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Abstract

This paper consists of an econometric analysis of a broad class of games of incomplete in-
formation. In these games, a player’s action depends both on her unobservable characteristic (the
private information), as well as on the ratio of the distribution of the unobservable characteristic
and its density function (which we call the "hazard-rate"). The goal is to use data on players’
actions to recover the distribution of private information. We show that the structural parameter
(the distribution of the unobservable characteristic) can be related to the reduced form parameter
(the distribution of the data) through a quantile relation that avoids the inversion of the players’
strategy function. We estimate non-parametrically the density of the unobserved variables and
we show that this is the solution of a well-posed inverse problem. Moreover, we prove that the
density of the private information is estimated at a

√
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several policy applications, including better design of auctions and public good contracts.
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1 Introduction

This paper contributes to the econometric literature devoted to the study of information eco-
nomics and empirical game theory models. Games of incomplete information are a special
class of games in which the payoffs of other players, their possible actions, information,
risk attitudes, identity etc. are not common knowledge.1 The actions of the players are the
result of a transformation of their unobserved characteristic2 and of the distribution of this
characteristic. Being able to estimate the distribution of hidden information of the players
based on their actions and on a notion of equilibrium is essential in the policy-making pro-
cess. For example, knowing the distribution of private values can help the auctioneer choose
a better format of auction, set the reserve price, assess the effect of increasing or decreasing
the number of participants in an auction or change the rules of the game. Once the distribu-
tion of latent variables is known, one can conduct different counterfactuals to evaluate which
configuration of auction yields a higher revenue for the auctioneer. Another example is the
principal-agent model where the agent could be a firm providing a public service while being
regulated by a local municipality. In this particular case, the asymmetric information comes
from the fact that the firm has more information about its productivity and technological pro-
cess than the principal. Recovering these unknowns would help the principal in designing
the contracts of public good provision and setting the fares.

We perform a quantile-based analysis of a general class of games (auctions, delegation
models etc.) where the strategy function does not have an explicit functional form, but nev-
ertheless is a function of the latent variable and of the "hazard-rate" of this unobservable.3

The main characteristics of the previously mentioned problems can be summarized as fol-
lows. The econometrician observes the realization of a random element x (the action or the
bids), which is generated by a transformation of a latent variable ξ (x = σ(ξ )), where ξ

denotes the private signal or type of the player and σ is the strategy function. The strategic
component of the model is formalized by the dependence of σ on the distribution of hidden
types,ξ , denoted by F . The interpretation is the following: a player knows his information
ξ , the distribution from which this information is drawn, and chooses x in function of the

1By contrast with games of imperfect information where the information about the game being played is
actually complete. In games of imperfect informations, the uncertainty surrounds only the actions chosen by
the other players.

2We are going to use interchangeably the terms of unobserved characteristic, latent variable and private
information.

3Actually what we name in this paper "hazard-rate" is in fact the inverse of the reversed hazard-rate, i.e. the
ratio between the distribution of unobservables and their density function. Therefore this concept is slightly
different from the classical hazard rate defined as the ratio between the density function and the survivor
function.
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relative position of ξ to the distribution F . The model is then written: x = σ(ξ ,F). The
strategic function is obtained through an equilibrium rule (e.g. Bayesian Nash equilibrium).
Moreover, σ is considered to be one to one and increasing in types. Put succinctly, the player
knows his own type ξ , the distribution of types F and plays x. He does not observe the type
of the other players. The statistician observes only x but the equilibrium rule σ is known
by both the players and the statistician as a function of ξ and F . For simplicity’s sake, we
consider that an iid sample of data {x1,x2, ...,xn} is available and that it usually comes from
several games and several players. The objective of the structural analysis is to state F from
the sample of x.4 This distribution is the structural parameter in the sense that it does not
depend on the rule of the game and/or the chosen strategy. The knowledge of F allows us,
for example, to simulate the output of a new game rule (applying a new strategy σ ).

Econometric models of games of incomplete information have been considered by many
authors, in this form or in an equivalent presentation (see Guerre et al. (2000), Perrigne and
Vuong (1999), Li et al. (2002), Florens and Sbaï (2010), Florens et al. (1998), Laffont et al.
(1995), Perrigne and Vuong (2011)), but this paper has several specific points.

Firstly, we will focus on a particular class of strategies σ expressed as a function a of
two elements:

σ(ξ ,F) = a(ξ ,λ (ξ )),where λ (ξ ) =
F(ξ )

f (ξ )

and f denotes the strictly positive probability density function corresponding to F and λ

is a strictly increasing function. We call these models "hazard-rate game models",5 even
if the λ function is not strictly speaking the hazard rate. Thus, we introduce a class of
well-posed problems in economics (the concept will be defined later in the paper). The
characterization of a category of well-posed problems represents a novelty in the sense that
many of the problems encountered in economics are ill-posed problems. Working with ill-
posed problems raises many estimation issues and therefore unveiling a class of well-posed
problems is "good-news". 6

Secondly, the usual analysis is based on the relation between the distribution of x and the
distribution of ξ . Compared with Guerre et al. (2000) and Perrigne and Vuong (2011), in our
paper we focus on the transformation of the quantile function of ξ into the quantile function
of x and not on the relation between the cumulative distribution functions. Therefore this

4As opposed to the reduced-form approach where the analysis is conducted mainly on the statistical prop-
erties of the sample, here the interest is focused on the data-generating process.

5One should note that the "hazard-rate game models" are in no way related to the theory on the "Duration
models".

6A recent paper unveiling well-posedness in error measurement models for self-reported data is An and Hu
(2012).
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work contributes to developing quantile approach in the auction framework as pioneered
by Marmer and Shneyerov (2012). There is no loss of information from privileging the
quantile approach over the cumulative distribution function approach, while the gains are
important. Moreover, sometimes the quantile methodology allows the transformation of
a nonlinear inverse problem into a linear one, thus simplifying the identification analysis
and providing closed-form solutions to the problem under study. The estimation stage is as
well quite simplified by the use of the quantile approach. One usually obtains constructive
identification and the estimator is a "plug-in" estimator. Next, the asymptotic properties
can be derived using the well-established theory of order statistics. Quantile approaches
in games of incomplete information have started to attract a lot of interest (see Haile et al.
(2003), Marmer et al. (2013), Guerre et al. (2009), Zincenko (2013), Liu et al. (2014), Enache
and Florens (2018), Gimenes et al. (2016), Gimenes (2015) and Guerre and Sabbah (2012),
Enache and Florens (2020), Enache and Florens (2014)), Enache (2015).

Thirdly, we apply the above methodology to two instances of well-posed problems for
which the first-order condition is characterized by the presence of the hazard-rate: the third-
price auction model and the pure adverse selection model (treated also in Enache and Florens
(2020), Enache and Florens (2018)). Another instance of hazard-rate game is the nonlinear
pricing model which has already been treated in Luo et al. (2014). Some other possible
examples where our methodology could be used are the models of war of attrition and all-
pay auctions (see Krishna and Morgan (1997)), double auctions (see Wilson (1985)) and
some search models (see Anderson and Renault (1999)). All these above models exhibit the
property of strictly monotone hazard-rate in the first order condition.

Finally, we check the asymptotic properties of our estimator and we conclude that, al-
though the analysis in our paper is conducted in a nonparametric fashion, we obtain a root-n
speed of convergence for the estimator of the density of latent variables. This result of "su-
per convergence" might seem surprising, but the mathematical intuition behind it is related
to the fact that the model involves the presence of the "hazard-rate" of the latent variables
in the equilibrium condition of the game. Thus, solving the inverse problem in this context
boils down to solving a differential equation. Loosely speaking, in order to get the solution,
one has to integrate and the integration will smooth the process and will lead to some nice
asymptotic properties for the estimators.

As we previously mentioned, our methodology has several economic applications. In an
auction model, the players know how much they value the good, but don’t know how much
the good is valued by other players. The auctioneer himself knows only the distribution from
which the private values are drawn, but not the exact private values of the bidders. Moreover,
the players might not be aware of whether the players are risk-averse or not and also the
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identity of bidders could be confined.7 The econometrician can observe the bids, which are in
fact the actions taken by the players accordingly to their preferences (i.e. their private values)
and to a concept of equilibrium. In this situation, the latent variables or the data generating
process are clearly the private values. Of course, one could suppose that both the private
values and the equilibrium of the game are unknown to the econometrician, but this would
make the task of recovering the structural parameter quite complicated. The direct problem
of this economic instance would be to observe the private values and from there to infer
what the data observed on the market should be. This is the case in experimental economics,
where the designer of the game knows from the beginning what are the valuations and then,
based on the players’ actions, tests if they behave accordingly with the economic theory
or the supposed equilibrium concept. Outside of the experimental field, these valuations
are unknown to the auctioneer and in practice, contrary to the hypothesis of the economic
theory, even the distribution they are drawn from is not known for the auctioneer. The role
of the econometrician is to retrieve this distribution of private information, which serves
in the decision-making process. For example, the theoretical results on auctions cannot be
operationalized without a methodology to estimate the distribution of private values of the
bidders. We know from the economic theory that the optimal format can be an auction with
a reserve price, but the reserve price depends on the distribution of valuations. Therefore the
theoretical recommendation is valuable only if we have a way to estimate the distribution of
private values.

Another application are the regulation models. These describe economic situations in
which a less informed party (called "the principal") delegates a task to another party ("the
agent") that has a superior knowledge about its characteristics or about the efforts deployed
to fulfill the task. The first type of asymmetric information is designated as adverse selec-
tion or hidden information problem and simply means that the agent has private information
about its type and this information cannot be observed by the principal. The second informa-
tional aspect is the so-called moral hazard problem and it occurs because the efforts of the
agent are not observable and therefore the agent has an incentive to shirk. The most common
examples of principle-agent models are the contractual relationship between a local munici-
pality that delegates the provision of a public good or service to a private contractor; between
an employer who doesn’t know the exact skills of the person he/she tries to hire; between
the insurance company that cannot observe the diligence of the insured client; between the
shareholders of a company and its manager, where, as in the previous example, the share-
holders cannot observe how much effort the manager is putting in attaining the company’s

7For self-contained works on auction theory, see Krishna (2009) and Milgrom (2004).
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objectives fixed by the shareholders; or the typical example of a buyer (the principal) and
the seller (the agent who provides the good and therefore has more information about its
technological costs and its productivity). For a more detailed economic theory of incentives,
see Laffont and Martimort (2001) or Laffont and Tirole (1993). In the particular case of a
delegation model, the asymmetric information comes from the fact that the firm has more
information about its productivity and technological process than the principal. The estima-
tion of these unknowns would serve as a tool for the principal in the design of contracts of
public good provision and the establishment of fares.

To summarize, this paper enriches the previous described econometric literature by mix-
ing the quantile approach with the inverse-problem approach in the analysis of games of
incomplete information.

The paper is organized as follows. Section 2 describes the inverse problem approach and
presents two instances of well-posed problems, Section 3 treats the general model, Section
4 shows the local identification, Section 5 proposes an estimator and provides a numerical
implementation for the estimator of the functional parameter in a third-price auction model
(chosen because it is a nonlinear problem), Section 6 discusses the asymptotic properties and
Section 7 concludes.

2 Two well-posed problems

Our econometric analysis is conducted using an inverse problem approach. The study of
inverse problems has been for a long time a field of research reserved mainly to physicists,
engineers and applied mathematicians. This situation is simply explained by the fact that a
vast majority of applications belong to these areas: computer tomography, inverse scattering
problem, geological prospecting, image deblurring etc. Nevertheless, there are many situa-
tions in economics where the inverse problem approach proves to be very useful. Without
being exhaustive, some examples include: deconvolution, nonparametric instrumental vari-
ables estimation, finance (determining the volatility in option-pricing), game-theory models
(estimation of the density of types in an auction or contract model) etc. Loosely speaking,
an inverse problem is defined as the opposite of a forward problem. Any problem can be
regarded either as a direct or inverse problem and therefore the choice of the direct prob-
lem/inverse problem is just a matter of convention. One can formulate the direct economic
problem in the following way: given the following cause, what are the effects? Naturally,
the inverse problem in this case will be: given the effects, what is the cause? Usually the
inverse problem is defined as being the attempt of recovering the underlying structure from
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an indirect observation of it.
Finding the solution of an inverse problem involves solving a functional equation of the

form A(F) = G, where F and G are two objects belonging to two separable Hilbert spaces, A
is an operator which maps F into G and F is the parameter of interest. The inverse problems
are classified into ill-posed and well-posed problems. Despite of what the terminology might
suggest, the well-posedness of a problem is not related to the correct specification of a model.
The study of an the well-posedness takes place in the setting of a well-specified model. The
French mathematician Jacques Salomon Hadamard defined the three criteria that a well-
posed problem should cumulatively meet: there exists a solution to the problem, the problem
doesn’t have more than one solution, a small change in the data should lead to only a small
change in the solution. The uniqueness of the solution (at most one solution) corresponds to
the well-known concept of identification in econometrics. The third criteria, also known as a
stability issue, aims at evaluating whether the inverse mapping is continuous or not. A lack
of continuity of the inverse mapping leads to an ill-posed problem. Imagine for example that
the inverse mapping, A−1, exists but it is not continuous. Let us suppose that F and G are two
cumulative distribution functions of the latent variables and, respectively, of the observable
variables. Even if one has a consistent estimator for G (for example, the empirical cumulative
distribution function), the small errors related to the estimation of G will be translated in big
errors in the estimation of F because of the discontinuity of A−1. In this case, one cannot
consistently estimate F using a consistent estimation for G because of the discontinuity in the
inverse mapping (for more details, see Horowitz (2014) and Alquier et al. (2011)). Hence,
in order to obtain a stable solution to the problem (which doesn’t vary a lot when estimating
F by using the sample distribution function and not the population distribution function),
several methods of regularisation are used. The regularisation methods attempt at inverting
the operator A in a manner that will allow for a consistent estimation of F . For a survey on
regularisation methods see Carrasco et al. (2007).

The concept of inverse problems has been borrowed in economics mainly from the fields
of physics and engineering. In non-technical terms, an inverse problem is an attempt to
retrieve an unobservable input of a system from the noisy observation of its output. The
output is obtained through a transformation of the input that is supposed to be known to the
researcher. The method used to back-out the latent variables is the inversion of the transform
operator. When the inverse of this operator exists, and is continuous, the problem is called
well-posed in the Hadamard sense.

One application of the inverse problem approach in economics is the empirical treat-
ment of data generated by games of incomplete information. Examples are given by auction
models, adverse selection models or nonlinear pricing models. More details on these ex-
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amples will be provided later in this paper. While many of these games lead to ill-posed
problems 8, in this paper we consider a class of problems that are actually well-posed. The
well-posedness of these models is directly related to the shape of the first-order condition
characterized by the presence of a monotone hazard-rate. The intuition behind this remark
is that a first-order condition with such a behavior gives rise to a differential equation in-
stead of an integral equation 9 (as it is the case, for example, in the first-price auction model,
where we have a Fredholm type I integral equation). Therefore, in our examples, the inverse
operator used to retrieve the latent variables is an integral operator and therefore bounded,
which insures the well-posedness of the problem. As mentioned previously, this paper pro-
poses a taxonomy by introducing a class of well-posed problems that we call "hazard-rate
game models". The well-posedness of the problem comes from the fact that the distribution
of latent variables and the distribution of data are related through the hazard-rate.The pure
adverse selection model and the third-price auction model are two models belonging to the
type of games of incomplete information presented previously and that share this charac-
teristic. Among different types of auctions and regulation models, these two games feature
an equilibrium strategy that is a function of the unobserved variable and its "hazard-rate".
Therefore we are going to use these two models in order to exemplify our general economet-
ric procedure.

The Principal-Agent model. The adverse selection model is basically a case of hidden
information where a principal delegates a task to an agent that has more information about
its own type than the principal. The presence of asymmetric information is common in many
regulatory situations and the case of a natural monopoly that provides a public service is a
classical example. The equilibrium condition for this model can be expressed in terms of the
hazard-rate (see Baron and Myerson (1982)):

P(x(θ)) =Cx(x(θ),θ)+(1−δ )
F(θ)

f (θ)
Cxθ (x(θ),θ). (1)

where P denotes the inverse demand function, x is the quantity of services/goods provided
by the natural monopoly, θ is the type of the agent, C is the agent’s cost function and δ is
the weight that the regulator gives to profit of the firm in his/her maximization problem.

For a conveniently chosen cost function, C(x,θ) = c1(θ)x, equation 1 simply becomes:

p = c1(θ)+(1−δ )
F(θ)

f (θ)
c′1(θ).

8The classical example is the first-price auction model that is a mildly ill-posed problem (for more details
on the degree of ill-posedness of this model see Florens et al. (1998)).

9Most of the ill-posed inverse problems are generated by noisy integral equations.
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Using this specification, c1(θ) is actually the marginal cost.
For the principal-agent model, the quantile equation relating the structural parameter and the
reduced form parameter is:

G−1(α) = c1(F−1(α))+(1−δ )αc′1(F
−1(α))F−1′(α).

where G−1(α) is the quantile function of the prices and F−1(α) is the quantile function of
the types. The solution to this problem is:

c1(F−1(α)) = α
− 1

1−δ


α∫
0

G−1(t)
1−δ

× t

δ

1−δ dt + constant

 . (2)

Intuitively, this is a well-posed problem as the solution is continuous in the data (it is an
integral of the quantile function of the data). This case has been treated separately and
extensive in our previous paper, see Enache and Florens (2018).

The Third-Price Auction Model. The economic model behind the third-price auction
has been discussed mainly in the papers by Kagel and Levin (1993) and Monderer and Ten-
nenholtz (2000). To summarize, the third-price auction model is a game with at least three
players and a payment rule that implies the bidder with the highest bid wins the auction, but
s/he will only pay the third-highest bid. This peculiar rule leads to overbidding behavior in
the third-price auction. Assuming that the players are playing a Bayesian Nash Equilibrium,
the bidder’s maximization problem gives rise to the following first-order condition:

x = ξ +
1
η

ln
{

1+
η

N−2
F(ξ )

f (ξ )

}
.

where N ≥ 3, f is the probability density function (hereafter p.d.f.) of F and η > 0 is
the CARA (constant absolute risk aversion) parameter. Thus, in the case of the third-price
auction model, if we write the FOC in terms of quantile functions we obtain the following
result:

G−1(α) = F−1(α)+
1
η

ln

{
1+

η

N−2
α

f
(
F−1(α)

)} .

where α ∈ [0,1], G−1 denotes the quantile of the bids and F−1 the quantile function of the
private values. This equation can be linearized by making the change of variable β (α) =
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eηF−1(α). We obtain therefore a first-order differential equation between the transformation
of G−1 and F−1:

β (α)+
α

N−2
β
′(α) = eηG−1(α).

The solution of the previous equation is simply:

F−1(α) =
1
η

ln
1

αM

α∫
0

MsM−1eηG−1(s) ds.

where M = N−2 in order to simplify notations.
This approach allows for a closed-form solution of the quantile of private values in terms

of the quantile of bids, given the knowledge of the risk-aversion parameter and the number
of bidders. We therefore obtain nonparametric global identification given the knowledge of
the risk-aversion parameter. The estimation is also quite straightforward and involves only
plugging-in the empirical counterpart of the distribution of bids. For a more detailed analysis
of this case, see the paper Enache and Florens (2020).

3 The general model

Next we present a general setup to analyze this class of hazard-rate games, but without an
explicit form of the a function.

We have the same economic theory as above, i.e. each individual has a private signal or
type, ξ , generated by a probability measure characterized by its cdf F on R. This distribution
has a support [ξ ,ξ ] and we assume ξ known by the statistician. We are going to consider
ξ = 0 given that this does not restrict the model. We will comment on this assumption later
on.

The player plays a real value x which satisfies:

x = σ(ξ ,F) = σF(ξ ). (3)

If F ∈F , then σ is a function defined on [0,ξ ]×F . This function is the equilibrium of the
game and is known by the players and by the statistician (as a function of ξ and F). The
players know F , but this is unknown information to the statistician.

Assumption 1. σ(ξ ,F) is strictly increasing on [0,ξ ] ∀F ∈F and σ(0,F) = 0.10

10Strictly speaking, it is sufficient to assume this property true for the true F . As we also need this property
for the consistent estimation of F , we assume its validity in a neighborhood of the true F .
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More generally the support of x is [x,x] and we assume σ(ξ ,F)= ξ = x. Then the knowledge
of ξ and of x are equivalent. In many cases x can be estimated at a rate n and the estimation
of x and of ξ doesn’t contaminate the rest of the estimation. This rate is reached if the density
of x is strictly positive in x and we will see that our assumptions will impose this property.

Assumption 2. We define the interval Ξ = [ξ1,ξ2], with 0 < ξ1 < ξ2 < ξ .11 The function F
is twice continuously differentiable on [0,ξ ] and its derivative f is bounded from below on
Ξ.12 As long as the density function f does not have all its derivatives equal to 0 in 0, we

can define the function λ as λ : [0,ξ ]→R, λ (ξ ) =
F
f
(ξ ) and we assume that λ is strictly

increasing.

Assumption 3. The strategic function has the form:

σ(ξ ,F) = a(ξ ,λ (ξ ))

where a : [0,ξ ]×R+→R is a C 1 function.

Let us denote G the cdf of x. We have obviously:

G(x) = Pr(X ≤ x) = Pr(σ(ξ ,F)≤ x) = Pr(ξ ≤ σ
−1
F (x)) = F ◦σ

−1
F ,

or
G◦σF = F. (4)

Definition 1. The structural parameter of the model is F and the reduced parameter is G.
These two functional parameters are linked by the relation G◦σF = F.

Under assumptions (2) and (3), G is strictly increasing 13 because it is a composition of
F and σ

−1
F both strictly increasing. Then, G−1 and F−1 the quantile function of x and ξ are

well defined on [0,1]. We obviously have :

G−1(α) = σF ◦F−1(α). (5)

One can see from equation (5) that one of the main advantages of using a quantile approach
as opposed to a distribution function approach (i.e. as in equation (4)) is that one does

11ξ1 and ξ2 can be as close as we want to 0 and respectively ξ .
12Please note that the function f may be 0 in 0 or ξ , but it is bounded from below on Ξ = [ξ1,ξ2].
13Therefore g > 0 and the lower bound x = ξ can be estimated at a n rate. Indeed g(x) = f

(
σ
−1
F (x)

)
×σ

−′1
F

does not cancel in x and minxi⇒ x at a rate n.
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not have to invert the strategy function. This is extremely useful, as in many games of
incomplete information, the strategy function is not invertible. Under assumption (3) the
previous relation becomes:

G−1(α) = a
(

F−1(α),
α

f ◦F−1(α)

)
= a

(
F−1(α),αF−1′(α)

)
.

Let us now reparametrize the model. We take as the structural parameter the function, L such
that L : [0,1]→R

+, L = F−1, and the reduced form parameter is Q : [0,1]→R
+, Q = G−1.

These two parameters are related by the equation :

Q(α) = a(L(α),αL′(α))14, (6)

which is the core of our model. In order to avoid the boundary problems, α will be restricted
to an interval [α1,α2], 0 < α1 < α2 < 1 (more details will follow in Section 6). The quantile
function Q(α) of the data is identified and can be estimated if an iid sample is available. The
identification of L is obtained by solving the nonlinear differential equation (6). The solution
of (6) is constrained by the limit condition L(0) = 0.

4 Local analysis

At a simplified level, every model can be described by the existence of a group of latent vari-
ables, observable variables and the relationship between them. The latent variables cannot
be observed or they are just not observed, while the observable variables constitute the data
that is actually at the econometrician’s disposal. In our case, Q denotes the quantile function
of the observables and L the quantile function of the latent variables.

We know that every L leads to only one quantile of observables Q (otherwise a wouldn’t
be a function), but the question of identification is: under which conditions, the quantile
function of observables, Q, is generated by only one quantile function of latent variables
L? Otherwise said, the question is under which conditions, the mapping from L to Q is in-
jective? One should note that the identification analysis is made in terms of populations’
distributions (i.e. supposing that the econometrician knows the true parameters character-
ising the distributions), and that is why identification is conducted completely independent
from the estimation procedure. We adopt a nonparametric identification of the games of
incomplete information. Nonparametric identification is useful even for cases where para-

14This equation can be denoted as Q = T (L) and, by using this notation we reason in terms of functions and
T is an operator that maps L into Q.
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metric estimation methods are employed (for example, due to the small sample size) as it is
an insurance of the robustness of estimators.

Let us start with the nonlinear differential equation (6). In general this nonlinearity im-
plies that the global identification question is difficult to solve and we will consider a local
analysis of the equation (6) (see Florens et al. (1998) or Florens and Sbaï (2010)). Local
identification is a weaker notion of identification because is a concept dependent on the cho-
sen topology (in this paper we restrain to Hilbert spaces).

Let us specify the following properties of the a function.

Assumption 4. The function a : [0,ξ ]×R∗→ R is continuously differentiable with partial
derivatives denoted ∂1a and ∂2a and ∂1a 6= 0.

Let us consider the following Sobolev space of functions:

W1 =

{
h : [0,1]→R differentiable

∣∣∣∣sup
α

|h(α)| and sup
α

|h′(α)| are bounded

}

provided with the norm:
‖h‖1 = sup

α

|h(α)|+ sup
α

|h′(α)|.

The parameter space of our model is the subset K defined by:

K =

{
h ∈W1

∣∣∣∣h(0) = 0 and h′(α)> 0

}
,

and the quantile function L is an interior point of K . This set has a non empty interior in
W1. This means that there exists a neighborhood of L in W1 included in K . This property
implies that the tangent space of K in L is W1.

Now that we defined the tangent space, we may look at the equation (6) locally. We have
that Q = T (L), where Q is a function in W0 and W0 is defined as:

W0 =

{
r : [0,1]→R

∣∣∣∣sup
α

|r(α)| is bounded

}
,

provided with the norm‖r‖0 = supα |r(α)|. The operator T is continously differentiable and
its Fréchet derivative in L denoted KL verifies

13



Q̃(α) =
(

KLL̃
)
(α) = ∂1a

(
L(α),αL′(α)

)
L̃(α)+α∂2a

(
L(α),αL′(α)

)
L̃′(α)

= a1(α)L̃(α)+a2(α)L̃′(α), (7)

where {
a1(α) = ∂1a

(
L(α),αL′(α)

)
a2(α) = α∂2a

(
L(α),αL′(α)

)
.

The operator
(

KLL̃
)
(α) is continuous. The computation of the Fréchet derivative is obtained

in the following way. We compute the Gâteaux derivative
(

∂

∂ε
T
(

L+ εL̃
)∣∣∣

ε=0

)
and we

prove that the obtained expression (7) is actually the Fréchet derivative (i.e. double continuity
in L and L̃). This property requires that KL

(
L̃
)

is a continuous linear operator, which is clear
under the choice of parametric set plus some regularity conditions recalled in Florens and
Sbaï (2010).
The next results show that it is also continuously invertible.

Proposition 1. Under the limit condition L(0) = 0, the equation (7) has a unique solution
equal to :

L̃(α) =
1

A(α)

α∫
0

Q̃(u)B(u)du = K−1
L Q̃

where A(α) = expC(α), B(α) =
1

a2(α)
expC(α) for any C(α) such that C′(α) =

a1(α)

a2(α)

and K−1
L is a continuous function of Q̃.

Proof: Firstly, let us remark that L̃(α) does not depend on an additive constant on C. Sec-
ondly, we have that L̃(α)→ 0 if α → 0 and this result will be used to show consistency.
Finally, the result follows from the standard solution of the first order differential equation
with no constant.

The local analysis is useful not only in order to assess the local identification of the
model, but it will also be employed in the study of the asymptotic properties of the estimator.

Corollary 1. Under previous assumptions, the model is locally identified.

Proof: The local linear approximation KL is invertible and its inverse is continuous. Then the
implicit function theorem (see Schwartz (1966)) applies and we have local identification. �
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5 Estimation

The estimator of L is defined as the solution of:

Q̂(α) = a
(

L̂(α),αL̂′(α)
)
, (8)

where Q̂(α) is the empirical quantile function of our observations:

Q̂(α) =
n

∑
i=1

xin1
 i−1

n
< α ≤ i

n

,

where xin is the order statistics of the sample x1,x2, ...,xn.
The resolution of the differential equation (8) is performed numerically. It may be useful

to replace the function Q̂ by a smooth version of the empirical quantile function. This smooth
version should be chosen such that its asymptotic behavior remains the same as the empirical
one.

We take the nonlinear example of the third-price auction model. In this section we will
treat this problem as if we had no knowledge of the closed-form solution which links the
data to the unobservables and we proceed to a numerical estimation. We will imagine that
we are unaware of the closed-form solution of the problem in terms of quantiles in order to
see how our method works on a nonlinear example.
In the case of the third-price auction model, the a function has the following shape:

a(u,v) = u+
1
η

ln
{

1+
η

N−2
v
}
,

where u corresponds here to L(α) and v to αL′(α).
For the design of the simulated data, we suppose that the private values are drawn from

a Beta distribution on the interval [0,1], i.e: F(ξ ) = ξ 2. In this case ξ =
√

ε , where ε is a
uniformly distributed variable on [0,1]. The equilibrium bid in the third-price auction with
N = 5 bidders and a risk-aversion parameter fixed at η = 1 is given by:

x =
√

ε + ln
(

1+
1
6
√

ε

)
.
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Then our differential equation becomes simply:

L(α)+ ln
{

1+
1
3

αL′(α)

}
= Q(α). (9)

This equation can be solved using a standard ODE solver under the initial condition L(0)= 0.
In our case, we used the "ode45" Matlab solver, which is an explicit method for nonstiff
problems15 based on Runge-Kutta 4th/5th-order (see Butcher (2016) for numerical methods
for differential equations). Its solution is depicted below in Figure 1. We do not discuss the
approximation errors in the numerical computation.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

1.2
true quantile function of the p.v.
estimated quantile function of the p.v.
estimated quantile function of the data

Figure 1: The solution of the differential equation for the case of a third-price auction model
for a Beta distribution with 25 observations.

Below we present a second configuration where the private values are distributed Weibull,
15A stiff ordinary differential equation is one for which numerical errors accumulate greatly over time.
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i.e.
F(ξ ) = 1− e−c1yc2 , (10)

where the parameters of the Weibull distribution, c1 and c2 are set to be equal to 1. The
equilibrium bid in this case will be: x = ξ + ln

(
1+ 1

3
1−e−ξ

e−ξ

)
. We generate the private values

as: ξ =−ln(1− ε), where ε is a uniformly distributed variable on [0,1].

0 0.2 0.4 0.6 0.8 1
0

1

2

3

4

5

6

7
true quantile function of the p.v.
estimated quantile function of the p.v.
estimated quantile function of the data

Figure 2: The solution of the differential equation for the case of a third-price auction model
for a Weibull distribution with 25 observations.

Next we present the Monte Carlo simulations for the two data configurations. In Figure 3
we have the results from 50 simulations on 25 observations and where the private values are
drawn from a Beta distribution.
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2.5 and 97.5 pointwise quantiles of the estimator

Figure 3: Monte Carlo Simulations for the case of a third-price auction model for a Beta
distribution with 25 observations.

In Figure 4 we have the results from 50 simulations on 25 observations and where the
private values are drawn from a Weibull distribution.
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Figure 4: Monte Carlo Simulations for the case of a third-price auction model for a Weibull
distribution with 25 observations.

6 Asymptotic properties

Using the Lemma 21.4 from Van der Vaart (1998) we have that Q̂ is asymptotically normal
and converges uniformly to Q for all α ∈ [α1,α2], where 0 < α1 < α2 < 1. Therefore all the
asymptotic results in this section will be derived for α ∈ [α1,α2], 0 < α1 < α2 < 1.

The implicit function theorem used in the corollary (1) implies that in a neighborhood
of the true value Q, the estimator L̂ depends continuously on Q̂ (see th. 385 from Schwartz
(1966)). Then we have the following consistency result. The asymptotic normality also
follows from the implicit function theorem.
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Proposition 2. The estimator L̂ converges to L in W1, i.e. :

sup
α

|L̂(α)−L(α)|+ sup
α

|L̂′(α)−L′(α)| p→ 0,

where α ∈ [q1,q2],0 < q1 < q2 < 1.

Proposition 3. If the true L is twice differentiable, Q is differentiable and we have:

√
n(L̂−L)→ G (0,Ω) in W1.

where Ω is the variance operator characterised by the covariance function:

ω(α,β ) =
1

A(α)A(β )

α∫
0

β∫
0

B(u)B(v)q(u)q(v)u(1− v)dudv

The functions A and B are defined in Proposition 1 and q(α) is the derivative of Q(α). The
proof of this proposition is given in Appendix 7.

From the estimation of L we may define an estimation of the derivative of L, denoted by
l. This estimation is done numerically by computing the derivative of a smooth version of L̂.
Using standard results of differential calculus it may be verified that:

∂

∂α

 1
A(α)

α∫
0

Q̃(u)B(u)du

=
1

A(α)
Q̃(α)B(α)− A′(α)

A2(α)

α∫
0

Q̃(u)B(u)d(u),

where A′ is the derivative of A wrt α . An implication of this result is that
√

n
(

l̂(α)− l(α)
)

converges to a Gaussian process. Indeed we have that:

√
n
(

l̂(α)− l(α)
)
=

1
A(α)

B(α)

(√
n
(

Q̂(α)−Q(α)
))
−

A′(α)

A2(α)

α∫
0

(√
n
(

Q̂(u)−Q(u).
))

B(u)du+op(1) (11)

We may also define an estimator of F by F̂ =
(

L̂
)−1

(where L̂ is a smooth version of the

initial estimator) and f̂ by F̂ ′.
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The von Mises calculus implies that:

√
n
(

F̂(x)−F(x)
)
=−
√

n f (x)
(

L̂−L
)
◦F(x)+op(1),

and

√
n
(

f̂ (x)− f (x)
)
=−
√

n f ′(x)
(

L̂−L
)
◦F(x)−

√
n f 2(x)

(
l̂− l

)
◦F(x)+op(1).

Then the three processes
√

n
(

l̂− l
)

,
√

n
(

F̂−F
)

,
√

n
(

f̂ − f
)

converge to three zero mean
gaussian processes. The expression of their variances may be found in Enache and Florens
(2020). In practice, confidence intervals may be computed by usual nonparametric bootstrap.
The density f is estimated at the speed

√
n and converges as a stochastic process. This result

does not contradict the usual results on optimality of the estimation of a density because f is
not the density of actual data. The convergence of f̂ at

√
n has been remarked in particular

cases (see Luo et al. (2014), Enache and Florens (2020), Enache and Florens (2018)). A
central contribution of our paper is to underline the main mathematical foundations of this
type of results. However, one may note that the estimation of f using the xi gives better
results than the estimation of f using the ξi, even if the ξi were observable. An interesting
question in that case would be to combine the information contained by the ξi and the xi.

Remark 1. Our model is strictly speaking overidentified in the sense that the solution L may
not be increasing. Then Q should be constrained such that L is a quantile function. However
the model is not asymptotically overidentified, as the tangent space at the true value is the
complete space or, equivalently, because the set K is open in W1. Then, a non constrained
estimator will satisfy the overidentification constraint for a large (but finite) n.

7 Conclusions

This paper proposes a general methodology to tackle the structural identification and esti-
mation in games of incomplete information which belong to a class we call "hazard-rate"
models. The examples that motivate our analysis are issued from the economics of regula-
tion (such as pure adverse selection), auction theory (third-price auction model) or optimal
pricing. Our strategy consists in rewriting the functional relation between the structural
parameter (i.e. the data generating process or the latent variables) and the reduced-form
parameter (i.e. the sample or the observables) in terms of quantile functions. The result is
a differential equation in the quantile of primitives that we analyze locally and for which
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we show local identification. As the quantile functions contain the same statistical informa-
tion as the cumulative distribution functions, there is no loss of information in recovering or
working with the quantiles instead of the distribution functions. We therefore obtain a dif-
ferential equation in terms of quantiles that can be solved numerically. Moreover we show
that the estimators of the quantile function and of the density quantile function of primitives
converge to a gaussian process at a root-n rate of convergence.

This model can be generalized in several directions. The general form of the model
may assume that ξ is generated by a conditional distribution to some densities Z and that σ

depends also on some unknown parameter or function µ and on exogenous observables, W :
x = σ(ξ ,λ (ξ | Z),µ,W ) and G becomes a distribution conditional to Z and W .
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Proof of Proposition 3

The Propositions 2 and 3 are based on the properties of the estimation of the quantile func-
tion. Firstly, Q̂ converges to Q in W0 which implies the convergence of L̂ in Ŵ1 as shown in
Proposition 2. Secondly, if Q is continuously differentiable with a derivative q strictly posi-
tive in (0,1), the process

√
n
(

Q̂−Q
)

converges in L∞[α1,α2] to a zero mean Gaussian pro-
cess for any 0 < α1 < α2 < 1. This limit process is equal to the usual Brownian Bridge mul-
tiplied by q or, equivalently, the covariance of this process is σ(α,β ) = q(α)q(β )α(1−β ).
The main steps of the proof of convergence of

√
n
(

L̂−L
)

are the following (more details
are given in a similar proof by Enache and Florens (2020)). Firstly, the differentiability
property of T implies that:

√
n
(

L̂(α)−L(α)
)
=

1
A(α)

α∫
0

[√
n
(

Q̂(u)−Q(u)
)]

B(u)du+op(1).

The control of the residual follows from Serfling (1980) (Lemma B, page 218) and from
Property 5 in Enache and Florens (2020).

The second step is based on an approximation property given in Csörgö (1983):

sup
cn<α<1−cn

|
√

n
(

Q̂−Q
)
−δ (α)|= op(1)

where δ is the Brownian Bridge multiplied by q and cn is a sequence converging to 0 at

a suitable rate (for example cn =
1
n

lnn). Then

√
n
(

L̂(α)−L(α)
)
=

1
A(α)

α∫
cn

B(u)δ (u)du+op(1).

Finally, if cn <α and b< 1−cn, we get that
√

n
(

L̂(α)−L(α)
)

converges to
1

A(α)

α∫
cn

B(u)δ (u)du.

The variance of this process is obtained by the usual calculation:

ω(α,β ) =
1

A(α)A(β )

α∫
0

β∫
0

B(u)B(v)q(u)q(v)u(1− v)dudv.
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