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Abstract: This paper develops a framework to study the economic impact of infectious

diseases by integrating epidemiological dynamics into a growth model. There is a two

way interaction between the economy and the disease: the incidence of the disease affects

labor supply and investment in health capital can affect the incidence and recuperation

from the disease. Thus, both the disease incidence and the income levels are endogenous.

The disease dynamics make the control problem non-convex and a new existence theorem

is given. There are multiple steady states and the local dynamics of the model are fully

characterized. A disease free steady state always exists, but it could be unstable. An

endemic steady state may exist, in which the optimal health expenditure can be positive

or zero depending on the parameters of the model. The interaction of the disease and

economic variables is non-linear and can be non-monotonic. The model can also generate

an endogenous positive correlation between income and the health expenditure share.
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1 Introduction

This paper develops a theoretical framework to jointly model the determination of income

and disease prevalence by integrating epidemiological dynamics into a continuous time

neo-classical growth model. It allows us to address the issue of what is the optimal

investment in health when there is a two way interaction between the disease transmission

and the economy: the disease transmission affects the labor force and thus, economic

outcomes; while economic choices on investment in health expenditure affect the disease

transmission - expenditure in health leads to accumulation of health capital which reduces

infectivity to and increases recovery from the disease. In this paper we study what is the

best that society can do in controlling the disease transmission by taking into account

the externality associated with its spread (see Geoffard and Philipson (1997) and Miguel

and Kremer (2004) on externalities of disease transmission). Thus, we look at the social

planning problem (see Hall and Jones (2007) which takes a similar approach for non-

infectious diseases). We show a steady state with disease prevalence and zero health

expenditure could be optimal as it depends on the relative magnitude of marginal product

of physical capital investment and health expenditure.

The key contribution of this paper is that we model both disease dynamics and accu-

mulation of physical and health capital. The existing literature does not simultaneously

model these together (see e.g. Bell, et al. (2003), d’Albis and Augeraud-Véron (2008),

Delfino and Simmons (2000), Geoffard and Philipson (1997), Gersovitz and Hammer

(2004), Goenka and Liu (2010)). In modeling the interaction between infectious diseases

and the macroeconomy, we expect savings behavior to change in response to changes in

disease incidence. Thus, it is important to incorporate this into the dynamic model to be

able to correctly assess the impact of diseases on capital accumulation and hence, growth

and income. As the prevalence of diseases is affected by health expenditure, which is

an additional decision to the investment and consumption decision, this has to be mod-

eled as well. Without modeling both physical and health capital accumulation and the

evolution of diseases at the same time, it is difficult to understand the optimal response

to disease incidence. As the literature does not model both disease dynamics and capi-

tal accumulation explicitly, the existing models are like a black-box: the very details of

disease transmission and the capital accumulation process that are going to be crucial

in understanding their effects and for the formulation of public policy, are obscured. We

find that even when the strong assumption of log-linear preferences is made (which is usu-

ally invoked to justify fixed savings behavior) there can be non-linear and non-monotonic

changes in steady state outcomes.

In order to model the disease transmission explicitly we integrate the epidemiology lit-

erature (see Anderson and May (1991), Hethcote (2009)) into dynamic economic analysis.

In this paper we examine the effect of the canonical epidemiological structure for recurring

diseases - SIS dynamics - on the economy. SIS dynamics characterize diseases where
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upon recovery from the disease there is no subsequent immunity to the disease. This

covers many major infectious diseases such as flu, tuberculosis, malaria, dengue, schis-

tosomiasis, trypanosomiasis (human sleeping sickness), typhoid, meningitis, pneumonia,

diarrhoea, acute haemorrhagic conjunctivitis, strep throat and sexually transmitted dis-

eases (STD) such as gonorrhea, syphilis, etc (see Anderson and May (1991)). While this

paper concentrates on SIS dynamics, it can be extended to incorporate other epidemi-

ological dynamics. An easy way to understand epidemiology models is that they specify

movements of individuals between different states based on some ‘matching’ functions or

laws of motion. Thus, the modeling strategy in the paper can be applied to other contexts

such as labor markets with search, diffusion of ideas (Jovanovic and Rob (1989)), etc. In

particular, the joint modeling of the non-concave law of motion and capital accumulation

may be applicable to these models. As the law of motion of the disease is non-concave,

Arrow and Mangasarian conditions cannot be applied. We thus, show the existence of

a solution to the optimal problem. The conditions we use are weaker than those in the

literature (Chichilinksy (1981), d’Albis, et al. (2008), Romer (1986)).

In this paper we find a disease-free steady state always exists. It is unique when the

birth rate is high. The basic intuition is that healthy individuals enter the economy at

a faster rate than they contract the disease so that eventually it dies out even without

any intervention. As the birth rate decreases, disease-free steady state undergoes a trans-

critical bifurcation and there are multiple steady states. The disease-free steady state still

exists but is unstable. An endemic steady state also exists with positive or zero health

expenditure depending on the relative magnitude of marginal product of physical capital

investment and health expenditure. We show that in an endemic steady state it is socially

optimal not to invest in health capital if the discount rate (which indexes longetivity) is

sufficiently high or people are very impatient, while there are positive health expenditures

if it is low or people are patient. A sufficient condition is provided to guarantee the local

saddle-point stability.

This paper sheds light on two strands of recent empirical literature: studies on the

relationship between economic variables and disease incidence, and the relationship be-

tween income and health expenditure share. The former tries to quantify the impact of

infectious diseases on the economy and one important issue is solving the endogeneity

of disease prevalence (see Acemoglu and Johnson (2007), Ashraf, et al. (2009), Bloom,

et al. (2009), Young (2005)). Our model, which endogenizes both income and disease

incidence, shows that reduced form estimation by assuming a linear relationship is not

well justified as non-linearity is an important characteristic of models associated with the

disease transmission, and this nonlinearity in disease transmission can become a source of

non-linearities in economic outcomes. The latter tries to identify the cause of the chang-

ing share of health expenditures. Our findings suggest increase in longevity or decrease

in the fertility rate could also generate a positive relationship between income and health

expenditure share as observed in the data.
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In this paper we abstract away from disease related mortality. This is a significant

assumption as it shuts down the demographic interaction. This assumption is made for

three reasons. First, several SIS diseases have low mortality so there is no significant loss

by making this assumption. Secondly, from an economic modeling point of view, we can

use the standard discounted utility framework with a fixed discount rate if mortality is

exogenous. Thirdly, introducing disease related mortality introduces an additional state

variable, population size, and does not permit analysis in per capita terms. In the paper

we, however, study the effect of changes in the discount rate on the variables of interest.

As discussed in the literature, an increase in longevity reduces discounting, and thus the

analysis of varying the discount rate captures some effects of change in mortality.

The paper is organized as follows: Section 2 describes the model and in Section 3 we

establish existence of an optimal solution. Section 4 studies the steady state equilibria,

and Section 5 contains the stability and bifurcation analysis of how the nature of the

equilibria change as parameters are varied. Section 6 studies the effect on steady states

of varying the discount and birth rates, and the last section concludes.

2 The Model

In this paper we study the canonical deterministic SIS model which divides the population

into two classes: susceptible (S) and infective (I) (see Figure 1). Individuals are born

healthy but susceptible and can contract the disease - becoming infected and capable of

transmitting the disease to others, i.e. infective. Upon recovery, individuals do not have

any disease conferred immunity, and move back to the class of susceptible individuals.

Thus, there is horizontal incidence of the disease so the individuals potentially contract

the disease from their peers. This model is applicable to infectious diseases which are

absent of immunity or which mutate rapidly so that people will be susceptible to the

newly mutated strains of the disease even if they have immunity to the old ones. As

there is no disease conferred immunity, there typically do not exist robust vaccines for

diseases with SIS dynamics. There is homogeneous mixing so that the likelihood of any

individual contracting the disease is the same, irrespective of age. Let St be the number of

susceptibles at time t, It be the number of infectives and Nt the total population size. The

fractions of individuals in the susceptible and infected class are st = St/Nt and it = It/Nt,

respectively. Let α be the average number of adequate contacts of a person to catch the

disease per unit time or the contact rate. Then, the number of new cases per unit of

time is (αIt/Nt)St. This is the standard model (also known as frequency dependent) used

in the epidemiology literature (Hethcote (2009)). The basic idea is that the pattern of

human interaction is relatively stable and what is important is the fraction of infected

people rather than the total number: If the population increases, the pattern of interaction

is invariant. Thus, only the proportion of infectives and not the total size is relevant for
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Figure 1: The transfer diagram for the SIS epidemiology model

the spread of the disease. The parameter α is the key parameter and reflects two different

aspects of disease transmission: the biological infectivity of the disease and the pattern

of social interaction. Changes in either will change α. The recovery of individuals is

governed by the parameter γ and the total number of individuals who recover from the

disease at time t is γIt.

Many epidemiology models assume total population size to be constant when the

period of interest is short, i.e. less than a year, or when natural births and deaths and

immigration and emigration balance each other. As we are interested in long run effects,

we assume that there is a constant birth rate b, and a constant (natural) death rate d.

Assumption 1 The birth rate b and death rate d are positive constant scalars with b ≥ d.

Thus, the SIS model is given by the following system of differential equations (Heth-

cote (2009)):

dSt/dt = bNt − dSt − αStIt/Nt + γIt

dIt/dt = αStIt/Nt − (γ + d)It

dNt/dt = (b− d)Nt

St, It, Nt ≥ 0∀t; S0, I0, N0 > 0 given with N0 = S0 + I0.

Since Nt = St + It for all t, we can simplify the model in terms of the susceptible

fraction st:

ṡt = (1− st)(b + γ − αst) (1)

with the total population growing at the rate b− d. Note that while it may appear from

equation (1) that the dynamics are independent of d, it should be kept in mind that s is the

susceptible fraction and both the number of susceptibles and the total population depend

on d. In this pure epidemiology model, there are two steady states (ṡt = 0) given by:
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Figure 2: The steady states, local stability and bifurcation diagram for SIS model

s∗1 = 1 and s∗2 = b+γ
α

. We notice s∗1 (the disease-free steady state) exists for all parameter

values while s∗2 (the endemic steady state) exists only when b+γ
α

< 1. Linearizing the

one-dimensional system around its equilibria, the Jacobians are Ds|s∗1 = α − γ − b and

Ds|s∗2 = γ + b− α. Thus, if b > α − γ the system only has one disease-free steady state,

which is stable, and if b < α− γ the system has one stable endemic steady state and one

unstable disease-free steady state (See Figure 2). Hence, there is a bifurcation point, i.e.

b = α − γ, where a new steady state emerges and the stability of the disease free steady

state changes.1

In this paper, we endogenize the parameters α and γ in a two sector growth model. The

key idea is that the epidemiology parameters, α, γ, are not immutable constants but are

affected by (public) health expenditure. As there is an externality in the transmission of

infectious diseases, there may be underspending on private health expenditure, and due to

the contagion effects, private expenditure may not be sufficient to control incidence of the

disease.2 We want to look at the best possible outcome which will increase social welfare.

Thus, we study the social planner’s problem and concentrate on public health expenditure.

In this way, the externalities associated with the transmission of the infectious diseases

can be taken into account in the optimal allocation of health expenditure.

We now develop the economic model. There is a population of size Nt growing over

time at the rate of b − d. Each individual’s labor is indivisible: We assume infected

1Note equation (1) can be solved analytically and these dynamics are global. Since ṡt = (1− st)(b +
γ − αst), with initial value s0 < 1, is a Bernoulli differential equation, the explicit unique solution is:
st = 1− e[α−(γ+b)]t

α
α−(γ+b) e[α−(γ+b)]t+ 1

1−s0
− α

α−γ−b

(for b 6= α− γ) and st = 1− 1
αt+ 1

1−s0

(for b = α− γ).
2The literature on rational epidemics as in Geoffard and Philipson (1996), Kremer (1996), Philipson

(2000) looks at changes in epidemiology parameters due to changes in individual choices. Individual
choice is more applicable to disease which transmit by one-to-one contact, such as STDs.
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people cannot work and labor force consists only of healthy people with labor supplied

inelastically.3 Thus, in time period t the labor supply is Lt = Nt − It = St and hence, Lt

inherits the dynamics of St, that is,

l̇t = (1− lt)(b + γ − αlt),

in terms of the fraction of effective labor lt = Lt/Nt. We allow for health capital to af-

fect the epidemiology parameters, hence, allowing for a two-way interaction between the

economy and the infectious diseases. We endogenize them by treating the contact rate

and recovery rate as functions of health capital per capita ht. This takes into account

intervention to control the transmission of infectious diseases through their preventive or

therapeutic actions. When health capital is higher people are less likely to get infected

and more likely to recover from the diseases. We assume that the marginal effect dimin-

ishes as health capital increases. We further assume that the marginal effect is finite as

health capital approaches zero so that a small public health expenditure will not have a

discontinuous effect on disease transmission.

Assumption 2 The epidemiology parameter functions α(ht), <+ → <+ and γ(ht): <+ →
<+ satisfy:

1. α is a C∞ function with α′ ≤ 0, α′′ ≥ 0, limht→0 |α′| < ∞, limht→∞ α′ = 0 and

α → α as ht → 0;

2. γ is a C∞ function with γ′ ≥ 0, γ′′ ≤ 0, limht→0 γ′ < ∞, limht→∞ γ′ = 0 and γ → γ

as ht → 0. 4

We assume physical goods and health are generated by different production functions.

The output is produced using physical capital and labor, and is either consumed, invested

into physical capital or spent in health expenditure. The health capital is produced only

by health expenditure.5 For simplicity, we assume the depreciation rates of two capitals

are the same and δ ∈ (0, 1). Thus, the physical capital kt and health capital ht are

accumulated as follows.

k̇t = f(kt, lt)− ct −mt − δkt − kt(b− d)

ḣt = g(mt)− δht − ht(b− d),

3This can be extended to incorporate a partial rather than full loss of productivity due to the illness.
Endogenous labor supply could also be introduced and see Goenka and Liu (2010) for details. They show
the dynamics are invariant to introduction of endogenous labor supply choice under certain regularity
conditions.

4For analysis of the equilibria C2 is required and for local stability and bifurcation analysis at least
C5 is required. Thus, for simplicity we assume all functions to be smooth functions.

5This health capital production function could depend on physical capital as well. If this is the case,
there will be an additional first order condition equating marginal product of physical capital in the two
sectors and qualitative result of the paper still hold.
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where ct is consumption and mt is health expenditure.

The physical goods production function f(kt, lt) and health capital production function

g(mt) are the usual neo-classical technologies. The health capital production function is

increasing in health expenditure but the marginal product is decreasing. The marginal

product is finite as health expenditure approaches zero as discussed above.

Assumption 3 The production function f(kt, lt) : <2
+ → <+:

1. f(·, ·) is C∞;

2. f1 > 0, f11 < 0, f2 > 0, f22 < 0, f12 = f21 > 0 and f11f22 − f12f21 > 0;

3. limkt→0f1 = ∞, limkt→∞f1 = 0 and f(0, lt) = f(kt, 0) = 0.

Assumption 4 The production function g(mt) : <+ → <+ is C∞ with g′ > 0, g′′ < 0,

limmt→0g
′ < ∞ and g(0) = 0.

We further assume utility function depends only on current consumption,6 is additively

separable, and discounted at the rate θ > 0.

Assumption 5 The instantaneous utility function u(ct) : <+ → <+ is C∞ with u′ > 0,

u′′ < 0 and limct→0 u′ = ∞.

Given concavity of the period utility function, any efficient allocation will involve full

insurance. Thus, consumption of each individual is the same irrespective of health status

and we do not need to keep track of individual health histories. So we could look at

the optimal solution where the social planner maximizes the discounted utility of the

representative consumer:7

max
c,m

∫ ∞

0

e−θtu(c)dt

subject to

k̇ = f(k, l)− c−m− δk − k(b− d) (2)

ḣ = g(m)− δh− h(b− d) (3)

l̇ = (1− l)(b + γ(h)− α(h)l) (4)

k ≥ 0, m ≥ 0, h ≥ 0, 0 ≤ l ≤ 1 (5)

k0 > 0, h0 ≥ 0, l0 > 0 given. (6)

6We could instead assume utility function depends on both consumption and leisure. As long as
we assume it is separable in consumption and leisure, the social planner’s problem is well defined. See
Goenka and Liu (2010) for details.

7Alternatively instead of maximizing the representative agent’s welfare we could maximize the total
welfare by using

∫∞
0

e−θte(b−d)tN0u(ct)dt (see the discussion in Arrow and Kurz (1970)). It is equivalent
to having lower discounting. The qualitative results of this paper still remain although the optimal
allocation may vary slightly.
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It is worthwhile noting here that we have irreversible health expenditure as it is unlikely

that the resource spent on public health can be recovered. For simplicity, we drop time

subscript t when it is self-evident.

3 Existence of an optimal solution

In the problem we study, the law of motion of the labor force (equation (4)) is not concave

reflecting the increasing return of controlling diseases so that the Mangasarian conditions

do not apply.8 In addition the maximized Hamiltonian, H∗, may not be concave as it is

possible that ∂2H∗

∂2l
> 0. Thus, the Arrow sufficiency conditions do not apply. Hence, we di-

rectly show the existence of a solution with less stringent conditions than in the literature,

which is appropriate for the problem at hand. The argument for existence of solutions

relies on compactness of the feasible set and some form of continuity of objective func-

tion. We first prove the uniform boundedness of the feasible set (which are assumptions in

Romer (1986) and in d’Albis et al. (2008)) that deduces the Lebesgue uniformly integra-

bility. Let us denote by L1(e−θt) the set of functions f such that
∫∞

0
|f(t)| e−θtdt < ∞. Re-

call that fi ∈ L1(e−θt) weakly converges to f ∈ L1(e−θt) for the topology σ(L1(e−θt), L∞)

(written as fi ⇀ f ) if and only if for every q ∈ L∞,
∫∞

0
fiqe

−θtdt converges to
∫∞

0
fqe−θtdt

as i → ∞ (written as
∫∞

0
fiqe

−θtdt −→
∫∞

0
fqe−θtdt). When writing fi −→ f, we mean

that for every t ∈ [0,∞), limi→∞ fi(t) = f(t), i.e. there is pointwise convergence.

We make the following assumption:

Assumption 6 There exists κ ≥ 0, κ 6= ∞ such that −κ ≤ k̇/k.

This reasonable assumption implies that it is not possible that the growth rate of

physical capital converges to −∞ rapidly and is weaker than those used in the literature

(see, e.g. Chichilnisky (1981), LeVan and Vailakis (2003), d’Albis et al. (2008)). LeVan

and Vailakis (2003) use this assumption in a discrete-time optimal growth model with

irreversible investment: 0 ≤ (1 − δ)kt ≤ kt+1 or −δ ≤ (kt+1 − kt)/kt. δ > 0 is the

physical depreciation rate in their model, and thus is equivalent to κ. Let us define

the net investment : ι = k̇ + (δ + b − d)k = f(k, l) − c − m. A.6 then implies there

exists κ ≥ 0, κ 6= ∞ such that ι + [κ − (δ + b − d)]k ≥ 0. If the standard assumption

2 (v) in Chichilnisky (1981) holds (non-negative investment, ι ≥ 0) then A.6 holds with

κ = δ + b − d. Therefore, assuming non-negative investment is stronger than A.6 in the

sense that κ can take any value except for infinity.

We divide the proof into two lemmas. The first lemma proves the relatively weak

compactness of the feasible set. For this we show that the relevant variables are uniformly

8This can be seen from the Hessian:

(
2α −γ′ − α′ + 2α′l

−γ′ − α′ + 2α′l (1− l)(γ′′ − α′′l)

)
.
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bounded and hence, are uniformly integrable. Using the Dunford-Pettis Theorem we then

have relatively weak compactness of the feasible set.

Lemma 1 Let us denote by K = {(c, k, h, l,m, k̇, ḣ, l̇)} the feasible set satisfying equations(2)-

(6). Then K is relatively weak compact in L1(e−θt).

Proof. See Appendix A for the proof.

Since K is relatively compact in the weak topology σ(L1(e−θt), L∞), a sequence zi =

{ci, ki, hi, li, mi, k̇i, ḣi, l̇i} inK has convergent subsequences (denoted by {ci, ki, hi, li, mi, k̇i, ḣi, l̇i}
for simplicity of notation) which weakly converges to some limit point {c∗, k∗, h∗, l∗, m∗, k̂, ĥ, l̂}
in L1(e−θt) as i →∞.

The following Lemma shows that the control variables and derivatives of state variables

weakly converge in the weak topology σ(L1(e−θt), L∞), while the state variables converge

pointwise. In addition, the limit of the sequence of the time derivatives of the state

variables, is the time derivative of the limit point of the state variables. Also note that

as we are considering a feasible sequence, the weight ωi(n) is the same for all the variables

in the sequence. This fact becomes important in the main existence proof.

Lemma 2 1. Consider zi ∈ K and suppose that ki ⇀ k∗, hi ⇀ h∗, li ⇀ l∗. Then

ki −→ k∗, hi −→ h∗, li −→ l∗ as i →∞. Moreover, k̇i ⇀ k̇∗, ḣi ⇀ ḣ∗, l̇i ⇀ l̇∗ for the

the topology σ(L1(e−θt), L∞).

2. Consider zi ∈ K and suppose that zi⇀z∗ in σ(L1(e−θt), L∞). Then there exists a

function N : N → N and a sequence of sets of real numbers {ωi(n) | i = n, ...,N (n)}
such that ωi(n) ≥ 0 and

∑N (n)
i=n ωi(n) = 1 such that the sequence vn defined by vn =∑N (n)

i=n ωi(n)zi → z∗ as n →∞.

Proof. 1) For any xi ∈ K and xi ⇀ x∗. We first claim that, for t ∈ [0,∞),
∫ t

0
xids →∫ t

0
x∗ds. Note that xi ⇀ x∗ for the topology σ(L1(e−θt), L∞) if and only if for every

q ∈ L∞,
∫∞

0
xiqe

−θtdt →
∫∞

0
x∗qe−θtdt.

Pick any t in [0,∞) and let

q(s) =

{
1

e−θs if s ∈ [0, t]

0 if s > t.

Therefore, q ∈ L∞ and we get
∫ t

0
xids =

∫∞
0

xiqe
−θsds →

∫∞
0

x∗qe−θsds =
∫ t

0
x∗ds .

Now, given that ki ⇀ k∗ and k̇i ⇀ k̂ weakly in L1(e−θt). By the claim, for all

t ∈ [0,∞) we have
∫ t

0
k̇ids →

∫ t

0
k̂ds . This implies, for a fixed t, ki →

∫ t

0
k̂ds + k0. Thus∫ t

0
k̂ds + k0 = k∗. Therefore, k̇∗ = k̂ or k̇i ⇀ k̇∗. The same reasoning applies for h and l
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to get the conclusion. The other variables weakly converge as K is relatively compact in

the weak topology.

2) A direct application of Mazur’s Lemma.

We are now in a position to prove the existence of solution to the social planner’s

problem.

Theorem 1 Under Assumptions A.1-A.6, there exists a solution to the social planner’s

problem.

Proof. Since u is concave, for any c̄ > 0, u(c)−u(c̄) ≤ u′(c̄)(c−c̄). Thus, if c ∈ L1(e−θt)

then
∫∞

0
u(c)e−θtdt is well defined as∫ ∞

0

u(c)e−θtdt ≤
∫ ∞

0

[u(c̄)− u′(c̄)c̄]e−θtdt + u′(c̄)

∫ ∞

0

ce−θtdt < +∞.

Let us define S :
def
= supc∈K

∫∞
0

u(c)e−θtdt. Assume that S > −∞ (otherwise the proof is

trivial). Let ci ∈ K be the maximizing sequence of
∫∞

0
u(c)e−θtdt so limi→∞

∫∞
0

u(ci)e
−θtdt =

S.

Since K is relatively weak compact, suppose that ci ⇀ c∗ for some c∗ in L1(e−θt). By

Lemma 2, there is a sequence of convex combinations

xn =

N (n)∑
i=n

ωi(n)ci(n) → c∗, with ωi(n) ≥ 0 and

N (n)∑
i=n

ωi(n) = 1.

Because u is concave, we have

lim sup
n→∞

u(xn) = lim sup
n→∞

u(

N (n)∑
i=n

ωi(n)ci(n))

≤ lim sup
n→∞

[u(c∗) + u′(c∗)(

N (n)∑
i=n

ωi(n)ci(n) − c∗)] = u(c∗).

Since this holds for almost all t, integrate w.r.t e−θtdt to get∫ ∞

0

lim sup
n→∞

u(xn)e−θtdt ≤
∫ ∞

0

u(c∗)e−θtdt.

Using Fatou’s lemma we have

lim sup
n→∞

∫ ∞

0

u(xn)e−θtdt ≤
∫ ∞

0

lim sup
n→∞

u(xn)e−θtdt ≤
∫ ∞

0

u(c∗)e−θtdt. (7)

11



Moreover, by Jensen’s inequality we get

lim sup
n→∞

∫ ∞

0

u(xn)e−θtdt ≥ lim sup
n→∞

N (n)∑
i=n

ωi(n)

∫ ∞

0

u(ci(n))e
−θtdt. (8)

But since
∫∞

0
u(ci(n))e

−θtdt → S, (7) and (8) imply
∫∞

0
u(c∗)e−θtdt ≥ S.

So it remains to show that c∗ is feasible (because K is only relatively weak compact,

it is not straightforward that c∗ ∈ K). The task is now to show that there exists some

(k∗, l∗, h∗, m∗) in K such that (c∗, k∗, l∗, h∗, m∗) satisfy (2)-(6).

Consider a feasible sequence (ki(n), li(n), hi(n), mi(n)) in K associated with ci(n) we have

c∗ = lim
n→∞

xn = lim
n→∞

N (n)∑
i=n

ωi(n)ci(n)

= lim
n→∞

N (n)∑
i=n

ωi(n)[f(ki(n), li(n))−mi(n) − ki(n)(δ + b− d)− k̇i(n)]

=

N (n)∑
i=n

ωi(n)[f( lim
n→∞

ki(n), lim
n→∞

li(n))− (δ + b− d) lim
n→∞

ki(n)]

− lim
n→∞

N (n)∑
i=n

ωi(n)k̇i(n) − lim
n→∞

N (n)∑
i=n

ωi(n)mi(n).

According to Lemma 2, there exists k∗, l∗ such that limn→∞ ki(n) = k∗, limn→∞ li(n) = l∗.

By Lemma 2, k̇i(n) ⇀ k̇∗ and since mi(n) in K, there exists m∗ such that mi(n) ⇀ m∗.

Thus it follows from Lemma 2 that

lim
n→∞

N (n)∑
i=n

ωi(n)k̇i(n) → k̇∗, lim
n→∞

N (n)∑
i=n

ωi(n)mi(n) → m∗.

Therefore,

c∗ = f(k∗, l∗)− k̇∗ −m∗ − δk∗ − k∗(b− d).

Since l̇i ⇀ l̇∗, by Lemma 2, there exists vn =
∑N (n)

i=n ωi(n)l̇i(n) → l̇∗ as n →∞. Thus,

l̇∗ = lim
n→∞

N (n)∑
i=n

ωi(n)l̇i(n) = lim
n→∞

N (n)∑
i=n

ωi(n)[(1− li(n))(b + γ(hi(n))− α(hi(n))li(n))].

In view of Lemma 2 , h
i(n)

−→ h∗, l
i(n)

−→ l∗ as n → ∞ and γ(h
i(n)

), α(h
i(n)

) are

continuous, we get

l̇∗ =

N (n)∑
i=n

ωi(n)[(1− l∗)(b + γ(h∗)− α(h∗)l∗)]

= (1− l∗)(b + γ(h∗)− α(h∗)l∗).

12



Applying a similar argument and using Jensen’s inequality yields

ḣ∗ = lim
n→∞

N (n)∑
i=n

ωi(n)ḣi(n) = lim
n→∞

N (n)∑
i=n

ωi(n)[g(mi(n))− δhi(n) − hi(n)(b− d)]

≤ g( lim
n→∞

N (n))∑
i=n

ωi(n)(δ + b− d)hi(n)

= g(m∗)− δh∗ − h∗(b− d).

Thus

g(m∗) ≥ δh∗ + h∗(b− d) + ḣ∗. (9)

Because u is increasing, c∗ = f(k∗, l∗)−k̇∗−m∗−δk∗−k∗(b−d) should be the maximal

value which implies, at the optimum, m∗ should be the minimal value. Therefore the

constraint (9) should be binding at the optimum since g(m) is increasing.

The proof is done.

We have shown that the control variables c, m and derivatives of state variables weakly

converge in the weak topology σ(L1(e−θt), L∞), while the state variables converge point-

wise (Lemma 2). The problem is that even if we have a weakly convergent sequence, the

limit point may not be feasible. For pointwise convergent sequences, the continuity is

all that is necessary to prove the feasibility. Therefore, concavity is not needed for state

variables. Theorem 1 shows that the limit point is indeed optimal in the original prob-

lem. For weakly convergent sequence, Mazur’s Lemma is used to change into pointwise

convergence. Jensen’s inequality is used to eliminate the convex-combination-coefficients

to prove the feasibility. Thus, concavity with respect to control variables is crucial. Our

proof is adapted from work of Chichilnisky (1981), Romer (1986) and d’Albis, et al.

(2008) to the SIS dynamic model with less stringent assumptions and a nonconvex tech-

nology. Chichilnisky (1981) used the theory of Sobolev weighted space and imposed a

Caratheodory condition on utility function, Romer (1986) made assumptions that utility

function has an integrable upper bound, satisfies a growth condition and d’Albis et al

(2008) assumed feasible paths are uniformly bounded and the technology is convex with

respect to the control variables.

4 Characterization of Steady States

To analyze the solution to the planner’s problem, we look at first order conditions to

the optimal solution. This is valid as we know that these conditions are necessary and

a solution exists, and thus a solution must satisfy these conditions. Note that we allow

for corner solutions. As we will see for some parameters there is a unique (steady state)

solution to the first order conditions. For others, there are multiple steady state solutions.

13



From the Inada conditions we can rule out k = 0, and the constraint l ≥ 0 is not

binding since l̇ = b + γ > 0 whenever l = 0. The constraint h ≥ 0 can be inferred

from m ≥ 0, and hence, can be ignored. Now consider the social planner’s maximization

problem with irreversible health expenditure m ≥ 0 and inequality constraint l ≤ 1. The

current value Lagrangian for the optimization problem above is:

L = u(c) + λ1[f(k, l)− c−m− δk − k(b− d)] + λ2[g(m)−
− δh− h(b− d)] + λ3(1− l)(b + γ(h)− α(h)l) + µ1(1− l) + µ2m

where λ1, λ2, λ3 are costate variables, and µ1, µ2 are Lagrange multipliers. The Kuhn-

Tucker conditions and transversality conditions are given by

c : u′(c) = λ1, (10)

m : m(λ1 − λ2g
′) = 0, m ≥ 0, λ1 − λ2g

′ ≥ 0, (11)

k : λ̇1 = −λ1(f1 − δ − θ − b + d), (12)

h : λ̇2 = λ2(δ + θ + b− d)− λ3(1− l)(γ′ − α′l), (13)

l : λ̇3 = −λ1f2 + λ3(θ + b + γ + α− 2αl) + µ1, (14)

µ1 ≥ 0, 1− l ≥ 0, µ1(1− l) = 0, (15)

lim
t→∞

e−θtλ1k = 0, lim
t→∞

e−θtλ2h = 0, lim
t→∞

e−θtλ3l = 0. (16)

The system dynamics are given by equations (2)-(6) and (10)-(16). If x is a variable, we

use x∗ to denote its steady state value. We characterize steady states in terms of exogenous

parameters b and θ (See figure 3). Define l := min{ b+γ

α
, 1}, k such that f1(k, l) = δ+b−d+θ

and k such that f1(k, 1) = δ + b− d + θ. Clearly k ≥ k.

Proposition 1 Under A.1− A.6,

1. There always exists a unique disease-free steady state with l∗ = 1, m∗ = 0, h∗ = 0,

and k∗ = k;

2. There exists an endemic steady state (l∗ < 1) if and only if b < α − γ and there is

a solution (l∗, k∗, m∗, h∗) to the following system of equations:

l =
γ(h) + b

α(h)
(17)

f1(k, l) = δ + θ + b− d (18)

g(m) = (δ + b− d)h (19)

m(f1(k, l)− f2(k, l)l′θ(h)g′(m)) = 0 (20)

m ≥ 0 (21)

f1(k, l) ≥ f2(k, l)l′θ(h)g′(m), (22)

where we define l′θ(h) := (1−l)(γ′(h)−α′(h)l)
θ+α(h)−b−γ(h)

.
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Proof. From l̇ = 0 we have either l∗ = 1 (disease-free case) or l∗ = γ(h∗)+b
α(h∗)

< 1

(endemic case).

Case 1: l∗ = 1. Since λ̇2 = λ2(δ + b−d+ θ) = 0, λ∗2 = 0. As g′ is finite by assumption,

λ∗1 − λ∗2g
′ = u′(c∗) > 0, which implies m∗ = 0 by equation (11). Since g(0) = 0, h∗ = 0

from equation (3). From λ̇1 = 0, k∗ = k. So the model degenerates to the neo-classical

growth model. Moreover l∗ = 1 exists for all parameter values.

Case 2: l∗ < 1. This steady state exists if and only if there exists h∗ ≥ 0 such that

l∗ = γ(h∗)+b
α(h∗)

< 1 and (l∗, k∗, m∗, h∗) is a steady state solution to the dynamical system. For

the former, by assumption A.2, γ(h)+b
α(h)

is increasing in h. So if
b+γ

α
< 1, that is, b < α− γ,

we can find h∗ ≥ 0 such that l∗ < 1. For the latter, since l∗ < 1, µ1 = 0. From λ̇2 = 0

and λ̇3 = 0, we have:

λ∗2 =
u′(c∗)f2(k

∗, l∗)

f1(k∗, l∗)

(1− l∗)((γ′∗ − α′∗)l∗)

θ + α(h∗)− b− γ(h∗)

So equation (11) could be written as equations (20)-(22). Moreover by letting ḣ = 0,

λ̇1 = 0 and l̇ = 0 we have equations (17)-(19).

Therefore, the economy has a unique disease-free steady state in which the disease

is completely eradicated and there is no need for any health expenditure. In this case,

the model reduces to the standard neo-classical growth model. Note that the disease-free

steady state always exists. Furthermore, when the birth rate is smaller than α − γ, in

addition to the disease-free steady state, there exists an endemic steady state in which

the disease is prevalent and there is non-negative health expenditure. The L.H.S. of

equation (22) is the marginal benefit of physical capital investment while the R.H.S. is

marginal benefit of health expenditure. To see this, on the R.H.S. the last term g′(m) is

the marginal productivity of health expenditure, the middle term l′θ(h) can be interpreted

as the marginal contribution of health capital on effective labor supply and the first

term f2(k, l) is the marginal productivity of labor. Essentially we can think there is an

intermediate production function which transforms one unit of health expenditure into

labor supply through the effect on endogenous disease dynamics. Equations (20)-(22) say

that if the marginal benefit of physical capital investment is higher than the marginal

benefit of health expenditure, there will be no health expenditure.

Next we characterize endemic steady states further.

Assumption 7 α(α′′(γ + b)− γ′′α) > 2α′(α′(γ + b)− γ′α).
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By A.7 we can show

l′′θ (h) =
∂l′θ(h)

∂h

= −(α− γ − b + θ)(α− γ − b)[α(α′′(γ + b)− γ′′α)− 2α′(α′(γ + b)− γ′α)]

α3(α− γ − b + θ)2

+
αθ(α′(γ + b)− γ′α)(α′ − γ′)

α3(α− γ − b + θ)2

< 0

From equations (17)-(19), we could write (l∗, k∗, m∗) as a function of h. We have l∗(h)

given by equation (17) with l′(h) := ∂l∗(h)
∂h

= γ′α−(γ+b)α′

α2 > 0. m∗(h) > 0 is given by

equation (19) with ∂m∗(h)
∂h

= δ+b−d
g′(m)

> 0. k∗(h) is determined by equation (18), that is,

at the steady state marginal productivity of physical capital equals to the marginal cost.

Since f1 is strictly decreasing and lies in (0, +∞) for each l∗(h), we can always find a

unique k∗(h) and ∂k∗(h)
∂h

= −f12
∂l∗(h)

∂h
/f11 > 0 . Since ∂f2(k∗(h),l∗(h))

∂h
= f11f22−f12f21

f11

∂l∗(h)
∂h

<

0, l′′θ (h) < 0 and ∂g′∗(h))
∂h

= g′′ ∂m∗(h)
∂h

< 0, the R.H.S. of equation (22) decreases as h

increases. That is, we have diminishing marginal product of health capital under A.7,

which guarantees the uniqueness of the endemic steady state.

From equation (21), there are two cases: m∗ = 0 and m∗ > 0. The first is termed as

the endemic steady state without health expenditure and the second the endemic steady

state with health expenditure. For the endemic steady state without health expenditure,

ḣ = 0 implies h∗ = 0

f1(k, l) ≥ f2(k, l)l′θ(0)g
′(0), (23)

where l′θ(0) := (1−l)(γ′(0)−α′(0)l)
θ+α−b−γ

. Due to the diminishing marginal product of health capital

mentioned above, a unique endemic steady state without health expenditure exists if

and only if equation (23) is satisfied. Otherwise an endemic steady state with health

expenditure exists.

Proposition 2 Under A.1− A.7, for each fixed b ∈ [d, α − γ) there exists a unique θ̂(b)

such that:

1. If θ ≥ θ̂(b), there exists a unique endemic steady state without health expenditure

with l∗ = l, m∗ = 0, h∗ = 0 and k∗ = k;

2. If θ < θ̂(b), there exists a unique endemic steady state with health expenditure with

(l∗, m∗, h∗, k∗) determined by:

l =
γ(h) + b

α(h)

f1(k, l) = δ + b− d + θ

f2(k, l)l′θ(h)g′(m) = δ + b− d + θ

g(m) = (δ + b− d)h.
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Proof. An endemic steady state without health expenditure exists if and only if

equation (23) is satisfied. Fix any b ∈ [d, α − γ), L.H.S. of equation (23) is increasing in

θ as f1(k, l) = δ + b − d + θ while the R.H.S. of equation (23) is decreasing in θ. So for

each b there exists a unique θ̂(b) such that f1(k, l) = f2(k, l)l′θ(0)g
′(0). Note θ̂(b) could

be non-positive. Case 1: θ̂(b) is positive. If θ ≥ θ̂(b), equation (23) is satisfied and an

endemic steady state without health expenditure exists. Otherwise an endemic steady

state with health expenditure exists. Case 2: θ̂(b) is non-positive. Then equation (23) is

satisfied for all θ > 0 and only an endemic steady state without health expenditure exists.

With abuse of notation, we define θ̂(b) = max{θ̂(b), 0}.

If θ ≥ θ̂(b), m∗ = 0 and from equations(17)-(19) we have h∗ = 0, l∗ = l and k∗ = k.

If θ < θ̂(b), m∗ > 0 and equation (22) holds at equality. It implies marginal product

of physical capital investment equals the marginal product of health expenditure, and

equals to the marginal cost. As l∗, k∗, m∗ could be written as functions of h, we only need

to show there always exists a unique solution h∗ to the following equation:

f2(k
∗(h), l∗(h))l′θ(h)g′(m∗(h)) = δ + b− d + θ (24)

Since R.H.S. of equation (24) decreases as h increases, limh→∞ f2l
′
θ(h)g′(m) = 0 and

limh→0 f2l
′
θ(h)g′(m) = f2(k, l)l′θ(0)g′(0) > f1(k, l) = δ + b − d + θ if θ < θ̂(b), equation

(24) always has a unique solution. That is, under A.1-A.7 there exists an endemic steady

state with health expenditure if θ < θ̂(b).

So far we have characterized the steady state equilibria in terms of exogenous param-

eters b and θ. Lets summarize the results here (See Figure 3). Figure 3 resembles Figure

2 but now with more economic meaning built in. First, we look at the birth rate b. If the

birth rate is very high and greater than the critical value α− γ, there is only one disease-

free steady state. This is guaranteed by the pure epidemiology model and diseases are

eradicated even without any intervention. The basic intuition is that healthy individuals

enter the economy at a faster rate than they contract the disease so that eventually it dies

out even without any health expenditure. When the birth rate is low and lies in the range

[d, α−γ), there are two steady states: disease-free steady state and endemic steady state.

In an endemic steady state, diseases are prevalent and there is an option of intervention.

Depending on the relative magnitude of marginal product of physical capital investment

and health expenditure, investment in health could be either positive or zero. If we fix

the parameter birth rate b, which lies in the range where the disease could be prevalent,

we find if the discount rate θ lies below the curve θ̂(b) there is positive health expenditure

in controlling diseases, otherwise health expenditure is zero. That is, people with a lower

discount rate or who are patient are more likely to invest in health than people with high

discount rate or who are impatient. A sufficient condition is provided in Appendix B to

show the curve θ̂(b) is indeed downward sloping, which is consistent with the findings in

the simulation results below.
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Figure 3: The steady states, local stability and bifurcation diagram

Hence, an endemic steady state without health expenditure is well justified and exists

when marginal product of physical capital investment is no less than marginal product

of health expenditure. In other words, despite the prevalence of the disease, if marginal

product of physical capital investment is greater than marginal product of health expen-

diture, there will be no investment in health. Thus, the prevalence of the disease is not

sufficient (from purely an economic point of view) to require health expenditures. It is

conceivable that in labor abundant economies with low physical capital this holds, and

thus, we may observe no expenditure on controlling an infectious disease while in other

richer economies there are public health expenditures to control it.

The welfare analysis of the steady state equilibria is relative straightforward. The

disease-free steady state is no doubt always better than the endemic steady state as

there is full employment and no health expenditure is needed to control the prevalence of

infectious diseases. For the two endemic steady states, it does not make too much sense

to compare them as they do not coexist.

5 Local Stability and Bifurcation

The dynamical system is given by equations (2)-(6), (10 )-(16) and there are three possible

steady states. In order to examine their stabilities we linearize the system around each of

these. To simplify the exposition we make the following assumption.

Assumption 8 The instantaneous utility function u(c) = ln c.
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Substituting λ1 = u′(c) = 1/c into equation (12), we get

ċ = c(f1 − δ − θ − b + d).

5.1 The Disease-Free Case

At the disease-free steady state, λ1 > λ2g
′. Since all the functions in this model are

smooth functions, by continuity there exists a neighborhood of the steady state such

that the above inequality still holds. Thus, from equation(11) we have m = 0 in this

neighborhood. Intuitively, around the steady state the net marginal benefit of health

investment is negative: the disease is eradicated and health investment only serves to

reduce physical capital accumulation and hence, lower levels of consumption, and thus no

resources are spent on eradicating diseases. As m = 0 in the neighborhood of the steady

state, we have a maximization problem with only one choice variable - consumption - and

the dynamical system reduces to:

k̇ = f(k, l)− c− δk − k(b− d)

ḣ = −δh− h(b− d)

l̇ = (1− l)(b− α(h)l + γ(h))

ċ = c(f1 − δ − θ − b + d).

By linearizing the system around the steady state, we have9:

J1 =


θ 0 f ∗2 −1

0 −δ − (b− d) 0 0

0 0 α− (γ + b) 0

c∗f ∗11 0 c∗f ∗12 0

.

The eigenvalues are Λ1 = −δ− (b−d) < 0, Λ2 =
θ−
√

θ2−4c∗f∗11
2

< 0, Λ3 =
θ+
√

θ2−4c∗f∗11
2

> 0,

and Λ4 = α− (γ + b). The sign of Λ4 depends on b. We notice if b = α−γ, J1 has a single

zero eigenvalue. Thus, we have a non-hyperbolic steady state and a bifurcation may arise.

In other words, the disease-free steady state possesses a 2-dimensional local invariant

stable manifold, a 1-dimensional local invariant unstable manifold and 1-dimensional local

invariant center manifold . In general, however, the behavior of trajectories in center

manifold cannot be inferred from the behavior of trajectories in the space of eigenvectors

corresponding to the zero eigenvalue. Thus, we shall take a close look at the flow in the

center manifold. As the zero eigenvalue comes from dynamics of l, and the dynamics of l

and h are independent from the rest of the system, we could just focus on the dynamics

of l and h. By taking b as bifurcation parameter (see Kribs-Zaleta (2003) and Wiggins

(2002)) the dynamics on the center manifold is given by (See Appendix C for details):

ż = αz(z − 1

α
b̃), (25)

9For brevity for a function φ(x∗) we write φ∗
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Figure 4: The transcritical bifurcation diagram

where b̃ = b− (α− γ).

The fixed points of (25) are given by z = 0 and z = 1
α
b̃, and plotted in figure 4. We

can see the dynamics on the center manifold exhibits a transcritical bifurcation at b̃ = 0.

Hence, for b̃ < 0, there are two fixed points; z = 0 is unstable and z = 1
α
b̃ is stable.

These two fixed points coalesce at b̃ = 0, and for b̃ > 0, z = 0 is stable and z = 1
α
b̃ is

unstable. Thus, an exchange of stability occurs at b̃ = 0, i.e., b = α − γ. Therefore, for

the original dynamical system if b > α−γ, there is a 3-dimensional stable manifold and a

1-dimensional unstable manifold, and if b < α−γ, there is a 2-dimensional stable manifold

and 2-dimensional unstable manifold, that is if b > α − γ, the disease-free steady state

is locally saddle stable and has a unique stable path, and if b < α − γ, the disease-free

steady state is locally unstable.

5.2 The Endemic Case

For the endemic steady state without health expenditure, λ1 ≥ λ2g
′ and m∗ = 0. By

continuity, this also holds in a small neighborhood of the steady state. Thus, it is similar

to the disease-free case except that l∗ < 1. Linearizing the system around the steady

state:

J2 =


θ 0 f ∗2 −1

0 −δ − (b− d) 0 0

0 (1− l∗)(γ′∗ − α′∗l∗) α− (γ + b) 0

c∗f ∗11 0 c∗f ∗12 0

.

The eigenvalues are Λ1 = −δ− (b−d) < 0, Λ2 =
θ−
√

θ2−4c∗f∗11
2

< 0, Λ3 =
θ+
√

θ2−4c∗f∗11
2

> 0,

and Λ4 = (γ +b)−α < 0. Thus, it has a 3-dimensional stable manifold and 1-dimensional
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unstable manifold, that is the endemic steady state without health expenditure is locally

saddle stable and has a unique stable path.

For the endemic case with health expenditure, the dynamical system is given by equa-

tions (2)-(6), (10)-(16) with λ1 = λ2g
′, m∗ > 0 and l∗ < 1. Simplifying, the system

reduces to:

k̇ = f(k, l)− c−m− δk − k(b− d)

ḣ = g(m)− δh− h(b− d)

l̇ = (1− l)(b + γ(h)− α(h)l)

ċ = c(f1 − δ − θ − b + d)

ṁ = (cλ3g
′(m)(1− l)(γ′ − α′l)− f1)

g′(m)

g′′(m)

λ̇3 = −1

c
f2 + λ3θ − λ3(2α(h)l − b− γ(h)− α(h)).

We now have a higher dimensional system than the earlier two cases as m∗ > 0 and

h∗ > 0. Linearizing around the steady state the Jacobian is given by:

J3 =



θ 0 f∗2 −1 −1 0
0 −δ − (b− d) 0 0 g′∗ 0
0 (1− l∗)(γ′∗ − α′∗l∗) b + γ∗ − α∗ 0 0 0

c∗f∗11 0 c∗f∗12 0 0 0

−f∗11
g′∗

g′′∗
f∗1 (γ′′∗−α′′∗l∗)

γ′∗−α′∗l∗
g′∗

g′′∗

(
f∗1 (2α′∗l∗−α′∗−γ′∗)
(1−l∗)(γ′∗−α′∗l∗) − f∗12

)
g′∗

g′′∗
f∗1
c∗

g′∗

g′′∗ f∗1
f∗1
λ∗3

g′∗

g′′∗

−f∗12
c∗ −λ∗3(2α′∗l∗ − γ′∗ − α′∗) −f∗22

c∗ − 2λ∗3α
∗ f∗2

c∗2 0 f∗2
c∗λ∗3

.


.

Let us denote J3 as a matrix (aij)6×6 with the signs of aij given as follows:

a11(+) 0 a13(+) −1 −1 0

0 a22(−) 0 0 a25(+) 0

0 a32(+) a33(−) 0 0 0

a41(−) 0 a43(+) 0 0 0

a51(−) a52(+) a53 a54(−) a55(+) a56(−)

a61(−) a62 a63 a64(+) 0 a66(+)


Note that as l∗ = γ∗+b

α∗
< 1, at the steady state a33 = b + γ∗ − α∗ < 0. λ̇3 = 0 implies

λ∗3 =
f ∗2

c∗(θ − 2α∗l∗ + b + γ∗ + α∗)
=

f ∗2
c∗(θ + α∗ − b− γ∗)

> 0.

Thus, only a53, a62 and a63 remain to be signed. The characteristic equation, |ΛI − J3| =
0, can be written as a polynomial of Λ:

P (Λ) = Λ6 −D1Λ
5 + D2Λ

4 −D3Λ
3 + D4Λ

2 −D5Λ + D6 = 0 (26)
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where the Di are the sum of the i-th order minors about the principal diagonal of J3

which are explicitly defined (See Appendix D). Let Λi (i = 1, . . . , 6) denote the solutions

of the characteristic equation. By Vietae’s formula we have

Λ1 + Λ2 + Λ3 + Λ4 + Λ5 + Λ6 = D1 = 3θ > 0,

which implies there exists at least one positive root.10

We now prove that, under the following assumption, the steady state is locally saddle

stable, that is there are exactly three negative roots and three positive roots of the above

characteristic equation.

Assumption 9 1. (α∗ − b− γ∗)(γ′∗ − α′∗) < (θ + α∗ − b− γ∗)
(
γ′∗ + α′∗ − 2α′∗(b+γ∗)

α∗

)
2. θ <

$1+$2+
√

($1+$2)2+32($2
1+$2

2)

16
, where $1 = δ + b− d,$2 = α∗ − γ∗ − b.

We can see that A.9 (1) holds if α′∗, i.e. the marginal effect of health capital on the

contact rate at steady state, is very small. A.9(2) says that θ is small enough. It should

be kept in mind that these are sufficient conditions for local saddle-point stability and in

some problems of interest may not hold giving rise to richer dynamics. It follows from

A.9(1) that

2α′∗l∗ − α′∗ − γ′∗ = −
(

γ′∗ + α′∗ − 2α′∗(b + γ∗)

α∗

)
< 0.

Hence, a53 > 0, a62 > 0. With this assumption, every sign of aij is defined except for a63.

Lemma 3 Under A.1 - A.9 (1), detJ3 = D6 < 0 and there exists at least one negative

root.

Proof. See Appendix D for the proof.

Lemma 4 Under A.1 - A.9, we have D1D2 −D3 < 0, D2 < 0 and D3 < 0.

Proof. See Appendix D for the proof.

Proposition 3 Under A.1-A.9, if D1D4 − D5 ≥ 0 or if D1D4 − D5 < 0 and (D1D2 −
D3)D5 < D2

1D6, the endemic steady state with health expenditure is locally saddle stable.

10By positive (negative) root, we mean either real positive (negative) root or imaginary root with
positive (negative) real part.
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Proof. The number of negative roots of P (Λ) is exactly the number of positive roots

of

P (−Λ) = Λ6 + D1Λ
5 + D2Λ

4 + D3Λ
3 + D4Λ

2 + D5Λ + D6 = 0. (27)

We use the Routh’s stability criterion which states that the number of positive roots of

equation (27) is equal to the number of changes in sign of the coefficients in the first

column of the Routh’s table as shown below:

1 D2 D4 D6 0

D1 D3 D5 0 0

a1 a2 D6 0 0

b1 b2 0 0 0

c1 D6 0 0 0

d1 0 0 0 0

D6 0 0 0 0


where

a1 =
D1D2 −D3

D1

, a2 =
D1D4 −D5

D1

, b1 =
a1D3 − a2D1

a1

,

b2 =
a1D5 −D6D1

a1

, c1 =
b1a2 − a1b2

b1

, d1 =
c1b2 − b1D6

c1

.

Recall that we have D1 > 0, D2 < 0, D3 < 0, D6 < 0 and D1D2 −D3 < 0. So a1 < 0

and the sign of the first column in the Routh’s table is given as:

1 D1 a1 b1 c1 d1 D6

+ + − ± ± ± −

As the signs of b1, c1, d1 are indeterminate, we check all possible 8 cases. Among all

the cases, 6 cases have exactly 3 times change of signs, which implies equation (27) has

exactly 3 positive roots, or equation (26) has exactly 3 negative roots and the steady state

is saddle point stable. However, for the other two cases, the steady state is either a sink

or unstable, which we shall rule out.

Case 1: Suppose b1 > 0, c1 < 0 and d1 > 0, which implies the steady state is a sink.

Since

d1 > 0 ⇒ c1b2 < b1D6 ⇒ b2 > 0

b1 > 0 ⇒ a1D3 < a2D1 ⇒ a2 > 0

c1 < 0 ⇒ b1a2 < a1b2 ⇒ a2 < 0,

we reach a contradiction. So we cannot have the case that there are 5 times change of

signs, that is, there cannot be 5 positive roots in equation (27) or 5 negative roots in the

equation (26). Thus, the steady state cannot be a sink.

Case 2: Suppose b1 < 0, c1 < 0 and d1 < 0, which implies the steady state is unstable.
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If D1D4 −D5 ≥ 0, that is a2 > 0, we have

c1 < 0 ⇒ b1a2 > a1b2 ⇒ b2 > 0

d1 < 0 ⇒ c1b2 > b1D6 ⇒ b2 < 0.

we reach a contradiction.

If D1D4 −D5 < 0 and (D1D2 −D3)D5 < D2
1D6, a2 < 0 and

b2 =
a1D5 −D6D1

a1

=
(D1D2 −D3)D5 −D2

1D6

D1a1

> 0.

It contradicts to d1 < 0 which implies b2 < 0.

So if D1D4 −D5 ≥ 0 or if D1D4 −D5 < 0 and (D1D2 −D3)D5 < D2
1D6, we cannot

have the case that there are only 1 time change in sign, that is, there can not be only 1

positive root in equation (27) or only 1 negative root in equation (26). The steady state

can not be unstable.

The local stability and bifurcation of the dynamical system are summarized in Figure 3.

When the birth rate b is greater than α−γ, there is only a disease-free steady state which

is locally stable. When b decreases to exactly α − γ, the stable disease-free equilibrium

goes through a transcritical bifurcation to two equilibria: one is the unstable disease-free

steady state and the other is the stable endemic steady state with or without health

expenditure.

6 Effect of changes in discount and birth rates

With the results on existence and local stability, we are now ready to explore how the

steady state properties of the model change as the parameters vary. The results of compar-

ative statics in this section improve our understanding on two important empirical issues.

First, we show as parameters vary, there is a nonlinearity in steady state changes due

to the switches among the steady states and the role played by the endogenous changes

in health expenditure. The non-linearities in equilibrium outcomes, which are often as-

sumed away, may be very important in understanding aggregate behavior. While we are

unable to study global dynamics as it is difficult in the system to derive policy functions

and thus, are unable to study the full range of dynamics, the results point out that even

steady states may change in a non-linear way. So the reduced formed estimation on exam-

ining the effect of diseases on the economy (e.g. Acemoglu and Johnson (2007), Ashraf,

et al. (2009), Bell, et et al. (2003), Bloom, et al. (2009), and Young (2005)) by assuming

a linear relationship may not be well justified as non-linearity is an important character-

istic of models associated with the disease transmission, and this nonlinearity in disease

transmission can become a source of non-linearities in economic outcomes. Second, we

study the endogenous relationship between health expenditure (as percentage of output)

24



0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

b

θ

� �

�����

Figure 5: θ̂(b)

and output. This can help us understand the changing share of health expenditures over

decades in many countries. There are many factors which are thought to be the cause

of positive relationship between income and health expenditure share in the literature,

including technological development, institutional change, health as a luxury good, etc.

However, our results suggest maybe we should pay close look at more fundamental factors

such as change in longevity and fertility rate. It should be emphasized that while we are

looking at only public health expenditure on infectious diseases, this methodology can be

extended to incorporate non-infectious diseases. Moreover, as we only model one type

of infectious diseases here, the comparative statics results need to be interpreted with

caution when comparing them with the empirical facts.

For the simulation results, we specify the following functional forms: output y =

f(k, l) = Akal1−a, health production function g(m) = φ3(m + φ1)
φ2 − φ3φ

φ2

1 , contact rate

function α(h) = α1 + α2e
−α3h, recovery rate function γ(h) = γ1 − γ2e

−γ3h. By convention

we choose A = 1, a = 0.36, δ = 0.05, and d = 0.5% . Since there are no counterparts

for health related functions in the economic literature, we choose φ1 = 2, φ2 = 0.1, φ3 =

1, α1 = α2 = 0.023, α3 = 1, γ1 = 1.01, γ2 = γ3 = 1. All the functional forms and parameter

values are chosen such that assumptions A.1-A.7 are satisfied. Sufficient conditions for

stability (A.9) may not be satisfied as the parameters are varied, but we check that the

stability properties continue to hold in the parameter range of interest. Thus, we have

α = 0.046, γ = 0.01, and the function θ̂(b) is shown in Figure 5.

As we discuss above, if b > 0.036, only a stable disease-free steady state exists. As

the birth rate decreases across 0.036, the stable disease-free steady state goes through a

transcritical bifurcation to two steady states: one is the unstable disease-free steady state

and the other is the stable endemic steady state. Below the curve θ̂(b), endemic steady

state with positive health expenditure exists, and above the curve, endemic steady state
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without health expenditure exists. Two comparative statics and simulation experiments

are conducted here. First, we keep birth rate b = 2% and vary discount rate θ. From

Figures 5 and 6, we see disease-free steady state always exists, and if θ < 0.1 an endemic

steady state with health expenditure exists, otherwise an endemic steady state without

health expenditure exists. Second, we keep the discount rate fixed, θ = 0.05, and vary

the birth rate b. From Figures 5 and 8, we see if b > 3.6% only a disease-free steady state

exists, if b ∈ (3.1%, 3.6%) both the disease-free steady state and endemic steady state

without health expenditure exist, and if b ∈ (0.5%, 3.1%) both the disease-free steady

state and endemic steady state with health expenditure exist. Note the analytical results

of comparative statics on disease-free steady state are not given below as they are exactly

the same as in the standard neo-classical growth model, but the simulation results are

included in the figures.

6.1 The discount rate θ

This comparative statics can be interpreted as studying the effect of increasing longevity

as a decrease in θ is often interpreted as an increase in longevity (Hall and Jones (2007)).

As θ is varied, in the endemic steady state without health expenditure,

dk∗

dθ
=

1

f11

< 0, and
dc∗

dθ
=

θ

f11

< 0.

The disease prevalence l∗ =
γ+b

α
remains unchanged.

In the endemic steady state with health expenditure, we have ∂m
∂h

= δ+(b−d)
g′

> 0 and
∂l′θ(h)

∂θ
=

−l′θ(h)

α(h)−(γ+b)+θ
< 0. Let Ψ = g′l′l′θ(f11f22 − f12f21) + f11(f2g

′l′′θ + f2g
′′ ∂m

∂h
l′θ) > 0. By

the multi-dimensional implicit function theorem , we have:

dk∗

dθ
=

1

Ψ

(
f22g

′l′l′θ + f2g
′l′′θ + f2g

′′∂m

∂h
l′θ − f12l

′
(

1− f2g
′∂l′θ
∂θ

))
< 0,

dh∗

dθ
=

1

Ψ

(
f11

(
1− f2g

′∂l′θ
∂θ

)
− f21g

′l′θ

)
< 0,

and, thus,
dl∗

dθ
= l′

dh∗

dθ
< 0,

dc∗

dθ
= (f1 − δ − (b− d))

dk∗

dθ
+ (f2l

′ − δ − (b− d))
dh∗

dθ
< 0.

Therefore, from the analytical comparative statics results, we see in the endemic steady

state without health expenditure variations in the discount rate have no effect on the

spread of infectious diseases, since without health expenditures the mechanism of disease

spread is independent of society’s behavior. The smaller discount rate only leads to higher

physical capital and consumption in exactly the same way as in the neo-classical model. In

the endemic steady state with health expenditure, as the discount rate decreases, that is

as the people become more patient, they spend more resources in prevention of infections
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Figure 6: Change in economic variables as discount rate θ varies (red-disease-free case;

blue-endemic case)

or getting better treatment. The rise in health capital leads to a larger labor force, and

both physical capital and consumption will increase.

This is also seen from the simulation in Figure 6 with red color denoting the disease-

free steady state and blue color denoting the endemic steady state. For the disease-free

steady state, there is full employment (panel (1)) and both health expenditure (panel (2))

and health capital (panel (3)) are zero. As θ decreases or people become more patient,

physical capital (panel (4)), consumption (panel (5)) and output (panel (6)) increase

following the exact same mechanism of standard neo-classical economy. For the endemic

steady state with θ > 0.1, a change in θ doesn’t have any effect on the effective labor force,

and both health expenditure and health capital remain zero. But as θ decreases, physical

capital, consumption and output increase. When θ < 0.1, both health expenditure and

health capital are positive, and further decreases in θ cause all economic variables increase.

Physical capital, consumption and output increase at a faster rate than in the endemic

steady state without health expenditure. Moreover, in Figure 7 if we only focus on the

endemic steady state with positive health expenditure part, as θ decreases, both output

y and health expenditure m increases, while the share of health expenditure m/y first

increases and then decreases. We can see from panel (4) and (3) in Figure 6 that the

rate of investment in physical capital (slope of the curve) is increasing while that of

health capital (slope of the curve) is decreasing as θ decreases. This leads to an initial

increase in the share of health expenditure in output and then an eventual decrease. The

intuition is that as people become more patient, they spend more on health. This has

two effects. First, as the incidence of diseases is controlled the increase in the effective
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Figure 7: Change in health expenditure share as discount rate θ decreases

labor force increases the marginal product of capital which leads to the increasing rate

of physical capital investment. Second, as the incidence of diseases decreases, due to the

externality in disease transmission the fraction of infectives decreases. This decreases

the rate of investment in health expenditures. This leads to a non-monotonicity in the

share of health expenditure. The initial positive relationship between income and health

expenditure is similar to the finding of Hall and Jones (2007). However, unlike their model

we do not have to introduce a taste for health. They need to assume that the marginal

utility of life extension does not decline as rapidly as that of consumption declines as

income increases, i.e. there is a more rapid satiation of consumption than life extension.

6.2 The birth rate b

In the endemic steady state without health expenditure, we have

dl∗

db
=

1

α
> 0,

dk∗

db
=

1

f11︸︷︷︸
−

+
f12

−αf11︸ ︷︷ ︸
+

, and
dc∗

db
=

θ − kf11

f11︸ ︷︷ ︸
−

+
θf12 − f2f11

−αf11︸ ︷︷ ︸
+

.

A decrease in birth rate causes effective labor force to decrease due to fewer healthy

newborns. However, the effect of the birth rate decrease on other economic variables is

ambiguous due to two offsetting aspects. First, it has a positive effect (the minus sign)

as the marginal cost of physical capital decreases which leads to higher physical capital

and consumption. Second, there is a negative effect (the positive sign): The proportion

of healthy people decreases due to fewer healthy newborns, and thus, the smaller labor

force leads to lower physical capital and consumption.

In the endemic case with health expenditure, by the implicit function theorem we
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Figure 8: Change in economic variables as birth rate b varies (red-disease-free case; blue-

endemic case)

have:

dk∗

db
=

1

Ψ
(f22g

′l′l′θ + f2g
′l′′θ + f2g

′′∂m

∂h
l′θ − f12l

′)︸ ︷︷ ︸
−

− 1

Ψ
f2f12g

′ 1

α
l′′θ︸ ︷︷ ︸

+

+
1

Ψ
f2f12g

′l′
∂l′θ
∂b︸ ︷︷ ︸

?

dh∗

db
=

1

Ψ
(f11 − f21g

′l′θ)︸ ︷︷ ︸
−

+
1

Ψ

1

α
g′l′θ(f21f12 − f11f22)︸ ︷︷ ︸

−

+
1

Ψ
(−f11f2g

′∂l′θ
∂b

)︸ ︷︷ ︸
?

and then
dl∗

db
=

1

α
+ l′(h)

dh∗

db

where
∂l′θ
∂b

= − α′

α2 + θ(θα′+α(α′−γ′))
α2(α−(γ+b)+θ)2

.

Therefore, the effect of birth rate decrease is ambiguous. The basic reasoning is similar

to the endemic case without health expenditure above, but here it becomes more complex

by involving changes in health capital, and hence effective labor supply may increase

rather than decrease. First, as above there is a positive effect: the marginal cost of

physical capital and health capital will decrease which lead to higher physical capital and

health capital. Second, if effective labor force increases (decreases), there is a positive

(negative) effect, as the marginal productivity of physical capital increases (decreases)

physical capital increases (decreases). Third, effect of changing birth rate on the marginal

product of health capital on labor supply, that is ∂l′θ/∂b, is unclear.

To see the effects more clearly we consider the parametrized economy. We vary birth

rate b from 0.5% to 5%. As we already know, the disease-free steady state always exists
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Figure 9: Change in health expenditure share as birth rate b decreases

(shown in red color in Figure 8). There is full employment, and both health expenditure

and health capital are zero. As b decreases, physical capital, consumption and output

increase. The endemic steady state is shown in blue color. For the endemic steady

state with b ∈ (3.1%, 3.6%), a decrease in b causes effective labor force to drop as fewer

healthy people are born, and both health expenditure and health capital remain zero. As

b decreases further, physical capital, consumption and output decrease as the negative

effect dominates due to decreasing effective labor supply. When b ∈ (0.5%, 3.1%), both

health expenditure and health capital are positive, and a decrease in b causes all economic

variables to increase. It shows that the positive effect dominates. The intuition is that

as the birth rate falls the cost of the marginal worker falling ill becomes higher and this

leads to an increase in health expenditure and hence health capital. This leads to a larger

effective labor force, and then higher physical capital, consumption and output. This

is consistent with the empirical finding that low birth rates are associated with higher

per capita income (see Brander and Dowrick (1994)). Moreover in Figure 9, if we only

focus on endemic steady state with positive health expenditure, we get the endogenous

positive relationship between output and the share of health expenditures as birth rate

falls. The reason is that decreases in the birth rate increases the marginal cost of an

additional worker falling ill. The optimal response is to raise health expenditure, i.e. a

more aggressive strategy to control the incidence of the disease. This interacts with the

rising per capita capital stock and the increasing marginal product of capital which cause

the output to rise as well.
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7 The Conclusion

In a recent paper, Goenka and Liu (2010) examine a discrete time formulation of a similar

model. In that paper, however, there is only a one way interaction between the disease

and the economy. The disease affects the labor force as in this model, but the labor

supply by healthy individuals is endogenous and the epidemiology parameters are treated

as biological constants. Under the simplifying assumption of a one-way interaction, the

dynamics become two-dimensional and the global dynamics are analyzed. The key result

is that as the disease becomes more infective, cycles and then eventually chaos emerges.

Here, we endogenize the epidemiology parameters. Thus, it is a framework to study

optimal health policy. However, the dynamical system becomes six dimensional and we

have to restrict our analysis to local analysis of the steady state.

This paper develops a framework to study the interaction of infectious diseases and

economic growth by establishing a link between the economic growth model and epidemi-

ology model. We find that there are multiple steady states. Furthermore by examining

the local stability we explore how the equilibrium properties of the model change as the

parameters are varied. Although the model we present here is elementary, it provides

a fundamental framework for considering more complicated models. It is important to

understand the basic relationship between disease prevalence and economic growth before

we go even further to consider more general models. The model also points out the link

between the health expenditures and income - both of which are endogenous - may be

driven by fundamental factors - drop in the fertility rate or increase in the longevity.

Appendix A: Existence of Optimal Solution

For the proof we also recall Dunford-Pettis Theorem, Mazur’s Lemma (Renardy and

Rogers (2004)) and the reverse Fatou’s Lemma as follows.

Let F be a family of scalar measurable functions on a finite measure space (Ω, Σ, µ),

F is called uniformly integrable if {
∫

E
|f(t)| dµ, f ∈ F} converges uniformly to zero when

µ(E) → 0.

Dunford-Pettis Theorem: Denote L1(µ) the set of functions f such that
∫

Ω
|f | dµ <

∞ and K be a subset of L1(µ). Then K is relatively weak compact if and only if K is

uniformly integrable.

When applying Fatou’s Lemma to the non-negative sequence given by g − fn, we get

the following reverse Fatou’s Lemma .

Fatou’s Lemma: Let fn be a sequence of extended real-valued measurable functions

defined on a measure space (Ω, Σ, µ). If there exists an integrable functiong on Ω such

that fn ≤ g for all n, then lim supn→∞
∫

Ω
fndµ ≤

∫
Ω

lim supn→∞ fndµ.

31



Mazur’s lemma shows that any weakly convergent sequence in a normed linear space

has a sequence of convex combinations of its members that converges strongly to the same

limit. Because strong convergence is stronger than pointwise convergence, it is used in

our proof for the state variables to converge pointwise to the limit obtained from weak

convergence.

Mazur’s Lemma: Let (M, || ||) be a normed linear space and let (fn)n∈N be a sequence

in M that converges weakly to some f ∗ in M. Then there exists a function N : N → N

and a sequence of sets of real numbers {ωi(n) | i = n, . . . ,N (n)} such that ωi(n) ≥ 0

and
∑N (n)

i=n ωi(n) = 1 such that the sequence (vn)n∈N defined by the convex combination

vn =
∑N (n)

i=n ωi(n)fi converges strongly in M to f ∗, i.e., ||vn − f ∗|| → 0 as n →∞.

Proof of Lemma 1

Proof. Since limk→∞f1(k, l) = 0, for any ζ ∈ (0, θ) there exists a constant A0 such

that f(k, 1) ≤ A0 + ζk. Hence, we have

f(k, l) ≤ f(k, 1) ≤ A0 + ζk. (28)

Since k̇ = f(k, l)− c−m− k(δ + b− d), it follows that

k̇ ≤ f(k, l) ≤ A0 + ζk.

Multiplying by e−ζτ we get e−ζτ k̇ − ζke−ζτ ≤ A0e
−ζτ . Thus,

e−ζtk =

∫ t

0

∂(e−ζτk)

∂τ
dτ + k0 ≤

∫ t

0

A0e
−ζτdτ =

−A0e
−ζt

ζ
+

A0

ζ
+ k0.

This implies k ≤ −A0

ζ
+ (A0+k0ζ)eζt

ζ
. Thus, there exists a constant A1 such that

k ≤ A1e
ζt. (29)

Therefore, note that ζ < θ,
∫∞

0
ke−θtdt ≤

∫∞
0

A1e
(ζ−θ)tdt < +∞.

Moreover, since −k̇ ≤ κk and k̇ ≤ A0 + ζk ≤ A0 + ζA1e
ζt there exists a constant

A2 such that | k̇ | ≤ A2e
ζt. Thus∫ ∞

0

| k̇ | e−θtdt <

∫ ∞

0

A2e
(ζ−θ)tdt < +∞.

Because −k̇ ≤ κk and c = f(k, l) − k̇ −m − δk − k(b − d), it follows from (28) and

(29) that

c ≤ f(k, l) + k(κ− δ − b + d)

≤ A0 + (κ− δ − b + d + ζ)k

≤ A0 + (κ− δ − b + d + ζ)A1e
ζt.
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Thus, we can choose a constant A3 large enough such that c ≤ A3e
ζt which implies

0 ≤
∫ ∞

0

ce−θtdt ≤
∫ ∞

0

A3e
(ζ−θ)tdt < +∞.

Similarly there exists A4 such that m ≤ A4e
ζt and m ∈ L1(e−θt).

Now we prove | ḣ |, h belong to the space L1(e−θt).

Since g(m) ≤ π0m
11, there exists a constant B1 such that ḣ ≤ g(m) ≤ B1e

ζt.

Clearly h =
∫ t

0
ḣdτ + h0 ≤

∫ t

0
B1e

ζτdτ + h0 = B1

ζ
eζt − B1

ζ
+ h0 which means there exist

B2 such that h ≤ B2e
ζt or h ∈ L1(e−θt). Moreover, −ḣ ≤ (δ + b− d)h because g(m) ≥ 0.

Therefore, −ḣ ≤ (δ + b − d)B2e
ζt. So | ḣ | ≤ B3e

ζt with B3 = max{B1, (δ + b − d)B2}.
Thus, | ḣ |∈ L1(e−θt).

Obviously, l ∈ L∞ and limt→∞ le−θt = 0. It follows that∫ ∞

0

l̇e−θtdt = −l0 + θ

∫ ∞

0

le−θtdt ≤ −l0 + θ

∫ ∞

0

e−θtdt < +∞.

Finally, we will prove that | l̇ |∈ L1(e−θt). Since 0 ≤ l ≤ 1 and α(h) is decreasing, we have

| l̇ | ≤ b + |γ(h)|+ |α(h)|
≤ b + |γ(h)|+ |α(0)|
= γ(h) + b + α(0).

Since limh→∞ γ′(h) → 0, there exists a constant B4 such that γ(h) ≤B4+ζh ≤ B4+ζB2e
ζt.

Thus, there exists B5 such that | l̇ | ≤ B5e
ζt. This implies | l̇ |∈ L1(e−θt). We have proven

that K is uniformly bounded on L1(e−θt).

Moreover, lima→∞
∫∞

a
ke−θtdt ≤ lima→∞

∫∞
a

A1e
(ζ−θ)tdt = 0. This property is true for

other variables in K. Therefore K satisfies Dunford-Pettis theorem and it is relatively

compact in the weak topology σ(L1(e−θt), L∞).

Appendix B: Sufficient Condition for Characterization

of Endemic Steady State

This section studies the properties of the function θ̂(b) for b ∈ [d, α− γ).

Assumption 10 Elasticity of marginal contribution of health capital on labor supply with

respect to birth rate is small, that is,
∂l′θ(0)/∂b

l′θ(0)/b
< b

[
1
f1
− f21

f11f2
− f22f11−f21f12

αf11f2

]
.12

11If limmt→∞g′ = 0 holds, there exists a constant B0 such that g(m) ≤ B0 + ζm where ζ ∈ (0, θ).
Thus, ḣ ≤ g(m) ≤ ζA4e

ζt.
12For a Cobb-Douglas production function f(k, l) = Akal1−a, the assumption reduces to ∂l′θ(0)/∂b

l′θ(0)/b <

b
(1−a)(δ+b−d+θ) . As ∂l′θ(0)

∂b = − l′θ(0)
α(1−l) −

(1−l)α′(0)
α(θ+α−b−γ) + l′θ(0)

θ+α−b−γ , the assumption is then given by − 1
α(1−l) −

α′(0)
α(γ′(0)−α′(0)l) + 1

θ+α−b−γ < 1
(1−a)(δ+b−d+θ) , which is satisfied for a wide range of parameter values.
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Lemma 5 θ̂(b) is decreasing in b. As b → α− γ, θ̂(b) approaches a non-positive number.

Proof. Since k is given by f1(k, l) = δ + b− d + θ, we have

∂k

∂θ
=

1

f11

and
∂k

∂b
=

1

f11

− f12

αf11

.

Moreover, function θ̂(b) is determined by

H = 1− f2(k, l)

f1(k, l)
l′θ(0)g

′(0) = 0.

By the implicit function theorem, θ̂(b) is continuous and

∂H

∂θ̂
= −f21f1 − f11f2

f 2
1

∂k

∂θ
l′θ(0)g

′(0)− f2

f1

∂l′θ(0)

∂θ
g′(0) > 0,

and
∂H

∂b
= −

(
αf21 + f22f11 − f21f12

αf11f1

− f2

f 2
1

)
l′θ(0)g

′(0)− f2

f1

∂l′θ(0)

∂b
g′(0) > 0

under A.10. Thus, we have ∂θ̂/∂b < 0, that is θ̂(b) is decreasing in b.

Let b → α− γ. For any θ > 0, l → 1, l′θ(0) → 0 and R.H.S. of equation (23) goes to 0.

However, the L.H.S. of equation (23) equals to δ + b− d + θ, which is strictly positive as

b approaches α− γ. So as b → α− γ, equation (23) is satisfied for all θ > 0, which means

θ̂(b) goes to some non-positive number as b → α− γ.

From Figure 3, it is easy to see the graph θ̂(b) intersects the horizontal axis at the

point which lies on the left side of b = α− γ. Let us denote θ̂(d) as the intersection point

of both the function θ̂(b) and vertical axis b = d. As the function θ̂(b) is a one-to-one

mapping, we could write its inverse mapping as b̂(θ) for θ ∈ (0, θ̂(d)] and define b̂(θ) = d

for θ > θ̂(d).

Proposition 4 Under A.1− A.10, for each θ > 0

1. If b̂(θ) ≤ b < α− γ, a unique endemic steady state without health expenditure exists

with l∗ = l, m∗ = 0, h∗ = 0 and k∗ = k;

2. If d ≤ b < b̂(θ), a unique endemic steady state with health expenditure exists with

(l∗, m∗, h∗, k∗) determined by:

l =
γ(h) + b

α(h)

f1(k, l) = δ + b− d + θ

f2(k, l)l′θ(h)g′(m) = δ + b− d + θ

g(m) = (δ + b− d)h.

Proof. Omitted.

This proposition is easily seen in Figures 5 and 8.
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Appendix C: Center Manifold Calculation

Here, we introduce the procedure of calculating center manifold instead of the calculation

part itself. We use ẋ = g(x, b) to denote the dynamic system, where x = (k, h, l, c)T ∈ <4
+,

and g : <+ ×<4
+ → <4

+ is the vector field. Moreover, we use x∗ to denote its equilibrium

point, and so g(x∗, b) = 0. Bifurcation occurs when b∗ = α− γ. We assume g(x, b) to be

at least C5. We follow the procedure given by Kribs-Zaleta (2002) and Wiggins (2003):

1. Using x̃ = x − x∗ and b̃ = b − b∗, we transform the dynamical system into ˙̃x =

g(x̃+x∗, b̃+b∗) with the equilibrium point x̃∗ = 0 and bifurcation point b̃∗ = 0. Then

we linearize the system at point 0 to get ˙̃x = Dxg(x∗, b∗)x̃ + Dbg(x∗, b∗)b̃ + R(x̃, b̃),

where R(x̃, b̃) is the high order term;

2. Let A = Dxg(x∗, b∗), B = Dbg(x∗, b∗) and calculate matrix A’s eigenvalues, corre-

sponding eigenvectors matrix TA (placing the eigenvector corresponding to zero

eigenvalue first ) and its inverse TA−1. By transforming x̃ = TA · y, we get

ẏ = TA−1 · A · TA · y + TA−1 · B · b̃ + TA−1 · R(TA · y, b̃), where TA−1 · A · TA is

its Jordan canonical form;

3. We separate y into two vectors y1, the first term, and y2, the rest terms, and then

we can rewrite the system as:

ẏ1 = Γ1y1 + R̃1(TA · y, b̃)

ẏ2 = Γ2y2 + R̃2(TA · y, b̃);

Since TA−1 ·B 6= 0, we separate it into two vectors ∆1 with only one element, and

∆2 with the rest, and form a system as: ẏ1

˙̃b

ẏ2

 =

 Γ1 ∆1 01×3

0 0 01×3

03×1 ∆2 Γ2


︸ ︷︷ ︸

C

 y1

b̃

y2


︸ ︷︷ ︸

yb

+

 R̃1(TA · y, b̃)

0

R̃2(TA · y, b̃)


︸ ︷︷ ︸

R̃b(TA·y,b̃)

;

4. In order to put matrix C into Jordan canonical form, we make another linear trans-

formation yb = TC · z, and get ż = TC−1 · C · TC · z + TC−1 · R̃b(TA · TC · z, b̃),
where z = (z1, b̃, z2, z3, z4). Therefore, we can now write the system as:

ż1 = Π1z1 + R̂1(z1, z2, z3, z4, b̃)

ż2 = Π2z2 + R̂2(z1, z2, z3, z4, b̃)

ż3 = Π3z3 + R̂3(z1, z2, z3, z4, b̃)

ż4 = Π4z4 + R̂4(z1, z2, z3, z4, b̃)
˙̃b = 0;
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5. Take zi = hi(z1, b̃) (i = 2, 3, 4) as a polynomial approximation to the center mani-

fold, and differentiate both sides w.r.t. t :

Πizi + R̂i(z1, h2, h3, h4, b̃) = Dz1hi(z1, b̃)[Π1z1 + R̂1(z1, h2, h3, h4, b̃)].

And then solve for the center manifold by equating the coefficient of each order;

6. Finally, we write the differential equation for the dynamical system on the center

manifold by substituting hi(z1, b̃) in R̂1(z1, z2, z3, z4, b̃), and get the system:

ż1 = Π1z1 + R̂1(z1, h2(z1, b̃), h3(z1, b̃), h4(z1, b̃), b̃)
˙̃b = 0.

So in our model the dynamics on the center manifold is given by:

ż1 = αz1(z1 −
1

α
b̃).

Appendix D: Stability Analysis

For the Jacobian matrix J3, we have:

a11 = θ, a13 = f ∗2 , a14 = a15 = −1, a22 = −δ − (b− d), a25 = g′∗, a32 = (1− l∗)(γ′∗ − α′∗l∗)

a33 = b + γ∗ − α∗, a41 = c∗f ∗11, a43 = c∗f ∗12, a51 = −f ∗11
g′∗

g′′∗
, a52 =

f ∗1 (γ′′∗ − α′′∗l∗)

γ′∗ − α′∗l∗
g′∗

g′′∗

a53 =

(
f ∗1 (2α′∗l∗ − α′∗ − γ′∗)

(1− l∗)(γ′∗ − α′∗l∗)
− f ∗12

)
g′∗

g′′∗
, a54 =

f ∗1
c∗

g′∗

g′′∗
, a55 = f ∗1 , a56 =

f ∗1
λ∗3

g′∗

g′′∗

a61 = −f ∗12

c∗
, a62 = −λ∗3(2α

′∗l∗ − γ′∗ − α′∗), a63 = −f ∗22
c∗

− 2λ∗3α
∗, a64 =

f ∗2
c∗2

, a66 =
f ∗2

c∗λ∗3
.

Let us denote $1 = δ + b− d,$2 = α∗− γ∗− b, we have the following equations which

will be used in the calculation.

λ∗3 =
f ∗2

c∗(θ − 2α∗l∗ + b + γ∗ + α∗)
=

f ∗2
c∗(θ + $2)

a22 = −$1, a33 = −$2 (30)

a55 = f ∗1 = θ + (δ + b− d) = θ + $1 (31)

a66 =
f ∗2

c∗λ∗3
= θ − b− γ∗ + α∗ = θ + $2 (32)

a66a54 = a56a64 =
f ∗1 f ∗2
λ∗3

g′∗

g′′∗
1

c∗2
(33)

a41a54 = c∗f ∗11

f ∗1
c∗

g′∗

g′′∗
= f ∗11

g′∗

g′′∗
f ∗1 = −a51a55 = −a51($1 + θ) (34)
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Since

f ∗1 = f ∗2 g′∗
(1− l∗)(γ′∗ − α′∗l∗)

θ + α∗ − b− γ∗
=

a13a25a32

a66

we also get

a55a66 = a13a25a32 = (θ + $1)(θ + $2). (35)

a41a56a64 = a41a54a66 = −a51($1 + θ)($2 + θ). (36)

As λ∗3c
∗ =

f∗2
a66

, we have

a56a61 =
f ∗1
λ∗3

g′∗

g′′∗

(
−f ∗12

c∗

)
=

(
−g′∗f ∗12

g′′∗

)
($1 + θ)

λ∗3c
∗ =

=

(
−g′∗f ∗12

g′′∗

)
a55a66

f ∗2
=

(
−g′∗f ∗12

g′′∗

)
a13a25a32

f ∗2
=

(
−g′∗f ∗12

g′′∗

)
a25a32.

Thus,

a25a56a62 + a25a32a53 − a56a61 = a25a56a62 + a25a32a53 +
g′∗f ∗12
g′′∗

a25a32

= a25[−
f ∗1
λ∗3

g′∗

g′′∗
λ∗3(2α

′∗l∗ − γ′∗ − α′∗) + (1− l∗)(γ′∗ − α′∗l∗)

(
f ∗1 (2α′∗l∗ − α′∗ − γ′∗)

(1− l∗)(γ′∗ − α′∗l∗)
− f ∗12

)
g′∗

g′′∗

+
g′∗f ∗12

g′′∗
(1− l∗)(γ′∗ − α′∗l∗)] = 0. (37)

a54a43a25a32 =
f ∗1
c∗

g′∗

g′′∗
c∗f ∗12a25a32 = (−f ∗1 )(

−g′∗f ∗12
g′′∗

)a25a32 = −($1 + θ)a56a61 (38)

The characteristic equation, |ΛI − J3| = 0 can be written as a polynomial of Λ:

P (Λ) = Λ6 −D1Λ
5 + D2Λ

4 −D3Λ
3 + D4Λ

2 −D5Λ + D6 = 0

where the Di are the sum of the i-th order minors about the principal diagonal of J3.

Thus,

D1 = a11 + a22 + a33 + a55 + a66 = 3θ > 0

D2 = a11(a22 + a33 + a55 + a66) + a41 + a51

+a22(a33 + a55 + a66)− a52a25 + a33(a55 + a66) + a55a66

Replace

a22 + a33 + a55 + a66 = 2θ

a33 + a55 + a66 = 2θ + $1

a55 + a66 = 2θ + $1 + $2

37



we get

D2 = 3θ2 − θ($1 + $2)−$2
1 −$2

2 + a41 + a51 − a25a52.

D3 = a11a22a33 + a22a41 + a11a22a55 + a22a51 − a11a25a52 + a11a22a66

+a33a41 + a11a33a55 + a33a51 + a11a33a66 − a41a54 + a41a55

+a41a66 + a11a55a66 − a56a61 + a51a66

+a22a33a55 + a32a25a53 − a25a52a33 + a22a33a66

+a22a55a66 + a25a56a62 − a25a52a66 + a33a55a66

We keep only a41, a25a52, a25a56a62, a25a32a53, a56a61 in the expression, replace a11, a22, a33, a55, a66

via $1, $2, θ from (30)-(32), use (34) and (37) to obtain

D3 = θ[θ2 − 2θ($1 + $2)− 2($2
1 + $2

2)] + 2θ(a41 + a51 − a25a52)

D6 = a66[a55a22a33a41 − a25a32a43a51 − a25a33a41a52 + a25a32a41a53

−a25a54a11a32a43 + a25a54a13a32a41 − a54a22a33a41] + a56a64a22a33a41

+a56a25[a64a11a32a43 − a64a13a32a41 + a32a43a61 + a33a41a62 − a32a41a63]

Proof of Lemma 3

Proof. By using (33) we rewrite D6 as follows :

D6 = a66(a55a22a33a41 − a25a33a41a52) + a56a25(a32a43a61a33a41a62 − a32a41a63)

+a66a25a32(a41a53 − a43a51) + a11a32a43a25(a56a64 − a66a54) + a13a32a41a25(a66a54 − a56a64)

+a22a33a41(a56a64 − a66a54)

= a66(a55a22a33a41 − a25a33a41a52) + a56a25[a32(a43a61 − a41a63) + a33a41a62]

+a66a25a32(a41a53 − a43a51).

The first term a66(a55a22a33a41 − a25a33a41a52) < 0.

Note that a56a25 < 0 , a33 = (b + γ∗ − α∗) = α∗(l∗ − 1) and by concavity of f ,

f ∗212 < f ∗11f
∗
22. We show the second term

a56a25[a32(a43a61 − a41a63) + a33a41a62]

= a56a25[a32(−f ∗212 + f ∗11f
∗
22 + 2c∗f ∗11λ

∗
3α

∗)− a33c
∗f ∗11λ

∗
3(2α

′∗l∗ − γ′∗ − α′∗)]

< a56a25[c
∗f ∗11λ

∗
3(2α

∗a32 − a33(2α
′∗l∗ − γ′∗ − α′∗))]

= a56a25[c
∗f ∗11λ

∗
3(2α

∗(1− l∗)(γ′∗ − α′∗l∗)− α∗(l∗ − 1)(2α′∗l∗ − γ′∗ − α′∗))]

= a56a25c
∗f ∗11λ

∗
3α

∗(1− l∗)(γ′∗ − α′∗)

= f ∗1
g′∗2

g′′∗
c∗f ∗11α

∗(1− l∗)(γ′∗ − α′∗)
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and the third term

a66a25a32(a41a53 − a43a51)

= a66a25a32[c
∗f ∗11

g′∗

g′′∗
(
f ∗1 (2α′∗l∗ − α′∗ − γ′∗)

(1− l∗)(γ′∗ − α′∗l∗)
− f ∗12) + c∗f ∗12f

∗
11

g′∗

g′′∗
]

= a66a25c
∗f ∗11

g′∗

g′′∗
f ∗1 (2α′∗l∗ − α′∗ − γ′∗)

=
f ∗2
λ∗3

g′∗f ∗11

g′∗

g′′∗
f ∗1 (2α′∗l∗ − α′∗ − γ′∗).

So we have

a56a25[a32(a43a61 − a41a63) + a33a41a62] + a66a25a32(a41a53 − a43a51)

<
g′∗2

g′′∗
f ∗1 c∗f ∗11[α

∗(1− l∗)(γ′∗ − α′∗) +
f ∗2

c∗λ∗3
(2α′∗l∗ − α′∗ − γ′∗)]

=
g2′∗

g′′∗
f ∗1 c∗f ∗11[α

∗(1− l∗)(γ′∗ − α′∗) + (θ − b− γ∗ + α∗)(2α′∗l∗ − α′∗ − γ′∗)].

=
g2′∗

g′′∗
f ∗1 c∗f ∗11[(α

∗ − b− γ∗)(γ′∗ − α′∗) + (θ − b− γ∗ + α∗)(
2α′∗(b + γ∗)

α∗
− α′∗ − γ′∗)]

< 0 by A.9(1).

Hence we shown detJ3 = D6 < 0.

Proof of Lemma 4

Proof.

D1D2 −D3 = 3θ[3θ2 − θ($1 + $2)−$2
1 −$2

2]− θ[θ2 − 2θ($1 + $2)− 2($2
1 + $2

2)]

+3θ[a41 + a51 − a52a25]− [2θa41 + 2θa51 − 2θa25a52]

= θ[8θ2 − θ($1 + $2)−$2
1 −$2

2] + θ(a41 + a51 − a25a52),

which is negative since a41 + a51 − a25a52 < 0 and 8θ2 − θ($1 + $2)−$2
1 −$2

2 < 0 from

A.9(2). Furthermore

θ2−2θ($1+$2)−2($2
1+$2

2) < 3θ2−θ($1+$2)−$2
1−$2

2 < 8θ2−θ($1+$2)−$2
1−$2

2 < 0.

So we get D2 < 0 and D3 < 0.
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