concludes the proof of Theorem 1.
(]

Remark 4. Proposition 8 and (14) rely on rather crude estimates of the spectral gap of the linear
operator £, defined on L*(n.,), with domain H*(n.). The operator has been divided in two
parts which are treated separately, one in Proposition 8, the other one in (14). It would probably
be interesting to study the operator £ as a whole, trying to obtain an estimate of its spectral gap
in L2(n..) without any smallness condition.
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