
  09-082 

Research Group: Econometrics and Statistics September 11, 2009 

Nonparametric Beta Kernel Estimator 
for Long Memory Time Series 

TAOUFIK BOUEZMARNI AND SÉBASTIEN VAN BELLEGEM 

 



Nonparametric Beta Kernel Estimator

for Long Memory Time Series∗

Taoufik Bouezmarni

McGill University
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Abstract

The paper introduces a new nonparametric estimator of the spectral density that is
given in smoothing the periodogram by the probability density of Beta random variable
(Beta kernel). The estimator is proved to be bounded for short memory data, and
diverges at the origin for long memory data. The convergence in probability of the
relative error and Monte Carlo simulations suggest that the estimator automaticaly
adapts to the long- or the short-range dependency of the process. A cross-validation
procedure is also studied in order to select the nuisance parameter of the estimator.
Illustrations on historical as well as most recent returns and absolute returns of the
S&P500 index show the reasonable performance of the estimation, and show that the
data-driven estimator is a valuable tool for the detection of long-memory as well as
hidden periodicities in stock returns.

Keywords: Spectral density, Long range dependence, Nonparametric estimation, Peri-
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1 Introduction

The estimation of a spectral density often requires to know whether the observed stationary

time series is short or long memory. Long memory, or long range dependent time series is

characterized by a spectral density that is unbounded at frequency zero, therefore the choice

of an optimal nonparametric estimator will be different if the spectral density is bounded

or not. It is one goal of the present paper to go beyond that limitation and to propose an

estimator that is applicable to any stationary data, being long range dependent or not.

∗This work was supported by the “Agence National de le Recherche” under contract ANR-09-JCJC-0124-
01.

1Corresponding author. Email address: svb@tse-fr.eu



A well-established nonparametric estimation procedure consists in estimating first the

parameter d0 of the long memory process. In that approach, the spectral density f is

assumed to behave like

f(λ) = |λ|−2d0L(λ)

as λ→ 0+, for d0 ∈ (−1/2, 1/2), where L(λ) is slowly varying and such that 0 < L(0) <∞.

Many papers study the estimation of d0. Among recent advances we can cite the approaches

of Andrews and Sun (2004), Robinson and Henry (2003) or Henry (2007) to name but a

few. See also the recent surveys in Doukhan, Oppenheim, and Taqqu (2003); Robinson

(2003); Palma (2007).

Inference on d0 allows to test whether that parameter is significantly larger than zero,

that is if the process is long memory, see Lobato and Robinson (1998), Lobato and Velasco

(2000) or Ohanissian, Russel, and Tsay (2008). The testing step is important because the

asymptotic distribution of the spectral density estimator is usually not the same if d0 = 0

or if d0 > 0. If the process is short memory, the nonparametric estimation of its spectral

density becomes a classical problem of inference. If not, it has been proposed to estimate

the spectrum for λ close to zero by Ĉ|λ|−2d̂0 for a consistent estimator of d̂0 and where Ĉ

is another estimator that makes the overall estimation consistent (the procedure is recalled

with more details in Section 3.3 below). Away from the origin, another nonparametric

estimation must be used in order to evaluate the spectrum for λ > 0.

In this paper we study a new nonparametric estimator of the spectral density that

is given by a smoothing of the periodogram by a Beta kernel. The Beta kernel is the

probability density function of a Beta random variable. It is not a symmetric kernel, and

its shape varies according tot the frequency where the spectrum is estimated, see Section 2

below. Beta kernel smoothing was introduced by Brown and Chen (1999) in the context of

smoothing the Bernstein polynomials in order to estimate compactly supported regression

curves. It has then been used in order to address the boundary bias problem in the context

of regression or probability density estimation, see Chen (1999); Chen (2000).

Because the Beta kernel diverges at zero when its bandwidth shrinks, it is an appealing

smoother of the periodogram when the process is long memory. In fact, we show below that

it adapts automatically to the memory of the time series: If the process is short memory, the

resulting estimation of the spectral density is automatically bounded, whereas the estimator
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diverges at the origin when it is applied to long range dependent data.

The paper is organized as follows. In Section 2 we define the Beta kernel estimator of the

spectral density, and provide an illustration in the estimation of the returns and absolute

returns of the S&P500 index. The properties of the estimator are discussed in Section

3. First, we study its behavior outside the origin and establish its uniform convergence

over any compact set of frequencies. Then we consider what happens at the origin, and

show that the estimator is bounded in probability at the origin for long range data, and

unbounded for short memory processes. We also derive a stronger result that is the relative

convergence of the estimator at the origin. Next, we study the finite sample performance of

the estimator. A Monte Carlo study on three parametric (ARFIMA) models confirms the

reasonable adaptation of the proposed estimator to the rande of memory of the process. We

compare the empirical performances of our estimator with the semi-nonparametric estimator

of Robinson (1995) and show the merits of both methods.

The last Section addresses more practical aspects of the estimation procedure. As every

nonparametric estimators, the Beta kernel smoother depends on a nuisance parameter. In

Section 4 we study a cross-validation method to select that parameter following the general

method of Hurvich (1980). Another Monte Carlo study demonstrates the good performance

of the fully data-driven Beta kernel estimator, which is also illustrated on more recent paths

of the S&P500 index. An appendix contains the proofs of all results.

2 The Beta kernel estimator of the spectral density

2.1 Construction of the estimator

Beta kernel estimators were studied by Chen (2000) in the context of the estimation of

regression curves. The motivation was to develop a kernel smoothing technique that is free

of boundary bias. In the context of time series analysis, this property is valuable since the

nonparametric kernel estimator of the periodogram is not necessarily adapted at the border,

especially if there is a pole at frequency λ = 0.

We first construct the estimator. Suppose we observe X1, . . . ,XT from a stationary

process with spectral density f(λ) =
∑

k γ(k) exp(−2πiλk) where γ(k) is the covariance

function of Xt. For the sake of simplicity, we assume the stationary process to be zero
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mean. The periodogram

IT (ωj) =
1

2πT
|

T
∑

t=1

Xt exp(−2πiωjt)|2 ωj =
j

T
, j = 1, . . . , T/2.

is known to be an asymptotically unbiased, not consistent estimator of the spectral density

f . A consistent estimator is found after an appropriate smoothing of IT over frequencies.

In this paper, we study the estimator

f̂(λ) =
1

T

T
∑

j=1

Kb,λ (ωj) IT (ωj) (2.1)

where Kb,λ is a Beta-kernel defined as

Kb,λ(ω) =
ωλ/b(1 − ω)(1−λ)/b

B
(

λ
b + 1, 1−λ

b + 1
)1106ω61

for the beta function B and the smoothing parameter b. The Beta-kernel is the probability

density function of a Beta{1 + λ/b, 1 + (1 − λ)/b} random variable.

In contrast to most kernel estimators, the estimator f̂(λ) does not use a symmetric

kernel but a kernel whose shape varies with λ. That property is illustrated at Figure 1,

where the function Kb,λ(·) is displayed for some frequencies λ. This varying shape kernel

implies that the amount of smoothing changes according to the frequency where spectrum

is estimated. As noticed by Chen (1999), the variance of the Beta{1 + λ/b, 1 + (1 − λ)/b}
random variable is of order

bλ(1 − λ) +O(b2)

suggesting that the amount of smoothing is small at the border of the support. Note also

that the beta kernel does not put any weight outside the support of f(λ).

2.2 Empirical illustration

An eminent feature of the Beta kernel estimator is its adaptivity to the boundness or

unboundness of the spectrum at the origin λ = 0. To illustrate that property, we consider

in Figure 2 a segment of the daily absolute returns of the S&P500 that was analysed by

Lobato and Savin (1998). Using a Lagrange multiplier test, the later conclude that there is

no evidence of long memory in the levels of the returns, whereas their analysis favors long

memory of the squared returns.
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Figure 1: Beta kernel Kb,λ(·) used to estimate the spectral density f(λ). The
shape of that kernel varies according to the frequency λ where the spectral density
is estimated (b = 0.3).

In Figure 3(a) and (b), we display the empirical autocorrelation function of the log

returns, and absolute log returns respectively. Those pictures illustrate the conclusions of

Lobato and Savin (1998) recalled above.

Estimation of the log-spectrum by Beta kernel of the log returns and the absolute log

returns is proposed in Figures 3(c) and (d) respectively. The estimator is drawn for several

values of the smoothing parameters, b = 0.005, 0.01 and 0.05. We observe that smaller b

is, more oscillating is the estimator. We therefore recover the usual regularity properties of

the estimator with respect to b. A data-driven choice of b is proposed in Section 4 below.

Figures 3(c) and (d) also show that the Beta kernel estimator of the spectrum is bounded

for the log returns, and is diverging for the absolute log returns. This illustrates how the

estimator automatically adapts to the unknown memory structure of the process. In other

words, the estimator can be applied to time series of any type of memory, in contrast to

most estimators who are applicable either to short or to long memory processes.

For the sake of comparison, other kernel smoothing of the periodogram are displayed in

Figures 3(e) and (f), respectively for the log-returns and the absolute log returns. Three
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Figure 2: Daily log returns of S&P500, July 1962 to December 1972, 2616 data

kernel smoothing are superimposed: (i) The symmetric Daniell kernel estimator with band-

width 0.036; (ii) a rectangular kernel estimator with bandwidth 0.043 and (iii) an asym-

metric triangular kernel. For exact definitions, we refer e.g. to Brillinger (2001) or many

other textbooks. Although the standard kernel methods show a peak close to the frequency

zero in Figure 3(f), it is appearent that the unboundness of the spectrum is more difficult

to display with classical methods. We could vary the bandwidth in order to underline the

peak close to the pole, but, in such a case, the quality of estimation far from frequency zero

would be very weak.
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(a) Empirical autocorrelation function of the
log returns
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(b) Empirical autocorrelation function of the
absolute log returns
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(c) Log spectrum of the log returns, estimated
by Beta kernel estimator with various band-
widths b
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(d) Log spectrum of the absolute log returns,
estimated by Beta kernel estimator with vari-
ous bandwidths b
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(e) Log spectrum of the log returns, estimated
by other kernel smoothing of the periodogram:
(i) Symmetric Daniell kernel; (ii) Rectangular
kernel; (iii) Asymmetric triangular kernel.
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(f) Log spectrum of the absolute log returns,
estimated by other kernel smoothing of the pe-
riodogram as in (e) (details in text)

Figure 3: Empirical autocorrelation function and Log spectrum estimation of
the daily log returns of S&P500 (July 1962 to December 1972)
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3 Properties of the estimator

In this section, we explore the asymptotic and the finite sample properties of the estimator.

Overall, we assume that the process can be long memory, in the sense that it may have a

pole at the origin:

Assumption 3.1. The spectral density f is such that1 f(λ) ∼ λ−βg(λ) as λ → 0+, for

0 6 β < 1, where g is a Lipschitz, continuous, bounded, strictly positive function on [0, 1].

We start our discussion by studying the behavior of the estimator outside the origin.

3.1 Behavior of the estimator outside the origin

Given a stationary, zero mean time series {Xt; t = 1, . . . T} with a spectral density f(λ)

that is two times differentiable, we derive below the appropriate rate of convergence of the

bandwidth b = b(T ) such that the bias and the variance of the Beta kernel estimator vanish

asymptotically. We also prove the uniform convergence of the estimator on any compact

set in (0, 1).

The expectation of the Beta kernel estimator at frequency λ 6= 0 is given by

E(f̂(λ)) =

∫ 1

0
Kb,λ(u)f(u)du+R1 +R2

where R1 and R2 are two approximation terms that are given by

R1 =
1

T

∑

j

Kb,λ(ωj)f(ωj) −
∫ 1

0
Kb,λ(u)f(u)du

and

R2 = E

[ 1

T

∑

j

Kb,λ(ωj)(IT (ωj) − f(ωj))
]

.

By the smoothness assumption on f , the approximation term R1 has rate O(T−1). The

term R2 pools the periodogram over frequencies, and can be computed e.g. using the results

of Robinson (1994b). Noting that Kb,λ(u) 6 c1b
−1/2{λ(1 − λ)}−1/2 where c1 is a positive

constant (see Chen (2000)), Proposition 2 in Robinson (1994b) leads to

R2 = O

(

1√
b

(mT

T

)1−β
)

1For two functions h1(λ) and h2(λ), we write h1(λ) ∼ h2(λ) if there exists two nonegative, finite constant
c1 and c2 such that c1 6 h1(λ)/h2(λ) 6 c2 for all λ.
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with m−1
T +mT /T → 0. If the sequence mT is selected such that R2 = o(1) we can write

E(f̂(λ)) =

∫ 1

0
Kb,λ(u)f(u)du+ o(1) (3.1)

= E(f(ξλ)) + o(1)

where ξλ is a Beta{1 + λ/b, 1 + (1 − λ)/b} random variable. Under standard smoothness

conditions on f , Chen (2000) has derived the general approximation bias of E(f(ξλ)), leading

to

f(λ) − E(f̂(λ)) = b{(1 − 2λ)f ′(λ) +
1

2
λ(1 − λ)f ′′(λ)} + o(b) + o(1).

We proceed similarly for the variance of estimator. From Robinson (1995) and Moulines

and Soulier (1999), under technical conditions the periodogram of long memory time series

is such that Cov(IT (ωs)/f(ωs), IT (ωt)/f(ωt)) = rst where
∑

s<t rst = O(logr(T )) for some

r > 0. After appropriate approximations that are analogous to the above calculation of the

bias, we find

Var(f̂(λ)) = A(λ)E(f(ρλ)2) +O

(

1

b

logr(T )

T 2−2β

)

where ρλ is a Beta{1 + 2λ/b, 1 + 2(1 − λ)/b} random variable and

A(λ) =
B
(

2λ
b + 1, 2(1−λ)

b + 1
)

B
(

λ
b + 1, 1−λ

b + 1
)2 .

If β < 1/2 and with an appropriate bandwidth b (that is written below), the reminder term

is negligible and converges to zero. From a Taylor expansion and the asymptotic properties

of A(λ) (cf Chen (2000)) the variance of the estimator is found to be

Var(f̂(λ)) =







1
Tb1/2

f(λ)2

2
√

πλ(1−λ)
+ o((Tb1/2)−1) + o(1) if λ/b and (1 − λ)/b→ ∞

C(κ)
Tb {f(λ)2 +O(T−1)} + o(1) if λ/b or (1 − λ)/b→ κ.

(3.2)

where κ is a strictly positive constant and

C(κ) =
Γ(2κ+ 1)

21+2κΓ(κ+ 1)2
.

Considering the bias and the variance convergences, we check that outside the origin

the Beta kernel estimator is asymptotically unbiased estimator with vanishing variance if

the bandwidth is such that

b+
1

T 1−2β
√
b
→ 0 (3.3)
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if β < 1/2. The last constraint on β imposes that the spectrum is still square integrable

around the pole, and therefore the mean square error is invariant to the explicit variation

of f around frequency 0. Following Robinson (1994a), it is possible to go beyond that

constraint under more assumptions on f , but leading to different expressions for the mean

square error.

In the next result, we state the uniform convergence of the estimator on a compact set

outside the origin.

Proposition 3.1. Let f be the spectral density function such that Assumption 3.1 is fulfilled

with β ∈ [0, 1/2). For any compact set I in (0, 1) and if the bandwidth satisfies (3.3) and is

such that (b2+ǫT ) → ∞ for some ǫ > 0, then the beta kernel spectral estimator is uniformly

convergent over I, i.e.

sup
λ∈I

∣

∣

∣
f̂(λ) − f(λ)

∣

∣

∣

P−→ 0.

The proof of the proposition is to be found in the Appendix. Note that the result is also

valid in the particular case where β = 0, that is the process is short memory.

3.2 Behavior of the estimator close to the pole

One special interest is to study the behavior of the estimator close to the zero frequency,

where the spectrum is not bounded. The first result shows that the Beta kernel estimator

for long memory time series is unbounded at the origin.

Proposition 3.2. Let f be the spectral density function such that Assumption 3.1 is fulfilled

with β ∈ (0, 1/2) and consider the Beta kernel estimator (2.1) with a bandwidth that satisfies

(3.3) and the two following constraints (i) Tb1+2β → ∞ and (ii) T 1−2βb → ∞. Then the

estimator is such that f̂(0)
P−→ +∞ as T → ∞.

The next corollary states the consistency of the estimator at λ = 0 for short time series.

Corollary 3.1. Let f be the spectral density function such that Assumption 3.1 is fulfilled

with β = 0 (short memory process). If b satisfies (3.3) and Tb → ∞, then the Beta kernel

spectral estimator (2.1) is such that f̂(0)
P−→ f(0).

We conclude that the Beta kernel estimator is automatically adapted to the “type of

memory” of the spectral density (long vs short range). This result has been already illus-

trated in Figure 3.
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However, even if the estimator is consistent at the pole, the last proposition does not

give any information about the closeness of the estimator to the true value close to the

origin. In order to have an idea about that closeness, the next proposition tells more about

the relative convergence of the Beta kernel estimator when the spectral density is estimated

near the origin. In the next section, we also show empirically the reasonable relative rate

of convergence of the estimator close to the pole.

Proposition 3.3. Let f be the spectral density function such that Assumption 3.1 is fulfilled

with β ∈ [0, 1/2) and consider the Beta kernel estimator (2.1) with a bandwidth that satisfies

(3.3) and Tb→ ∞. Then the Beta kernel spectral estimator (2.1) is such that
∣

∣

∣

∣

∣

f̂(λ)

f(λ)
− 1

∣

∣

∣

∣

∣

P−→ 0

when λ tends to zero such that λ/b→ κ > 0.

3.3 Finite sample properties

In this section, we examine the properties of the estimator through Monte Carlo simulations.

In order to judge quality of the estimator, we provide a comparison with the semi-

parametric estimator of Robinson (1994b). That approach assumes that the spectrum is

such that f(λ) ∼ Cfλ
1−2H as λ → 0+, and proposes consistent estimates of H and Cf

that we recall now. Observing that the spectral distribution, F (λ) =
∫ λ
0 f , is such that

F (qλ)/λ ∼ q2(1−H) for all q ∈ (0, 1), Robinson (1994b) has suggested to estimate H by

Ĥ = 1 − log(F̂ (qλm)/λm)

2 log q

for a given q and frequency λm = m/T . Similarly, observing that the spectral distribution

is F (λ) =
Cf

2−2H λ
2−2H , an estimate of Cf is given by

Ĉf = 2(1 − Ĥ)F̂ (λm)λ2(Ĥ−1)
m .

Finally, an estimator of the spectrum close to the origin is given by f̂(λ) = Ĉfλ
1−2Ĥ .

The semiparametric estimator depends on the choice of two parameters, q and m. In

our computations below, we set q = 0.5 as it is often observed in the literature. The choice

of m is however more delicate. Based on the expansion of the asymptotic mean square

error, some rules for the choice of m have been proposed in Robinson (1994a). They were

the starting point of the feasible, data-driven proposal of Delgado and Robinson (1996a)

and Delgado and Robinson (1996b).
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In order to facilitate the comparison between the semiparametric estimator and the Beta

kernel estimator, we have simulated below three ARFIMA models that are also studied in

Delgado and Robinson (1996a). ARFIMA models provide a well-established parametric

specification of long memory. It is given by the fractional autoregressive integrated moving

average FARIMA (p, d, q) model that has spectral density

f(λ) = |1 − exp(iλ)|1−2Hh(λ), −1 6 λ 6 1, H ∈ [0, 1] (3.4)

where

h(λ) = σ2 |b(exp(iλ))|2
|a(exp(iλ))|2

with a(z) = 1−
∑p

j=1 ajz
j and b(z) = 1−

∑q
j=1 bjz

j . In that model, H = 1/2 corresponds to

short memory if we assume 0 < h(λ) <∞, wheras H > 1/2 leads to a long memory process.

Figure 4 displays the logarithm of the spectral density of the three ARFIMA generating

models used in the simulation below.
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(a) ARFIMA(1,H ,0) with a1 = 0.5 and two
values of the memory parameter H .
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2
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λ

(b) ARFIMA(2,H = 0.9,0) with a1 = 1.172,
a2 = −0.707.

Figure 4: Logarithm of the three spectral densities of the ARFIMA used in the
simulations.

The estimators were computed on 1000 Monte Carlo simulations of the models, for

sample sizes T = 400, 600, 1000. Since the semiparametric estimator is a local estimator

around the pole, we do not compare with the Beta kernel estimator over all frequencies

but only in a neighbourhood of the frequency zero . According to the theory of Robinson

(1994b), we compute the error of estimation on the frequencies in (λj0 , λj1), where j0 = [ 5
√
T ]
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and j1 = [
√
T ]. The empirical error that we compute is the relative mean absolute deviation,

i.e.

RMAD[j0,j1] =
1

j1 − j0 + 1

j1
∑

j=j0

∣

∣f̂
(

j
T

)

− f
(

j
T

)

∣

∣

f
(

j
T

)

where f̂ denotes the considered estimator of the spectrum. Taking the relative MAD in-

stread of the MAD is motivated by the unboundesss of the spectral density at frequency

zero.

Note that, because j0 and j1 depend on T , the range of frequencies where the error is

computed is different for each sample size. Therefore the MAD presented in the empiricial

study below are only comparable for a given sample size.

Tables 1 to 3 display the results of the Monte Carlo study. The ARFIMA time series

were generated via the library ‘fracdiff’ in R. In order to avoid the dependence of our

conclusions to the choice of the bandwidths, we have computed the RMAD for a range of

bandwidths. The range of bandwidths b of the Beta kernel estimator is [0.01, 0.5], and range

of m in the semiparametric estimation is [T 1/2, T 4/5] . The tables display the five results

that were the closest to the best RMAD found. (In the next section, we also address the

question of the data driven choice of b.)

T = 400 T = 600 T = 1000

Beta kernel:

b RMAD b RMAD b RMAD

0.08 0.416 (0.190) 0.08 0.364 (0.144) 0.08 0.324 (0.104)

0.115 0.339 (0.130) 0.115 0.302 (0.091) 0.115 0.288 (0.059)

0.15 0.307 (0.089) 0.15 0.287 (0.061) 0.15 0.298 (0.052)

0.185 0.299 (0.066) 0.185 0.296 (0.055) 0.185 0.329 (0.065)

0.22 0.304 (0.060) 0.22 0.317 (0.063) 0.22 0.366 (0.077)

Semiparametric:

m RMAD m RMAD m RMAD

63 0.173 (0.124) 95 0.146 (0.102) 157 0.145 (0.107)

70 0.132 (0.090) 105 0.109 (0.080) 172 0.103 (0.082)

77 0.123 (0.081) 116 0.099 (0.070) 188 0.086 (0.062)

84 0.133 (0.087) 126 0.112 (0.077) 204 0.087 (0.058)

91 0.151 (0.089) 136 0.139 (0.081) 219 0.101 (0.062)

Table 1: Results of the Monte Carlo simulation for an ARFIMA(1,H = 0.9,0)
model with a1 = 0.5. Standard errors of the relative mean absolute deviation
(RMAD) are in parenthesis.
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T = 400 T = 600 T = 1000

Beta kernel:

b RMAD b RMAD b RMAD

0.08 0.292 (0.160) 0.08 0.250 (0.132) 0.08 0.218 (0.102)

0.115 0.178 (0.106) 0.115 0.144 (0.078) 0.115 0.119 (0.053)

0.15 0.130 (0.067) 0.15 0.113 (0.048) 0.15 0.105 (0.039)

0.185 0.127 (0.058) 0.185 0.129 (0.057) 0.185 0.142 (0.056)

0.22 0.148 (0.068) 0.22 0.167 (0.070) 0.22 0.194 (0.061)

Semiparametric:

m RMAD m RMAD m RMAD

91 0.554 (0.183) 126 0.710 (0.192) 62 0.867 (0.255)

99 0.535 (0.174) 136 0.703 (0.184) 78 0.858 (0.242)

106 0.517 (0.165) 146 0.694 (0.176) 94 0.856 (0.235)

113 0.504 (0.160) 156 0.686 (0.168) 110 0.860 (0.229)

120 0.487 (0.150) 166 0.676 (0.163) 125 0.863 (0.223)

Table 2: Results of the Monte Carlo simulation for an ARFIMA(1,H = 0.6,0)
model with a1 = 0.5. Standard errors of the relative mean absolute deviation
(RMAD) are in parenthesis.

T = 400 T = 600 T = 1000

Beta kernel:

b RMAD b RMAD b RMAD

0.0011 0.9429 (0.396) 0.0062 1.3882 (0.428) 0.0415 1.8211 (0.341)

0.0016 0.9383 (0.394) 0.0071 1.3874 (0.422) 0.0432 1.8094 (0.338)

0.0021 0.9381 (0.391) 0.0076 1.3872 (0.419) 0.0449 1.7974 (0.334)

0.0027 0.9395 (0.388) 0.0085 1.3875 (0.413) 0.0466 1.7852 (0.330)

0.0032 0.9419 (0.384) 0.0095 1.3886 (0.408) 0.0483 1.7727 (0.327)

Semiparametric:

m RMAD m RMAD m RMAD

63 1.401 (0.475) 85 1.792 (0.605) 125 2.440 (0.698)

70 1.354 (0.451) 95 1.693 (0.589) 141 2.243 (0.712)

77 1.310 (0.434) 105 1.656 (0.568) 157 2.125 (0.688)

84 1.344 (0.409) 116 1.719 (0.542) 172 2.140 (0.675)

91 1.345 (0.381) 126 1.810 (0.512) 188 2.230 (0.655)

Table 3: Results of the Monte Carlo simulation for an ARFIMA(2,H = 0.9,0)
model with a1 = 1.172, a2 = −0.707. Standard errors of the relative mean
absolute deviation (RMAD) are in parenthesis.

Table 1 reports the results for an ARFIMA(1,H = 0.9,0) model with a1 = 0.5. In that

situation, the semiparametric estimator provides the best results whatever the sample size

is. The corresponding value of m varies with the sample size; the ratio between m and

the sample size is around λm ≈ 0.19. Note that for T = 1000, the adaptive value of m

found in Delgado and Robinson (1996a) converges to 81 (in the conventions of the latter, it
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corresponds to the frequency λm = (2π) × 81/1000 ≈ 0.51). The contrast with the optimal

value of m found here is explained by our different objective function: whereas Delgado and

Robinson (1996a) concentrates on the mean square error, we consider the RMAD.

In Table 2 we consider the same process except that H = 0.6, that is our simulated

time series still has a long range dependence, but now with a memory that is “shorter”. In

that situation, the Beta kernel shows a dramatic improvement when it is compared to the

semiparametric estimator. This was expected, because one of our motivations in introducing

the Beta kernel is its adaptivity to the memory of the time series.

Another strongly dependent process with H = 0.9 is considered in Table 3, however with

a more complex dynamical structure. As it is showed in Figure 4(b), the spectral density

of that process is not monotone and presents a cycle between frequencies 0.1 and 0.2. The

semiparametric estimator is not well-fitted to that situation of non monotone spectrum, as

it is confirmed by the results of the Monte Carlo simulation. In contrast, the performance of

the Beta kernel is better and demonstrates the good finite sample behavior of the estimator

outside the origin. The spectral density of this ARFIMA(2,H = 0.9,0) appeared to be very

difficult to estimate and it was not straightforward to select the bandwidth of the Beta

kernel estimator. In the next section, we give a fully adaptive estimator computed with a

data-driven bandwidth b.

4 Empirical results

4.1 Data-driven choice of the bandwidth parameter

The selection of the bandwidth parameter from the data is a relevant question that is

addressed in the literature. In our empirical exercise below, we use the generalized leave-

one-out spectral technique of Hurvich (1980). In that approach, the function

I−j
T (ωk) =

{

IT (ωk) k 6= j

{IT (ωj−1) + IT (ωj+1)}/2 k = j

is defined for each j = 1, . . . T . The Beta kernel smoothing with bandwidth b is applied

to I−j
T (ωk) and is denoted f̂−j

b (λ). The cross-validation is motivated by the approximate

independence between f̂−j
b (ωj) and IT (ωj). In our context of estimation under the L1 loss,

it takes the following form:

CV (b) =
∑

j∈J

|f̂−j
b (ωj) − IT (ωj)| (4.1)

14



T = 400 T = 600 T = 1000

ARFIMA(1,H = 0.9,0) model: b̂cv 0.118 (0.094) 0.107 (0.090) 0.089 (0.086)

RMADJ 0.503 (0.320) 0.504 (0.354) 0.549 (0.361)

RMAD◦ 1.466 (0.421) 1.412 (0.413) 1.340 (0.384)

ARFIMA(1,H = 0.6,0) model: b̂cv 0.421 (0.125) 0.411 (0.131) 0.394 (0.139)

RMADJ 0.335 (0.132) 0.370 (0.128) 0.400 (0.154)

RMAD◦ 1.056 (0.148) 1.045 (0.139) 1.039 (0.109)

ARFIMA(2,H = 0.9,0) model: b̂cv 0.280 (0.199) 0.250 (0.200) 0.213 (0.196)

RMADJ 0.537 (0.419) 0.500 (0.419) 0.584 (0.398)

RMAD◦ 13.291 (8.090) 12.203 (8.233) 10.791 (8.16)

Table 4: The performance of the adaptive Beta kernel estimator from 1000 Monte
Carlo simulations on the three ARFIMA models. The line b̂cv gives the averages
and the standard deviations of the adaptive bandwidth. The line RMADJ gives
the averages and s.d. of the RMAD adaptive estimator over J = [T 1/5, (T/2) −√
T ]. The line RMAD◦ gives the same statistic over all discrete frequencies in

(0, 0.5).

where J denotes a given discrete range of frequencies.

In order to evaluate the performance of CV (b) for the choice of the bandwidth, Table

4 reports the results of a Monte Carlo simulation on the three ARFIMA models given in

Figure 4. For each sample size T , the bandwidth minimizing (4.1) is found and the table

gives the average and standard deviation of the selected bandwidths over 1000 simulations.

As expected the adaptive bandwidth is decreasing as the sample size increases. In the

simulations, the set J is choosed to be 100 equidistant points in the interval J = [T 1/5, T
2 −

√
T ]. For each simulated time series, we focus on the adaptive estimator, that is the Beta

kernel estimator computed at the bandwidth minimizing the Cross Validation (4.1). In

Table 4 we also estimate the error of the adaptive estimator. The measure of the error

considered here is the RMAD computed over J (denoted by RMADJ in Table 4), and the

RMAD computed over all discrete frequencies in the interval (0, 0.5) (denoted by RMAD◦

in the table).

The deviation found by RMAD◦ is of course larger than the one based on RMADJ

because the bandwidth was optimized on frequencies J . Because RMAD◦ is computed

over a fixed range of frequencies (0, 0.5), it is comparable over sample size and Table 4

shows the improvement of the estimator with that respect.
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4.2 Nonparametric analysis of S&P 500

We end this study by an application of the data driven estimator on the absolute value of the

log returns of the S&P 500 index. In Section 2.2, we already show the use of the estimator

on some paths of the stock price that were analysed in Lobato and Savin (1998). Below

we consider the path between January 1973 and December 1994, but we also consider two

more recent segments of data: from January 1995 and December 2001, and from January

2002 and May 2009.

In Figure 5 we superimpose the logarithm of the data-driven estimator obtained from

the three periods of time. In each segment of time, the data are standardised by their

standard deviation for the sake of comparison. The bandwidth that is selected by the

Cross-validation method is b = 1.514 × 10−4 for the period 1973–1994, b = 7.475 × 10−4

for the period 1995–2001, and b = 2.815 × 10−5 for the period 2002–2009. Nota that the

Cross-validation do not provide a clear minimum for the period 1995–2001 because it is flat

for b > 7.475 × 10−4.

0.0 0.1 0.2 0.3 0.4 0.5

0
1

2
3

4

λ

1973−1994
1995−2001
2002−2009

Figure 5: The data-driven log-spectral estimator of the standardized absolute
value of the S&P 500 log returns is superimposed for three different periods of
time.
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From the estimation, it apparent that the spectrum over periods 1973–1994 and 1995–

2001 shows clear similarities, whereas the most recent data shows a different behavior for

low frequencies. Beyond the frequency zero, the spetrum shows local minima corresponding

to various periodocities in the absolute returns. Some periodicities are coherent between the

three segments of time. Because the Beta kernel spectral estimator is consistent whatever

is the memory of the time series, this empirical example shows that it might be a valuable

ingredient in the economic study of the hidden seasonality stock prices.

A Appendix: Proofs

In the proofs, we denote by K(·, α, β) the probability density of a Beta(α, β) random vari-

able. The first lemma establishes the uniform convergence of the bias of the Beta kernel

estimator.

Lemma A.1. If the spectral density f is a continuous function on the interval (0, 1), then

for any compact I in (0, 1), the Beta kernel estimator (2.1) is such that

sup
λ∈I

∣

∣

∣
IE(f̂(λ)) − f(λ)

∣

∣

∣
−→ 0 as T → ∞

provided that b = b(T ) → 0.

Proof. We start by recalling a useful property of Beta distributions. If µλ and σ2
λ denote

respectively the mean and the variance of the random variable Z where Z has a Beta{1 +

λ/b, 1 + (1 − λ)/b} distribution, then there exists a positive, finite constant M such that

µx = λ + b(1 − 2λ) + ∆1(λ), σ2
λ = bλ(1 − λ) + ∆2(λ) and |∆j(λ)| 6 Mb2 for j = 1 and 2

(see e.g. Johnson, Kotz, and Balakrishnan (2000)).

To prove the result, we first consider the approximation IE(f̂(λ)) by
∫ 1
0 Kb,λ(u)f(u)du

given in (3.1). Consider the following decomposition of the dominant term in (3.1):
∣

∣

∣

∣

∫ 1

0
{f(t) − f(λ)}K{t, λ/b+ 1, (1 − λ)/b+ 1}dt

∣

∣

∣

∣

6

∫

|t−µλ|<δ
|f(t) − f(λ)|K{t, λ/b+ 1, (1 − λ)/b+ 1}dt +

∫ 1

µλ+δ
(. . .) +

∫ µλ−δ

0
(. . .)

= I + II + III.

and we now show the convergence to zero of the three terms.

Since f is uniformly continuous on I, for any ǫ > 0 there exists a δ > 0 such that

|f(t) − f(λ)| < ǫ for |λ− t| < δ. Therefore I 6 ǫ for all b 6 bIǫ.
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Using Chebyshev’s inequality and the above bound for σ2
λ we also get

II 6
2

δ2
sup

t>µλ+δ
|f(t)|σ2

λ

6
1

2δ2
sup

t>µλ+δ
|f(t)| (b+ 4Mb2)

6 ǫ

for all b ≤ bIIǫ .

To address the convergence of III we assume without loss of generality that f(t) > f(λ)

and that f(t) ∼ t−β for t close to the origin . If ξ denotes the Beta{λ/b−β+1, (1−λ)/b+1}
random variable, we then write

III 6 2

∫ µλ−δ

0
t−βK{t, λ/b+ 1, (1 − λ)/b+ 1}dt

=
2B{λ/b− β + 1, (1 − λ)/b+ 1}
B{λ/b+ 1, (1 − λ)/b+ 1}

∫ µλ−δ

0
K{t, λ/b− β + 1, (1 − λ)/b+ 1}dt

6
2B{λ/b− β + 1, (1 − λ)/b+ 1}
B{λ/b+ 1, (1 − λ)/b+ 1}

Var(ξ)

δ2

6 ǫ

for b 6 bIIIǫ , and because it is easy to show that Var(ξ) = bλ(1 − λ) +O(b2).

Combining the three convergence that have been proved we get supx∈[0,1] |IE {fb(x)} −
f(x)| < 3ǫ for all b 6 min(bIǫ, b

II

ǫ , b
III

ǫ ). �

Proof of Proposition 3.1. Since Lemma A.1 establishes a sufficient control of the bias

term, it remains to prove the weak convergence of the variation term supλ∈I |f̂(λ)−IE(f̂(λ))|.
Without loss of generality, we suppose that I = [η1, η2] where 0 < η1 < η2 < 1.

The derivative with respect to λ ∈ I of the beta kernel is given by

dKb,λ(t)

dλ
=

1

b
Kb,λ(t)

{

ln

(

t

1 − t

)

+ ψ

(

1 − λ

b
+ 1

)

− ψ

(

λ

b
+ 1

)}

where ψ is the digamma function and satisfies ψ(x+1) = ln(x)+(2x)−1−∑∞
j=1(2j x

2j)−1B2j

with B2j beeing Bernoulli numbers (see Abramowitz and Stegun (1972) for more details).

Also, from Chen (2000) there exists a positive, finite constant c1 such that Kb,λ(t) 6

c1b
−1/2{λ(1 − λ)}−1/2. We conclude that,
∣

∣

∣

∣

dKb,λ(t)

dλ

∣

∣

∣

∣

=
1

b
Kb,λ(t)

∣

∣

∣

∣

ln

(

t

1 − t

)

+ ln

(

1 − λ

λ

)

+
b

2

(

1

1 − λ
− 1

λ

)

+O(b2)

∣

∣

∣

∣

6
C

b3/2
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for some constant C depending on η1 and η2. Therefore, for λ and λ ∈ I we can write

|f̂(λ) − f̂(λ′)| =
1

T

T
∑

j=1

|Kb,λ(ωj) −Kb,λ′(ωj)|IT (ωj)

6
C

b3/2T
|λ− λ′|

T
∑

j=1

IT (ωj).

Hence, if we control as above the smaller order approximation terms in the expectation,

|Ef̂(λ) − Ef̂(λ′)| 6 E|f̂(λ) − f̂(λ′)|

6
C

b3/2
|λ− λ′|{γ(0) + o(1)}

Let ǫ > 0 and consider a partition of the interval [η1, η2] into N = [b−ǫ−3/2] subintervals

{Ij} of equal length, with center λj. Then

sup
λ∈Ij

|f̂(λ) − Ef̂(λ)| 6 |f̂(λj) − Ef̂(λj)| +
C

Nb3/2
{γ(0) + o(1)}

Therefore,

sup
λ∈I

|f̂(λ) − Ef̂(λ)| 6 max
16j6N

|f̂(λj) − Ef̂(λj)| +
C

Nb3/2
{γ(0) + o(1)}.

Using (3.2) and the Chebychev inequality, we also note that f̂(λ)−IEf̂(λ) = OP (b−1/2T−1)

for all λ ∈ I, and therefore maxj |f̂(λj) − Ef̂(λj)| = OP (Nb−1/2T−1) = OP

(

b−2−ǫT−1/2
)

which gives the result. �

Proof of Proposition 3.2. The divergence of the spectral density at the origin implies

that for any C > 0 there exists δ > 0 such that f(t) > C for all t < δ. We first show that

the expectation of the Beta kernel estimator diverges at frequency zero when there is a pole

at the origin of the spectrum. In (3.1) we have computed the expectation for λ 6= 0; the

situation is slightly different at λ = 0. Still, we can write that

E(f̂(0)) =

∫ 1

0
Kb,0(u)f(u)du +R1 +R2

where R1 = O(T−1). To evaluate R2 we note that Kb,0(ωj) = b−1(1 + b)(1− j/T )1/b which

is bounded by b−1(1 + b) and then we can apply the arguments of Robinson (1994b) on

the pooled periodogram in order to show that R2 = O(b−1(mT /T )1−β) = o(1) under the
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constraint (ii) of the proposition. Therefore, using that the spectrum f is integrable,

IE(f̂(0)) = b−1(1 + b)

∫ 1

0
(1 − t)1/bf(t)dt+ o(1)

> b−1(1 + b)C

∫ δ

0
(1 − t)1/bdt+ o(1)

> C(1 − (1 − δ)1/b+1) + o(1).

The first term of the last expression converges to C as b tends to zero, which proves the

divergence of IE(f̂(0)). To show the convergence in probability, we again use the Chebychev

inequality and (3.2): for any ǫ > 0 and for a sequence λ such that λ/b→ κ,

P (|f̂(λ) − IEf̂(λ)| > ǫ) = O

(

1

Tb1+2β

)

which proves the announced result. �

Proof of Corollary 3.1. Using again that Kb,0(ωj) = b−1(1 + b)(1− j/T )1/b we can write

|IE(f̂(0)) − f(0)| 6
b+ 1

b

∫ 1

0
(1 − t)1/b|f(t) − f(0)| + o(1).

Since f is continuous on the right side of 0, for any ǫ > 0 there exists a δ > 0 such that

|f(t)− f(0)| < ǫ for t < δ. Splitting the integral over [0, 1] in [0, δ]∪ [δ, 1], we get the bound

ǫ
b+ 1

b
[1 − (1 − δ)1+1/b] + 2M(1 − δ)1+1/b

where M := supt∈[0,1] |f(t)|. Since b → 0 and the bound holds for every ǫ > 0, we get

|IE(f̂(0)) − f(0)| = o(1). Finally, as in the proof Proposition 3.2, we conlude with the

Chebychev inequality and (3.2) that lead to P (|f̂(0) − IEf̂(0)| > ǫ) = O(b−1T−1), and get

the stated result. �

Proof of Proposition 3.3. We start by proving the relative convergence of the bias term,

that is |{IE(f̂(λ)) − f(λ)}/f(λ)| −→ 0 as λ/b → κ. We proceed as in the beginning of the

proof of Lemma A.1. Omitting the negligible terms, we use the decomposition

∣

∣

∣

∣

∣

IE(f̂(λ)) − f(λ)

f(λ)

∣

∣

∣

∣

∣

6

∫

|t−µλ|<δ

|f(t) − f(λ)|
f(λ)

K{t, λ/b+ 1, (1 − λ)/b+ 1}dt +

∫ 1

µλ+δ
(. . .) +

∫ µλ−δ

0
(. . .)

= I + II + III.
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in which I 6 ǫ for all b 6 bIǫ and II 6 ǫ for all b 6 bIIǫ . The treatment of the term III is not

as in Lemma A.1. Assuming that f(t) > f(λ) for t 6 µλ + δ without loss of generality, we

can write by Assumption 3.1 that

|f(t) − f(λ)|
f(λ)

∼ |t−β − λ−β|
λ−β

6 1

and therefore

III 6

∫ µλ−δ

0
K{t, λ/b+ 1, (1 − λ)/b+ 1}dt

6
Var(ξ)

δ2
6 ǫ

for all b 6 bIIIǫ , where ξ is a Beta{λ/b− β + 1, (1− λ)/b+ 1} random variable which is such

that Var(ξ) = bλ(1 − λ) +O(b2). By combining the three terms, the bias term is bounded

by 3ǫ for all b 6 min(bIǫ, b
II

ǫ , b
III

ǫ ).

Finally, we control the convergence of the variation term using the Chebychev’s inequality.

Indeed for λ such that λ/b→ κ

P

(

|f̂(λ) − IE(f̂(λ))|
f(λ)

> ǫ

)

6
Var(f̂(λ))

f(λ)2ǫ2

=
C(κ)

Tbf(λ)2ǫ2
{f(λ)2 +O(T−1)}

= OP (b−1T−1),

which implies the weak convergence of the variation term, and therefore ends the proof. �
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