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Institut de Mathématiques de Toulouse ; UMR5219
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Abstract: In this paper, we consider a parametric density contamina-
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f? = (1− λ?)φ+ λ?φ(.− µ?), where the shape φ is assumed to be known.
We establish the optimal rates of convergence for the estimation of the
mixture parameters (λ?, µ?) ∈ (0, 1)×Rd. In particular, we prove that the
classical parametric rate 1/

√
n cannot be reached when at least one of these

parameters is allowed to tend to 0 with n.
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1. Introduction

Because of their wide range of flexibility, finite mixtures are a popular tool to
model the unknown distribution of heterogeneous data. They are found in sev-
eral domains and have been at the core of several mathematical investigations.
For a complete introduction to mixtures, we refer the reader to [23] and [10].
In most cases of interest, a sample Sn := (X1, . . . , Xn) of i.i.d. data is at our
disposal, and each entry admits the probability density f? w.r.t. the Lebesgue
measure. For a finite mixture model, the density f? is assumed to have the
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following shape:

f? =

K∑
k=1

λkφk. (1.1)

With such a representation, the population of interest can in some sense be
decomposed into K different groups where each group k has a proportion λk and
is distributed according to the density φk. For practical purposes, parametric
models are often considered. In such cases, the densities φk are assumed to be
known, at least up to some finite parameters, and the parameter estimation
problem is often addressed using an EM-type algorithm [9]. In contrast, with
the impressive range of applications based on mixtures, theoretical issues related
to mixture models are somewhat poorly understood.
Among the available theoretical results for mixtures, some of them are par-
ticularly linked to the density estimation problem. The works [11], [12] and
[17] develop a nonparametric Bayesian point of view, while exploiting both the
approximation capacity of mixtures and their metric entropy size, first with
Gaussian distributions and later with exponential power distributions. A Gaus-
sian mixture estimator based on a non asymptotic penalized likelihood criterion
is proposed in [21] and the adaptive properties of this estimator are investigated
in [22].
In the mixture models, the focus on the parameters themselves has received less
theoretical attention because of their great mathematical difficulty despite their
natural interest. It is indeed highly informative to obtain the estimation of the
mixing distribution, and many applied works use this estimation for descriptive
statistics. Among them, the unsupervised clustering with Bayesian interpreta-
tion is certainly one of the most widely used applications of mixtures (see, e.g,
[23]). Given a dictionary of densities, [4] propose an estimation procedure based
on the minimization of an L2 empirical criterion with a sparsity constraint, pro-
viding an estimation of the parameters of interest when the location parameters
µ?k (here φk = φ(. − µ?k)) are not too close to each other. [8] studied the esti-
mation of the mixing distribution under a strong identifiability condition. As
observed in the recent works of [24], [15] and [13], the optimal rate depends on
the knowledge of the number of components. [14] show that the parameter esti-
mation rates are slower for some weakly identifiable mixtures. Other extensions
are available in [15]. Identifiability (and estimation) issues are discussed in [16]
under the assumption that the φk can be written as φk = φ(. − µk) for some
sequence (µk)k=1..K and a symmetric probability density φ.
Finally, the EM algorithm (see, e.g., [9]) is a popular alternative for the analysis
of the latent structures involved in the mixture models, but the analysis of the
convergence rate of the final estimator is somewhat intricate. A first positive
result about the convergence of this method is given in [27] when the density is
unimodal and certain smoothness conditions hold. However, when multimodal-
ity occurs, the behavior of the EM method remains mysterious and is suspected
to fall into local traps of the log-likelihood. Some recent advances in the anal-
ysis of this famous method were brought by [1], where a general result is given
for a convergence of the sample-based EM towards the population one, up to
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initialization, Lipschitz and concavity conditions.
In this paper, we focus on the multivariate parameter estimation problem when
the density of interest is a two-component contamination mixture:

f? = (1− λ?)φ+ λ?φ(.− µ?), (1.2)

where the density φ is known and the parameters (λ?, µ?) ∈ (0, 1) × Rd are to
be estimated.
The estimation of the couple (λ?, µ?) has already been considered in the liter-
ature. In [3], a slightly different model is considered where f? = (1 − λ?)φ(. −
µ?1) + λ?φ(. − µ?2) and φ is assumed to be symmetric and unknown. Using a
recurrence procedure based on an inversion formula, they propose an estimator
for θ? = (λ?, µ?1, µ

?
2) and the function φ. In particular, the parameter λ? is esti-

mated at the ‘classical’ parametric rate 1/
√
n, while the rate n−1/4 is obtained

for location parameters (µ?1, µ
?
2). A similar problem is addressed in [5] where the

rate 1/
√
n is reached for the estimation of the whole parameter θ?. The esti-

mation procedure is based on a computation of an empirical Fourier transform.
More recently, [25] considered the situation where the distribution of one of the
component of the mixture is known. In such a case, they provide an estimator of
both the mixing parameter and of the distribution of the second component. In
the setting considered here (i.e., when f? is defined as in (1.2)), [7] proposes an
iterative procedure based on the empirical distribution function. In the so-called
sparse setting where λ? � 1/

√
n and µ? ∼

√
2r log(n) for some r ∈ (0, 1) as

n → +∞, the authors derive rates of convergence for the estimation of λ?. In
particular, they prove that the classical parametric rate cannot be attained in
such a setting.
In all the aforementioned contributions except [7], it is implicitly assumed that
both location and proportion parameters are fixed with respect to n. The main
aim of this paper is to fill this gap. We propose a procedure inspired by [4]

and derive an estimator (λ̂, µ̂) for the couple (λ?, µ?). This estimator is based
on the minimization of an L2 contrast instead of a usual maximum likelihood
estimator of mixture parameters computed with an EM-type algorithm. Then,
given a bound M s.t. maxj=1...d |µ?j | ≤ M and under mild assumptions on the
shape φ, we prove that:

sup
(λ?,µ?)∈(0,1)×[−M,M ]d

Eλ?,µ? [(λ?)2‖µ?‖2‖µ̂− µ?‖2] .
log2 n

n
, (1.3)

and

sup
(λ?,µ?)∈(0,1)×[−M,M]d

λ?‖µ?‖2&n−1/2

Eλ?,µ? [‖µ?‖4(λ̂− λ?)2] .
log2 n

n
, (1.4)

where ‖µ‖2 =
∑d
j=1 µ

2
j for all µ ∈ Rd. These results are completed by the cor-

responding lower bounds that ensure the optimality of (1.3) and (1.4), up to
logarithmic factors. In particular, we can immediately observe that the para-
metric rate of 1/

√
n is attained when λ? and µ? are fixed, but is deteriorated

as soon as these parameters are allowed to tend to 0 with n.
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Finally, we also obtain an interesting link between the L2 loss and the Wasser-
stein loss in our contamination mixture model:

‖fλ,µ − fλ′,µ′‖2 ≥ cφW 2
2 (G,G′), (1.5)

which makes even more explicit the hardness of recovering the unknown param-
eters of the contamination mixture model (described in the mixing distributions
(G,G′) that parametrize the densities fλ,µ and fλ′,µ′).

The paper is organized as follows. First, a preliminary oracle inequality for L2

density estimation is established in Section 2. On the basis of this result, some
rates of convergence for the estimation of (λ?, µ?) are deduced (see Section 3.2)
under some assumptions on φ presented in Section 3.1. Some lower bounds are
provided in Section 4, first in a strong contamination model (‖µ?‖ > m with m
independent of n; see Section 4.1); and second, in a weak contamination model
(‖µ‖ can tend to 0 when n → +∞; see Section 4.2). The main part of the
paper ends with a discussion in Section 5 that reveals several insights between
Wasserstein distances among mixing distributions and distances between the
probability distributions. Proofs of the upper bounds (resp. lower bounds) are
given in Section 6 (resp. Appendix C) while Section 7 provides the proof of
the link between some Wasserstein transportation cost among mixing distribu-
tions in our weak contamination model and the L2 loss. A few simulations are
presented in Section 8. Technical results are presented in Appendix A, whereas
Appendix B is devoted to a needed refinement of the Cauchy-Schwarz inequal-
ity.

2. A preliminary result on L2 density estimation

2.1. Statistical setting and identifiability

We recall that we have at our disposal an i.i.d. sample of size n denoted
Sn := (X1, . . . , Xn), where the distribution of each Xi is associated with a
two-component contamination mixture model. More precisely, we assume that
each Xi admits an unknown density f? with respect to the Lebesgue measure
on Rd, which is given by:

f? = (1− λ?)φ+ λ?φ(.− µ?). (2.1)

In the following text, θ? = (λ?, µ?) ∈ (0, 1) × Rd refers to the parameters of
the two-component contamination mixture model. We assume that the density
φ is a known function and that a real contamination of this baseline density φ
occurs (λ? > 0). Finally, we assume that the unknown contamination shift µ?

belongs to a bounded interval [−M,M ]d where M > 0 is known.

Here and below, for any θ = (λ, µ) ∈ (0, 1)× Rd, we write:

fθ = fλ,µ = (1− λ)φ+ λφµ,
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where φµ is defined according to the standard notation in location models:

∀µ ∈ Rd φµ : x 7−→ φ(x− µ).

In particular, as a slight abuse of notation, we write f? = fθ? = fλ?,µ? and

(when the meaning is clear following the context) f̂ = fθ̂ = fλ̂,µ̂ for any estima-

tor θ̂ of θ?.

We aim to recover the unknown parameter θ? from the sample Sn. This might
be possible according to the next identifiability result, whose proof is given in
Appendix A.

Proposition 2.1. Any two-component contamination mixture model is identi-
fiable: fθ1 = fθ2 if and only if θ1 = θ2.

Such an identifiability result is well known in some more general cases up to
additional assumptions on the baseline density φ (see, e.g., [16] or Theorem
2.1 of [3] where the symmetry of φ is added to ensure the identifiability of the
general mixture model without contamination). Here, the fact that one of the
components of the mixture is constrained to be centered makes it possible to
get rid of any additional assumption on φ. In particular, Proposition 2.1 holds
as soon as φ is non-negative with

∫
Rd φ = 1.

2.2. Estimation strategy and oracle inequality on the L2 norms

Our estimator will be built according to an optimal L2 density estimation con-
strained to the contamination models. For this purpose, we first define a grid
over the possible values of λ and µ through:

MΛ,M := {(λ, µ) : λ ∈ Λ = {λ1, . . . , λp} and µ ∈M = {µ1, . . . , µq}} ,

where Λ,M will depend on n to obtain good properties both from the statistical
and approximation point of view. To obtain a good estimation of f? and θ?, we
adopt a SURE approach (see, e.g., [26]) and choose an estimator that minimizes1

‖f? − fλ,µ‖22 over the grid MΛ,M. Observing that:

‖f? − fλ,µ‖22 − ‖f?‖22 = −2〈f?, fλ,µ〉+ ‖fλ,µ‖22,

and since ‖f?‖22 does not depend on (λ, µ), it is natural to introduce the following
contrast function:

∀(λ, µ) ∈MΛ,M γn(λ, µ) := − 2

n

n∑
i=1

fλ,µ(Xi) + ‖fλ,µ‖22,

leading to the estimator:

(λ̂n, µ̂n) = arg min
(λ,µ)∈MΛ,M

γn(λ, µ). (2.2)

1In the following, ‖.‖2 denotes the norm associated to the scalar product 〈g1, g2〉 =∫
Rd g1(x)g2(x)dx for all g1, g2 ∈ L2(Rd)
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Our first main result, stated below, quantifies the performances of f̂ .

Theorem 2.1. Let (λ?, µ?) ∈ (0, 1)×Rd. Let (λ̂, µ̂) be the estimator defined in
(2.2). Then, a positive constant C exists such that for all 0 < α < 1:

E
[
‖f̂ − f?‖22

]
≤
(

1 + α

1− α

)
inf

(λ,µ)∈MΛ,M

‖fλ,µ − f?‖22 +
C

2α

log2(|MΛ,M|)
n

, (2.3)

where |MΛ,M| corresponds to the cardinality of the grid MΛ,M.

It is worth mentioning that the result above is almost assumption-free on the
two-component contamination mixture model. Nevertheless, this result implic-
itly requires that the approximation term inf(λ,µ)∈MΛ,M

‖fλ,µ − f?‖22 is com-
parable to the residual. In practice, this cannot be achieved unless we have an
upper bound on the range for possible values of µ at our disposal. The proof of
Theorem 2.1 is given in Section 6.1.
We stress that Theorem 2.1 is not the main interest of our work. It is a minimal
requirement to further extend our analysis on the parameter estimation of the
mixture models themselves. In particular, the following question now arises: does
the fact that f̂ is a “good” L2 estimator of f? imply that the corresponding θ̂
provides a satisfying estimator of θ?? The positive answer to this question is
the main contribution of our work and is described in the next section. In order
to establish this result, some mild restrictions on the class of possible densities
φ are required.

3. Estimation of the parameter θ?

3.1. Baseline assumptions

We now introduce mild and sufficient assumptions for an optimal recovery of θ?

from the oracle inequality (2.3) (in terms of convergence rates). In the following,
we denote by Ck(Rd) the set of continuous functions that admits k continuous
derivatives.

Assumption (HS) The density φ belongs to C3(Rd) ∩ L2(Rd).
The set of admissible densities considered in Assumption (HS) is very large,
and contains many possible distributions (Gaussian, Cauchy, Gamma to name a
few). Note that it is also possible to relax the smoothness assumption and handle
piecewise differentiable densities with an additional symmetry assumption (see
Appendix A). Note that since all densities φ are continuous and in L2(Rd), these
densities are necessarily bounded on Rd.
Our second important assumption is concerned with a tight link that may exist
between φ− φµ and µ itself. It requires a type of Lipschitz upper bound in the
translation model.
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Assumption (HLip) The density φ satisfies:

∃ g ∈ L2(Rd) ∀x ∈ Rd ∀µ ∈ [−M,M ]d |φ(x)− φµ(x)| ≤ ‖µ‖g(x), (3.1)

and g satisfies the integrability condition:

J :=

∫
Rd
g2(x)φ−1(x)dx < +∞.

This assumption will be of primary importance to obtain estimation results on
the parameters of the mixture themselves. In particular, it will make it possible
to derive a relationship between the L2 norm of φ − φµ and the size of ‖µ‖.
Hence, under Assumption (HLip), a good estimation of the density f? for the
L2 norm is assumed to yield a good estimation of the mixture parameters.

Remark 3.1. Instead of listing all the possible densities that both meet As-
sumptions (HS), (HLip) (and later (HD) introduced in Appendix C for our
lower bound results), we will show that any log-concave distribution φ written
as:

φ = e−U with Uconvex such that ‖∇U‖+ ‖D2U‖ = o∞(U),

satisfies these three conditions2. The relationships between (HS), (HLip), (HD)
and the log-concave distributions are given in Appendix A.3.

Remark 3.2. An easy consequence of Remark 3.1 (see also Proposition A.2)
is that the log-concave Gaussian distributions satisfy assumptions (HS) and
(HLip) so that all the results displayed below apply to these situations. It may
be shown as well that our results apply for the Laplace distribution since the
smoothness assumption (HS) may be replaced by a symmetry property (see Ap-
pendix A).
In the 1-dimensional Cauchy distribution case, we can compute φ− φµ:

|φ(x)− φµ(x)| = |µ| |2x− µ|
π[1 + (x− µ)2][1 + x2]

≤ Cφ(x)|µ|,

for a large enough constant C. Hence, the assumptions (HS) and (HLip) are
satisfied with g = Cφ for the Cauchy distribution.
The skew Gaussian density3 φ satisfies:

|φ(x)− φµ(x)| ≤ 2ψ(x) |Ψ(αx)−Ψ(α(x− µ))|+2Ψ(α(x−µ)) |ψ(x)− ψ(x− µ)| .

If we define g as g(x) := 4 sup[x−M ;x+M ] ψ(t) × sup[x−M ;x+M ] Ψ(αt), we can
check that (HS) and (HLip) are satisfied. In particular, the integrability con-
dition (HLip) is satisfied for large x because Ψ(αx) −→ 1 when x −→ +∞.

2Hereafter o∞(U) denotes a quantity negligible compared to U(x) as ‖x‖ → +∞
3It is defined as φ(.) = 2ψ(.)Ψ(α.) where ψ and Ψ denote respectively the density and

cumulative function of a standard Gaussian distribution, and α an asymmetry parameter.
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Conversely, if x −→ −∞, we have:

g2(x)φ−1(x) .
[
ψ−1(x)Ψ−1(αx)

]
sup

[x−M ;x+M ]

ψ2(t)× sup
[x−M ;x+M ]

Ψ2(αt)

.
[
αxex

2/2eα
2x2/2

]
e−(x−M)2

× e−α
2(x−M)2

[α(x−M)]−2

. e−(x−2M)2/4e−α
2(x−2M)2/4,

which leads to the integrability condition around −∞.

In the following text, we maintain a formalism that uses the two assumptions
of Section 3.1 for the sake of generality.

3.2. Consistency rates on the parameters (λ?, µ?)

We now use our assumptions on φ to deduce some rates of convergence for the
estimation of the couple (λ?, µ?) from the oracle inequality of Theorem 2.1.
According to the assumption µ? ∈ [−M,M ]d for some given M > 0, we define
the grid Mn =MΛ,M as:

Mn =

{
(λ, µ) : λ =

i√
n
, µ = (µ(1), . . . , µ(d)) with µ(j) = ± kj√

n

where i ∈ {1, . . . ,
√
n}, j ∈ {1, . . . , d}, kj ∈ {1, . . . ,M

√
n}
}
, (3.2)

so that the approximation term inf(λ,µ)∈Mn
‖fλ,µ − f?‖22 in Equation (2.3) can

be made lower than n−1, while keeping the size of log(|Mn|) reasonable and of
order d log(n). The next result, whose proof is given in Section 6.2, explicitly
gives a non-asymptotic consistency rate of the estimation of µ? in terms of the
sample size n, of the amount of contamination µ?, and of the probability λ? of
this contamination itself.

Theorem 3.1. Let (λ̂n, µ̂n) be the estimator defined in (2.2) with Mn given in
(3.2). If φ satisfies Assumptions (HS) and (HLip), a positive constant C1 exists
such that:

∀n ∈ N sup
(λ?,µ?)∈(0,1)×[−M,M ]d

Eλ?,µ?
[
(λ?‖µ?‖)2‖µ̂− µ?‖2

]
≤ C1 log2 n

n
.

In the 1-dimensional case, an immediate consequence of Theorem 3.1 is that for
a fixed couple (λ?, µ?):

Eλ?,µ?
[(

µ̂

µ?
− 1

)2
]
≤ C1 log2 n

n{λ?}2{µ?}4
.

In particular, since µ? is allowed to tend to 0 with n, the estimator µ̂ will be
consistent as soon as

√
nλ?{µ?}2 → +∞ as n→ +∞. In a detection context, a

two-component mixture distribution can be distinguished from that of a single
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component as soon as
√
nλ?|µ?| > C for some positive constant C (see, e.g.,

[6] or [18]). Naturally, detection is “easier” than estimation in the sense that
the first task requires weaker conditions on the parameters of interest than the
second. Since the contamination level µ? is assumed to be upper bounded, it is
worth observing that we implicitly require that λ? � 1/

√
n as n→ +∞.

Before checking the optimality of this result (see Section 4), we investigate
the estimation of the contamination proportion λ?. According to the previous
discussion, we will assume that λ?‖µ?‖2 is significantly larger than n−1/2 log2 n.
This ensures that the contamination level µ? is consistently estimated. For this
purpose, we introduce the set Θn(M, (`n)n, λ) indexed by a sequence (`n)n:

Θn(M, (`n)n, λ) :=

{
θ = (λ, µ) :

`n
‖µ‖2

√
n
≤ λ ≤ λ, ‖µ‖∞ ≤M

}
,

for some λ̄ ∈ (0, 1).

Theorem 3.2. If φ satisfies Assumptions (HS) and (HLip) and the sequence
(`n)n is such that limn→+∞

`n
logn = +∞, then a positive constant C2 exists such

that:

sup
(λ?,µ?)∈Θn(M,(`n)n,λ)

Eλ?,µ?
[
‖µ?‖4(λ̂− λ?)2

]
≤ C2 log2 n

n
.

The proof is given in Section 6.3. Once again, we can immediately deduce from
this bound that:

Eλ?,µ?

( λ̂

λ?
− 1

)2
 ≤ C2 log2 n

n{λ?}2‖µ?‖4
,

which only makes sense when
√
nλ?‖µ?‖2 → +∞ as n → +∞. We stress that

in the particular case of fixed λ? and µ? (w.r.t. n), these quantities can be
estimated at the classical parametric rate of 1/

√
n (up to a logarithmic term).

4. Lower bounds

We now derive some lower bounds on the estimation of λ? and µ? and show
that our previous results are minimax optimal with respect to the values of n,
λ? and µ? up to some log2 n terms.

4.1. Strong contamination model

For this purpose, we split our study into two cases and first consider the “stan-
dard” situation of a strong contamination, meaning that ‖µ?‖ is bounded from
below by a constant independent on n: it translates the fact that the contami-
nation is not negligible when n −→ +∞. Let m and c be two positive constants,
and:

Θn(m, c) :=

{
θ = (λ, µ) :

c

‖µ‖2
√
n
≤ λ, m ≤ ‖µ‖

}
.
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Note that this still allows a weak effect of contamination since λ? can be on the
order of n−1/2. In this case, we obtain the lower bounds that matches (up to a
log term) the upper bounds obtained in Theorems 3.1 and 3.2.

Theorem 4.1. Consider two positive constants m and c such that 0 < c
m2
√
n
<

1 so that Θn(m, c) is non empty. A density φ that satisfies (HS) and (HLip)
exists such that:

(i) a positive constant C1 exists such that:

inf
(λ̂,µ̂)

sup
(λ,µ)∈Θn(m,c)

E[λ2‖µ̂− µ‖2] ≥ C1

n
, (4.1)

(ii) a positive constant C2 exists such that:

inf
(λ̂,µ̂)

sup
(λ,µ)∈Θn(m,c)

E[(λ̂− λ)2] ≥ C2

n
, (4.2)

where the infimum is taken over all estimators θ̂ = (λ̂, µ̂) in (4.1) and (4.2).

Even though the proof relies on a Le Cam argument and leads to a n−1 rate, it
clearly deserves a careful study for at least two reasons: the loss is asymmetric
in (λ, µ) in i) and the balance between λ, µ and n is unclear. We give the proof
of this result in Appendix C.2.

4.2. Weak contamination model

We now study the situation when the contamination ‖µ‖ is not yet bounded
from below and can therefore tend to 0 as n −→ +∞. Let c > 0, and:

Θn(c) :=

{
θ = (λ, µ) :

c

‖µ‖2
√
n
≤ λ

}
.

Theorem 4.2. An integer N > 0 and a function φ that satisfies (HS) and
(HD) exists such that, for all n > N :

(i) a positive constant C1 exists such that:

inf
(λ̂,µ̂)

sup
(λ,µ)∈Θn(c)

E[‖µ‖4(λ− λ̂)2] ≥ C1

n
.

(ii) a positive constant C2 exists such that:

inf
(λ̂,µ̂)

sup
(λ,µ)∈Θn(c)

E[λ2‖µ‖2‖µ− µ̂‖2] ≥ C2

n
.

Finally, we should also remark that estimating µ when λ becomes negligible
comparing to n−1/2 appears to be impossible as pointed out in (ii) of Theorem
4.2.
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5. Discussion

5.1. Related works on distances inequalities and mixture models

In this paragraph, we provide some additional remarks on the links between
several metrics used to describe mixture models in the particular situation of our
two-component contamination model. As pointed out in [24] and [13], relating
distances between probability distributions on the observations, and Wasserstein
distances on the space of mixture measures is a popular subject of investigation.
Of course, it makes sense when we handle some strong-identifiable models as
remarked in the cited previous works. We will rely the rates for estimating
contamination mixtures to rates for general mixtures. The latter are usually
stated in terms of transportation distance between the mixing distributions G.
For a contamination mixture, it reads:

Gλ,µ = (1− λ)δ0 + λδµ, (5.1)

where δθ is the Dirac peak at θ. More generally, for a mixture f =
∑
i λiφθi

where the components are parametrized by θ ∈ Θ, the mixing distribution G is∑
i λiδθi .

The Wasserstein (Lp)-transportation distances between two probability mea-
sures m1 and m2 on Ω are defined by

W p
p (m1,m2) := inf

π∈Π(m1,m2)

∫
dp(x, y)dπ(x, y),

where Π(m1,m2) is the set of probability measures on Ω × Ω such that their
marginals are m1 and m2.
In [24], it is shown that the Total Variation distance denoted V (fλ,µ, fλ?,µ?) be-
tween the probability distributions dominates the Wasserstein distanceW1(Gλ,µ, Gλ?,µ?)
if the model is identifiable in the first order. The comparison is then deteriorated
when the model is identifiable in the second order since in that case the bound
obtained in [24] becomes V (fλ,µ, fλ?,µ?) & W 2

2 (Gλ,µ, Gλ?,µ?). Some other re-
lated bounds may be found in the recent contribution of [15].

Interestingly, some complementary results are obtained in [13] where it is shown
that the supremum norm between the probability distributions ‖.‖∞ dominates
the Wasserstein distance W 2m−1 where essentially 2m− 1 is the number of un-
known positions to be estimated in the mixture model (the m possible locations
and the m−1 dimensional weights distribution). Associated with the Dvoretzky-
Kiefer-Wolfowitz inequality, [13] then deduce some polynomial convergence rate
on the parameters.

A comparison between our results and those obtained in [13] cannot be easily
obtained. Indeed, in this latter contribution, the authors obtain bounds for
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generic mixture models, while in this current work, we deal with a specific
two-component contaminated model. Nevertheless, we provide below a short
discussion that shed some light on the links between our results and convergence
with Wasserstein distances.

5.2. Comparing W2 and ‖.‖2 in a two-component contamination
model

In this work, we have chosen to handle the L2 distance on probability distri-
butions, instead of V or ‖.‖∞, nevertheless a relationship between ‖.‖2 and Wp

should exist. The next result essentially states this dependency.

Theorem 5.1. For any density φ that satisfies (HS) and (HLip), a constant
cφ > 0 exists such that:

∀(λ, λ′) ∈ (0, 1)2 ∀(µ, µ′) ∈ [−M,M ]d ‖fλ,µ−fλ′,µ′‖2 ≥ cφW 2
2 (Gλ,µ, Gλ′,µ′),

where Gλ,µ = (1− λ)δ0 + λδµ.

Hence, f̂n := fλ̂n,µ̂n defined by (2.2) satisfies

Eλ?,µ?
[
W 4

2 (Gλ̂,µ̂, Gλ?,µ?)
]
. E‖fλ̂,µ̂ − fλ?,µ?‖

2
2 .

(log n)2

n
.

In other words, the L2 strategy investigated in this paper allows in fact to control
the Wasserstein distance between the estimated mixture distribution Gλ̂,µ̂ and
the target Gλ?,µ? .

5.3. A lower bound on W1 in the strong contamination model

The following theorem provide a lower bound on the minimax rate of conver-
gence in term of the Wasserstein distance W1.

Theorem 5.2. Consider two positive constants m and c such that 0 < c
m2
√
n
<

1 so that Θn(m, c) is non empty. There exists a density φ that satisfies (HS)
and (HLip) such that

inf
(λ̂,µ̂)

sup
(λ,µ)∈Θn(m,c)

E[W 2
1 (Gλ̂,µ̂, Gλ,µ)] ≥ C

n
,

where the infimum is taken over all estimators θ̂ = (λ̂, µ̂), and C denotes a
positive constant.

The proof of this result essentially relies on the fact that the terms involved in the
lower bound displayed in Theorem 4.1 are explicitly related to W1(Gλ̂,µ̂, Gλ,µ).
By the way, using Hölder inequality, it can be established that W1 ≤ W2. In
particular, this indicates that the results of Theorems 5.2 and 5.1 are coherent.
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6. Proofs of the upper bounds

6.1. Preliminary oracle inequality

We first establish a technical proposition that will be used to derive the proof
of Theorem 2.1. For a given grid MΛ,M, we first introduce the theoretical min-
imizer of the L2-norm on this grid:

(λ0, µ0) = arg min
(λ,µ)∈MΛ,M

‖fλ,µ − f?‖22. (6.1)

We then define En(λ, µ) the empirical process indexed by (λ, µ) ∈MΛ,M as:

En(λ, µ) =
2

n

n∑
i=1

{fλ,µ(Xi)− fλ0,µ0(Xi)− [〈fλ,µ − fλ0,µ0 , f
?〉]} .

For all (λ, µ) ∈MΛ,M, the term En(λ, µ) can be rewritten as:

En(λ, µ) =
1

n

n∑
i=1

(Yi − E[Yi]) where Yi := 2[fλ,µ(Xi)− fλ0,µ0(Xi)]. (6.2)

In particular, E[En(λ, µ)] = 0 and:

Var(Yi) ≤ E[Y 2
i ] = 4E[(fλ,µ(Xi)− fλ0,µ0(Xi))

2],

= 4

∫
R

[fλ,µ(x)− fλ0,µ0(x)]2f?(x)dx,

≤ 4‖φ‖∞‖fλ,µ − fλ0,µ0‖22,

since ‖f?‖∞ ≤ ‖φ‖∞. We will use a normalized version of this process below,
which naturally leads to the introduction of Gn(λ, µ):

∀(λ, µ) ∈MΛ,M \ {(λ0, µ0)} Gn(λ, µ) =
En(λ, µ)

‖fλ,µ − fλ0,µ0
‖2
.

Our estimator (λ̂, µ̂) defined in (2.2) satisfies the following useful property.

Lemma 6.1.

(i) For any (λ, µ) such that ‖fλ,µ − fλ0,µ0‖2 ≥ n−1/2:

∀s > 0 P (|Gn(λ, µ)| > s) ≤ exp

− ns2

8‖φ‖∞
[
1 + s

√
n

3

]
 . (6.3)

(ii) We can find C > 0 such that:

E
[
Gn(λ̂, µ̂)21Bc

]
≤ C log2(|MΛ,M|)

n
, (6.4)

where B is the event defined as B =
{
‖f̂ − fλ0,µ0‖2 ≤ 1√

n

}
.
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Proof. In this proof, C refers to a constant that is independent of n, whose value
may change from line to line.

Proof of (i): thanks to the Bennett inequality, we obtain for all s > 0:

P (|Gn(λ, µ)| > s)

≤ exp

(
− n2s2‖fλ,µ − fλ0,µ0‖22

8n‖φ‖∞‖fλ,µ − fλ0,µ0
‖22 + 8n‖φ‖∞s‖fλ,µ − fλ0,µ0

‖2/3

)
,

= exp

(
− ns2

8‖φ‖∞
[
1 + s‖fλ,µ − fλ0,µ0‖−1

2 /3
]) .

Using the fact that ‖fλ,µ − fλ0,µ0
‖2 ≥ n−1/2, we obtain:

P (|Gn(λ, µ)| > s) ≤ exp

− ns2

8‖φ‖∞
[
1 + s

√
n

3

]
 ,

which is the desired Inequality (6.3).
Proof of (ii): observe that for all t > 0,

E
[
G2
n(λ̂, µ̂)1Bc

]
≤ t2 + E

[
G2
n(λ̂, µ̂)1{|Gn(λ̂,µ̂)|>t}1Bc

]
,

≤ t2 + E

[
sup

(λ,µ):‖fλ,µ−fλ0,µ0
‖≥n−1/2

{
G2
n(λ, µ)1{|Gn(λ,µ)|>t}

}]
,

≤ t2 +
∑

(λ,µ):‖fλ,µ−fλ0,µ0
‖≥n−1/2

E
[
G2
n(λ, µ)1{|Gn(λ,µ)|>t}

]
.(6.5)

Integrating by parts, we can remark that:

E
[
G2
n(λ, µ)1{|Gn(λ,µ)|>t}

]
= t2 P(|Gn(λ, µ)| > t) +

∫ +∞

t2
P(|Gn(λ, µ)| >

√
x)dx.

Thus, if we choose t =
(

16‖φ‖∞ log(|MΛ,M|)
3 ∨ 3

)
n−1/2, then t

√
n/3 ≥ 1, so that

for any s ≥ t and for a fixed (λ, µ), (6.3) yields:

E
[
G2
n(λ, µ)1{|Gn(λ,µ)|>t}

]
≤ t2 exp (− log(|MΛ,M|)) +

∫ +∞

t2
exp

(
− 3
√
nx

16‖φ‖∞

)
dx

≤ C
log2(|MΛ,M|)

n
× 1

|MΛ,M|
+ 2

∫ +∞

t

u exp

(
− 3
√
nu

16‖φ‖∞

)
du,

for large enough C, where the last line comes from the size of t for the left-hand
side, and from the change of variable u =

√
x in the integral. The remaining

integral may be integrated by parts, which in turn leads to:

E
[
G2
n(λ, µ)1{|Gn(λ,µ)|>t}

]
≤ C log2(|MΛ,M|)

n
× 1

|MΛ,M|
.
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If we plug the above upper bound into (6.5), we then obtain that a sufficiently
large constant C exists such that:

E
[
G2
n(λ̂, µ̂)1Bc

]
≤ C log2(|MΛ,M|)

n
× |MΛ,M|
|MΛ,M|

| = C
log2(|MΛ,M|)

n
.

We are now interested in the proof of the oracle inequality.

Proof of Theorem 2.1. The best approximation term (λ0, µ0) over the gridMΛ,M

is defined in (6.1) and the event B =
{
‖f̂ − fλ0,µ0

‖2 ≤
√

1
n

}
is introduced in

Proposition 6.1. On the event B, the situation is easy using the Young inequality
2ab ≤ αa2 + α−1b2 so that for all α > 0,

E
[
‖f̂ − f?‖221B

]
≤ (1 + α)‖fλ0,µ0

− f?‖22 + (1 + α−1)E
[
‖f̂ − fλ0,µ0

‖221B
]
,

≤ (1 + α)‖fλ0,µ0
− f?‖22 +

1 + α−1

n
. (6.6)

We provide below a similar control on the event Bc. First, observe that according
to the definition of (λ̂, µ̂), for all (λ, µ) ∈MΛ,M, we have:

γn(λ̂, µ̂) + ‖f?‖22 ≤ γn(λ, µ) + ‖f?‖22,

⇔ ‖f̂ − f?‖22 ≤ ‖fλ,µ − f?‖22 + 2

[
1

n

n∑
i=1

f̂(Xi)− 〈f̂ , f?〉

]

−2

[
1

n

n∑
i=1

fλ,µ(Xi)− 〈fλ,µ, f?〉

]
.

This inequality being true for (λ, µ) = (λ0, µ0), we obtain:

‖f̂ − f?‖221Bc ≤ ‖fλ0,µ0
− f?‖22 + En(λ̂, µ̂)1Bc .

This implies that for all 0 < α < 1:

‖f̂ − f?‖221Bc ≤ ‖fλ0,µ0
− f?‖22 + ‖f̂ − fλ0,µ0

‖2
En(λ̂, µ̂)

‖f̂ − fλ0,µ0‖2
1Bc ,

⇒ ‖f̂ − f?‖221Bc ≤ ‖fλ0,µ0
− f?‖22 +

α

2
‖f̂ − fλ0,µ0

‖221Bc +
1

2α
G2
n(λ̂, µ̂)1Bc .

Using ‖u+ v‖2 ≤ 2‖u‖2 + 2‖v‖2, we then deduce that:

‖f̂ − f?‖221Bc ≤
(1 + α)

(1− α)
‖fλ0,µ0 − f?‖22 +

1

2α
G2
n(λ̂, µ̂)1Bc . (6.7)

We can conclude the proof taking (6.4) in (6.7), and (6.6) together.
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6.2. Proof of Theorem 3.1

We aim to apply the oracle inequality established in Theorem 2.1. First, we
need an upper bound on the approximation term given by ‖fλ0,µ0

− f?‖22 when
(λ0, µ0) belongs to our gridMn. We can observe that for all (λ, µ) ∈ (0, 1)×Rd,

‖fλ,µ − f?‖22 = ‖(1− λ)φ+ λφµ − (1− λ?)φ− λ?φµ?‖22
= ‖(λ? − λ){φ− φµ}+ λ?{φµ − φµ?}‖22 (6.8)

≤ 2(λ? − λ)2‖φ− φµ‖22 + 2{λ?}2‖φµ − φµ?‖22.

Using Proposition A.1, we can find two positive constants κ and κ such that:

∀(µ, µ̃) ∈ Rd × Rd κ‖µ− µ̃‖2 ≤ ‖φµ − φµ̃‖22 ≤ κ‖µ− µ̃‖2, (6.9)

which in turn implies that:

‖fλ,µ − f?‖22 ≤ 8‖φ‖22(λ? − λ)2 + 2κ {λ?}2‖µ− µ?‖2.

In particular, the definition of Mn given in (3.2) makes it possible to find a
constant C > 0 such that:

‖fλ0,µ0
− f?‖22 = inf

(λ,µ)∈Mn

‖fλ,µ − f?‖22 ≤
C

n
. (6.10)

At the same time, observe that (6.8) leads to:

‖f̂ − f?‖22 = (λ? − λ̂)2‖φ− φµ̂‖22 + {λ?}2‖φµ̂ − φµ?‖22
+2(λ? − λ̂)λ?〈φ− φµ̂, φµ̂ − φµ?〉.

Using Proposition B.2 with a = µ̂ and b = µ?− µ̂ and (6.9), a positive constant
c exists such that:

‖f̂ − f?‖22
≥ (λ? − λ̂)2‖φ− φµ̂‖22 + {λ?}2‖φµ̂ − φµ?‖22

−2
∣∣∣λ? − λ̂∣∣∣λ?‖φ− φµ̂‖2‖φµ̂ − φµ?‖2 (1− c‖φ− φµ?‖22)

≥ (λ? − λ̂)2‖φ− φµ̂‖22 + {λ?}2‖φµ̂ − φµ?‖22
−
[
(λ? − λ̂)2‖φ− φµ̂‖22 + {λ?}2‖φµ̂ − φµ?‖22

] (
1− c‖φ− φµ?‖22

)
≥ c(λ? − λ̂)2‖φ− φµ̂‖22‖φ− φµ?‖22 + c{λ?}2‖φµ̂ − φµ?‖22‖φ− φµ?‖22.

We then obtained the crucial inequality:

‖f̂ − f?‖22 ≥ cκ2(λ? − λ̂)2‖µ̂‖2‖µ?‖2 + cκ2{λ?}2‖µ?‖2‖µ̂− µ?‖2. (6.11)

We see here the central role of the refinement of the Cauchy-Schwarz inequality
(see Appendix B) to obtain a tractable bound that involves the parameters of
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the mixture themselves, from the bound on the L2-norm of f̂ − f?. We now use
the oracle inequality on ‖f̂ − f?‖22 to deduce that a constant C > 0 exists such
that:

E
[
(λ? − λ̂)2‖µ̂‖2‖µ?‖2 + {λ?}2‖µ?‖2‖µ̂− µ?‖2

]
≤ C log2 n

n
. (6.12)

In particular, we immediately deduce from (6.12) that:

E
[
{λ?}2‖µ?‖2‖µ̂− µ?‖2

]
≤ C log2 n

n
.

This result is uniform in (λ?, µ?), we obtain the proof of Theorem 3.1. �
Unfortunately, we cannot directly use a similar approach for the estimation of
λ?. Indeed, we have to first ensure that µ̂ is close to µ? with a large enough
probability.

6.3. Proof of Theorem 3.2

Let B and D be the events respectively defined as:

B =

{
‖f̂ − fλ0,µ0

‖2 ≤
√

1

n

}
(6.13)

and

D =

{
|Gn(λ̂, µ̂)| ≤ 16‖φ‖∞ log(n|Mn|)

3
√
n

}
. (6.14)

Below, the control of the quadratic risk of µ̂ will be investigated according to
the partition B,Bc ∩ D and Bc ∩ Dc.

Control of the risk on B Equation (6.6) together with (6.10) indicates that:

‖f̂ − f?‖22 1B ≤
C

n
.

Then, Equation (6.11) implies that:

‖µ̂− µ?‖2 1B ≤
C

n{λ?}2‖µ?‖2
≤ C‖µ?‖2

`2n
. (6.15)

Control of the risk on Bc ∩D On the set Bc ∩D, we apply Inequality (6.7),
which yields:

‖f̂ − f?‖22 1Bc∩D ≤ (1 + α)

(1− α)
‖fλ0,µ0

− f?‖22 +
1

2α
|Gn(λ̂, µ̂)|2 1Bc∩D

≤ C
log2(n|Mn|)

n
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for some positive constant C. Since the size of |MΛn,Mn | is a polynomial of n,
we can find a constant C such that Equation (6.11) leads to:

‖µ̂− µ?‖2 1Bc∩D ≤ C
log2 n

n{λ?}2‖µ?‖2
≤ C log2 n

`2n
‖µ?‖2. (6.16)

Since we assume that (λ?, µ?) ∈ Θn(M, (`n)n, λ) with `n/ log n −→ +∞ when
n −→ +∞, Equations (6.15) and (6.16) imply that for large enough n,

‖µ̂− µ?‖2 [1B + 1Bc∩D] ≤ ‖µ
?‖2

4
.

Remark that for any x and y: ‖x − y‖ ≤ ‖y‖
2 implies that ‖y‖ ≥ 2‖y‖ − 2‖x‖

(using the triangle inequality), which in turns yields ‖y‖ ≤ 2‖x‖. Applying this
simple remark to the former inequality leads to:

‖µ?‖2 [1B + 1Bc∩D] ≤ 4‖µ̂‖2 [1B + 1Bc∩D] . (6.17)

Control of the risk on Bc ∩ Dc Applying (6.3) we can check that:

P(Bc ∩ Dc) ≤ P(Dc) ≤ C

n

for some positive constant C.

Synthesis Using (6.17), a large enough N exists such that for n ≥ N :

E[(λ̂− λ?)2‖µ?‖4]

= E[(λ̂− λ?)2‖µ?‖4(1B + 1Bc∩D)] + E[(λ̂− λ?)2‖µ?‖41Bc∩Dc ],
≤ 4E[(λ̂− λ?)2‖µ?‖2‖µ̂‖2] + d2M4P(Dc),

≤ C log2(n)

n
,

for some constant C > 0, according to (6.12). This result being uniform in
(λ?, µ?), we obtain the proof of Theorem 3.2. �

7. Link between the ‖.‖2 norm and the Wasserstein distance(s)

Proof of Theorem 5.1. Below, we will establish that the following inequality
(stated in Theorem 5.1) holds:

W 4
2 (Gλ,µ, Gλ′,µ′) . ‖fλ,µ − fλ′,µ′‖22. (7.1)

Expression of W2: below, we make explicit the link between the L2−loss on
the densities fλ,µ and fλ′,µ′ and the Wasserstein distance between Gλ,µ = (1−
λ)δ0 + λδµ and Gλ′,µ′ = (1 − λ′)δ0 + λ′δµ′ , where δa refers to the Dirac mass
at point a. First, we provide an expression for the term W2(Gλ,µ, Gλ′,µ′). Since



Gadat et al./Another L2 look at two-component contamination mixture 19

the role played by (λ, µ) and (λ′, µ′) is symmetric, in the following, we assume
without loss of generality that λ ≤ λ′. First, the quantity W2(Gλ,µ, Gλ′,µ′) can
be rewritten as

W 2
2 (Gλ,µ, Gλ′,µ′) = inf

q∈Q

[
q12‖µ′‖2 + q21‖µ‖2 + q22‖µ− µ′‖2

]
,

where

Q =
{
q = (q11, q12, q21, q22) ∈ [0, 1]4 : q11 + q12 = 1− λ ; q21 + q22 = λ ; q11 + q21 = 1− λ′ ; q12 + q22 = λ′

}
.

After some computations, the set Q can be rewritten as

Q =
{
q ∈ [0, 1]4 : q12 = λ′ − q22 ; q21 = λ− q22 ; q11 = 1− λ− λ′ + q22

}
.

Hence,

W 2
2 (Gλ,µ, Gλ′,µ′) = inf

q22∈[(λ+λ′−1)∨0,λ]

[
(λ′ − q22)‖µ′‖2 + (λ− q22)‖µ‖2 + q22‖µ− µ′‖2

]
.

The last equation yields

W 2
2 (Gλ,µ, Gλ′,µ′) (7.2)

=


(λ′ − λ)‖µ′‖2 + λ‖µ− µ′‖2 if ‖µ‖2 + ‖µ′‖2 ≥ ‖µ− µ′‖2,

λ‖µ‖2 + λ′‖µ′‖2 if ‖µ‖2 + ‖µ′‖2 < ‖µ− µ′‖2 and λ+ λ′ ≤ 1,

(1− λ′)‖µ‖2 + (1− λ)‖µ′‖2 + (λ+ λ′ − 1)‖µ− µ′‖2 if ‖µ‖2 + ‖µ′‖2 < ‖µ− µ′‖2 and λ+ λ′ > 1.

Upper bound on W2: The previous expression for W2(Gλ,µ, Gλ′,µ′) allows to
prove that

W 2
2 (Gλ,µ, Gλ′,µ′) ≤ (λ′ − λ)‖µ′‖2 + λ‖µ− µ′‖2. (7.3)

Indeed, according to (7.2), this bound turns to be an equality when ‖µ‖2 +
‖µ′‖2 ≥ ‖µ− µ′‖2. When, ‖µ‖2 + ‖µ′‖2 < ‖µ− µ′‖2 and λ+ λ′ ≤ 1, we have

W 2
2 (Gλ,µ, Gλ′,µ′) = (λ′ − λ)‖µ′‖2 + λ‖µ− µ′‖2 + λ(‖µ′‖2 + ‖µ‖2 − ‖µ− µ′‖2)

≤ (λ′ − λ)‖µ′‖2 + λ‖µ− µ′‖2.

In the last case displayed in (7.2), namely when ‖µ‖2+‖µ′‖2 < ‖µ−µ′‖2 and λ+
λ′ > 1, we obtain

W 2
2 (Gλ,µ, Gλ′,µ′) = (1− λ′)‖µ‖2 + (1− λ)‖µ′‖2 + (λ+ λ′ − 1)‖µ− µ′‖2

= (λ′ − λ)‖µ′‖2 + λ‖µ− µ′‖2 + (1− λ′)
[
‖µ′‖2 + ‖µ‖2 − ‖µ− µ′‖2

]
.

≤ (λ′ − λ)‖µ′‖2 + λ‖µ− µ′‖2.

This entails (7.3). We get from this inequality, still assuming λ ≤ λ′

W 2
2 (Gλ,µ, Gλ?,µ?) ≤ (λ′ − λ)‖µ′‖2 + λ‖µ− µ′‖2

≤ (λ′ − λ)‖µ′‖2 + λ(‖µ‖+ ‖µ′‖)‖µ− µ′‖,
≤ (λ′ − λ)‖µ′‖2 + (λ‖µ‖+ λ′‖µ′‖)‖µ− µ′‖,
≤ (λ′ − λ)‖µ′‖‖µ‖+ (λ′ − λ)‖µ′‖‖µ− µ′‖+ (λ‖µ‖+ λ′‖µ′‖)‖µ− µ′‖,
≤ (λ′ − λ)‖µ′‖‖µ‖+ 2(λ‖µ‖+ λ′‖µ′‖)‖µ− µ′‖.
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From this latter inequality, we obtain

W 4
2 (Gλ,µ, Gλ′,µ′) ≤ 8

[
(λ′ − λ)2‖µ′‖2‖µ‖2 + (λ‖µ‖+ λ′‖µ′‖)2‖µ− µ′‖2

]
.

(7.4)
In the other hand, Inequality (6.11) indicates that

‖fλ,µ − fλ′,µ′‖22 ≥ cκ2(λ′ − λ)2‖µ‖2‖µ′‖2 + cκ2{λ′}2‖µ′‖2‖µ− µ′‖2.

Since the role played by (λ, µ) and (λ′, µ′) is symmetric, we obtain in fact

‖fλ,µ−fλ′,µ′‖22 ≥ cκ2(λ′−λ)2‖µ‖2‖µ′‖2+
cκ2

2

(
{λ′}2‖µ′‖2 + {λ}2‖µ‖2

)
‖µ−µ′‖2,

which together with (7.4) implies (7.1). Using this inequality with fλ̂,µ̂ and
fλ?,µ? , and according to Theorem 2.1, we conclude the proof of Theorem 5.1.

Proof of Theorem 5.2. The proof is a direct consequence of Theorem 4.1 and of
a lower bound on the Wasserstein distance W1 between two-components mixture
distributions. First, assuming without loss of generality that λ′ > λ and as the
computation of W2 in the proof of Theorem 5.1, we obtain that

W1(Gλ′,µ′ , Gλ,µ) = inf
q22∈[(λ+λ′−1)∨0,λ]

[(λ′ − q22)‖µ′‖+ (λ− q22)‖µ‖+ q22‖µ− µ′‖] .

The infimum being achieved at q22 = λ, we get that

W1(Gλ′,µ′ , Gλ,µ) = (λ′ − λ)‖µ′‖+ λ‖µ− µ′‖.

In particular, we have

E[W 2
1 (Gλ̂,µ̂, Gλ,µ)] ≥ E[λ2‖µ− µ̂‖2],

for any estimator (λ̂, µ̂). This inequality, together with item (i) of Theorem 4.1
leads to the desired result.

8. Simulation study

Distributions

In this section, we assess the performance of the L2-estimator given in (2.2)
on four particular cases (d = 1) of baseline density φ. We study the following
features:

• Standard Gaussian case with φ(x) = 1√
2π
e−

1
2x

2

.

• Non-smooth distribution with the Laplace density φ(x) = 1
2e
−|x|.

• Heavy tailed distribution with the Cauchy density: φ(x) = 1
π(1+x2) .

• Asymmetry with the skew Gaussian density: φ(x) = 2ψ(x)Ψ(αx), where
ψ and Ψ, respectively, denote the density and the cumulative function of
the standard Gaussian distribution and where α is the asymmetry param-
eter different from 0 (in the simulations, we fix α = 10). This example
of asymmetric distributions has been introduced in the recent work on
mixture models of [20].
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Our estimator requires the calculation of the contrast γn and, in particular, the
value of the L2 norm:

‖fλ,µ‖22 =
[
λ2 + (1− λ)2

]
‖φ‖22 + 2λ(1− λ)〈φ, φµ〉,

that involves the value of inner product 〈φ, φµ〉 for any value of the location
parameter µ ∈ [−M,M ]. In the first three examples of distributions, a closed
formula exists:

• Gaussian density: 〈φ, φµ〉 = (4π)−
1
2 exp

[
− 1

4µ
2
]

• Laplace density: 〈φ, φµ〉 = 1
4e
−|µ|(1 + |µ|)

• Cauchy density: 〈φ, φµ〉 = 2
π(4+µ2)

Unfortunately, such a formula is not available (to our knowledge) for the skew
Gaussian density: there is no analytical expression of 〈φ, φµ〉. Instead, we used
a Monte-Carlo procedure to evaluate this quantity for each value of µ in our
grid Mn given in (3.2). To obtain a sufficient approximation of these inner
products, we used a number of Monte-Carlo iterations TMC each time of the
order TMC ∝ n2 (where n will be the sample size used for our estimation
problem).

Statistical setting

We have worked in 1-D with a fixed value of λ? = 1
4 while µ? is allowed to vary

with n. Below, we used the following relationship between µ? and n:

µ? =

√
1

λ?nν
with ν =

α

24
, α ∈ {1, . . . , 24} .

For each value of the parameter µ?, we used 103 Monte-Carlo simulations to
obtain reliable results, while the grid size is determined by fixing the maximal
value of the unknown |µ?| as M = 10. Finally, we sampled a set of n = 5000
observations each time.
In Fig. 1, for each case of the mixture model, we represent the evolution of the
mean square error for the estimation of λ? and of µ? when ν varies between
1/24 and 1:

ν 7−→ MSE(λ) =
1

103

103∑
j=1

(λ̂j − λ?)2

and

ν 7−→ MSE(µ) =
1

103

103∑
j=1

(µ̂j − µ?)2.

As pointed out in Fig. 1, the estimation of λ? and µ? performs quite well as
soon as ν is lower than 1/2 but becomes completely inconsistent when ν > 1/2,
even if we use a sample size of 5000 observations.
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Fig 1. Mean square error of estimating λ? (left) and µ? (right) for the 24 values of ν in
descending order.

We also represent the violin plot of these estimations indicating the same be-
havior in each particular case (Gaussian and Laplace in Fig. 2; Cauchy and skew
Gaussian in Fig. 3).
Again, a similar conclusion holds: the estimators derived from (2.2) exhibit a
low bias and variance when ν is chosen small enough (lower than 1/2, which
corresponds to values greater than 12 in the horizontal axes of Figs. 2-3). In
contrast, the estimation is seriously damaged for values of ν greater than 1/2
(which corresponds to values lower than 11 in the horizontal axes of Figs. 2-3).
Finally, it should be noted that the shape of the density φ does not seem to have
a big influence on the estimation ability, even though the Cauchy distribution
settings may be seen as the most difficult problem (as represented by the green
MSE in Fig. 1).
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Fig 2. Evaluation of λ? (on the left) and µ? (on the right) for our estimators when Gaus-
sian mixtures (top) and Laplace mixtures (bottom) are considered, for the 24 values of ν in
descending order.

Appendix A: Technical results

A.1. Identifiability result

Proof of Proposition 2.1. We assume that two parameters θ1 = (λ1, µ1) and
θ2 = (λ2, µ2) exist such that fθ1 = fθ2 . In that case, consider the Fourier
transform of X whose density is fθ1 . This Fourier transform is given by

ϕX(ξ) = E[eiξ•X ] =
[
(1− λ1) + λ1e

iξ•µ1
]
φ̂(ξ),

where φ̂ is the Fourier transform of φ and i is the complex number such that
i2 = −1. Since fθ1 = fθ2 , we then deduce that:

∀ξ ∈ Rd
[
(1− λ1) + λ1e

iξ•µ1
]
φ̂(ξ) =

[
(1− λ2) + λ2e

iξ•µ2
]
φ̂(ξ).
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Fig 3. Evaluation of λ? (on the left) and µ? (on the right) for our estimators when Cauchy
mixtures (top) and skew Gaussian mixtures (bottom) are considered, for the 24 values of ν
in descending order.

Since φ ∈ L1(Rd), φ̂ is continuous and cannot be zero everywhere. Thus, we can

find an open set I ⊂ Rd such that φ̂(ξ) 6= 0 in I and the Lebesgue measure of I
is strictly positive. Hence,

∀ξ ∈ I (1− λ1) + λ1e
iξ•µ1 = (1− λ2) + λ2e

iξ•µ2 ,

and from the analytical property of the exponential map, we deduce that:

∀ξ ∈ I (1−λ1)+λ1[cos(ξ•µ1)+i sin(ξ•µ1)] = (1−λ2)+λ2[cos(ξ•µ2)+i sin(ξ•µ2)]

Identifying now the imaginary parts yields:

∀ξ ∈ I λ1 sin(ξ • µ1) = λ2 sin(ξ • µ2).
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If we write µ1 = (µ
(1)
1 , . . . , µ

(d)
1 ) and µ2 = (µ

(1)
2 , . . . , µ

(d)
2 ), we deduce that

∀ξ = (ξ1, . . . , ξd) : λ1

sin(ξ1µ
(1)
1 ) cos(

d∑
j=2

ξjµ
(j)
1 ) + cos(ξ1µ

(1)
1 ) sin(

d∑
j=2

ξjµ
(j)
1 )


= λ2

sin(ξ1µ
(1)
2 ) cos(

d∑
j=2

ξjµ
(j)
2 ) + cos(ξ1µ

(1)
2 ) sin(

d∑
j=2

ξjµ
(j)
2 )

 .
Considering now the function of the variable ξ1, it is classical that the fam-
ily of functions (ξ1 7→ sin(α1ξ1), ξ1 7→ sin(α2ξ1)) is linearly independent if

and only if |α1| 6= |α2|. We can deduce that, necessarily, µ
(1)
1 = ±µ(1)

2 and

therefore cos(ξ1µ
(1)
1 ) = cos(ξ1µ

(1)
2 ), which shows that λ1 sin(

∑d
j=2 ξjµ

(j)
1 ) =

λ2 sin(
∑d
j=2 ξjµ

(j)
2 ) for all ξ ∈ I. We then end the argument with an easy recur-

sion: we obtain that λ1 sin(ξdµ
(d)
1 ) = λ2 sin(ξdµ

(d)
2 ) so that µ

(d)
1 = ±µ(d)

2 . Since

λ1 and λ2 are positive, then µ
(d)
1 = µ

(d)
2 , which in turn implies that µ

(j)
1 = µ

(j)
2

for all the coordinates j ∈ {1, . . . , d}.

A.2. Connection between ‖φ− φµ‖2 and |µ|

Proposition A.1. Let any M > 0 be given and assume that φ satisfies (HS)
and (HLip), then two constants 0 < κ < κ < +∞ exist such that:

∀(µ, µ̃) ∈ [−M,M ]d×[−M,M ]d κ‖µ−µ̃‖2 ≤ ‖φµ−φµ̃‖22 ≤ κ‖µ−µ̃‖2. (A.1)

Proof. We prove the upper and lower bounds separately. According to the shift
invariance of the L2 norm, we only establish these inequalities when µ̃ = 0.
Using (HLip), the upper bound simply derives from:

‖φ− φµ‖22 =

∫
Rd

[φ(x)− φ(x− µ)]
2
dx ≤

∫
Rd
‖µ‖2g2(x)dx = ‖µ‖2‖g‖22,

which is the desired inequality if we choose κ = ‖g‖2. Concerning the lower
bound, we have:

‖φ(.)− φ(.− µ)‖22
‖µ‖2

=

∫
Rd

[
φ(x)− φ(x− µ)

‖µ‖

]2

dx.

We write µ = ‖µ‖e where e is a unit vector of the sphere. Inequality (3.1)
brought by Assumption (HLip) makes it possible to apply the Lebesgue conver-
gence theorem, which implies:

lim
‖µ‖−→0

‖φ(.)− φ(.− µ)‖2

‖µ‖2
=

∫
Rd

lim
‖µ‖→0

[
φ(x)− φ(x− µ)

‖µ‖

]2

dx,

= ‖∇φ • e‖2 = ‖de[φ]‖2 > 0.
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Indeed, φ being differentiable (φ ∈ C1(Rd)), φ(x)−φ(x−µ)
‖µ‖ −→ de[φ](x) almost

surely when ‖µ‖ −→ 0.

Now, φ is continuous and ψ : µ −→ ‖φ−φµ‖22
‖µ‖2 ∈ C0([−M,M ]d,R) from the

Lebesgue convergence theorem. This continuous map ψ attains its lower bound
on [−M,M ]d and the identifiability result of Proposition 2.1 implies that this
lower bound is positive. This leads to the existence of κ > 0 such that:

‖φ− φµ‖22 ≥ κ‖µ‖2.

A.3. Log-concave distributions

In this section, we establish that most of the log-concave real distributions satisfy
the assumptions (HS), (HLip) and (HD). For this purpose, we introduce the
associated class of probability measures:

LC :=
{
φ = e−U : U is convex, U ∈ C2(Rd) and ‖∇U‖+ ‖D2U‖ = o∞(U)

}
.

The set of possible densities is rich and contains Gaussian or Gamma distribu-
tions. However, the set LC does not capture the situation where U(x) = e|x| or

U(x) = ex
2

since U exhibits variations that are too great for large values of x.

Proposition A.2. Assume that µ varies in [−M,M ]d and that φ ∈ LC. Let
ε ∈ (0,M). If we set:

g(x) := g1(x) ∨ g2(x) ∨ g3(x)

with

g1(x) :=

√
supe∈S1

∫
[x−Me,x]

〈∇φ(u), e〉2du
ε

, g2(x) :=

√
supe∈S1

∫
[x,x+Me]

〈∇φ(u), e〉2du
ε

,

and
g3(x) := sup

u∈B(x,ε)

‖∇φ(u)‖.

Then, (HLip) and (HD) hold:

i) ∀µ ∈ [−M,M ]d ∀x ∈ Rd |φ(x)− φµ(x)| ≤ ‖µ‖ g(x).
ii) gφ−1/2 ∈ L2(Rd)
iii) D2φφ−1/2 ∈ L2(Rd)

Proof. We provide a proof in the case when φ ∈ C2. This proof can be extended
when φ ∈ C2

p according to some small modifications that are left to the reader,
it then makes possible to extend our results to the Laplace distributions for
example.
Proof of (i): Remark first that ∀µ ∈ [−M,M ]d, a unit vector e ∈ S1 exists such
that µ = ‖µ‖e and in that case

∀x ∈ Rd |φ(x)−φµ(x)| =

∣∣∣∣∣
∫

[x−µ,x]

〈∇φ(u), e〉du

∣∣∣∣∣ ≤√‖µ‖
√∫

[x−µ,x]

〈∇φ, e〉2,
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where [x − µ, x] refers to the segment that joins x − µ to x in Rd and the last
upper bound comes from the Cauchy-Schwarz inequality. Let ε ∈ (0,M). If
‖µ‖ ∈ [ε,M ], we obtain that:

|φ(x)− φµ(x)| ≤ ‖µ‖ (g1(x) ∨ g2(x)) ,

where g1 and g2 are defined in the statement of the Proposition. Finally, we
should remark that if ‖µ‖ ∈ [0, ε), then

|φ(x)− φµ(x)| ≤ ‖µ‖ sup
u∈B(x,ε)

‖∇φ(u)‖ := ‖µ‖g3(x).

It proves that g = g1 ∨ g2 ∨ g3 satisfies the desired inequality.
Proof of (ii): In order to prove that gφ−1/2 ∈ L2(Rd), we separately prove that

g2
1φ
−1, g2

2φ
−1 and g2

3φ
−1 belong to L1(Rd). We should remark that since g1, g2

and g3 are continuous functions, then we only have to check the integrability
when ‖x‖ −→ +∞. g1 and g2 are rather similar and we only handle the inte-
grability of g2

1φ
−1.

We write

g2
1(x)φ−1(x) = ε−1eU(x) sup

e∈S1

∫
[x−Me,x]

〈∇φ(u), e〉2du

= ε−1 sup
e∈S1

eU(x)

∫
[x−Me,x]

〈∇φ(u), e〉2du

= ε−1 sup
e∈S1

eU(x)

∫
[x−Me,x]

〈∇U(u), e〉2e−2U(u)du︸ ︷︷ ︸
:=Ge(x)

.

At this stage, we are driven to consider the 1-dimensional fonction Ue(t) =
U(x+ (t−M)e), which is a convex function. We then have

Ge(x) = eUe(M)

∫ M

0

U ′e(s)
2e−2Ue(s)ds.

We shall now produce a 1-dimension argument with the convex function Ue.
We assume that Ue(M) ≥ Ue(0), and know that U ′e is an increasing map and
positive:

Ge(x) ≤ U ′e(M)eUe(M)

∫ M

0

U ′e(s)e
−2Ue(s)ds

≤ 〈∇U(x), e〉eU(x) e
−2U(x−Me) − e−2U(x)

2

≤ 〈∇U(x), e〉
2

e−2U(x−Me)+U(x).

The mean value theorem leads to:

∃ξ ∈ [x−Me, x] U(x−Me) = U(x)−M〈∇U(ξ), e〉 ≥ U(x)−M〈∇U(x), e〉.
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Consequently, we obtain:

Ge(x) ≤ 〈U(x), e〉
2

e−U(x)+2M‖∇U(x)‖.

The density φ ∈ LC and we can find K large enough such that:

∀‖x‖ ≥ K ∀e ∈ S1 − U(x) + 2M‖∇U(x)‖ ≤ −(1− η)U(x)

For such an x, we have Ge(x) ≤ 〈∇U(x),e〉
2 e−(1−η)U(x) ∈ L1(Rd).

Concerning g2(x)φ(x)−1, we can produce an almost identical argument left to
the reader. We now consider g2

3,εφ
−1:

g2
3,ε(x)φ−1(x) = sup

u∈B(x,ε)

‖∇U(u)‖2e−2U(u)+U(x).

If u ∈ [x− ε, x], the mean value theorem leads to:

U(u) = U(x)− 〈(x− u),∇U(ξ)〉 with ξ ∈]u, x[

≥ U(x)− ε sup
B(x,ε)

‖∇U‖.

Using the fact that ‖D2U‖ + ‖∇U‖ = o∞(U), we can find a positive constant
C > 0, a parameter η ∈ (0, 1) and for K large enough such that ∀‖x‖ ≥ K:

‖U‖(u)2e−2U(u)+U(x) ≤ C‖U(x)‖e−(1−η)U(x). (A.2)

Thus, (A.2) imply that g2
3,εφ

−1 ∈ L1(Rd). As a maximum of three functions in

L1(Rd), we deduce that g2φ−1 ∈ L1(Rd).
Proof of (iii): A direct computation shows that, almost surely:

{djjφ}2φ−1 = [djjU − {djU}2]2e−U ≤ 2{djjU}2e−U + 2{djU}4e−U .

Again, using the fact that ‖D2U‖ + ‖∇U‖ = o∞(U), we can find a positive
constant C > 0, a parameter η ∈ (0, 1) and a large enough K such that ∀‖x‖ ≥
K:

{djjU}2(x)e−U(x) ≤ CdjjU(x)e−(1−η)U(x)

≤ Cdj(djU(x)e−(1−η)U(x)) + C(1− η){djU(x)}2e−(1−η)U(x)

≤ Cdj(djU(x)e−(1−η)U(x)) + C2(1− η)djU(x)e−(1−η)2U(x),

which is integrable when ‖x‖ −→ +∞. A similar argument leads to djU
4e−U ≤

CdjUe
−(1−η)U . We can repeat the same argument when ‖x‖ −→ −∞ with an

adaptation of the sign of djU(x). We can conclude that {djjφ}2φ−1 ∈ L1(Rd).
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Appendix B: Refinement of a Cauchy-Schwarz inequality

In this section, without loss of generality, we normalize the density φ to 1 over
Rd, meaning (with a slight abuse of notation) that:

∀µ ∈ Rd ‖φµ‖2 = 1.

In what follows, we assume that φ satisfies (HS) and (HLip). In particular, these
conditions imply the “asymptotic decorrelation” of the location model.

Proposition B.1. Assume that φ satisfies (HS), then:

lim
‖a‖−→+∞

〈φ, φa〉 = 0.

Proof. The continuity of φ implies that φ is bounded by a constant K on Rd
and that:

lim
‖x‖−→+∞

φ(x) = 0,

which in turns implies that:

lim
‖a‖−→+∞

〈φ, φa〉 = lim
‖a‖−→+∞

∫
φ(x− a)φ(x)dx = 0,

from the Lebesgue dominated convergence theorem.

B.1. Main inequality

We are interested in Proposition B.2, which can be viewed as a refinement of
the Cauchy-Schwarz inequality. Its proof relies on somewhat technical lemmas
that are given in Appendix B.2, and on the following ratio:

R(a, b) :=
|〈φ− φa, φa+b − φa〉|
‖φ− φa‖2 ‖φa+b − φa‖2

:=
|N(a, b)|
D(a, b)

. (B.1)

According to Lemma B.1, the function (a, b) 7→ R(a, b) defines a continuous
map as soon as a 6= 0 and b 6= 0.
As indicated above, Proposition B.2 is crucial for the proof of Theorems 3.1 and
3.2. At this stage, a standard Cauchy-Schwarz inequality would then conclude
that R(a, b) ≤ 1. Indeed, such an upper bound is not enough for our purpose
and we need to improve it when R becomes close to 1. To obtain such an
improvement, we will take advantage of the fact that each φa belongs to the
unit sphere (i.e. ‖φa‖2 = 1 for all a), of the identifiability of the model, and of
the asymptotic decorrelation when the location is arbitrarily large: 〈φ, φa〉 −→ 0
as ‖a‖ −→ +∞.
The main ingredients of the proofs will then use some continuity and differen-
tiability arguments associated with multivariate second- and third-order expan-
sions of the numerator N(a, b) and denominator D(a, b) involved in R(a, b). It
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Fig 4. Roadmap of the proof of Proposition B.2 with the associated partition of Rd × Rd.

appears that the next inequality will be shown to be “easy” as soon as a and
b are located outside the diagonal, meaning that a + b is quite different from
0 since in that case R will be shown to be lift away from 1. This behaviour is
described in Lemma B.4 (see also Figure 4).
The situation when a is close to −b is more involved and the joint behaviour
of φ − φa and φa − φa+b will be crucial. To quantify this link, we will need to
consider two cases: first when the diagonal a + b = 0 is itself near the origin
a = b = 0 (Lemma B.3), second when the diagonal is far enough from the origin
(Lemma B.2) (see Figure 4).

The main result is stated below and the demonstration follow the sketch of proof
described above.

Proposition B.2. If φ satisfies (HS) and (HLip), then a constant c > 0 exists
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such that ∀(a, b) ∈ Rd × Rd:

|〈φ− φa, φa+b − φa〉| ≤ ‖φ− φa‖2 ‖φa+b − φa‖2
(

1− c ‖φ− φa+b‖22
)
. (B.2)

Proof. The proof relies on a partition of Rd × Rd that is detailed in Figure 4.
Note that when a = 0 or b = 0, Inequality (B.2) is trivial. We then consider the
cases where a 6= 0 and b 6= 0.
Around the diagonal a+ b = 0, Lemmas B.2 (far from the origin) and B.3 (near
the origin) show that a couple (ε, cε) exists such that:

‖a+ b‖ ≤ ε =⇒ R(a, b) ≤ 1− cε‖φa+b − φ‖22.

Therefore, Inequality (B.2) is true near the diagonal when |a+ b| ≤ ε.
Now, outside the diagonal, Lemma B.4 shows that a constant for the value of
ε > 0 found above, a constant c̃ε exists such that:

‖a+ b‖ ≥ ε =⇒ R(a, b) ≤ 1− c̃ε.

Since ‖φa+b − φ‖22 ≤ 2, it also implies that:

‖a+ b‖ ≥ ε =⇒ R(a, b) ≤ 1− c̃ε
2
‖φa+b − φ‖22.

Then, Equation (B.2) holds outside the diagonal, it ends the proof.

B.2. Technical lemmas

B.2.1. Properties of the location model (φa)a∈Rd

In the following text, we will have to compute several Taylor’s expansions that
involve (φa)a∈Rd and its successive derivatives. The d-dimensional Euclidean
scalar product is denoted by:

∀(x, y) ∈ Rd × Rd x • y :=

d∑
i=1

xiyi.

This notation should be distinguished from the one of the scalar product among
L2 functions: 〈f, g〉 =

∫
f(x)g(x)dx. Finally, note that for any differentiable

functions, the derivative of any function f : Rd −→ R in any direction e ∈ S1 in
any position x ∈ Rd is

de[f ](x) := lim
s−→0

f(x+ se)− f(x)

s
.

Now, some standard arguments of geometry yield

de[f ](x) = ∇f(x) • e.
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We also introduce the successive derivation notation applied on a twice differ-
entiable function f :

∀(u, v) ∈ S1 × S1 ∀x ∈ Rd du,v[f ] := du[dv[f ]].

Note that if f is C2(Rd), the Schwarz equality holds du,v[f ] = dv,u[f ].

Proposition B.3. If the density φ satisfies (HLip) and (HS), then for any
unitary vectors (u, v) ∈ S1 × S1:

(i) 〈φ, u • ∇φ〉 = 〈φ, du[φ]〉 = 0.
(ii) 〈du[φ], du,v[φ]〉 = 0.

(iii) 〈du[φ], du,v,v[φ]〉 = −〈du,u[φ], dv,v[φ]〉
(iv) For any a ∈ (Rd)? and e ∈ S1, ∇φ • e and φ− φa are not proportional.

Proof. Item (i) If φ is C1, then the conclusion is immediate because

de

[
φ2

2

]
= φ e • ∇φ.

Since e is a unit vector, we can find an orthonormal basis (e1 = e, e2, . . . , ed) and
(i) then comes from direct integration over Rd of de[φ

2/2] because the Jacobian
of the change of basis has value 1.
Item (ii) proceeds from the same kind of argument by considering

dv

[
du[φ]2

2

]
= du[φ]du,v[φ],

and using a change of coordinate with v.
Item (iii): this identity is obtained using an integration by parts.
Item (iv): we assume that:

∃λ ∈ R ∀x ∈ Rd de[φ](x) = λ[φ(x)− φ(x− a)] (B.3)

If λ 6= 0, it implies that de[φ] is continuous everywhere (since φa and φ are
continuous). Considering x∗ ∈ arg maxφ, we use (B.3) to obtain:

∇φ(x∗) = 0 =⇒ de[φ](x∗) = 0 =⇒ φ(x∗) = φ(x∗ + a).

In particular, we cannot have lim‖x‖−→+∞ φ(x) = 0, and φ /∈ L2(Rd). We deduce
that, necessarily, de[φ] = 0 everywhere, meaning that

∀x ∈ Rd ∀s ∈ R φ(x+ se) = φ(x).

This last equality is impossible because the location model is identifiable.

B.2.2. Properties of the ratio R

Lemma B.1. The function R defined in (B.1) is a continuous function on
{Rd}? × {Rd}? and is bounded from above by 1. Moreover, we have:

R(a, b) = 1⇐⇒ a+ b = 0.
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Finally, we have

∀b ∈ {Rd}? ∀e ∈ S1 lim
s−→0

R(se, b) =
|〈de[φ], φb − φ〉|
‖de[φ]‖2‖φ− φb‖2

< 1,

and

∀(e, e′) ∈ S1 × S1 e 6= e′ =⇒ lim
(s,s′)−→0

R(se, s′e′) =
|〈de[φ], de′ [φ]〉|
‖de[φ]‖2‖d′e[φ]‖2

< 1.

Proof. The continuity of R when a 6= 0 and b 6= 0 is clear from the Lebesgue The-
orem because (HLip) implies that |φ(x− a)−φ(x)| ≤ ‖a‖g(x) with g ∈ L2(Rd).
We now consider the behaviour of R when a or b are close to 0.

• When b 6= 0 is fixed and a −→ 0, the assumption (HLip) implies that |φ(x−
a) − φ(x)| ≤ ‖a‖g(x) with g ∈ L2(Rd). We can apply the Lebesgue Theorem
and obtain, when a = se −→ 0,

N(se, b) =

∫
[φ(x)− φse(x)][φse+b(x)− φse(x)]dx

∼ s

∫
de[φ](x)[φb(x)− φ(x)]dx when a→ 0.

A similar computation shows that, when a = se→ 0,

D(se, b) ∼ s

√∫
de[φ]2(x)dx

√∫
[φ(x)− φb(x)]2dx.

Hence, R(se, b) has a limit when s −→ 0 and b 6= 0 is fixed. For the sake of
convenience, we keep the notation R(0, b) to refer to this limit and the Cauchy-
Schwarz inequality shows that:

Re(0, b) := lim
s−→0

R(se, b) =
|〈e • ∇φ, φb − φ〉|
‖e • ∇φ‖2‖φb − φ‖2

≤ 1.

For symmetry reasons in a and b, the same results hold for a 7−→ Re(a, 0).

• The situation may be dealt with similarly near (0, 0), the Lebesgue Theorem
yields:

|N(se, s′e′)|
D(se, s′e′)

=
(s,s′)−→(0,0)

|〈de[φ], de′ [φ]〉|
‖de[φ]‖2‖de′ [φ]‖2

.

If de[φ] and de′ [φ] were proportional, then λ exists such that de[φ] = λde′ [φ]
everywhere, meaning that for all x in Rd, the function s 7−→ φ(x+ s(e−λe′)) is
constant, which is impossible because considering the variation of φ on the line
x? + s(e− λe′) where x? = arg maxφ. Therefore, the limit is also strictly lower
than 1.

The next lemma concerns the behavior of R around the diagonal a+b = 0 when
a or b are not close to 0.
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Lemma B.2. For any η > 0, we can find ε > 0 such that:

∀‖a‖ ≥ η ∀‖h‖ ≤ ε R(a,−a+ h) ≤ 1− cη‖φh − φ‖22.

Proof. To establish the desired inequality, remark that:

R(a,−a+ h) ≤ 1− c‖φh − φ‖22
⇐⇒ N(a,−a+ h) ≤ D(a,−a+ h)− c‖φh − φ‖22D(a,−a+ h)

⇐⇒ D(a,−a+ h)−N(a,−a+ h) > c‖φh − φ‖22D(a,−a+ h). (B.4)

Point 1): Taylor expansion of N and D.
We use a Taylor expansion when h = o(1) and compute:

N(a, b) = N(a,−a+ h) = 〈φ− φa, φh − φa〉

= ‖φ− φa‖22 − 〈h • ∇φ, φ− φa〉+
1

2

t

h
〈D2φ, φ− φa〉

2
h+ o(‖h‖2).

where the o(‖h‖2) is uniform in a ∈ B(0, η)c. In the meantime, we have:

D(a, b) = D(a,−a+ h)

= ‖φ− φa‖2
√
‖φ− φa‖22 − 2〈h • ∇φ, φ− φa〉+ ‖h • ∇φ‖22 +t h〈D2φ, φ− φa〉h+ o(‖h‖2)

= ‖φ− φa‖22

√
1− 2〈h • φ, φ− φa〉

‖φ− φa‖22
+
‖h • ∇φ‖22 +t h〈D2φ, φ− φa〉h

‖φ− φa‖22
+ o(‖h‖2)

= ‖φ− φa‖22 − 〈h • ∇φ, φ− φa〉

+

(
‖h • ∇φ‖22

2
+

th〈D2φ, φ− φa〉h
2

− 〈h • ∇φ, φ− φa〉
2

2‖φ− φa‖22

)
+ o(‖h‖2),

where the o(‖h‖2) is uniform in a ∈ B(0, η)c. Consequently, we obtain:

D(a,−a+ h)−N(a,−a+ h)

=
1

2‖φ− φa‖22

[
‖h • ∇φ‖22‖φ− φa‖22 − 〈h • ∇φ, φ− φa〉2

]
+ o(‖h‖2).(B.5)

The main term of the right hand side is obviously non negative from the Cauchy-
Schwarz inequality. But it requires a deeper inspection to establish Inequality
(B.4). We introduce the following parametrization: h = ‖h‖e where e ∈ S1.
Equation (B.5) yields

D(a,−a+ h)−N(a,−a+ h) =
|h|2

2‖φ− φa‖22
ψ(e, a) + o(‖h‖2),

where the o(‖h‖2) is uniform in a ∈ B(0, η)c with ψ given by

ψ(e, a) = ‖e • ∇φ‖22‖φ− φa‖22 − 〈e • ∇φ, φ− φa〉2.
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We shall prove that
min
e∈S1

min
a∈B(0,η)c

ψ(e, a) > 0.

Point 2): ψ is uniformly lower bounded.

We remark first that ψ is continuous over S1×B(0, η)c and for any vector e ∈ S1

and any a ∈ B(0, η)c, we know that ψ(e, a) > 0 since we have seen in the proof
of Lemma B.1 that de[φ] and φ− φa cannot be proportional each other.
We study the behaviour of ψ when ‖a‖ −→ +∞ uniformly in e ∈ S1. A straight-
forward application of Proposition B.1 shows that

‖φ− φa‖22 = 2− 2〈φ, φa〉 −→ 2 as ‖a‖ −→ +∞.

Hence, a large enough A exists such that ‖a‖ ≥ A =⇒ ‖φ− φa‖22 ≥ 3/2. In the
meantime, we have

[〈e•∇φ, φ−φa〉]2 = [ 〈e • ∇φ, φ〉︸ ︷︷ ︸
:=0 from Proposition B.3

−〈e•∇φa〉]2 = 〈e•∇φ, φa〉2 ≤ ‖e•∇φ‖22.

Therefore, we deduce that

‖a‖ ≥ A =⇒ ∀e ∈ S1 ψ(e, a) ≥ ‖e • ∇φ‖
2
2

2
. (B.6)

Now, e ∈ S1 7−→ ‖e • ∇φ‖22 is a continuous map that does not vanish on S1,
otherwise φ would be constant on each line parallel to a direction of S1, and in
particular would be constant on a line passing through x?. The compactness of
S1 implies that

m := inf
e∈S1
‖e • ∇φ‖22 > 0.

This last bound used in Equation (B.6) yields ‖a‖ ≥ A ⇒ infe∈S1 ψ(e, a) ≥ m
2 .

Consequently, ψ is uniformly lower bounded by m̃η > 0 over S1 ×B(0, η)c.
Point 3): Final inequality We can gather the conclusions of Point 1) and Point
2) and obtain that for any η > 0, a small enough ε exists such that

∀a ∈ B(0, η)c ∀‖h‖ ≤ ε D(a,−a+ h)−N(a,−a+ h) ≥ ‖h‖2

4‖φ− φa‖22
m̃η.

Since ‖φ− φa‖22 and D are upper bounded by 2, we deduce that:

∀(a, h) ∈ B(0, η)c ×B(0, ε) (D −N)(a,−a+ h) ≥ mη

16
D(a,−a+ h)‖h‖2.

This inequality associated with

‖φh − φ‖22 = ‖h • ∇φ‖22 + o(‖h‖2) ≤ ‖h‖2 sup
e∈S1

‖e • ∇φ‖22 + o(‖h‖2)

leads to the desired inequality (B.4) with c =
m̃η

32 supe∈S1 ‖e•∇φ‖22
.
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The next lemma concerns the behavior of R around the origin (0, 0).

Lemma B.3. Two constants (η, cη) ∈ R2
+ exist such that:

‖a‖ ∨ ‖b‖ ≤ η =⇒ R(a, b) ≤ 1− cη‖φa+b − φ‖22

Proof. To study R around the origin, we write a = re and b = r̃e with (e, ẽ) ∈
S1 × S1 and remark that a third order Taylor expansion yields (below we skip
the dependency in φ for the sake of convience and just write de instead of de[φ]):

φa − φa+b = r̃dẽ − rr̃deẽ −
r̃2

2
dẽẽ +

rr̃2

2
deẽẽ +

r̃r2

2
dẽee +

r̃3

6
dẽẽẽ + o((r ∨ r̃)3),

while

φ− φa = rde −
r2

2
dee +

r3

6
deee + o(r3).

We can use these third order expansions in N(a, b):

N(a, b) = rr̃〈de, dẽ〉 −
rr̃2

2
〈de, dẽẽ〉 −

r̃r2

2
〈dee, dẽ〉+

r2r̃2

2
〈dee, dẽ〉+

r2r̃2

2
〈de, deẽẽ〉

+
r̃r3

2
〈de, dẽee〉+

rr̃3

6
〈de, dẽẽẽ〉+

r̃r3

2
〈dee, dẽẽ〉+

r2r̃2

4
〈dee, dẽẽ〉+

r̃r3

6
〈dẽ, deee〉

+ o((r ∨ r̃)3)

Now, using Proposition B.3 iii), we obtain that

N(a, b) = rr̃

[
〈de, dẽ〉 −

r̃

2
〈de, dẽẽ〉 −

r

2
〈dẽ, dee〉+

rr̃

4
〈de, deẽẽ〉+

r̃2

6
〈de, dẽẽẽ〉+

r2

6
〈dẽ, deee〉

]
+ o((r ∨ r̃)3).

Similar computations on D(a, b) with a = re and b = r̃ẽ yield:

D(a, b) = rr̃

[
‖de‖2‖dẽ‖2 −

1

24

(
r̃2‖dẽẽ‖22

‖de‖2
‖dẽ‖2

+ r2‖dee‖22
‖dẽ‖2
‖de‖2

)]
+o((r∨r̃)3)

We then consider the two possible situations: either e = ẽ or e 6= ẽ.
Case e = ẽ: in that situation, the expression of N is simpler because of Propo-
sition B.3 ii) and we have

N(a, b) = rr̃

[
‖de‖22 −

rr̃

4
‖dee‖22 −

r2 + r̃2

6
‖dee‖22

]
+ o((r ∨ r̃)3)

In that case, we then obtain

D(a, b)− |N(a, b)| ≥ rr̃‖dee‖22
[
−r

2 + r̃2

24
+
r2 + r̃2

6
+
rr̃

4

]
+ o(r2 + r̃2)

=
3‖dee‖22

24
rr̃(r + r̃)2o((r ∨ r̃)3).
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Using the argument in Equation (B.4) again, we can check that:

c‖φa+b − φ‖22D(a, b) ∼ c ‖de‖22(r + r̃)2︸ ︷︷ ︸
‖φa+b−φ‖22

× rr̃‖de‖22︸ ︷︷ ︸
D(a,b)

= crr̃(r + r̃)2‖de‖42,

which means that if c < mine∈S1
3‖dee[φ]‖22
24‖de[φ]‖42

, then (B.4) holds for small enough

r and r̃. This is possible since for any vector e in S1, dee[φ] does not vanish
(otherwise φ would not be a density) and is a continuous function of e on a
compact space.
Case e 6= ẽ: The situation is less intricate in that situation because the first order
terms are not of the same size

D(a, b)−N(a, b) = rr̃ [‖de‖2‖dẽ‖2 − 〈de, dẽ〉] + o(r ∨ r̃).

Applying the Cauchy-Schwarz inequality, we check that ‖de‖2‖dẽ‖2−〈de, dẽ〉 > 0
since de and dẽ are not proportional.

The remaining lemma studies the behavior of R outside the diagonal.

Lemma B.4. For any ε > 0, a constant cε exists such that:

‖a+ b‖ ≥ ε =⇒ R(a, b) ≤ 1− cε.

Proof. Consider the function ϕ : h 7−→ |〈φ, φh〉| = 〈φ, φh〉, the last equality
resulting from the positivity of φ and φh. The dominated convergence theorem
shows that ϕ is continuous and the Cauchy-Schwarz inequality implies that ϕ is
a bounded function whose values belong to [0, 1]. From the identifiability result
of Proposition 2.1, we then have:

ϕ(h) = 1⇐⇒ h = 0.

Finally, Proposition B.1 implies that lim‖h‖7−→+∞ ϕ(h) = 0. Taken together,
these elements show that for any ε > 0, ϕ attains its upper bound on B(0, ε)c.
It yields:

∀ε > 0 ∃ηε > 0 sup
‖h‖≥ε

ϕ(h) ≤ 1− ηε. (B.7)

• We first consider the case where ‖a‖ ∧ ‖b‖ −→ +∞ with ε ≤ ‖a+ b‖. In that
case, if we denote h = a + b and use lim‖a‖−→+∞〈φ, φa〉 = 0, then we can find
Mε large enough such that:

‖a‖ ∧ ‖b‖ ≥Mε =⇒
|N(a,b)|
D(a,b) = |1+〈φ,φh〉−〈φ,φa〉−〈φ,φb〉|

‖φ−φa‖2‖φ−φb‖2 ≤ 1+supε≤|h| ϕ(h)

2 × 1− ηε3
1− ηε2

≤ 1− ηε
3 ,

where ηε is defined in (B.7).

• We now consider the case where ‖a‖ −→ +∞ although |b| remains bounded
by Mε, so that b ∈ B(0,Mε) \ {0}. In that case, we compute:

N(a, b) =
∣∣〈φ, φa+b〉 − 〈φ, φa〉 − 〈φ, φb〉+ ‖φa‖22

∣∣ −→ 1−〈φ, φb〉 if ‖a‖ −→ +∞.
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At the same time, we also consider D and check that:

D(a, b) = ‖φ− φa‖2‖φa+b − φa‖2 −→ 2
√

1− 〈φ, φb〉 when ‖a‖ −→ +∞.

We then obtain:

lim
‖a‖−→+∞

R(a, b) =

√
1− 〈φ, φb〉

2
≤ 1

2
.

Hence, we can find a constant Aε sufficiently large such that:

∀‖a‖ ≥ Aε ∀b ∈ B(0,Mε) R(a, b) ≤ 3

4
.

• If a and b now belong to the compact set:

Eε :=
{

(a, b) ∈ R2 : ‖a‖ ≤ Aε, ‖b‖ ≤Mε, ‖a+ b‖ ≥ ε
}
,

we know that R is a continuous function on Eε,A,M and attains its upper bound,
which is strictly lower than 1 by the Cauchy-Schwarz inequality. Consequently,

∃η̃ε > 0 ∀(a, b) ∈ Eε R(a, b) ≤ 1− η̃ε.

Taking all the bounds obtained outside of the diagonal together, we obtain the
lemma with cε = (η̃ε ∧ ηε/3 ∧ 1/4).

Appendix C: Proofs of the lower bounds

Before stating intermediary technical results, we introduce a sub-class of densi-
ties φ that satisfy Assumption (HD) introduced below.

Assumption (HD) The density φ satisfies:

Iφ := sup
1≤j≤d

∫
{dj,jφ(x)}2φ−1(x)dx < +∞,

where dj,j refers to the second derivative of φ with respect to the variable j. Note
that Assumption (HD) is needed for our lower bound results (see Section 4) but
is not necessary to obtain good estimation properties. However, this assumption
is very mild and is again satisfied for many probability distributions as pointed
out in Remark 3.1. Moreover, from the minimax paradigm, it is enough to obtain
our lower bound results with a restricted subset of densities φ.

C.1. Asymmetric risk

We begin by a useful lemma, which is a generalization of the Le Cam method
for proving lower bounds if the loss involved in the statistical model is not
symmetric, meaning that ρ(θ1, θ2) is generally not equal to ρ(θ2, θ1), but still
satisfies a weak triangle inequality. Hence, the Le Cam Lemma requires a small
modification in the spirit of the remark of [28] (Example 2, Section 3).
In the sequel, dTV(P,Q) and KL(P,Q) denote the total variation distance and
the Kullback-Leibler divergence between two measures, P and Q, respectively.
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Lemma C.1. Let (Pθ)θ∈Θ be a family of measures indexed by Θ and assume
that ρ : (θ1, θ2) ∈ Θ2 7→ ρ(θ1, θ2) ∈ R+ satisfies the weak triangle inequality:

∀(θ1, θ2, θ3) ∈ Θ3, ρ(θ1, θ3) + ρ(θ2, θ3) ≥ ρ(θ1, θ2) ∧ ρ(θ2, θ1). (C.1)

Let Φ : R+ → R+ be a non-decreasing function. Let δ > 0 and (θ1, θ2) ∈ Θ2

such that ρ(θ1, θ2) ∧ ρ(θ2, θ1) ≥ 2δ. Then,

inf
θ̂

sup
θ∈Θ

E
[
Φ(ρ(θ, θ̂))

]
≥ Φ(δ)

2

{
1− dTV(P⊗

n

θ1
,P⊗

n

θ2
)
}
,

≥ Φ(δ)

2

{
1−

√
n

2
KL(Pθ1 ,Pθ2)

}
,

where the infimum is taken over all estimators θ̂.

Proof. First, we observe that:

E[Φ(ρ(θ, θ̂))] ≥ Φ(δ)P(ρ(θ, θ̂) ≥ δ),

since Φ is a non-decreasing function. Let V = {1, 2} and Ψ(θ̂) = argmin
v∈V

ρ(θv, θ̂).

We can show that ρ(θv, θ̂) < δ implies that Ψ(θ̂) = v. According to Condition
(C.1), we have:

ρ(θv, θ̂) ≥ ρ(θv, θv′) ∧ ρ(θv′ , θv)− ρ(θv′ , θ̂) > 2δ − ρ(θv′ , θ̂).

Now, if ρ(θv, θ̂) < δ, then δ > 2δ − ρ(θv′ , θ̂), so that ρ(θv′ , θ̂) > δ, which is

necessarily larger than ρ(θv, θ̂). Hence, we obtain Ψ(θ̂) = v.

Equivalently, for v ∈ {1, 2}, we have Ψ(θ̂) 6= v =⇒ ρ(θv, θ̂) > ρ(θv′ , θ̂) since:

2δ ≤ ρ(θv, θv′) ∧ ρ(θv′ , θv) ≤ ρ(θv, θ̂) + ρ(θv′ , θ̂) ≤ 2ρ(θv, θ̂).

The rest of the proof proceeds from the standard Le Cam argument: Φ is non
decreasing so that:

sup
θ∈Θ

E[Φ(ρ(θ, θ̂))] ≥ Φ(δ) sup
θ∈Θ

P(ρ(θ, θ̂) ≥ δ)

≥ Φ(δ)

2
{P(ρ(θ1, θ̂) ≥ δ) + P(ρ(θ2, θ̂) ≥ δ)}

≥ Φ(δ)

2
{P⊗

n

θ1
(Ψ(θ̂) 6= 1) + P⊗

n

θ2
(Ψ(θ̂) 6= 2)}.

Taking an infimum over all tests Ψ (see, e.g., [19]) we obtain:

inf
θ̂

sup
θ∈Θ

E[Φ(ρ(θ, θ̂))] ≥ Φ(δ)

2
inf
Ψ
{P⊗

n

θ1
(Ψ 6= 1) + P⊗

n

θ2
(Ψ 6= 2)}

≥ Φ(δ)

2

{
1− dTV(P⊗

n

θ1
,P⊗

n

θ2
)
}
.

Pinsker’s inequality:

dTV(P⊗
n

θ1
,P⊗

n

θ2
) ≤

√
1

2
KL(P⊗nθ1 ,P

⊗n
θ2

) =

√
n

2
KL(Pθ1 ,Pθ2)

ends the proof.
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C.2. Lower bound for the strong contamination model

We now study the lower bounds in the first regime, namely when ‖µ‖ is lower
bounded by a constant m that is independent of n.

Proof of Theorem 4.1

Item (i) We apply Lemma C.1 with Φ(t) = t2 and the loss function ρ defined
as:

∀(θ1, θ2) ∈ Θn(m, c)2 ρ(θ1, θ2) = λ1‖µ1 − µ2‖.

Remark that ρ satisfies the weak triangle inequality (C.1). Indeed, for all (θ1, θ2, θ3) ∈
Θn(m, c)3, we have:

ρ(θ1, θ3) + ρ(θ2, θ3) = λ1‖µ1 − µ3‖+ λ2‖µ2 − µ3‖
≥ min(λ1, λ2)‖µ1 − µ2‖
≥ ρ(θ1, θ2) ∧ ρ(θ2, θ1).

We introduce the subset

Θn(m,M, c, λ) :=

{
θ = (λ, µ) :

c

‖µ‖2
√
n
≤ λ ≤ λ̄, m ≤ ‖µ‖ ≤M

}
where 0 < m < M and 0 < c

m2
√
n
< λ̄ < 1. Then, Θn(m,M, c, λ) ⊂ Θn(m, c).

We consider θ1 = (λ, µ1) and θ2 = (λ, µ2); their values will be chosen later to
ensure that (θ1, θ2) ∈ Θn(m,M, c, λ)2. According to Lemma C.1 applied with

δ = λ‖µ1−µ2‖
2 , we can write:

inf
θ̂

sup
θ∈Θn(m,c)

E[λ2‖µ̂− µ‖2] ≥ inf
θ̂

sup
θ∈Θn(m,M,c,λ)

E[λ2‖µ̂− µ‖2]

≥ δ2

2

{
1−

√
n

2
KL(Pθ1 ,Pθ2)

}
. (C.2)

We can compute the Kullback-Leibler divergence between the two mixtures Pθ1
and Pθ2 : if f1 = (1− λ)φ+ λφµ1 (resp. f2 = (1− λ)φ+ λφµ2) is the density of
Pθ1 (resp. Pθ2) w.r.t. the Lebesgue measure, we have:

KL(Pθ1 ,Pθ2) =

∫
log

[
f1(x)

f2(x)

]
f1(x)dx

=

∫
log

[
1 +

f1(x)− f2(x)

f2(x)

]
f1(x)dx

≤
∫
f1(x)− f2(x)

f2(x)
f1(x)dx,
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where we used the inequality log(1 + t) ≤ t. If we once again write f1 = f2 +
f1 − f2, we obtain:

KL(Pθ1 ,Pθ2) ≤
∫
f1(x)− f2(x)

f2(x)
[f2(x) + f1(x)− f2(x)] dx

=

∫
[f1(x)− f2(x)]2

f2(x)
dx

≤ λ2

∫
[φµ1

(x)− φµ2
(x)]2

(1− λ)φ(x) + λφµ2(x)
dx

since f2(x) ≥ (1− λ)φ(x) and f1(x)− f2(x) = λ[φµ1
(x)− φµ2

(x)]. On the basis
of Assumption (HLip), we know that |φµ1

− φµ2
| ≤ ‖µ1 − µ2‖g and we obtain:

KL(Pθ1 ,Pθ2) ≤ λ2‖µ1 − µ2‖2J
1− λ̄

, (C.3)

where J := ‖gφ−1/2‖22 is the constant involved in (HLip).

We now choose λ, µ1 and µ2 so that we obtain the largest possible value in (C.2),
while satisfying the constraints given in Θn(m,M, c, λ). Without loss of gener-

ality, we set µ
(1)
1 < µ

(1)
2 and we need to find a choice of these parameters such

that m ≤ µ
(1)
1 < µ

(1)
2 ≤ M and c

(µ
(1)
1 )2

√
n
≤ λ ≤ λ̄. We set µ1 = (µ

(1)
1 , 0, . . . , 0)

and µ2 = (µ
(1)
2 , 0, . . . , 0) so that

µ
(1)
1 = m and λ =

c

m2
√
n
< λ̄.

For a given ε > 0, we choose µ
(1)
2 such that n

2 KL(Pθ1 ,Pθ2) ≤ 1− ε. Using (C.3),
we arrive at the calibration:

µ
(1)
2 − µ

(1)
1 =

√
2(1− λ̄)(1− ε)

λ2J n
.

It remains to check that µ
(1)
2 ≤M . From our choice of λ and µ

(1)
1 , we see that:

µ
(1)
2 = m

1 +

√
2(1− λ̄)m2

c2J
(1− ε)

 ≤ m[1 +

√
2m2(1− ε)

c2J

]
,

which can be made smaller than M if 1 − ε ≤ c2J (M−m)2

2m4 . If we plug these
choices of λ, µ1 and µ2 into (C.2), we obtain:

inf
θ̂

sup
θ∈Θn(m,M,c,λ)

E[λ2‖µ̂− µ‖2] ≥ (1− λ̄)(1− ε)ε
8J n

,

which is the desired lower bound of the minimax risk (4.1).
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Item (ii) We keep the same Φ and define ρ(θ1, θ2) = |λ1−λ2| = ρ(θ2, θ1). We
consider θ1 = (λ1, µ) and θ2 = (λ2, µ) such that |λ1 − λ2| = ε√

n
and

c

m2
√
n

= λ1 < λ2 ≤ λ̄,

µ and ε have to be chosen hereafter. Since λ2 = λ1 + ε√
n
≤ λ̄, we must choose

ε such that:
ε ≤ λ̄

√
n− c

m2
, (C.4)

which is possible since we assumed that c
m2
√
n
< λ̄. From Lemma C.1,

inf
θ̂

sup
θ∈Θn(m,c)

E[(λ− λ̂)2] ≥ inf
θ̂

sup
θ∈Θn(m,M,c,λ)

E[(λ− λ̂)2]

≥ ε2

2n

{
1−

√
n

2
KL(Pθ1 ,Pθ2)

}
.

We can upper bound the Kullback-Leibler divergence as:

KL(Pθ1 ,Pθ2) ≤
∫

[f1(x)− f2(x)]
2
f2(x)−1dx

≤ (λ1 − λ2)2

∫
[φµ(x)− φ(x)]

2
f2(x)−1dx

≤ (λ1 − λ2)2‖µ‖2

1− λ̄

∫
g(x)2φ(x)−1dx

≤ ‖µ‖2ε2J
(1− λ̄)n

.

By choosing µ = (µ(1), 0, . . . , 0) with

µ(1) =
m+M

2
and ε ≤

√
2(1− λ̄)

J (m+M)2
, (C.5)

we obtain n
2 KL(Pθ1 ,Pθ2) ≤ 1

4 . Considering the minimal admissible value of ε in
(C.4) and (C.5) now leads to a choice of the parameters θ1 and θ2 such that:

inf
θ̂

sup
θ∈Θn(m,c)

E[(λ− λ̂)2] ≥ ε2

4n
.

This last inequality is the second lower bound (4.2). �

C.3. Lower bound for the weak contamination model

Proof of Theorem 4.2
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Point (i) We consider Φ(t) = t2 and the loss function ρ defined as:

ρ(θ1, θ2) = ‖µ1‖2|λ1 − λ2|.

Note that ρ satisfies (C.1) since ∀(θ1, θ2, θ3) ∈ Θn(c)3,

ρ(θ1, θ3) + ρ(θ2, θ3) = ‖µ1‖2|λ1 − λ3|+ ‖µ2‖2|λ2 − λ3|
≥ min(‖µ1‖2, ‖µ2‖2)|λ1 − λ2|
≥ ρ(θ1, θ2) ∧ ρ(θ2, θ1).

To obtain a convenient lower bound, we need to use Lemma C.1 and find a
couple of parameters (θ1, θ2) that belongs to the admissible set and such that
KL(Pθ1 ,Pθ2) is small enough. In particular, the proximity between Pθ1 and
Pθ2 will be obtained by a careful matching of the first moments of the two
distributions, which is a good method for obtaining efficient lower bounds in
mixture models (see, e.g., [2] or [13]). We give an example of this method below.
First, remark that:

KL(Pθ1 ,Pθ2) =

∫
log

[
f1(x)

f2(x)

]
f1(x)dx.

Since φ satisfies (HS), then φ is a C3 function on Rd, considering a shift µ =
(µ(1), 0, . . . , 0) = o(1), we can write a third order Taylor expansion:

∀x ∈ Rd φµ(x) = φ(x)− µ(1)d1φ(x) +
{µ(1)}2d11φ(x)

2
− {µ

(1)}3

6
d111φ(ξx,µ),

where ξx,µ belongs to the interval defined by x and x − µ and d1φ (resp. d11φ
and d111φ) denotes the first (resp. second and third) partial derivative of φ w.r.t.
the first coordinate of x. In particular, assuming that d111φ is bounded on Rd
leads to:

∀x ∈ Rd φµ(x) = φ(x)− µ(1)d1φ(x) +
{µ(1)}2

2
d11φ(x) + o(‖µ‖2).

This Taylor expansion permits us to write, for small values of µ
(1)
1 :

log[f1(x)] = log[(1− λ1)φ(x) + λ1φµ1(x)]

= log

[
(1− λ1)φ(x) + λ1φ(x)− λ1µ

(1)
1 d1φ(x) +

1

2
λ1{µ(1)

1 }
2d11φ(x) + o(‖µ1‖2)

]
= log [φ(x)] + log

[
1− λ1µ

(1)
1

d1φ(x)

φ(x)
+

1

2
λ1{µ(1)

1 }
2 d11φ(x)

φ(x)
+ o(‖µ1‖2)

]
= log [φ(x)]− λ1µ

(1)
1

d1φ(x)

φ(x)
+

1

2
λ1{µ(1)

1 }
2 d11φ(x)

φ(x)

−1

2
λ2
1{µ

(1)
1 }

2

(
d1φ(x)

φ(x)

)2

+ o(‖µ1‖2).
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In the same way, for small values of µ2:

log[f2(x)] = log[(1− λ2)φ(x) + λ2φµ2(x)]

= log [φ(x)]− λ2µ
(1)
2

d1φ(x)

φ(x)
+

1

2
λ2{µ(1)

2 }
2 d11φ(x)

φ(x)

−1

2
λ2
2{µ

(1)
2 }

2

(
d1φ(x)

φ(x)

)2

+ o(‖µ2‖2).

We thus obtain:

log[f1(x)]− log[f2(x)]

= (λ2µ
(1)
2 − λ1µ

(1)
1 )d1φ(x)

φ(x) + 1
2 (λ1{µ(1)

1 }2 − λ2{µ(1)
2 }2)d11φ(x)

φ(x)

+ 1
2 (λ2

2{µ
(1)
2 }2 − λ2

1{µ
(1)
1 }2)

(
d1φ(x)
φ(x)

)2

+ o(‖µ1‖2) + o(‖µ2‖2).

In particular, we observe that the term above can be considered as a “second

order term” if θ1 and θ2 are chosen such that λ1µ
(1)
1 = λ2µ

(1)
2 , which corresponds

to the first moment of Pθ1 and Pθ2 . If λ1µ
(1)
1 = λ2µ

(1)
2 , we obtain:

log[f1(x)]− log[f2(x)]

= 1
2 (λ1{µ(1)

1 }2 − λ2{µ(1)
2 }2)d11φ(x)

φ(x) + o(‖µ1‖2) + o(‖µ2‖2).

We deduce that:

KL(Pθ1 ,Pθ2)

=

∫ [
1

2
(λ1{µ(1)

1 }
2 − λ2{µ(1)

2 }
2)
d11φ(x)

φ(x)
+ o(‖µ1‖2) + o(‖µ2‖2)

]
f1(x)dx

=
1

2
(λ1{µ(1)

1 }
2 − λ2{µ(1)

2 }
2)

[
(1− λ1)

∫
d11φ(x)dx+ λ1

∫
d11φ(x)φ(x− µ1)

φ(x)
dx

]
+o(‖µ1‖2) + o(‖µ2‖2).

The smoothness of φ leads to
∫
d11φ(x)dx = 0. We deduce that:∫

d11φ(x)φ(x− µ1)

φ(x)
dx

=

∫
d11φ(x)

φ(x)
[φ(x)− µ(1)

1 d1φ(x) +
{µ(1)

1 }2

2
d11φ(x) + o(‖µ1‖2)]dx

=

∫
d11φ(x)dx− µ(1)

1

∫
d11φ(x)d1φ(x)

φ(x)
dx+

1

2
{µ(1)

1 }
2

∫
{d11φ(x)}2

φ(x)
dx+ o(µ2

1)dx.

Now, we choose for the density φ an even function (φ(x) = φ(−x) for all x ∈ Rd)
and we obtain that

KL(Pθ1 ,Pθ2) =
1

2
{µ(1)

1 }2Iφ + o
n→+∞

(‖µ1‖2),
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where the last line comes from the fact that x 7→ d11φ(x)d1φ(x)/φ(x) is an odd

function. Finally, since λ1µ
(1)
1 = λ2µ

(1)
2 , we deduce that:

KL(Pθ1 ,Pθ2) =
1

4
(λ1{µ(1)

1 }2 − λ2{µ(1)
2 }2)λ1‖µ1‖2Iφ + o(‖µ1‖4)

=
1

4

(
1− λ1

λ2

)
λ2

1‖µ1‖4Iφ + o(‖µ1‖4). (C.6)

Next, let λ̄ ∈ (0, 1). Choosing λ2 = λ̄
2 < λ̄ and λ1 = 1

αλ2 with α = 1+
√

5
2 , we

have: (
1− λ1

λ2

)
λ2

1 = (λ1 − λ2)2.

Thus,

KL(Pθ1 ,Pθ2) =
1

4
(λ2 − λ1)2‖µ1‖4Iφ + o(‖µ1‖4).

In order to apply Lemma C.1, let δ > 0 such that 2δ = ρ(θ1, θ2) ∧ ρ(θ2, θ1).

According to our constraint λ1µ
(1)
1 = λ2µ

(1)
2 and λ2 = αλ1 > λ1, we observe

that µ
(1)
2 < µ

(1)
1 so that:

2δ = ‖µ2‖2|λ1 − λ2|.

We deduce that:

|λ1 − λ2|‖µ1‖2 = |λ1 − λ2|
(
λ2

λ1

)2

‖µ2‖2 = 2δα2

and

‖µ1‖2 =

(
λ2

λ1

)2

‖µ2‖2 = α2 4α

(α− 1)λ̄
δ.

Thus,
KL(Pθ1 ,Pθ2) = δ2α4Iφ + o(δ2),

and according to Lemma C.1, we obtain:

inf
θ̂

sup
θ∈Θn(c)

E[‖µ‖4(λ− λ̂)2] ≥ δ2

2

{
1−

√
n

2
δ2 [α4Iφ + o(1)]

}
.

The choice of δ is determined by the right brackets that should be non-negative.
We can choose:

δ =
[
2nα4Iφ

]− 1
2 ,

so that n
2 δ

2
[
α4Iφ + o(1)

]
= 1

4 (1 + o(1)). Thus, an integer N exists such that:

∀n ≥ N inf
θ̂

sup
θ∈Θn(c)

E[‖µ‖4(λ− λ̂)2] ≥ δ2

6
=

1

12α4Iφn
.

This ends the proof of the first point.
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Point (ii) We define the loss function ρ(θ1, θ2) = λ1‖µ1‖‖µ1−µ2‖ and Φ(t) =
t2. The function ρ satisfies the weak triangle inequality (C.1):

∀(θ1, θ2, θ3) ∈ Θn(c)3 :

ρ(θ1, θ3) + ρ(θ2, θ3) = λ1‖µ1‖‖µ1 − µ3‖+ λ2‖µ2‖‖µ2 − µ3‖
≥ min(λ1‖µ1‖, λ2‖µ2‖)‖µ1 − µ2‖
≥ ρ(θ1, θ2) ∧ ρ(θ2, θ1).

The proof follows the same lines as the ones of (i) and our starting point is once
again the Kullback-Leibler divergence asymptotics given in Equation (C.6). Our
baseline relationship λ1µ1 = λ2µ2 is still necessary and we obtain while choosing

µ1 = (µ
(1)
1 , 0, . . . , 0) and µ2 = (µ

(1)
2 , 0, . . . , 0):

KL(Pθ1 ,Pθ2) =
Iφ
4

(
1− λ2

λ1

)
λ2

1µ
4
1 + o(‖µ1‖4).

We choose µ1 = 2µ2 so that λ2 = 2λ1 and:

ρ(θ1, θ2) ∧ ρ(θ2, θ1) = λ1‖µ1‖‖µ1 − µ2‖ =
1

2
λ1‖µ1‖2 := 2δ.

The coefficients λ1 and λ2 can be made explicit, e.g., λ1 = λ̄/2 and λ2 = λ̄. This

choice implies that µ
(1)
1 = 2

√
2δ/λ̄. These settings can be used in the result of

Lemma C.1 and we obtain:

inf
θ̂

sup
θ∈Θn(c)

E[λ2µ2(µ− µ̂)2] ≥ δ2

2

{
1−

√
nδ2

2
[2Iφ + o(1)]

}
.

We can obtain an efficient lower bound by choosing:

δn :=
1

2
√
nIφ

,

which implies, of course, that µ1 = o(1) and µ2 = o(1). According to this choice,
an integer N exists such that ∀n ≥ N :

inf
θ̂

sup
θ∈Θn(c)

E[λ2‖µ‖2‖µ− µ̂‖2] ≥ 1

8nIφ
× (1− 1

2
)/2 =

1

32nIφ
.

This ends the proof of the second point. �
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