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Introduction

Structural Vector Autoregressions (SVARs) have been widely used as a guide to evaluate and de-

velop dynamic general equilibrium models. Given a minimal set of identifying restrictions, SVARs

represent a helpful tool to discriminate between competing theories of the business cycle. For ex-

ample, Gaĺı (1999) uses long–run restrictions à la Blanchard and Quah (1989) in a SVAR model of

labor productivity and hours and shows that the response of hours worked to a positive technology

shock is persistently and significantly negative. This negative response of hours obtained from

SVARs is then implicitly employed to discriminate among business cycle models (see Gaĺı, 1999,

Gaĺı and Rabanal, 2004, Francis and Ramey, 2005 and Basu, Fernald and Kimball, 2006).

The usefulness of SVARs for building empirically plausible models has been subject to many

controversies in quantitative macroeconomics (see e.g. Cooley and Dwyer, 1998). More recently,

the debate about the effect of technology improvements on hours worked has triggered the emer-

gence of several contributions concerned with the ability of SVARs to adequately measure the

impact of technology shocks on aggregate variables.

Using Dynamic Stochastic General Equilibrium (DSGE) models estimated on US data as

their Data Generating Process (DGP), Erceg, Guerrieri and Gust (2005) show that the effect of a

technology shock on hours worked is not precisely estimated with SVARs. They suggest that part

of their results originate from the difficulty to disentangle technology shocks from other shocks

that have highly persistent, if not permanent, and sizeable effects on labor productivity and hours.

Their findings also suggest to include in SVARs other variables with lower serial correlation.

Chari, Kehoe and McGrattan (2007b) simulate a prototypical business cycle model estimated

by Maximum Likelihood on US data with structural shocks as well as measurement errors. They

show that the SVAR model with a specification of hours in difference (DSVAR) or in quasi–

difference (QDSVAR) leads to a negative response of hours under a business cycle model in which

hours respond positively. Moreover, they show that a level specification of hours (LSVAR) does

not uncover the true response of hours and implies a large upward bias. A significant part of their

results originates from the inability of SVARs with a finite number of lags to properly capture the

true dynamic structure of the model (see also Ravenna, 2007).1 This problem can be eliminated if a

relevant state variable is introduced in the SVAR model. Unfortunately, the lack of observability

of such a variable (for example, capital stock and shocks) makes its use impossible. However,

even if such a meaningful variable is virtually unobserved, we can always think about observable

relevant instrumental variables that share approximatively the same dynamic structure.

Christiano, Eichenbaum and Vigfusson (2006) argue that SVARs are still a useful guide for
1The problem of missing state variable is especially problematic for VARs with long–run restrictions. The

identification of technology shocks is then based on the long–run covariance matrix which depends on sum of the
estimated VAR parameters. This is not the case with short–run restrictions.
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developing models. They find that most of the disappointing results with SVARs in Chari, Kehoe

and McGrattan (2007b) come from the values assigned to the standard errors of shocks in their

economy. They notably show that when the model is more properly estimated, the standard error

of the non–technology shocks is twice lower than the standard error of the technology shock. In

such a case, the bias in SVARs with labor productivity and hours is strongly reduced. Evidence

from their simulation experiments suggests using other variables which are less sensitive to the

volatility of non–technology shocks and/or which contains a sizeable part of technology shocks.

In light of the above findings, we propose a simple alternative method to consistently estimate

technology shocks and their short–run effects on aggregate variables. As an illustration and a

contribution to the current debate, we concentrate our analysis on the response of hours worked.

However, our empirical strategy can be easily implemented to other variables of interest. In the

empirical part of the paper, we investigate the dynamic responses of the rate of inflation and the

short–term nominal interest rate. Although imperfect, we maintain the labor productivity vari-

able as a way to identify technology shocks using long–run restrictions. We argue that SVARs can

deliver accurate results if more efforts are made concerning the choice of the stationary variables.

More precisely, hours (or other highly persistent variables subject to empirical controversies about

their stationarity) must be excluded from SVARs and replaced by any variable which presents bet-

ter stochastic properties. The introduction of a highly persistent variable as hours worked in the

SVARs confounds the identification of the permanent and transitory shocks and thus contaminates

the corresponding Impulse Response Functions (IRFs). Following the previous quoted contribu-

tions, the selected variable must satisfy the following stochastic properties. First, the variable

must display less controversies about its stationarity.2 Second, the variable must behave more as

a capital (or state) variable than hours worked do, so that a VAR model with a finite number of

lags can more easily approximate the true underlying dynamics of the data. Third, the variable

must contain a sizeable technology component and present less sensitivity to highly persistent

non–technology shocks. The consumption to output ratio (in logs) is an promising candidate to

fulfil these three requirements. The ratio is stationary and consequently displays less persistence

than hours worked. Moreover, the consumption to output ratio represents probably a better

approximation of the state variables than hours worked and appears less sensitive to transitory

shocks. The first requirement can be directly found with actual data, since standard unit root

tests reject the null hypothesis of an unit root. The two other requirements can be quantitatively

(through numerical experiments) and analytically deduced from equilibrium conditions of DSGE

models. In addition, Cochrane (1994) has already shown in SVARs that the consumption to

output ratio allows to suitably characterize permanent and transitory components in GNP.
2Pesavento and Rossi (2005) and Francis, Owyang and Roush (2005) propose other methods to deal with the

presence of highly persistent process.
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The proposed approach consists in the following two steps. In a first step, a SVAR model which

includes labor productivity growth and consumption to output ratio is considered to consistently

estimate technology shocks using a long–run restriction. In the second step, the IRFs of hours

(or any other aggregate variable under interest) at different horizons are obtained by a simple

(univariate or multivariate) regression of hours on the estimated technology shock. We show that

the IRFs are consistently estimated whether hours worked are projected in level or in difference

in the second step. Consequently, our approach does not suffer from the specification choice of

hours as in the standard SVAR approach. Our method can be viewed as a combination of a SVAR

approach in the line of Blanchard and Quah (1989), Gaĺı (1999) and Christiano, Eichenbaum and

Vigfusson (2004) and the regression equation used by Basu, Fernald and Kimball (2006) in their

growth accounting exercise.

To evaluate this proposed two–step approach, we perform simulation experiments using a

standard business cycle model and a sticky prices model with a permanent technology shock

and stationary preference and investment–specific shocks. The results show that our approach,

denoted CYSVAR, performs better than the DSVAR and LSVAR models. In particular, the

bias of the estimated IRFs is strongly reduced. In contrast with the results for the DSVAR and

LSVAR models, we also show that the specification of hours (in level or in difference) does not

matter. Moreover, the estimated technology shock using CYSVAR model is strongly correlated

with the true technology shock while weakly with the non–technology shock. In other words, the

estimated technology shock is not contaminated by other shocks that drive up or down hours

worked. Consequently, the estimated response of hours obtained in the second step displays small

bias. We complete these findings by calculating the coverage rate for the computed confidence

interval. Apart the first difference specification in the second step, the coverage rate indicates

that the confidence intervals include the true value of the IRFs with a probability close to the

true one.

A central practical and legitimate question concerns the empirical usefulness of our two–step

approach. Suppose that the variable under interest (hours worked, inflation, nominal interest

rate in the empirical part of our paper) displays high level of serial correlation, such that its

specification in a SVAR model with long run restriction is uncertain. In addition, level and first

difference specifications may yield very different and controversial dynamic responses from SVARs

models. Our empirical strategy proposes to eliminate this variable from the first step and then

uses our procedure to consistently estimate the dynamic responses of this variable in a second

step.

We then apply our two–step approach with US data. As a contribution to the current debate,

we first investigate the dynamic responses of hours. The DSVAR and LSVAR specifications

deliver conflicting results. In the DSVAR specification, hours significantly decrease in the short–
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run whereas they display a positive hump pattern with the level specification. In contrast, the

two–step approach provides the same dynamic responses whatever the specification of hours in the

second step. Hours worked decrease in the short–run after a positive technology shock but display

a positive hump–shaped response. Our results are in line with the previous empirical findings

which show that hours fall significantly on impact (see Gaĺı, 1999, Basu, Fernald and Kimball,

2006, Francis and Ramey, 2008) and display a positive hump pattern during the subsequent

periods (see Christiano, Eichenbaum and Vigfusson, 2004 and Vigfusson, 2004). We also apply

this methodology to the rate of inflation and the nominal interest rate and we find that these two

nominal variables significantly decrease in the short–run after a positive technology shock.

The paper is organized as follows. In a first section, we present our two–step approach.

The second section presents a prototypical business cycle model and documents in more details

simulation experiments on SVARs. In section 3, we assess the robustness of our findings. In

section 4, we present the empirical results. The last section concludes.

1 The Two–Step Approach

This section motivates the two–step approach and presents the practical implementation of this

procedure in more details. It also discuss different models that can be used in the second step.

1.1 Motivations

The goal of our approach is to accurately identify the technology shocks in the first step using an

adequate stationary variable in the SVAR model. A large part of the performance of the two–step

approach depends on the time series properties of this variable. This latter can be interpreted as

an instrument allowing to retrieve with more precision the true technology shock. The variable

choice is motivated in part by simulation results in Erceg, Guerrieri and Gust (2005), Chari

Kehoe and McGrattan (2007b) and Christiano, Eichenbaum and Vigfusson (2006). They show

that, when hours worked are contaminated by an important persistent transitory component, the

SVAR performs poorly in their experiments.

Chari, Kehoe and McGrattan (2007a) propose a method in order to account for economic fluc-

tuations based on the measurement of various wedges. They assess what fraction of the output

fluctuations can be attributed to each wedge separately and in combinations. For the postwar

period, the efficiency and labor wedges are prominent to explain output movement. Investment

wedge plays a minor role in the postwar period and especially at low frequencies of output fluc-

tuations.

The results in Chari Kehoe and McGrattan (2007a) suggest that the observed fluctuations

and persistence of hours worked depend on an important portion of the labor wedge. In con-
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trast, in their prototypical economy, the consumption-output ratio is less dependent on labor

wedge. As a consequence, the transitory component of the consumption-output ratio is then

probably less important than the one corresponding to the permanent shock. According to this,

the consumption-output ratio is a more promising variable to use in a SVAR model for identifying

technology and non-technology and the associated dynamic responses than hours worked.

Cochrane (1994) also argues that the consumption to output ratio contains useful information

to disentangle the permanent to the transitory component. This result can receive a structural

interpretation using a simple permanent income model. This model implies that consumption

is a random walk and that consumption and total income are cointegrated. Consequently, it

follows from the intertemporal decisions on consumption that any shock to aggregate output that

leaves consumption constant is necessary a transitory shock. The joint observation of output

growth and the log of consumption to output ratio allows the econometrician to separate shocks

into permanent and transitory components, as perceived by consumers. Moreover, in data, we

can reject the unit root for this ratio and the empirical autocorrelation function is clearly less

persistent that the one for hours. The introduction of a less persistent variable in level in the

VAR also allows to minimize the problem of weak instruments raised by Christian, Eichenbaum

and Vigfusson (2004) and Gospodinov (2006). So we decide to introduce this ratio as instrument

to identify the technology shocks. With this identified shocks at the first step, we can then evaluate

the impact of these shocks on a variable of interest (for example, hours) in the second step.

1.2 The approach

We now present in deeper details the two–step approach.

Step 1: Identification of technology shocks

We consider a VAR model which includes productivity growth ∆ (yt − ht) and consumption

to output ratio ct − yt (in logs). For simplicity, we omit a vector of constant terms. We start by

specifying a VAR(p) model in these two variables:
(

∆(yt − ht)
ct − yt

)
=

p∑

i=1

Bi

(
∆(yt−i − ht−i)

ct−i − yt−i

)
+ εt (1)

where the white noise εt = (ε1,t, ε2,t)′ and E(εtε
′
t) = Σ. Under usual conditions, this VAR(p)

model admits a VMA(∞) representation
(

∆(yt − ht)
ct − yt

)
= C(L)εt

where C(L) = (I2 −
∑p

i=1 BiL
i)−1. The SVAR model is represented by the following VMA(∞)

representation (
∆(yt − ht)

ct − yt

)
= A(L)

(
ηT

t

ηNT
t

)
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where ηt = (ηT
t , ηNT

t )′. ηT
t is period t technology shock, whereas ηNT

t is period t composite non–

technology shock (see Blanchard and Quah (1989) and Faust and Leeper (1997) for a discussion

on the conditions for valid shock aggregation in the small SVAR models). By normalisation, these

two orthogonal shocks have zero mean and unit variance. The identifying restriction implies that

the non–technology shock has no long–run effect on labor productivity. This means that the upper

triangular element of A(L) in the long run must be zero, i.e. A12(1) = 0. In order to uncover this

restriction from the estimated VAR(p) model, an estimator of the matrix A(1) is obtained as the

Choleski decomposition of the estimator for C(1)ΣC(1)′ resulting from the VAR. The structural

shocks are then directly deduced up to a sign restriction:
(

ηT
t

ηNT
t

)
= C(1)−1A(1)

(
ε1,t

ε2,t

)

Step 2: Estimation of the responses of hours to a technology shock

The structural infinite moving average representation for hours worked as a function of the

technology shock and the composite non–technology shock3 is given by:

ht = a1(L)ηT
t + a2(L)ηNT

t . (2)

Notice that we omit again a constant term in this equation. The coefficient a1,k (k ≥ 0) measures

the effect of the technology shock at lag k on hours worked, i.e. a1,k = ∂ht+k/∂ηT
t .

According to the debate on the right specification of hours worked, we first examine three

univariate specifications to measure the impact of technology on this variable. In the first speci-

fication, hours series is projected in level on the identified technology shocks while in the second

specification, hours series is projected in difference. Finally, in the third specification, the hours

series is projected on its own first lag and the identified technology shocks.

Let us now present in more details these three specifications. In the first one, we regress the

logs of hours worked on the current and past values of the identified technology shocks η̂T
t in the

first-step:

ht =
q∑

i=0

θiη̂
T
t−i + νt (3)

where q < +∞ and η̂T
t denotes the estimated technology shocks obtained from the SVAR model

in the first step. νt is a composite error term that accounts for non–technology shocks and the

remainder technology shocks. A standard OLS regression provides the estimates of the population
3In typical DSGE models, non–technology shocks correspond to preference, taxes, government spending, mon-

etary policy shocks and so on. When the number of stationary variables in the SVAR model is small respective
to the number of these shocks and without additional identification schemes, these shocks are not identifiable. For
our purpose, this identification issue does not matter since we only focus on the dynamic response of hours to a
(permanent) technology shock.

7



responses of hours to the present and lagged values of the technology shocks, â1,k = θ̂k. Hereafter,

we refer to this approach as LCYSVAR. According to the debate on the appropriate specification of

hours, this variable is regressed in first difference on the current and past values of the identified

technology shocks. Hereafter, we refer to this approach as DCYSVAR. The response of hours

worked to a technology shock is now estimated from the regression:

∆ht =
q∑

i=0

θ̃iη̂
T
t−i + ν̃t. (4)

As hours are specified in first difference, the estimated response at horizon k is obtained from

the cumulated OLS estimates, ̂̃a1,k =
∑k

i=0
̂̃
θi. Finally, an interesting avenue is to adopt a more

flexible approach by freely estimating the autoregressive parameter of order one for hours. This

lets the data discriminate between the presence of an unit root in the stochastic process of hours

worked. Hereafter, we refer to this approach as CYSVAR–AR. The response to a technology shock

is now estimated from the regression of hours on one lag of itself and lags of the technology shock:

ht = ρht−1 +
q∑

i=0

˜̃
θiη̂

T
t−i + ˜̃νt. (5)

The estimated response at horizon k is obtained from the OLS estimates of ρ and θi (i = 1, ..., q),
̂̃̃a1,k =

∑k
i=0 ρ̂i

̂̃̃
θk−i. This last specification calls various comments. First, equation (5) is more

flexible than (3) and (4) since it allows to freely estimate the autoregressive parameter of order

one for hours. Therefore, it lets the data select the appropriate time series representation of hours

worked. The LCYSVAR and DCYSVAR specifications are in fact restricted versions of the third

specification with the autoregressive parameter ρ fixed to zero or to one. Second, it imposes

that the dynamic responses of hours to various aggregates shocks shares the same root. It does

not mean that the shape of IRFs are the same since they are obtained from the autoregressive

parameter and the MA(q) representation of these shocks. Notice that this is the case in most

of DSGE models where the variables of interest share the same dynamics implied by the state

variables (for example, the capital stock in the simple model), but differs in their sensitivity to

shocks that hit the economy. The regression equation (5) simply accounts for these features. In

the following proposition, we show that the OLS estimators of the effect of technology shocks are

consistent estimators of the true ones for the three specifications (see the proof in Appendix A).

Proposition 1 Assume the infinite moving average representation (2) for hours worked and con-

sider the estimation of the finite VAR in the first step as defined in (1) and the three projections

(3), (4) and (5) in the second step. The OLS estimators â1,k, ̂̃a1,k and ̂̃̃a1,k converge in probability

to a1,k for the three specifications, ∀k.
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In Proposition 1, the property of consistency is derived under the assumption that hours worked

follow a stationary process. While the specification of hours in difference could provide a good

statistical approximation of this variable in small sample, hours worked per capita are bounded

and therefore the stochastic process of this variable cannot have a unit root asymptotically. By

definition, the consistency property of an estimator is an asymptotically concept so only the

asymptotic behavior of hours worked is of interest. Consequently, the consistency of the OLS

estimators for the three specifications is derived only under the assumption that hours worked

per person is a stationary process. It is worth noting that the specification of hours (level or

first difference) does not asymptotically matter. However, the small sample behavior of the three

estimators associated to the three specifications can differ.

We can complement the two–step approach by considering a VAR model in the second step.

The VAR model includes the labor productivity growth, hours worked (either in level and first

difference) and the consumption to output ratio4




∆(yt − ht)
ht

ct − yt


 =

p∑

i=1

Di




∆(yt−i − ht−i)
ht−i

ct−i − yt−i


 + ζt (6)

This reduced form VAR is estimated to retrieve the residuals ζ̂t. We then regress these residuals

ζ̂t on the technology shock series η̂T
t identified from the first step and then we obtained the IRFs

to the technology shocks by inverting the VAR model. Hereafter, we refer to this approach as

CYSVAR–VAR. Notice however that there exist no specific reason to assume that aggregate data

are generated by a VAR. This is especially true if we consider a subset of the variables included

in the VAR model. Moreover, most of business cycle models admits a VARMA representation.

From this view, the specification (5) appears more able to capture an ARMA structure than (6).

Other regression models can be considered in the second step. First, we can successively

regress hours on each estimated technology shocks instead of considering a given block of the

shocks, as in regressions (3), (4) or (5) (see Chang and Sakata, 2007). This approach, similar

to ours, does not impose any parametric restrictions on the IRFs. Notice also that the resulting

estimator is asymptotically equivalent to those of Proposition 1. Second, the CYSVAR–AR can

include additional lags of hours worked in order to better capture their persistence. Third, we

can estimate an ARMA model on hours, regress the residuals on the technology shock series

η̂T
t and then compute the IRFs by inverting the model. The advantage of this approach is its

parsimony compared (3), (4) or (5). Moreover, it accounts for the possible ARMA structure of

hours in DSGE models. Fourth, following Jordà (2005), we can run local projections at the second
4In most of our simulation experiments and the empirical applications, the VAR model includes three vari-

ables. When we simulate the business cycle models with two shocks, the VAR model includes only two variables
(productivity growth and hours).
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step using a VAR model including labor productivity growth and hours worked (either in level

and first difference). This approach as proven to be more flexible than VARs and represents a

natural alternative to estimating IRFs. All these models have been investigated in our simulation

experiments. As they deliver very similar results, we do not report the results to save space.5

Finally, the two–step procedure is not only used to measure the effect of technology shocks

on hours worked (or any other variable of interest) but also to hypothesis testing about the

significance of these responses. The approach raises two practical econometric issues. First,

confidence intervals in the second step must account for the uncertainty resulting from the first

step estimation. This is usually called the generated regressors problem. Second, the residuals in

the second step can be serially correlated in practice. This is especially true for the regression

(3) with hours in level. Confidence intervals of IRFs are computed using a bootstrap procedure

which accounts for the generated regressors problem and serial correlation. We draw randomly

and jointly the fitted VAR residuals from the first step and the residuals from the second step.

For the second step residuals, we use a block bootstrap method with an optimal block length

chosen according to the data-based procedure proposed by Politis and White (2004). In practice

we implement the correction of this procedure such proposed in Patton, Politis and White (2008).

It is important to use the same ordering of the random draws for the first and the second steps to

preserve the correlation structure of the whole system of equations. For each random draw, the

first-step VAR is estimated and the corresponding identified technology shocks are retrieved. The

second step projection is then estimated to obtain the bootstrapped impulse responses conditioning

on the technology shocks identified at the first step and the random draws from the residuals of

this second step (with the same ordering of the random draw). The percentile confidence intervals

of the effect of technology shocks is constructed by repeating this bootstrap procedure for 1000

random draws.

2 Simulation Experiments from a Business Cycle Model

This section briefly presents the model and its parametrisation and then documents in more details

simulation experiments on SVARs.

2.1 The Business Cycle Model

We consider a standard business cycle model that includes three shocks. The utility function of

the representative household is given by

Et

∞∑

i=0

βi (log (Ct+i) + ψ χt+i log (1−Ht+i))

5All the simulation experiments with the above mentioned approaches are available from the authors upon
request.
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where β ∈ (0, 1) denotes the discount factor and ψ > 0 is a time allocation parameter. Et is the

expectation operator conditional on the information set available at time t. Ct and Ht represent

consumption and labor supply at time t. The labor supply Ht is subjected to a preference shock

χt, that follows a stationary stochastic process.

log(χt) = ρχ log(χt−1) + (1− ρχ) log χ̄ + σχεχ,t

where χ̄ > 0, |ρχ| < 1, σχ > 0 and εχ,t is iid with zero mean and unit variance. As noted by

Gaĺı (2005), this shock can be an important source of fluctuations as it accounts for persistent

shifts in the marginal rate of substitution between goods and work (see Hall, 1997). Such shifts

capture persistent fluctuations in labor supply following changes in labor market participation

and/or changes in the demographic structure. Additionally, this preference shock allows us to

simply account for other distortions on the labor market, labelled labor wedge in Chari, Kehoe

and McGrattan (2007a).

The representative firm use capital Kt and labor Ht to produce a final good Yt. The technology

is represented by the following constant returns–to–scale Cobb–Douglas production function

Yt = Kα
t (ZtHt)

1−α

where α ∈ (0, 1). Zt is assumed to follow an exogenous process of the form

log(Zt) = log(Zt−1) + γz + σzεz,t

where σz > 0 and εz,t is iid with zero mean and unit variance. In the terminology of Chari, Kehoe

and McGrattan (2007a), Z1−α
t in the production function corresponds to the efficiency wedge.

This wedge may capture for instance input-financing frictions. Capital stock evolves according to

the law of motion

Kt+1 = (1− δ) Kt + It

where δ ∈ (0, 1) is a constant depreciation rate. Finally, the final output good can be either

consumed or invested

Yt = Ct + It

The model is thus characterized by two time varying wedges, i.e. the efficiency and labor wedges,

that summarize a large class of mechanisms without having to explicitly specify them.

To analyze the quantitative implications of the model, we first apply a stationary–inducing

transformation for variables that follow a stochastic trend. Output, consumption, investment and

government consumption are divided by Zt, and the capital stock is divided by Zt−1. The approx-

imate solution of the model is computed from a log–linearisation of the stationary equilibrium

conditions around the deterministic steady state.
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The parameter values are familiar from business cycle literature (see Table 1). We set the

capital share to α = 0.33 and the time allocation parameter ψ = 3.60, such that households spend

20% of their time endowment to market activity. We choose the discount factor so that the steady

state annualized real interest rate is 3%. We set the depreciation rate δ = 0.025. The growth

rate of Zt, namely γz, is equal to 0.0036. The parameters of the two forcing variables (Zt, χt) are

borrowed from previous empirical works with US data. The standard–error σz of the technology

shock is equal to 1% (see Prescott, 1986, Burnside and Eichenbaum, 1996, Chari, Kehoe and

McGrattan, 2007b and Christiano, Eichenbaum and Vigfusson, 2006). We choose alternative

values (0.90;0.95;0.99) for the autoregressive parameter ρχ of the preference shock. Previous

estimations (see Chari, Kehoe and McGrattan, 2007b and Christiano, Eichenbaum and Vigfusson,

2006) suggest value between 0.95 and 0.99, but we add ρχ = 0.90 for a check of robustness.

Finally, the standard error of this shock σχ takes three different values (0.005;0.01;0.02). These

values roughly summarize the range of previous estimates (see Erceg, Guerrieri and Gust, 2005,

Chari, Kehoe and McGrattan, 2007b, and Christiano, Eichenbaum and Vigfusson, 2006). The

alternative calibrations summarize previous estimates which use different datasets and estimation

techniques. They allow us to conduct a sensitivity analysis and to evaluate the relative merits of

different approaches for various calibrations of the forcing variables.

2.2 Simulation Results

We assess each approach from the distribution of IRFs based on Monte–Carlo experiments. We

generate 1000 data samples from the business cycle model. Every data sample consists of 200

quarterly observations and corresponds to the typical sample size of empirical studies. In order

to reduce the effect of initial conditions, the simulated samples include 200 initial points which

are subsequently discarded in the estimation. For every data sample, we estimate VAR models

with four lags as in Erceg, Guerrieri and Gust (2005), Chari, Kehoe and McGrattan (2007b), and

Christiano, Eichenbaum and Vigfusson (2006).

For each experiment, we investigate the reliability of different SVARs approaches to identify of

technology shocks and their aggregate effects: a LSVAR model with labour productivity growth

and hours in level; a DSVAR models with labour productivity growth and hours in first differ-

ence; a LCYSVAR approach in which the SVAR model includes labour productivity growth and

consumption to output ratio in the first step and hours in level are regressed on the estimated

technology shock in the second step. The DCYSVAR and CYSVAR–AR approaches are the same

in the first step, but they consider hours in first difference and once lagged hours in the second step.

The CYSVAR–VAR approach includes in the second step labour productivity growth and hours

in level. In the second step of the CYSVAR approach (LCYSVAR and DCYSVAR), we consider

current and twelve lagged values of the identified (in the first step) technology shocks. For the
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CYSVAR–AR, we include current and four lagged values of the shock and for the CYSVAR–VAR,

we set four lags in the regression. We have also investigated the sensitivity of the results to the

number of lags. All the empirical findings are left unaffected.

Figures 1 and 2 display the responses of hours for each SVARs in our baseline calibration

(ρχ = 0.95 and σz = σχ = 0.01). The solid dashed represents the response of hours in the model,

whereas the solid line corresponds to the estimated response from SVARs.

The responses of hours obtained from a LSVAR model displays a large upward bias, as the

estimated response on impact is almost twice the true response and is persistently above the true

response. These results are in the line with those of Chari, Kehoe and McGrattan (2007b). The

confidence intervals are very large and therefore not informative.

The response of hours obtained from the DSVAR model displays a large downward bias, and it

is persistently negative. This result is again similar to Chari, Kehoe and McGrattan (2007b) who

show that the difference specification of hours adopted by Gaĺı (1999), Gaĺı and Rabanal (2004) and

Francis and Ramey (2005) can lead to mistaken conclusions about the effect of a technology shock.

Note that a DSVAR model is obviously misspecified under the business cycle model considered

here, as it implies an over–differentiation of hours. The first difference specification of hours can

create distortions and lead to biased estimated responses. However, Chari, Kehoe and McGrattan

(2007b) show that SVARs with hours in quasi–difference, consistent with the business cycle model,

display similar patterns.

Consider now the CYSVAR approach. Figure 2 shows that this approach delivers reliable

estimates of the response of hours. The bias is small, especially in comparison with the ones from

the DSVAR and LSVAR. Another interesting result is that the four CYSVAR approaches deliver

very similar results. Therefore, our two–step approach does not suffer from the specification of

hours, contrary to the DSVAR and LSVAR. It is worth noting that these small sample experiments

support the asymptotic results of Proposition 1.

To evaluate the size of the bias, Table 2 reports the cumulative absolute bias between the

average response in SVARs and the true response over different horizons.6 Since quantitative

results are rather similar, we report to save space only simulation results with the CYSVAR–AR

and CYSVAR–VAR approaches. Our benchmark calibration corresponds to the second panel in

Table 2 when ρχ = 0.95 and σχ/σz = 1. We also obtained a large bias with DSVAR and LSVAR

models (both on impact and for different horizons). However, the CYSVAR–AR and CYSVAR–

VAR deliver very reliable results compared with DSVAR and LSVAR. We also investigate other

calibration of (ρχ, σχ). When the standard error σχ of the non–technology shock is smaller, the

6This measure is defined as cmd(k) =
∑k

i=0 |irfi(model) − irfi(svar)| where k denotes the selected horizon,

irfi(model) the RBC impulse response and irfi(svar) = (1/N)
∑N

j=1 irfi(svar)j the mean of impulse responses
over the N simulation experiments obtained from a SVAR model. In fact, the cmd measures the area of the bias
up to the horizon k.
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accuracy of the LSVAR and DSVAR models increases (see the cases where σχ/σz = 0.5) and the

LSVAR model and the CYSVAR–AR and CYSVAR–VAR approaches deliver very similar results.

Conversely, when the standard error σχ of the preference increases, the LSVAR and DSVAR models

poorly identify the effect of a technology shock on hours (see the cases σχ/σz = 2). In this latter

case, the CYSVAR approach tends to over–estimate the true effect of the technology shock, but

the cumulative absolute mean bias remains small compared to the LSVAR and DSVAR models.

Table 2 displays another interesting result: when the persistence of the preference shock increases

from 0.9 to 0.99, the bias decreases. For the DSVAR model, this result can be partly explained

by a decrease in distortions created by over–differentiation. For the CYSVAR approach, the bias

reduction mainly originates from the effect of the preference shock on hours and consumption to

output ratio. It is worth noting that the CYSVAR–AR delivers a smaller bias than the CYSVAR-

VAR in most of cases.

To better understand these last results, we investigate the effect of ρχ and σχ on the structural

autoregressive moving average representation of hours and consumption to output ratio. For our

baseline calibration (ρχ = 0.95, σz = σχ = 0.01), we obtain:

log(Ht) = cst + 0.3536
1

(1− 0.9622L)
σzεz,t − 1.5240

(1− 0.9759L)
(1− 0.9622L)(1− 0.95L)

σχεχ,t

log(Ct)− log(Yt) = cst− 0.4220
1

(1− 0.9622L)
σzεz,t + 0.8180

(1− 0.9928L)
(1− 0.9622L)(1− 0.95L)

σχεχ,t,

where cst is an appropriate constant. The non–technology component is larger for hours than for

consumption to output ratio. In this case, the preference shock accounts for 91% of variance of

hours, whereas it represents 63% of the variance of the ratio. Moreover, the persistence of hours

generated by the preference shock is more pronounced. This can be seen from the ARMA(2,1)

representation of hours and consumption to output ratio. The two series display the same autore-

gressive parameters (0.9622 and 0.95), which are associated to the dynamics of the deflated capital

K/Z and the persistence of the preference shock. However, the moving average parameter differs.

In the case of hours, the parameter is equal to −0.976, whereas it is −0.993 for the consumption to

output ratio. Figure 3 illustrates this property and reports the autocorrelation function of these

two variables due to the preference shock. We see that the autocorrelations of the consumption to

output ratio are smaller than the ones of hours. The labour wedge has therefore a greater impact

in terms of volatility and persistence on hours than on consumption to output ratio. When the

standard error of the preference shock is reduced (σχ = 0.005), its contribution to the variance

decreases, it becomes 73% for hours and 30% for the consumption to output ratio. In this case,

SVARs have less difficulty to disentangle technology shocks from other shocks that have highly

persistent, if not permanent effects on labour productivity. This explains why SVARs can properly

uncover the true IRFs of hours to a technology shock.
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To assess the effect of a highly persistent preference shock, we now set ρχ = 0.99. This situation

is of quantitative interest as Christiano, Eichenbaum and Vigfusson (2006) obtain values for this

parameter between 0.986 and 0.9994. In this case, the ARMA representation becomes:

log(Ht) = cst + 0.3536
1

(1− 0.9622L)
σzεz,t − 1.2710

(1− 0.9737L)
(1− 0.9622L)(1− 0.99L)

σχεχ,t

log(Ct)− log(Yt) = cst− 0.4220
1

(1− 0.9622L)
σzεz,t + 0.5167

(1− 0.9960L)
(1− 0.9622L)(1− 0.99L)

σχεχ,t.

The roots of moving average and the autoregressive parameters related to the preference shock

in the expression of the consumption to output ratio are very similar,7 so its dynamics can be

approximated by a first order autoregressive process:

(log(Ct)− log(Yt)) ' cst + 0.9622(log(Ct−1)− log(Yt−1))− 0.4220σzεz,t + 0.5167σχεχ,t.

The consumption to output ratio behaves like the deflated capital. Conversely, hours do not

share this property and finite autoregressions cannot properly uncover its true dynamics. This is

illustrated in Figure 4 which reports the autocorrelation function of hours, consumption to output

ratio and capital deflated by the total factor productivity. As emphasized by Chari, Kehoe and

McGrattan (2007b), one of the problem with a SVAR model is that it does not include capital–like

variable. In the model, the corresponding relevant state variable is log(Kt/Zt−1). Since Zt is not

observable in practice and Kt is measured with errors, we cannot include log(Kt/Zt−1) in SVARs.

As can be seen from Figure 4, the autocorrelation functions of (C/Y ) and (K/Z) are very close,

but the ones of hours differ sharply.

This latter result suggests that the consumption to output ratio can be a good proxy of

the relevant state variable when shocks to labour supply are very persistent or non-stationary.

Conversely, hours cannot display this pattern. Highly persistent or non–stationary labour supply

shocks is of course debatable but empirical works support this specification in small sample (see

Gali, 2005, Christiano, Eichenbaum and Vigfusson, 2006 and Chang, Doh and Schorfheide, 2007).

Chang, Doh and Schorfheide (2007) have shown that a DSGE model with a permanent shock

to labour supply fits the data better. However, this result only holds for a frictionless version

of their model. When the model includes labour adjustment costs, a version with stationary

preference shock must be preferred. To better understand the results under a close to non–

stationary labour supply, we report in appendix B some calculations about the dynamic behavior

of the consumption to output ratio and hours for an economy with non stationary labour supply

shocks. We notably show that when preference shocks follow a random walk (and thus hours are
7When we set ρχ = 0.999, this finding is strengthened. Regarding only the effect of the preference shock, the

reduced form of the consumption to output ratio is log(Ct) − log(Yt) = 0.3733(1 − 0.9993L)(1 − 0.9622L)−1(1 −
0.999L)−1σχεχ,t.
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non–stationary), the consumption to output ratio follows an autoregressive process of order one

with an autoregressive parameter exactly equal to the one of the deflated capital. Conversely,

the growth rate of hours follows an ARMA process which can be poorly approximated by finite

autoregressions. As pointed out in introduction, this problem is essentially problematic for SVARs

with long–run restrictions, because the estimated VAR parameters enter in the computation of the

long–run covariance matrix. Note that a SVAR model with long–run restrictions that includes

labour productivity growth and the consumption to output ratio is valid whatever the process

(stationary or non-stationary) of the hours series. The CYSVAR approach allows us to abstract

from the very sensitive specification choice of hours in SVARs.

Simulation results for the cumulative absolute bias are completed with a measure of uncertainty

about the estimated effect of the technology shocks. We thus compute the cumulative Root Mean

Square Errors (RMSE) at various horizons.8 The RMSE accounts for both bias and dispersion

of the estimated IRFs. The results are reported in Table 3. Simulation experiments for different

calibrations show again that the CSVAR approach provides smaller RMSE than the LSVAR and

DSVAR models. This result comes essentially from the smaller bias with CSVAR. The large RMSE

of DSVAR mainly originates from the large bias. In consequence, DSVAR model displays IRFs

that are strongly biased but more precisely estimated. In contrast, LSVAR model displays smaller

bias of IRFs but larger dispersion than DSVAR. The CSVAR approach presents the smallest bias

on estimated IRFs and the estimated responses are more precisely estimated in comparison with

LSVAR. These results from RMSE suggest favoring CYSVAR to LSVAR and DSVAR.

Finally, to judge the identification of the structural shocks, we compare the correlation be-

tween the estimated shock and the true shock for the different model’s parametrisations. First,

we compute the correlation between the estimated (from SVARs) and the true technology shocks,

namely: Corr(εz, η̂
T ), where εz denotes the true technology shock and η̂T is the estimated technol-

ogy shock from SVARs in the first step. Second, we compute Corr(εχ, η̂T ), the correlation between

the estimated technology shock and non–technology shock εχ of the business cycle model. The

idea is that if any method is able to consistently estimate the technology shock, we must obtain

Corr(εz, η̂
T ) ≈ 1 and Corr(εχ, η̂T ) ≈ 0. These correlations are reported in the last column of

Table 2. The CYSVAR approach always delivers the highest Corr(εz, η̂
T ). This correlation is

relatively high, as it always exceeds 0.9 and it is not very sensitive to changes in (σz, ρχ, σχ). Con-

versely, this correlation is lower in the case of the DSVAR model and it decreases dramatically

with the volatility of the preference shock. The LSVAR delivers better results that the DSVAR,

but it never outperforms the CYSVAR approach. Concerning the correlation between the iden-
8This measure is defined as crmse(k) =

∑k
i=0 rmsei where k denotes the selected horizon, rmsei =

((1/N)
∑N

j=1(irfi(model)− irfi(svar)j)2)1/2 the RMSE at horizon i, irfi(model) the RBC impulse response func-

tion of hours and irfi(svar)j the SV AR impulse responses function of hours for the jth draw and N is the number
of simulation experiments.
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tified technology shocks and the true preference shocks, the CYSVAR approach always delivers

the lowest correlation (in absolute value). In the case of the DSVAR model, this correlation is

large and positive This allows to explain why the DSVAR model underestimates the response of

hours. Indeed, the estimated technology shock is contaminated by the preference shock. Hours

worked persistently decrease after this shock in the model. It follows that the DSVAR model er-

roneously concludes that hours drop after a technology shock. A similar result applies in the case

of the LSVAR model: the correlation between the estimated technology shock and the true non–

technology shock is negative. This explains why the LSVAR model over–estimates the effect of a

technology shock. In contrast, the CYSVAR approach does not suffer from this contamination.

3 Robustness

We now investigate three robustness issues of the two–step approach. We first consider an addi-

tional shock in the baseline model. Second, we connect the simulation part with the estimation

part by considering a sticky prices model in which hours worked decrease in the short–run after

a technology improvement. Third, we assess the accuracy of confidence intervals obtained from

bootstrap techniques by computing the coverage rate for each models in the second step.

3.1 Results from the three shock model

The baseline model is augmented with a third shock. The capital stock is now assumed to evolve

according to the law of motion

Kt+1 = (1− δ) Kt + xtIt

The variable xt represents a disturbance to the investment–specific technology process and is

assumed to follow a first order autoregressive process

log(xt) = ρx log(xt−1) + σxεx,t

where |ρx| < 1, σx > 0 and εx,t is iid with zero mean and unit variance. The calibration of (ρx, σx)

is reported in Table 1. In the benchmark experiment, we set ρx = 0.95 and σx = 0.01. In this

case, the productivity shock accounts for tiny portion of aggregate fluctuations. It represents 6%

of hours and 13% of the consumption to output ratio. This roughly corresponds to the two shock

version of the model when σz = 0.01 and σχ = 0.02, which constitute the worst case for each

approach. Consequently, we analyze another case where technology shock accounts for a sizeable

part of fluctuations. In this second situation, we set σz = 0.01 and σχ = σx = 0.005. With this

new parametrisation of the standard–error, we obtain that the technology shock represents 20%

of the variance of hours and 38% of the consumption to output ratio.
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We first investigate the reliability of SVARs which include two variables (labour productivity

growth and hours for the LSVAR and DSVAR models; labour productivity growth and consump-

tion to output ratio for the two–step approach). Figures 5 and 6 display the responses of hours

for each approach using our baseline calibration (ρχ = ρx = 0.95, σz = σχ = σx = 0.01). As in the

case of two shocks, the response of hours obtained from the DSVAR model is downward biased

(see Figure 5) and persistently negative. The response of hours from the LSVAR model is upward

biased and the CYSVAR approach delivers again more reliable results. This is confirmed in the

first panel of Table 4. For the two values of σχ and σx, the CYSVAR approach outperforms the

DSVAR and LSVAR models.

We also assess the DSVAR and LSVAR models when they include three variables (labour

productivity growth, hours and consumption to output ratio). SVAR models that include three

variables deliver better results (see Figure 6) . The downward bias of the DSVAR is strongly

reduced, as the response on impact becomes positive. Moreover, the upward bias of the LSVAR

decreases. The introduction of the consumption to output ratio in the VARs helps to disentangle

the permanent shock from the transitory ones, as argued by Cochrane (1994). In our experiments,

the CYSVAR approach still outperforms the DSVAR and LSVAR models (see Table 4). Moreover,

the CYSVAR approach always delivers the smallest RMSE at each horizon. We also report in

Table 4 the correlation between the estimated technology shock and the true shock of the business

cycle model. We do not report the correlation with individual stationary shocks as we cannot

separately identify each of them. The CYSVAR approach delivers in most of cases the highest

Corr(εz, η
T ).

3.2 Simulation Experiments from a Sticky Prices Model

We now consider a sticky prices model. As illustrated by Gaĺı (1999), this model generates a

negative response of hours because the aggregate short–run dynamics is essentially driven by the

demand side. Facing a positive productivity improvement, hours worked may decrease because

firms can satisfy the given level of demand with less labour input. The model (not expound here

to save space) is borrowed from Ireland (2003). The real part of the model is identical to the

baseline model, apart the imperfect competition on the good market. Price setting by a local

monopolist is subject to a quadratic adjustment cost. Different from Ireland (2003), the model

includes the two previous shocks, i.e. a permanent productivity shock and a persistent shock that

shift labour supply every periods. All the parameters are similar to those of the previous model

and are calibrated according to Table 1. Two additional parameters in the sticky prices model

(the mark–up and price adjustment cost parameters) are set to 20% and 20, respectively. Our

findings appears not sensitive to the calibration of these two parameters.

Figures 7 and 8 display the responses of hours worked for each approaches. Now, under the
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sticky prices model, hours decrease in the short–run. The LSVAR and DSVAR models still deliver

conflicting results. The LSVAR model tends to over–estimate the true response, whereas the

DSVAR model delivers a more pronounced negative response in the short–run. At the opposite,

the two–step approach yields very accurate responses, whatever the regression used in the second

step. Again, this approach does not suffer from the specification of hours, contrary to standard

SVARs. Table 5 reports the absolute bias and the RMSE. The DSVAR model works very well on

impact but the bias increases very quickly with the horizon. The LSVAR model and the CYSVAR

approach work equally well on impact, but as the horizon increase the LSVAR is more and more

inaccurate. Again, the CYSVAR outperforms LSAVR and DSVAR models, both in terms of bias

and dispersion (RMSE).

3.3 Coverage Rate and the Accuracy of Confidence Intervals

We finally assess the accuracy of the confidence interval estimators. As previously mentioned,

these estimators are obtained from a bootstrap procedure which accounts for generated regressors

problem and serial correlation. As in Christiano, Eichenbaum and Vigfusson (2006), we proceed

as follows. For a given random realisation of the DGP, we estimate each specification of the

the two–step approach (level, difference, AR and VAR). From the resulting residuals, we use the

estimated parameters from the two–step procedure to generate 1000 data sets. We then estimate

each specification and then compute the associated population of IRFs. For each artificial data set,

the confidence intervals are defined as the top 2.5 percent and bottom 2.5 percent of the estimated

IRFs. We then assess the accuracy of the confidence interval estimators using the coverage rate.

For a given realisation of the DGP, we verify if the true IRF lies inside the computed confidence

interval and we count for this. The rate corresponds also to the fraction of times, across the 1000

data sets simulated from the DGP, that the confidence interval contains the true IRFs of hours.

If the confidence intervals were perfectly accurate, the coverage rate would be 95 percent. A

coverage rate that exceeds 95 percent means that the computed confidence intervals are too large,

leading to accept too often the model. Conversely, a coverage rate less than 95 percent indicates

that the computed confidence intervals are too small, leading to reject too often the model.

Figure 9 reports the coverage rate for each approach under the frictionless model with two

shocks under the baseline calibration (see section 2). This figure indicates that the coverage rate

is roughly 95 percent for the CYSVAR-AR and CYSVAR-VAR. So, with these two models, the

confidence intervals include the true IRF with a probability close to the true one. The results

are similar with level specification, except on impact response. With the difference specification,

the coverage rate is lower especially on impact. The bootstrapped confidence intervals with the

specification (4) appears too small for short horizons and empirical testing must be conducted

with caution.
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4 Application of the Two–Step Approach

We now apply the two-step methodology with US data. Except for the Federal Fund rate, the

data cover the sample period 1948Q1-2003Q4. We first study the dynamic responses of hours work

to technology shocks. Second, we investigate the effects of these shocks on the rate of inflation

and the nominal interest rate.

4.1 The Dynamic Responses of Hours Worked

We first present results for the IRFs of hours to technology shocks. In the first step, the VAR

model includes the growth rate of labour productivity and the log of consumption to output

ratio. Labour productivity is measured as the non farm business output divided by non farm

business hours worked. Consumption is measured as consumption on nondurables and services

and government expenditures. The consumption to output ratio is obtained by dividing the

nominal expenditures by nominal GDP. In the second step, the log level ht (see equations (3) and

(5)) and the growth rate of hours ∆ht (see equation (4)) are projected on the estimated technology

shocks. Hours worked in the non farm business sector are converted to per capita terms using a

measure of the civilian population over the age of 16. The period is 1948Q1-2003Q4.

We also compare the estimation results with our two–step approach to those obtained from the

estimation of SVAR models. These SVAR models include growth rate of labour productivity, the

log of consumption to output ratio and either the log level of hours (LSVAR) or the growth rate

of hours (DSVAR). In each of the SVAR models, we identify technology shocks as the only shocks

that can affect the long-run level of labour productivity. The lag length p for each VAR model

(1) is obtained using the Hannan–Quinn criterion. For each estimated model, we also apply a LM

test to check for serial correlation. The number of lags p is 4. For the two-step procedure, we

include in the second step the current and twelve past values of the identified technology shocks

in the first step, i.e. q = 13 in (3), (4) and (5).

In order to assess the dynamic properties of hours worked and consumption to output ratio

(in logs), we first compute their autocorrelation functions (ACFs). Figure 10 reports these ACFs

for lags between 1 and 15. As this figure makes clear, the autocorrelation functions of hours

worked always exceed those of the consumption to output ratio. Additionally, these ACFs decay

at a slower rate. We also perform Augmented Dickey Fuller (ADF) test of unit root. For each

variable, we regress the growth rate on a constant, lagged level and four lags of the first difference.

The ADF test statistic is equal to -2.74 for hours and -2.93 for the consumption to output ratio.

This hypothesis cannot be rejected at the 5 percent level for hours, whereas it is rejected at the 5

percent level for the consumption to output ratio. These findings suggests that the consumption

to output ratio is less persistent than hours.
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The estimated IRFs of hours after a technological improvement are reported in Figure 11.

The upper panel shows the well known conflicting results of the effect of a technology shock

on hours worked between LSVAR and DSVAR specifications.9 The LSVAR displays a positive

hump–shaped response whereas DSVAR implies a decrease in hours. We obtained (from bootstrap

techniques) wide 95% confidence intervals in the LSVAR specification, such that the estimated

IRFs of hours are not significantly different from zero at any horizon. For the DSVAR specification,

the impact response is more precisely estimated (not significant at 95%, but significant at 90%),

but as the horizon increase the negative response is not significantly different from zero. In these

SVARs, including the consumption to output ratio does not help to reconcile the two specifications.

In contrast, the two-step approach delivers the same picture whether hours are specified in

level, first difference, included a lagged term in the regression or specified in a VAR model (see

the bottom panel of Figure 11). In the very short run, the IRFs of hours are very similar and

when the horizon increases the positive response is a bit more pronounced when hours are taken

in level rather than in first difference, with the lagged hours or included in a VAR model. On

impact, hours worked decrease, but after five periods the response becomes persistently posi-

tive and hump–shaped. The bottom panel of Figure 11 reports also the 95 percent confidence

interval obtained from bootstrap techniques. As previously mentioned, these confidence inter-

vals account for the generated regressor problem and the serial correlation of the errors term in

equations (3), (4), (5) and (6). The confidence interval is wide when we consider hours in level.

Consequently, these response cannot be used to discriminate among business cycle theories and

for model building. When hours are projected in first difference, the dynamic response are more

precisely estimated and hours significantly drop on impact. However, our previous simulations

suggest that the coverage rate associated with this approach is inadequate, especially in the very

short–run. Consequently, we should use this finding with caution. The case of lagged hours in

equation (5) delivers almost similar confidence intervals, i.e. the response of hours on impact dif-

fers significantly from zero. Our simulation experiments has indicated that this approach delivers

accurate confidence intervals (the coverage rate is close to 95%). When the horizon increases,

the IRFs are less precisely estimated. The VAR specification in the second step provides similar

results, but we can not reject that the response is zero on impact at 95%. Notice that when

we consider 90% confidence intervals both the AR and VAR specification predicts a significant

decrease of hours in the short–run. Finally, we report the dynamic responses of the LSAVR,

DSVAR and two–step VAR in the last part of figure 11. This figure shows that our two step–step

procedure partially solves the conflicting results about the right specification of hours in SVARs.

Notably, our findings are in line with those of previous empirical papers which obtain that hours

fall significantly on impact (see Gaĺı, 1999, Basu, Fernald and Kimball, 2006, Francis and Ramey,
9Christiano, Eichenbaum and Evans (2004) also obtain conflicting results in larger SVARs.
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2008), but display a hump–shaped positive response during the subsequent periods (see Vigfusson,

2004).

4.2 The Dynamic Responses of Inflation and Nominal Interest Rate

We now illustrate the potential of our two–step approach by looking at the dynamic responses

of the inflation rate and the short–term nominal interest rate after a technology shock. These

two variables are known to display high level of serial correlation and some empirical studies have

found that they can be characterized by an integrated process of order one.10 Therefore, we

use these two variables to illustrate the consequence of the specification choice (level versus first

difference) in SVARs.

We first investigate the response of the inflation rate. The measure of inflation is obtained

using the growth rate of the GDP deflator. The estimated IRFs of the inflation rate after a

technological improvement are reported in Figure 12. As previously, the upper panel reports

the estimated dynamic responses obtained from LSAVR and DSVAR specifications. The LSVAR

model includes labour productivity growth, the inflation rate and the log of consumption to output

ratio. The DSVAR model includes the same variables but inflation is considered in first difference.

As this figure shown, the specification of the inflation rate matters. In the DSVAR specification,

the rate of inflation responds very little to identified technology shocks. Conversely, the response

of inflation in the LSVAR model is persistently negative.

The two-step approach provides similar IRFs according to the specification of the inflation

rate in the second step (see the bottom panel of Figure 12). With the level specification, the

dynamic responses are more pronounced but the four specifications of the inflation rate in the

second step provide the same shape for the responses. In all cases, the inflation rate decreases on

impact and steadily goes back to its long–run value. The bottom panel of Figure 12 reports also

the 95 percent confidence interval. Contrary to hours worked, the confidence interval appears less

sensitive to the specification of inflation in the second step. In each regression, the inflation rate

significantly decreases in the short–run. Note that the effect of a technology improvement has

no long–lasting effect on inflation since the response is almost zero after two years. Our finding

are again in the line of Basu, Fernald and Kimball (2006). It also complement their results by

providing dynamic responses at quarterly frequency.

We now investigate the effect of technology shocks on the short–run nominal interest rate,
10The empirical results offered in the literature are mixed, depending on the the econometric technique used.

Recent contributions on trend inflation specifies actual inflation as a sum of a random walk and a stationary noise
(see Stock and Watson, 2007, Cogley, Primicery and Sargent, 2008). In Juselius (2006), cointegrated VAR models
include the inflation rate and the nominal interest rate in first difference. In the context of permanent technology
shocks, Gaĺı (1999) considers a DSVAR model with the inflation rate in first difference and a cointegration between
the nominal interest rate and the inflation rate. See also King, Plosser, Stock and Watson (1991) for further evidence
of the non–stationarity of these two nominal variables in cointegrated VAR models.
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measured with Federal Fund rate. This rate is available for a shorter sample 1954Q1–2003Q4.

Since much of business cycle literature is concerned with post–1959 data, we follow Christiano,

Eichenbaum and Vigfusson (2004) and therefore consider a second sample period given by 1959Q1–

2003Q4. The dynamic responses of the nominal interest rate after a technological improvement are

reported in Figure 13. In the upper panel, we report the IRFs obtained from LSVAR and DSVAR

specifications. The LSVAR model includes now labour productivity growth, the nominal interest

rate and the log of consumption to output ratio. The DSVAR model includes the same variables

but the nominal interest rate is now specified in first difference. We obtain that the specification

of the nominal interest rate modify the dynamic responses of this variable. In particular, the

DSVAR specification implies a permanent long–run decrease, whereas it steadily goes back to its

long–run value in the LSVAR specification.

With the two-step approach, the shape of the IRFs is not altered by the specification of the

nominal interest rate in the second step (see the bottom panel of Figure 12). However, the dynamic

responses with the level specification are more pronounced than the ones obtained from the three

other specifications (as for the rate of inflation). In the bottom panel of Figure 13, we also report

the 95 percent confidence interval. For the four specifications in the second step, we obtain a

persistent and significant decrease in the Fed Fund rate. These empirical results with quarterly

frequency data are again similar to those of Basu, Fernald and Kimball (2006).

5 Conclusion

This paper proposes a simple two–step approach to consistently estimate a technology shock

and the response of aggregates variables that follows a technology improvement. In a first step,

a SVAR model with labour productivity growth and consumption to output ratio allows us to

estimate the technology shock. In a second step, the response of hours is obtained by a simple

regression of hours on the estimated technology shock. When applied to artificial data generated

by business cycle models (RBC and sticky prices), our approach replicates more closely the model

IRFs. Importantly, the results are invariant to the specification of hours in the second step. The

two–step approach, when applied to actual data, predicts a short–run decrease of hours after a

technology improvement, as well as a delayed and hump–shaped positive response. In addition,

the rate of inflation and the nominal interest rate displays a significant decrease after a positive

technology shock.
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Appendix

A Proof of Proposition 1

The consistency of the second step estimators depends on the consistency of the autoregressive coefficients in the
first step. The consistency of the the autoregressive coefficients ensures the consistency of the estimated technology
shocks. Two cases are of interest: i) the data are generated by a finite VAR or ii) the data are generated by an
infinite VAR. When the data are generated by a finite VAR, the VAR estimators in the first step are consistent for a
number of lags included in the VAR greater or equal to the true ones. For data generated by an infinite VAR, Lewis
and Reinsel (1985) show that a finite order k fitted VAR to a realisation T provides consistency and asymptotic
normality of the estimated autoregressive coefficients assuming that k →∞ at some rate as T →∞. In particular,
they show the consistency for k function of T such that k2/T → 0 as k, T →∞. Now, consider the first specification
in the second step. The convergence in probability is established by standard arguments. First, the estimator â21,k

is centered to the true value by direct straightforward implications of the orthogonality of the permanent and the
transitory shocks and by the fact that those shocks are serially uncorrelated. Second, it is easy to show that the
variance of the OLS estimator converges to zero. The convergence in probability follows. Let us now examine the
second and the third specifications. One can always rewrite the infinite moving average representation as follows:

ht − ρ̃ht−1 = (a1(L)− ρ̃a1(L)L) ηT
t +

s∑

l=1

(a2,l(L)− ρ̃a2,l(L)L) ηNT
l,t

= θ1(L)ηT
t + θ2(L)ηNT

t .

The structural moving average coefficients corresponding to the impact of the technology shocks on hours can thus
be retrieved by the following relationship a1,k =

∑k
j=0 ρ̃jθ1,k−j . First, consider the AR(1) specification for our

second step. We can easily show for this case that the OLS estimators of θ̂1,k converges in probability to θ1,k. For
a given estimator ρ̂, a consistent estimator â1,k is thus guaranteed by the consistency of θ̂1,k. In fact, we only needs
to suppose that the OLS estimator of ρ̃ is bounded in probability, namely

√
T (ρ̂− ρ̃) = Op(1) for some ρ̃ ∈ R (see

Andrews and Mohanan (1992) for a similar argument in a different context). Finally for the case with the hours in
difference, this corresponds to fix ρ̃ to 1. The OLS estimator of θ1,k is

θ̂1,k =

∑T
t=q+1 ηT

t−k∆ht

∑T
t=q+1

(
ηT

t−k

)2

The estimator â1,k is given by the cumulative sum of the θ̂1,k, namely:

â1,k =

∑T
t=q+1

(
ηT

t ht − ηT
t ht−1 + ηT

t−1ht − ηT
t−1ht−1 + · · ·+ ηT

t−kht − ηT
t−kht−1

)
∑T

t=q+1

(
ηT

t−k

)2

By the stationarity hypothesis for ht,
1
T

∑
ηT

t−kht
p−→ γk for all k not depending on t where γk is the covariance

function between ηT
t and ht. Moreover, 1

T

∑
ηT

t ht−1
p−→ 0 and 1

T

∑T
t=q+1

(
ηT

t−k

)2 p−→ 1, the consistency result
follows.

B A Business Cycle Model with Non–Stationary Hours

The model includes a random walk in productivity (Zt) and non-stationary hours, due to a permanent preference
shock (Bt). The intertemporal expected utility function of the representative household is given by

Et

∞∑
i=0

βi {log(Ct+i)− χ(Ht+i/Bt+i)} ,

where χ > 0, β ∈ (0, 1) denotes the discount factor and Et is the expectation operator conditional on the information
set available as of time t. Ct is the consumption at t and Ht represents the household’s labour supply. The labour
supply is subjected to a preference shock Bt, that follows the stochastic process ∆ log (Bt) = σbεb,t, where σb > 0,
and εb,t is iid with zero mean and unit variance. The representative firm uses capital Kt and labour Ht to produce
the homogeneous final good Yt. The technology is represented by the following constant returns–to–scale Cobb–
Douglas production function Yt = Kα

t (ZtHt)
1−α, where α ∈ (0, 1). Zt is assumed to follow an exogenous process
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of the form ∆ log(Zt) = σzεz,t, where εz,t is iid with zero mean and unit variance. The capital stock evolves
according to the law of motion Kt+1 = (1− δ) Kt + It, where δ ∈ (0, 1) is the constant depreciation rate. Finally,
the final good can be either consumed or invested Yt = Ct + It. In this model, the labour supply shock Bt induces
a stochastic trend into hours as well as into output, consumption, and capital. In addition, Zt has a long-run
impact on Yt, Ct, Kt, and It. Accordingly, to obtain a stationary equilibrium, these variables must be detrended as
h̆t = Ht/Bt, y̆t = Yt/(ZtBt), c̆t = Ct/(ZtBt), ĭt = It/(ZtBt) and k̆t+1 = Kt+1/(ZtBt). With these transformations,
the approximate solution of the model is computed from a log–linearisation of the stationary equilibrium conditions
around this deterministic steady state. It is important to notice that in our model, Bt has a long-run impact on Ht,
as well as on Yt and the above trending variables. At the same time, Zt alone can have a long-run effect on labour
productivity. Hence, this model is perfectly compatible with the identification assumptions used by Gaĺı (1999).

The log–linearisation of equilibrium conditions around the deterministic steady state yields

̂̆
kt+1 = (1− δ)(

̂̆
kt − σzεz,t − σbεb,t) +

y

k
̂̆yt −

c

k
̂̆ct (7)

̂̆
ht = ̂̆yt − ̂̆ct (8)

̂̆yt = α(
̂̆
kt − σzεz,t − σbεb,t) + (1− α)

̂̆
ht (9)

Et
̂̆ct+1 = ̂̆ct + αβ

y

k
Et(̂̆yt+1 − ̂̆

kt+1 − σzεz,t+1 − σbεb,t+1) (10)

where y/k = (1− β(1− δ))/(αβ) and c/k = y/k − δ. After substitution of (8) into (9), one gets

̂̆yt − ̂̆
kt = −σzεz,t − σbεb,t − 1− α

α
̂̆ct

Now, using the above expression, (7) and (10) rewrite

Et
̂̆ct+1 = ϕ̂̆ct with ϕ =

α

1− β(1− α)(1− δ)
∈ (0, 1) (11)

̂̆
kt+1 = ν1

̂̆
kt − ν1(σzεz,t + σbεb,t)− ν2

̂̆ct

with ν1 =
1

βϕ
> 1 and ν2 =

1− β(1− δ(1− α2))

α2β
(12)

As ν1 > 1, (12) must be solved forward

̂̆
kt = σzεz,t + σbεb,t +

(
ν2

ν1

)
lim

T→∞
Et

T∑
i=0

(
1

ν1

)i

̂̆ct+i + lim
T→∞

Et

(
1

ν1

)T ̂̆
kt+T

Excluding explosive pathes, i.e. limT→∞Et (1/ν1)
T ̂̆

kt+T = 0, and using (11), one gets the decision rule on con-
sumption:

̂̆ct =

(
ν1 − ϕ

ν2

) (
̂̆
kt − (σzεz,t + σbεb,t)

)
(13)

After substituting (13) into (12), the dynamics of capital is given by:

̂̆
kt+1 = ϕ

(
̂̆
kt − (σzεz,t + σbεb,t)

)
(14)

The persistence properties of the model is thus governed by the parameter ϕ ∈ (0, 1). The decision rules of the other
(deflated) variables are similar to equation (13). Using (13) and (14), the consumption to output ratio is given by

log(Ct)− log(Yt) = νcy

(
− (σzεz,t + σbεb,t)

1− ϕL

)

where νcy = α(ν1 − ϕ − ν2)/ν2. The latter expression shows that the consumption to output ratio follows exactly
the same stochastic process (an autoregressive process of order one) as the deflated capital log(Kt/(Zt−1Bt−1)) in
equation (14). The consumption to output ratio is thus an exact representation of the relevant state variable of the
model. Notice than both shocks have a transitory effect on the ratio. Hours do not display a similar pattern. Using
(8) and the above expression, the growth rate of hours is given by:

(1− ϕL)∆ log(Ht) = νcyσz∆εz,t + (1 + νcy)

(
1−

(
ϕ + νcy

1 + νcy

)
L

)
σbεb,t

where ∆ log(Ht) = ∆
̂̆
ht + εb,t. The technology shock has no long–run effect on hours, whereas the preference

shock increases hours permanently. More importantly, hours follow an ARMA(1,1) process, with an unit root in
the moving average representation of the technology shock. It follows that finite autoregressions with long–run
restrictions may be problematic in properly uncovering the true dynamics of hours.
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Table 1: Calibrated Values

Deep Parameters Shocks Parameters Shocks Parameters
(benchmark) (alternative)

β 0.9926 σz 0.01 σχ/σz [0.5;1;2]

α 0.330 ρχ 0.95 ρχ [0.9;0.95;0.99]

δ 0.0250 σχ 0.01

γz 0.0036 ρx 0.95

ψ 3.600 σx 0.01 σz/(σχ, σx) [1;2]
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Table 2: Simulation Results with two shocks: Cumulative Absolute Bias

Horizon Correlation
ρχ σχ/σz Model 0 0 to 4 0 to 8 0 to 12 Corr(εz, η

T ) Corr(εχ, ηT )
0.90 0.5 LSVAR 0.056 0.195 0.262 0.452 0.941 -0.101

DSVAR 0.215 1.047 1.732 2.230 0.931 0.250
CYSVAR–AR 0.022 0.123 0.355 0.649 0.953 0.013
CYSVAR–VAR 0.022 0.106 0.294 0.565 0.953 0.013

1 LSVAR 0.261 0.990 1.228 1.287 0.923 -0.198
DSVAR 0.690 3.307 5.752 8.015 0.859 0.419
CYSVAR–AR 0.070 0.228 0.326 0.540 0.949 -0.059
CYSVAR–VAR 0.069 0.249 0.332 0.558 0.949 -0.059

2 LSVAR 1.003 3.902 5.325 5.902 0.872 -0.365
DSVAR 1.925 9.197 16.251 23.132 0.728 0.596
CYSVAR–AR 0.4937 1.883 2.493 2.675 0.934 -0.180
CYSVAR–VAR 0.036 0.186 0.352 0.550 0.934 -0.180

0.95 0.5 LSVAR 0.047 0.183 0.222 0.256 0.924 -0.104
DSVAR 0.196 0.988 1.658 2.143 0.931 0.252
CYSVAR–AR 0.035 0.168 0.331 0.503 0.950 0.033
CYSVAR–VAR 0.035 0.169 0.331 0.513 0.950 0.033

1 LSVAR 0.259 1.101 1.641 1.959 0.899 -0.218
DSVAR 0.629 3.115 5.472 7.650 0.861 0.422
CYSVAR–AR 0.035 0.130 0.149 0.194 0.943 -0.038
CYSVAR–VAR 0.034 0.136 0.162 0.224 0.943 -0.038

2 LSVAR 1.025 4.436 6.820 8.430 0.835 -0.407
DSVAR 1.769 8.728 15.564 22.231 0.728 0.606
CYSVAR–AR 0.420 1.794 2.738 3.385 0.927 -0.167
CYSVAR–VAR 0.036 0.186 0.352 0.550 0.927 -0.167

0.99 0.5 LSVAR 0.002 0.006 0.038 0.108 0.874 -0.071
DSVAR 0.158 0.812 1.359 1.726 0.936 0.238
CYSVAR–AR 0.067 0.315 0.485 0.587 0.945 0.093
CYSVAR–VAR 0.068 0.338 0.559 0.710 0.945 0.093

1 LSVAR 0.158 0.737 1.280 1.792 0.842 -0.181
DSVAR 0.510 2.559 4.498 6.260 0.874 0.405
CYSVAR–AR 0.099 0.456 0.701 0.852 0.932 0.072
CYSVAR–VAR 0.100 0.473 0.760 0.958 0.932 0.072

2 LSVAR 0.760 3.570 6.065 8.243 0.788 -0.362
DSVAR 1.499 7.474 13.348 19.057 0.738 0.610
CYSVAR–AR 0.003 0.019 0.091 0.228 0.924 -0.007
CYSVAR–VAR 0.036 0.186 0.352 0.550 0.924 -0.007
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Table 3: Simulation Results with two shocks: Cumulative Root Mean Square Errors

Horizon
ρχ σχ/σz Model 0 [0:4] [0:8] [0:12]
0.90 0.5 LSVAR 0.184 0.824 1.317 1.731

DSVAR 0.243 1.210 2.060 2.767
CYSVAR–AR 0.169 0.782 1.271 1.695
CYSVAR–VAR 0.168 0.7864 1.294 1.726

1 LSVAR 0.434 1.835 2.727 3.318
DSVAR 0.726 3.511 6.132 8.583
CYSVAR–AR 0.341 1.517 2.286 2.825
CYSVAR–VAR 0.340 1.529 2.354 2.932

2 LSVAR 1.191 4.845 6.977 8.216
DSVAR 1.968 9.454 16.709 23.7937
CYSVAR–AR 0.813 3.448 5.014 5.950
CYSVAR–VAR 0.812 3.474 5.110 6.085

0.95 0.5 LSVAR 0.203 0.960 1.593 2.105
DSVAR 0.224 1.155 2.002 2.714
CYSVAR–AR 0.168 0.824 1.366 1.809
CYSVAR–VAR 0.168 0.832 1.408 1.878

1 LSVAR 0.471 2.155 3.464 4.452
DSVAR 0.663 3.319 5.869 8.256
CYSVAR–AR 0.354 1.649 2.659 3.430
CYSVAR–VAR 0.344 1.659 2.722 3.523

2 LSVAR 1.245 5.559 8.791 11.170
DSVAR 1.810 8.979 16.035 22.928
CYSVAR–AR 0.840 3.719 5.925 7.584
CYSVAR–VAR 0.803 3.7430 6.016 7.685

0.99 0.5 LSVAR 0.248 1.220 2.114 2.915
DSVAR 0.185 0.983 1.724 2.350
CYSVAR–AR 0.164 0.842 1.436 1.948
CYSVAR–VAR 0.164 0.855 1.496 2.042

1 LSVAR 0.520 2.519 4.359 6.015
DSVAR 0.542 2.763 4.913 6.910
CYSVAR–AR 0.354 1.776 3.030 4.118
CYSVAR–VAR 0.353 1.786 3.097 4.223

2 LSVAR 1.192 5.734 9.858 13.552
DSVAR 1.535 7.715 13.824 19.777
CYSVAR–AR 0.732 3.641 6.239 8.532
CYSVAR–VAR 0.730 3.644 6.292 8.602
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Table 4: Simulation Results with Three Shocks

Average Cumulative Absolute Bias
Horizon

Variables σz/(σχ, σi) Model 0 0 to 4 0 to 8 0 to 12 Corr(εz, η
T )

(y − h, h) 1 LSVAR 0.592 2.513 3.748 4.450 0.847
DSVAR 0.783 3.992 7.165 10.162 0.850
CYSVAR–AR 0.333 1.383 2.008 2.358 0.836
CYSVAR–VAR 0.316 1.272 1.779 2.005 0.836

2 LSVAR 0.142 0.599 0.845 0.933 0.911
DSVAR 0.261 1.332 2.300 3.083 0.922
CYSVAR–AR 0.064 0.253 0.295 0.343 0.920
CYSVAR–VAR 0.054 0.195 0.228 0.325 0.920

(y − h, h, c− y) 1 LSVAR 0.384 1.618 2.409 2.906 0.782
DSVAR 0.320 1.323 1.718 1.828 0.850
CYSVAR–AR 0.333 1.383 2.008 2.358 0.836
CYSVAR–VAR 0.316 1.272 1.779 2.005 0.836

2 LSVAR 0.065 0.268 0.359 0.376 0.844
DSVAR 0.055 0.224 0.292 0.519 0.922
CYSVAR–AR 0.064 0.253 0.295 0.343 0.920
CYSVAR–VAR 0.054 0.195 0.228 0.325 0.920

Cumulative Root Mean Square Errors
Horizon

Vairables σg/(σz, σχ) Model 0 0 to 4 0 to 8 0 to 12
(y − h, h) 1 LSVAR 0.717 3.177 4.960 6.236

DSVAR 0.821 4.208 7.570 10.765
CYSVAR–AR 0.485 2.212 3.447 4.325
CYSVAR–VAR 0.469 2.108 3.357 4.343

2 LSVAR 0.261 1.202 1.932 2.491
DSVAR 0.290 1.504 2.645 3.636
CYSVAR–AR 0.194 0.929 1.497 1.941
CYSVAR–VAR 0.187 0.893 1.494 2.018

(y − h, h, c− y) 1 LSVAR 0.615 2.732 4.297 5.490
DSVAR 0.485 2.251 3.638 4.809
CYSVAR–AR 0.485 2.212 3.447 4.325
CYSVAR–VAR 0.469 2.108 3.357 4.343

2 LSVAR 0.257 1.176 1.890 2.463
DSVAR 0.197 0.970 1.669 2.335
CYSVAR–AR 0.194 0.929 1.497 1.941
CYSVAR–VAR 0.187 0.893 1.494 2.018
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Table 5: Simulation Results with the Sticky Prices Model

Average Cumulative Absolute Bias
Horizon

Model 0 0 to 4 0 to 8 0 to 12 Corr(εz, η
T )

LSVAR 0.469 1.315 1.952 2.378 0.899
DSVAR 0.258 2.716 5.129 7.287 0.849
CYSVAR–AR 0.469 0.555 1.043 1.600 0.901
CYSVAR–VAR 0.400 0.984 1.423 1.693 0.901

Cumulative Root Mean Square Errors
Horizon

Model 0 0 to 4 0 to 8 0 to 12
LSVAR 0.691 2.306 3.500 4.376
DSVAR 0.292 2.952 5.534 7.883
CYSVAR–AR 0.679 1.763 2.492 3.128
CYSVAR–VAR 0.567 1.785 2.714 3.384
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Figure 1: Simulation Results with with SVARs (Two Shocks)
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Note: LSVAR and DSVAR models. The LSVAR model includes labour productivity growth and the log of hours.
The DSVAR model includes labour productivity growth and the log of hours in first difference. The dashed line
correspond to the true IRF of hours. The results are obtained from our benchmark calibration. The selected horizon
for IRFs is 13. Confidence intervals are based the 95–percentile from 1000 Monte–Carlo experiments.
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Figure 2: Simulation Results with with the Two–Step Approach (Two Shocks)
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Note: Two–Step identification. The SVAR model in the first step includes labour productivity growth and the log
of consumption to output ratio. In the second step, the dynamic responses of hours are obtained from equations
(3), (4), (5) and (6). For this latter equation, the VAR model includes labour productivity growth, the log of hours
and the log of consumption to output ratio. The dashed line correspond to the true IRF of hours. The results are
obtained from our benchmark calibration. The selected horizon for IRFs is 13. Confidence intervals are based the
95–percentile from 1000 Monte–Carlo experiments.
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Figure 3: Autocorrelation function (preference shock)
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Figure 4: Autocorrelation function (technology and preference shock)
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Figure 5: Simulation Results with with SVARs (Three Shocks)
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Note: LSVAR and DSVAR models. The Two Variable LSVAR model includes labour productivity growth and the
log of hours. The Two variable DSVAR model includes labour productivity growth and the log of hours in first
difference. The Three Variable LSVAR model includes labour productivity growth, the log of hours and the log of
consumption to output ratio. The Three variable DSVAR model includes labour productivity growth, the log of
hours in first difference and the log of consumption to output ratio. The dashed line correspond to the true IRF of
hours. The results are obtained from our benchmark calibration and three shocks. Confidence intervals are based
the 95–percentile from 1000 Monte–Carlo experiments.
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Figure 6: Simulation Results with with the Two–Step Approach (Three Shocks)
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Note: Two–Step identification. The SVAR model in the first step includes labour productivity growth and the log
of consumption to output ratio. In the second step, the dynamic responses of hours are obtained from equations
(3), (4), (5) and (6). For this latter equation, the VAR model includes labour productivity growth, the log of hours
and the log of consumption to output ratio. The dashed line correspond to the true IRF of hours. The results
are obtained from our benchmark calibration and three shocks. The selected horizon for IRFs is 13. Confidence
intervals are based the 95–percentile from 1000 Monte–Carlo experiments.
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Figure 7: Simulation Results with with SVARs (Sticky Prices Model)
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Note: DSVAR and LSVAR models. The LSVAR model includes labour productivity growth and the log of hours.
The DSVAR model includes labour productivity growth and the log of hours in first difference. The dashed line
correspond to the true IRF of hours. The results are obtained from our benchmark calibration and the sticky prices
model. The selected horizon for IRFs is 13. Confidence intervals are based the 95–percentile from 1000 Monte–Carlo
experiments.
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Figure 8: Simulation Results with with the Two–Step Approach (Sticky Prices Model)
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Note: Two–Step identification. The SVAR model in the first step includes labour productivity growth and the log
of consumption to output ratio. In the second step, the dynamic responses of hours are obtained from equations (3),
(4), (5) and (6). For this latter equation, the VAR model includes labour productivity growth and the log of hours.
The dashed line correspond to the true IRF of hours. The results are obtained from our benchmark calibration and
the sticky prices model. The selected horizon for IRFs is 13. Confidence intervals are based the 95–percentile from
1000 Monte–Carlo experiments.
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Figure 9: Coverage Rates for Percentile-Based Confidence Intervals
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Note: Two–Step identification. The SVAR model in the first step includes labour
productivity growth and the log of consumption to output ratio. In the second
step, the dynamic responses of hours are obtained from equations (3), (4), (5)
and (6).
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Figure 10: ACFs of Hours and Consumption to Output Ratio
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Note: NFB Sector data and Sample Period 1948Q1–2003Q4. All variables in logs.
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Figure 11: IRFs of Hours Worked to a Technological Improvement
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Note: LSVAR, DSVAR and two–step identification. The LSVAR model includes labour
productivity growth, the log of hours and the log of consumption to output ratio. The
DSVAR model includes labour productivity growth, the log of hours in first difference and
the log of consumption to output ratio. For the two–step procedure, the SVAR model in the
first step includes labour productivity growth and the log of consumption to output ratio.
In the second step, the dynamic responses of hours are obtained from equations (3), (4),
(5) and (6)). Top panel, IRFs computed from LSVAR and DSVAR specifications. Bottom
panel, IRFs computed from two–step procedure (equations (3), (4), (5) and (6)). Non Farm
Business Sector data and sample period 1948Q1–2003Q4. The selected horizon for IRFs is
13. 95 percent bootstrapped confidence interval shown.
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Figure 12: IRFs of the Inflation Rate to a Technological Improvement
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Note: LSVAR, DSVAR and two–step identification. The LSVAR model includes labour
productivity growth, the inflation rate and the log of consumption to output ratio. The
DSVAR model includes labour productivity growth, the inflation rate in first difference and
the log of consumption to output ratio. For the two–step procedure, the SVAR model in
the first step includes labour productivity growth and the log of consumption to output
ratio. In the second step, the dynamic responses of the inflation rate are obtained from
equations (3), (4), (5) and (6) after replacement of hours by the inflation rate. Top panel,
IRFs computed from LSVAR and DSVAR specifications. Bottom panel, IRFs computed from
two–step procedure (equations (3), (4), (5) and (6)). Non Farm Business Sector data and
sample period 1948Q1–2003Q4. The selected horizon for IRFs is 13. 95 percent bootstrapped
confidence interval shown.
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Figure 13: IRFs of the Nominal Interest Rate to a Technological Improvement
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Note: LSVAR, DSVAR and two–step identification. The LSVAR model includes labour
productivity growth, the nominal interest rate and the log of consumption to output ratio.
The DSVAR model includes labour productivity growth, the nominal interest rate in first
difference and the log of consumption to output ratio. For the two–step procedure, the SVAR
model in the first step includes labour productivity growth and the log of consumption to
output ratio. In the second step, the dynamic responses of the nominal interest rate are
obtained from equations (3), (4), (5) and (6) after replacement of hours by the nominal
interest rate. Top panel, IRFs computed from LSVAR and DSVAR specifications. Bottom
panel, IRFs computed from two–step procedure (equations (3), (4), (5) and (6)). Non Farm
Business Sector data and sample period 1959Q1–2003Q4. The selected horizon for IRFs is
13. 95 percent bootstrapped confidence interval shown.

44




