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Abstract

Most of hedge funds databases are now keeping history of dead funds in order to control biases
in empirical analysis. It is then possible to use these data for the analysis of hedge funds
lifetimes and survivorship. This paper proposes two nonparametric specifications of duration
models. First, the single risk model is an alternative to parametric duration models used in
the literature. Second, the competing risks model consider the two reasons why hedge funds
stop reporting. We apply the two models to hedge funds data and compare our results to the
literature. In particular, we show that a cohort effect must be considered. Moreover, the reason
of the exit is a crucial information for the analysis of funds’ survival as for a large part of
disappearing funds, exit cannot be explained by low performance or low level of assets.
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1 Introduction

Hedge funds aim at generating specific return distributions, mainly characterized by high re-
turns, low volatility, and low correlation with traditional financial indices. The specificity of
hedge funds comes from the dynamical management of risk, allocation and exposures, but also
from their low level of regulatory constraints. As the information provided is often missing,
limited or subject to caution, the only way to gather information is to collect it from databases,
in which funds report their performance to attract potential clients. This report relies on their
willingness to provide figures, which is not compulsory and is related to the objectives of the
manager. All the information was formerly provided on alive funds only. But the industry of
hedge funds, contrary to mutual funds, exhibits a high level of attrition. The appearance of
those dead funds bases follows a stream of academic papers pointing out the fact that unavail-
able data on dead funds led to numerous statistical biases. With those data, it is thus possible
to analyze in a static fashion, the differences between living and dead funds by conditioning by
the status (alive or dead) of the fund.

However, a dynamic approach is a more ambitious and flexible framework to model the proba-
bility to die (across time) conditional on some (potentially dynamic) fund characteristics. And
in this framework, censorship is not always well taken into account in empirical studies. For
example, Pojarliev and Levich (2008) presents a statistical study on funds categorized along a
posterior, observable status at the date of study, depending on the fact that the funds are alive
or dead. One cannot draw two distinct studies on funds depending on their current status since
the information is carried by both alive and dead funds. Similarly, conditioning by the age of
the fund may be not sufficient, as the whole set of variables (returns, assets, and age of the fund)
are random processes that are mutually linked. From a mathematical perspective, alive funds
are individuals for which the event (death) has not yet been observed (censored) but that still
depend on the same framework of analysis. The dynamic approach is a growing field of research,
but those publications often use parametric specification and focus on a single risk framework.
However, failure is not the only reason why hedge funds stop reporting to databases. Starting
and stopping to report depend on proper and historic characteristics of the fund. If the fund
performs well, the amount of assets under management (henceforth AUM) may reach a critical
size, above which the arbitrages may not be profitable. The manager can decide that the fund
does not need new clients, and stops the publication of its performance. This may explain that in
practice, some funds exhibit, just before their exit, a good performance and a high level of AUM.
However, the exit from the database may also simply mean the end of the life of the fund (liq-
uidation, default, etc.), or the willing of its manager to hide bad performances before liquidation.

The aim of this paper is to discuss the specification choices made in this literature on hedge
funds lifetimes. First, we propose to adopt a nonparametric framework, rather than a para-
metric one, to avoid mis-specification biases and get robust estimation of hazard intensities of
default. Second, we take into account the reasons for the exit. In this context, we take as a
standard the use of covariates, including dynamic ones, as performance and AUM for instance.
It is straightforward that the lifetime duration have to be cautiously defined. We must admit
that we cannot take into account a self-selection bias since our data are only available thanks to
voluntary publication. We do not observe funds that have never decided to appear in a database.
Those funds may have been liquidated just after their creation, or may be for instance family
funds that do not need to publish their performances. However, it is coherent to think that
any fund appearing in a database has needed, at one moment, to collect new investors: in the
opposite case, database publication would be useless. We are consequently focusing on funds
needing to report performance and to collect investors.

In a Section 2, we present features of hedge funds lifetimes, including advantages and drawbacks
of using hedge funds databases. We precisely define how lifetimes are calculated and present
common biases studied by the literature in Section 3. Then, we present the estimation proce-
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dure, particularly focusing on the nonparametric framework and the use of covariates, including
competing risks model. The last section presents our results, where we underline that nonpara-
metric estimation avoids the problems of mis-specification when studying hazard intensities. We
present also a strong influence of the inception date of the fund as a covariate and accounts for
the importance of identifying the cause of the exit of the fund. Section 5 concludes.

2 Description of the data and definition of lifetimes

Mutual and hedge funds differ by their reporting constraints. Indeed, it is not compulsory for
hedge funds to publish their performance. Each hedge fund defines its own rule of reporting,
and potentially publishes its performances in a database. This induces several classical biases,
and hedge funds lifetimes and survivorship is also difficult to study precisely1. This section
details the previous works made on the subject.

2.1 In the literature

All academic studies agree on some fundamental points. Hedge funds show a high degree of
attrition within each year2. Fung and Hsieh (1997) study the evolution of this rate between 1990
and 1996 and find values around 19%, much higher than for mutual funds. Brown et al. (1999)
find a value around 14% each year during the period 1987-1996, and Amin and Kat (2002) find
values of the same order for period 1994-2001. However, these results depend on the database
and on the period since it’s clear that crises impact deeply death and birth processes of hedge
funds. Moreover, attrition and instantaneous probability of failure are two different concepts as
we will detail it further.

Numerous works have already been published concerning funds’ lifetimes and survivorship. Gen-
eral considerations on the analysis of survival and its link with style and characteristics may
be found in Liang (2000) and Barès et al. (2001). Further research estimate survival proba-
bilities as a function of characteristics, past performance and risk statistics. Hendricks et al.
(1997) assume that performance could improve the survival probability, and also propose the
idea that survivorship bias may induce some patterns in hedge funds survival analysis. Brown
et al. (1997) identifies a strong relation between bad performance and consecutive disappearance
from the database. Gregoriou (2002) provides a technical study of hedge funds survival based on
covariates taken among lagged performance, fund strategy, leverage, or characteristics (fees, re-
demption, etc.). This work has been extended by models using default intensity like Grecu et al.
(2007), pointing out that for dying funds, performance is generally poor at the end of the fund’s
life. However, when controlling for covariates, this has to be done on the whole life of the fund
as in Ang and Bollen (2008) who use a dynamic Cox model with dynamic covariates. All these
works use a single risk approach. They focus on the exit of the fund from the database, not on
the cause of the exit. In fact, there are two potential reasons to explain the exit from a database.
But studying the exit from a database is useful only if we can separate between those reasons.
This is a matter of identification, since if the reasons for the exit are fundamentally different,
the blind mixing of the two risks leads to false interpretation, implying an over-estimated rate
of attrition of the industry. Rouah (2005) uses a competing risks model to analyze hedge funds
survivorship: hedge funds lifetimes are studied with time-dependent covariates, along with the
cause of exit under the assumption of independent risks. He underlines that avoiding to separate
liquidation from other kind of withdrawal leads to severe biases (especially over-estimation of
the survivorship bias). Amin and Kat (2002) explains that it may be due, for instance, to a lack
of size or performance. In some databases, the main reasons explaining the death of a fund are

1We give in Appendix A.1 a review of some usual database biases that have been studied in the literature, and in

Appendix A.6 the overview of the academic contributions on hedge funds durations.
2This degree of attrition can be easily estimated by counting the proportion of funds that are alive or dead at the

end of each year. This rate is particularly high for 2008.
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sometimes detailed. It may have been liquidated, merged, its assets transferred in an other fund;
the minimum capacity of the fund has been reached after several redemptions during a market
turmoil, or the main investor may have left the fund; the company may have been closed, the
manager may have left, or the team-management has decided to concentrate on other strategies.

Appropriate covariates have to be found in order to analyze hedge fund lifetimes. For this,
AUM is generally assumed to be a good indicator of funds’ status. Assets and performance
are generally supposed to decrease the funds’ default intensity. But the other potential reason
to explain the withdrawal of a fund from a database is that the fund has reached a maximum
capacity and then that it is closed to investment. In some successful hedge funds, the manager
may think that the fund has reached a sufficient size in order to keep its ability to generate
performance. This is linked with characteristics that are relative to the specificity of each fund
and the decision to stop to collect money is related to the fund’s objectives and possibilities.
Amin and Kat (2002) explicitly don’t afford much attention on this point, as Grecu et al. (2007)
who explain that the first reason (dying funds) is the most frequent and that the lack of data
concerning successful funds stopping to collect is not a problem in practice. Conversely, Acker-
mann et al. (1999), Gregoriou and Rouah (2002) or Rouah (2005) stress that this kind of exit
must be considered: if not the attrition rates are too high when this separation is not made.
The survivorship bias is also affected.

2.2 TASS database

A large number of hedge funds databases are available, with their own specificities and charac-
teristics. We use in this paper the TASS database3 for at least two reasons. First information
concerns both alive and dead funds. Second, a large number of fields is available, which allows
to control for biases and to improve the study. We first describe the TASS database of 2009,
June the 25th. The database is made of two group of funds, depending whether they are Man-
aged Futures/CTA funds, or not. For each category, there is a file concerning alive funds, and a
“graveyard” containing dead funds. For a given file, it consists in a list of fund shares, each share
being identified by an unique number. Each share corresponds to a given currency. In addition
to CTA and Managed Futures, the represented strategies are among the main hedge fund strate-
gies such as single strategies (Long/Short Equity, Event Driven, Global Macro, Fixed Income
Arbitrage, Multi-Strategy, Convertible Arbitrage, Dedicated Short Bias, Emerging Markets, Eq-
uity Market Neutral, Emerging Markets, Options Strategy) and fund of funds. Information on
the fund status is published concerning status, dates, liquidity and performance. For example,
the domicile country or state, public opening, leverage, management and incentive fees, pres-
ence of a highwater mark, and dead reason (when the fund is dead) are displayed. Moreover,
dates when the fund has been added and/or removed from the database; dates of inception,
start and end of performance are indicated. Concerning liquidity and investment constraints,
subscription/redemption frequency, redemption notice period, lock-up and lock-up period may
also be indicated. Finally, turning to historical performances, monthly returns (published or
estimated by TASS), NAV, and AUM are sometimes given (in domicile currency).

An open discussion concerns the field called drop reason about which academic contributors
are still puzzled. As Baquero et al. (2002), or Rouah (2005), Boyson (2002) focuses first on
explicitly liquidated funds only. Getmansky et al. (2004) also insist on the importance of this
field. Kundro and Feffer (2003) go further as they distinguish fund’s failure (external reasons
forces the fund manager to stop) from fund liquidation (the collect of fees is not sufficient, the
manager ceases activity before re-launching a new fund to reset the highwater mark to a new
level). This suggests to use this drop reason with caution and with additional filters on the
data.

3As Boyson (2002) (who use a database from 2002), Amin and Kat (2002), Getmansky et al. (2004), Grecu et al.

(2007) (database of 2004) or Liang and Park (2008) (database of 2004) for instance.
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2.3 Hedge funds lifetimes

2.3.1 Lifetimes definition

In summary, the life of a fund in a database may be decomposed in the following way. First the
fund is created (inception date). After that, the fund may possibly enter the database (date
added) and reports performance. Consequently, the first date of report may be anterior to the
date of entry in the database, but not to the inception date. When the fund disappears from
the alive database, it enters the graveyard with a dead reason, and the last performance date is
equivalent to the death date of the fund. The death of the fund may be explained by the fact
that the fund is closed to new investment, dormant, liquidated, no longer reporting, liquidated,
merged into an other fund, that the program is closed or that it is not possible to contact the
fund. If the fund stops reporting, two potential causes may explain this event. First, the fund
is poorly performing and is liquidated, merged, or closed down, and ceases activity. But if the
fund performs well, its manager may decide to stop from collecting new investors, and does not
report performance any more. If the fund seeks new investors, it continues to report and is
neither closed or dead: its performance is still observable in the database. This imply to define
in a clear fashion the entry and the exit from the database.

If each information in a database was perfect, any study on hedge funds lifetimes would be
easy. The first reporting date would be equal both to the entry date in the database, and to the
inception date. For funds still alive, report would be updated until the current date. Each field
would be cautiously reported. Between entry and exit of the database, both performance and
AUM would be given at each date. Consequently, lifetime durations of hedge funds would be
easy to analyze with all covariates available in the database (fund characteristics, performance,
AUM). However, databases show some practical limits that constrain our study.

2.3.2 Initial date

It is well known that hedge funds databases suffer from numerous drawbacks, the first one being
the backfilling bias. A fund can be added to a database months after its inception and back-
fills its history with past performance4. When a fund decides to backfill its track return, the
manager has the choice of the first date, with the possibility to skip first returns if those are
not good. In some cases, funds report performances anterior to their inception date : these are
synthetic, not real performances. Funds with first report before inception are clearly backfillers
and must be dropped from the sample. This assesses the choice of the inception as the initial
date, as it is commonly made in the literature.

Assumption A.1 The initial date corresponds to the inception date, and only funds that dis-
play explicitly an inception date are considered.

2.3.3 Date of exit

A second drawback, named reporting bias is in the potential delay in the report of performances.
For instance, funds classified as alive in June 2009 (and thus with data at the end of May 2009)
may not have published their performances at this date5. The fund may still be in activity with
figures that are not yet available (because of liquidity, mark-to-market reasons, or other causes).
We then consider data at a former date than the last date available of our database and use
this to potentially upgrade the graveyard. The date of study remains May 2009 (last data).
But funds in the alive database are dropped to the graveyard if their status explicitly indicates

4This occurs very frequently since funds can be older than the database. This may be an important effect since

young and bad-performing funds that have not been able to survive do not appear in the database.
5See Derman (2007) which adapts a Markov chain model to study properties of funds classified as good, sick or

dead as a complement of this approach.
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it6 (liquidated, no longer reporting, or unable to contact it) or if it’s not the case, that the last
report is anterior to four months (no data at the end of January).

Assumption A.2 A fund is considered as dead if it is in the graveyard, including funds with
too much delay or explicit dead reason. Final date for dead funds is the date of last performance
report, and the fund is uncensored. Final date for alive funds is the date of study, and the fund
is considered as censored.

As a consequence to assumptions A.1 and A.2, we calculate the lifetime of the fund as the time
between the initial and the final date. We must add that we have to assume throughout this
paper that censorship and durations are independent. If it was not the case we could not identify
the law of the observed durations. This seems to be a plausible hypothesis in our framework
since censor is made by the current observation date. Note that taking censorship into account
is crucial in survival analysis and must always be done (contrarily to the approach of Grecu
et al. (2007)).

One may also consider a two-periods framework. In this case (Figure 2.1) one accounts for the
potential relation between two durations : the first is equal to the time elapsed between a fixed
date and the fund inception date, and the second is equal to the lifetime duration of the fund.

Figure 2.1: A two-period model

3 Model specification and estimation

This section discusses the specification and the estimation of the single and the competing risks
models.

3.1 Model specification

Single risk models are first considered. The competing risks approach can then be seen as a
multivariate extension of this framework.

3.1.1 Single risk model

A duration is defined as the length τ of a time-period spent by a fund in a given state7 (in the
database in our case). We suppose that this duration τ has a density function denoted f(t), the
associated cumulative distribution function F :

F (t) = IP (τ ≤ t), for t ≥ 0,

and the survivor function S corresponds to S(t) = IP (τ ≥ t) = 1−F (t) for t ≥ 0. The integrated
(alternatively cumulative) hazard function of τ is denoted Λ and satisfies :

6As the TASS database is updated at given dates, it may appear that between two of them, some dead funds have

not joined yet the graveyard.
7The assumption that IP (τ =∞) = 0 can be made (a fund cannot have a strictly infinite lifetime, which does not

mean that this lifetime is bounded).
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Λ(t) =
∫ t

0

f(u)
S(u)

du = −
∫ t

0

dS(u)
S(u)

= −ln(S(t)). (1)

From Equation 1 we can easily define the hazard function λ of the duration τ through:

λ(t) =
dΛ(t)
dt

=
f(t)
S(t)

= −d ln(S(t))
dt

. (2)

The function λ(t) may be interpreted as an intensity, for the latent process of leaving the state,
conditional on its current state at t. This function λ is not necessarily monotonous in t, and
corresponds in our case to the instantaneous probability for the fund still alive to exit the
database just after t :

λ(t) = lim
∆t→0

IP [t ≤ τ < t+ ∆t|τ ≥ t]
∆t

. (3)

A duration corresponds to the time of jump of an underlying process characterized by λ(t). The
following expressions for integrated hazard, density and survival function as a function of λ(t)
are then straightforward.

Our aim is therefore to estimate the hazard function λ(t) for the survival of hedge funds, as its
interpretation is intuitive, its shape carries valuable information. Mainly, since hazard rate in
t is homogenous to the intensity for each fund to exit the database at date t, the higher the
hazard rate, the more likely the fund is to stop reporting performance. In general, this rate
is not constant and young funds have a greater instantaneous probability to exit the database
(see e.g. Brown et al. (2001), Amin and Kat (2002)). But the precise form of this shape is still
subject to questions and the notion of “young funds” is not precise. The parametric framework
constrains the analysis by imposing predetermined form, and misses some information at specific
moments of the life of the fund.

Monotonic decreasing forms assume that fund managers benefit from their experience and that
aged funds are less likely to die. Inverted U-shape assumes that funds without experience take
more risk and die; old funds cease to collect assets, explaining this U-shape. But inverted
U-shape patterns is the most common choice (Gregoriou (2002), Grecu et al. (2007), ). The
intensity increases, reach a maximum value and then decreases for aged funds.

An improvement of the previous approach is to specify this intensity as a (deterministic) function
of time and also of (potentially dynamic) covariates. Cox proportional hazard models are
particular cases of accelerated life models. Dependence towards covariates x is introduced via a
function ψ such as the density of the duration is supposed to be f(tψ(x))ψ(x). In this framework,
λ(t) for each individual is assumed proportional to the product of a baseline hazard function
λ0(t) and a function ψ(x, β) of covariates x : λ(t) = λ0(t)ψ(x, β), but the model remains semi-
parametric as soon as no assumption is made on λ0(t), and β is a parameter to be estimated.
The ψ function is usually ψ(x, β) = exp(β′x), which allows8 to estimate separately the effect of
the covariate, and the baseline intensity.

3.1.2 Competing risks model

When several failure types exist, the related framework is referred to as competing risks models.
For each individual, the risks are of different natures, and several mechanisms are in competi-
tion to explain the causes of failures. Suppose that failure may be caused by m distinct types
of risks : for each individual this implies m failure times, which are called latent or poten-
tial times. For each risk i, the potential time of failure will be Ti, and the observed time of
failure is T = min(T1, ..., Tm). But the specification in those models have to be cautiously
discussed.Three different problems exist (Kalbfleisch and Prentice (2002)): first, one may study

8Other forms are possible such as ψ(x, β) = 1 + β′x, or ψ(x, β) = log(1 + e(β
′x)).
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the specific behavior and the probability of occurrence of each failure type; second, the objective
may be to examine, under a predefined set of hypotheses, the interdependence between those
failure types; finally, an interesting point may be the effect of the removal of one risk on the
occurrence of the others.

Considering hedge funds lifetime durations, the motivation for using those models is straight-
forward. A fund may exit a database for two specific reasons. First, the fund is exposed to the
risk of liquidation due to bad performances : this failure type will be labeled of type T−. On
the contrary, if the fund is a good performer, the manager may decide to stop reporting because
he does not need any new investor : this exit is of type T+ since it implies a withdrawal from
the database. If the risks respectively lead to latent times of exit from the database T− and T+,
the observed time of failure is T = min(T−, T+).

Basically, identification is only possible if in addition of the time of failure, the cause of the
failure (namely the nature of the risk) is observed. Then, the set of observations has to be of
the form (T, j) where T is the failure time and j ∈ [1;m] is the cause of the failure. However,
even corresponding time-independent covariates are insufficient to fully explain the interrelation
between risks, and to ensure identification (Tsiatis (1975)).

Given time-dependent covariates x(t), an identifiable quantity is the type-specific hazard which
is defined as :

λj(t, x(t)) = lim∆t→0
IP [t ≤ T ≤ t+ ∆t, J = j|T ≥ t]

∆t
where T is the observed failure time and j the cause of the failure. In our study m = 2, and two
causes cannot occur simultaneously. Some other functions may be introduced (overall failure
rate, overall survivor, cumulative incidence function, etc.) but even a function of the form :
Sj(t, x) = exp(−

∫ t
0
λj(u, x(u))du)) cannot be interpreted as a survivor function, when no addi-

tional assumption on the interdependence of the risks is introduced.

We assume that the two risks of type 1 and 2 are independent and specify a semi-parametric
form for the j-th intensity:

λj(t, x(t)) = λ
(j)
0 (t)exp(β′jx(t))

where x(t) is a set of covariates left-continuous, with right limits, and j ∈ [1;m]. λ(j)
0 (t) is left

unspecified and will be nonparametrically estimated.

3.2 Estimation

We first provide in Appendix A.2 parametric and nonparametric estimation procedure in the
single risk framework without covariates. We first focus here on the estimation of a dynamic
Cox model using covariates, with a nonparametric baseline intensity. Then, we discuss the
estimation of competing risks models.

3.2.1 Single risk models

First step : estimation of β

The parameter β can be estimated with a completely unknown baseline intensity λ0(t). First,
let’s suppose that we have a set of ordered failure times {τ1, . . . , τn} without censorship. Con-
ditional on the history {τ1, . . . , τj} with corresponding index {i1, . . . , ij}, the probability for
individual i to fail at τj is equal to the probability to fail at τj given that there is a failure in
the set {k|τk ≥ τj} which is:

ψ(xi, β)∑
{k|τk≥τj} ψ(xk, β)
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since the proportional form for the hazard function makes the baseline term vanish. This proba-
bility appears to be independent from {τ1, . . . , τj} and the probability for the set of observations
to be ordered as {i1, . . . , in} is :

n∏
j=1

ψ(xij , β)∑
{k|τk≥τj} ψ(xik , β)

.

With censorship, the censored individuals appear only in the survivor function and the partial
likelihood becomes:

n∏
j=1

(
ψ(xij , β)∑

{k|tk≥τj} ψ(xik , β)

)1−δj

with δj equal to 1 if the data is censored, 0 otherwise. With the specification ψ(x, β) = exp(x′β)
the estimator9 of β is:

β̂ = argmaxβ
∑
i∈Iu

{x′iβ − log[
∑
τj≥τi

exp(x′jβ)]}.

An extension is even possible when the time-scale is discrete but the computation of the likeli-
hood is rather tedious.

When covariates are dynamic (i.e. x = x(t)), the likelihood is easy to derive but those devel-
opments can only be made under strict assumptions on the nature of this time-dependence. If
Gt is the filtration that resumes random information up to time t (failures, censoring, etc.), the
chosen covariates must depend on Gt. Moreover, the hazard function (conditioned by the risk
set and Gt) must depend at t on x only by its current value x(t) and not on its entire realization.
Then, β is obtained by maximizing the partial likelihood, given by:

n∏
j=1

(
ψ(xj(τj), β)∑

{k|τk≥τj} ψ(xk(τj), β)

)1−δj

where δj is the same indicator of censorship as before. We use for the numerator a quantity
relative to effective default, and for the denominator a quantity based on the individuals still
at risk. With time-dependent covariates, the variables of the individuals still at risk at date τj
are taken at this date.

Second step : nonparametric estimation of the baseline intensity

Estimation of the baseline intensity comes in a second step. The integrated hazard function
Λ(t) is first estimated through:

Λ̂(t) =
∑
j|τj<t

nj∑
k|τk>t ψ(xk, β̂)

where nj is the number of defaults at date τj (uncensored individuals), and {k|τk > t} is the
whole set of individuals still at risk at t. Having estimated Λ̂(t), a nonparametric estimation

9The variance of the estimator is given (see Cox and Oakes (1984)) by:

V[β̂] = −V −1 with Vi,j =
∂2log(L(β))

∂βi∂βj
= −

n∑
k=1

[ (Ak)(B
(i,j)
k )

(Ak)2
−

(B
(i)
k )(B

(j)
k )

(Ak)2

]
,

with, if we note Rs(k) = {k′|τk′ ≥ τk}:

Ak =
∑

u∈Rs(k)

exp(β′xu) B
(i,j)
k =

∑
u∈Rs(k)

xu,ixu,jexp(β
′xu)

B
(i)
k =

∑
u∈Rs(k)

xu,iexp(β
′xu) B

(j)
k =

∑
u∈Rs(k)

xu,jexp(β
′xu).
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of the baseline intensity is obtained as the derivative of a smoothed version of Λ̂(t). Using a
gaussian kernel, λ̂(t) is estimated with :

λ̂(t) =
n∑
k=1

1√
2πhn

exp

(
− (t− τi)2

2h2
n

)
× (∆Λ̂(τi)).

where hn an associated bandwidth. A correction is possible using boundary kernels. When
τi ≤ hn, Li and Racine (2006) proposes the following correction for λ̂(t) :

λ̂(t) =
n∑
k=1

1√
2πhn

exp

(
− (t− τi)2

2h2
n

)
× (∆Λ̂(τi))×

(
1{τi≥hn} +

1{τi<hn}
1 + Φ(− τi

hn
)

)
with Φ the cumulative function of the standard gaussian distribution (see also section A.2.2).

3.2.2 Competing risks model

The first step concerns the estimation of the β coefficients. The set of observations is of the
form : (τi, ji, δi) where for all individual i ∈ [1;N ], the observed time of failure is τi, with cause
ji, and still δi = 1 if the observation is censored (0 otherwise). We assume that censoring and
risks are independent (which is a strong and crucial, yet common assumption). Then the partial
likelihood to be maximized has the following expression :

L(β1, . . . , βm) =
m∏
j=1

kj∏
i=1

(
exp(xj,i(β′jτj,i))∑

{l|τl≥τj,i} exp(β
′
jxl(τj,i))

)1−δi

where for each j ∈ [1;m] the failures are : τj,1 < . . . < τj,kj , x is the related process of covariate
for each individual and risk, and {l|τl ≥ t} is classically the risk set at t. Under those hypotheses,
the estimation procedure is very similar to the single risk framework. The cumulative hazard
for risk i ∈ 1, 2 is estimated through:

Λ̂(i)(t) =
∑
j|τj<t

n
(i)
j∑

k|τk>t exp(xk, β̂)

where n(i)
j is the number of defaults of the kind i at date τj (uncensored individuals of risk i),

and {k|τk > t} is the whole set of individuals still at risk at t. Again λ̂(t) is estimated through :

λ̂(t) =
n∑
k=1

1√
2πhn

exp

(
− (t− τi)2

2h2
n

)
× (∆Λ̂(τi)).

where hn an associated bandwidth (and potential correction with the help of boundary kernels).
The assumption that the latent risks are independent is very strong, and may ensure identi-
fiability, but is untestable. Conditions for identification10 are given in Heckman and Honoré
(1989), Abbring and van den Berg (2003). Some extensions exist in the literature. Dewanjy
and Sengupta (2007) develop inference in competing risks model where the failure type is not
always observed and is part of a set of possible types.

4 Empirical study

We present in this section the results of our estimation procedure. In addition to the results
on the whole database, we present results also by separating funds along with their declared
strategies.

10An other way of ensuring identifiability is to study sets of data with multiple-spell data (several observations for

each individual), which cannot be obtained in the case of hedge funds analysis.

10



4.1 Descriptive statistics

We merge the CTA file in an overall database. Then we obtain a database made of 6121 funds
and a graveyard of 8102 funds. The description of the database by strategy is available in Table
A.1. The histogram of raw durations is given in Figure A.1. We also present in Table A.2,
separating along some main strategies, some descriptive statistics :mean duration, empirical
mode and empirical quantiles. The category Long-Short Equity Hedge represents the main part
of single funds (1521 funds out of 3963). We aggregate CTA and Managed Futures categories,
which form one of the main categories after Multi-Strategy, Event Driven, Global Macro, Equity
Market Neutral, Fixed Income Arbitrage, and Emerging Markets.

The mean duration for single funds and fund of funds is quite close, around 60 months (5 years).
It’s straightforward that single funds durations behavior is mainly driven by Long-Short Equity
Hedge. This quantity is however coherent as for each strategy, the mean duration is comprised
between 50 and 70 months. The strategies with the shortest mean durations are Global Macro,
Equity Market Neutral, and Multi-Strategy, this being also verified for the upper 95% empirical
quantile. Conversely, Event Driven and CTA-Managed Futures are strategies with the longest
mean duration. It may be observed that in the case of CTA, there are much more dead funds,
then less censored individuals, which may explain this fact. The more recent is a strategy, the
younger the funds and the shortest the mean duration.

4.2 Single risk analysis

4.2.1 Nonparametric intensities

In this section, we compare parametric and nonparametric estimations of the hazard intensity
for hedge funds’ lifetimes. First, our aim is to check whether the specifications commonly used
in the literature are justified, second, if the nonparametric estimation can improve the under-
standing of a hedge fund lifetime and third, to adapt the conclusions depending on the several
strategies. Concerning the parametric fitting, we use a log-logistic11 law. This distribution is
commonly chosen (see e.g. Gregoriou (2002) or Grecu et al. (2007)). Results12 are given in
Table A.3.

The obtained modes for the hazard rates (that is the time at which the highest intensity of
default is reached), are around 40 months, which is coherent with the values obtained in the
literature (see Grecu et al. (2007)), yet a bit inferior. They are also coherent with the order of
magnitude of the empirical modes13.

The true interest of such a model is to compare these results with nonparametric estimation
of the hazard intensity. For this, we must first build the confidence bounds of the parametric
curve. We denote by θ = (µ, σ) the parameters of the log-logistic distribution and by θ̂ their

11The density of a log-logistic distribution of parameters (µ, σ) is given by:

fµ,σ(x) =
e
ln(x)−µ

σ

σx(1 + e
ln(x)−µ

σ )2

where µ is the location and σ the scale parameter. A convenient expression is obtained when ρ = e−µ, κ = 1/σ:

f(t) =
κρκtκ−1

(1 + (ρt)κ)2
S(t) =

1

1 + (ρt)κ
λ(t) =

κρκtκ−1

(1 + (ρt)κ)

.
12The same study has been done for discrete durations. The results are not presented here, but they are very

similar and do not modify deeply the conclusions.
13However, as the histogram of durations is often sparse or not well designed, the empirical mode is not very

informative.
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maximum likelihood estimates. If the hazard function is given by function t 7→ λ(t, θ) the
confidence interval for λ(t) at level α is given by:

λ(t, θ̂)±
q1−α/2√

N

√
∂λ

∂θ
× V × ∂λ

∂θ′

where N is the number of observations, q1−α/2 is the quantile of a standard gaussian, V is
the estimated variance of the parameters since θ̂ is asymptotically gaussian. This expression is
obtained with the application of a usual δ-method. The results are presented in Figures A.2
to A.12. For each strategy, it appears that the choice of the log-logistic function is coherent
with the general shape of the nonparametric intensity obtained using smoothed Kaplan-Meier
estimator. These estimators evokes an inverted U-shape pattern. The intensity is increasing in
the first years, reach a peak and then decreases. This is at least valid for the earlier years of
existence of the fund. It is not coherent to draw this intensity for very high durations (over 10
or 12 years) as there are then not enough funds in the sample for the estimation to be reliable.
For each strategy, we add the evolution of the proportion of funds still in the sample across
time, along with a threshold (set to 10%) to ensure that the intensities are still representative.

When we look at a finer scale to those functions, we see that several differences appear. First,
the log-logistic specification is most appropriate for fund of funds than for Single Funds. For
single strategies, the log-logistic specification is particularly adapted to Event Driven and Fixed
Income Arbitrage funds. For Event-Driven funds, the nonparametric law has nearly exactly
the same shape and the same mode than the parametric one. Long-Short Equity Hedge, Eq-
uity Market Neutral, and CTA intensities have roughly a nonparametric intensity that is of the
same shape than in the parametric case, even if the intensity is not in the confidence interval
during some months, before becoming close to the parametric specification after same time.
For Multi-Strategy funds, the parametric specification is plausible but the nonparametric in-
tensity decrease is stronger after 60 months than the parametric specification suggests it. The
situation is more critic for Emerging Markets and Global Macro funds where the intensity is
quite monotonous, increases and crosses the parametric intensity and exhibits an irregular pat-
tern. Consequently for those two categories, the mode of the default intensity suggested by the
nonparametric estimation is higher than the one obtained with the parametric estimation. Ex-
cepted Multi-Strategy and Event Driven funds, this conclusion is also valid for most strategies.
Generally speaking, we cannot confirm the finding of Gregoriou (2002) that default intensity
decreases after having reached a peak : except for Multi-Strategy, the behavior of the intensities
after having reached a local mode is quite steady or non-monotonic.

In conclusion, the parametric specification of the log-logistic distribution is coherent with the
general shape suggested by the nonparametric estimation. If the choice may be justified for
several strategies, the parametric distribution systematically under-estimates the modes (up
to two years) and the long-term hazard intensities. On the contrary, the real initial hazard
intensity is strictly different from zero, a fact which is missed by the parametric analysis. Then,
the nonparametric analysis capture specific features of the intensities and avoid specification
problems (short-term under-estimation, and long-term over-estimation).

4.2.2 Including covariates

The former analysis is descriptive and useful, yet limited, the introduction of covariates is stan-
dard in the duration literature. The intensity writes : λ(t) = λ0(t)φ(xt) with xt the past and
current values of appropriately chosen covariates x. When the remaining λ0(t) is constant equal
to λ, all information is captured by the model. A “noisy” structure remains and λ0(t) = λ is the
intensity of a homogenous Poisson process. it is possible to show that Poisson processes are pro-
cesses with constant intensity and without memory : the future realizations of the process are
independent from the former and the distribution of the number of events in a given time-interval
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follows an exponential distribution whose parameter depends on the length of the time-intervals.

Performance and AUM appear as two natural covariates for the study, but other variables have
been proposed. Amin and Kat (2002) examines the fund leverage, even if Barry (2002) mini-
mizes the impact of this variable; Grecu et al. (2007) proposes to incorporate the Sharpe Ratio
and the volatility of the fund return; Baquero et al. (2002) is concerned with the investment
style and Gregoriou (2002) tests the influence of management fees, performance fees, minimum
purchase, mean returns, or redemption periods. This is also in line with Avellaneda and Besson
(2005) that develops the concept of skill-capacity i.e. the maximum amount of money a manager
can expect without decreasing its arbitrages and consequently its performance. As in Couderc
et al. (2008), one may also think to include business or economic variables or indexes. In our
study, we mainly consider performance and AUM. But an additional variable is considered : the
distance between the date of inception and a static date14 to deal with potential cohort effects.
An mistake may be found in parametric studies related to parametric or semi-parametric esti-
mation of default intensity with covariates. When assuming an intensity λ(t) = λ0(t)ψ(Z) where
Z are (potentially time-dependent) covariates, it is pointless to include time as an explanatory
variable in Z, as all the time dependence will be captured by λ0(t).

As a fund cannot enter our analysis as soon as at a given date, some data remain undisclosed,
we recall that we use the method described in Appendix A.7 to avoid to drop too much funds in
our study. Moreover, we exclude backfillers, i.e. funds that present data before their inception
date. The chosen form of the hazard intensity is:

λ(t) = λ0(t)exp(β′x(t))

where λ0(t) is left unspecified. As the missing data problem shrinks the number of available
funds for the study, we will mainly focus on Single and Fund of Funds. But more important
is the fact that only funds in the same currencies (returns, performance, assets) can be part of
the study. We decide here to consider all the funds in US Dollar. This is coherent as the funds
in the database are shares, which are often shares from the same fund in different currencies.
Selecting USD funds is a way of selecting some representative shares of funds (Liang and Park
(2008) also focus on USD funds only). The number of funds available for the study is given in
Table A.4. The coefficients of several “nested” models are given in Table A.5 for Single Funds,
and Table A.6 for Funds of Funds.

Among the chosen variables we consider the monthly returns (Returns), the level of equity15

(Equity), the logarithm of the level of AUM16 (Ln(AUM)), the monthly log-return of AUM (∆
Ln(AUM)) and the difference (in days) between the inception date of the fund and17 a static
date, taken here as the 1st of January 1990 (Date Ref ). Results are provided in Table A.5 for
Single funds, and in Table A.6 for Funds of Funds.

For single funds and fund of funds, we see that for models with one or two variables, without
Date Ref, all the coefficients are significant. They are all negative, suggesting that a higher level
of the covariate decreases the intensity of default. This is intuitive as high levels of performance,
return and AUM may be indicators of good health of the fund. However, when we include the
Date Ref variable, this variable captures most of the dynamic of the intensity. Both for single
and fund of funds, return and log-return of AUM are no more significant. For single funds,
equity and AUM are plausible explicative variables, whereas for fund of funds, only the AUM

14We take here arbitrarily this date as the 1st January 1990 but any static reference date could be used. However,

a reference date too far from the sample of the inception dates could lead to potential scale effects that shrink the

mean level of the baseline intensity.
15If Rt denotes the monthly return of a fund, we define the level ET of equity at time T as ET = ΠT

t=1(1 +Rt).
16In millions of USD.
17We specifically here focus on a limited set of variables. Nonlinear functions of the return or financial indicators

as in Couderc et al. (2008) have also been included but appeared to be not really informative.
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variable appears to affect the intensity. In conclusion, the only variables of concern are AUM,
Equity and the “reference date”. This last variable accounts for a cohort effect, suggesting that
younger funds are more at risk than old ones, other variables being equal.

A parametric specification in this context of the baseline intensities (non-monotonic and not
always with an inverted U-shape) would be difficult since it would be too constraining and lead us
to miss the specific feature of the baseline (especially its flatness). The obtained nonparametric
intensities are given in Figure A.15 and A.15.

4.3 Competing risks analysis

In the single risk framework, no distinction is made on the nature of the exit. When a fund is
still reporting, one may be interested in the potential issues he is going to face in a near future.
The probability of exit from the database is interesting in itself, but what is more pertinent, is to
forecast or to assess the reason for it. Bad performers are liquidated, whereas good performers
may be still in activity after their exit from the database.

4.3.1 Competing risks model

A simple simulation exercise can be made to illustrate the importance of using competing
risks model. Draw a sequence of N couples of parameters (µi, σi)i∈[0;N ] ∈ [−r; +r] × [sm; sM ]
with r, sm, sM > 0. Then, make for each i a random simulation path of independent monthly
gaussian returns Rt with mean µi and variance σi. For each i, simulate two independent
durations T+

i and T−i , with the respective intensity processes: λ+(t) = λ0(t)exp(β × Rt) and
λ−(t) = λ0(t)exp(−β×Rt). The easiest way to run the simulation is to draw for each individual
i two independent realization E+

i and E−i of Exp(1) variables. Then T+ and T− are obtained
as : ∫ T+

i

0

λ0(t)exp(βRit)dt = E+
i and

∫ T−i

0

λ0(t)exp(−βRit)dt = E−i .

The simulations are made with the same positive value for β but with a positive sign for exit
T+ and negative sign for T−. λ0 is chosen identical for both risk (log-logistic for instance).
If we “drop” in our analysis the true generating process of the durations, and that we only
consider the times Ti = min(T+

i , T
−
i ) (regardless of the cause, T+ or T−), with the return as a

dynamic covariate and the exact model λ(t) = λ0(t)exp(γRt), we find a value of γ which is close
to zero, very different from β. As two populations with opposite risks are aggregated in similar
proportions, both effects compensate the other in the estimation. Then, letting aside the cause
of the failure leads to estimated coefficients that are severely biased.

4.3.2 Estimation

To estimate a competing risks model, we have to identify the cause of the failure of the fund.
This one is not always observed and we have to set a procedure to decide whether the fund
exits the database because of bad or good performance. The decision is made along two cri-
terions : the death reason of the fund in the database and/or its level of AUM at the time of exit.

First, all the funds that classified as “closed to new investment” in May 2009 are considered as
exiting the database because of good performance (exit of type “T+”). For the other uncensored
funds, we consider that the funds have an exit of type “T−”, when their AUM at the time of
exit is below 200 millions of US dollars or that this value is less than 75% of the maximum value
reached by the total AUM. In the opposite case (high AUM, above 200 millions, and more than
75% of the maximum value) the exit is considered as of type T+ and that the fund is exiting
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from the database because it has reached a sufficient capacity18. Those two values are chosen
to represent a selective, upper quantile of the distribution of AUM. It may be observed empiri-
cally that the distribution of the variable made by the ratio of the last AUM on the maximum
AUM of the fund is quite uniform except in one where it reaches a peak. This suggests that a
significant part of funds exit the database without experiencing a large decollect of assets. The
number of resulting funds are given in Table A.7. The number of funds for the T+ label are
not very sensitive at this level to changes in the quantitative criterions on the AUM selected here.

The result of the estimation are given in Table A.8. The effect of the reference date is quite
homogenous for single and fund of funds. However its effect is modulated for single funds as
the effect is more important for the T+ exit. For single funds and T+ exit, we find that both
equity and AUM have a positive influence in the increase of the positive default intensity. This
is coherent since better performance and more AUM increases the possibility of the fund to be
closed to new investment, and then to stop reporting. Concerning the T− exit, we recover the
former interpretation concerning AUM, but equity seems to be not significant in this case. For
fund of funds, we recover for the negative exit the former interpretation for AUM, but which is
not significant for the positive exit. The resulting baseline intensities are given in Figure A.15
and A.16.

5 Conclusion

We define in this paper a precise framework to study hedge funds lifetimes. The more convenient
way to study durations is to define them as the difference between the last date of performance
report (after consolidation of the database) and the inception date (when available) of each
fund. Inclusion of censorship is crucial. We obtain that the single risk framework is greatly
improved by nonparametric estimation since even if the choice of the log-logistic function is
justified for some hedge funds strategies, the parametric hazard intensity are systematically
under-estimating the probability of exit in the early times, and behavior on the long-term de-
pends on the strategy, with modes of distributions that are too low, up to two years. The use
of covariates is a crucial step, and the inclusion of the absolute date of inception of the fund
allows to account for a cohort effect capturing most of the information. Finally, competing risks
model are a necessary improvement since a large part of the exiting funds with disclosed data
have an exit which may not be explained by poor performance. Not taking the nature of this
exit into account would lead to a severe bias in the estimation. Further research is needed on
the subject, on the identifiability conditions of the competing risks (by including for instance a
rule taking into account the highwatermark) and on the potential heterogeneity arising through
the dynamic nature of the link between performance, AUM, liquidity and survival.

18This method is close to the one of Liang and Park (2008) who underlines that AUM and performance are better

indicators of failure than status. They identify real failure when three criterions are met: fund has stopped reporting,

performance is deteriorating on the last six months, and AUM is decreasing during the last year. They also use

highwater mark to improve the identification of true liquidation.
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A Appendix

A.1 Hedge Funds databases biases in the literature

We summarize here some major contributions of the literature studying Hedge Funds databases
biases. One of the main difficulty comes from the nature of the data and the multiplicity of
their sources. There are several databases with common drawbacks, and the conclusions may
differ from one study to one other.

One of these drawbacks is called backfilling : some hedge funds communicate a posteriori past
performances to databases. For instance, an existing fund in 2004 survives until 2008 and pub-
lishes now a performance relative to the 2004 period. The bias is that we dispose now of a past
track of its performances, conditionally on the fact that we know that the fund still exists. We
miss the funds that have not entered yet the database (see Amin and Kat (2002)) and that the
fund may have selected attractive past returns or produce proforma (that is to say, virtual or
historically re-estimated) figures.

One other known bias is the survivorship bias. Several definitions are possible (Brown et al.
(1999), Fung and Hsieh (2000), Amin and Kat (2002)). One is the difference between average
return of all existing funds at the end of the sample period and the average return of a portfolio
containing all the funds of the sample. A second and more restrictive definition is the difference
between the average return of funds that have specifically survived to all the sample period and
the mean return of a portfolio containing all the funds of the sample. Amin and Kat (2002)
shows that estimating quantities only on survivors induces an upward bias of 2% for average
returns. The potential hazard for investors interested in hedge funds is then to over-allocate
in this asset class. This bias is even more pronounced when considering small funds (bias that
may be close to 5%). For large funds, this bias is close to zero. This confirms that funds with
huge assets under management that stop to report, are probably not liquidated. Some studies
estimate this bias depending on the investment style, or try to quantify similar effects on higher
order moments. For more developments, see Ackermann et al. (1999) and Liang (2000).

Finally, the look-ahead bias arises when studies are made conditional on survival on further
consecutive periods (see Baquero et al. (2002)).
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A.2 Single risk estimation

Censorship can be of two kinds. First, there is a right-censorship19. For dead funds, the
duration can be observed. For the other ones, their potential exit cannot be observed and then
their lifetime duration is truncated. The second kind of censorship is due to the fact that we
observe only discrete durations (in months).

A.2.1 Parametric estimation

Suppose that the durations have a continuous support, and are potentially censored. Working
with a parametric family for the density fθ where θ is the parameter to be estimated, we get
that a non-censored observation t has a contribution to the likelihood equal to fθ(t). However,
for a censored observation t, the contribution to the likelihood is equal to:∫ ∞

t

fθ(u)du.

The total likelihood for a set of observations (τi)i∈[1;n] with a censor variable (δi)i∈[1;n] (with δi
equal to 1 if the observation is censored, 0 otherwise) is equal to:

L(τ1, . . . , τn, θ) =
n∏
i=1

(fθ(τi))δi
(∫ ∞

τi

fθ(u)du
)1−δi

. (4)

Then, a maximum likelihood estimation can be set up to estimate the parameters that fit best
the distribution.

The general form of the likelihood is easy to derive in the most general case. We note generically
f(t, x, θ) the density, λ(t, x, θ) the hazard function and S(t, x, θ) the survivor function, depending
on time t, observation of the covariate x and parameters θ (we suppose that x includes the
possibility to give information on censorship). The log-likelihood is:

log(L(τ1, . . . , τn, x1, ..., xn, θ)) =
∑
i∈Iu

log(f(τi, xi, θ))−
∑
i∈Ic

log(S(τi, xi, θ))

=
∑
i∈Iu

log(λ(τi, xi, θ))−
∑
i

log(S(τi, xi, θ)) (5)

where Ic is the set of censored observations, Iu the uncensored ones. The second expres-
sion can be obtained thanks to the link between the density, survivor and hazard function,
as f(t) = λ(t)S(t)20.

Now, we must define an extension to the case where observed durations are discrete (second
kind of censorship). We face this situation since our Hedge Fund lifetimes are estimated as
a number of months. A duration τ means that the Hedge Fund has failed during the time
interval [τ ; τ + 1[. We propose to replace in the likelihood of expression (4) the contribution of
uncensored data fθ(ti), by the quantity

∫ τi+1

τi
fθ(u)du. Then the likelihood to be maximized

becomes:

L(τ1, . . . , τn, θ) =
n∏
i=1

(∫ τi+1

τi

fθ(u)du
)δi(∫ ∞

τi

fθ(u)du
)1−δi

.

In terms of survival function, if Sθ(t) =
∫ +∞
t

fθ(t′)dt′ the likelihood becomes:

Ldis((ti)i∈[1;n], θ) =
n∏
i=1

(Sθ(ti)− Sθ(ti + 1))δi(Sθ(ti))1−δi

19We could also include the problem of left-censored data when we are doubtful on the exact beginning of the

lifetime. On this point see the work of Patilea and Rolin (2006).
20In an advanced modelling framework, this formula holds only if the conditioning set is well defined and regularity

conditions on the survivor function are satisfied. See Hautsch (2004)
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This form of likelihood is straightforward and is also presented in Hautsch (2004). This approach
could also be compared to the discrete choice model developed in Lunde et al. (1999), even if
it’s not similar.

A.2.2 Nonparametric estimation

One first estimates Λ(t) (or at least its increments) and then one tries to find a smooth expression
for its derivative in order to get λ̂(t) (see Ramlau-Hansen (1983)). Suppose that we have an
estimator Λ̂(t) at dates 0 = τ0 ≤ τ1 ≤ . . . ≤ τn. Using a gaussian kernel, λ̂(t) is estimated
through :

λ̂(t) =
n∑
k=1

1√
2πhn

exp

(
− (t− τi)2

2h2
n

)
× (∆Λ̂(τi))

with hn an associated bandwidth. We can improve this formula by using boundary kernels : for
the terms corresponding to little values of τi (τi ≤ hn) we adopt the correction proposed by Li
and Racine (2006) :

λ̂(t) =
n∑
k=1

1√
2πhn

exp

(
− (t− τi)2

2h2
n

)
× (∆Λ̂(τi))×

(
1{τi≥hn} +

1{τi<hn}
1 + Φ(− τi

hn
)

)
with Φ the cumulative function of the standard gaussian distribution. We have not yet defined
how to estimate the integrated hazard Λ(t). Several equivalent approaches are available. First,
the Kaplan-Meier estimator is a product-limit estimator. It is obtained by specifying that being
alive at time t is equivalent to being alive just before t and not dying at this date. Its expression
is:

Λ̂KM (t) = −ln(ŜKM (t)) with ŜKM (t) =
∏

{j|τj<t}

(
1− fj

aj

)
where fj is the number of individuals failing at date τj (thus only uncensored individuals), and
aj is the total number of individuals which have attained at least τj , then including censored
individuals.

An other possibility is to use the Nelson-Aalen estimator (see Aalen (1978)) which writes:

Λ̂NA(t) =
n∑
i=1

(1− δi)1{τi≤t}∑n
j=1 1{τi≤τi}

where δi = 1 if the observation is censored, 0 otherwise.

Finally, an other estimation is used in Couderc et al. (2008) which uses Gamma-Ramlau Hansen
estimator. Its expression is (see Couderc (2005)) :

λ̂GRH(t) =
n∑
i=1

τ
t/hn
i exp(−τi/hn)

h
t/(hn+1)
n Γ( t

hn
+ 1)

× (∆Λ̂(τi))

where hn is again the smoothing parameter and δi the censorship indicator defined as above.
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A.3 Descriptive Statistics

Strategy Alive Dead Total
All Funds 6121 8102 14223
Fund of Funds 2158 1653 3811
Single Funds 3963 6449 10412
Long/Short Equity Hedge 1529 2024 3553
Equity Market Neutral 212 415 627
Event Driven 281 489 770
Dedicated Short Bias 16 33 49
Fixed Income Arbitrage 159 310 469
Convertible Arbitrage 64 198 262
Emerging Markets 307 323 630
Multi-Strategies 580 517 1097
Options Strategies 9 2 11
CTA-Managed Futures 497 1784 2281
Global Macro 252 344 596
Other-Undefined 57 10 67

Table A.1: Number of funds for single risk estimation

Figure A.1: Empirical distribution of durations (in months).
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Strategy Mean Qu.(5%) Qu.(95%) Mode Alive Dead
All Funds 62, 0 11 158 23 6121 8102

Fund of Funds 61, 0 12 149 23 2158 1653
Single Funds 62, 4 11 160 35 3963 6449

Long/Short Equity Hedge 62, 1 12 154 35 1529 2024
Equity Market Neutral 54, 8 12 134 24 212 415
Event Driven 70, 4 12 184 61 281 489

Fixed Income Arbitrage 59, 1 12 144 42 159 310
Emerging Markets 61, 2 12 160 17 307 323
Multi-Strategies 53, 3 8 145 22 580 517

CTA-Managed Futures 69, 3 10 189 29 497 1784
Global Macro 51, 8 7 135 44 252 344

Table A.2: Durations (in months) statistics and corresponding number of funds
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A.4 Single risk estimation : empirical results

A.4.1 Parametric estimation

Strategy µ σ Mode ρ κ

All Funds 4, 2762 0, 5638 35, 0 0, 0139 1, 7737
[4, 2581; 4, 2944] [0, 5538; 0, 5739]

Fund of Funds 4, 4859 0, 5637 43, 2 0, 0113 1, 7740
[4, 4469; 4, 5250] [0, 5419; 0, 5864]

Single Funds 4, 2073 0, 5615 32, 9 0, 0149 1, 7808
[4, 1866; 4, 2279] [0, 5504; 0, 5729]

Long/Short Equity Hedge 4, 2733 0, 5669 34, 6 0, 0139 1, 7639
[4, 2369; 4, 3097] [0, 5470; 0, 5876]

Equity Market Neutral 4, 0348 0, 5136 31, 6 0, 0177 1, 9470
[3, 9598; 4, 1099] [0, 4746; 0, 5558]

Event Driven 4, 3104 0, 5382 39, 0 0, 0134 1, 8579
[4, 2385; 4, 3824] [0, 5004; 0, 5790]

Fixed Income Arbitrage 4, 1287 0, 4818 37, 4 0, 0161 2, 0754
[4, 0465; 4, 2109] [0, 4399; 0, 5278]

Emerging Markets 4, 3617 0, 5499 39, 7 0, 0128 1, 8184
[4, 2727; 4, 4508] [0, 5042; 0, 5998]

Multi-Strategies 4, 2603 0, 5979 31, 0 0, 0141 1, 6725
[4, 1852; 4, 3353] [0, 5574; 0, 6413]

CTA-Managed Futures 4, 0821 0, 5834 27, 2 0, 0169 1, 7140
[4, 0390; 4, 1251] [0, 5615; 0, 6062]

Global Macro 4, 0984 0, 5575 29, 9 0, 0166 1, 7938
[4, 0103; 4, 1865] [0, 5115; 0, 6077]

Table A.3: Single risk parametric estimation for a log-logistic specification.
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A.4.2 Comparison between parametric and nonparametric intensities

Figure A.2: Parametric and nonparametric intensities for all funds.
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Figure A.3: Parametric and nonparametric intensities for Fund of Funds.

Figure A.4: Parametric and nonparametric intensities for Single Funds.
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Figure A.5: Parametric and nonparametric intensities for Long-Short Equity Hedge funds.

Figure A.6: Parametric and nonparametric intensities for Equity Market Neutral funds.
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Figure A.7: Parametric and nonparametric intensities for Event Driven funds.

Figure A.8: Parametric and nonparametric intensities for Fixed Income Arbitrage funds.
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Figure A.9: Parametric and nonparametric intensities for Emerging Markets funds.

Figure A.10: Parametric and nonparametric intensities for Multi-Stategies funds.
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Figure A.11: Parametric and nonparametric intensities for CTA-Managed Futures funds.

Figure A.12: Parametric and nonparametric intensities for Global Macro funds.
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A.4.3 Single risk estimation with covariates

Strategy Alive Dead Total
Single Funds 1075 2487 3562
Fund of Funds 281 415 696

Table A.4: Number of funds for a single risk analysis with dynamic covariates.

Var. 1 Var. 2 Var. 3 β1 β2 β3

Equity - - −0, 216 - -
[−0, 259;−0, 174]

ln(AUM) - - −0, 239 - -
[−0, 297;−0, 182]

Equity ln(AUM) - −0, 144 −0, 218
[−0, 176;−0, 112] [−0, 279;−0, 157]

Equity ln(AUM) Date Ref −0, 0946 −0, 2863 4, 20.10−4

[−0, 123;−0, 066] [−0, 351;−0, 221] [3, 14.10−4; 5, 26.10−4]
Returns ∆ ln(AUM) - −3, 61 −0, 716 -

[−5, 12;−2, 10] [−1, 06;−0, 367] -
Returns ∆ ln(AUM) Date Ref 1, 41.10−4 −2, 03.10−4 3, 65.10−4

[−2, 23; 13, 6] [−0, 841; 0, 841] [2, 63.10−4; 4, 65.10−4]

Table A.5: Single risk estimation for Single Funds with dynamic covariates

Var. 1 Var. 2 Var. 3 β1 β2 β3

Equity - - −0.035 - -
[−0, 057;−0, 014]

ln(AUM) - - −0, 202 - -
[−0, 263;−0, 141]

Equity ln(AUM) - −0, 015 −0, 199 -
[−0, 026;−0, 004] [−0, 263;−0, 135]

Equity ln(AUM) Date Ref 0, 0031 −0, 2948 4, 69.10−4

[−0, 003; 0, 009] [−0, 363;−0, 227] [3, 53.10−4; 5, 84.10−4]
Returns ∆ ln(AUM) - −6, 38 −0, 925 -

[−9, 26;−3, 49] [−1, 23;−0, 618] -
Returns ∆ ln(AUM) Date Ref −2, 18.10−4 −2, 06.10−4 3, 93.10−4

[−4, 13; 4.13] [−0, 770; 0, 770] [2, 77.10−4; 5, 10.10−4]

Table A.6: Single risk estimation for Fund of Funds with dynamic covariates
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Figure A.13: Nonparametric baseline intensities of nested dynamic Cox models for single risk
estimation for Single Funds.

Figure A.14: Nonparametric baseline intensities of nested dynamic Cox models for single risk
estimation for Fund of Funds.
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A.5 Competing risks

Strategy Censored T+ T−

Single Funds 1075 1018 1469
Fund of Funds 281 215 200

Table A.7: Resulting number of funds for each category of risk.

Single Funds
T+

Var.1 Var.2 Var.3 β1 β2 β3

Equity Ln(AUM) Date Ref 0, 0592 0, 186 5, 42.10−4

T−

Var.1 Var.2 Var.3 β1 β2 β3

Equity Ln(AUM) Date Ref −3, 61.10−3 −0, 364 3, 36.10−4

Fund of Funds
T+

Var.1 Var.2 Var.3 β1 β2 β3

Equity Ln(AUM) Date Ref −0, 115 3, 00.10−2 4, 85.10−4

T−

Var.1 Var.2 Var.3 β1 β2 β3

Equity Ln(AUM) Date Ref 0, 0175 −0, 568 4, 50.10−4

Table A.8: Parameter estimates for a competing risks model with covariates.

30



Figure A.15: Nonparametric baseline intensities of competing risks for Single Funds for a dynamic
Cox model (covariates : Equity, Ln(AUM), Date Ref).

Figure A.16: Nonparametric baseline intensities of competing risks for Fund of Funds for a dynamic
Cox model (covariates : Equity, Ln(AUM), Date Ref).
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A.6 Academic Contributions

We sum-up here the approaches of the main academic contributions on hedge fund
lifetimes, depending on the chosen model (parametric or nonparametric approach, use
of covariates, dynamic or static covariates, etc.). The legend is the following :

• NDM : No Duration Model

• PWC : Parametric without Covariates

• NPWC : Nonparametric Without Covariates

• PSC : Parametric with Static Covariates

• PDC : Parametric with Dynamic Covariates

• SPSC : Semi-Parametric with Static Covariates

• SPDC : Semi-Parametric with Dynamic Covariates

• CR : Competing Risks

• DCM : Discrete Choice Model

NDM PWC NPWC PSC PDC SPSC SPDC CR DCM
Amin and Kat (2002)

√

Lunde et al. (1999)
√ √

Baquero et al. (2002)
√ √

Boyson (2002)
√

Fung and Hsieh (1997)
√

Ang and Bollen (2008)
√ √

Barès et al. (2001)
√

Brown et al. (2001)
√

Gregoriou (2002)
√ √

Grecu et al. (2007)
√ √

Rouah (2005)
√ √

Liang and Park (2008)
√
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A.7 Empirical method for missing data

Working with dynamic covariates, as soon as a fund does not provide data for a given
month, it cannot enter the estimation, as the partial likelihood procedure needs at any
date the value of the covariate for all fund in the risk set. Undisclosures may be caused
by the fact that funds may forget to report at some dates, due to exogenous reasons.
More precisely, and contrary to performance which is quite well reported, AUM may
be often missing. Our correction method will then only be focused on treating missing
AUM.

We correct data in two cases. First, when AUM is explicitly provided at the beginning
and at the end of the lifetime of the fund. Then it happens that AUM is missing for
isolated dates. If missing data represent less than 33% of the total length of the track,
they are replaced by the first next available AUM. If AUM is missing at the end of the
track, the data are forward-filled and replaced by the last available AUM.

An important lack of data may also occur at the beginning of the life of the fund. As
in this period of the life of the fund AUM is particularly volatile, we only keep funds
with missing data inferior to six months.
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