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Abstract

In this paper, we consider global solutions of the following nonlinear Schrédinger equation
iug + Au + Au|®u = 0, in RY, with A € R, @ € (0, v5) (o € (0,00) if N = 1) and
uw(0) € X = H'(RY) N L?(|z|?;dz). We show that, under suitable conditions, if the solution
u satisfies e P u(t) —usr — 0 in X as t — +oo then u(t) — e ugp — 0in X as t — Foco. We
also study the converse. Finally, we estimate | ||u(t)||x — [l¢*®u+||x | under some less restrictive
assumptions.

1 Introduction and notations

We consider the following Cauchy problem,

24 Aug Nu[*u =0, (t,x) € (-T.,T*) x RN,
ot (L.1)

u(0) = ¢, in RY,

where A\ e R, 0 < a <

N3 (0<a<ooif N=1) and ¢ a given initial data.

4
It is well-known that if A < 0, o > N and ¢ € H'(R™), then there exists ux € H'(R") such that
. lirin |17 (—t)u(t)—us| gr = 0 (Ginibre and Velo [%], Nakanishi [1 1, 12]). Since (e**2);cp is an isometry
—4oo
—(N—2)+\2/]1\>72+12N+4 and

on HY(RY), we also have t_l}in [lu(t) = T(t)us| g1 = 0. Furthermore, if o >
if o € X = HY(RY) N L%(|z|?; dz), then there exist uy € X such that t_l)lgl IT(—t)u(t) —usllx =0

(Tsutsumi [15]). The same result holds without assumption on the \’s sign if the initial data is small
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enough in X and if o >

4
N2 (Cazenave and Weissler [3]). Note that to have these limits, we
have to make a necessary assumption on « (Barab [1], Strauss [13, 14], Tsutsumi and Yajima [16]),

2
N<a<N—2

The purpose of this paper is to study the asymptotic behavior of ||u(t) — T(¢t)u+||x under the

2<a<cif N=1).

assumption tligloo IT(—t)u(t) —uslx =0, and the converse. In the linear case (i.e. : A = 0) or if the
initial data is 0, the answer is trivial since T(—t)u(t) — ux = u(t) — T(t)uyx = 0, for all t € R. Since
(e™®)cr is an isometry on H'(RY), the equivalence on H*(RY) is trivial. But (e"?);cg is not an
isometry on X and so it is natural to wonder whether or not we have tiiinoo lu(®) = Tt)us|lx =0
when t_ljgoo IT(—t)u(t) — ux||x = 0 and conversely.

This paper is organized as follows. In Section 2, we give the main results. In Section 3, we establish
some a priori estimates. In Section 4, we prove Theorems 2.1, 2.4, 2.5 and Proposition 2.8. In Section
5, we prove Theorem 2.10.

Before closing this section, we give some notations which will be used throughout this paper and
we recall some properties of the solutions of the nonlinear Schrédinger equation.

Z is the conjugate of the complex number z; Re z and Im 2z are respectively the real and imaginary
part of the complex number z; A = E Ba7 for 1 < p < oo, p’ is the conjugate of the real number p de-
fined by EJFF =land LP = LP(RNj = LP(RN,(C) with norm ||.||z»; H! = HY(RY) = HY(RY; C) with
norm || . ||g1; for all (f,g) € L x L?, (f,g) Reff g(x)dz; X = {y € HY(RY;C); ||¢[|x < oo}
with norm ||¢||% = H1/)||§{1(RN) + szv |z)? [ (x de, ( (t))te]g is the group of isometries (e*2);cr gen-
erated by iA on L?*(RY;C); C aﬂie auxiliary positive constants and C(ay,as,...,a,) indicates that
the constant C' depends only on parameters ai,as,...,a, and that the dependence is continuous.

It is well-known that for every ¢ € X, (1.1) has a unique solution u € C((—=T%,T*); X) which

satisfies the conservation of charge and energy, that is for all ¢ € (=T, T*), ||u(t)||r2 = ||¢||L2 and

E(u(t)) = E(p) = def 1 sNVel3. — %Hﬂgoﬂ‘zji Moreover, if A < 0, if a < & or if [|¢[| 1 is small enough
then 7% = T, = oo and [|u| e ;1) < 00 (see for example Cazenave [2], Ginibre and Velo [+, 5, 6, 7],
Kato [9]).

Definition 1.1. We say that (q,r) is an admissible pair if the following holds.
i) 2<r<&ES2<r<wif N=2,2<r<o0if N=1),

(i) $=NG-7)

4r

Note that in this case 2 < ¢ < o0 and g = m
r—



Definition 1.2. We say that a solution u € C((—T,,T%); X) of (1.1) has a scattering state ui at
+o0o (respectively u_ at —oo) if T* = oo and if uy € X is such that tlim IT(=t)u(t) —usllx =0
—00

(respectively if T, = co and if u_ € X is such that tli{n IT(—t)u(t) —u_]||x =0).

We recall the Strichartz’ estimates. Let I C R, be an interval, let ¢y € I, let (¢,r) and (v, p)

be two admissible pairs, let ¢ € L2(RN) and let f € L (I; L? (RN)). Then the following integral
t

equation defined for all ¢t € I, u(t) = T(t)p + z/ T(t — s)f(s)ds, satisfies the following inequality
to

lullLacr,ry < Collellz+Cill fll v (1,107y, where Co = Co(N,r) and C1 = C1(N,r, p). For more details,
see Keel and Tao [10].

2 The main results

2
Theorem 2.1. Let A # 0, )i < 2<a<0if N=1), p € X and let u be the solution

< [
N -2
of (1.1) such that u(0) = ¢. We assume that u has a scattering state uy at £oo (see Definition 1.2).

Then the following holds.
1 IfN <2 andi 1 th li t)—T(t =0
(@) N <2 and o> < then N [lu(t) ~ T(thux =0

(b) If3< N <5 and if a >

5 then tllimoc |lu(t) — T(t)us|x = 0.

N +
2.IfN=1anda=4orif3<N<5anda= then we have,

N +2

sup ||[u(t) — T(t)ut||x <oo and supllu(t) —T(t)u_|x < oo.
0 ¢<0

Remark 2.2. Remark that in Theorem 2.1, no hypothesis on the A’ s sign is made.

4 8 6 4
R k 2.3. N 4 — —< =
emar , 6{3,8,5}:>N<N_|_2<N<N_2
26— —— < ——.
N=>6 N—-2 " N+2
8
: o _ _ < < .
Despite the fact we do not know if tilrinoo llu(t) — T(t)us|lx = 0 when o < N2 (o < 4/N if

N < 2) or when N > 6, we can give an estimate of the difference of the norms, as shows the following

theorem, without any restriction on the dimension space N and on « (except o > %) Since under the

scattering state assumption we always have . liin [lw(t) = T(t)us| gr = 0, it is sufficient to estimate
— 4o

| lzw(®)||Le — |2T (t)utl| r2] as t — £oo.



Theorem 2.4. Let A <0, N <a< 2<a<ooif N=1),p e X and let u be the associated

N -2
solution of (1.1). Assume that u has a scattering state ux at oo (see Definition 1.2). We define for

allt € R, Ay (t) = ||zu(t)| 2 — |27 (t)us| 2 and h(t) = ||zu(t)||3.. Then we have the following result.

sup | [Ju(t)[[x = [[T(H)utllx [ < oo and St<1p\ [u(®)llx = 1T #)u—lx | < oo,

= X

with the following estimates.

1. Ifa < — then ———— < liminf A4 (¢t) < limsup A4 (t) < + !
fosy [Vusllpz = tooe +() < i sup A (1) 4| Vus| 2
4 B'(0) + 4(zus,iVus) . . . ¢
2. If « > — then + . <liminf A4 (¢) <limsup A4+ (t) < ————.
! N Z’LHVU:I:HL2 t—roo i( ) t—>:|:oop i( ) ||Vu:t||L2
4 _ R (0) + 4(zus,iVuy)
CIfa=— 1 =+
3. Ifa N then t—}glooAi(t) Vs o

Furthermore, h'(0) = 4Im/gp(x)x.Vga(x)dx and C' = C(sup ||[T(—t)u(t)||x, N, a, A).
teR
RN

2 4
Theorem 2.5. Let A > 0, N <a< N_3 2<a<ooif N=1),pe X and let u be the associated

solution of (1.1). Assume that u has a scattering state ux at 0o (see Definition 1.2). We define for

allt € R, Ay (t) = ||zu(t)| 2 — |#T(t)us| 2 and h(t) = ||zu(t)||2.. Then we have the following result.

Sugl [u(®lx = IT@)uillx [ <oo and sup||u(t)llx —[[T()u|x | < oo,

t= t<

with the following estimates.

4 R(0) + 4(xus,iVuy) . . . C
1. If o < — then £+ . <liminf A4 (¢) <limsup A4+ (t) < ———.
! N 4 Vug| L2 t—koo +(?) t—>:i:oop +(t) IVuy| Lz
4 C . . W(0) + 4(zux,iVuy)
2. If o > — then ———— < liminf A4 (¢) < limsup A4 (t) < £ !
/ N ”vu:I:HL2 t—roo i( ) t—>:i:oop i( ) 4HVU:I:||L2
4 ) h(0) + 4(zuy,iVuy)
L Ifa=— 1 =+
3. Ifa N then t_}glooAi(t) Vs s

Furthermore, h'(0) = 4Im/ga(x)x.Vg0(x)dx and C' = C(sup ||[T(—t)u(t)||x, N, a, A).
teR

4
Remark 2.6. By Theorem 2.1 and 2 of Theorems 2.4 and 2.5, if @ > N when N < 2orif a > N2

when N € {3,4,5}, we have

Im/ )z.Vu_ Im/ x)z.Vo(z)ds < Im/u+ (). Vuy(x)dz, if A <0,
Im/uJr x)r.Vuy (z Im/ z)z.Vo(x Im/ x)r.Vu_(z)dz, if A>0.
RN



Remark 2.7. If ¢ € HY(RY;C) satisfies ¢ = ayp with ¢ € HY(RY;R) and a € C, then we have

d __
R (0) = £||mu(t)|\%2‘t:0 = 4Im/gp(x)x.Vgp(x)dm =0.
RN
The following proposition offers others estimates.

4
N N72(2<a<ooifN:1),g0€Xandletubethe
solution of (1.1) such that w(0) = ¢. Assume that w has a scattering state uy at too. Then the

2
Proposition 2.8. Let A # 0, — < a <

following estimates hold.

H:L’u:tHLz Hvui”Lz + (mui,iVui)

1. 1A <0, Tmsup(lau(t)llzz — [T (Ousz2) <
t—+oo [IVui| 2

im i [zug ||z [[Vug| 2 F (zus,iVuy)
— > _
2. If x>0, ltlgnig(\|xu(t)||Lz lT(t)us||pz) = oo

4
Remark 2.9. By 3 of Theorems 2.4 and 2.5 and by Proposition 2.8, if o = N then we have,

1d .
—lzulezVu-lize < 7 2 leu@®lliz—p < lowsllez Va2, if A <0,

1d

—lzwillezVusllee < 72 leu@®)z),—0 < loule2[Vu-|[z2, if A >0.

Now we give the result concerning the converse.

2 4
Theorem 2.10. Let A # 0, N <a< ~_ 9
solution of (1.1). Assume that u is global in time and there exists uy € X and u_ € X such that
—(N—=2)++VN2+12N +4
2N

2<a<o0if N=1), p € X andu be the associated

, lirin llut) = T(t)us|lx = 0. Let ap = . Then, we have the following
— o0
result.

1. IfA<0and if @ 2 ap (a > g if N =2) then t_l}rin IT(=t)u(t) — ui||x = 0.
o0

. 4 :
2. If x>0 and if o > )i then tigrinoo IT(—t)u(t) — us|x =0.

3. Ifa> and if ||¢|lx is small enough then t_l}im IT(=t)u(t) —uxlx =0.

4
N+2
Remark 2.11. Note that in the case 2, no hypothesis on the ||¢||x’ s size is made.

Remark 2.12. Assume there exists uy,vy € X such that tli$ IT(=t)u(t) — us|lx = 0 and
— =00
\ liim |lu(t) — T(t)v| x = 0. Then we have, uy = vy and u_ = v_. Indeed, since X < L2(RY) and
—4o0
T(t) is an isometry on L?(RY), we have . ligl IT(=t)u(t) — us| 2 = . ligl IT(=t)u(t) — vi|lrz = 0.
— o0 —> 00

Hence the result.

Remark 2.13. o € (Ni+2’ %) (g € (%7 %) if N=1).



3 A priori estimates

Throughout this section, we make the following assumptions.

2
A#£0, = <a<

4 . .
I N72(2<a<oo)1fN—1),goeX,uEC(R,X)lsthe

associated solution of (1.1) and has a scattering state uy € X at =+ oo. ()
We define the following real.
. a;2, it N =1, .
W, it N >2. |

Proposition 3.1. Assume u satisfies (3.1) (we can suppose instead of u has a scattering state that

we only have sup |T(—t)u(t)||x < 00). Let (g,r) be an admissible pair (see Definition 1.1). Then the
teR

following holds.

1. For allt # 0, |Ju(t)||Lr < C|t\7%, where C' = C(sup ||[T(—t)u(t)|| x, N, r).
teR

then u € LY(R; WL (RN)).

4
N/ th
2. If fur ermorea>N+2

Proof. We follow the method of Cazenave [2] (see Theorem 7.2.1 and Corollary 7.2.4). We set
. lx 2
w(t,x) = e_’%u(t,x) and f(u) = Mu|*u. We already know that for every admissible pair (g,r),

u € L (R;WLT(RYN)) (see for example Cazenave [2]; Theorem 5.3.1 and Remark 5.3). We only

loc

prove the case t > 0, the case t < 0 following by applying the result for ¢ > 0 to u(—t) solution of
(1.1) with initial value . We proceed in 2 steps.

Step 1. |lu(t)||L- < C’(itel]g IT(=t)u(t)||x, N,7)|t| ", for every admissible pair (g, 7) and for all ¢ # 0.
We have ||aT(—t)u(t)||r2 = ||(x+2itV)u(t)| L2 < C. Furthermore, (z+2itV)u(t,z) = 2ite’i%Vw(t,x).

Using the Gagliardo-Nirenberg’s inequality, we obtain

lu(®)llz = lo@)lzr < CIVe@OI @)Y
< C (II(x + 20tV )u(t)|| 1) V)

< C|t|—N(%—%),

Hence the result.

Step 2. u € LY(R; WL (RYN)) for every admissible pair (g,7).



By the Strichartz’ estimates and by Holder’s inequality (applying twice), we have

IF ()l o (0,00 1.77) < U|HLG2(@1 ey Tl g 2«1W)Lr2)) lullze@oosmwrn,  (3:3)

1wl La((s,00)w1ry < C + C||U||z%((S,OO);L%)H“”LQ((S,oo);W“)’ (34)

for all S > 0 and for every admissible pair (g,r).

Case N>3. We set r = WJ(VN_Q). Since a € (0, ﬁ) , we have r € (2, %) . So we can take ¢
such that (g, r) is an admissible pair. For this choice of r, we have % = % and q% m

By (3.4) and the first step we have for all S > 0,

q—2
o} i

_ 4o q
Hﬂh%wamWM><C+*7<é t4“W2WQ [[ull La((5,00)w17)

4o 4
And — % 51—
It aN =2~ “N12

oo 40 = 1
C (/ 1 T=a(N=2) dt) < =,
So 2

1l La((50,00);1m) < 2C.

. Thus, there exists Sy > 0 large enough such that

and then,

For this choice of (¢,7), we deduce from (3.3) that || (w1« ((0,c0);w1.~) < o0. Hence the result for
every admissible pair by the Strichartz’ estimates.

Case N=2. Since a > 1 is fixed, we take r > 2 sufficiently close to 2 to have a > . So, in

2(r—1)

particular, % > 2. Moreover, d 5 = g where ¢ is such that (gq,r) is an admissible pair. So by
r— q—

Holder’s inequality (twice), (3.4) and the first step, we have for all S > 0,

o0

1wl La((s,00)w1m) < C 4+ C (/S

2(r—1)

_ra— 2(r 2) %
t dt ||UHLq((S7OO);W1,7‘).

ra—2(r —2)
2
Case N=1. We take (3.3) with the admissible pair (00, 2) and apply the first step. So,

And >1 << a> . And we conclude exactly as the case N > 3.

I1f @)l 210,000 m1) < C (I1ull oo,y mo0) + Null e (1,000 1)) 1l oo ((0,00):21)

< C+ OHU”%Q((LOC)’Loo) S C+ O/t*%dt < 00.

Hence the result for every admissible pair by the Strichartz’ estimates. O



Remark 3.2. We set v(t,z) = (v + 2itV)u(t, z). In the same way as the above proof, we can show

under the assumptions of Proposition 3.1 that if o > , then for every admissible pair (g,r),

4

+2
v € LY(R; L"(RM)) (follow the step 2 of the proof of Corollary 7.2.4 of Cazenave [2]; consider separately
the three cases N =1, N =2, N > 3 and replace the admissible pairs therein by those of the proof

of Proposition 3.1).

Proposition 3.3. Let v* be defined by (3.2). Assume u satisfies (3.1) and a > Then, the

4
N+2
following estimates hold.

1. If N =1 then for all t # 0 we have |T(—t)u(t) — us| g < C|t|~7".

2. If N =2 then for allt # 0 and for any v < v*, we have ||T(—t)u(t) — ux|m < CJt|77.

3. If N >3 then for all t # 0 we have |T(—t)u(t) — us| g < CJt|™7".

Proof. Denote f(u) = Au|*u. We only prove the case t > 0, the case ¢t < 0 following by applying the

result for t > 0 to v(t) = u(—t) solution of (1.1) with v(0) = . In this case, v; = u_ and the result

follows. By applying the Strichartz’ estimates and Holder’s inequality (twice), we have

Ju(t) = T(Eue < CUF N ey < Ol amy oo [l cocgwnny,

for every admissible pair (¢,r) and for all ¢ > 0. Thus, by Proposition 3.1, 2, we have

[u(®) = T()ur] g < Cllufl?

2 (toop LT E)

for every admissible pair (¢, ) and for all ¢ > 0.

Now, we conclude by the same way than for the step 2 of the proof of Proposition 3.1, using 1 of
this proposition, considering separately the three cases N = 1, N = 2, N > 3, and using the same

admissible pairs. This achieves the proof. O

4 Proof of Theorems 2.1, 2.4, 2.5 and Proposition 2.8

Throughout this section, we assume that u satisfies (3.1).

Proof of Theorem 2.1. Since . lirin |IT(—t)u(t) — us|x = 0 and T'(t) is an isometry on H', we
—+oo
have lim ||u(t) —T(t)us|gr = 0. Thus, it is sufficient to prove that lm ||zu(t) — 2T (t)us|/z =0
t—too t—doo

to obtain 1 and that sup ||zu(t) — 2T (t)ut|lL2 < oo and sup ||zu(t) — 2T (t)u—_||2 < oo to obtain
20 t<0



2. Suppose that the result is proved for ¢ > 0. Then we apply it to v(t) = u(—t) solution of (1.1)

with initial data v(0) = @. Then vy = w_ is the scattering state at 400 of u(—t). And using the

identity T'(t)y) = T(—t)v which holds for all t € R and for every 1) € L2, we obtain the result for
t < 0. So to conclude, it is sufficient to prove that tlim |lzu(t) — 2T (t)uy||Lz = 0 to obtain 1 and
—00

sup ||zu(t) — 2T (t)uy |2 < 0o to obtain 2. We have
=

zu(t) — 2T () uy = zu(t) — T(t)xus + 2itT () Vuy
= zu(t) + 2itVu(t) — T(t)xuy + 2itT () Vug — 2itVu(t)
=T(t) [(zT(—t)u(t) — zuy) + 2it(Vug — T(—t)Vu(t))],
for all ¢ > 0. With Proposition 3.3, we obtain
lwu(t) — T (Eus 2o < 0T (~t)u(t) — s s + 2|T(~)Vu(t) — Vauy |
< 2 T(=t)ult) = wuyl|pz + Ct~O7Y,
for all ¢ > 0 and for all v € (0,7*] if N # 2 and for all v € (0,7*) if N = 2, where v* is defined by
(3.2). And by assumption, tlgrolo lT(=t)u(t) — zuil|z = 0 and v* — 1 > 0 if and only if a > NLH if

N >3 and a > % if N < 2. Thus, in the above expression, it is sufficient to choose v = v* if N # 2,

and vy € (0,~7*) close enough to v* if N = 2. Hence the result. O

Remark 4.1. Since we do not have the estimate 2 of Proposition 3.3 for v = v*, we do not know

4
whether or not sup ||u(t) — T'(t)u+||x < oo and sup ||u(t) — T(t)u—||x < co when N =2 and o = N
0 <0
We define the following function h by
Yt € (=T., T%), h(t) = |Jzu(t)|3.. (4.1)
Lemma 4.2. Let u satisfying (3.1) and let h be defined by (4.1). Then h € C*(R), and we have
M) = 4Im/ (t, x)x.Vu(t,z)dz,
vVt € R,
h'(t) = 2N@||VU+\|L2 —2(Na = 4)[[Vu(t)|2.-
Furthermore, if A <0,
vt € R, [Vulle < [Vus e, (42)
and if X >0,
vt R, [Vulle > [Vusze. (43)



Proof. See Ginibre and Velo [6] or Cazenave [2], Proposition 6.4.2 to have h € C?(R), the expression
of i and Vt € R, h"'(t) = ANaE(p) — 2(Now — 4)||Vu(t)||.. Furthermore, using the conservation of
energy and tliimoo lu(t)|| pa+2 = 0 (Proposition 3.1), we obtain ||Vu4 |7, = 2E(p). Which gives, with
the above identity, the desired expression of h”. Finally, with the equality ||Vu||2. = 2E(¢p) and the

conservation of energy, we obtain (4.2) if A < 0 and (4.3) if A > 0. O

Now, we establish 2 lemmas which will be used to prove Theorem 2.4.

Lemma 4.3. Let u satisfying (3.1) and let h be defined by (4.1). Assume that A < 0. Then the

following holds.
h'(O) + 4(1'U+, iVu+)

4
(i) If a< N then limsup(|lzu(t)||rz — |27 ()uy|r2) <
t—o0

4|Vl L2
4 B (0) + 4 AY
(i) If o> then liminf(lou(®)l|zs — 2T (thus|z2) > ”L&ﬁ;“ﬁ
4 . h'(0) 4+ 4(zu,iVu
(i) If a= g then Jim (ou(t)z: ~ o (@)l ) = O,

Proof. We proceed in 4 steps.
4
Step 1. (a) Ifa< N then V¢ > 0, b/ (t) = h/(0) + 2N || Vu||2.t.
4
(b) If o> - then ¥t >0, 1(t) > 1'(0) + 8| Vuuy 1t
4
(¢) Ifar= - then V¢ € R, I/(t) = '(0) + 8] Vu | 7t.

We integrate between 0 and ¢ > 0 the function h” of Lemma 4.2.

4

a < N = —2(Na—4) > 0= (a).
4

a> = —2(Na—4) <0 with (42) = (b).
4

a= = —2(Na —4) =0 =(c).

4
Step 2. (a) Ifa< N then V¢ > 0, 1/ (t) < h'(0) + 8||Vu||3.t.
4
(b) Ifa> N then V¢ > 0, 1/ (t) < 1/(0) + 2Na||[Vuy||2,t.
We integrate between 0 and ¢ > 0 the function h” of Lemma 4.2.
4
a< = —2(Na —4) > 0 and (4.2) =>(a).
4
— —(b).
o> N (b)

4
Step 3. (a) Ifa< N then V¢ > 0,

|zpl|22 + B (0)t + Na||[Vuy ||22t2 < h(t) < ||ze]2e + 2 (0)t + 4| Vuy |22

10



4
(b) If & > — then Vt >0,
N
lzpll72 + h'(0) + 4[| Vui|[728* < h(t) < [lzplZ2 +h'(0)t + Na| Vg |72

4
(¢c) fa= i then Vt € R, h(t) = ||lzpl|2. + 1/ (0)t + 4[| Vug |22
It is sufficient to integrate between 0 and ¢ > 0 the formulas of steps 1 and 2 to obtain the step 3.

Step 4. Conclusion.

We set : g(t) = \/ng0||2L2 + W(0)t + 4[| Vu||3.12, t > 0 large enough.

Then for ¢ > 0 large enough, we have the following asymptotic development:

1 (0) [EXER (1)
t) = 2| Vug || 12t + + Toly ) A4
9(t) = 2[[Vullr UVuyllpz 4| Vuy| 2t ¢ -y

In the same way, for ¢ > 0 large enough, we have :

(zug,iVuy)  [lzug ]2 0<1>, (4.5)

2T (t)ug|| 2 = 2||Vug] g2t —
H () +H H +|| Hvu—i-”L"’ 4||Vu+||L2t t

And, applying the step 3 (a), (4.4) and (4.5) and taking lim sup, we get (i). Indeed,

t—o0

lau(t)|| > — |7 (t)uy ]l L2

h/(O) ||a:<p||22 ($U+ ZVU+) \|xu+H22 1
< 2||Vugy| et + LZ 9| Vugl| g2t + ’ - L ol =
IVesl HVuyllre 4 Vuy| 2t Vel (Vuill:  4[Vui|ret t
B K (0) N lzell2. (Tuy,iVuy) |zus |2, (1)
A Vuilrz  4[Vuylr=t VUt || L2 4| Vuy g2t t

Hence (i) by taking lim sup in the above expression.
t—o0

By applying the step 3 (b), (4.4) and (4.5) and taking htrginf, we get (ii) by the same way.

By applying the step 3 (c), (4.4) and (4.5) and letting ¢ — oo, we get (iii) by the same way. O

Lemma 4.4. Let u satisfying (3.1). Assume that A < 0. Then the following holds.

4 C
(i) If a< N then ligioglf(||xu(t)\|Lz — 2T () uy||2) = “Varle
(i) If a> ! then limsup(||lzu(t)|| lzT(t)us]|r2) < _c
J— 2 — 2 B .
N HoOp L +IIL Vs 12

Furthermore, C = C(sup | T(—t)u(t)||x, N, o, A).
teR

Proof. We proceed in 2 steps. Let h be defined by (4.1).
t s
Na—4

1
Step 1. Vt > 1, f//”Vu(U)H%zdads < CHCt 7 +Ct+||Vuy|?t - §|\Vu+||2L2t2, where
1

1

11



C = Csup [[T(=t)u®)|x, N; o, A).
teR
By Proposition 3.1, we have |lu(o)||$4?, < C(sup IT(=t)u(t)||x, N,a)o~ =, for all ¢ > 0. With the
teR

conservation of energy and the formula |Vu, |3, = 2E(p), we deduce that for all ¢ > 0,
IV I = IVu(0) 2 < Cloup IT(=u(®)x. N Ao~

(since A < 0). Integrating this expression over [1,¢] x [1, s], we obtain the desired result.
Step 2. Conclusion.

(i) Lemma 4.2 implies that for every t > 0,

t s
() = llopl + H(0)t + Na|[Vus 36 — 2(Na — 1) / IVu(o)|fadods. (46
0

By (4.6) and step 1, we obtain,

Vt > 1, h(t) = C+1(0)t+Na|Vuy|3.t? T Ct+2(Na—4) || Vug |22t — (Na—4) ||V |24,

And so for all £ > 1, h(t) = C + Ct 2 + (W (0) — 2(4 — Na)||Vuy |2, — C)t + 4| Vu ||2,¢2. By an

asymptotic development on this last inequality, we obtain

Na—z  K(0) =24 — Na)||Vuyl|?, — C 1
2, W(0) —2(4— No) [ Vus I3 +<>

4 Vuy| 2 t

Jzu(t)|| e = 2| Vuy || g2t + Ct~1 4 Ot~

for all ¢ > 0 large enough. From this last expression and (4.5), we obtain (i) (see the end of the proof
of (i) of Lemma 4.3).

(ii) From (4.6) and step 1, we obtain, for all £ > 1,

h(t) < C + fl(O)t + NCYHVU.},_H%th _QNQ + Ct + Q(NOé — 4)||V’U/+H%2t — (NO( — 4)HVU+||2L27§2

And so, for all t > 1, h(t) <

+(W(0) + 2(Na = 4)|[Vuy |72 + Ot + 4| Vuy |1.£%. By an

asymptotic development on this last inequality, we obtain

Na—z  K(0)—2(4—N 2,+C
2, W(0) =24~ Na) [ Vuu |3 + +0<1>,
4||VU+||L2

lzu(t)|| 2 < 2||Vug | 2t + Ct™t + Ct™ -

for all ¢ > 0 large enough. With this last expression and (4.5), we obtain (ii) (see the end of the proof
of (i) of Lemma 4.3). O

Now, we are able to prove Theorem 2.4.

Proof of Theorem 2.4. As for the proof of Theorem 2.1, it is sufficient to show that

12



| lzw(t)||p2 — |7 (t)us| 2| remains bounded as ¢ — oo. Lemmas 4.3 and 4.4 achieve the proof

and give the desired estimates. O

Now, we establish 2 lemmas which will be used to prove Theorem 2.5. The proof is very similar

to the Theorem 2.4 one.

Lemma 4.5. Let u satisfying (3.1) and let h be defined by (4.1). Assume that A > 0. Then the

following holds.
h/(O) + 4(xu+, iVu+)

. 4 e
() If o< then lminf(lzu(t)lzs — [T (t)us l12) >

Vs e
(i) If o> % then Timsup(|feu(t)]zz — [#T(t)us | 12) < K (0) Léijﬁ;vm)
(i) If o= then Jim (|eu(t)]z: — T (s 2) = "0 T
Proof. We proceed as for the proof of Lemma 4.3, using (4.3) instead of (4.2). 0

Lemma 4.6. Let u satisfying (3.1). Assume that A > 0. Then the following holds.

4 c
1) If a< — then limsup(||zu(t —||zT(t)u <.
i 1f ~ HOop(ll ()2 — =T (t)uy | L2) Vsl
(i) If a> - then liminf(|zu(®)||p — [oT(E)us|g2) > ——OC

N 50 L2 2 I [

Furthermore, C = C(sup | T(—t)u(t)||x, N, a, A).
teR

Proof. We proceed in 2 steps.
t s

Na—4

1
Step 1. Vt > 1, —// Vu(o)||32dods = —C — Ct~ 2 — Ct + | Vuy|/2at — §|\Vu+||2th2, where
1

1
C= C(suﬂlg IT(—t)u(t)||x, N, a,A).
te
By Proposition 3.1, we have ||u(a)||%i'32 < C(sup |T(—t)u(t)||x, N, a)o~ 2", for all & > 0. With the
teR

conservation of energy and the equality ||Vu 2. = 2E(p), we deduce that for all o > 0,
IVurllZe = IVu(o)ll7: > ~Clsup IT(=tyu(t) |x, Ny, Ao %"
te

(since A > 0). Integrating this expression over [1,¢] x [1, s], we get the desired result.

Step 2. Conclusion.

13



First, note that we have for all ¢t > 1,

// V(o) ||2.dods
// IV )||L2dads+/ / 1V )||L2dods+// IVu(o)|22dods
// 2 )||L2dads+// Veu(o)|2dods.

t t

/ / IVu(o) | Eadods < C(llelm, NNt + / IVu(o)|2-dods,
1

0

And so,

for all ¢ > 1. And we proceed as for the proof of Lemma 4.4. O
Now, we are able to prove Theorem 2.5.

Proof of Theorem 2.5. As for the proof of Theorem 2.1, it is sufficient to show that
| lzw(t)||p2 — ||#T(t)ut| 2| remains bounded as t — oo. Lemmas 4.5 and 4.6 achieve the proof

and give the desired estimates. O

Proof of Proposition 2.8. By Cauchy-Schwarz’ inequality, we have
| lzu(@®)[ Lz = 26 Vut)|[ 2| < [T (=t)u(®)]| >, (4.7)

for all t € R and for every A # 0.

We have also the following estimate.

2T () us |2 = 2t Vuy | L2 —

. 2
(zuy,iVuy) 7w ||7» (1) , (4.8)

Vuillz: AlVuy |zt

for all ¢ > 0 large enough and for every A\ # 0.
We first establish 1 in the case t > 0 that we note in this proof 1,. 1 in the case t < 0 is obviously
noted 1_. By (4.7), (4.8) and (4.2), we have

lzu(t) |2 — |7 (t)uy ]| L2

U4, VU zuL||?, 1
< 2AIVu(O)lze + [T (D]l — 2| Vuuy]|ge + o Vee) el ()

IVuilzz 4] Vuyllet t

v 2 1
(zuq,iVuy) |7 JrO< )

IVuille 4 Vuyllpat t

< leT(=tu(t)] 2 +

for all ¢ > 0 large enough.

Hence 14 by taking limsup in the above expression. 1_ follows by applying 1 to v solution of (1.1)
t—o0
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such that v(0) = ®. Indeed, by uniqueness v(¢) = u(—t) and so v; = u_. Then, using 1, and the

identity T'(t)1) = T'(—t)3 which holds for all ¢ € R and ¢ € L2, we obtain 1_.

Using (4.3) instead of (4.2), we obtain 2 by the same way. O

5 Proof of Theorem 2.10

Proof of Theorem 2.10. We proceed in 2 steps.

Step 1. We have 1 and 3.

It is well-known that there exist v+ € X such that T'(—¢t)u(¢) ﬁ vy (Cazenave and Weissler [3]).
The result follows from Remark 2.12.

Step 2. We have 2.

We set v(t,z) = (z + 2itV)u(t,x), w(t,z) = e_i%u(tw) and f(u) = Au|*u. Since T'(t) is an

2 N
isometry on H'(R™), we only have to show that x7'(—t)u(t) f_f;i)) rus. We have X — LT2(RY),
LoT2(RY) . - _ .
thus u(t) — T(t)us i 0 and so tllgznoo lu(®)|lpa+z = tllimoo IT(t)us||pa+2 = 0. Therefore, since
4
o> N,
u € LYR; W (RY)), (5.1)
v e LIR; L™ (RY)), (5.2)
for every admissible pair (g,7) (see for example Cazenave [2], Theorem 7.5.3 for (5.1); following the

proof of this theorem with v instead of u, yields (5.2)).

From (5.2) we have in particular, v € L (R; L2(RY)) and so by Proposition 3.1, 1,
_2
lu(®)]l- < ClE ™7, (5.3)

for every admissible pair (g,r) and for all ¢ # 0.
We have the following integral equation. For all t € R,

+oo

u(t) =T{t)ux — i / T(t —s)f(u(s))ds,

from which we deduce,

+oo
Vi € R, T(8)(@T(—t)u(t) — zuy) = —i / T(t — )z + 2isV) f(u(s))ds. (5.4)

15



- |a 2 - |a 2
We also have (z + 2itV)u(t,z) = 2ite’%Vw(t,x). Moreover, e_z%f(u(um)) = f(w(t,z)). Thus,
212
(x +2itV) f(u(t,z)) = Zitei%Vf(w(t,x)), and so |(z 4 2itV) f(u(t, z))| = 2|t||V f(w(¢, z))|. Finally,
(z+2itV) f(w)|| v = 2E| IV f(w)]l . < Clt||[|w]|*Vw]|| .. From this inequality, by using the Hélder’s

inequality twice, we deduce that (note that |w| = |ul)

I + 209) £ () o 1,2y < Clall® o, @ + 20t )ull o1, (5.5)

go_ _ra_
q—2 (I)L r—2 )
for every admissible pair (g,7) and for any interval I C R. From (5.4), from the Strichartz’ estimates,
from (5.5) and from (5.2), we have
[#T(=t)u(t) — zuy |2 = |T(t)(@T(=t)u(t) — zuy)l| L2

< Cll(z +2isV) f (Wl Lo (1,000 1)

«
S CHu”quf"‘ ((t,oo);L%)HUHLq(R;U)
< Cllufl o

La=2 ((t,00);L7-2)
for every admissible pair (¢,r) and for all ¢ > 0.

We use this inequality with the admissible pair (g, r) such that r = o + 2 and we apply (5.3). Then,

q—2

20 a _20-(a=2) ¢yeo
laT(—t)u(t) — zuy||2 < C / s a-2ds < Ct . —0,
t

4
since o > N =—> 2a > q — 2. Hence the result. The case t < 0 follows with the same method. O
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